LLVM 22.0.0git
LowerMatrixIntrinsics.cpp
Go to the documentation of this file.
1//===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Lower matrix intrinsics to vector operations.
10//
11// TODO:
12// * Improve fusion:
13// * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14// transposed.
15// * Improve cost-modeling, e.g. choose different number of rows/columns
16// columns for tiles, consider cost of copies on alias.
17//
18//===----------------------------------------------------------------------===//
19
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/ScopeExit.h"
25#include "llvm/ADT/Statistic.h"
33#include "llvm/IR/CFG.h"
34#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/InstrTypes.h"
47#include "llvm/Support/Debug.h"
51
52#include <cmath>
53
54using namespace llvm;
55using namespace PatternMatch;
56
57#define DEBUG_TYPE "lower-matrix-intrinsics"
58
59STATISTIC(FlattenedMatrices, "Number of matrix flattenings");
60STATISTIC(ReshapedMatrices, "Number of matrix reshapes");
61STATISTIC(SplitMatrices, "Number of matrix splits");
62
63static cl::opt<bool>
64 FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
65 cl::desc("Enable/disable fusing matrix instructions."));
66// TODO: Allow and use non-square tiles.
68 "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
70 "Tile size for matrix instruction fusion using square-shaped tiles."));
71static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
73 cl::desc("Generate loop nest for tiling."));
75 "force-fuse-matrix", cl::init(false), cl::Hidden,
76 cl::desc("Force matrix instruction fusion even if not profitable."));
78 "matrix-allow-contract", cl::init(false), cl::Hidden,
79 cl::desc("Allow the use of FMAs if available and profitable. This may "
80 "result in different results, due to less rounding error."));
81
82static cl::opt<bool>
83 VerifyShapeInfo("verify-matrix-shapes", cl::Hidden,
84 cl::desc("Enable/disable matrix shape verification."),
85 cl::init(false));
86
88
90 "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
91 cl::desc("Sets the default matrix layout"),
93 "Use column-major layout"),
95 "Use row-major layout")));
96
97static cl::opt<bool> PrintAfterTransposeOpt("matrix-print-after-transpose-opt",
98 cl::init(false));
99
101 "matrix-split-matmul-remainder-over-threshold", cl::Hidden,
102 cl::desc("Illegal remainder vectors over this size in bits should be split "
103 "in the inner loop of matmul"),
104 cl::init(0));
105
106/// Helper function to either return Scope, if it is a subprogram or the
107/// attached subprogram for a local scope.
109 if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
110 return Subprogram;
111 return cast<DILocalScope>(Scope)->getSubprogram();
112}
113
114/// Return true if V is a splat of a value (which is used when multiplying a
115/// matrix with a scalar).
116static bool isSplat(Value *V) {
117 if (auto *SV = dyn_cast<ShuffleVectorInst>(V))
118 return SV->isZeroEltSplat();
119 return false;
120}
121
122/// Match any mul operation (fp or integer).
123template <typename LTy, typename RTy>
124static auto m_AnyMul(const LTy &L, const RTy &R) {
125 return m_CombineOr(m_Mul(L, R), m_FMul(L, R));
126}
127
128/// Match any add operation (fp or integer).
129template <typename LTy, typename RTy>
130static auto m_AnyAdd(const LTy &L, const RTy &R) {
131 return m_CombineOr(m_Add(L, R), m_FAdd(L, R));
132}
133
134// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
135// the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
136// assuming \p Stride elements between start two consecutive vectors.
137// \p Stride must be >= \p NumElements.
138// For column-major matrixes, the function computes the address of a column
139// vectors and \p NumElements must be set to the number of elements in a column
140// (= number of rows of the matrix). For row-major matrixes, the function
141// computes the address of a row vector and \p NumElements must be set to the
142// number of elements in a column (= number of columns of the matrix).
143//
144// Consider a 4x4 matrix in column-mjaor layout like below
145//
146// 0 1 2 3
147// 0 v_0_0 v_0_1 v_0_2 v_0_3
148// 1 v_1_0 v_1_1 v_1_2 v_1_3
149// 2 v_2_0 v_2_1 v_2_2 v_2_3
150// 3 v_3_0 v_3_1 v_3_2 v_3_3
151
152// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
153// we need a pointer to the first element of the submatrix as base pointer.
154// Then we can use computeVectorAddr to compute the addresses for the columns
155// of the sub-matrix.
156//
157// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
158// -> just returns Base
159// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
160// -> returns Base + (1 * 4)
161// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
162// -> returns Base + (2 * 4)
163//
164// The graphic below illustrates the number of elements in a column (marked
165// with |) and the number of skipped elements (marked with }).
166//
167// v_0_0 v_0_1 {v_0_2 {v_0_3
168// Base Col 1 Col 2
169// | | |
170// v_1_0 |v_1_1 |v_1_2 |v_1_3
171// v_2_0 |v_2_1 |v_2_2 |v_2_3
172// v_3_0 {v_3_1 {v_3_2 v_3_3
173//
174static Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
175 unsigned NumElements, Type *EltType,
176 IRBuilder<> &Builder) {
177
178 assert((!isa<ConstantInt>(Stride) ||
179 cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
180 "Stride must be >= the number of elements in the result vector.");
181
182 // Compute the start of the vector with index VecIdx as VecIdx * Stride.
183 Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
184
185 // Get pointer to the start of the selected vector. Skip GEP creation,
186 // if we select vector 0.
187 if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
188 VecStart = BasePtr;
189 else
190 VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
191
192 return VecStart;
193}
194
195namespace {
196struct ShapeInfo {
197 unsigned NumRows;
198 unsigned NumColumns;
199
200 bool IsColumnMajor;
201
202 ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
203 : NumRows(NumRows), NumColumns(NumColumns),
204 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
205
206 ShapeInfo(Value *NumRows, Value *NumColumns)
207 : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
208 cast<ConstantInt>(NumColumns)->getZExtValue()) {}
209
210 bool operator==(const ShapeInfo &other) {
211 return NumRows == other.NumRows && NumColumns == other.NumColumns;
212 }
213 bool operator!=(const ShapeInfo &other) { return !(*this == other); }
214
215 /// Returns true if shape-information is defined, meaning both dimensions
216 /// are != 0.
217 operator bool() const {
218 assert(NumRows == 0 || NumColumns != 0);
219 return NumRows != 0;
220 }
221
222 unsigned getStride() const {
223 if (IsColumnMajor)
224 return NumRows;
225 return NumColumns;
226 }
227
228 unsigned getNumVectors() const {
229 if (IsColumnMajor)
230 return NumColumns;
231 return NumRows;
232 }
233
234 /// Returns the transposed shape.
235 ShapeInfo t() const { return ShapeInfo(NumColumns, NumRows); }
236
237 friend raw_ostream &operator<<(raw_ostream &OS, ShapeInfo SI);
238
239 LLVM_DUMP_METHOD void dump() const { dbgs() << *this << '\n'; }
240};
241
242raw_ostream &operator<<(raw_ostream &OS, ShapeInfo SI) {
243 return OS << SI.NumRows << 'x' << SI.NumColumns;
244}
245
246} // namespace
247
248static bool isShapePreserving(Value *V) {
250 if (!I)
251 return true;
252
253 if (isa<SelectInst>(I))
254 return true;
255
256 if (I->isBinaryOp())
257 return true;
258
259 if (auto *Cast = dyn_cast<CastInst>(V)) {
260 switch (Cast->getOpcode()) {
261 case llvm::Instruction::Trunc:
262 case llvm::Instruction::ZExt:
263 case llvm::Instruction::SExt:
264 case llvm::Instruction::FPToUI:
265 case llvm::Instruction::FPToSI:
266 case llvm::Instruction::UIToFP:
267 case llvm::Instruction::SIToFP:
268 case llvm::Instruction::FPTrunc:
269 case llvm::Instruction::FPExt:
270 return true;
271 case llvm::Instruction::AddrSpaceCast:
272 case CastInst::PtrToAddr:
273 case CastInst::PtrToInt:
274 case CastInst::IntToPtr:
275 return false;
276 case CastInst::BitCast: {
277 if (auto *SrcVTy = dyn_cast<FixedVectorType>(Cast->getSrcTy()))
278 if (auto *DestVTy = dyn_cast<FixedVectorType>(Cast->getDestTy()))
279 return SrcVTy->getNumElements() == DestVTy->getNumElements();
280 return false;
281 }
282 case llvm::Instruction::CastOpsEnd:
283 llvm_unreachable("not an actual cast op");
284 }
285 llvm_unreachable("unhandled cast opcode");
286 }
287
288 if (auto *II = dyn_cast<IntrinsicInst>(V))
289 switch (II->getIntrinsicID()) {
290 case Intrinsic::abs:
291 case Intrinsic::fabs:
292 return true;
293 default:
294 return false;
295 }
296
297 switch (I->getOpcode()) {
298 case Instruction::PHI:
299 case Instruction::FNeg:
300 return true;
301 default:
302 return false;
303 }
304}
305
306/// Return an iterator over the operands of \p I that should share shape
307/// information with \p I.
310 "Can't retrieve shaped operands for an instruction that does not "
311 "preserve shape information");
312 auto Ops = I->operands();
313 return isa<SelectInst>(I) ? drop_begin(Ops) : Ops;
314}
315
316/// Return the ShapeInfo for the result of \p I, it it can be determined.
317static std::optional<ShapeInfo>
319 const DenseMap<Value *, ShapeInfo> &ShapeMap) {
320 Value *M;
321 Value *N;
322 Value *K;
324 m_Value(), m_Value(), m_Value(M), m_Value(N), m_Value(K))))
325 return ShapeInfo(M, K);
327 m_Value(N)))) {
328 // Flip dimensions.
329 return ShapeInfo(N, M);
330 }
332 m_Value(), m_Value(), m_Value(), m_Value(), m_Value(M),
333 m_Value(N))))
334 return ShapeInfo(N, M);
336 m_Value(), m_Value(), m_Value(), m_Value(M), m_Value(N))))
337 return ShapeInfo(M, N);
338 Value *MatrixA;
339 if (match(I, m_Store(m_Value(MatrixA), m_Value()))) {
340 auto OpShape = ShapeMap.find(MatrixA);
341 if (OpShape != ShapeMap.end())
342 return OpShape->second;
343 }
344
345 if (isShapePreserving(I)) {
346 auto ShapedOps = getShapedOperandsForInst(I);
347 // Find the first operand that has a known shape and use that.
348 for (auto &Op : ShapedOps) {
349 auto OpShape = ShapeMap.find(Op.get());
350 if (OpShape != ShapeMap.end())
351 return OpShape->second;
352 }
353 }
354 return std::nullopt;
355}
356
357namespace {
358
359/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
360///
361/// Currently, the lowering for each matrix intrinsic is done as follows:
362/// 1. Propagate the shape information from intrinsics to connected
363/// instructions.
364/// 2. Lower instructions with shape information (assuming column-major layout).
365/// The lowering works similarly using row-major layout.
366/// 2.1. Get column vectors for each argument. If we already lowered the
367/// definition of an argument, use the produced column vectors directly.
368/// If not, split the operand vector containing an embedded matrix into
369/// a set of column vectors,
370/// 2.2. Lower the instruction in terms of column major operations, which
371/// yields a set of column vectors containing result matrix. Note that we
372/// lower all instructions that have shape information. Besides the
373/// intrinsics, this includes stores for example.
374/// 2.3. Update uses of the lowered instruction. If we have shape information
375/// for a user, there is nothing to do, as we will look up the result
376/// column matrix when lowering the user. For other uses, we embed the
377/// result matrix in a flat vector and update the use.
378/// 2.4. Cache the result column matrix for the instruction we lowered
379/// 3. After we lowered all instructions in a function, remove the now
380/// obsolete instructions.
381///
382class LowerMatrixIntrinsics {
383 Function &Func;
384 const DataLayout &DL;
385 const TargetTransformInfo &TTI;
387 AliasAnalysis *AA = nullptr;
388 DominatorTree *DT = nullptr;
389 LoopInfo *LI = nullptr;
390 OptimizationRemarkEmitter *ORE = nullptr;
391
392 /// Contains estimates of the number of operations (loads, stores, compute)
393 /// required to lower a matrix operation.
394 struct OpInfoTy {
395 /// Number of stores emitted to generate this matrix.
396 unsigned NumStores = 0;
397 /// Number of loads emitted to generate this matrix.
398 unsigned NumLoads = 0;
399 /// Number of compute operations emitted to generate this matrix.
400 unsigned NumComputeOps = 0;
401 /// Most of the time transposes can be fused with matrix multiplies or can
402 /// be folded away via algebraic simplifications. This is the number of
403 /// transposes that we failed to make "free" via such optimizations.
404 unsigned NumExposedTransposes = 0;
405
406 OpInfoTy &operator+=(const OpInfoTy &RHS) {
407 NumStores += RHS.NumStores;
408 NumLoads += RHS.NumLoads;
409 NumComputeOps += RHS.NumComputeOps;
410 NumExposedTransposes += RHS.NumExposedTransposes;
411 return *this;
412 }
413 };
414
415 /// Wrapper class representing a matrix as a set of vectors, either in row or
416 /// column major layout. All vectors must have the same vector type.
417 class MatrixTy {
418 SmallVector<Value *, 16> Vectors;
419
420 OpInfoTy OpInfo;
421
422 bool IsColumnMajor = true;
423
424 public:
425 MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
426 MatrixTy(ArrayRef<Value *> Vectors)
427 : Vectors(Vectors),
428 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
429 MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
430 : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
431
432 unsigned D = isColumnMajor() ? NumColumns : NumRows;
433 for (unsigned J = 0; J < D; ++J)
435 EltTy, isColumnMajor() ? NumRows : NumColumns)));
436 }
437
438 Value *getVector(unsigned i) const { return Vectors[i]; }
439 Value *getColumn(unsigned i) const {
440 assert(isColumnMajor() && "only supported for column-major matrixes");
441 return Vectors[i];
442 }
443 Value *getRow(unsigned i) const {
444 assert(!isColumnMajor() && "only supported for row-major matrixes");
445 return Vectors[i];
446 }
447
448 void setVector(unsigned i, Value *V) { Vectors[i] = V; }
449
450 Type *getElementType() const { return getVectorTy()->getElementType(); }
451
452 unsigned getNumVectors() const {
453 if (isColumnMajor())
454 return getNumColumns();
455 return getNumRows();
456 }
457
458 unsigned getNumColumns() const {
459 if (isColumnMajor())
460 return Vectors.size();
461 else {
462 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
463 return getVectorTy()->getNumElements();
464 }
465 }
466 unsigned getNumRows() const {
467 if (isColumnMajor()) {
468 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
469 return getVectorTy()->getNumElements();
470 } else
471 return Vectors.size();
472 }
473
474 void addVector(Value *V) { Vectors.push_back(V); }
475 FixedVectorType *getColumnTy() {
476 assert(isColumnMajor() && "only supported for column-major matrixes");
477 return getVectorTy();
478 }
479
480 FixedVectorType *getVectorTy() const {
481 return cast<FixedVectorType>(Vectors[0]->getType());
482 }
483
484 iterator_range<SmallVector<Value *, 8>::iterator> columns() {
485 assert(isColumnMajor() &&
486 "columns() only supported for column-major matrixes");
487 return make_range(Vectors.begin(), Vectors.end());
488 }
489
490 iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
491 return make_range(Vectors.begin(), Vectors.end());
492 }
493
494 /// Embed the vectors of the matrix into a flat vector by concatenating
495 /// them.
