LLVM 22.0.0git
LegalizerInfo.h
Go to the documentation of this file.
1//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// Interface for Targets to specify which operations they can successfully
10/// select and how the others should be expanded most efficiently.
11///
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
15#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
16
23#include "llvm/MC/MCInstrDesc.h"
27#include <cassert>
28#include <cstdint>
29#include <tuple>
30#include <utility>
31
32namespace llvm {
33
35
36class MachineFunction;
37class raw_ostream;
38class LegalizerHelper;
40class MachineInstr;
42class MCInstrInfo;
43
44namespace LegalizeActions {
45enum LegalizeAction : std::uint8_t {
46 /// The operation is expected to be selectable directly by the target, and
47 /// no transformation is necessary.
49
50 /// The operation should be synthesized from multiple instructions acting on
51 /// a narrower scalar base-type. For example a 64-bit add might be
52 /// implemented in terms of 32-bit add-with-carry.
54
55 /// The operation should be implemented in terms of a wider scalar
56 /// base-type. For example a <2 x s8> add could be implemented as a <2
57 /// x s32> add (ignoring the high bits).
59
60 /// The (vector) operation should be implemented by splitting it into
61 /// sub-vectors where the operation is legal. For example a <8 x s64> add
62 /// might be implemented as 4 separate <2 x s64> adds. There can be a leftover
63 /// if there are not enough elements for last sub-vector e.g. <7 x s64> add
64 /// will be implemented as 3 separate <2 x s64> adds and one s64 add. Leftover
65 /// types can be avoided by doing MoreElements first.
67
68 /// The (vector) operation should be implemented by widening the input
69 /// vector and ignoring the lanes added by doing so. For example <2 x i8> is
70 /// rarely legal, but you might perform an <8 x i8> and then only look at
71 /// the first two results.
73
74 /// Perform the operation on a different, but equivalently sized type.
76
77 /// The operation itself must be expressed in terms of simpler actions on
78 /// this target. E.g. a SREM replaced by an SDIV and subtraction.
80
81 /// The operation should be implemented as a call to some kind of runtime
82 /// support library. For example this usually happens on machines that don't
83 /// support floating-point operations natively.
85
86 /// The target wants to do something special with this combination of
87 /// operand and type. A callback will be issued when it is needed.
89
90 /// This operation is completely unsupported on the target. A programming
91 /// error has occurred.
93
94 /// Sentinel value for when no action was found in the specified table.
96
97 /// Fall back onto the old rules.
98 /// TODO: Remove this once we've migrated
100};
101} // end namespace LegalizeActions
102LLVM_ABI raw_ostream &operator<<(raw_ostream &OS,
104
106
107/// The LegalityQuery object bundles together all the information that's needed
108/// to decide whether a given operation is legal or not.
109/// For efficiency, it doesn't make a copy of Types so care must be taken not
110/// to free it before using the query.
112 unsigned Opcode;
114
115 struct MemDesc {
118 AtomicOrdering Ordering; //< For cmpxchg this is the success ordering.
119 AtomicOrdering FailureOrdering; //< For cmpxchg, otherwise NotAtomic.
120
121 MemDesc() = default;
127 : MemDesc(MMO.getMemoryType(), MMO.getAlign().value() * 8,
128 MMO.getSuccessOrdering(), MMO.getFailureOrdering()) {}
129 };
130
131 /// Operations which require memory can use this to place requirements on the
132 /// memory type for each MMO.
134
137 : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {}
138
139 LLVM_ABI raw_ostream &print(raw_ostream &OS) const;
140};
141
142/// The result of a query. It either indicates a final answer of Legal or
143/// Unsupported or describes an action that must be taken to make an operation
144/// more legal.
146 /// The action to take or the final answer.
148 /// If describing an action, the type index to change. Otherwise zero.
149 unsigned TypeIdx;
150 /// If describing an action, the new type for TypeIdx. Otherwise LLT{}.
152
156
158 : TypeIdx(Step.TypeIdx), NewType(Step.NewType) {
159 switch (Step.Action) {
160 case LegacyLegalizeActions::Legal:
161 Action = LegalizeActions::Legal;
162 break;
163 case LegacyLegalizeActions::NarrowScalar:
164 Action = LegalizeActions::NarrowScalar;
165 break;
166 case LegacyLegalizeActions::WidenScalar:
167 Action = LegalizeActions::WidenScalar;
168 break;
169 case LegacyLegalizeActions::FewerElements:
170 Action = LegalizeActions::FewerElements;
171 break;
172 case LegacyLegalizeActions::MoreElements:
173 Action = LegalizeActions::MoreElements;
174 break;
175 case LegacyLegalizeActions::Bitcast:
176 Action = LegalizeActions::Bitcast;
177 break;
178 case LegacyLegalizeActions::Lower:
179 Action = LegalizeActions::Lower;
180 break;
181 case LegacyLegalizeActions::Libcall:
182 Action = LegalizeActions::Libcall;
183 break;
184 case LegacyLegalizeActions::Custom:
185 Action = LegalizeActions::Custom;
186 break;
187 case LegacyLegalizeActions::Unsupported:
188 Action = LegalizeActions::Unsupported;
189 break;
190 case LegacyLegalizeActions::NotFound:
191 Action = LegalizeActions::NotFound;
192 break;
193 }
194 }
195
196 bool operator==(const LegalizeActionStep &RHS) const {
197 return std::tie(Action, TypeIdx, NewType) ==
198 std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType);
199 }
200};
201
202using LegalityPredicate = std::function<bool (const LegalityQuery &)>;
204 std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>;
205
212
214 return Type0 == Other.Type0 && Type1 == Other.Type1 &&
215 Align == Other.Align && MemTy == Other.MemTy;
216 }
217
218 /// \returns true if this memory access is legal with for the access described
219 /// by \p Other (The alignment is sufficient for the size and result type).
221 return Type0 == Other.Type0 && Type1 == Other.Type1 &&
222 Align >= Other.Align &&
223 // FIXME: This perhaps should be stricter, but the current legality
224 // rules are written only considering the size.
225 MemTy.getSizeInBits() == Other.MemTy.getSizeInBits();
226 }
227};
228
229/// True iff P is false.
230template <typename Predicate> Predicate predNot(Predicate P) {
231 return [=](const LegalityQuery &Query) { return !P(Query); };
232}
233
234/// True iff P0 and P1 are true.
235template<typename Predicate>
237 return [=](const LegalityQuery &Query) {
238 return P0(Query) && P1(Query);
239 };
240}
241/// True iff all given predicates are true.
242template<typename Predicate, typename... Args>
244 return all(all(P0, P1), args...);
245}
246
247/// True iff P0 or P1 are true.
248template<typename Predicate>
250 return [=](const LegalityQuery &Query) {
251 return P0(Query) || P1(Query);
252 };
253}
254/// True iff any given predicates are true.
255template<typename Predicate, typename... Args>
257 return any(any(P0, P1), args...);
258}
259
260/// True iff the given type index is the specified type.
261LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit);
262/// True iff the given type index is one of the specified types.
263LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx,
264 std::initializer_list<LLT> TypesInit);
265
266/// True iff the given type index is not the specified type.
267inline LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type) {
268 return [=](const LegalityQuery &Query) {
269 return Query.Types[TypeIdx] != Type;
270 };
271}
272
273/// True iff the given types for the given pair of type indexes is one of the
274/// specified type pairs.
276typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1,
277 std::initializer_list<std::pair<LLT, LLT>> TypesInit);
278/// True iff the given types for the given tuple of type indexes is one of the
279/// specified type tuple.
281typeTupleInSet(unsigned TypeIdx0, unsigned TypeIdx1, unsigned Type2,
282 std::initializer_list<std::tuple<LLT, LLT, LLT>> TypesInit);
283/// True iff the given types for the given pair of type indexes is one of the
284/// specified type pairs.
