41#include "llvm/IR/IntrinsicsAMDGPU.h"
42#include "llvm/IR/IntrinsicsR600.h"
53#define DEBUG_TYPE "si-lower"
59 cl::desc(
"Do not align and prefetch loops"),
63 "amdgpu-use-divergent-register-indexing",
cl::Hidden,
64 cl::desc(
"Use indirect register addressing for divergent indexes"),
78 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
79 for (
unsigned Reg = 0;
Reg < NumSGPRs; ++
Reg) {
81 return AMDGPU::SGPR0 +
Reg;
153 if (Subtarget->has16BitInsts()) {
154 if (Subtarget->useRealTrue16Insts()) {
196 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
197 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
198 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
199 MVT::i1, MVT::v32i32},
203 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
204 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
205 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
206 MVT::i1, MVT::v32i32},
213 ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT,
214 ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI,
215 ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2,
216 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10,
217 ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT,
275 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1},
Expand);
282 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
283 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
284 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
287 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
288 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32,
289 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
293 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
294 MVT::v3i16, MVT::v4i16, MVT::Other},
299 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64},
Expand);
315 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32,
316 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32,
317 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16,
318 MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32,
319 MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
320 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
321 MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32,
322 MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
354 for (
MVT Vec64 : {MVT::v2i64, MVT::v2f64}) {
368 for (
MVT Vec64 : {MVT::v3i64, MVT::v3f64}) {
382 for (
MVT Vec64 : {MVT::v4i64, MVT::v4f64}) {
396 for (
MVT Vec64 : {MVT::v8i64, MVT::v8f64}) {
410 for (
MVT Vec64 : {MVT::v16i64, MVT::v16f64}) {
425 {MVT::v4i32, MVT::v4f32, MVT::v8i32, MVT::v8f32,
426 MVT::v16i32, MVT::v16f32, MVT::v32i32, MVT::v32f32},
429 if (Subtarget->hasPkMovB32()) {
450 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8,
451 MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16},
456 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32},
Custom);
460 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
461 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32,
462 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32,
463 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
487 if (Subtarget->hasSMemRealTime() ||
492 if (Subtarget->has16BitInsts()) {
499 if (Subtarget->hasMadMacF32Insts())
502 if (!Subtarget->hasBFI())
506 if (!Subtarget->hasBCNT(32))
509 if (!Subtarget->hasBCNT(64))
512 if (Subtarget->hasFFBH())
515 if (Subtarget->hasFFBL())
526 if (Subtarget->hasBFE())
530 if (Subtarget->hasIntClamp())
533 if (Subtarget->hasAddNoCarry())
538 {ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
539 {MVT::f32, MVT::f64},
Custom);
545 {MVT::f32, MVT::f64},
Legal);
547 if (Subtarget->haveRoundOpsF64())
570 if (Subtarget->has16BitInsts()) {
619 ISD::FSIN, ISD::FROUND},
623 if (Subtarget->hasBF16TransInsts())
642 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16,
643 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16,
644 MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) {
777 {MVT::v2f16, MVT::v2bf16, MVT::v4f16, MVT::v4bf16,
778 MVT::v8f16, MVT::v8bf16, MVT::v16f16, MVT::v16bf16,
779 MVT::v32f16, MVT::v32bf16},
783 {ISD::FMAXNUM, ISD::FMINNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
789 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
793 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
797 {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
798 MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
806 if (Subtarget->hasVOP3PInsts()) {
817 {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
Custom);
820 {MVT::v4f16, MVT::v4i16, MVT::v4bf16, MVT::v8f16,
821 MVT::v8i16, MVT::v8bf16, MVT::v16f16, MVT::v16i16,
822 MVT::v16bf16, MVT::v32f16, MVT::v32i16, MVT::v32bf16},
825 for (
MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16})
833 for (
MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16})
839 {ISD::FMAXNUM, ISD::FMINNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
840 {MVT::v2f16, MVT::v4f16},
Custom);
846 if (Subtarget->hasBF16PackedInsts()) {
847 for (
MVT VT : {MVT::v4bf16, MVT::v8bf16, MVT::v16bf16, MVT::v32bf16})
853 if (Subtarget->hasPackedFP32Ops()) {
857 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
864 if (Subtarget->has16BitInsts()) {
877 {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8,
878 MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
879 MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16,