496 Value *embedInVector(IRBuilder<> &Builder) const {
497 return Vectors.size() == 1 ? Vectors[0]
498 : concatenateVectors(Builder, Vectors);
499 }
500
501 MatrixTy &addNumLoads(unsigned N) {
502 OpInfo.NumLoads += N;
503 return *this;
504 }
505
506 void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
507
508 MatrixTy &addNumStores(unsigned N) {
509 OpInfo.NumStores += N;
510 return *this;
511 }
512
513 MatrixTy &addNumExposedTransposes(unsigned N) {
514 OpInfo.NumExposedTransposes += N;
515 return *this;
516 }
517
518 MatrixTy &addNumComputeOps(unsigned N) {
519 OpInfo.NumComputeOps += N;
520 return *this;
521 }
522
523 unsigned getNumStores() const { return OpInfo.NumStores; }
524 unsigned getNumLoads() const { return OpInfo.NumLoads; }
525 unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
526
527 const OpInfoTy &getOpInfo() const { return OpInfo; }
528
529 bool isColumnMajor() const { return IsColumnMajor; }
530
531 unsigned getStride() const {
532 if (isColumnMajor())
533 return getNumRows();
534 return getNumColumns();
535 }
536
537 ShapeInfo shape() const { return {getNumRows(), getNumColumns()}; }
538
539 /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
540 /// matrix is column-major, the result vector is extracted from a column
541 /// vector, otherwise from a row vector.
542 Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
543 IRBuilder<> &Builder) const {
544 Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
545 assert(cast<FixedVectorType>(Vec->getType())->getNumElements() >=
546 NumElts &&
547 "Extracted vector will contain poison values");
548 return Builder.CreateShuffleVector(
549 Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
550 "block");
551 }
552 };
553
554 /// Maps instructions to their shape information. The shape information
555 /// describes the shape to be used while lowering. This matches the shape of
556 /// the result value of the instruction, with the only exceptions being store
557 /// instructions and the matrix_column_major_store intrinsics. For those, the
558 /// shape information indicates that those instructions should be lowered
559 /// using shape information as well. Note that extra care is needed when
560 /// erasing or RAUW'ing a value that is present in ShapeMap. If the
561 /// replacement is also a matrix operation, use
562 /// updateShapeAndReplaceAllUsesWith to make sure the replacement is added to
563 /// ShapeMap. We don't use ValueMap, as there are also cases where we do not
564 /// want to add shape information for a replacement instruction. When directly
565 /// erasing a value with an entry in ShapeMap, use
566 /// eraseFromParentAndRemoveFromShapeMap to make sure ShapeMap is also updated
567 /// accordingly.
568 DenseMap<Value *, ShapeInfo> ShapeMap;
569
570 /// List of instructions to remove. While lowering, we are not replacing all
571 /// users of a lowered instruction, if shape information is available and
572 /// those need to be removed after we finished lowering.
573 SmallVector<Instruction *, 16> ToRemove;
574
575 /// Map from instructions to their produced column matrix.
576 MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
577
578private:
579 static FastMathFlags getFastMathFlags(Instruction *Inst) {
580 FastMathFlags FMF;
581
582 if (isa<FPMathOperator>(*Inst))
583 FMF = Inst->getFastMathFlags();
584
586
587 return FMF;
588 }
589
590public:
591 LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
593 : Func(F), DL(F.getDataLayout()), TTI(TTI), AM(AM) {}
594
595 unsigned getNumOps(Type *VT) {
596 assert(isa<FixedVectorType>(VT) && "Expected vector type");
597 return getNumOps(VT->getScalarType(),
598 cast<FixedVectorType>(VT)->getNumElements());
599 }
600
601 /// Is this the minimal version executed in the backend pipelines.
602 bool isMinimal() const {
603 return !DT;
604 }
605
606 /// Return the estimated number of vector ops required for an operation on
607 /// \p VT * N.
608 unsigned getNumOps(Type *ST, unsigned N) {
609 return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedValue() /
610 double(TTI.getRegisterBitWidth(
612 .getFixedValue()));
613 }
614
615 /// Return the set of vectors that a matrix value is lowered to.
616 ///
617 /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
618 /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
619 /// into vectors.
620 MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
621 IRBuilder<> &Builder) {
622 FixedVectorType *VType = cast<FixedVectorType>(MatrixVal->getType());
623 assert(VType->getNumElements() == SI.NumRows * SI.NumColumns &&
624 "The vector size must match the number of matrix elements");
625
626 // Check if we lowered MatrixVal using shape information. In that case,
627 // return the existing matrix, if it matches the requested shape
628 // information. If there is a mis-match, embed the result in a flat
629 // vector and split it later.
630 auto Found = Inst2ColumnMatrix.find(MatrixVal);
631 if (Found != Inst2ColumnMatrix.end()) {
632 MatrixTy &M = Found->second;
633 // Return the found matrix, if its shape matches the requested shape
634 // information
635 if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
636 return M;
637
638 MatrixVal = M.embedInVector(Builder);
639 }
640
641 // Otherwise split MatrixVal.
642 SmallVector<Value *, 16> SplitVecs;
643 for (unsigned MaskStart = 0; MaskStart < VType->getNumElements();
644 MaskStart += SI.getStride()) {
645 Value *V = Builder.CreateShuffleVector(
646 MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
647 "split");
648 SplitVecs.push_back(V);
649 }
650
651 if (Instruction *Inst = dyn_cast<Instruction>(MatrixVal)) {
652 if (Found != Inst2ColumnMatrix.end()) {
653 // FIXME: re: "at least": SplitVecs.size() doesn't count the shuffles
654 // that embedInVector created.
655 LLVM_DEBUG(dbgs() << "matrix reshape from " << Found->second.shape()
656 << " to " << SI << " using at least "
657 << SplitVecs.size() << " shuffles on behalf of:\n"
658 << *Inst << '\n');
659 ReshapedMatrices++;
660 } else if (!ShapeMap.contains(MatrixVal)) {
662 dbgs()
663 << "splitting a " << SI << " matrix with " << SplitVecs.size()
664 << " shuffles beacuse we do not have a shape-aware lowering for "
665 "its def:\n"
666 << *Inst << '\n');
667 (void)Inst;
668 SplitMatrices++;
669 } else {
670 // The ShapeMap has it, so it's a case where we're being lowered
671 // before the def, and we expect that InstCombine will clean things up
672 // afterward.
673 }
674 }
675
676 return {SplitVecs};
677 }
678
679 /// If \p V already has a known shape return false. Otherwise set the shape
680 /// for instructions that support it.
681 bool setShapeInfo(Value *V, ShapeInfo Shape) {
682 assert(Shape && "Shape not set");
683 if (isa<UndefValue>(V) || !supportsShapeInfo(V))
684 return false;
685
686 auto SIter = ShapeMap.find(V);
687 if (SIter != ShapeMap.end()) {
688 if (VerifyShapeInfo && (SIter->second.NumRows != Shape.NumRows ||
689 SIter->second.NumColumns != Shape.NumColumns)) {
690 errs() << "Conflicting shapes (" << SIter->second.NumRows << "x"
691 << SIter->second.NumColumns << " vs " << Shape.NumRows << "x"
692 << Shape.NumColumns << ") for " << *V << "\n";
694 "Matrix shape verification failed, compilation aborted!");
695 }
696
697 LLVM_DEBUG(dbgs() << " not overriding existing shape: "
698 << SIter->second.NumRows << " "
699 << SIter->second.NumColumns << " for " << *V << "\n");
700 return false;
701 }
702
703 ShapeMap.insert({V, Shape});
704 LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns
705 << " for " << *V << "\n");
706 return true;
707 }
708
709 /// Returns true if shape information can be used for \p V. The supported
710 /// instructions must match the instructions that can be lowered by this pass.
711 bool supportsShapeInfo(Value *V) {
713 if (!Inst)
714 return false;
715
716 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
717 if (II)
718 switch (II->getIntrinsicID()) {
719 case Intrinsic::matrix_multiply:
720 case Intrinsic::matrix_transpose:
721 case Intrinsic::matrix_column_major_load:
722 case Intrinsic::matrix_column_major_store:
723 return true;
724 default:
725 break;
726 }
727 return isShapePreserving(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
728 }
729
730 /// Propagate the shape information of instructions to their users.
731 /// The work list contains instructions for which we can compute the shape,
732 /// either based on the information provided by matrix intrinsics or known
733 /// shapes of operands.
735 propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
737 // Pop an element for which we guaranteed to have at least one of the
738 // operand shapes. Add the shape for this and then add users to the work
739 // list.
740 LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
741 while (!WorkList.empty()) {
742 Instruction *Inst = WorkList.pop_back_val();
743
744 // New entry, set the value and insert operands
745 bool Propagate = false;
746 if (auto SI = computeShapeInfoForInst(Inst, ShapeMap))
747 Propagate = setShapeInfo(Inst, *SI);
748
749 if (Propagate) {
750 NewWorkList.push_back(Inst);
751 for (auto *User : Inst->users())
752 if (ShapeMap.count(User) == 0)
753 WorkList.push_back(cast<Instruction>(User));
754 }
755 }
756
757 return NewWorkList;
758 }
759
760 /// Propagate the shape to operands of instructions with shape information.
761 /// \p Worklist contains the instruction for which we already know the shape.
763 propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
765
766 auto pushInstruction = [](Value *V,
767 SmallVectorImpl<Instruction *> &WorkList) {
769 if (I)
770 WorkList.push_back(I);
771 };
772 // Pop an element with known shape. Traverse the operands, if their shape
773 // derives from the result shape and is unknown, add it and add them to the
774 // worklist.
775 LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
776 while (!WorkList.empty()) {
777 Value *V = WorkList.pop_back_val();
778
779 size_t BeforeProcessingV = WorkList.size();
780 if (!isa<Instruction>(V))
781 continue;
782
783 Value *MatrixA;
784 Value *MatrixB;
785 Value *M;
786 Value *N;
787 Value *K;
789 m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
790 m_Value(N), m_Value(K)))) {
791 if (setShapeInfo(MatrixA, {M, N}))
792 pushInstruction(MatrixA, WorkList);
793
794 if (setShapeInfo(MatrixB, {N, K}))
795 pushInstruction(MatrixB, WorkList);
796
798 m_Value(MatrixA), m_Value(M), m_Value(N)))) {
799 // Flip dimensions.
800 if (setShapeInfo(MatrixA, {M, N}))
801 pushInstruction(MatrixA, WorkList);
803 m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
804 m_Value(M), m_Value(N)))) {
805 if (setShapeInfo(MatrixA, {M, N})) {
806 pushInstruction(MatrixA, WorkList);
807 }
808 } else if (isa<LoadInst>(V) ||
810 // Nothing to do, no matrix input.
811 } else if (isa<StoreInst>(V)) {
812 // Nothing to do. We forward-propagated to this so we would just
813 // backward propagate to an instruction with an already known shape.
814 } else if (isShapePreserving(V)) {
815 auto ShapedOps = getShapedOperandsForInst(cast<Instruction>(V));
816 // Propagate to all operands.
817 ShapeInfo Shape = ShapeMap[V];
818 for (Use &U : ShapedOps) {
819 if (setShapeInfo(U.get(), Shape))
820 pushInstruction(U.get(), WorkList);
821 }
822 }
823 // After we discovered new shape info for new instructions in the
824 // worklist, we use their users as seeds for the next round of forward
825 // propagation.
826 for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
827 for (User *U : WorkList[I]->users())
828 if (isa<Instruction>(U) && V != U)
829 NewWorkList.push_back(cast<Instruction>(U));
830 }
831 return NewWorkList;
832 }
833
834 /// (Op0 op Op1)^T -> Op0^T op Op1^T
835 /// Transpose \p Op0 and \p Op1 of shape \p Shape0 and \p Shape1, then use
836 /// them on both sides of \p Operation.
837 Instruction *distributeTransposes(
838 Value *Op0, ShapeInfo Shape0, Value *Op1, ShapeInfo Shape1,
839 MatrixBuilder &Builder,
840 function_ref<Instruction *(Value *, ShapeInfo, Value *, ShapeInfo)>
841 Operation) {
842 Value *T0 = Builder.CreateMatrixTranspose(
843 Op0, Shape0.NumRows, Shape0.NumColumns, Op0->getName() + "_t");
844 // We are being run after shape prop, add shape for newly created
845 // instructions so that we lower them later.
846 setShapeInfo(T0, Shape0.t());
847 Value *T1 = Builder.CreateMatrixTranspose(
848 Op1, Shape1.NumRows, Shape1.NumColumns, Op1->getName() + "_t");
849 setShapeInfo(T1, Shape1.t());
850 return Operation(T0, Shape0.t(), T1, Shape1.t());
851 }
852
853 /// Erase \p Inst from both ShapeMap (if an entry exists) and erase \p Inst
854 /// itself.
855 void eraseFromParentAndRemoveFromShapeMap(Instruction *Inst) {
856 ShapeMap.erase(Inst);
857 Inst->eraseFromParent();
858 }
859
860 /// Erase \p V from \p BB and move \II forward to avoid invalidating
861 /// iterators.
862 void eraseFromParentAndMove(Value *V, BasicBlock::reverse_iterator &II,
863 BasicBlock &BB) {
864 auto *Inst = cast<Instruction>(V);
865 // Still used, don't erase.
