LLVM 22.0.0git
SPIRVPostLegalizer.cpp
Go to the documentation of this file.
1//===-- SPIRVPostLegalizer.cpp - amend info after legalization -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The pass partially applies pre-legalization logic to new instructions
10// inserted as a result of legalization:
11// - assigns SPIR-V types to registers for new instructions.
12// - inserts ASSIGN_TYPE pseudo-instructions required for type folding.
13//
14//===----------------------------------------------------------------------===//
15
16#include "SPIRV.h"
17#include "SPIRVSubtarget.h"
18#include "SPIRVUtils.h"
21#include "llvm/IR/IntrinsicsSPIRV.h"
22#include "llvm/Support/Debug.h"
23#include <stack>
24
25#define DEBUG_TYPE "spirv-postlegalizer"
26
27using namespace llvm;
28
29namespace {
30class SPIRVPostLegalizer : public MachineFunctionPass {
31public:
32 static char ID;
33 SPIRVPostLegalizer() : MachineFunctionPass(ID) {}
34 bool runOnMachineFunction(MachineFunction &MF) override;
35};
36} // namespace
37
38namespace llvm {
39// Defined in SPIRVPreLegalizer.cpp.
40extern void updateRegType(Register Reg, Type *Ty, SPIRVType *SpirvTy,
45 SPIRVType *KnownResType);
46} // namespace llvm
47
51 const LLT &Ty = MIB.getMRI()->getType(ResVReg);
52 return GR->getOrCreateSPIRVIntegerType(Ty.getScalarSizeInBits(), MIB);
53}
54
58 unsigned OpIdx) {
59 Register OpReg = I->getOperand(OpIdx).getReg();
60 if (SPIRVType *OpType = GR->getSPIRVTypeForVReg(OpReg)) {
61 if (SPIRVType *CompType = GR->getScalarOrVectorComponentType(OpType)) {
62 Register ResVReg = I->getOperand(0).getReg();
63 const LLT &ResLLT = MIB.getMRI()->getType(ResVReg);
64 if (ResLLT.isVector())
65 return GR->getOrCreateSPIRVVectorType(CompType, ResLLT.getNumElements(),
66 MIB, false);
67 return CompType;
68 }
69 }
70 return nullptr;
71}
72
76 unsigned StartOp, unsigned EndOp) {
77 SPIRVType *ResType = nullptr;
78 for (unsigned i = StartOp; i < EndOp; ++i) {
79 if (SPIRVType *Type = deduceTypeFromSingleOperand(I, MIB, GR, i)) {
80#ifdef EXPENSIVE_CHECKS
81 assert(!ResType || Type == ResType && "Conflicting type from operands.");
82 ResType = Type;
83#else
84 return Type;
85#endif
86 }
87 }
88 return ResType;
89}
90
92 Register UseRegister,
94 MachineIRBuilder &MIB) {
95 for (const MachineOperand &MO : Use->defs()) {
96 if (!MO.isReg())
97 continue;
98 if (SPIRVType *OpType = GR->getSPIRVTypeForVReg(MO.getReg())) {
99 if (SPIRVType *CompType = GR->getScalarOrVectorComponentType(OpType)) {
100 const LLT &ResLLT = MIB.getMRI()->getType(UseRegister);
101 if (ResLLT.isVector())
103 CompType, ResLLT.getNumElements(), MIB, false);
104 return CompType;
105 }
106 }
107 }
108 return nullptr;
109}
110
112 Register UseRegister,
114 MachineIRBuilder &MIB) {
115 assert(Use->getOpcode() == TargetOpcode::G_LOAD ||
116 Use->getOpcode() == TargetOpcode::G_STORE);
117
118 Register ValueReg = Use->getOperand(0).getReg();
119 SPIRVType *ValueType = GR->getSPIRVTypeForVReg(ValueReg);
120 if (!ValueType)
121 return nullptr;
122
124 SPIRV::StorageClass::Function);
125}
126
128 Register UseRegister,
130 MachineIRBuilder &MIB) {
131 assert(Use->getOpcode() == TargetOpcode::G_LOAD ||