286 unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx,
287 std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit);
288/// True iff the specified type index is a scalar.
289LLVM_ABI LegalityPredicate isScalar(unsigned TypeIdx);
290/// True iff the specified type index is a vector.
291LLVM_ABI LegalityPredicate isVector(unsigned TypeIdx);
292/// True iff the specified type index is a pointer (with any address space).
293LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx);
294/// True iff the specified type index is a pointer with the specified address
295/// space.
296LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace);
297/// True iff the specified type index is a vector of pointers (with any address
298/// space).
300
301/// True if the type index is a vector with element type \p EltTy
302LLVM_ABI LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy);
303
304/// True iff the specified type index is a scalar that's narrower than the given
305/// size.
306LLVM_ABI LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size);
307
308/// True iff the specified type index is a scalar that's wider than the given
309/// size.
310LLVM_ABI LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size);
311
312/// True iff the specified type index is a scalar or vector with an element type
313/// that's narrower than the given size.
315 unsigned Size);
316
317/// True iff the specified type index is a vector with a number of elements
318/// that's greater than the given size.
320 unsigned Size);
321
322/// True iff the specified type index is a vector with a number of elements
323/// that's less than or equal to the given size.
325vectorElementCountIsLessThanOrEqualTo(unsigned TypeIdx, unsigned Size);
326
327/// True iff the specified type index is a scalar or a vector with an element
328/// type that's wider than the given size.
330 unsigned Size);
331
332/// True iff the specified type index is a scalar whose size is not a multiple
333/// of Size.
334LLVM_ABI LegalityPredicate sizeNotMultipleOf(unsigned TypeIdx, unsigned Size);
335
336/// True iff the specified type index is a scalar whose size is not a power of
337/// 2.
338LLVM_ABI LegalityPredicate sizeNotPow2(unsigned TypeIdx);
339
340/// True iff the specified type index is a scalar or vector whose element size
341/// is not a power of 2.
343
344/// True if the total bitwidth of the specified type index is \p Size bits.
345LLVM_ABI LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size);
346
347/// True iff the specified type indices are both the same bit size.
348LLVM_ABI LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1);
349
350/// True iff the first type index has a larger total bit size than second type
351/// index.
352LLVM_ABI LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1);
353
354/// True iff the first type index has a smaller total bit size than second type
355/// index.
356LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1);
357
358/// True iff the specified MMO index has a size (rounded to bytes) that is not a
359/// power of 2.
361
362/// True iff the specified MMO index has a size that is not an even byte size,
363/// or that even byte size is not a power of 2.
365
366/// True iff the specified type index is a vector whose element count is not a
367/// power of 2.
369/// True iff the specified MMO index has at an atomic ordering of at Ordering or
370/// stronger.
372atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering);
373} // end namespace LegalityPredicates
374
376/// Select this specific type for the given type index.
377LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty);
378
379/// Keep the same type as the given type index.
380LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx);
381
382/// Keep the same scalar or element type as the given type index.
384 unsigned FromTypeIdx);
385
386/// Keep the same scalar or element type as the given type.
387LLVM_ABI LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty);
388
389/// Keep the same scalar or element type as \p TypeIdx, but take the number of
390/// elements from \p FromTypeIdx.
392 unsigned FromTypeIdx);
393
394/// Keep the same scalar or element type as \p TypeIdx, but take the number of
395/// elements from \p Ty.
397 ElementCount EC);
398
399/// Change the scalar size or element size to have the same scalar size as type
400/// index \p FromIndex. Unlike changeElementTo, this discards pointer types and
401/// only changes the size.
403 unsigned FromTypeIdx);
404
405/// Widen the scalar type or vector element type for the given type index to the
406/// next power of 2.
408 unsigned Min = 0);
409
410/// Widen the scalar type or vector element type for the given type index to
411/// next multiple of \p Size.
413 unsigned Size);
414
415/// Add more elements to the type for the given type index to the next power of
416/// 2.
418 unsigned Min = 0);
419/// Break up the vector type for the given type index into the element type.
420LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx);
421} // end namespace LegalizeMutations
422
423/// A single rule in a legalizer info ruleset.
424/// The specified action is chosen when the predicate is true. Where appropriate
425/// for the action (e.g. for WidenScalar) the new type is selected using the
426/// given mutator.
428 LegalityPredicate Predicate;
429 LegalizeAction Action;
430 LegalizeMutation Mutation;
431
432public:
434 LegalizeMutation Mutation = nullptr)
435 : Predicate(Predicate), Action(Action), Mutation(Mutation) {}
436
437 /// Test whether the LegalityQuery matches.
438 bool match(const LegalityQuery &Query) const {
439 return Predicate(Query);
440 }
441
442 LegalizeAction getAction() const { return Action; }
443
444 /// Determine the change to make.
445 std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const {
446 if (Mutation)
447 return Mutation(Query);
448 return std::make_pair(0, LLT{});
449 }
450};
451
453 /// When non-zero, the opcode we are an alias of
454 unsigned AliasOf = 0;
455 /// If true, there is another opcode that aliases this one
456 bool IsAliasedByAnother = false;
458
459#ifndef NDEBUG
460 /// If bit I is set, this rule set contains a rule that may handle (predicate
461 /// or perform an action upon (or both)) the type index I. The uncertainty
462 /// comes from free-form rules executing user-provided lambda functions. We
463 /// conservatively assume such rules do the right thing and cover all type
464 /// indices. The bitset is intentionally 1 bit wider than it absolutely needs
465 /// to be to distinguish such cases from the cases where all type indices are
466 /// individually handled.
471#endif
472
473 unsigned typeIdx(unsigned TypeIdx) {
474 assert(TypeIdx <=
476 "Type Index is out of bounds");
477#ifndef NDEBUG
478 TypeIdxsCovered.set(TypeIdx);
479#endif
480 return TypeIdx;
481 }
482
483 void markAllIdxsAsCovered() {
484#ifndef NDEBUG
485 TypeIdxsCovered.set();
486 ImmIdxsCovered.set();
487#endif
488 }
489
490 void add(const LegalizeRule &Rule) {
491 assert(AliasOf == 0 &&
492 "RuleSet is aliased, change the representative opcode instead");
493 Rules.push_back(Rule);
494 }
495
496 static bool always(const LegalityQuery &) { return true; }
497
498 /// Use the given action when the predicate is true.
499 /// Action should not be an action that requires mutation.
500 LegalizeRuleSet &actionIf(LegalizeAction Action,
502 add({Predicate, Action});
503 return *this;
504 }
505 /// Use the given action when the predicate is true.
506 /// Action should be an action that requires mutation.
509 add({Predicate, Action, Mutation});
510 return *this;
511 }
512 /// Use the given action when type index 0 is any type in the given list.
513 /// Action should not be an action that requires mutation.
514 LegalizeRuleSet &actionFor(LegalizeAction Action,
515 std::initializer_list<LLT> Types) {
516 using namespace LegalityPredicates;
517 return actionIf(Action, typeInSet(typeIdx(0), Types));
518 }
519 /// Use the given action when type index 0 is any type in the given list.
520 /// Action should be an action that requires mutation.
521 LegalizeRuleSet &actionFor(LegalizeAction Action,
522 std::initializer_list<LLT> Types,
524 using namespace LegalityPredicates;
525 return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation);
526 }
527 /// Use the given action when type indexes 0 and 1 is any type pair in the
528 /// given list.
529 /// Action should not be an action that requires mutation.