866 if (!Inst->use_empty())
867 return;
868 if (II != BB.rend() && Inst == &*II)
869 ++II;
870 eraseFromParentAndRemoveFromShapeMap(Inst);
871 }
872
873 /// Add a new entry to ShapeMap for \p New with \p Old's shape info, erase the
874 /// entry for \p Old and replace all uses of \p Old with \p New.
875 void updateShapeAndReplaceAllUsesWith(Instruction &Old, Value *New) {
876 // We need to remove Old from the ShapeMap otherwise RAUW will replace it
877 // with New. We should only add New it it supportsShapeInfo so we insert
878 // it conditionally instead.
879 auto S = ShapeMap.find(&Old);
880 if (S != ShapeMap.end()) {
881 ShapeMap.erase(S);
882 if (supportsShapeInfo(New))
883 ShapeMap.insert({New, S->second});
884 }
885 Old.replaceAllUsesWith(New);
886 }
887
888 /// Sink a top-level transpose inside matmuls and adds.
889 /// This creates and erases instructions as needed, and returns the newly
890 /// created instruction while updating the iterator to avoid invalidation. If
891 /// this returns nullptr, no new instruction was created.
892 Instruction *sinkTranspose(Instruction &I, BasicBlock::reverse_iterator &II,
893 bool &Changed) {
894 BasicBlock &BB = *I.getParent();
895 IRBuilder<> IB(&I);
896 MatrixBuilder Builder(IB);
897
898 Value *TA, *TAMA, *TAMB;
899 ConstantInt *R, *K, *C;
902 return nullptr;
903
904 // Transpose of a transpose is a nop when the shapes match.
905 Value *TATA;
907 m_Value(TATA), m_Specific(C), m_Specific(R)))) {
908 updateShapeAndReplaceAllUsesWith(I, TATA);
909 eraseFromParentAndMove(&I, II, BB);
910 eraseFromParentAndMove(TA, II, BB);
911 Changed = true;
912 return nullptr;
913 }
914
915 // k^T -> k
916 if (isSplat(TA)) {
917 updateShapeAndReplaceAllUsesWith(I, TA);
918 eraseFromParentAndMove(&I, II, BB);
919 Changed = true;
920 return nullptr;
921 }
922
923 // (A * B)^t -> B^t * A^t
924 // RxK KxC CxK KxR
926 m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
928 auto NewInst = distributeTransposes(
929 TAMB, {K, C}, TAMA, {R, K}, Builder,
930 [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
931 return Builder.CreateMatrixMultiply(T0, T1, Shape0.NumRows,
932 Shape0.NumColumns,
933 Shape1.NumColumns, "mmul");
934 });
935 updateShapeAndReplaceAllUsesWith(I, NewInst);
936 eraseFromParentAndMove(&I, II, BB);
937 eraseFromParentAndMove(TA, II, BB);
938 Changed = true;
939 return NewInst;
940 }
941
942 // Same as above, but with a mul, which occurs when multiplied
943 // with a scalar.
944 // (A * k)^t -> A^t * k
945 // R x C RxC
946 if (match(TA, m_AnyMul(m_Value(TAMA), m_Value(TAMB))) &&
947 (isSplat(TAMA) || isSplat(TAMB))) {
948 IRBuilder<> LocalBuilder(&I);
949 // We know that the transposed operand is of shape RxC.
950 // An when multiplied with a scalar, the shape is preserved.
951 auto NewInst = distributeTransposes(
952 TAMA, {R, C}, TAMB, {R, C}, Builder,
953 [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
954 bool IsFP = I.getType()->isFPOrFPVectorTy();
955 auto *Mul = IsFP ? LocalBuilder.CreateFMul(T0, T1, "mmul")
956 : LocalBuilder.CreateMul(T0, T1, "mmul");
958 setShapeInfo(Result, Shape0);
959 return Result;
960 });
961 updateShapeAndReplaceAllUsesWith(I, NewInst);
962 eraseFromParentAndMove(&I, II, BB);
963 eraseFromParentAndMove(TA, II, BB);
964 Changed = true;
965 return NewInst;
966 }
967
968 // (A + B)^t -> A^t + B^t
969 // RxC RxC CxR CxR
970 if (match(TA, m_AnyAdd(m_Value(TAMA), m_Value(TAMB)))) {
971 IRBuilder<> LocalBuilder(&I);
972 auto NewInst = distributeTransposes(
973 TAMA, {R, C}, TAMB, {R, C}, Builder,
974 [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
975 bool IsFP = I.getType()->isFPOrFPVectorTy();
976 auto *Add = IsFP ? LocalBuilder.CreateFAdd(T0, T1, "madd")
977 : LocalBuilder.CreateAdd(T0, T1, "madd");
978
980 setShapeInfo(Result, Shape0);
981 return Result;
982 });
983 updateShapeAndReplaceAllUsesWith(I, NewInst);
984 eraseFromParentAndMove(&I, II, BB);
985 eraseFromParentAndMove(TA, II, BB);
986 Changed = true;
987 return NewInst;
988 }
989
990 return nullptr;
991 }
992
993 bool liftTranspose(Instruction &I) {
994 // Erase dead Instructions after lifting transposes from binops.
995 auto CleanupBinOp = [this](Instruction &T, Value *A, Value *B) {
996 if (T.use_empty())
997 eraseFromParentAndRemoveFromShapeMap(&T);
998 if (A->use_empty())
999 eraseFromParentAndRemoveFromShapeMap(cast<Instruction>(A));
1000 if (A != B && B->use_empty())
1001 eraseFromParentAndRemoveFromShapeMap(cast<Instruction>(B));
1002 };
1003
1004 Value *A, *B, *AT, *BT;
1005 ConstantInt *R, *K, *C;
1006 // A^t * B ^t -> (B * A)^t
1009 m_ConstantInt(K), m_ConstantInt(C))) &&
1012 IRBuilder<> IB(&I);
1013 MatrixBuilder Builder(IB);
1014 Value *M = Builder.CreateMatrixMultiply(
1015 BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
1016 setShapeInfo(M, {C, R});
1017 Instruction *NewInst = Builder.CreateMatrixTranspose(M, C->getZExtValue(),
1018 R->getZExtValue());
1019 updateShapeAndReplaceAllUsesWith(I, NewInst);
1020 CleanupBinOp(I, A, B);
1021 return true;
1022 }
1023 // A^t + B ^t -> (A + B)^t. Pick rows and columns from first transpose. If
1024 // the shape of the second transpose is different, there's a shape conflict
1025 // which gets resolved by picking the shape of the first operand.
1026 else if (match(&I, m_FAdd(m_Value(A), m_Value(B))) &&
1028 m_Value(AT), m_ConstantInt(R), m_ConstantInt(C))) &&
1031 IRBuilder<> Builder(&I);
1032 auto *Add = Builder.CreateFAdd(AT, BT, "mfadd");
1033 MatrixBuilder MBuilder(Builder);
1034 Instruction *NewInst = MBuilder.CreateMatrixTranspose(
1035 Add, R->getZExtValue(), C->getZExtValue(), "mfadd_t");
1036 updateShapeAndReplaceAllUsesWith(I, NewInst);
1037 assert(computeShapeInfoForInst(NewInst, ShapeMap) ==
1038 computeShapeInfoForInst(&I, ShapeMap) &&
1039 "Shape of new instruction doesn't match original shape.");
1040 CleanupBinOp(I, A, B);
1041 if (auto *AddI = dyn_cast<Instruction>(Add)) {
1042 setShapeInfo(AddI, {R, C});
1043 assert(
1044 computeShapeInfoForInst(AddI, ShapeMap).value_or(ShapeMap[AddI]) ==
1045 ShapeMap[AddI] &&
1046 "Shape of updated addition doesn't match cached shape.");
1047 }
1048 return true;
1049 }
1050 return false;
1051 }
1052
1053 /// Try moving transposes in order to fold them away or into multiplies.
1054 bool optimizeTransposes() {
1055 bool Changed = false;
1056 // First sink all transposes inside matmuls and adds, hoping that we end up
1057 // with NN, NT or TN variants.
1058 for (BasicBlock &BB : reverse(Func)) {
1059 for (auto II = BB.rbegin(); II != BB.rend();) {
1060 Instruction &I = *II;
1061 // We may remove II. By default continue on the next/prev instruction.
1062 ++II;
1063 if (Instruction *NewInst = sinkTranspose(I, II, Changed))
1064 II = std::next(BasicBlock::reverse_iterator(NewInst));
1065 }
1066 }
1067
1068 // If we have a TT matmul or a TT add, lift the transpose. We may be able
1069 // to fold into consuming multiply or add.
1070 for (BasicBlock &BB : Func) {
1071 for (Instruction &I : llvm::make_early_inc_range(BB)) {
1072 Changed |= liftTranspose(I);
1073 }
1074 }
1075 return Changed;
1076 }
1077
1078 bool Visit() {
1080
1081 // Initially only the shape of matrix intrinsics is known.
1082 // Initialize the work list with ops carrying shape information.
1083 for (BasicBlock &BB : Func)
1084 for (Instruction &Inst : BB) {
1085 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
1086 if (!II)
1087 continue;
1088
1089 switch (II->getIntrinsicID()) {
1090 case Intrinsic::matrix_multiply:
1091 case Intrinsic::matrix_transpose:
1092 case Intrinsic::matrix_column_major_load:
1093 case Intrinsic::matrix_column_major_store:
1094 WorkList.push_back(&Inst);
1095 break;
1096 default:
1097 break;
1098 }
1099 }
1100
1101 // Avoid unnecessary work if there are no matrix intrinsics in the function.
1102 if (WorkList.empty())
1103 return false;
1104
1105 if (AM) {
1106 ORE = &AM->getResult<OptimizationRemarkEmitterAnalysis>(Func);
1107 AA = &AM->getResult<AAManager>(Func);
1108 DT = &AM->getResult<DominatorTreeAnalysis>(Func);
1109 LI = &AM->getResult<LoopAnalysis>(Func);
1110 }
1111
1112 // Propagate shapes until nothing changes any longer.
1113 while (!WorkList.empty()) {
1114 WorkList = propagateShapeForward(WorkList);
1115 WorkList = propagateShapeBackward(WorkList);
1116 }
1117
1118 bool Changed = false;
1119 if (!isMinimal()) {
1120 Changed |= optimizeTransposes();
1122 dbgs() << "Dump after matrix transpose optimization:\n";
1123 Func.print(dbgs());
1124 }
1125 }
1126
1127 SmallVector<CallInst *, 16> MaybeFusableInsts;
1128 SmallVector<Instruction *, 16> MatrixInsts;
1130
1131 // First, collect all instructions with shape information and candidates for
1132 // fusion (currently only matrix multiplies).
1133 ReversePostOrderTraversal<Function *> RPOT(&Func);
1134 for (auto *BB : RPOT)
1135 for (Instruction &I : *BB) {
1137 LifetimeEnds.push_back(cast<IntrinsicInst>(&I));
1138 if (!ShapeMap.contains(&I))
1139 continue;
1141 MaybeFusableInsts.push_back(cast<CallInst>(&I));
1142 MatrixInsts.push_back(&I);
1143 }
1144
1145 // Second, try to lower any dot products
1146 SmallPtrSet<Instruction *, 16> FusedInsts;
1147 for (CallInst *CI : MaybeFusableInsts)
1148 lowerDotProduct(CI, FusedInsts, getFastMathFlags(CI));
1149
1150 // Third, try to fuse candidates.
1151 for (CallInst *CI : MaybeFusableInsts)
1152 if (!FusedInsts.contains(CI))
1153 LowerMatrixMultiplyFused(CI, FusedInsts, LifetimeEnds);
1154
1155 Changed |= !FusedInsts.empty();
1156
1157 // Fourth, pre-process all the PHINode's. The incoming values will be
1158 // assigned later in VisitPHI.
1159 for (Instruction *Inst : MatrixInsts) {
1160 if (FusedInsts.count(Inst))
1161 continue;
1162
1163 auto *PHI = dyn_cast<PHINode>(Inst);
1164 if (!PHI)
1165 continue;
1166
1167 const ShapeInfo &SI = ShapeMap.at(Inst);
1168 auto *EltTy = cast<FixedVectorType>(PHI->getType())->getElementType();
1169 MatrixTy PhiM(SI.NumRows, SI.NumColumns, EltTy);
1170
1171 IRBuilder<> Builder(Inst);
1172 for (unsigned VI = 0, VE = PhiM.getNumVectors(); VI != VE; ++VI)
1173 PhiM.setVector(VI, Builder.CreatePHI(PhiM.getVectorTy(),
1174 PHI->getNumIncomingValues(),
1175 PHI->getName()));
1176 assert(!Inst2ColumnMatrix.contains(PHI) && "map already contains phi?");
1177 Inst2ColumnMatrix[PHI] = PhiM;
1178 }
1179
1180 // Fifth, lower remaining instructions with shape information.
1181 for (Instruction *Inst : MatrixInsts) {
1182 if (FusedInsts.count(Inst))
1183 continue;
1184
1185 const ShapeInfo &SI = ShapeMap.at(Inst);
1186
1187 Value *Op1;
1188 Value *Op2;
1189 MatrixTy Result;
1190 IRBuilder<> Builder(Inst);
1191 if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
1192 Result = VisitBinaryOperator(BinOp, SI, Builder);
1193 else if (auto *Cast = dyn_cast<CastInst>(Inst))
1194 Result = VisitCastInstruction(Cast, SI, Builder);
1195 else if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
1196 Result = VisitUnaryOperator(UnOp, SI, Builder);
1197 else if (auto *Intr = dyn_cast<IntrinsicInst>(Inst))
1198 Result = VisitIntrinsicInst(Intr, SI, Builder);
1199 else if (auto *Select = dyn_cast<SelectInst>(Inst))
1200 Result = VisitSelectInst(Select, SI, Builder);
1201 else if (match(Inst, m_Load(m_Value(Op1))))
1202 Result = VisitLoad(cast<LoadInst>(Inst), SI, Op1, Builder);
1203 else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
1204 Result = VisitStore(cast<StoreInst>(Inst), SI, Op1, Op2, Builder);
1205 else if (auto *PHI = dyn_cast<PHINode>(Inst))
1206 Result = VisitPHI(PHI, SI, Builder);
1207 else
1208 continue;
1209
1210 finalizeLowering(Inst, Result, Builder);
1211 Changed = true;
1212 }
1213
1214 if (ORE) {
1215 RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
1216 RemarkGen.emitRemarks();
1217 }
1218
1219 // Delete the instructions backwards, as it has a reduced likelihood of
1220 // having to update as many def-use and use-def chains.