132 Use->getOpcode() == TargetOpcode::G_STORE);
133
134 Register PtrReg = Use->getOperand(1).getReg();
135 SPIRVType *PtrType = GR->getSPIRVTypeForVReg(PtrReg);
136 if (!PtrType)
137 return nullptr;
138
139 return GR->getPointeeType(PtrType);
140}
141
144 MachineIRBuilder &MIB) {
146 for (MachineInstr &Use : MRI.use_nodbg_instructions(Reg)) {
147 SPIRVType *ResType = nullptr;
148 LLVM_DEBUG(dbgs() << "Looking at use " << Use);
149 switch (Use.getOpcode()) {
150 case TargetOpcode::G_BUILD_VECTOR:
151 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
152 case TargetOpcode::G_UNMERGE_VALUES:
153 case TargetOpcode::G_ADD:
154 case TargetOpcode::G_SUB:
155 case TargetOpcode::G_MUL:
156 case TargetOpcode::G_SDIV:
157 case TargetOpcode::G_UDIV:
158 case TargetOpcode::G_SREM:
159 case TargetOpcode::G_UREM:
160 case TargetOpcode::G_FADD:
161 case TargetOpcode::G_FSUB:
162 case TargetOpcode::G_FMUL:
163 case TargetOpcode::G_FDIV:
164 case TargetOpcode::G_FREM:
165 case TargetOpcode::G_FMA:
166 case TargetOpcode::COPY:
167 case TargetOpcode::G_STRICT_FMA:
168 ResType = deduceTypeFromResultRegister(&Use, Reg, GR, MIB);
169 break;
170 case TargetOpcode::G_LOAD:
171 case TargetOpcode::G_STORE:
172 if (Reg == Use.getOperand(1).getReg())
173 ResType = deducePointerTypeFromResultRegister(&Use, Reg, GR, MIB);
174 else
175 ResType = deduceTypeFromPointerOperand(&Use, Reg, GR, MIB);
176 break;
177 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
178 case TargetOpcode::G_INTRINSIC: {
179 auto IntrinsicID = cast<GIntrinsic>(Use).getIntrinsicID();
180 if (IntrinsicID == Intrinsic::spv_insertelt) {
181 if (Reg == Use.getOperand(2).getReg())
182 ResType = deduceTypeFromResultRegister(&Use, Reg, GR, MIB);
183 } else if (IntrinsicID == Intrinsic::spv_extractelt) {
184 if (Reg == Use.getOperand(2).getReg())
185 ResType = deduceTypeFromResultRegister(&Use, Reg, GR, MIB);
186 }
187 break;
188 }
189 }
190 if (ResType) {
191 LLVM_DEBUG(dbgs() << "Deduced type from use " << *ResType);
192 return ResType;
193 }
194 }
195 return nullptr;
196}
197
200 MachineIRBuilder &MIB) {
201 Register ResVReg = I->getOperand(0).getReg();
202 switch (I->getOpcode()) {
203 case TargetOpcode::G_CONSTANT:
204 case TargetOpcode::G_ANYEXT:
205 return deduceIntTypeFromResult(ResVReg, MIB, GR);
206 case TargetOpcode::G_BUILD_VECTOR:
207 return deduceTypeFromOperandRange(I, MIB, GR, 1, I->getNumOperands());
208 case TargetOpcode::G_SHUFFLE_VECTOR:
209 return deduceTypeFromOperandRange(I, MIB, GR, 1, 3);
210 default:
211 if (I->getNumDefs() == 1 && I->getNumOperands() > 1 &&
212 I->getOperand(1).isReg())
213 return deduceTypeFromSingleOperand(I, MIB, GR, 1);
214 return nullptr;
215 }
216}
217
220 MachineIRBuilder &MIB) {
222 Register SrcReg = I->getOperand(I->getNumOperands() - 1).getReg();
223 SPIRVType *ScalarType = nullptr;
224 if (SPIRVType *DefType = GR->getSPIRVTypeForVReg(SrcReg)) {
225 assert(DefType->getOpcode() == SPIRV::OpTypeVector);
226 ScalarType = GR->getSPIRVTypeForVReg(DefType->getOperand(1).getReg());
227 }
228
229 if (!ScalarType) {
230 // If we could not deduce the type from the source, try to deduce it from
231 // the uses of the results.