880 MVT::v32f16, MVT::v32bf16},
885 if (Subtarget->hasVectorMulU64())
887 else if (Subtarget->hasScalarSMulU64())
890 if (Subtarget->hasMad64_32())
893 if (Subtarget->hasSafeSmemPrefetch() || Subtarget->hasVmemPrefInsts())
896 if (Subtarget->hasIEEEMinimumMaximumInsts()) {
898 {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16},
Legal);
901 if (Subtarget->hasMinimum3Maximum3F32())
904 if (Subtarget->hasMinimum3Maximum3PKF16()) {
908 if (!Subtarget->hasMinimum3Maximum3F16())
913 if (Subtarget->hasVOP3PInsts()) {
916 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
920 if (Subtarget->hasIntMinMax64())
925 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
926 MVT::bf16, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::i128,
931 {MVT::v2f16, MVT::v2i16, MVT::v2bf16, MVT::v3f16,
932 MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v4bf16,
933 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::Other, MVT::f16,
934 MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
938 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v2bf16,
939 MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16,
940 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
941 MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
956 if (Subtarget->hasBF16ConversionInsts()) {
961 if (Subtarget->hasBF16PackedInsts()) {
967 if (Subtarget->hasBF16TransInsts()) {
971 if (Subtarget->hasCvtPkF16F32Inst()) {
973 {MVT::v2f16, MVT::v4f16, MVT::v8f16, MVT::v16f16},
1023 if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16())
1032 ISD::ATOMIC_CMP_SWAP,
1033 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
1035 ISD::ATOMIC_LOAD_ADD,
1036 ISD::ATOMIC_LOAD_SUB,
1037 ISD::ATOMIC_LOAD_AND,
1038 ISD::ATOMIC_LOAD_OR,
1039 ISD::ATOMIC_LOAD_XOR,
1040 ISD::ATOMIC_LOAD_NAND,
1041 ISD::ATOMIC_LOAD_MIN,
1042 ISD::ATOMIC_LOAD_MAX,
1043 ISD::ATOMIC_LOAD_UMIN,
1044 ISD::ATOMIC_LOAD_UMAX,
1045 ISD::ATOMIC_LOAD_FADD,
1046 ISD::ATOMIC_LOAD_FMIN,
1047 ISD::ATOMIC_LOAD_FMAX,
1048 ISD::ATOMIC_LOAD_UINC_WRAP,
1049 ISD::ATOMIC_LOAD_UDEC_WRAP,
1062 static const MCPhysReg RCRegs[] = {AMDGPU::MODE};
1075 EVT DestVT,
EVT SrcVT)
const {
1077 ((((Opcode ==
ISD::FMAD && Subtarget->hasMadMixInsts()) ||
1078 (Opcode ==
ISD::FMA && Subtarget->hasFmaMixInsts())) &&
1080 (Opcode ==
ISD::FMA && Subtarget->hasFmaMixBF16Insts() &&
1087 LLT DestTy,
LLT SrcTy)
const {
1088 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
1089 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
1091 SrcTy.getScalarSizeInBits() == 16 &&
1112 if (Subtarget->has16BitInsts()) {
1115 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
1117 return VT.
isInteger() ? MVT::i32 : MVT::f32;
1121 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
1143 if (
Size == 16 && Subtarget->has16BitInsts())
1144 return (NumElts + 1) / 2;
1150 return NumElts * ((
Size + 31) / 32);
1159 unsigned &NumIntermediates,
MVT &RegisterVT)
const {
1167 if (
Size == 16 && Subtarget->has16BitInsts()) {
1168 if (ScalarVT == MVT::bf16) {
1169 RegisterVT = MVT::i32;
1170 IntermediateVT = MVT::v2bf16;
1172 RegisterVT = VT.
isInteger() ? MVT::v2i16 : MVT::v2f16;
1173 IntermediateVT = RegisterVT;
1175 NumIntermediates = (NumElts + 1) / 2;
1176 return NumIntermediates;
1181 IntermediateVT = RegisterVT;
1182 NumIntermediates = NumElts;
1183 return NumIntermediates;
1188 RegisterVT = MVT::i16;
1189 IntermediateVT = ScalarVT;
1190 NumIntermediates = NumElts;
1191 return NumIntermediates;
1195 RegisterVT = MVT::i32;
1196 IntermediateVT = ScalarVT;
1197 NumIntermediates = NumElts;
1198 return NumIntermediates;
1202 RegisterVT = MVT::i32;
1203 IntermediateVT = RegisterVT;
1204 NumIntermediates = NumElts * ((
Size + 31) / 32);
1205 return NumIntermediates;
1210 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1215 unsigned MaxNumLanes) {
1216 assert(MaxNumLanes != 0);
1220 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
1231 unsigned MaxNumLanes) {
1237 assert(ST->getNumContainedTypes() == 2 &&
1238 ST->getContainedType(1)->isIntegerTy(32));
1252 return MVT::amdgpuBufferFatPointer;
1254 DL.getPointerSizeInBits(AS) == 192)
1255 return MVT::amdgpuBufferStridedPointer;
1264 DL.getPointerSizeInBits(AS) == 160) ||
1266 DL.getPointerSizeInBits(AS) == 192))
1273 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1274 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1275 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1277 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1278 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1279 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1280 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
1281 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
1283 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1284 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1285 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1286 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
1287 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
1289 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1290 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128:
1291 case Intrinsic::amdgcn_global_store_async_from_lds_b128:
1292 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
1293 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B:
1332 unsigned IntrID)
const {
1334 if (CI.