1221 //
1222 // Because we add to ToRemove during fusion we can't guarantee that defs
1223 // are before uses. Change uses to poison temporarily as these should get
1224 // removed as well.
1225 //
1226 // For verification, we keep track of where we changed uses to poison in
1227 // PoisonedInsts and then check that we in fact remove them.
1228 SmallPtrSet<Instruction *, 16> PoisonedInsts;
1229 for (auto *Inst : reverse(ToRemove)) {
1230 for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1231 if (auto *Poisoned = dyn_cast<Instruction>(U.getUser()))
1232 PoisonedInsts.insert(Poisoned);
1233 U.set(PoisonValue::get(Inst->getType()));
1234 }
1235 Inst->eraseFromParent();
1236 PoisonedInsts.erase(Inst);
1237 }
1238 if (!PoisonedInsts.empty()) {
1239 // If we didn't remove all poisoned instructions, it's a hard error.
1240 dbgs() << "Poisoned but present instructions:\n";
1241 for (auto *I : PoisonedInsts)
1242 dbgs() << *I << "\n";
1243 llvm_unreachable("Poisoned but instruction not removed");
1244 }
1245
1246 return Changed;
1247 }
1248
1249 /// Replace intrinsic calls.
1250 MatrixTy VisitIntrinsicInst(IntrinsicInst *Inst, const ShapeInfo &SI,
1251 IRBuilder<> &Builder) {
1252 assert(Inst->getCalledFunction() &&
1253 Inst->getCalledFunction()->isIntrinsic());
1254
1255 switch (Inst->getCalledFunction()->getIntrinsicID()) {
1256 case Intrinsic::matrix_multiply:
1257 return LowerMultiply(Inst, Builder);
1258 case Intrinsic::matrix_transpose:
1259 return LowerTranspose(Inst, Builder);
1260 case Intrinsic::matrix_column_major_load:
1261 return LowerColumnMajorLoad(Inst, Builder);
1262 case Intrinsic::matrix_column_major_store:
1263 return LowerColumnMajorStore(Inst, Builder);
1264 case Intrinsic::abs:
1265 case Intrinsic::fabs: {
1266 MatrixTy Result;
1267 MatrixTy M = getMatrix(Inst->getOperand(0), SI, Builder);
1268 Builder.setFastMathFlags(getFastMathFlags(Inst));
1269
1270 for (auto *Vector : M.vectors()) {
1271 switch (Inst->getIntrinsicID()) {
1272 case Intrinsic::abs:
1273 Result.addVector(Builder.CreateBinaryIntrinsic(Intrinsic::abs, Vector,
1274 Inst->getOperand(1)));
1275 continue;
1276 case Intrinsic::fabs:
1277 Result.addVector(
1278 Builder.CreateUnaryIntrinsic(Inst->getIntrinsicID(), Vector));
1279 continue;
1280 default:
1281 llvm_unreachable("unexpected intrinsic");
1282 }
1283 }
1284
1285 return Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1286 Result.getNumVectors());
1287 }
1288 default:
1289 break;
1290 }
1292 "only intrinsics supporting shape info should be seen here");
1293 }
1294
1295 /// Compute the alignment for a column/row \p Idx with \p Stride between them.
1296 /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
1297 /// ConstantInt, reduce the initial alignment based on the byte offset. For
1298 /// non-ConstantInt strides, return the common alignment of the initial
1299 /// alignment and the element size in bytes.
1300 Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
1301 MaybeAlign A) const {
1302 Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
1303 if (Idx == 0)
1304 return InitialAlign;
1305
1306 TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
1307 if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
1308 uint64_t StrideInBytes =
1309 ConstStride->getZExtValue() * ElementSizeInBits / 8;
1310 return commonAlignment(InitialAlign, Idx * StrideInBytes);
1311 }
1312 return commonAlignment(InitialAlign, ElementSizeInBits / 8);
1313 }
1314
1315 IntegerType *getIndexType(Value *Ptr) const {
1316 return cast<IntegerType>(DL.getIndexType(Ptr->getType()));
1317 }
1318
1319 Value *getIndex(Value *Ptr, uint64_t V) const {
1320 return ConstantInt::get(getIndexType(Ptr), V);
1321 }
1322
1323 Value *castToIndexType(Value *Ptr, Value *V, IRBuilder<> &Builder) const {
1324 assert(isa<IntegerType>(V->getType()) &&
1325 "Attempted to cast non-integral type to integer index");
1326 // In case the data layout's index type differs in width from the type of
1327 // the value we're given, truncate or zero extend to the appropriate width.
1328 // We zero extend here as indices are unsigned.
1329 return Builder.CreateZExtOrTrunc(V, getIndexType(Ptr),
1330 V->getName() + ".cast");
1331 }
1332
1333 /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
1334 /// vectors.
1335 MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
1336 bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
1337 auto *VType = cast<FixedVectorType>(Ty);
1338 Type *EltTy = VType->getElementType();
1339 Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
1340 Value *EltPtr = Ptr;
1341 MatrixTy Result;
1342 Stride = castToIndexType(Ptr, Stride, Builder);
1343 for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
1345 EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I),
1346 Stride, Shape.getStride(), EltTy, Builder);
1347 Value *Vector = Builder.CreateAlignedLoad(
1348 VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
1349 IsVolatile, "col.load");
1350
1351 Result.addVector(Vector);
1352 }
1353 return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
1354 Result.getNumVectors());
1355 }
1356
1357 /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
1358 /// starting at \p MatrixPtr[I][J].
1359 MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
1360 ShapeInfo MatrixShape, Value *I, Value *J,
1361 ShapeInfo ResultShape, Type *EltTy,
1362 IRBuilder<> &Builder) {
1363 Value *Offset = Builder.CreateAdd(
1364 Builder.CreateMul(J, getIndex(MatrixPtr, MatrixShape.getStride())), I);
1365
1366 Value *TileStart = Builder.CreateGEP(EltTy, MatrixPtr, Offset);
1367 auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
1368 ResultShape.NumColumns);
1369
1370 return loadMatrix(TileTy, TileStart, Align,
1371 getIndex(MatrixPtr, MatrixShape.getStride()), IsVolatile,
1372 ResultShape, Builder);
1373 }
1374
1375 /// Lower a load instruction with shape information.
1376 MatrixTy LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align,
1377 Value *Stride, bool IsVolatile, ShapeInfo Shape,
1378 IRBuilder<> &Builder) {
1379 return loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, Shape,
1380 Builder);
1381 }
1382
1383 /// Lowers llvm.matrix.column.major.load.
1384 ///
1385 /// The intrinsic loads a matrix from memory using a stride between columns.
1386 MatrixTy LowerColumnMajorLoad(CallInst *Inst, IRBuilder<> &Builder) {
1388 "Intrinsic only supports column-major layout!");
1389 Value *Ptr = Inst->getArgOperand(0);
1390 Value *Stride = Inst->getArgOperand(1);
1391 return LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1392 cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
1393 {Inst->getArgOperand(3), Inst->getArgOperand(4)}, Builder);
1394 }
1395
1396 /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
1397 /// MatrixPtr[I][J].
1398 void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
1399 MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
1400 Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
1401 Value *Offset = Builder.CreateAdd(
1402 Builder.CreateMul(J, getIndex(MatrixPtr, MatrixShape.getStride())), I);
1403
1404 Value *TileStart = Builder.CreateGEP(EltTy, MatrixPtr, Offset);
1405 auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
1406 StoreVal.getNumColumns());
1407
1408 storeMatrix(TileTy, StoreVal, TileStart, MAlign,
1409 getIndex(MatrixPtr, MatrixShape.getStride()), IsVolatile,
1410 Builder);
1411 }
1412
1413 /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
1414 /// vectors.
1415 MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
1416 MaybeAlign MAlign, Value *Stride, bool IsVolatile,
1417 IRBuilder<> &Builder) {
1418 auto *VType = cast<FixedVectorType>(Ty);
1419 Value *EltPtr = Ptr;
1420 Stride = castToIndexType(Ptr, Stride, Builder);
1421 for (auto Vec : enumerate(StoreVal.vectors())) {
1423 EltPtr,
1424 Builder.getIntN(Stride->getType()->getScalarSizeInBits(),
1425 Vec.index()),
1426 Stride, StoreVal.getStride(), VType->getElementType(), Builder);
1427 Builder.CreateAlignedStore(Vec.value(), GEP,
1428 getAlignForIndex(Vec.index(), Stride,
1429 VType->getElementType(),
1430 MAlign),
1431 IsVolatile);
1432 }
1433 return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
1434 StoreVal.getNumVectors());
1435 }
1436
1437 /// Lower a store instruction with shape information.
1438 MatrixTy LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr,
1439 MaybeAlign A, Value *Stride, bool IsVolatile,
1440 ShapeInfo Shape, IRBuilder<> &Builder) {
1441 auto StoreVal = getMatrix(Matrix, Shape, Builder);
1442 return storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, IsVolatile,
1443 Builder);
1444 }
1445
1446 /// Lowers llvm.matrix.column.major.store.
1447 ///
1448 /// The intrinsic store a matrix back memory using a stride between columns.
1449 MatrixTy LowerColumnMajorStore(CallInst *Inst, IRBuilder<> &Builder) {
1451 "Intrinsic only supports column-major layout!");
1452 Value *Matrix = Inst->getArgOperand(0);
1453 Value *Ptr = Inst->getArgOperand(1);
1454 Value *Stride = Inst->getArgOperand(2);
1455 return LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1456 cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
1457 {Inst->getArgOperand(4), Inst->getArgOperand(5)},
1458 Builder);
1459 }
1460
1461 // Set elements I..I+NumElts-1 to Block
1462 Value *insertVector(Value *Col, unsigned I, Value *Block,
1463 IRBuilder<> &Builder) {
1464
1465 // First, bring Block to the same size as Col
1466 unsigned BlockNumElts =
1467 cast<FixedVectorType>(Block->getType())->getNumElements();
1468 unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1469 assert(NumElts >= BlockNumElts && "Too few elements for current block");
1470
1471 Block = Builder.CreateShuffleVector(
1472 Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1473
1474 // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1475 // 8, 4, 5, 6
1476 SmallVector<int, 16> Mask;
1477 unsigned i;
1478 for (i = 0; i < I; i++)
1479 Mask.push_back(i);
1480
1481 unsigned VecNumElts =
1482 cast<FixedVectorType>(Col->getType())->getNumElements();
1483 for (; i < I + BlockNumElts; i++)
1484 Mask.push_back(i - I + VecNumElts);
1485
1486 for (; i < VecNumElts; i++)
1487 Mask.push_back(i);
1488
1489 return Builder.CreateShuffleVector(Col, Block, Mask);
1490 }
1491
1492 Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
1493 IRBuilder<> &Builder, bool AllowContraction,
1494 unsigned &NumComputeOps) {
1495 NumComputeOps += getNumOps(A->getType());
1496 if (!Sum)
1497 return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
1498
1499 if (UseFPOp) {
1500 if (AllowContraction) {
1501 // Use fmuladd for floating point operations and let the backend decide
1502 // if that's profitable.
1503 return Builder.CreateIntrinsic(Intrinsic::fmuladd, A->getType(),
1504 {A, B, Sum});
1505 }
1506 NumComputeOps += getNumOps(A->getType());
1507 Value *Mul = Builder.CreateFMul(A, B);
1508 return Builder.CreateFAdd(Sum, Mul);
1509 }
1510
1511 NumComputeOps += getNumOps(A->getType());
1512 Value *Mul = Builder.CreateMul(A, B);
1513 return Builder.CreateAdd(Sum, Mul);
1514 }
1515
1516 /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1517 /// users with shape information, there's nothing to do: they will use the
1518 /// cached value when they are lowered. For other users, \p Matrix is
1519 /// flattened and the uses are updated to use it. Also marks \p Inst for
1520 /// deletion.
1521 void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1522 IRBuilder<> &Builder) {
1523 auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1524 (void)inserted;
1525 assert((inserted.second || isa<PHINode>(Inst)) &&
1526 "multiple matrix lowering mapping");
1527
1528 ToRemove.push_back(Inst);
1529 Value *Flattened = nullptr;
1530 for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1531 if (ShapeMap.contains(U.getUser()))
1532 continue;
1533
1534 if (!Flattened) {
1535 Flattened = Matrix.embedInVector(Builder);
1536 LLVM_DEBUG(
1537 if (Instruction *User = dyn_cast<Instruction>(U.getUser())) dbgs()
1538 << "flattening a " << Matrix.shape() << " matrix:\n"
1539 << *Inst
1540 << "\nbecause we do not have a shape-aware lowering for its "
1541 "user:\n"
1542 << *User << '\n';);
1543 FlattenedMatrices++;
1544 }
1545 U.set(Flattened);
1546 }
1547 }
1548
1549 /// Special case for MatMul lowering. Prevents scalar loads of row-major
1550 /// vectors Lowers to vector reduction add instead of sequential add if
1551 /// reassocation is enabled.
1552 void lowerDotProduct(CallInst *MatMul,
1553 SmallPtrSet<Instruction *, 16> &FusedInsts,
1554 FastMathFlags FMF) {
1555 if (FusedInsts.contains(MatMul) ||
1557 return;
1558 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1559 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1560
1561 if (LShape.NumRows != 1 || RShape.NumColumns != 1) // not a dot product
1562 return;
1563
1564 Value *LHS = MatMul->getArgOperand(0);
1565 Value *RHS = MatMul->getArgOperand(1);
1566
1567 Type *ElementType = cast<FixedVectorType>(LHS->getType())->getElementType();
1568 bool IsIntVec = ElementType->isIntegerTy();
1569
1570 // Floating point reductions require reassocation.
1571 if (!IsIntVec && !FMF.allowReassoc())
1572 return;
1573
1574 auto CanBeFlattened = [](Value *Op) {
1575 if (match(Op, m_BinOp()))
1576 return true;
1577 return match(
1579 m_Load(m_Value()),
1582 m_Value(), m_SpecificInt(1))))));
1583 };
1584 // Returns the cost benefit of using \p Op with the dot product lowering. If
1585 // the returned cost is < 0, the argument is cheaper to use in the
1586 // dot-product lowering.