232 for (unsigned i = 0; i < I->getNumDefs(); ++i) {
233 Register DefReg = I->getOperand(i).getReg();
234 ScalarType = deduceTypeFromUses(DefReg, MF, GR, MIB);
235 if (ScalarType) {
236 ScalarType = GR->getScalarOrVectorComponentType(ScalarType);
237 break;
238 }
239 }
240 }
241
242 if (!ScalarType)
243 return false;
244
245 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
246 Register DefReg = I->getOperand(i).getReg();
247 if (GR->getSPIRVTypeForVReg(DefReg))
248 continue;
249
250 LLT DefLLT = MRI.getType(DefReg);
251 SPIRVType *ResType =
252 DefLLT.isVector()
254 ScalarType, DefLLT.getNumElements(), *I,
256 : ScalarType;
257 setRegClassType(DefReg, ResType, GR, &MRI, MF);
258 }
259 return true;
260}
261
264 MachineIRBuilder &MIB) {
265 LLVM_DEBUG(dbgs() << "\nProcessing instruction: " << *I);
267 Register ResVReg = I->getOperand(0).getReg();
268
269 // G_UNMERGE_VALUES is handled separately because it has multiple definitions,
270 // unlike the other instructions which have a single result register. The main
271 // deduction logic is designed for the single-definition case.
272 if (I->getOpcode() == TargetOpcode::G_UNMERGE_VALUES)
273 return deduceAndAssignTypeForGUnmerge(I, MF, GR, MIB);
274
275 LLVM_DEBUG(dbgs() << "Inferring type from operands\n");
276 SPIRVType *ResType = deduceResultTypeFromOperands(I, GR, MIB);
277 if (!ResType) {
278 LLVM_DEBUG(dbgs() << "Inferring type from uses\n");
279 ResType = deduceTypeFromUses(ResVReg, MF, GR, MIB);
280 }
281
282 if (!ResType)
283 return false;
284
285 LLVM_DEBUG(dbgs() << "Assigned type to " << *I << ": " << *ResType);
286 GR->assignSPIRVTypeToVReg(ResType, ResVReg, MF);
287
288 if (!MRI.getRegClassOrNull(ResVReg)) {
289 LLVM_DEBUG(dbgs() << "Updating the register class.\n");
290 setRegClassType(ResVReg, ResType, GR, &MRI, *GR->CurMF, true);
291 }
292 return true;
293}
294
297 LLVM_DEBUG(dbgs() << "Checking if instruction requires a SPIR-V type: "
298 << I;);
299 if (I.getNumDefs() == 0) {
300 LLVM_DEBUG(dbgs() << "Instruction does not have a definition.\n");
301 return false;
302 }
303
304 if (!I.isPreISelOpcode()) {
305 LLVM_DEBUG(dbgs() << "Instruction is not a generic instruction.\n");
306 return false;
307 }
308
309 Register ResultRegister = I.defs().begin()->getReg();
310 if (GR->getSPIRVTypeForVReg(ResultRegister)) {
311 LLVM_DEBUG(dbgs() << "Instruction already has a SPIR-V type.\n");
312 if (!MRI.getRegClassOrNull(ResultRegister)) {
313 LLVM_DEBUG(dbgs() << "Updating the register class.\n");
314 setRegClassType(ResultRegister, GR->getSPIRVTypeForVReg(ResultRegister),
315 GR, &MRI, *GR->CurMF, true);
316 }
317 return false;
318 }
319
320 return true;
321}
322
327 for (MachineBasicBlock &MBB : MF) {
328 for (MachineInstr &I : MBB) {
329 if (requiresSpirvType(I, GR, MRI)) {
330 Worklist.push_back(&I);
331 }
332 }
333 }
334
335 if (Worklist.empty()) {
336 LLVM_DEBUG(dbgs() << "Initial worklist is empty.\n");
337 return;
338 }
339
340 LLVM_DEBUG(dbgs() << "Initial worklist:\n";
341 for (auto *I : Worklist) { I->dump(); });
342
343 bool Changed;
344 do {
345 Changed = false;
347
348 for (MachineInstr *I : Worklist) {
349 MachineIRBuilder MIB(*I);
350 if (deduceAndAssignSpirvType(I, MF, GR, MIB)) {
351 Changed = true;
352 } else {
353 NextWorklist.push_back(I);
354 }
355 }
356 Worklist = std::move(NextWorklist);
357 LLVM_DEBUG(dbgs() << "Worklist size: " << Worklist.size() << "\n");
358 } while (Changed);
359
360 if (Worklist.empty())
361 return;
362
363 for (auto *I : Worklist) {
364 MachineIRBuilder MIB(*I);
365 LLVM_DEBUG(dbgs() << "Assigning default type to results in " << *I);
366 for (unsigned Idx = 0; Idx < I->getNumDefs(); ++Idx) {
367 Register ResVReg = I->getOperand(Idx).getReg();