hasMetadata(LLVMContext::MD_invariant_load))
1352 if (RsrcIntr->IsImage) {
1367 Info.ptrVal = RsrcArg;
1370 bool IsSPrefetch = IntrID == Intrinsic::amdgcn_s_buffer_prefetch_data;
1379 if (RsrcIntr->IsImage) {
1380 unsigned MaxNumLanes = 4;
1395 std::numeric_limits<unsigned>::max());
1405 if (RsrcIntr->IsImage) {
1426 if ((RsrcIntr->IsImage && BaseOpcode->
NoReturn) || IsSPrefetch) {
1428 Info.memVT = MVT::i32;
1435 case Intrinsic::amdgcn_raw_buffer_load_lds:
1436 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
1437 case Intrinsic::amdgcn_struct_buffer_load_lds:
1438 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
1444 case Intrinsic::amdgcn_raw_atomic_buffer_load:
1445 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
1446 case Intrinsic::amdgcn_struct_atomic_buffer_load:
1447 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
1450 std::numeric_limits<unsigned>::max());
1460 case Intrinsic::amdgcn_ds_ordered_add:
1461 case Intrinsic::amdgcn_ds_ordered_swap: {
1474 case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
1475 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
1478 Info.ptrVal =
nullptr;
1483 case Intrinsic::amdgcn_ds_append:
1484 case Intrinsic::amdgcn_ds_consume: {
1497 case Intrinsic::amdgcn_ds_atomic_async_barrier_arrive_b64:
1498 case Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64: {
1499 Info.opc = (IntrID == Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64)
1504 Info.memVT = MVT::i64;
1510 case Intrinsic::amdgcn_global_atomic_csub: {
1519 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
1520 case Intrinsic::amdgcn_image_bvh_intersect_ray:
1521 case Intrinsic::amdgcn_image_bvh8_intersect_ray: {
1524 MVT::getVT(IntrID == Intrinsic::amdgcn_image_bvh_intersect_ray
1527 ->getElementType(0));
1535 case Intrinsic::amdgcn_global_atomic_fmin_num:
1536 case Intrinsic::amdgcn_global_atomic_fmax_num:
1537 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1538 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1539 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1540 case Intrinsic::amdgcn_atomic_cond_sub_u32: {
1550 case Intrinsic::amdgcn_flat_load_monitor_b32:
1551 case Intrinsic::amdgcn_flat_load_monitor_b64:
1552 case Intrinsic::amdgcn_flat_load_monitor_b128:
1553 case Intrinsic::amdgcn_global_load_monitor_b32:
1554 case Intrinsic::amdgcn_global_load_monitor_b64:
1555 case Intrinsic::amdgcn_global_load_monitor_b128:
1556 case Intrinsic::amdgcn_cluster_load_b32:
1557 case Intrinsic::amdgcn_cluster_load_b64:
1558 case Intrinsic::amdgcn_cluster_load_b128:
1559 case Intrinsic::amdgcn_ds_load_tr6_b96:
1560 case Intrinsic::amdgcn_ds_load_tr4_b64:
1561 case Intrinsic::amdgcn_ds_load_tr8_b64:
1562 case Intrinsic::amdgcn_ds_load_tr16_b128:
1563 case Intrinsic::amdgcn_global_load_tr6_b96:
1564 case Intrinsic::amdgcn_global_load_tr4_b64:
1565 case Intrinsic::amdgcn_global_load_tr_b64:
1566 case Intrinsic::amdgcn_global_load_tr_b128:
1567 case Intrinsic::amdgcn_ds_read_tr4_b64:
1568 case Intrinsic::amdgcn_ds_read_tr6_b96:
1569 case Intrinsic::amdgcn_ds_read_tr8_b64:
1570 case Intrinsic::amdgcn_ds_read_tr16_b64: {
1578 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
1579 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
1580 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B: {
1588 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
1589 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
1590 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
1598 case Intrinsic::amdgcn_ds_gws_init:
1599 case Intrinsic::amdgcn_ds_gws_barrier:
1600 case Intrinsic::amdgcn_ds_gws_sema_v:
1601 case Intrinsic::amdgcn_ds_gws_sema_br:
1602 case Intrinsic::amdgcn_ds_gws_sema_p:
1603 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1613 Info.memVT = MVT::i32;
1615 Info.align =
Align(4);