1587 auto GetCostForArg = [this, &CanBeFlattened](Value *Op, unsigned N) {
1588 if (!ShapeMap.contains(Op))
1589 return InstructionCost::getInvalid();
1590
1591 if (!isa<Instruction>(Op))
1592 return InstructionCost(0);
1593
1594 FixedVectorType *VecTy = cast<FixedVectorType>(Op->getType());
1595 Type *EltTy = VecTy->getElementType();
1596
1597 if (!CanBeFlattened(Op)) {
1598 InstructionCost EmbedCost(0);
1599 // Roughly estimate the cost for embedding the columns into a vector.
1600 for (unsigned I = 1; I < N; ++I)
1601 EmbedCost += TTI.getShuffleCost(
1604 return EmbedCost;
1605 }
1606
1607 if (match(Op, m_BinOp()) && ShapeMap.contains(Op)) {
1608 InstructionCost OriginalCost =
1609 TTI.getArithmeticInstrCost(cast<Instruction>(Op)->getOpcode(),
1610 EltTy) *
1611 N;
1612 InstructionCost NewCost = TTI.getArithmeticInstrCost(
1613 cast<Instruction>(Op)->getOpcode(), VecTy);
1614 return NewCost - OriginalCost;
1615 }
1616
1618 // The transpose can be skipped for the dot product lowering, roughly
1619 // estimate the savings as the cost of embedding the columns in a
1620 // vector.
1621 InstructionCost EmbedCost(0);
1622 for (unsigned I = 1; I < N; ++I)
1623 EmbedCost -= TTI.getShuffleCost(
1626 return EmbedCost;
1627 }
1628
1629 // Costs for loads.
1630 if (N == 1)
1631 return InstructionCost(0);
1632
1633 return TTI.getMemoryOpCost(Instruction::Load, VecTy, Align(1), 0) -
1634 N * TTI.getMemoryOpCost(Instruction::Load, EltTy, Align(1), 0);
1635 };
1636
1637 // Iterate over LHS and operations feeding LHS and check if it is profitable
1638 // to flatten the visited ops. For each op, we compute the difference
1639 // between the flattened and matrix versions.
1640 SmallPtrSet<Value *, 4> Seen;
1641 SmallVector<Value *> WorkList;
1642 SmallVector<Value *> ToFlatten;
1643 WorkList.push_back(LHS);
1644 InstructionCost LHSCost(0);
1645 while (!WorkList.empty()) {
1646 Value *Op = WorkList.pop_back_val();
1647 if (!Seen.insert(Op).second)
1648 continue;
1649
1650 InstructionCost OpCost = GetCostForArg(Op, LShape.NumColumns);
1651 if (OpCost + LHSCost >= LHSCost)
1652 continue;
1653
1654 LHSCost += OpCost;
1655 ToFlatten.push_back(Op);
1656 if (auto *I = dyn_cast<Instruction>(Op))
1657 WorkList.append(I->op_begin(), I->op_end());
1658 }
1659
1660 // We compare the costs of a vector.reduce.add to sequential add.
1661 int AddOpCode = IsIntVec ? Instruction::Add : Instruction::FAdd;
1662 int MulOpCode = IsIntVec ? Instruction::Mul : Instruction::FMul;
1663 InstructionCost ReductionCost =
1664 TTI.getArithmeticReductionCost(
1665 AddOpCode, cast<FixedVectorType>(LHS->getType()),
1666 IsIntVec ? std::nullopt : std::optional(FMF)) +
1667 TTI.getArithmeticInstrCost(MulOpCode, LHS->getType());
1668 InstructionCost SequentialAddCost =
1669 TTI.getArithmeticInstrCost(AddOpCode, ElementType) *
1670 (LShape.NumColumns - 1) +
1671 TTI.getArithmeticInstrCost(MulOpCode, ElementType) *
1672 (LShape.NumColumns);
1673 if ((LHSCost + ReductionCost - SequentialAddCost) > InstructionCost(0))
1674 return;
1675
1676 FusedInsts.insert(MatMul);
1677 IRBuilder<> Builder(MatMul);
1678 auto FlattenArg = [&Builder, &FusedInsts, &CanBeFlattened,
1679 this](Value *Op) {
1680 // Matmul must be the only user of loads because we don't use LowerLoad
1681 // for row vectors (LowerLoad results in scalar loads and shufflevectors
1682 // instead of single vector load).
1683 if (!CanBeFlattened(Op))
1684 return;
1685
1686 if (match(Op, m_BinOp())) {
1687 auto It = ShapeMap.find(Op);
1688 if (It != ShapeMap.end()) {
1689 It->second = It->second.t();
1690 return;
1691 }
1692 }
1693
1694 FusedInsts.insert(cast<Instruction>(Op));
1695 // If vector uses the builtin load, lower to a LoadInst
1696 Value *Arg;
1698 m_Value(Arg)))) {
1699 auto *NewLoad = Builder.CreateLoad(Op->getType(), Arg);
1700 Op->replaceAllUsesWith(NewLoad);
1701 eraseFromParentAndRemoveFromShapeMap(cast<Instruction>(Op));
1702 return;
1704 m_Value(Arg)))) {
1705 ToRemove.push_back(cast<Instruction>(Op));
1706 Op->replaceAllUsesWith(Arg);
1707 return;
1708 }
1709 };
1710
1711 for (auto *V : ToFlatten)
1712 FlattenArg(V);
1713
1714 LHS = MatMul->getArgOperand(0);
1715
1716 // Insert mul/fmul and llvm.vector.reduce.fadd
1717 Value *Mul =
1718 IsIntVec ? Builder.CreateMul(LHS, RHS) : Builder.CreateFMul(LHS, RHS);
1719
1720 Value *Result;
1721 if (IsIntVec)
1722 Result = Builder.CreateAddReduce(Mul);
1723 else {
1724 Result = Builder.CreateFAddReduce(
1725 ConstantFP::get(
1726 cast<FixedVectorType>(LHS->getType())->getElementType(), 0.0),
1727 Mul);
1728 cast<Instruction>(Result)->setFastMathFlags(FMF);
1729 }
1730
1731 // pack scalar back into a matrix and then replace matmul inst
1733 Result, uint64_t(0));
1734 MatMul->replaceAllUsesWith(Result);
1735 FusedInsts.insert(MatMul);
1736 ToRemove.push_back(MatMul);
1737 }
1738
1739 /// Given \p Remainder iterations of the the matmul inner loop,
1740 /// potentially lower \p Blocksize that is used for the underlying
1741 /// vector.
1742 unsigned capBlockSize(unsigned BlockSize, unsigned Remainder, Type *EltType) {
1743 if (BlockSize <= Remainder)
1744 return BlockSize;
1745
1746 // If the remainder is also a legal type just use it.
1747 auto *VecTy = FixedVectorType::get(EltType, Remainder);
1748 if (TTI.isTypeLegal(VecTy))
1749 return Remainder;
1750
1751 // Similarly, if the vector is small enough that we don't want
1752 // to split further.
1754 return Remainder;
1755
1756 // Gradually lower the vectorization factor to cover the
1757 // remainder.
1758 do {
1759 BlockSize /= 2;
1760 } while (BlockSize > Remainder);
1761 return BlockSize;
1762 }
1763
1764 /// Compute \p Result += \p A * \p B for input matrices with left-associating
1765 /// addition.
1766 ///
1767 /// We can fold a transpose into the operand that is used to extract scalars.
1768 /// This is the first operands with row-major and the second with
1769 /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate
1770 /// operand is transposed.
1771 void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1772 const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
1773 bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1774 const unsigned VF = std::max<unsigned>(
1775 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1776 .getFixedValue() /
1777 Result.getElementType()->getPrimitiveSizeInBits().getFixedValue(),
1778 1U);
1779 unsigned R = Result.getNumRows();
1780 unsigned C = Result.getNumColumns();
1781 unsigned M = A.getNumColumns();
1782
1783 bool IsFP = Result.getElementType()->isFloatingPointTy();
1784 assert(A.isColumnMajor() == B.isColumnMajor() &&
1785 Result.isColumnMajor() == A.isColumnMajor() &&
1786 "operands must agree on matrix layout");
1787 unsigned NumComputeOps = 0;
1788
1789 Builder.setFastMathFlags(FMF);
1790
1791 if (A.isColumnMajor()) {
1792 // Multiply columns from the first operand with scalars from the second
1793 // operand. Then move along the K axes and accumulate the columns. With
1794 // this the adds can be vectorized without reassociation.
1795 for (unsigned J = 0; J < C; ++J) {
1796 unsigned BlockSize = VF;
1797 // If Result is zero, we don't need to accumulate in the K==0 iteration.
1798 bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1799
1800 for (unsigned I = 0; I < R; I += BlockSize) {
1801 // Lower block size to make sure we stay within bounds.
1802 BlockSize = capBlockSize(BlockSize, R - I, Result.getElementType());
1803 Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1804 : nullptr;
1805 for (unsigned K = 0; K < M; ++K) {
1806 Value *L = A.extractVector(I, K, BlockSize, Builder);
1807 Value *RH = Builder.CreateExtractElement(
1808 B.getColumn(IsScalarMatrixTransposed ? K : J),
1809 IsScalarMatrixTransposed ? J : K);
1810 Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1811 Sum =
1812 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1813 IsFP, Builder, FMF.allowContract(), NumComputeOps);
1814 }
1815 Result.setVector(J,
1816 insertVector(Result.getVector(J), I, Sum, Builder));
1817 }
1818 }
1819 } else {
1820 // Multiply rows from the second operand with scalars from the first
1821 // operand. Then move along the K axes and accumulate the rows. With this
1822 // the adds can be vectorized without reassociation.
1823 for (unsigned I = 0; I < R; ++I) {
1824 unsigned BlockSize = VF;
1825 bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1826 for (unsigned J = 0; J < C; J += BlockSize) {
1827 // Lower the vectorization factor to cover the remainder.
1828 BlockSize = capBlockSize(BlockSize, C - J, Result.getElementType());
1829
1830 Value *Sum = nullptr;
1831 for (unsigned K = 0; K < M; ++K) {
1832 Value *R = B.extractVector(K, J, BlockSize, Builder);
1833 Value *LH = Builder.CreateExtractElement(
1834 A.getVector(IsScalarMatrixTransposed ? K : I),
1835 IsScalarMatrixTransposed ? I : K);
1836 Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1837 Sum =
1838 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1839 IsFP, Builder, FMF.allowContract(), NumComputeOps);
1840 }
1841 Result.setVector(I,
1842 insertVector(Result.getVector(I), J, Sum, Builder));
1843 }
1844 }
1845 }
1846 Result.addNumComputeOps(NumComputeOps);
1847 }
1848
1849 /// Ensure that the memory in \p Load does not alias \p Store by potentially
1850 /// copying it to a new location. This new or otherwise the original location
1851 /// is returned.
1852 Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1853 CallInst *MatMul) {
1854 MemoryLocation StoreLoc = MemoryLocation::get(Store);
1855 MemoryLocation LoadLoc = MemoryLocation::get(Load);
1856
1857 // If we can statically determine noalias we're good.
1858 if (AA->isNoAlias(LoadLoc, StoreLoc))
1859 return Load->getPointerOperand();
1860
1861 // Create code to check if the memory locations of the Load and Store
1862 // overlap and if they do, copy Load's operand to a new buffer.
1863
1864 // First, create new blocks for 2n part of the check and the copy.
1865 BasicBlock *Check0 = MatMul->getParent();
1866 // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1867 // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1868 // as we adjust Check0 and Check1's branches.
1870 for (BasicBlock *Succ : successors(Check0))
1871 DTUpdates.push_back({DT->Delete, Check0, Succ});
1872
1873 BasicBlock *Check1 =
1874 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1875 nullptr, "alias_cont");
1876 BasicBlock *Copy =
1877 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1878 nullptr, "copy");
1879 BasicBlock *Fusion =
1880 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1881 nullptr, "no_alias");
1882
1883 // Check if the loaded memory location begins before the end of the store
1884 // location. If the condition holds, they might overlap, otherwise they are
1885 // guaranteed to not overlap.
1886 IRBuilder<> Builder(MatMul);
1887 Check0->getTerminator()->eraseFromParent();
1888 Builder.SetInsertPoint(Check0);
1889 Type *IntPtrTy = Builder.getIntPtrTy(Load->getDataLayout());
1890 Value *StoreBegin = Builder.CreatePtrToInt(
1891 const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1892 Value *StoreEnd = Builder.CreateAdd(
1893 StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1894 "store.end", true, true);
1895 Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1896 IntPtrTy, "load.begin");
1897 Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1898 Fusion);
1899
1900 // Check if the store begins before the end of the load location. If the
1901 // condition holds, they alias, otherwise they are guaranteed to not
1902 // overlap.
1903 Check1->getTerminator()->eraseFromParent();
1904 Builder.SetInsertPoint(Check1, Check1->begin());
1905 Value *LoadEnd = Builder.CreateAdd(
1906 LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1907 "load.end", true, true);
1908 Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1909 Fusion);
1910
1911 // Copy load operand to new alloca.
1912 Builder.SetInsertPoint(Copy, Copy->begin());
1913 auto *VT = cast<FixedVectorType>(Load->getType());
1914 // Use an array type for the alloca, to avoid potentially huge alignment
1915 // requirements for large vector types.
1916 auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements());
1917 AllocaInst *Alloca =
1918 Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace());
1919
1920 Builder.CreateMemCpy(Alloca, Alloca->getAlign(), Load->getPointerOperand(),
1921 Load->getAlign(), LoadLoc.Size.getValue());
1922 Builder.SetInsertPoint(Fusion, Fusion->begin());
1923 PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1924 PHI->addIncoming(Load->getPointerOperand(), Check0);
1925 PHI->addIncoming(Load->getPointerOperand(), Check1);
1926 PHI->addIncoming(Alloca, Copy);
1927
1928 // Adjust DT.
1929 DTUpdates.push_back({DT->Insert, Check0, Check1});
1930 DTUpdates.push_back({DT->Insert, Check0, Fusion});
1931 DTUpdates.push_back({DT->Insert, Check1, Copy});
1932 DTUpdates.push_back({DT->Insert, Check1, Fusion});
1933 DT->applyUpdates(DTUpdates);
1934 return PHI;
1935 }
1936
1937 bool isFusionProfitable(CallInst *MatMul) {
1938 if (ForceFusion)
1939 return true;
1940
1941 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1942 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1943
1944 const unsigned R = LShape.NumRows;
1945 const unsigned C = RShape.NumColumns;
1946 const unsigned M = LShape.NumColumns;
1947 auto *EltType = cast<FixedVectorType>(MatMul->getType())->getElementType();
1948
1949 const unsigned VF = std::max<unsigned>(
1950 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1951 .getFixedValue() /
1953 1U);
1954
1955 // Cost model for tiling
1956 //
1957 // For tiling to be beneficial, we need reuse either along the R or
1958 // the C axis. We vectorize along the R axis so that means at least
1959 // 3 elements.