530 LegalizeRuleSet &actionFor(LegalizeAction Action,
531 std::initializer_list<std::pair<LLT, LLT>> Types) {
532 using namespace LegalityPredicates;
533 return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
534 }
535
537 actionFor(LegalizeAction Action,
538 std::initializer_list<std::tuple<LLT, LLT, LLT>> Types) {
539 using namespace LegalityPredicates;
540 return actionIf(Action,
541 typeTupleInSet(typeIdx(0), typeIdx(1), typeIdx(2), Types));
542 }
543
544 /// Use the given action when type indexes 0 and 1 is any type pair in the
545 /// given list.
546 /// Action should be an action that requires mutation.
547 LegalizeRuleSet &actionFor(LegalizeAction Action,
548 std::initializer_list<std::pair<LLT, LLT>> Types,
550 using namespace LegalityPredicates;
551 return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types),
552 Mutation);
553 }
554 /// Use the given action when type index 0 is any type in the given list and
555 /// imm index 0 is anything. Action should not be an action that requires
556 /// mutation.
557 LegalizeRuleSet &actionForTypeWithAnyImm(LegalizeAction Action,
558 std::initializer_list<LLT> Types) {
559 using namespace LegalityPredicates;
560 immIdx(0); // Inform verifier imm idx 0 is handled.
561 return actionIf(Action, typeInSet(typeIdx(0), Types));
562 }
563
564 LegalizeRuleSet &actionForTypeWithAnyImm(
565 LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types) {
566 using namespace LegalityPredicates;
567 immIdx(0); // Inform verifier imm idx 0 is handled.
568 return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
569 }
570
571 /// Use the given action when type indexes 0 and 1 are both in the given list.
572 /// That is, the type pair is in the cartesian product of the list.
573 /// Action should not be an action that requires mutation.
574 LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action,
575 std::initializer_list<LLT> Types) {
576 using namespace LegalityPredicates;
577 return actionIf(Action, all(typeInSet(typeIdx(0), Types),
578 typeInSet(typeIdx(1), Types)));
579 }
580 /// Use the given action when type indexes 0 and 1 are both in their
581 /// respective lists.
582 /// That is, the type pair is in the cartesian product of the lists
583 /// Action should not be an action that requires mutation.
585 actionForCartesianProduct(LegalizeAction Action,
586 std::initializer_list<LLT> Types0,
587 std::initializer_list<LLT> Types1) {
588 using namespace LegalityPredicates;
589 return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
590 typeInSet(typeIdx(1), Types1)));
591 }
592 /// Use the given action when type indexes 0, 1, and 2 are all in their
593 /// respective lists.
594 /// That is, the type triple is in the cartesian product of the lists
595 /// Action should not be an action that requires mutation.
596 LegalizeRuleSet &actionForCartesianProduct(
597 LegalizeAction Action, std::initializer_list<LLT> Types0,
598 std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) {
599 using namespace LegalityPredicates;
600 return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
601 all(typeInSet(typeIdx(1), Types1),
602 typeInSet(typeIdx(2), Types2))));
603 }
604
605public:
606 LegalizeRuleSet() = default;
607
608 bool isAliasedByAnother() { return IsAliasedByAnother; }
609 void setIsAliasedByAnother() { IsAliasedByAnother = true; }
610 void aliasTo(unsigned Opcode) {
611 assert((AliasOf == 0 || AliasOf == Opcode) &&
612 "Opcode is already aliased to another opcode");
613 assert(Rules.empty() && "Aliasing will discard rules");
614 AliasOf = Opcode;
615 }
616 unsigned getAlias() const { return AliasOf; }
617
618 unsigned immIdx(unsigned ImmIdx) {
621 "Imm Index is out of bounds");
622#ifndef NDEBUG
623 ImmIdxsCovered.set(ImmIdx);
624#endif
625 return ImmIdx;
626 }
627
628 /// The instruction is legal if predicate is true.
630 // We have no choice but conservatively assume that the free-form
631 // user-provided Predicate properly handles all type indices:
632 markAllIdxsAsCovered();
633 return actionIf(LegalizeAction::Legal, Predicate);
634 }
635 /// The instruction is legal when type index 0 is any type in the given list.
636 LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) {
637 return actionFor(LegalizeAction::Legal, Types);
638 }
639 LegalizeRuleSet &legalFor(bool Pred, std::initializer_list<LLT> Types) {
640 if (!Pred)
641 return *this;
642 return actionFor(LegalizeAction::Legal, Types);
643 }
644 /// The instruction is legal when type indexes 0 and 1 is any type pair in the
645 /// given list.
646 LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
647 return actionFor(LegalizeAction::Legal, Types);
648 }
650 std::initializer_list<std::pair<LLT, LLT>> Types) {
651 if (!Pred)
652 return *this;
653 return actionFor(LegalizeAction::Legal, Types);
654 }
656 legalFor(bool Pred, std::initializer_list<std::tuple<LLT, LLT, LLT>> Types) {
657 if (!Pred)
658 return *this;
659 return actionFor(LegalizeAction::Legal, Types);
660 }
661 /// The instruction is legal when type index 0 is any type in the given list
662 /// and imm index 0 is anything.
663 LegalizeRuleSet &legalForTypeWithAnyImm(std::initializer_list<LLT> Types) {
664 markAllIdxsAsCovered();
665 return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
666 }
667
669 std::initializer_list<std::pair<LLT, LLT>> Types) {
670 markAllIdxsAsCovered();
671 return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
672 }
673
674 /// The instruction is legal when type indexes 0 and 1 along with the memory
675 /// size and minimum alignment is any type and size tuple in the given list.
677 std::initializer_list<LegalityPredicates::TypePairAndMemDesc>
678 TypesAndMemDesc) {
679 return actionIf(LegalizeAction::Legal,
681 typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemDesc));
682 }
683 /// The instruction is legal when type indexes 0 and 1 are both in the given
684 /// list. That is, the type pair is in the cartesian product of the list.
685 LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) {
686 return actionForCartesianProduct(LegalizeAction::Legal, Types);
687 }
688 /// The instruction is legal when type indexes 0 and 1 are both their
689 /// respective lists.
690 LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
691 std::initializer_list<LLT> Types1) {
692 return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1);
693 }
694 /// The instruction is legal when type indexes 0, 1, and 2 are both their
695 /// respective lists.
696 LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
697 std::initializer_list<LLT> Types1,
698 std::initializer_list<LLT> Types2) {
699 return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1,
700 Types2);
701 }
702
704 using namespace LegalizeMutations;
705 markAllIdxsAsCovered();
706 return actionIf(LegalizeAction::Legal, always);
707 }
708
709 /// The specified type index is coerced if predicate is true.
712 // We have no choice but conservatively assume that lowering with a
713 // free-form user provided Predicate properly handles all type indices:
714 markAllIdxsAsCovered();
715 return actionIf(LegalizeAction::Bitcast, Predicate, Mutation);
716 }
717
718 /// The instruction is lowered.
720 using namespace LegalizeMutations;
721 // We have no choice but conservatively assume that predicate-less lowering
722 // properly handles all type indices by design:
723 markAllIdxsAsCovered();
724 return actionIf(LegalizeAction::Lower, always);
725 }
726 /// The instruction is lowered if predicate is true. Keep type index 0 as the
727 /// same type.
729 using namespace LegalizeMutations;
730 // We have no choice but conservatively assume that lowering with a
731 // free-form user provided Predicate properly handles all type indices:
732 markAllIdxsAsCovered();
733 return actionIf(LegalizeAction::Lower, Predicate);
734 }
735 /// The instruction is lowered if predicate is true.
738 // We have no choice but conservatively assume that lowering with a
739 // free-form user provided Predicate properly handles all type indices:
740 markAllIdxsAsCovered();
741 return actionIf(LegalizeAction::Lower, Predicate, Mutation);
742 }
743 /// The instruction is lowered when type index 0 is any type in the given
744 /// list. Keep type index 0 as the same type.
745 LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) {
746 return actionFor(LegalizeAction::Lower, Types);
747 }
748 /// The instruction is lowered when type index 0 is any type in the given
749 /// list.