1617 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1623 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1624 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1625 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1626 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1627 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1628 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1629 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1630 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128: {
1637 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1638 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1639 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1640 case Intrinsic::amdgcn_global_store_async_from_lds_b128: {
1647 case Intrinsic::amdgcn_load_to_lds:
1648 case Intrinsic::amdgcn_global_load_lds: {
1659 case Intrinsic::amdgcn_ds_bvh_stack_rtn:
1660 case Intrinsic::amdgcn_ds_bvh_stack_push4_pop1_rtn:
1661 case Intrinsic::amdgcn_ds_bvh_stack_push8_pop1_rtn:
1662 case Intrinsic::amdgcn_ds_bvh_stack_push8_pop2_rtn: {
1672 Info.memVT = MVT::i32;
1674 Info.align =
Align(4);
1679 case Intrinsic::amdgcn_s_prefetch_data:
1680 case Intrinsic::amdgcn_flat_prefetch:
1681 case Intrinsic::amdgcn_global_prefetch: {
1696 case Intrinsic::amdgcn_addrspacecast_nonnull: {
1699 unsigned SrcAS =
I.getOperand(0)->getType()->getPointerAddressSpace();
1700 unsigned DstAS =
I.getType()->getPointerAddressSpace();
1712 Type *&AccessTy)
const {
1714 switch (
II->getIntrinsicID()) {
1715 case Intrinsic::amdgcn_atomic_cond_sub_u32:
1716 case Intrinsic::amdgcn_cluster_load_b128:
1717 case Intrinsic::amdgcn_cluster_load_b64:
1718 case Intrinsic::amdgcn_cluster_load_b32:
1719 case Intrinsic::amdgcn_ds_append:
1720 case Intrinsic::amdgcn_ds_consume:
1721 case Intrinsic::amdgcn_ds_load_tr8_b64:
1722 case Intrinsic::amdgcn_ds_load_tr16_b128:
1723 case Intrinsic::amdgcn_ds_load_tr4_b64:
1724 case Intrinsic::amdgcn_ds_load_tr6_b96:
1725 case Intrinsic::amdgcn_ds_read_tr4_b64:
1726 case Intrinsic::amdgcn_ds_read_tr6_b96:
1727 case Intrinsic::amdgcn_ds_read_tr8_b64:
1728 case Intrinsic::amdgcn_ds_read_tr16_b64:
1729 case Intrinsic::amdgcn_ds_ordered_add:
1730 case Intrinsic::amdgcn_ds_ordered_swap:
1731 case Intrinsic::amdgcn_ds_atomic_async_barrier_arrive_b64:
1732 case Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64:
1733 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1734 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1735 case Intrinsic::amdgcn_flat_load_monitor_b128:
1736 case Intrinsic::amdgcn_flat_load_monitor_b32:
1737 case Intrinsic::amdgcn_flat_load_monitor_b64:
1738 case Intrinsic::amdgcn_global_atomic_csub:
1739 case Intrinsic::amdgcn_global_atomic_fmax_num:
1740 case Intrinsic::amdgcn_global_atomic_fmin_num:
1741 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1742 case Intrinsic::amdgcn_global_load_monitor_b128:
1743 case Intrinsic::amdgcn_global_load_monitor_b32:
1744 case Intrinsic::amdgcn_global_load_monitor_b64:
1745 case Intrinsic::amdgcn_global_load_tr_b64:
1746 case Intrinsic::amdgcn_global_load_tr_b128:
1747 case Intrinsic::amdgcn_global_load_tr4_b64:
1748 case Intrinsic::amdgcn_global_load_tr6_b96:
1749 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1750 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1751 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1752 case Intrinsic::amdgcn_global_store_async_from_lds_b128:
1753 Ptr =
II->getArgOperand(0);
1755 case Intrinsic::amdgcn_load_to_lds:
1756 case Intrinsic::amdgcn_global_load_lds:
1757 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1758 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1759 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1760 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1761 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1762 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1763 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1764 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128:
1765 Ptr =
II->getArgOperand(1);
1770 AccessTy =
II->getType();
1776 unsigned AddrSpace)
const {
1777 if (!Subtarget->hasFlatInstOffsets()) {
1788 return AM.
