206#define DEBUG_TYPE "loop-predication"
208STATISTIC(TotalConsidered,
"Number of guards considered");
229 cl::desc(
"scale factor for the latch probability. Value should be greater "
230 "than 1. Lower values are ignored"));
233 "loop-predication-predicate-widenable-branches-to-deopt",
cl::Hidden,
234 cl::desc(
"Whether or not we should predicate guards "
235 "expressed as widenable branches to deoptimize blocks"),
239 "loop-predication-insert-assumes-of-predicated-guards-conditions",
241 cl::desc(
"Whether or not we should insert assumes of conditions of "
242 "predicated guards"),
254 : Pred(Pred), IV(IV), Limit(Limit) {}
255 LoopICmp() =
default;
257 dbgs() <<
"LoopICmp Pred = " << Pred <<
", IV = " << *IV
258 <<
", Limit = " << *Limit <<
"\n";
262class LoopPredication {
274 bool isSupportedStep(
const SCEV* Step);
275 std::optional<LoopICmp> parseLoopICmp(
ICmpInst *ICI);
276 std::optional<LoopICmp> parseLoopLatchICmp();
293 bool isLoopInvariantValue(
const SCEV* S);
299 std::optional<Value *> widenICmpRangeCheck(
ICmpInst *ICI,
302 std::optional<Value *>
303 widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
306 std::optional<Value *>
307 widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
319 bool isLoopProfitableToPredicate();
326 : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
327 bool runOnLoop(
Loop *L);
330class LoopPredicationLegacyPass :
public LoopPass {
346 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
347 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
348 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
349 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
350 std::unique_ptr<MemorySSAUpdater> MSSAU;
352 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
353 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
354 LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() :
nullptr);
355 return LP.runOnLoop(L);
359char LoopPredicationLegacyPass::ID = 0;
363 "Loop predication",
false,
false)
370 return new LoopPredicationLegacyPass();
376 std::unique_ptr<MemorySSAUpdater> MSSAU;
378 MSSAU = std::make_unique<MemorySSAUpdater>(AR.
MSSA);
379 LoopPredication LP(&AR.
AA, &AR.
DT, &AR.
SE, &AR.
LI,
380 MSSAU ? MSSAU.get() :
nullptr);
381 if (!LP.runOnLoop(&L))
390std::optional<LoopICmp> LoopPredication::parseLoopICmp(
ICmpInst *ICI) {
395 const SCEV *LHSS = SE->getSCEV(LHS);
396 if (isa<SCEVCouldNotCompute>(LHSS))
398 const SCEV *RHSS = SE->getSCEV(RHS);
399 if (isa<SCEVCouldNotCompute>(RHSS))
403 if (SE->isLoopInvariant(LHSS, L)) {
413 return LoopICmp(Pred, AR, RHSS);
421 assert(Ty ==
RHS->
getType() &&
"expandCheck operands have different types?");
423 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
425 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
437 return Builder.CreateICmp(Pred, LHSV, RHSV);
455 const LoopICmp LatchCheck,
456 Type *RangeCheckType) {
459 assert(
DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() >
460 DL.getTypeSizeInBits(RangeCheckType).getFixedValue() &&
461 "Expected latch check IV type to be larger than range check operand "
465 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
466 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
467 if (!Limit || !Start)
479 auto RangeCheckTypeBitSize =
480 DL.getTypeSizeInBits(RangeCheckType).getFixedValue();
481 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
482 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
490 const LoopICmp LatchCheck,
491 Type *RangeCheckType) {
493 auto *LatchType = LatchCheck.IV->getType();
494 if (RangeCheckType == LatchType)
497 if (
DL.getTypeSizeInBits(LatchType).getFixedValue() <
498 DL.getTypeSizeInBits(RangeCheckType).getFixedValue())
504 LoopICmp NewLatchCheck;
505 NewLatchCheck.Pred = LatchCheck.Pred;
506 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
508 if (!NewLatchCheck.IV)
510 NewLatchCheck.Limit = SE.
getTruncateExpr(LatchCheck.Limit, RangeCheckType);
512 <<
"can be represented as range check type:"
513 << *RangeCheckType <<
"\n");
514 LLVM_DEBUG(
dbgs() <<
"LatchCheck.IV: " << *NewLatchCheck.IV <<
"\n");
515 LLVM_DEBUG(
dbgs() <<
"LatchCheck.Limit: " << *NewLatchCheck.Limit <<
"\n");
516 return NewLatchCheck;
519bool LoopPredication::isSupportedStep(
const SCEV* Step) {
526 if (!