750 LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types,
752 return actionFor(LegalizeAction::Lower, Types, Mutation);
753 }
754 /// The instruction is lowered when type indexes 0 and 1 is any type pair in
755 /// the given list. Keep type index 0 as the same type.
756 LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
757 return actionFor(LegalizeAction::Lower, Types);
758 }
759 /// The instruction is lowered when type indexes 0 and 1 is any type pair in
760 /// the given list.
761 LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types,
763 return actionFor(LegalizeAction::Lower, Types, Mutation);
764 }
765 /// The instruction is lowered when type indexes 0 and 1 are both in their
766 /// respective lists.
767 LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
768 std::initializer_list<LLT> Types1) {
769 using namespace LegalityPredicates;
770 return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1);
771 }
772 /// The instruction is lowered when type indexes 0, 1, and 2 are all in
773 /// their respective lists.
774 LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
775 std::initializer_list<LLT> Types1,
776 std::initializer_list<LLT> Types2) {
777 using namespace LegalityPredicates;
778 return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1,
779 Types2);
780 }
781
782 /// The instruction is emitted as a library call.
784 using namespace LegalizeMutations;
785 // We have no choice but conservatively assume that predicate-less lowering
786 // properly handles all type indices by design:
787 markAllIdxsAsCovered();
788 return actionIf(LegalizeAction::Libcall, always);
789 }
790
791 /// Like legalIf, but for the Libcall action.
793 // We have no choice but conservatively assume that a libcall with a
794 // free-form user provided Predicate properly handles all type indices:
795 markAllIdxsAsCovered();
796 return actionIf(LegalizeAction::Libcall, Predicate);
797 }
798 LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) {
799 return actionFor(LegalizeAction::Libcall, Types);
800 }
801 LegalizeRuleSet &libcallFor(bool Pred, std::initializer_list<LLT> Types) {
802 if (!Pred)
803 return *this;
804 return actionFor(LegalizeAction::Libcall, Types);
805 }
807 libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
808 return actionFor(LegalizeAction::Libcall, Types);
809 }
811 libcallFor(bool Pred, std::initializer_list<std::pair<LLT, LLT>> Types) {
812 if (!Pred)
813 return *this;
814 return actionFor(LegalizeAction::Libcall, Types);
815 }
817 libcallForCartesianProduct(std::initializer_list<LLT> Types) {
818 return actionForCartesianProduct(LegalizeAction::Libcall, Types);
819 }
821 libcallForCartesianProduct(std::initializer_list<LLT> Types0,
822 std::initializer_list<LLT> Types1) {
823 return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1);
824 }
825
826 /// Widen the scalar to the one selected by the mutation if the predicate is
827 /// true.
830 // We have no choice but conservatively assume that an action with a
831 // free-form user provided Predicate properly handles all type indices:
832 markAllIdxsAsCovered();
833 return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation);
834 }
835 /// Narrow the scalar to the one selected by the mutation if the predicate is
836 /// true.
839 // We have no choice but conservatively assume that an action with a
840 // free-form user provided Predicate properly handles all type indices:
841 markAllIdxsAsCovered();
842 return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation);
843 }
844 /// Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any
845 /// type pair in the given list.
847 narrowScalarFor(std::initializer_list<std::pair<LLT, LLT>> Types,
849 return actionFor(LegalizeAction::NarrowScalar, Types, Mutation);
850 }
851
852 /// Add more elements to reach the type selected by the mutation if the
853 /// predicate is true.
856 // We have no choice but conservatively assume that an action with a
857 // free-form user provided Predicate properly handles all type indices:
858 markAllIdxsAsCovered();
859 return actionIf(LegalizeAction::MoreElements, Predicate, Mutation);
860 }
861 /// Remove elements to reach the type selected by the mutation if the
862 /// predicate is true.
865 // We have no choice but conservatively assume that an action with a
866 // free-form user provided Predicate properly handles all type indices:
867 markAllIdxsAsCovered();
868 return actionIf(LegalizeAction::FewerElements, Predicate, Mutation);
869 }
870
871 /// The instruction is unsupported.
873 markAllIdxsAsCovered();
874 return actionIf(LegalizeAction::Unsupported, always);
875 }
877 return actionIf(LegalizeAction::Unsupported, Predicate);
878 }
879
880 LegalizeRuleSet &unsupportedFor(std::initializer_list<LLT> Types) {
881 return actionFor(LegalizeAction::Unsupported, Types);
882 }
883
885 return actionIf(LegalizeAction::Unsupported,
887 }
888
889 /// Lower a memory operation if the memory size, rounded to bytes, is not a
890 /// power of 2. For example, this will not trigger for s1 or s7, but will for
891 /// s24.
893 return actionIf(LegalizeAction::Lower,
895 }
896
897 /// Lower a memory operation if the memory access size is not a round power of
898 /// 2 byte size. This is stricter than lowerIfMemSizeNotPow2, and more likely
899 /// what you want (e.g. this will lower s1, s7 and s24).
901 return actionIf(LegalizeAction::Lower,
903 }
904
906 // We have no choice but conservatively assume that a custom action with a
907 // free-form user provided Predicate properly handles all type indices:
908 markAllIdxsAsCovered();
909 return actionIf(LegalizeAction::Custom, Predicate);
910 }
911 LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) {
912 return actionFor(LegalizeAction::Custom, Types);
913 }
914 LegalizeRuleSet &customFor(bool Pred, std::initializer_list<LLT> Types) {
915 if (!Pred)
916 return *this;
917 return actionFor(LegalizeAction::Custom, Types);
918 }
919
920 /// The instruction is custom when type indexes 0 and 1 is any type pair in
921 /// the given list.
922 LegalizeRuleSet &customFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
923 return actionFor(LegalizeAction::Custom, Types);
924 }
926 std::initializer_list<std::pair<LLT, LLT>> Types) {
927 if (!Pred)
928 return *this;
929 return actionFor(LegalizeAction::Custom, Types);
930 }
931
932 LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) {
933 return actionForCartesianProduct(LegalizeAction::Custom, Types);
934 }
935 /// The instruction is custom when type indexes 0 and 1 are both in their
936 /// respective lists.
938 customForCartesianProduct(std::initializer_list<LLT> Types0,
939 std::initializer_list<LLT> Types1) {
940 return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
941 }
942 /// The instruction is custom when type indexes 0, 1, and 2 are all in
943 /// their respective lists.
945 customForCartesianProduct(std::initializer_list<LLT> Types0,
946 std::initializer_list<LLT> Types1,
947 std::initializer_list<LLT> Types2) {
948 return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1,
949 Types2);
950 }
951
952 /// The instruction is custom when the predicate is true and type indexes 0
953 /// and 1 are all in their respective lists.
955 customForCartesianProduct(bool Pred, std::initializer_list<LLT> Types0,
956 std::initializer_list<LLT> Types1) {
957 if (!Pred)
958 return *this;
959 return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
960 }
961
962 /// Unconditionally custom lower.
964 return customIf(always);
965 }
966
967 /// Widen the scalar to the next power of two that is at least MinSize.
968 /// No effect if the type is a power of two, except if the type is smaller
969 /// than MinSize, or if the type is a vector type.
971 unsigned MinSize = 0) {
972 using namespace LegalityPredicates;
973 return actionIf(
974 LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)),
976 }
977
978 /// Widen the scalar to the next multiple of Size. No effect if the
979 /// type is not a scalar or is a multiple of Size.
981 unsigned Size) {
982 using namespace LegalityPredicates;
983 return actionIf(
984 LegalizeAction::WidenScalar, sizeNotMultipleOf(typeIdx(TypeIdx), Size),
986 }
987
988 /// Widen the scalar or vector element type to the next power of two that is
989 /// at least MinSize. No effect if the scalar size is a power of two.