368 if (GR->getSPIRVTypeForVReg(ResVReg))
369 continue;
370 const LLT &ResLLT = MRI.getType(ResVReg);
371 SPIRVType *ResType = nullptr;
372 if (ResLLT.isVector()) {
374 ResLLT.getElementType().getSizeInBits(), MIB);
375 ResType = GR->getOrCreateSPIRVVectorType(
376 CompType, ResLLT.getNumElements(), MIB, false);
377 } else {
378 ResType = GR->getOrCreateSPIRVIntegerType(ResLLT.getSizeInBits(), MIB);
379 }
380 setRegClassType(ResVReg, ResType, GR, &MRI, MF, true);
381 }
382 }
383}
384
386 for (MachineInstr &UseInstr : MRI.use_nodbg_instructions(Reg)) {
387 if (UseInstr.getOpcode() == SPIRV::ASSIGN_TYPE) {
388 return true;
389 }
390 }
391 return false;
392}
393
394static void generateAssignType(MachineInstr &MI, Register ResultRegister,
395 SPIRVType *ResultType, SPIRVGlobalRegistry *GR,
397 LLVM_DEBUG(dbgs() << " Adding ASSIGN_TYPE for ResultRegister: "
398 << printReg(ResultRegister, MRI.getTargetRegisterInfo())
399 << " with type: " << *ResultType);
400 MachineIRBuilder MIB(MI);
401 updateRegType(ResultRegister, nullptr, ResultType, GR, MIB, MRI);
402
403 // Tablegen definition assumes SPIRV::ASSIGN_TYPE pseudo-instruction is
404 // present after each auto-folded instruction to take a type reference
405 // from.
406 Register NewReg =
407 MRI.createGenericVirtualRegister(MRI.getType(ResultRegister));
408 const auto *RegClass = GR->getRegClass(ResultType);
409 MRI.setRegClass(NewReg, RegClass);
410 MRI.setRegClass(ResultRegister, RegClass);
411
412 GR->assignSPIRVTypeToVReg(ResultType, ResultRegister, MIB.getMF());
413 // This is to make it convenient for Legalizer to get the SPIRVType
414 // when processing the actual MI (i.e. not pseudo one).
415 GR->assignSPIRVTypeToVReg(ResultType, NewReg, MIB.getMF());
416 // Copy MIFlags from Def to ASSIGN_TYPE instruction. It's required to
417 // keep the flags after instruction selection.
418 const uint32_t Flags = MI.getFlags();
419 MIB.buildInstr(SPIRV::ASSIGN_TYPE)
420 .addDef(ResultRegister)
421 .addUse(NewReg)
422 .addUse(GR->getSPIRVTypeID(ResultType))
423 .setMIFlags(Flags);
424 for (unsigned I = 0, E = MI.getNumDefs(); I != E; ++I) {
425 MachineOperand &MO = MI.getOperand(I);
426 if (MO.getReg() == ResultRegister) {
427 MO.setReg(NewReg);
428 break;
429 }
430 }
431}
432
435 LLVM_DEBUG(dbgs() << "Entering ensureAssignTypeForTypeFolding for function "
436 << MF.getName() << "\n");
438 for (MachineBasicBlock &MBB : MF) {
439 for (MachineInstr &MI : MBB) {
440 if (!isTypeFoldingSupported(MI.getOpcode()))
441 continue;
442
443 LLVM_DEBUG(dbgs() << "Processing instruction: " << MI);
444
445 Register ResultRegister = MI.defs().begin()->getReg();
446 if (hasAssignType(ResultRegister, MRI)) {
447 LLVM_DEBUG(dbgs() << " Instruction already has ASSIGN_TYPE\n");
448 continue;
449 }
450
451 SPIRVType *ResultType = GR->getSPIRVTypeForVReg(ResultRegister);
452 assert(ResultType);
453 generateAssignType(MI, ResultRegister, ResultType, GR, MRI);
454 }
455 }
456}
457
458// Do a preorder traversal of the CFG starting from the BB |Start|.
459// point. Calls |op| on each basic block encountered during the traversal.
461 std::function<void(MachineBasicBlock *)> op) {
462 std::stack<MachineBasicBlock *> ToVisit;
464
465 ToVisit.push(&Start);
466 Seen.insert(ToVisit.top());
467 while (ToVisit.size() != 0) {
468 MachineBasicBlock *MBB = ToVisit.top();
469 ToVisit.pop();
470
471 op(MBB);
472
473 for (auto Succ : MBB->successors()) {
474 if (Seen.contains(Succ))
475 continue;
476 ToVisit.push(Succ);
477 Seen.insert(Succ);
478 }
479 }
480}
481
482// Do a preorder traversal of the CFG starting from the given function's entry
483// point. Calls |op| on each basic block encountered during the traversal.