L->isLoopInvariant(
Op))
528 return Preheader->getTerminator();
537 for (
const SCEV *
Op : Ops)
538 if (!SE->isLoopInvariant(
Op, L) ||
541 return Preheader->getTerminator();
544bool LoopPredication::isLoopInvariantValue(
const SCEV* S) {
564 if (SE->isLoopInvariant(S, L))
572 if (
const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
573 if (
const auto *LI = dyn_cast<LoadInst>(
U->getValue()))
574 if (LI->isUnordered() &&
L->hasLoopInvariantOperands(LI))
575 if (!
isModSet(AA->getModRefInfoMask(LI->getOperand(0))) ||
576 LI->hasMetadata(LLVMContext::MD_invariant_load))
581std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
582 LoopICmp LatchCheck, LoopICmp RangeCheck,
SCEVExpander &Expander,
584 auto *Ty = RangeCheck.IV->getType();
591 const SCEV *GuardStart = RangeCheck.IV->getStart();
592 const SCEV *GuardLimit = RangeCheck.Limit;
593 const SCEV *LatchStart = LatchCheck.IV->getStart();
594 const SCEV *LatchLimit = LatchCheck.Limit;
598 if (!isLoopInvariantValue(GuardStart) ||
599 !isLoopInvariantValue(GuardLimit) ||
600 !isLoopInvariantValue(LatchStart) ||
601 !isLoopInvariantValue(LatchLimit)) {
613 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
614 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
615 auto LimitCheckPred =
623 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
624 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
625 GuardStart, GuardLimit);
628 Builder.CreateAnd(FirstIterationCheck, LimitCheck));
631std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
632 LoopICmp LatchCheck, LoopICmp RangeCheck,
SCEVExpander &Expander,
634 auto *Ty = RangeCheck.IV->getType();
635 const SCEV *GuardStart = RangeCheck.IV->getStart();
636 const SCEV *GuardLimit = RangeCheck.Limit;
637 const SCEV *LatchStart = LatchCheck.IV->getStart();
638 const SCEV *LatchLimit = LatchCheck.Limit;
642 if (!isLoopInvariantValue(GuardStart) ||
643 !isLoopInvariantValue(GuardLimit) ||
644 !isLoopInvariantValue(LatchStart) ||
645 !isLoopInvariantValue(LatchLimit)) {
656 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
657 if (RangeCheck.IV != PostDecLatchCheckIV) {
659 << *PostDecLatchCheckIV
660 <<
" and RangeCheckIV: " << *RangeCheck.IV <<
"\n");
668 auto LimitCheckPred =
670 auto *FirstIterationCheck = expandCheck(Expander, Guard,
672 GuardStart, GuardLimit);
673 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
677 Builder.CreateAnd(FirstIterationCheck, LimitCheck));
685 RC.IV->getStepRecurrence(*SE)->isOne() &&
694std::optional<Value *>
704 auto RangeCheck = parseLoopICmp(ICI);
706 LLVM_DEBUG(
dbgs() <<
"Failed to parse the loop latch condition!\n");
713 << RangeCheck->Pred <<
")!\n");
716 auto *RangeCheckIV = RangeCheck->IV;
717 if (!RangeCheckIV->isAffine()) {
721 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
724 if (!isSupportedStep(Step)) {
725 LLVM_DEBUG(
dbgs() <<
"Range check and latch have IVs different steps!\n");
728 auto *Ty = RangeCheckIV->getType();
730 if (!CurrLatchCheckOpt) {
732 "corresponding to range type: "
737 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
741 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
742 "Range and latch steps should be of same type!");
743 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
744 LLVM_DEBUG(
dbgs() <<
"Range and latch have different step values!\n");
749 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
753 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
761 for (
auto &Check : Checks)
762 if (
ICmpInst *ICI = dyn_cast<ICmpInst>(Check))
763 if (
auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) {
765 Check = *NewRangeCheck;
769bool LoopPredication::widenGuardConditions(
IntrinsicInst *Guard,
778 widenChecks(Checks, WidenedChecks, Expander, Guard);
779 if (WidenedChecks.
empty())
782 TotalWidened += WidenedChecks.
size();
791 Builder.CreateAssumption(OldCond);
799bool LoopPredication::widenWidenableBranchGuardConditions(
813 widenChecks(Checks, WidenedChecks, Expander, BI);
814 if (WidenedChecks.
empty())
817 TotalWidened += WidenedChecks.
size();
836 PN->addIncoming(Pred == GuardBB ? AssumeCond :
Builder.getTrue(), Pred);
839 Builder.CreateAssumption(AssumeCond);
843 "Stopped being a guard after transform?");
849std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
850 using namespace PatternMatch;
865 (TrueDest ==
L->getHeader() || BI->
getSuccessor(1) ==
L->getHeader()) &&
866 "One of the latch's destinations must be the header");
873 auto Result = parseLoopICmp(ICI);
875 LLVM_DEBUG(
dbgs() <<
"Failed to parse the loop latch condition!\n");
879 if (TrueDest !=
L->getHeader())
884 if (!