991 unsigned MinSize = 0) {
992 using namespace LegalityPredicates;
993 return actionIf(
994 LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)),
996 }
997
998 /// Widen the scalar or vector element type to the next power of two that is
999 /// at least MinSize. No effect if the scalar size is a power of two.
1001 unsigned MinSize = 0) {
1002 using namespace LegalityPredicates;
1003 return actionIf(
1004 LegalizeAction::WidenScalar,
1005 any(scalarOrEltNarrowerThan(TypeIdx, MinSize),
1006 scalarOrEltSizeNotPow2(typeIdx(TypeIdx))),
1008 }
1009
1011 using namespace LegalityPredicates;
1012 return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)),
1013 Mutation);
1014 }
1015
1016 LegalizeRuleSet &scalarize(unsigned TypeIdx) {
1017 using namespace LegalityPredicates;
1018 return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)),
1020 }
1021
1023 using namespace LegalityPredicates;
1024 return actionIf(LegalizeAction::FewerElements,
1025 all(Predicate, isVector(typeIdx(TypeIdx))),
1027 }
1028
1029 /// Ensure the scalar or element is at least as wide as Ty.
1030 LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT Ty) {
1031 using namespace LegalityPredicates;
1032 using namespace LegalizeMutations;
1033 return actionIf(LegalizeAction::WidenScalar,
1034 scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()),
1035 changeElementTo(typeIdx(TypeIdx), Ty));
1036 }
1037
1038 /// Ensure the scalar or element is at least as wide as Ty.
1040 unsigned TypeIdx, const LLT Ty) {
1041 using namespace LegalityPredicates;
1042 using namespace LegalizeMutations;
1043 return actionIf(LegalizeAction::WidenScalar,
1044 all(Predicate, scalarOrEltNarrowerThan(
1045 TypeIdx, Ty.getScalarSizeInBits())),
1046 changeElementTo(typeIdx(TypeIdx), Ty));
1047 }
1048
1049 /// Ensure the vector size is at least as wide as VectorSize by promoting the
1050 /// element.
1052 unsigned VectorSize) {
1053 using namespace LegalityPredicates;
1054 using namespace LegalizeMutations;
1055 return actionIf(
1056 LegalizeAction::WidenScalar,
1057 [=](const LegalityQuery &Query) {
1058 const LLT VecTy = Query.Types[TypeIdx];
1059 return VecTy.isFixedVector() && VecTy.getSizeInBits() < VectorSize;
1060 },
1061 [=](const LegalityQuery &Query) {
1062 const LLT VecTy = Query.Types[TypeIdx];
1063 unsigned NumElts = VecTy.getNumElements();
1064 unsigned MinSize = VectorSize / NumElts;
1065 LLT NewTy = LLT::fixed_vector(NumElts, LLT::scalar(MinSize));
1066 return std::make_pair(TypeIdx, NewTy);
1067 });
1068 }
1069
1070 /// Ensure the scalar is at least as wide as Ty.
1071 LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT Ty) {
1072 using namespace LegalityPredicates;
1073 using namespace LegalizeMutations;
1074 return actionIf(LegalizeAction::WidenScalar,
1075 scalarNarrowerThan(TypeIdx, Ty.getSizeInBits()),
1076 changeTo(typeIdx(TypeIdx), Ty));
1077 }
1078 LegalizeRuleSet &minScalar(bool Pred, unsigned TypeIdx, const LLT Ty) {
1079 if (!Pred)
1080 return *this;
1081 return minScalar(TypeIdx, Ty);
1082 }
1083
1084 /// Ensure the scalar is at least as wide as Ty if condition is met.
1086 const LLT Ty) {
1087 using namespace LegalityPredicates;
1088 using namespace LegalizeMutations;
1089 return actionIf(
1090 LegalizeAction::WidenScalar,
1091 [=](const LegalityQuery &Query) {
1092 const LLT QueryTy = Query.Types[TypeIdx];
1093 return QueryTy.isScalar() &&
1094 QueryTy.getSizeInBits() < Ty.getSizeInBits() &&
1095 Predicate(Query);
1096 },
1097 changeTo(typeIdx(TypeIdx), Ty));
1098 }
1099
1100 /// Ensure the scalar is at most as wide as Ty.
1101 LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT Ty) {
1102 using namespace LegalityPredicates;
1103 using namespace LegalizeMutations;
1104 return actionIf(LegalizeAction::NarrowScalar,
1105 scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()),
1106 changeElementTo(typeIdx(TypeIdx), Ty));
1107 }
1108
1109 /// Ensure the scalar is at most as wide as Ty.
1110 LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT Ty) {
1111 using namespace LegalityPredicates;
1112 using namespace LegalizeMutations;
1113 return actionIf(LegalizeAction::NarrowScalar,
1114 scalarWiderThan(TypeIdx, Ty.getSizeInBits()),
1115 changeTo(typeIdx(TypeIdx), Ty));
1116 }
1117
1118 /// Conditionally limit the maximum size of the scalar.
1119 /// For example, when the maximum size of one type depends on the size of
1120 /// another such as extracting N bits from an M bit container.
1122 const LLT Ty) {
1123 using namespace LegalityPredicates;
1124 using namespace LegalizeMutations;
1125 return actionIf(
1126 LegalizeAction::NarrowScalar,
1127 [=](const LegalityQuery &Query) {
1128 const LLT QueryTy = Query.Types[TypeIdx];
1129 return QueryTy.isScalar() &&
1130 QueryTy.getSizeInBits() > Ty.getSizeInBits() &&
1131 Predicate(Query);
1132 },
1133 changeElementTo(typeIdx(TypeIdx), Ty));
1134 }
1135
1136 /// Limit the range of scalar sizes to MinTy and MaxTy.
1137 LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT MinTy,
1138 const LLT MaxTy) {
1139 assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types");
1140 return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy);
1141 }
1142
1143 LegalizeRuleSet &clampScalar(bool Pred, unsigned TypeIdx, const LLT MinTy,
1144 const LLT MaxTy) {
1145 if (!Pred)
1146 return *this;
1147 return clampScalar(TypeIdx, MinTy, MaxTy);
1148 }
1149
1150 /// Limit the range of scalar sizes to MinTy and MaxTy.
1151 LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT MinTy,
1152 const LLT MaxTy) {
1153 return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy);
1154 }
1155
1156 /// Widen the scalar to match the size of another.
1157 LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) {
1158 typeIdx(TypeIdx);
1159 return actionIf(
1160 LegalizeAction::WidenScalar,
1161 [=](const LegalityQuery &Query) {
1162 return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
1163 Query.Types[TypeIdx].getSizeInBits();
1164 },
1165 LegalizeMutations::changeElementSizeTo(TypeIdx, LargeTypeIdx));
1166 }
1167
1168 /// Narrow the scalar to match the size of another.
1169 LegalizeRuleSet &maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx) {
1170 typeIdx(TypeIdx);
1171 return actionIf(
1172 LegalizeAction::NarrowScalar,
1173 [=](const LegalityQuery &Query) {
1174 return Query.Types[NarrowTypeIdx].getScalarSizeInBits() <
1175 Query.Types[TypeIdx].getSizeInBits();
1176 },
1177 LegalizeMutations::changeElementSizeTo(TypeIdx, NarrowTypeIdx));
1178 }
1179
1180 /// Change the type \p TypeIdx to have the same scalar size as type \p
1181 /// SameSizeIdx.
1182 LegalizeRuleSet &scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx) {
1183 return minScalarSameAs(TypeIdx, SameSizeIdx)
1184 .maxScalarSameAs(TypeIdx, SameSizeIdx);
1185 }
1186
1187 /// Conditionally widen the scalar or elt to match the size of another.