Scale == 0 &&
1789 (AM.
BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1790 AM.
BaseOffs, AddrSpace, FlatVariant));
1794 if (Subtarget->hasFlatGlobalInsts())
1797 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1810 return isLegalMUBUFAddressingMode(AM);
1813bool SITargetLowering::isLegalMUBUFAddressingMode(
const AddrMode &AM)
const {
1824 if (!
TII->isLegalMUBUFImmOffset(AM.BaseOffs))
1836 if (AM.HasBaseReg) {
1868 return isLegalMUBUFAddressingMode(AM);
1870 if (!Subtarget->hasScalarSubwordLoads()) {
1875 if (Ty->isSized() &&
DL.getTypeStoreSize(Ty) < 4)
1923 return Subtarget->enableFlatScratch()
1925 : isLegalMUBUFAddressingMode(AM);
1972 unsigned Size,
unsigned AddrSpace,
Align Alignment,
1981 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment <
Align(4))
1984 Align RequiredAlignment(
1986 if (Subtarget->hasLDSMisalignedBug() &&
Size > 32 &&
1987 Alignment < RequiredAlignment)
2002 if (!Subtarget->hasUsableDSOffset() && Alignment <
Align(8))
2008 RequiredAlignment =
Align(4);
2010 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2026 *IsFast = (Alignment >= RequiredAlignment) ? 64
2027 : (Alignment <
Align(4)) ? 32
2034 if (!Subtarget->hasDS96AndDS128())
2040 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2049 *IsFast = (Alignment >= RequiredAlignment) ? 96
2050 : (Alignment <
Align(4)) ? 32
2057 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
2063 RequiredAlignment =
Align(8);
2065 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2074 *IsFast = (Alignment >= RequiredAlignment) ? 128
2075 : (Alignment <
Align(4)) ? 32
2092 *IsFast = (Alignment >= RequiredAlignment) ?
Size : 0;
2094 return Alignment >= RequiredAlignment ||
2095 Subtarget->hasUnalignedDSAccessEnabled();
2103 bool AlignedBy4 = Alignment >=
Align(4);
2104 if (Subtarget->hasUnalignedScratchAccessEnabled()) {
2106 *IsFast = AlignedBy4 ?
Size : 1;
2111 *IsFast = AlignedBy4;
2122 return Alignment >=
Align(4) ||
2123 Subtarget->hasUnalignedBufferAccessEnabled();
2135 if (!Subtarget->hasRelaxedBufferOOBMode() &&
2150 return Size >= 32 && Alignment >=
Align(4);
2155 unsigned *IsFast)
const {
2157 Alignment, Flags, IsFast);
2162 const AttributeList &FuncAttributes)
const {
2168 if (
Op.size() >= 16 &&
2172 if (
Op.size() >= 8 &&
Op.isDstAligned(
Align(4)))
2190 unsigned DestAS)
const {
2193 Subtarget->hasGloballyAddressableScratch()) {
2223 unsigned Index)
const {
2239 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
2266 auto [InputPtrReg, RC, ArgTy] =
2276 Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
2282 const SDLoc &SL)
const {
2289 const SDLoc &SL)
const {
2292 std::optional<uint32_t> KnownSize =
2294 if (KnownSize.has_value())
2320 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
2329SDValue SITargetLowering::lowerKernargMemParameter(
2341 int64_t OffsetDiff =
Offset - AlignDownOffset;
2347 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
2356 ArgVal = DAG.
getNode(ISD::BITCAST, SL, MemVT, ArgVal);
2357 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal,
Signed, Arg);
2367 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load,
Signed, Arg);
2376 const SDLoc &SL)
const {
2386 return DAG.