1960 // TODO: Also consider cost of copying if operands alias.
1961 if (R <= VF && C == 1)
1962 return false;
1963 // Then we need enough elements to exceed the number of vector
1964 // registers we have. Note that this is an oversimplification since
1965 // fusing also takes some extra loads which may exceed the number of
1966 // reloads necessary.
1967 unsigned Op0Regs = (R + VF - 1) / VF * M;
1968 unsigned Op1Regs = (M + VF - 1) / VF * C;
1969 return Op0Regs + Op1Regs >
1970 TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true));
1971 }
1972
1973 MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1974 MatrixTy Res;
1975 auto *ColumType = FixedVectorType::get(EltType, R);
1976 for (unsigned I = 0; I < C; ++I)
1977 Res.addVector(ConstantAggregateZero::get(ColumType));
1978 return Res;
1979 }
1980
1981 void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1982 Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1983 auto *EltType = cast<FixedVectorType>(MatMul->getType())->getElementType();
1984
1985 // Create the main tiling loop nest.
1986 TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1987 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1988 Instruction *InsertI = cast<Instruction>(MatMul);
1989 BasicBlock *Start = InsertI->getParent();
1990 BasicBlock *End =
1991 SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1992 IRBuilder<> Builder(MatMul);
1993 BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1994
1995 Type *TileVecTy =
1997 MatrixTy TileResult;
1998 // Insert in the inner loop header.
1999 Builder.SetInsertPoint(TI.KLoop.Header->getTerminator());
2000 // Create PHI nodes for the result columns to accumulate across iterations.
2001 SmallVector<PHINode *, 4> ColumnPhis;
2002 for (unsigned I = 0; I < TileSize; I++) {
2003 auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
2004 Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
2005 TI.RowLoop.Header->getSingleSuccessor());
2006 TileResult.addVector(Phi);
2007 ColumnPhis.push_back(Phi);
2008 }
2009
2010 // Insert in the inner loop body, which computes
2011 // Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
2012 Builder.SetInsertPoint(InnerBody->getTerminator());
2013 // Load tiles of the operands.
2014 MatrixTy A =
2015 loadMatrix(LPtr, {}, false, LShape, TI.RowLoop.Index, TI.KLoop.Index,
2016 {TileSize, TileSize}, EltType, Builder);
2017 MatrixTy B =
2018 loadMatrix(RPtr, {}, false, RShape, TI.KLoop.Index, TI.ColumnLoop.Index,
2019 {TileSize, TileSize}, EltType, Builder);
2020 emitMatrixMultiply(TileResult, A, B, Builder, true, false,
2021 getFastMathFlags(MatMul));
2022 // Store result after the inner loop is done.
2023 Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator());
2024 storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
2025 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
2026 TI.RowLoop.Index, TI.ColumnLoop.Index, EltType, Builder);
2027
2028 for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
2029 ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.KLoop.Latch);
2030
2031 // Force unrolling of a few iterations of the inner loop, to make sure there
2032 // is enough work per iteration.
2033 // FIXME: The unroller should make this decision directly instead, but
2034 // currently the cost-model is not up to the task.
2035 unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
2036 addStringMetadataToLoop(LI->getLoopFor(TI.KLoop.Header),
2037 "llvm.loop.unroll.count", InnerLoopUnrollCount);
2038 }
2039
2040 void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
2041 StoreInst *Store,
2042 SmallPtrSetImpl<Instruction *> &FusedInsts) {
2044 "Tiling only supported for column-major matrixes at the moment!");
2045 if (!isFusionProfitable(MatMul))
2046 return;
2047
2048 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
2049 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
2050
2051 const unsigned R = LShape.NumRows;
2052 const unsigned C = RShape.NumColumns;
2053 const unsigned M = LShape.NumColumns;
2054 auto *EltType = cast<FixedVectorType>(MatMul->getType())->getElementType();
2055
2056 Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
2057 Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
2058 Value *CPtr = Store->getPointerOperand();
2059
2060 if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
2061 createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
2062 else {
2063 IRBuilder<> Builder(Store);
2064 for (unsigned J = 0; J < C; J += TileSize)
2065 for (unsigned I = 0; I < R; I += TileSize) {
2066 const unsigned TileR = std::min(R - I, unsigned(TileSize));
2067 const unsigned TileC = std::min(C - J, unsigned(TileSize));
2068 MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
2069
2070 for (unsigned K = 0; K < M; K += TileSize) {
2071 const unsigned TileM = std::min(M - K, unsigned(TileSize));
2072 MatrixTy A =
2073 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
2074 LShape, getIndex(APtr, I), getIndex(APtr, K),
2075 {TileR, TileM}, EltType, Builder);
2076 MatrixTy B =
2077 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
2078 RShape, getIndex(BPtr, K), getIndex(BPtr, J),
2079 {TileM, TileC}, EltType, Builder);
2080 emitMatrixMultiply(Res, A, B, Builder, true, false,
2081 getFastMathFlags(MatMul));
2082 }
2083 storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
2084 getIndex(CPtr, I), getIndex(CPtr, J), EltType, Builder);
2085 }
2086 }
2087
2088 // Mark eliminated instructions as fused and remove them.
2089 FusedInsts.insert(Store);
2090 FusedInsts.insert(MatMul);
2091 eraseFromParentAndRemoveFromShapeMap(Store);
2092 eraseFromParentAndRemoveFromShapeMap(MatMul);
2093 if (LoadOp0->use_empty()) {
2094 FusedInsts.insert(LoadOp0);
2095 eraseFromParentAndRemoveFromShapeMap(LoadOp0);
2096 }
2097 if (LoadOp1 != LoadOp0 && LoadOp1->use_empty()) {
2098 FusedInsts.insert(LoadOp1);
2099 eraseFromParentAndRemoveFromShapeMap(LoadOp1);
2100 }
2101 }
2102
2103 /// Try to lower matrix multiply chains by fusing operations.
2104 ///
2105 /// Call finalizeLowering on lowered instructions. Instructions that are
2106 /// completely eliminated by fusion are added to \p FusedInsts.
2107 void
2108 LowerMatrixMultiplyFused(CallInst *MatMul,
2109 SmallPtrSetImpl<Instruction *> &FusedInsts,
2110 SmallVector<IntrinsicInst *, 16> &LifetimeEnds) {
2111 if (!FuseMatrix || !DT)
2112 return;
2113
2114 assert(AA && LI && "Analyses should be available");
2115
2116 Value *A = MatMul->getArgOperand(0);
2117 Value *B = MatMul->getArgOperand(1);
2118
2119 // We can fold the transpose into the operand that is used to fetch scalars.
2120 Value *T;
2124 IRBuilder<> Builder(MatMul);
2125 auto *EltType =
2126 cast<FixedVectorType>(MatMul->getType())->getElementType();
2127 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
2128 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
2129 const unsigned R = LShape.NumRows;
2130 const unsigned M = LShape.NumColumns;
2131 const unsigned C = RShape.NumColumns;
2132
2133 MatrixTy MA;
2134 MatrixTy MB;
2135
2136 Value *Transpose;
2138 MA = getMatrix(A, ShapeInfo(R, M), Builder);
2139 MB = getMatrix(T, ShapeInfo(C, M), Builder);
2140 Transpose = B;
2141 } else {
2142 MA = getMatrix(T, ShapeInfo(R, M), Builder);
2143 MB = getMatrix(B, ShapeInfo(C, M), Builder);
2144 Transpose = A;
2145 }
2146
2147 // Initialize the output
2148 MatrixTy Result(R, C, EltType);
2149
2150 emitMatrixMultiply(Result, MA, MB, Builder, false, true,
2151 getFastMathFlags(MatMul));
2152
2153 FusedInsts.insert(MatMul);
2154 if (Transpose->hasOneUse()) {
2155 FusedInsts.insert(cast<Instruction>(Transpose));
2156 ToRemove.push_back(cast<Instruction>(Transpose));
2157 // TODO: add a fake entry for the folded instruction so that this is
2158 // included in the expression in the remark.
2159 Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
2160 }
2161 finalizeLowering(MatMul, Result, Builder);
2162 return;
2163 }
2164
2166 return;
2167
2168 // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering
2169 // since the single store user will be lowered as part of this.
2170 auto *LoadOp0 = dyn_cast<LoadInst>(A);
2171 auto *LoadOp1 = dyn_cast<LoadInst>(B);
2172 auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
2173 if (LoadOp0 && LoadOp1 && Store) {
2174 // The store address must dominate the MatMul instruction, otherwise
2175 // we create invalid IR.
2176 SetVector<Value *> WorkList;
2177 WorkList.insert(Store->getOperand(1));
2179 for (unsigned I = 0; I != WorkList.size(); ++I) {
2180 Value *Current = WorkList[I];
2181 auto *CurrI = dyn_cast<Instruction>(Current);
2182 if (!CurrI)
2183 continue;
2184 if (isa<PHINode>(CurrI))
2185 return;
2186 if (DT->dominates(CurrI, MatMul))
2187 continue;
2188 if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
2189 return;
2190 ToHoist.push_back(CurrI);
2191 WorkList.insert_range(CurrI->operands());
2192 }
2193
2194 sort(ToHoist, [this](Instruction *A, Instruction *B) {
2195 return DT->dominates(A, B);
2196 });
2197 for (Instruction *I : ToHoist)
2198 I->moveBefore(MatMul->getIterator());
2199
2200 // Deal with lifetime.end calls that might be between Load0/Load1 and the
2201 // store. To avoid introducing loads to dead objects (i.e. after the
2202 // lifetime has been termined by @llvm.lifetime.end), either sink them
2203 // after the store if in the same block, or remove the lifetime.end marker
2204 // otherwise. This might pessimize further optimizations, by extending the
2205 // lifetime of the object until the function returns, but should be
2206 // conservatively correct.
2207 MemoryLocation Load0Loc = MemoryLocation::get(LoadOp0);
2208 MemoryLocation Load1Loc = MemoryLocation::get(LoadOp1);
2209 BasicBlock *StoreParent = Store->getParent();
2210 bool FusableOpsInSameBlock = LoadOp0->getParent() == StoreParent &&
2211 LoadOp1->getParent() == StoreParent;
2212 for (unsigned Idx = 0; Idx != LifetimeEnds.size();) {
2213 IntrinsicInst *End = LifetimeEnds[Idx];
2214 auto Inc = make_scope_exit([&Idx]() { Idx++; });
2215 // If the lifetime.end is guaranteed to be before the loads or after the
2216 // store, it won't interfere with fusion.
2217 if (DT->dominates(End, LoadOp0) && DT->dominates(End, LoadOp1))
2218 continue;
2219 if (DT->dominates(Store, End))
2220 continue;
2221 // If all fusable ops are in the same block and the lifetime.end is in a
2222 // different block, it won't interfere with fusion.
2223 if (FusableOpsInSameBlock && End->getParent() != StoreParent)
2224 continue;
2225
2226 // If the loads don't alias the lifetime.end, it won't interfere with
2227 // fusion.
2228 MemoryLocation EndLoc = MemoryLocation::getForArgument(End, 0, nullptr);
2229 if (!EndLoc.Ptr)
2230 continue;
2231 if (AA->isNoAlias(Load0Loc, EndLoc) && AA->isNoAlias(Load1Loc, EndLoc))
2232 continue;
2233
2234 // If both lifetime.end and the store are in the same block, extend the
2235 // lifetime until after the store, so the new lifetime covers the loads
2236 // we introduce later.
2237 if (End->getParent() == StoreParent) {
2238 End->moveAfter(Store);
2239 continue;
2240 }
2241
2242 // Otherwise remove the conflicting lifetime.end marker.
2243 ToRemove.push_back(End);
2244 std::swap(LifetimeEnds[Idx], LifetimeEnds.back());
2245 LifetimeEnds.pop_back();
2246 Inc.release();
2247 }
2248
2249 emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
2250 return;
2251 }
2252 }
2253
2254 /// Lowers llvm.matrix.multiply.
2255 MatrixTy LowerMultiply(CallInst *MatMul, IRBuilder<> &Builder) {
2256 auto *EltType = cast<FixedVectorType>(MatMul->getType())->getElementType();
2257 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
2258 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
2259
2260 const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
2261 const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
2262 assert(Lhs.getElementType() == Rhs.getElementType() &&
2263 "Matrix multiply argument element types do not match.");
2264
2265 const unsigned R = LShape.NumRows;
2266 const unsigned C = RShape.NumColumns;
2267 assert(LShape.NumColumns == RShape.NumRows);
2268
2269 // Initialize the output
2270 MatrixTy Result(R, C, EltType);
2271 assert(Lhs.getElementType() == Result.getElementType() &&
2272 "Matrix multiply result element type does not match arguments.");
2273
2274 emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
2275 getFastMathFlags(MatMul));
2276 return Result;
2277 }
2278
2279 /// Lowers llvm.matrix.transpose.
2280 MatrixTy LowerTranspose(CallInst *Inst, IRBuilder<> &Builder) {
2281 MatrixTy Result;
2282 Value *InputVal = Inst->getArgOperand(0);
2283 FixedVectorType *VectorTy = cast<FixedVectorType>(InputVal->getType());
2284 ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
2285 MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
2286
2287 const unsigned NewNumVecs =
2288 InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
2289 const unsigned NewNumElts =
2290 InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
2291
2292 for (unsigned I = 0; I < NewNumVecs; ++I) {
2293 // Build a single result vector. First initialize it.
2294 Value *ResultVector = PoisonValue::get(
2295 FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
2296 // Go through the old elements and insert it into the resulting vector.
2297 for (auto J : enumerate(InputMatrix.vectors())) {
2298 Value *Elt = Builder.CreateExtractElement(J.value(), I);
2299 // Row and column indices are transposed.
2300 ResultVector =
2301 Builder.CreateInsertElement(ResultVector, Elt, J.index());
2302 }
2303 Result.addVector(ResultVector);
2304 }
2305
2306 // TODO: Improve estimate of operations needed for transposes. Currently we
2307 // just count the insertelement/extractelement instructions, but do not
2308 // account for later simplifications/combines.