1189 unsigned TypeIdx, unsigned LargeTypeIdx) {
1190 typeIdx(TypeIdx);
1191 return widenScalarIf(
1192 [=](const LegalityQuery &Query) {
1193 return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
1194 Query.Types[TypeIdx].getScalarSizeInBits() &&
1195 Predicate(Query);
1196 },
1197 [=](const LegalityQuery &Query) {
1198 LLT T = Query.Types[LargeTypeIdx];
1199 if (T.isPointerVector())
1200 T = T.changeElementType(LLT::scalar(T.getScalarSizeInBits()));
1201 return std::make_pair(TypeIdx, T);
1202 });
1203 }
1204
1205 /// Conditionally narrow the scalar or elt to match the size of another.
1207 unsigned TypeIdx,
1208 unsigned SmallTypeIdx) {
1209 typeIdx(TypeIdx);
1210 return narrowScalarIf(
1211 [=](const LegalityQuery &Query) {
1212 return Query.Types[SmallTypeIdx].getScalarSizeInBits() <
1213 Query.Types[TypeIdx].getScalarSizeInBits() &&
1214 Predicate(Query);
1215 },
1216 [=](const LegalityQuery &Query) {
1217 LLT T = Query.Types[SmallTypeIdx];
1218 return std::make_pair(TypeIdx, T);
1219 });
1220 }
1221
1222 /// Add more elements to the vector to reach the next power of two.
1223 /// No effect if the type is not a vector or the element count is a power of
1224 /// two.
1226 using namespace LegalityPredicates;
1227 return actionIf(LegalizeAction::MoreElements,
1228 numElementsNotPow2(typeIdx(TypeIdx)),
1230 }
1231
1232 /// Limit the number of elements in EltTy vectors to at least MinElements.
1233 LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT EltTy,
1234 unsigned MinElements) {
1235 // Mark the type index as covered:
1236 typeIdx(TypeIdx);
1237 return actionIf(
1238 LegalizeAction::MoreElements,
1239 [=](const LegalityQuery &Query) {
1240 LLT VecTy = Query.Types[TypeIdx];
1241 return VecTy.isFixedVector() && VecTy.getElementType() == EltTy &&
1242 VecTy.getNumElements() < MinElements;
1243 },
1244 [=](const LegalityQuery &Query) {
1245 LLT VecTy = Query.Types[TypeIdx];
1246 return std::make_pair(
1247 TypeIdx, LLT::fixed_vector(MinElements, VecTy.getElementType()));
1248 });
1249 }
1250
1251 /// Set number of elements to nearest larger multiple of NumElts.
1252 LegalizeRuleSet &alignNumElementsTo(unsigned TypeIdx, const LLT EltTy,
1253 unsigned NumElts) {
1254 typeIdx(TypeIdx);
1255 return actionIf(
1256 LegalizeAction::MoreElements,
1257 [=](const LegalityQuery &Query) {
1258 LLT VecTy = Query.Types[TypeIdx];
1259 return VecTy.isFixedVector() && VecTy.getElementType() == EltTy &&
1260 (VecTy.getNumElements() % NumElts != 0);
1261 },
1262 [=](const LegalityQuery &Query) {
1263 LLT VecTy = Query.Types[TypeIdx];
1264 unsigned NewSize = alignTo(VecTy.getNumElements(), NumElts);
1265 return std::make_pair(
1266 TypeIdx, LLT::fixed_vector(NewSize, VecTy.getElementType()));
1267 });
1268 }
1269
1270 /// Limit the number of elements in EltTy vectors to at most MaxElements.
1271 LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT EltTy,
1272 unsigned MaxElements) {
1273 // Mark the type index as covered:
1274 typeIdx(TypeIdx);
1275 return actionIf(
1276 LegalizeAction::FewerElements,
1277 [=](const LegalityQuery &Query) {
1278 LLT VecTy = Query.Types[TypeIdx];
1279 return VecTy.isFixedVector() && VecTy.getElementType() == EltTy &&
1280 VecTy.getNumElements() > MaxElements;
1281 },
1282 [=](const LegalityQuery &Query) {
1283 LLT VecTy = Query.Types[TypeIdx];
1284 LLT NewTy = LLT::scalarOrVector(ElementCount::getFixed(MaxElements),
1285 VecTy.getElementType());
1286 return std::make_pair(TypeIdx, NewTy);
1287 });
1288 }
1289 /// Limit the number of elements for the given vectors to at least MinTy's
1290 /// number of elements and at most MaxTy's number of elements.
1291 ///
1292 /// No effect if the type is not a vector or does not have the same element
1293 /// type as the constraints.
1294 /// The element type of MinTy and MaxTy must match.
1295 LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT MinTy,
1296 const LLT MaxTy) {
1297 assert(MinTy.getElementType() == MaxTy.getElementType() &&
1298 "Expected element types to agree");
1299
1300 assert((!MinTy.isScalableVector() && !MaxTy.isScalableVector()) &&
1301 "Unexpected scalable vectors");
1302
1303 const LLT EltTy = MinTy.getElementType();
1304 return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements())
1305 .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements());
1306 }
1307
1308 /// Express \p EltTy vectors strictly using vectors with \p NumElts elements
1309 /// (or scalars when \p NumElts equals 1).
1310 /// First pad with undef elements to nearest larger multiple of \p NumElts.
1311 /// Then perform split with all sub-instructions having the same type.
1312 /// Using clampMaxNumElements (non-strict) can result in leftover instruction
1313 /// with different type (fewer elements then \p NumElts or scalar).
1314 /// No effect if the type is not a vector.
1315 LegalizeRuleSet &clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy,
1316 unsigned NumElts) {
1317 return alignNumElementsTo(TypeIdx, EltTy, NumElts)
1318 .clampMaxNumElements(TypeIdx, EltTy, NumElts);
1319 }
1320
1321 /// Fallback on the previous implementation. This should only be used while
1322 /// porting a rule.
1324 add({always, LegalizeAction::UseLegacyRules});
1325 return *this;
1326 }
1327
1328 /// Check if there is no type index which is obviously not handled by the
1329 /// LegalizeRuleSet in any way at all.
1330 /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
1331 LLVM_ABI bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const;
1332 /// Check if there is no imm index which is obviously not handled by the
1333 /// LegalizeRuleSet in any way at all.
1334 /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
1335 LLVM_ABI bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const;
1336
1337 /// Apply the ruleset to the given LegalityQuery.
1338 LLVM_ABI LegalizeActionStep apply(const LegalityQuery &Query) const;
1339};
1340
1342public:
1343 virtual ~LegalizerInfo() = default;
1344
1346 return LegacyInfo;
1347 }
1349
1350 unsigned getOpcodeIdxForOpcode(unsigned Opcode) const;
1351 unsigned getActionDefinitionsIdx(unsigned Opcode) const;
1352
1353 /// Perform simple self-diagnostic and assert if there is anything obviously
1354 /// wrong with the actions set up.
1355 void verify(const MCInstrInfo &MII) const;
1356
1357 /// Get the action definitions for the given opcode. Use this to run a
1358 /// LegalityQuery through the definitions.
1359 const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const;
1360
1361 /// Get the action definition builder for the given opcode. Use this to define
1362 /// the action definitions.
1363 ///
1364 /// It is an error to request an opcode that has already been requested by the
1365 /// multiple-opcode variant.
1366 LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode);
1367
1368 /// Get the action definition builder for the given set of opcodes. Use this
1369 /// to define the action definitions for multiple opcodes at once. The first
1370 /// opcode given will be considered the representative opcode and will hold
1371 /// the definitions whereas the other opcodes will be configured to refer to
1372 /// the representative opcode. This lowers memory requirements and very
1373 /// slightly improves performance.