getNode(ISD::BITCAST, SL, ValVT, Val);
2445 ExtType, SL, VA.
getLocVT(), Chain, FIN,
2448 SDValue ConvertedVal = convertABITypeToValueType(DAG, ArgValue, VA, SL);
2449 if (ConvertedVal == ArgValue)
2450 return ConvertedVal;
2455SDValue SITargetLowering::lowerWorkGroupId(
2460 if (!Subtarget->hasClusters())
2461 return getPreloadedValue(DAG, MFI, VT, WorkGroupIdPV);
2469 SDValue ClusterIdXYZ = getPreloadedValue(DAG, MFI, VT, WorkGroupIdPV);
2470 SDLoc SL(ClusterIdXYZ);
2471 SDValue ClusterMaxIdXYZ = getPreloadedValue(DAG, MFI, VT, ClusterMaxIdPV);
2474 SDValue ClusterWorkGroupIdXYZ =
2475 getPreloadedValue(DAG, MFI, VT, ClusterWorkGroupIdPV);
2485 return ClusterIdXYZ;
2487 using namespace AMDGPU::Hwreg;
2491 DAG.
getMachineNode(AMDGPU::S_GETREG_B32_const, SL, VT, ClusterIdField);
2502SDValue SITargetLowering::getPreloadedValue(
2505 const ArgDescriptor *
Reg =
nullptr;
2506 const TargetRegisterClass *RC;
2510 const ArgDescriptor WorkGroupIDX =
2518 const ArgDescriptor WorkGroupIDZ =
2520 const ArgDescriptor ClusterWorkGroupIDX =
2522 const ArgDescriptor ClusterWorkGroupIDY =
2524 const ArgDescriptor ClusterWorkGroupIDZ =
2526 const ArgDescriptor ClusterWorkGroupMaxIDX =
2528 const ArgDescriptor ClusterWorkGroupMaxIDY =
2530 const ArgDescriptor ClusterWorkGroupMaxIDZ =
2532 const ArgDescriptor ClusterWorkGroupMaxFlatID =
2535 auto LoadConstant = [&](
unsigned N) {
2539 if (Subtarget->hasArchitectedSGPRs() &&
2546 Reg = &WorkGroupIDX;
2547 RC = &AMDGPU::SReg_32RegClass;
2551 Reg = &WorkGroupIDY;
2552 RC = &AMDGPU::SReg_32RegClass;
2556 Reg = &WorkGroupIDZ;
2557 RC = &AMDGPU::SReg_32RegClass;
2561 if (HasFixedDims && ClusterDims.
getDims()[0] == 1)
2562 return LoadConstant(0);
2563 Reg = &ClusterWorkGroupIDX;
2564 RC = &AMDGPU::SReg_32RegClass;
2568 if (HasFixedDims && ClusterDims.
getDims()[1] == 1)
2569 return LoadConstant(0);
2570 Reg = &ClusterWorkGroupIDY;
2571 RC = &AMDGPU::SReg_32RegClass;
2575 if (HasFixedDims && ClusterDims.
getDims()[2] == 1)
2576 return LoadConstant(0);
2577 Reg = &ClusterWorkGroupIDZ;
2578 RC = &AMDGPU::SReg_32RegClass;
2583 return LoadConstant(ClusterDims.
getDims()[0] - 1);
2584 Reg = &ClusterWorkGroupMaxIDX;
2585 RC = &AMDGPU::SReg_32RegClass;
2590 return LoadConstant(ClusterDims.
getDims()[1] - 1);
2591 Reg = &ClusterWorkGroupMaxIDY;
2592 RC = &AMDGPU::SReg_32RegClass;
2597 return LoadConstant(ClusterDims.
getDims()[2] - 1);
2598 Reg = &ClusterWorkGroupMaxIDZ;
2599 RC = &AMDGPU::SReg_32RegClass;
2603 Reg = &ClusterWorkGroupMaxFlatID;
2604 RC = &AMDGPU::SReg_32RegClass;
2635 for (
unsigned I = 0,
E = Ins.size(), PSInputNum = 0;
I !=
E; ++
I) {
2639 "vector type argument should have been split");
2644 bool SkipArg = !Arg->
Used && !
Info->isPSInputAllocated(PSInputNum);
2652 "unexpected vector split in ps argument type");
2666 Info->markPSInputAllocated(PSInputNum);
2668 Info->markPSInputEnabled(PSInputNum);
2684 if (Info.hasWorkItemIDX()) {
2690 (Subtarget->hasPackedTID() && Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
2694 if (Info.hasWorkItemIDY()) {
2695 assert(Info.hasWorkItemIDX());
2696 if (Subtarget->hasPackedTID()) {
2697 Info.setWorkItemIDY(
2700 unsigned Reg = AMDGPU::VGPR1;
2708 if (Info.hasWorkItemIDZ()) {
2709 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
2710 if (Subtarget->hasPackedTID()) {
2711 Info.setWorkItemIDZ(
2714 unsigned Reg = AMDGPU::VGPR2;
2734 if (RegIdx == ArgVGPRs.