484void visit(MachineFunction &MF, std::function<void(MachineBasicBlock *)> op) {
485 visit(MF, *MF.begin(), std::move(op));
486}
487
488bool SPIRVPostLegalizer::runOnMachineFunction(MachineFunction &MF) {
489 // Initialize the type registry.
490 const SPIRVSubtarget &ST = MF.getSubtarget<SPIRVSubtarget>();
491 SPIRVGlobalRegistry *GR = ST.getSPIRVGlobalRegistry();
492 GR->setCurrentFunc(MF);
495 return true;
496}
497
498INITIALIZE_PASS(SPIRVPostLegalizer, DEBUG_TYPE, "SPIRV post legalizer", false,
499 false)
500
501char SPIRVPostLegalizer::ID = 0;
502
503FunctionPass *llvm::createSPIRVPostLegalizerPass() {
504 return new SPIRVPostLegalizer();
505}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
#define op(i)
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition MD5.cpp:57
Register Reg
MachineInstr unsigned OpIdx
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
static bool deduceAndAssignSpirvType(MachineInstr *I, MachineFunction &MF, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB)
static SPIRVType * deduceIntTypeFromResult(Register ResVReg, MachineIRBuilder &MIB, SPIRVGlobalRegistry *GR)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
static SPIRVType * deduceTypeFromPointerOperand(MachineInstr *Use, Register UseRegister, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB)
static void registerSpirvTypeForNewInstructions(MachineFunction &MF, SPIRVGlobalRegistry *GR)
static bool hasAssignType(Register Reg, MachineRegisterInfo &MRI)
static SPIRVType * deduceResultTypeFromOperands(MachineInstr *I, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB)
static SPIRVType * deducePointerTypeFromResultRegister(MachineInstr *Use, Register UseRegister, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB)
static SPIRVType * deduceTypeFromOperandRange(MachineInstr *I, MachineIRBuilder &MIB, SPIRVGlobalRegistry *GR, unsigned StartOp, unsigned EndOp)
static SPIRVType * deduceTypeFromUses(Register Reg, MachineFunction &MF, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB)
static SPIRVType * deduceTypeFromResultRegister(MachineInstr *Use, Register UseRegister, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB)
static void generateAssignType(MachineInstr &MI, Register ResultRegister, SPIRVType *ResultType, SPIRVGlobalRegistry *GR, MachineRegisterInfo &MRI)
static void ensureAssignTypeForTypeFolding(MachineFunction &MF, SPIRVGlobalRegistry *GR)
static bool deduceAndAssignTypeForGUnmerge(MachineInstr *I, MachineFunction &MF, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB)
static bool requiresSpirvType(MachineInstr &I, SPIRVGlobalRegistry *GR, MachineRegisterInfo &MRI)
static SPIRVType * deduceTypeFromSingleOperand(MachineInstr *I, MachineIRBuilder &MIB, SPIRVGlobalRegistry *GR, unsigned OpIdx)
#define LLVM_DEBUG(...)
Definition Debug.h:114
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Helper class to build MachineInstr.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLT getType(Register Reg) const
Get the low-level type of Reg or LLT{} if Reg is not a generic (target independent) virtual register.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
SPIRVType * getPointeeType(SPIRVType *PtrType)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
SPIRVType * getScalarOrVectorComponentType(Register VReg) const
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
const SPIRVInstrInfo * getInstrInfo() const override
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Changed
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
bool isTypeFoldingSupported(unsigned Opcode)
void updateRegType(Register Reg, Type *Ty, SPIRVType *SpirvTy, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB, MachineRegisterInfo &MRI)
Helper external function for assigning SPIRVType to a register, ensuring the register class and type ...
void processInstr(MachineInstr &MI, MachineIRBuilder &MIB, MachineRegisterInfo &MRI, SPIRVGlobalRegistry *GR, SPIRVType *KnownResType)
FunctionPass * createSPIRVPostLegalizerPass()
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
void setRegClassType(Register Reg, SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF, bool Force)
const MachineInstr SPIRVType
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
PointerUnion< const Value *, const PseudoSourceValue * > ValueType
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.