Result->IV->isAffine()) {
889 auto *Step =
Result->IV->getStepRecurrence(*SE);
890 if (!isSupportedStep(Step)) {
891 LLVM_DEBUG(
dbgs() <<
"Unsupported loop stride(" << *Step <<
")!\n");
907 if (IsUnsupportedPredicate(Step,
Result->Pred)) {
916bool LoopPredication::isLoopProfitableToPredicate() {
921 L->getExitEdges(ExitEdges);
924 if (ExitEdges.
size() == 1)
932 auto *LatchBlock =
L->getLoopLatch();
933 assert(LatchBlock &&
"Should have a single latch at this point!");
934 auto *LatchTerm = LatchBlock->getTerminator();
935 assert(LatchTerm->getNumSuccessors() == 2 &&
936 "expected to be an exiting block with 2 succs!");
937 unsigned LatchBrExitIdx =
938 LatchTerm->getSuccessor(0) ==
L->getHeader() ? 1 : 0;
946 auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
947 if (isa<UnreachableInst>(LatchTerm) ||
948 LatchExitBlock->getTerminatingDeoptimizeCall())
956 auto ComputeBranchProbability =
960 unsigned NumSucc =
Term->getNumSuccessors();
964 uint64_t Numerator = 0, Denominator = 0;
966 if (
Term->getSuccessor(i) == ExitBlock)
968 Denominator += Weight;
971 if (Denominator == 0)
975 assert(LatchBlock != ExitingBlock &&
976 "Latch term should always have profile data!");
983 ComputeBranchProbability(LatchBlock, LatchExitBlock);
988 if (ScaleFactor < 1) {
991 <<
"Ignored user setting for loop-predication-latch-probability-scale: "
996 const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
998 for (
const auto &ExitEdge : ExitEdges) {
1000 ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1003 if (ExitingBlockProbability > LatchProbabilityThreshold)
1035 if (
auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
1049 L->getExitingBlocks(ExitingBlocks);
1052 for (
BasicBlock *ExitingBB : ExitingBlocks) {
1054 if (isa<SCEVCouldNotCompute>(ExitCount))
1057 "We should only have known counts for exiting blocks that "
1061 if (ExitCounts.
size() < 2)
1092 L->getExitingBlocks(ExitingBlocks);
1094 if (ExitingBlocks.
empty())
1097 auto *Latch =
L->getLoopLatch();
1105 const SCEV *LatchEC = SE->getExitCount(L, Latch);
1106 if (isa<SCEVCouldNotCompute>(LatchEC))
1115 bool ChangedLoop =
false;
1117 for (
auto *ExitingBB : ExitingBlocks) {
1118 if (LI->getLoopFor(ExitingBB) != L)
1121 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1127 assert(WC->hasOneUse() &&
"Not appropriate widenable branch!");
1128 WC->user_back()->replaceUsesOfWith(
1139 auto *IP = cast<Instruction>(WidenableBR->getCondition());
1149 !SE->isLoopInvariant(MinEC, L) ||
1150 !
Rewriter.isSafeToExpandAt(MinEC, IP))
1156 bool InvalidateLoop =
false;
1157 Value *MinECV =
nullptr;
1158 for (
BasicBlock *ExitingBB : ExitingBlocks) {
1162 if (LI->getLoopFor(ExitingBB) != L)
1166 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1174 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1175 if (isa<SCEVCouldNotCompute>(ExitCount) ||
1177 !
Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1180 const bool ExitIfTrue = !
L->contains(*
succ_begin(ExitingBB));
1195 MinECV =
Rewriter.expandCodeFor(MinEC);
1199 ECV =
B.CreateZExt(ECV, WiderTy);
1200 RHS =
B.CreateZExt(RHS, WiderTy);
1202 assert(!Latch || DT->dominates(ExitingBB, Latch));
1207 NewCond =
B.CreateFreeze(NewCond);
1213 InvalidateLoop =
true;
1227bool LoopPredication::runOnLoop(
Loop *
Loop) {
1233 Module *
M =
L->getHeader()->getModule();
1238 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1239 auto *WCDecl =
M->getFunction(
1241 bool HasWidenableConditions =
1243 if (!HasIntrinsicGuards && !HasWidenableConditions)
1246 DL = &
M->getDataLayout();
1248 Preheader =
L->getLoopPreheader();
1252 auto LatchCheckOpt = parseLoopLatchICmp();
1255 LatchCheck = *LatchCheckOpt;
1260 if (!isLoopProfitableToPredicate()) {
1268 for (
const auto BB :
L->blocks()) {
1275 cast<BranchInst>(BB->getTerminator()));
1279 bool Changed =
false;
1280 for (
auto *Guard : Guards)
1281 Changed |= widenGuardConditions(Guard, Expander);
1282 for (
auto *Guard : GuardsAsWidenableBranches)
1283 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1284 Changed |= predicateLoopExits(L, Expander);
1287 MSSAU->getMemorySSA()->verifyMemorySSA();
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< bool > SkipProfitabilityChecks("irce-skip-profitability-checks", cl::Hidden, cl::init(false))
static cl::opt< float > LatchExitProbabilityScale("loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), cl::desc("scale factor for the latch probability. Value should be greater " "than 1. Lower values are ignored"))
static void normalizePredicate(ScalarEvolution *SE, Loop *L, LoopICmp &RC)
static cl::opt< bool > SkipProfitabilityChecks("loop-predication-skip-profitability-checks", cl::Hidden, cl::init(false))
static const SCEV * getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, DominatorTree &DT, Loop *L)
Return the minimum of all analyzeable exit counts.