size()) {
2741 unsigned Reg = ArgVGPRs[RegIdx];
2753 unsigned NumArgRegs) {
2756 if (RegIdx == ArgSGPRs.
size())
2759 unsigned Reg = ArgSGPRs[RegIdx];
2801 const unsigned Mask = 0x3ff;
2804 if (Info.hasWorkItemIDX()) {
2806 Info.setWorkItemIDX(Arg);
2809 if (Info.hasWorkItemIDY()) {
2811 Info.setWorkItemIDY(Arg);
2814 if (Info.hasWorkItemIDZ())
2826 const unsigned Mask = 0x3ff;
2835 auto &
ArgInfo = Info.getArgInfo();
2847 if (Info.hasImplicitArgPtr())
2855 if (Info.hasWorkGroupIDX())
2858 if (Info.hasWorkGroupIDY())
2861 if (Info.hasWorkGroupIDZ())
2864 if (Info.hasLDSKernelId())
2875 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(
TRI);
2876 MF.
addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2882 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(
TRI);
2883 MF.
addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2888 Register DispatchPtrReg = Info.addDispatchPtr(
TRI);
2889 MF.
addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2895 MF.
addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2901 Register InputPtrReg = Info.addKernargSegmentPtr(
TRI);
2910 MF.
addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2915 Register FlatScratchInitReg = Info.addFlatScratchInit(
TRI);
2916 MF.
addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2921 Register PrivateSegmentSizeReg = Info.addPrivateSegmentSize(
TRI);
2922 MF.
addLiveIn(PrivateSegmentSizeReg, &AMDGPU::SGPR_32RegClass);
2937 unsigned LastExplicitArgOffset = Subtarget->getExplicitKernelArgOffset();
2939 bool InPreloadSequence =
true;
2941 bool AlignedForImplictArgs =
false;
2942 unsigned ImplicitArgOffset = 0;
2943 for (
auto &Arg :
F.args()) {
2944 if (!InPreloadSequence || !Arg.hasInRegAttr())
2947 unsigned ArgIdx = Arg.getArgNo();
2950 if (InIdx < Ins.size() &&
2951 (!Ins[InIdx].isOrigArg() || Ins[InIdx].getOrigArgIndex() != ArgIdx))
2954 for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() &&
2955 Ins[InIdx].getOrigArgIndex() == ArgIdx;
2957 assert(ArgLocs[ArgIdx].isMemLoc());
2958 auto &ArgLoc = ArgLocs[InIdx];
2960 unsigned ArgOffset = ArgLoc.getLocMemOffset();
2962 unsigned NumAllocSGPRs =
2963 alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32;
2966 if (Arg.hasAttribute(
"amdgpu-hidden-argument")) {
2967 if (!AlignedForImplictArgs) {
2969 alignTo(LastExplicitArgOffset,
2970 Subtarget->getAlignmentForImplicitArgPtr()) -
2971 LastExplicitArgOffset;
2972 AlignedForImplictArgs =
true;
2974 ArgOffset += ImplicitArgOffset;
2978 if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) {
2979 assert(InIdx >= 1 &&
"No previous SGPR");
2980 Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back(
2981 Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]);
2985 unsigned Padding = ArgOffset - LastExplicitArgOffset;
2986 unsigned PaddingSGPRs =
alignTo(Padding, 4) / 4;
2989 InPreloadSequence =
false;
2995 TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32);
2997 Info.addPreloadedKernArg(
TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs);
2999 if (PreloadRegs->
size() > 1)
3000 RC = &AMDGPU::SGPR_32RegClass;
3001 for (
auto &Reg : *PreloadRegs) {
3007 LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset;
3016 if (Info.hasLDSKernelId()) {
3017 Register Reg = Info.addLDSKernelId();
3018 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3027 bool IsShader)
const {
3028 bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs();
3029 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
3035 assert(!HasArchitectedSGPRs &&
"Unhandled feature for the subtarget");
3037 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
3041 unsigned NumRequiredSystemSGPRs =
3042 Info.hasWorkGroupIDX() + Info.hasWorkGroupIDY() +
3043 Info.hasWorkGroupIDZ() + Info.hasWorkGroupInfo();
3044 for (
unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
3045 Register Reg = Info.addReservedUserSGPR();
3046 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3051 if (!HasArchitectedSGPRs) {
3052 if (Info.hasWorkGroupIDX()) {
3053 Register Reg = Info.addWorkGroupIDX();
3054 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3058 if (Info.hasWorkGroupIDY()) {
3059 Register Reg = Info.addWorkGroupIDY();
3060 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3064 if (Info.hasWorkGroupIDZ()) {
3065 Register Reg = Info.addWorkGroupIDZ();
3066 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3071 if (Info.hasWorkGroupInfo()) {
3072 Register Reg = Info.addWorkGroupInfo();
3073 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3077 if (Info.hasPrivateSegmentWaveByteOffset()) {
3079 unsigned PrivateSegmentWaveByteOffsetReg;