2309 return Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
2310 .addNumExposedTransposes(1);
2311 }
2312
2313 /// Lower load instructions.
2314 MatrixTy VisitLoad(LoadInst *Inst, const ShapeInfo &SI, Value *Ptr,
2315 IRBuilder<> &Builder) {
2316 return LowerLoad(Inst, Ptr, Inst->getAlign(), getIndex(Ptr, SI.getStride()),
2317 Inst->isVolatile(), SI, Builder);
2318 }
2319
2320 MatrixTy VisitStore(StoreInst *Inst, const ShapeInfo &SI, Value *StoredVal,
2321 Value *Ptr, IRBuilder<> &Builder) {
2322 return LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
2323 getIndex(Ptr, SI.getStride()), Inst->isVolatile(), SI,
2324 Builder);
2325 }
2326
2327 MatrixTy VisitPHI(PHINode *Inst, const ShapeInfo &SI, IRBuilder<> &Builder) {
2328 auto BlockIP = Inst->getParent()->getFirstInsertionPt();
2329 Builder.SetInsertPoint(BlockIP);
2330 MatrixTy PhiM = getMatrix(Inst, SI, Builder);
2331
2332 for (auto [IncomingV, IncomingB] :
2333 llvm::zip_equal(Inst->incoming_values(), Inst->blocks())) {
2334 // getMatrix() may insert some instructions to help with reshaping. The
2335 // safest place for those is at the top of the block after the rest of the
2336 // PHI's. Even better, if we can put it in the incoming block.
2337 Builder.SetInsertPoint(BlockIP);
2338 if (auto *IncomingInst = dyn_cast<Instruction>(IncomingV))
2339 if (auto MaybeIP = IncomingInst->getInsertionPointAfterDef())
2340 Builder.SetInsertPoint(*MaybeIP);
2341
2342 MatrixTy OpM = getMatrix(IncomingV, SI, Builder);
2343
2344 for (unsigned VI = 0, VE = PhiM.getNumVectors(); VI != VE; ++VI) {
2345 PHINode *NewPHI = cast<PHINode>(PhiM.getVector(VI));
2346 NewPHI->addIncoming(OpM.getVector(VI), IncomingB);
2347 }
2348 }
2349
2350 // finalizeLowering() may also insert instructions in some cases. The safe
2351 // place for those is at the end of the initial block of PHIs.
2352 Builder.SetInsertPoint(BlockIP);
2353 return PhiM;
2354 }
2355
2356 /// Lower binary operators.
2357 MatrixTy VisitBinaryOperator(BinaryOperator *Inst, const ShapeInfo &SI,
2358 IRBuilder<> &Builder) {
2359 Value *Lhs = Inst->getOperand(0);
2360 Value *Rhs = Inst->getOperand(1);
2361
2362 MatrixTy Result;
2363 MatrixTy A = getMatrix(Lhs, SI, Builder);
2364 MatrixTy B = getMatrix(Rhs, SI, Builder);
2365 assert(A.isColumnMajor() == B.isColumnMajor() &&
2366 Result.isColumnMajor() == A.isColumnMajor() &&
2367 "operands must agree on matrix layout");
2368
2369 Builder.setFastMathFlags(getFastMathFlags(Inst));
2370
2371 for (auto [AV, BV] : llvm::zip_equal(A.vectors(), B.vectors()))
2372 Result.addVector(Builder.CreateBinOp(Inst->getOpcode(), AV, BV));
2373
2374 return Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
2375 Result.getNumVectors());
2376 }
2377
2378 /// Lower unary operators.
2379 MatrixTy VisitUnaryOperator(UnaryOperator *Inst, const ShapeInfo &SI,
2380 IRBuilder<> &Builder) {
2381 Value *Op = Inst->getOperand(0);
2382
2383 MatrixTy Result;
2384 MatrixTy M = getMatrix(Op, SI, Builder);
2385
2386 Builder.setFastMathFlags(getFastMathFlags(Inst));
2387
2388 // Helper to perform unary op on vectors.
2389 auto BuildVectorOp = [&Builder, Inst](Value *Op) {
2390 switch (Inst->getOpcode()) {
2391 case Instruction::FNeg:
2392 return Builder.CreateFNeg(Op);
2393 default:
2394 llvm_unreachable("Unsupported unary operator for matrix");
2395 }
2396 };
2397
2398 for (auto *Vector : M.vectors())
2399 Result.addVector(BuildVectorOp(Vector));
2400
2401 return Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
2402 Result.getNumVectors());
2403 }
2404
2405 /// Lower cast instructions.
2406 MatrixTy VisitCastInstruction(CastInst *Inst, const ShapeInfo &Shape,
2407 IRBuilder<> &Builder) {
2408 Value *Op = Inst->getOperand(0);
2409
2410 MatrixTy Result;
2411 MatrixTy M = getMatrix(Op, Shape, Builder);
2412
2413 Builder.setFastMathFlags(getFastMathFlags(Inst));
2414
2415 auto *OrigVTy = cast<VectorType>(Inst->getType());
2416 auto *NewVTy = VectorType::get(OrigVTy->getElementType(),
2417 ElementCount::getFixed(M.getStride()));
2418
2419 for (auto *Vector : M.vectors())
2420 Result.addVector(Builder.CreateCast(Inst->getOpcode(), Vector, NewVTy));
2421
2422 return Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
2423 Result.getNumVectors());
2424 }
2425
2426 /// Lower selects.
2427 MatrixTy VisitSelectInst(SelectInst *Inst, const ShapeInfo &Shape,
2428 IRBuilder<> &Builder) {
2429 Value *Cond = Inst->getOperand(0);
2430 Value *OpA = Inst->getOperand(1);
2431 Value *OpB = Inst->getOperand(2);
2432
2433 MatrixTy Result;
2434 MatrixTy A = getMatrix(OpA, Shape, Builder);
2435 MatrixTy B = getMatrix(OpB, Shape, Builder);
2436
2437 SmallVector<Value*> CondV;
2438 if (isa<FixedVectorType>(Cond->getType())) {
2439 MatrixTy C = getMatrix(Cond, Shape, Builder);
2440 llvm::copy(C.vectors(), std::back_inserter(CondV));
2441 } else {
2442 CondV.resize(A.getNumVectors());
2443 llvm::fill(CondV, Cond);
2444 }
2445
2446 for (auto [CV, AV, BV] : llvm::zip_equal(CondV, A.vectors(), B.vectors()))
2447 Result.addVector(Builder.CreateSelect(CV, AV, BV));
2448
2449 return Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
2450 Result.getNumVectors());
2451 }
2452
2453 /// Helper to linearize a matrix expression tree into a string. Currently
2454 /// matrix expressions are linarized by starting at an expression leaf and
2455 /// linearizing bottom up.
2456 struct ExprLinearizer {
2457 unsigned LengthToBreak = 100;
2458 std::string Str;
2459 raw_string_ostream Stream;
2460 unsigned LineLength = 0;
2461 const DataLayout &DL;
2462
2463 /// Mapping from instructions to matrixes. It is used to identify
2464 /// matrix instructions.
2465 const MapVector<Value *, MatrixTy> &Inst2Matrix;
2466
2467 /// Mapping from values to the leaves of all expressions that the value is
2468 /// part of.
2469 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
2470
2471 /// Set of matrix expressions in the scope of a given DISubprogram.
2472 const SmallSetVector<Value *, 32> &ExprsInSubprogram;
2473
2474 /// Leaf node of the expression to linearize.
2475 Value *Leaf;
2476
2477 /// Used to keep track of sub-expressions that get reused while linearizing
2478 /// the expression. Re-used sub-expressions are marked as (reused).
2479 SmallPtrSet<Value *, 8> ReusedExprs;
2480
2481 ExprLinearizer(const DataLayout &DL,
2482 const MapVector<Value *, MatrixTy> &Inst2Matrix,
2483 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2484 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2485 Value *Leaf)
2486 : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
2487 ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
2488
2489 void indent(unsigned N) {
2490 LineLength += N;
2491 for (unsigned i = 0; i < N; i++)
2492 Stream << " ";
2493 }
2494
2495 void lineBreak() {
2496 Stream << "\n";
2497 LineLength = 0;
2498 }
2499
2500 void maybeIndent(unsigned Indent) {
2501 if (LineLength >= LengthToBreak)
2502 lineBreak();
2503
2504 if (LineLength == 0)
2505 indent(Indent);
2506 }
2507
2508 void write(StringRef S) {
2509 LineLength += S.size();
2510 Stream << S;
2511 }
2512
2513 Value *getUnderlyingObjectThroughLoads(Value *V) {
2514 if (Value *Ptr = getPointerOperand(V))
2515 return getUnderlyingObjectThroughLoads(Ptr);
2516 else if (V->getType()->isPointerTy())
2517 return getUnderlyingObject(V);
2518 return V;
2519 }
2520
2521 /// Returns true if \p V is a matrix value in the given subprogram.
2522 bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
2523
2524 /// If \p V is a matrix value, print its shape as NumRows x NumColumns to
2525 /// \p SS.
2526 void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
2527 auto M = Inst2Matrix.find(V);
2528 if (M == Inst2Matrix.end())
2529 SS << "unknown";
2530 else {
2531 SS << M->second.getNumRows();
2532 SS << "x";
2533 SS << M->second.getNumColumns();
2534 }
2535 }
2536
2537 /// Write the called function name. Handles calls to llvm.matrix.*
2538 /// specially: we write the name, followed by the dimensions of the input
2539 /// matrixes, followed by the scalar type name.
2540 void writeFnName(CallInst *CI) {
2541 if (!CI->getCalledFunction())
2542 write("<no called fn>");
2543 else {
2544 StringRef Name = CI->getCalledFunction()->getName();
2545 if (!Name.starts_with("llvm.matrix")) {
2546 write(Name);
2547 return;
2548 }
2549 auto *II = cast<IntrinsicInst>(CI);
2550 write(Intrinsic::getBaseName(II->getIntrinsicID())
2551 .drop_front(StringRef("llvm.matrix.").size()));
2552 write(".");
2553 std::string Tmp;
2554 raw_string_ostream SS(Tmp);
2555
2556 switch (II->getIntrinsicID()) {
2557 case Intrinsic::matrix_multiply:
2558 prettyPrintMatrixType(II->getOperand(0), SS);
2559 SS << ".";
2560 prettyPrintMatrixType(II->getOperand(1), SS);
2561 SS << "." << *II->getType()->getScalarType();
2562 break;
2563 case Intrinsic::matrix_transpose:
2564 prettyPrintMatrixType(II->getOperand(0), SS);
2565 SS << "." << *II->getType()->getScalarType();
2566 break;
2567 case Intrinsic::matrix_column_major_load:
2568 prettyPrintMatrixType(II, SS);
2569 SS << "." << *II->getType()->getScalarType();
2570 break;
2571 case Intrinsic::matrix_column_major_store:
2572 prettyPrintMatrixType(II->getOperand(0), SS);
2573 SS << "." << *II->getOperand(0)->getType()->getScalarType();
2574 break;
2575 default:
2576 llvm_unreachable("Unhandled case");
2577 }
2578 write(Tmp);
2579 }
2580 }
2581
2582 unsigned getNumShapeArgs(CallInst *CI) const {
2583 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2584 switch (II->getIntrinsicID()) {
2585 case Intrinsic::matrix_multiply:
2586 return 3;
2587 case Intrinsic::matrix_transpose:
2588 return 2;
2589 case Intrinsic::matrix_column_major_load:
2590 case Intrinsic::matrix_column_major_store:
2591 return 3;
2592 default:
2593 return 0;
2594 }
2595 }
2596 return 0;
2597 }
2598
2599 /// Special printing for values: for pointers, we print if they refer to an
2600 /// (function) external address or a stack address, for other values we
2601 /// either print the constant or "scalar"/"matrix" for other values.
2602 void write(Value *V) {
2603 V = getUnderlyingObjectThroughLoads(V);
2604 if (V->getType()->isPointerTy()) {
2605 if (isa<AllocaInst>(V)) {
2606 Stream << "stack addr";
2607 LineLength += StringRef("stack addr").size();
2608 } else {
2609 Stream << "addr";
2610 LineLength += StringRef("addr").size();
2611 }
2612 if (!V->getName().empty()) {
2613 Stream << " %" << V->getName() << "";
2614 LineLength += V->getName().size() + 2;
2615 }
2616 return;
2617 }
2618
2619 std::string Tmp;
2620 raw_string_ostream TmpStream(Tmp);
2621
2622 if (auto *CI = dyn_cast<ConstantInt>(V))
2623 TmpStream << CI->getValue();
2624 else if (isa<Constant>(V))
2625 TmpStream << "constant";
2626 else {
2627 if (isMatrix(V))
2628 TmpStream << "matrix";
2629 else
2630 TmpStream << "scalar";
2631 }
2632 Tmp = std::string(StringRef(Tmp).trim());
2633 LineLength += Tmp.size();
2634 Stream << Tmp;
2635 }
2636
2637 /// Linearize expression \p Expr starting at an indentation of \p Indent.
2638 /// Expressions that are re-used multiple times are prefixed with (reused)
2639 /// at the re-used root instruction.
2640 void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
2641 bool ParentShared) {
2642 auto *I = cast<Instruction>(Expr);
2643 maybeIndent(Indent);
2644 SmallVector<Value *, 8> Ops;
2645
2646 // Is Expr shared with other expression leaves?
2647 bool ExprShared = false;
2648
2649 // Deal with shared subtrees. Mark them as shared, if required.
2650 if (!ParentShared) {
2651 auto SI = Shared.find(Expr);
2652 assert(SI != Shared.end() && SI->second.count(Leaf));
2653
2654 for (Value *S : SI->second) {
2655 if (S == Leaf)
2656 continue;
2657 DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
2658 write("shared with remark at line " + std::to_string(DL.getLine()) +
2659 " column " + std::to_string(DL.getCol()) + " (");
2660 }
2661 ExprShared = SI->second.size() > 1;
2662 }
2663
2664 bool Reused = !ReusedExprs.insert(Expr).second;
2665 if (Reused && !ParentReused)
2666 write("(reused) ");
2667
2668 if (auto *CI = dyn_cast<CallInst>(I)) {
2669 writeFnName(CI);
2670
2671 Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
2672 } else if (isa<BitCastInst>(Expr)) {
2673 // Special case bitcasts, which are used to materialize matrixes from
2674 // non-matrix ops.