static cl::opt< bool > EnableCountDownLoop("loop-predication-enable-count-down-loop", cl::Hidden, cl::init(true))
static cl::opt< bool > EnableIVTruncation("loop-predication-enable-iv-truncation", cl::Hidden, cl::init(true))
static std::optional< LoopICmp > generateLoopLatchCheck(const DataLayout &DL, ScalarEvolution &SE, const LoopICmp LatchCheck, Type *RangeCheckType)
static cl::opt< bool > PredicateWidenableBranchGuards("loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, cl::desc("Whether or not we should predicate guards " "expressed as widenable branches to deoptimize blocks"), cl::init(true))
static bool isSafeToTruncateWideIVType(const DataLayout &DL, ScalarEvolution &SE, const LoopICmp LatchCheck, Type *RangeCheckType)
static cl::opt< bool > InsertAssumesOfPredicatedGuardsConditions("loop-predication-insert-assumes-of-predicated-guards-conditions", cl::Hidden, cl::desc("Whether or not we should insert assumes of conditions of " "predicated guards"), cl::init(true))
static BranchInst * FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI)
If we can (cheaply) find a widenable branch which controls entry into the loop, return it.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Module.h This file contains the declarations for the Module class.
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file contains the declarations for profiling metadata utility functions.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Virtual Register Rewriter
A container for analyses that lazily runs them and caches their results.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
const CallInst * getPostdominatingDeoptimizeCall() const
Returns the call instruction calling @llvm.experimental.deoptimize that is present either in current ...
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Legacy analysis pass which computes BranchProbabilityInfo.
static BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static ConstantInt * getTrue(LLVMContext &Context)
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
bool isEquality() const
Return true if this predicate is either EQ or NE.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
const BasicBlock * getParent() const
A wrapper class for inspecting calls to intrinsic functions.
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
virtual bool runOnLoop(Loop *L, LPPassManager &LPM)=0
bool skipLoop(const Loop *L) const
Optional passes call this function to check whether the pass should be skipped.
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
Represents a single loop in the control flow graph.
An analysis that produces MemorySSA for a function.
Legacy analysis pass which computes MemorySSA.
A Module instance is used to store all the information related to an LLVM module.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
This node represents a polynomial recurrence on the trip count of the specified loop.
const Loop * getLoop() const
This class uses information about analyze scalars to rewrite expressions in canonical form.
bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint) const
Return true if the given expression is safe to expand in the sense that all materialized values are d...
Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
const SCEV * getCouldNotCompute()
const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVMContext & getContext() const
All values hold a context through their type.
void dump() const
Support for debugging, callable in GDB: V->dump()
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are are tuples (A,...
void widenWidenableBranch(BranchInst *WidenableBR, Value *NewCond)
Given a branch we know is widenable (defined per Analysis/GuardUtils.h), widen it such that condition...
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Value * extractWidenableCondition(const User *U)
void parseWidenableGuard(const User *U, llvm::SmallVectorImpl< Value * > &Checks)
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
Pass * createLoopPredicationPass()
MDNode * getValidBranchWeightMDNode(const Instruction &I)
Get the valid branch weights metadata node.
bool isModSet(const ModRefInfo MRI)
bool hasValidBranchWeightMD(const Instruction &I)
Checks if an instructions has valid Branch Weight Metadata.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
bool isWidenableBranch(const User *U)
Returns true iff U is a widenable branch (that is, extractWidenableCondition returns widenable condit...
bool VerifyMemorySSA
Enables verification of MemorySSA.
bool isGuardAsWidenableBranch(const User *U)
Returns true iff U has semantics of a guard expressed in a form of a widenable conditional branch to ...
bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
auto predecessors(const MachineBasicBlock *BB)
void initializeLoopPredicationLegacyPassPass(PassRegistry &)
unsigned pred_size(const MachineBasicBlock *BB)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...