1374 ///
1375 /// It would be very easy to introduce unexpected side-effects as a result of
1376 /// this aliasing if it were permitted to request different but intersecting
1377 /// sets of opcodes but that is difficult to keep track of. It is therefore an
1378 /// error to request the same opcode twice using this API, to request an
1379 /// opcode that already has definitions, or to use the single-opcode API on an
1380 /// opcode that has already been requested by this API.
1382 getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes);
1383 void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom);
1384
1385 /// Determine what action should be taken to legalize the described
1386 /// instruction. Requires computeTables to have been called.
1387 ///
1388 /// \returns a description of the next legalization step to perform.
1389 LegalizeActionStep getAction(const LegalityQuery &Query) const;
1390
1391 /// Determine what action should be taken to legalize the given generic
1392 /// instruction.
1393 ///
1394 /// \returns a description of the next legalization step to perform.
1395 LegalizeActionStep getAction(const MachineInstr &MI,
1396 const MachineRegisterInfo &MRI) const;
1397
1398 bool isLegal(const LegalityQuery &Query) const {
1399 return getAction(Query).Action == LegalizeAction::Legal;
1400 }
1401
1402 bool isLegalOrCustom(const LegalityQuery &Query) const {
1403 auto Action = getAction(Query).Action;
1404 return Action == LegalizeAction::Legal || Action == LegalizeAction::Custom;
1405 }
1406
1407 bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const;
1408 bool isLegalOrCustom(const MachineInstr &MI,
1409 const MachineRegisterInfo &MRI) const;
1410
1411 /// Called for instructions with the Custom LegalizationAction.
1413 LostDebugLocObserver &LocObserver) const {
1414 llvm_unreachable("must implement this if custom action is used");
1415 }
1416
1417 /// \returns true if MI is either legal or has been legalized and false if not
1418 /// legal.
1419 /// Return true if MI is either legal or has been legalized and false
1420 /// if not legal.
1422 MachineInstr &MI) const {
1423 return true;
1424 }
1425
1426 /// Return the opcode (SEXT/ZEXT/ANYEXT) that should be performed while
1427 /// widening a constant of type SmallTy which targets can override.
1428 /// For eg, the DAG does (SmallTy.isByteSized() ? G_SEXT : G_ZEXT) which
1429 /// will be the default.
1430 virtual unsigned getExtOpcodeForWideningConstant(LLT SmallTy) const;
1431
1432private:
1433 static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START;
1434 static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END;
1435
1436 LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1];
1437 LegacyLegalizerInfo LegacyInfo;
1438};
1439
1440#ifndef NDEBUG
1441/// Checks that MIR is fully legal, returns an illegal instruction if it's not,
1442/// nullptr otherwise
1443const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF);
1444#endif
1445
1446} // end namespace llvm.
1447
1448#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Atomic ordering constants.
#define LLVM_ABI
Definition Compiler.h:213
IRTranslator LLVM IR MI
Interface for Targets to specify which operations they can successfully select and how the others sho...
Implement a low-level type suitable for MachineInstr level instruction selection.
#define T
nvptx lower args
#define P(N)
ppc ctr loops verify
PowerPC VSX FMA Mutation
This file implements the SmallBitVector class.
This file defines the SmallVector class.
Value * RHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr bool isFixedVector() const
Returns true if the LLT is a fixed vector.
static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy)
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & clampScalar(bool Pred, unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
LegalizeRuleSet & maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx)
Narrow the scalar to match the size of another.
LegalizeRuleSet & widenScalarOrEltToNextPow2OrMinSize(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & customForCartesianProduct(bool Pred, std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is custom when the predicate is true and type indexes 0 and 1 are all in their respec...
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & maxScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned SmallTypeIdx)
Conditionally narrow the scalar or elt to match the size of another.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & legalFor(bool Pred, std::initializer_list< std::tuple< LLT, LLT, LLT > > Types)
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Remove elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
void aliasTo(unsigned Opcode)
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & libcall()
The instruction is emitted as a library call.
LegalizeRuleSet & libcallFor(std::initializer_list< LLT > Types)
LLVM_ABI bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const
Check if there is no imm index which is obviously not handled by the LegalizeRuleSet in any way at al...
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & clampMinNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MinElements)
Limit the number of elements in EltTy vectors to at least MinElements.
LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & unsupportedFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & legalFor(bool Pred, std::initializer_list< LLT > Types)
LegalizeRuleSet & widenVectorEltsToVectorMinSize(unsigned TypeIdx, unsigned VectorSize)
Ensure the vector size is at least as wide as VectorSize by promoting the element.
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is legal when type indexes 0 and 1 are both their respective lists.
LegalizeRuleSet & lowerIfMemSizeNotPow2()
Lower a memory operation if the memory size, rounded to bytes, is not a power of 2.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types, LegalizeMutation Mutation)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & minScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned LargeTypeIdx)
Conditionally widen the scalar or elt to match the size of another.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & lowerIfMemSizeNotByteSizePow2()
Lower a memory operation if the memory access size is not a round power of 2 byte size.
LegalizeRuleSet & minScalar(bool Pred, unsigned TypeIdx, const LLT Ty)
LegalizeRuleSet & moreElementsToNextPow2(unsigned TypeIdx)
Add more elements to the vector to reach the next power of two.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is custom when type indexes 0 and 1 are both in their respective lists.
LegalizeRuleSet & legalForTypeWithAnyImm(std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & lowerFor(std::initializer_list< std::pair< LLT, LLT > > Types)
The instruction is lowered when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & narrowScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Narrow the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & narrowScalarFor(std::initializer_list< std::pair< LLT, LLT > > Types, LegalizeMutation Mutation)
Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any type pair in the given lis...
LegalizeRuleSet & narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation)
LegalizeRuleSet & customFor(bool Pred, std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx)
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1, std::initializer_list< LLT > Types2)
The instruction is legal when type indexes 0, 1, and 2 are both their respective lists.
LegalizeRuleSet & alignNumElementsTo(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Set number of elements to nearest larger multiple of NumElts.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
LegalizeRuleSet & clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Express EltTy vectors strictly using vectors with NumElts elements (or scalars when NumElts equals 1)...
LegalizeRuleSet & minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx)
Widen the scalar to match the size of another.
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & minScalarOrEltIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & libcallFor(std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & customFor(bool Pred, std::initializer_list< LLT > Types)
LegalizeRuleSet & fallback()
Fallback on the previous implementation.
LegalizeRuleSet & legalForTypeWithAnyImm(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list and imm index 0 is anything.
LegalizeRuleSet & lowerForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1, std::initializer_list< LLT > Types2)
The instruction is lowered when type indexes 0, 1, and 2 are all in their respective lists.
LegalizeRuleSet & legalFor(std::initializer_list< std::pair< LLT, LLT > > Types)
The instruction is legal when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & libcallFor(bool Pred, std::initializer_list< LLT > Types)
LegalizeRuleSet & libcallFor(bool Pred, std::initializer_list< std::pair< LLT, LLT > > Types)
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & legalFor(bool Pred, std::initializer_list< std::pair< LLT, LLT > > Types)
unsigned getAlias() const
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & unsupportedIfMemSizeNotPow2()
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1, std::initializer_list< LLT > Types2)
The instruction is custom when type indexes 0, 1, and 2 are all in their respective lists.
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & lowerForCartesianProduct(std::initializer_list< LLT > Types0, std::initializer_list< LLT > Types1)
The instruction is lowered when type indexes 0 and 1 are both in their respective lists.
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The instruction is lowered if predicate is true.
LegalizeRuleSet & legalForTypesWithMemDesc(std::initializer_list< LegalityPredicates::TypePairAndMemDesc > TypesAndMemDesc)
The instruction is legal when type indexes 0 and 1 along with the memory size and minimum alignment i...
LegalizeRuleSet & libcallIf(LegalityPredicate Predicate)
Like legalIf, but for the Libcall action.