2675 write("matrix");
2676 return;
2677 } else {
2678 Ops.append(I->value_op_begin(), I->value_op_end());
2679 write(I->getOpcodeName());
2680 }
2681
2682 write("(");
2683
2684 unsigned NumOpsToBreak = 1;
2686 NumOpsToBreak = 2;
2687
2688 for (Value *Op : Ops) {
2689 if (Ops.size() > NumOpsToBreak)
2690 lineBreak();
2691
2692 maybeIndent(Indent + 1);
2693 if (isMatrix(Op))
2694 linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2695 else
2696 write(Op);
2697 if (Op != Ops.back())
2698 write(", ");
2699 }
2700
2701 write(")");
2702 }
2703
2704 const std::string &getResult() {
2705 return Str;
2706 }
2707 };
2708
2709 /// Generate remarks for matrix operations in a function. To generate remarks
2710 /// for matrix expressions, the following approach is used:
2711 /// 1. Use the inlined-at debug information to group matrix operations to the
2712 /// DISubprograms they are contained in.
2713 /// 2. Collect leaves of matrix expressions (done in
2714 /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2715 // mapping. Leaves are lowered matrix instructions without other matrix
2716 // users (like stores) in the current subprogram.
2717 /// 3. For each leaf, create a remark containing a linearizied version of the
2718 /// matrix expression. The expression is linearized by a recursive
2719 /// bottom-up traversal of the matrix operands, starting at a leaf. Note
2720 /// that multiple leaves can share sub-expressions. Shared subexpressions
2721 /// are explicitly marked as shared().
2722 struct RemarkGenerator {
2723 const MapVector<Value *, MatrixTy> &Inst2Matrix;
2724 OptimizationRemarkEmitter &ORE;
2725 Function &Func;
2726 const DataLayout &DL;
2727
2728 RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2729 OptimizationRemarkEmitter &ORE, Function &Func)
2730 : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2731 DL(Func.getDataLayout()) {}
2732
2733 /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
2734 /// instructions in Inst2Matrix returning void or without any users in
2735 /// \p ExprsInSubprogram. Currently that should only include stores.
2737 getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2739 for (auto *Expr : ExprsInSubprogram)
2740 if (Expr->getType()->isVoidTy() ||
2741 !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2742 return ExprsInSubprogram.count(U);
2743 }))
2744 Leaves.push_back(Expr);
2745 return Leaves;
2746 }
2747
2748 /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2749 /// to all visited expressions in \p Shared. Limit the matrix operations to
2750 /// the ones in \p ExprsInSubprogram.
2751 void collectSharedInfo(Value *Leaf, Value *V,
2752 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2753 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
2754
2755 if (!ExprsInSubprogram.count(V))
2756 return;
2757
2758 Shared[V].insert(Leaf);
2759
2760 for (Value *Op : cast<Instruction>(V)->operand_values())
2761 collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
2762 }
2763
2764 /// Calculate the number of exclusive and shared op counts for expression
2765 /// starting at \p V. Expressions used multiple times are counted once.
2766 /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
2767 std::pair<OpInfoTy, OpInfoTy>
2768 sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2769 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2770 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2771 if (!ExprsInSubprogram.count(Root))
2772 return {};
2773
2774 // Already counted this expression. Stop.
2775 if (!ReusedExprs.insert(Root).second)
2776 return {};
2777
2778 OpInfoTy SharedCount;
2779 OpInfoTy Count;
2780
2781 auto I = Shared.find(Root);
2782 auto CM = Inst2Matrix.find(Root);
2783 if (I->second.size() == 1)
2784 Count = CM->second.getOpInfo();
2785 else
2786 SharedCount = CM->second.getOpInfo();
2787
2788 for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2789 auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
2790 Count += C.first;
2791 SharedCount += C.second;
2792 }
2793 return {Count, SharedCount};
2794 }
2795
2796 void emitRemarks() {
2797 if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2798 return;
2799
2800 // Map matrix operations to their containting subprograms, by traversing
2801 // the inlinedAt chain. If the function does not have a DISubprogram, we
2802 // only map them to the containing function.
2803 MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
2804 for (const auto &KV : Inst2Matrix) {
2805 if (Func.getSubprogram()) {
2806 auto *I = cast<Instruction>(KV.first);
2807 DILocation *Context = I->getDebugLoc();
2808 while (Context) {
2809 Subprog2Exprs[getSubprogram(Context->getScope())].push_back(
2810 KV.first);
2811 Context = DebugLoc(Context).getInlinedAt();
2812 }
2813 } else {
2814 Subprog2Exprs[nullptr].push_back(KV.first);
2815 }
2816 }
2817 for (auto &KV : Subprog2Exprs) {
2818 SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2819 KV.second.end());
2820 auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2821
2822 DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
2823 for (Value *Leaf : Leaves)
2824 collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
2825
2826 // Generate remarks for each leaf.
2827 for (auto *L : Leaves) {
2828
2829 DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2830 DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2831 while (Context) {
2832 if (getSubprogram(Context->getScope()) == KV.first) {
2833 Loc = Context;
2834 break;
2835 }
2836 Context = DebugLoc(Context).getInlinedAt();
2837 }
2838
2839 SmallPtrSet<Value *, 8> ReusedExprs;
2840 OpInfoTy Counts, SharedCounts;
2841 std::tie(Counts, SharedCounts) =
2842 sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
2843
2844 OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2846
2847 Rem << "Lowered with ";
2848 Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2849 << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2850 << ore::NV("NumComputeOps", Counts.NumComputeOps)
2851 << " compute ops, "
2852 << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2853 << " exposed transposes";
2854
2855 if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2856 SharedCounts.NumComputeOps > 0) {
2857 Rem << ",\nadditionally "
2858 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2859 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2860 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2861 << " compute ops"
2862 << " are shared with other expressions";
2863 }
2864
2865 Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2866 ORE.emit(Rem);
2867 }
2868 }
2869 }
2870
2871 std::string
2872 linearize(Value *L,
2873 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2874 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2875 const DataLayout &DL) {
2876 ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2877 Lin.linearizeExpr(L, 0, false, false);
2878 return Lin.getResult();
2879 }
2880 };
2881};
2882} // namespace
2883
2886 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2887
2888 LowerMatrixIntrinsics LMT(F, TTI, Minimal ? nullptr : &AM);
2889 if (LMT.Visit()) {
2891 if (!Minimal) {
2892 PA.preserve<LoopAnalysis>();
2894 }
2895 return PA;
2896 }
2897 return PreservedAnalyses::all();
2898}
2899
2901 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
2903 OS, MapClassName2PassName);
2904 OS << '<';
2905 if (Minimal)
2906 OS << "minimal";
2907 OS << '>';
2908}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
static const Function * getParent(const Value *V)
BitTracker BT
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:638
Hexagon Common GEP
static Type * getIndexType(Value *In)
hexagon Hexagon specific predictive commoning for HVX vectors
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv users
Definition IVUsers.cpp:48
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
Live Register Matrix
static DISubprogram * getSubprogram(DIScope *Scope)
Helper function to either return Scope, if it is a subprogram or the attached subprogram for a local ...
static cl::opt< bool > ForceFusion("force-fuse-matrix", cl::init(false), cl::Hidden, cl::desc("Force matrix instruction fusion even if not profitable."))
static auto m_AnyAdd(const LTy &L, const RTy &R)
Match any add operation (fp or integer).
static cl::opt< bool > VerifyShapeInfo("verify-matrix-shapes", cl::Hidden, cl::desc("Enable/disable matrix shape verification."), cl::init(false))
static bool isShapePreserving(Value *V)
static auto m_AnyMul(const LTy &L, const RTy &R)
Match any mul operation (fp or integer).
static cl::opt< unsigned > SplitMatmulRemainderOverThreshold("matrix-split-matmul-remainder-over-threshold", cl::Hidden, cl::desc("Illegal remainder vectors over this size in bits should be split " "in the inner loop of matmul"), cl::init(0))
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
static cl::opt< bool > TileUseLoops("fuse-matrix-use-loops", cl::init(false), cl::Hidden, cl::desc("Generate loop nest for tiling."))
static cl::opt< bool > FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, cl::desc("Enable/disable fusing matrix instructions."))
static cl::opt< bool > AllowContractEnabled("matrix-allow-contract", cl::init(false), cl::Hidden, cl::desc("Allow the use of FMAs if available and profitable. This may " "result in different results, due to less rounding error."))
static std::optional< ShapeInfo > computeShapeInfoForInst(Instruction *I, const DenseMap< Value *, ShapeInfo > &ShapeMap)
Return the ShapeInfo for the result of I, it it can be determined.
static cl::opt< bool > PrintAfterTransposeOpt("matrix-print-after-transpose-opt", cl::init(false))
#define DEBUG_TYPE
static iterator_range< Use * > getShapedOperandsForInst(Instruction *I)
Return an iterator over the operands of I that should share shape information with I.
static Value * computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, unsigned NumElements, Type *EltType, IRBuilder<> &Builder)
static cl::opt< unsigned > TileSize("fuse-matrix-tile-size", cl::init(4), cl::Hidden, cl::desc("Tile size for matrix instruction fusion using square-shaped tiles."))
static cl::opt< MatrixLayoutTy > MatrixLayout("matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), cl::desc("Sets the default matrix layout"), cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", "Use column-major layout"), clEnumValN(MatrixLayoutTy::RowMajor, "row-major", "Use row-major layout")))
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define T
#define T1
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
static Value * extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, unsigned EndIndex, const Twine &Name)
Definition SROA.cpp:2621
static Value * insertVector(IRBuilderTy &IRB, Value *Old, Value *V, unsigned BeginIndex, const Twine &Name)
Definition SROA.cpp:2643
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
static const int BlockSize
Definition TarWriter.cpp:33
This pass exposes codegen information to IR-level passes.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static SDValue LowerStore(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
static SDValue LowerLoad(SDValue Op, const X86Subtarget &Subtarget, SelectionDAG &DAG)
Value * RHS
Value * LHS
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
reverse_iterator rbegin()
Definition BasicBlock.h:475
InstListType::reverse_iterator reverse_iterator
Definition BasicBlock.h:172
reverse_iterator rend()
Definition BasicBlock.h:477
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
MaybeAlign getParamAlign(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition InstrTypes.h:610
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
LLVM_ABI DISubprogram * getSubprogram() const
Get the subprogram for this scope.
Base class for scope-like contexts.
Subprogram description. Uses SubclassData1.
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
void setAllowContract(bool B=true)
Definition FMF.h:90
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
bool allowContract() const
Definition FMF.h:69
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition Function.h:244
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
LLVM_ABI CallInst * CreateFAddReduce(Value *Acc, Value *Src)
Create a sequential vector fadd reduction intrinsic of the source vector.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2348
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2579
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Definition IRBuilder.h:1833
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2567
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Definition IRBuilder.h:1867
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition IRBuilder.h:2103
CallInst * CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, uint64_t Size, bool isVolatile=false, const AAMDNodes &AAInfo=AAMDNodes())
Create and insert a memcpy between the specified pointers.
Definition IRBuilder.h:687
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition IRBuilder.h:1613
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateAddReduce(Value *Src)
Create a vector int add reduction intrinsic of the source vector.
IntegerType * getIntPtrTy(const DataLayout &DL, unsigned AddrSpace=0)
Fetch the type of an integer with size at least as big as that of a pointer in the given address spac...
Definition IRBuilder.h:611
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
Definition IRBuilder.h:2241
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:1926
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition IRBuilder.h:2497
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Definition IRBuilder.h:533
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Definition IRBuilder.h:1197
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition IRBuilder.h:1850
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition IRBuilder.h:2601
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1403
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2197
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
StoreInst * CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, bool isVolatile=false)
Definition IRBuilder.h:1886
Value * CreateFMul(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition IRBuilder.h:1651
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1793
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
LLVM_ABI void moveAfter(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
TypeSize getValue() const
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
CallInst * CreateMatrixTranspose(Value *Matrix, unsigned Rows, unsigned Columns, const Twine &Name="")
Create a llvm.matrix.transpose call, transposing Matrix with Rows rows and Columns columns.
CallInst * CreateMatrixMultiply(Value *LHS, Value *RHS, unsigned LHSRows, unsigned LHSColumns, unsigned RHSColumns, const Twine &Name="")
Create a llvm.matrix.multiply call, multiplying matrixes LHS and RHS.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
const Value * Ptr
The address of the start of the location.
static LLVM_ABI MemoryLocation getForArgument(const CallBase *Call, unsigned ArgIdx, const TargetLibraryInfo *TLI)
Return a location representing a particular argument of a call.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
iterator_range< const_block_iterator > blocks() const
op_range incoming_values()
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:102
void insert_range(Range &&R)
Definition SetVector.h:175
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:261
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:150
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void resize(size_type N)
void push_back(const T &Elt)
Align getAlign() const
bool isVolatile() const
Return true if this is a store to a volatile memory location.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
StringRef drop_front(size_t N=1) const
Return a StringRef equal to 'this' but with the first N elements dropped.
Definition StringRef.h:611
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
Analysis pass providing the TargetTransformInfo.
@ TCK_RecipThroughput
Reciprocal throughput.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
UnaryOps getOpcode() const
Definition InstrTypes.h:154
Value * getOperand(unsigned i) const
Definition User.h:232
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
user_iterator user_begin()
Definition Value.h:402
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
bool use_empty() const
Definition Value.h:346
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
TwoOps_match< ValueOpTy, PointerOpTy, Instruction::Store > m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp)
Matches StoreInst.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
ElementType
The element type of an SRV or UAV resource.
Definition DXILABI.h:60
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
Definition STLExtras.h:839
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
auto successors(const MachineBasicBlock *BB)
bool operator!=(uint64_t V1, const APInt &V2)
Definition APInt.h:2113
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI void addStringMetadataToLoop(Loop *TheLoop, const char *MDString, unsigned V=0)
Set input string into loop metadata by keeping other values intact.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI Error write(MCStreamer &Out, ArrayRef< std::string > Inputs, OnCuIndexOverflow OverflowOptValue)
Definition DWP.cpp:622
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
TargetTransformInfo TTI
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
@ Mul
Product of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1835
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
LLVM_ABI llvm::SmallVector< int, 16 > createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs)
Create a sequential shuffle mask.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70