LegalizeRuleSet & maxScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & customFor(std::initializer_list< std::pair< LLT, LLT > > Types)
The instruction is custom when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & minScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty if condition is met.
unsigned immIdx(unsigned ImmIdx)
LLVM_ABI bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const
Check if there is no type index which is obviously not handled by the LegalizeRuleSet in any way at a...
LegalizeRuleSet & widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LLVM_ABI LegalizeActionStep apply(const LegalityQuery &Query) const
Apply the ruleset to the given LegalityQuery.
LegalizeRuleSet & lowerFor(std::initializer_list< std::pair< LLT, LLT > > Types, LegalizeMutation Mutation)
The instruction is lowered when type indexes 0 and 1 is any type pair in the given list.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & widenScalarToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar to the next multiple of Size.
A single rule in a legalizer info ruleset.
std::pair< unsigned, LLT > determineMutation(const LegalityQuery &Query) const
Determine the change to make.
bool match(const LegalityQuery &Query) const
Test whether the LegalityQuery matches.
LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, LegalizeMutation Mutation=nullptr)
LegalizeAction getAction() const
virtual ~LegalizerInfo()=default
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
LegacyLegalizerInfo & getLegacyLegalizerInfo()
bool isLegalOrCustom(const LegalityQuery &Query) const
virtual bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const
Called for instructions with the Custom LegalizationAction.
bool isLegal(const LegalityQuery &Query) const
virtual bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const
LegalizeActionStep getAction(const LegalityQuery &Query) const
Determine what action should be taken to legalize the described instruction.
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
Representation of each machine instruction.
A description of a memory reference used in the backend.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isScalar(unsigned TypeIdx)
True iff the specified type index is a scalar.
LLVM_ABI LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx)
True iff the specified MMO index has a size (rounded to bytes) that is not a power of 2.
LLVM_ABI LegalityPredicate numElementsNotPow2(unsigned TypeIdx)
True iff the specified type index is a vector whose element count is not a power of 2.
LLVM_ABI LegalityPredicate isPointerVector(unsigned TypeIdx)
True iff the specified type index is a vector of pointers (with any address space).
LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx)
True iff the specified type index is a pointer (with any address space).
LLVM_ABI LegalityPredicate vectorElementCountIsLessThanOrEqualTo(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a vector with a number of elements that's less than or equal to ...
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering)
True iff the specified MMO index has at an atomic ordering of at Ordering or stronger.
LLVM_ABI LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx)
True iff the specified type index is a scalar or vector whose element size is not a power of 2.
LLVM_ABI LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a larger total bit size than second type index.
LLVM_ABI LegalityPredicate typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, std::initializer_list< std::pair< LLT, LLT > > TypesInit)
True iff the given types for the given pair of type indexes is one of the specified type pairs.
LLVM_ABI LegalityPredicate vectorElementCountIsGreaterThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a vector with a number of elements that's greater than the given...
LLVM_ABI LegalityPredicate memSizeNotByteSizePow2(unsigned MMOIdx)
True iff the specified MMO index has a size that is not an even byte size, or that even byte size is ...
Predicate any(Predicate P0, Predicate P1)
True iff P0 or P1 are true.
LLVM_ABI LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy)
True if the type index is a vector with element type EltTy.
LLVM_ABI LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the specified type indices are both the same bit size.
LLVM_ABI LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or vector with an element type that's narrower than the...
LLVM_ABI LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size)
True if the total bitwidth of the specified type index is Size bits.
LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type)
True iff the given type index is not the specified type.
LLVM_ABI LegalityPredicate isVector(unsigned TypeIdx)
True iff the specified type index is a vector.
LLVM_ABI LegalityPredicate sizeNotPow2(unsigned TypeIdx)
True iff the specified type index is a scalar whose size is not a power of.
LLVM_ABI LegalityPredicate typeTupleInSet(unsigned TypeIdx0, unsigned TypeIdx1, unsigned Type2, std::initializer_list< std::tuple< LLT, LLT, LLT > > TypesInit)
True iff the given types for the given tuple of type indexes is one of the specified type tuple.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typePairAndMemDescInSet(unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, std::initializer_list< TypePairAndMemDesc > TypesAndMemDescInit)
True iff the given types for the given pair of type indexes is one of the specified type pairs.
LLVM_ABI LegalityPredicate sizeNotMultipleOf(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar whose size is not a multiple of Size.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
Predicate predNot(Predicate P)
True iff P is false.
LLVM_ABI LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's wider than the given size.
LLVM_ABI LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's narrower than the given size.
@ FewerElements
The (vector) operation should be implemented by splitting it into sub-vectors where the operation is ...
@ Legal
The operation is expected to be selectable directly by the target, and no transformation is necessary...
@ Libcall
The operation should be implemented as a call to some kind of runtime support library.
@ Unsupported
This operation is completely unsupported on the target.
@ Lower
The operation itself must be expressed in terms of simpler actions on this target.
@ UseLegacyRules
Fall back onto the old rules.
@ WidenScalar
The operation should be implemented in terms of a wider scalar base-type.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
@ NarrowScalar
The operation should be synthesized from multiple instructions acting on a narrower scalar base-type.
@ Custom
The target wants to do something special with this combination of operand and type.
@ NotFound
Sentinel value for when no action was found in the specified table.
@ MoreElements
The (vector) operation should be implemented by widening the input vector and ignoring the lanes adde...
LLVM_ABI LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min=0)
Add more elements to the type for the given type index to the next power of.
LLVM_ABI LegalizeMutation changeElementCountTo(unsigned TypeIdx, unsigned FromTypeIdx)
Keep the same scalar or element type as TypeIdx, but take the number of elements from FromTypeIdx.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx)
Keep the same scalar or element type as the given type index.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar type or vector element type for the given type index to next multiple of Size.
LLVM_ABI LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx)
Change the scalar size or element size to have the same scalar size as type index FromIndex.
@ OPERAND_LAST_GENERIC
Definition MCInstrDesc.h:73
@ OPERAND_FIRST_GENERIC
Definition MCInstrDesc.h:66
@ OPERAND_FIRST_GENERIC_IMM
Definition MCInstrDesc.h:75
@ OPERAND_LAST_GENERIC_IMM
Definition MCInstrDesc.h:77
This is an optimization pass for GlobalISel generic memory operations.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
std::function< std::pair< unsigned, LLT >(const LegalityQuery &)> LegalizeMutation
std::function< bool(const LegalityQuery &)> LegalityPredicate
LLVM_ABI cl::opt< bool > DisableGISelLegalityCheck
const MachineInstr * machineFunctionIsIllegal(const MachineFunction &MF)
Checks that MIR is fully legal, returns an illegal instruction if it's not, nullptr otherwise.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Other
Any other memory.
Definition ModRef.h:68
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LegacyLegalizeActions::LegacyLegalizeAction Action
The action to take or the final answer.
bool operator==(const TypePairAndMemDesc &Other) const
bool isCompatible(const TypePairAndMemDesc &Other) const
MemDesc(const MachineMemOperand &MMO)
MemDesc(LLT MemoryTy, uint64_t AlignInBits, AtomicOrdering Ordering, AtomicOrdering FailureOrdering)
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
ArrayRef< LLT > Types
LLVM_ABI raw_ostream & print(raw_ostream &OS) const
constexpr LegalityQuery(unsigned Opcode, ArrayRef< LLT > Types, ArrayRef< MemDesc > MMODescrs={})
The result of a query.
LegalizeAction Action
The action to take or the final answer.
LegalizeActionStep(LegacyLegalizeActionStep Step)
LLT NewType
If describing an action, the new type for TypeIdx. Otherwise LLT{}.
unsigned TypeIdx
If describing an action, the type index to change. Otherwise zero.
LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, const LLT NewType)
bool operator==(const LegalizeActionStep &RHS) const