3082 PrivateSegmentWaveByteOffsetReg =
3083 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
3087 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
3089 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
3092 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
3094 MF.
addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
3095 CCInfo.
AllocateReg(PrivateSegmentWaveByteOffsetReg);
3098 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
3099 Info.getNumPreloadedSGPRs() >= 16);
3114 if (HasStackObjects)
3115 Info.setHasNonSpillStackObjects(
true);
3120 HasStackObjects =
true;
3124 bool RequiresStackAccess = HasStackObjects || MFI.
hasCalls();
3126 if (!ST.enableFlatScratch()) {
3127 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.
getFunction())) {
3134 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
3136 unsigned ReservedBufferReg =
TRI.reservedPrivateSegmentBufferReg(MF);
3146 Info.setScratchRSrcReg(ReservedBufferReg);
3165 if (!
MRI.isLiveIn(AMDGPU::SGPR32)) {
3166 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
3173 for (
unsigned Reg : AMDGPU::SGPR_32RegClass) {
3174 if (!
MRI.isLiveIn(
Reg)) {
3175 Info.setStackPtrOffsetReg(
Reg);
3180 if (
Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
3187 if (ST.getFrameLowering()->hasFP(MF)) {
3188 Info.setFrameOffsetReg(AMDGPU::SGPR33);
3204 const MCPhysReg *IStart =
TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
3213 if (AMDGPU::SReg_64RegClass.
contains(*
I))
3214 RC = &AMDGPU::SGPR_64RegClass;
3215 else if (AMDGPU::SReg_32RegClass.
contains(*
I))
3216 RC = &AMDGPU::SGPR_32RegClass;
3222 Entry->addLiveIn(*
I);
3227 for (
auto *Exit : Exits)
3229 TII->get(TargetOpcode::COPY), *
I)
3244 bool IsError =
false;
3248 Fn,
"unsupported non-compute shaders with HSA",
DL.getDebugLoc()));
3266 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
3267 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
3269 if (!Subtarget->enableFlatScratch())
3274 !Subtarget->hasArchitectedSGPRs())
3275 assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
3276 !Info->hasWorkGroupIDZ());
3279 bool IsWholeWaveFunc = Info->isWholeWaveFunction();
3297 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
3298 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
3301 Info->markPSInputAllocated(0);
3302 Info->markPSInputEnabled(0);
3304 if (Subtarget->isAmdPalOS()) {
3313 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
3314 if ((PsInputBits & 0x7F) == 0 ||
3315 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
3318 }
else if (IsKernel) {
3319 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
3321 Splits.
append(IsWholeWaveFunc ? std::next(Ins.begin()) : Ins.begin(),
3331 if (IsKernel && Subtarget->hasKernargPreload())
3335 }
else if (!IsGraphics) {
3340 if (!Subtarget->enableFlatScratch())
3352 Info->setNumWaveDispatchSGPRs(
3354 Info->setNumWaveDispatchVGPRs(
3356 }
else if (Info->getNumKernargPreloadedSGPRs()) {
3357 Info->setNumWaveDispatchSGPRs(Info->getNumUserSGPRs());
3362 if (IsWholeWaveFunc) {
3364 {MVT::i1, MVT::Other}, Chain);
3376 for (
unsigned i = IsWholeWaveFunc ? 1 : 0, e = Ins.size(), ArgIdx = 0; i != e;
3387 if (IsEntryFunc && VA.
isMemLoc()) {
3410 if (Arg.
isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) {
3414 int64_t OffsetDiff =
Offset - AlignDownOffset;
3421 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0];
3431 ArgVal = DAG.
getNode(ISD::BITCAST,
DL, MemVT, ArgVal);
3432 NewArg = convertArgType(DAG, VT, MemVT,
DL, ArgVal,
3433 Ins[i].Flags.isSExt(), &Ins[i]);
3441 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs;
3444 if (PreloadRegs.
size() == 1) {
3445 Register VReg =
MRI.getLiveInVirtReg(PreloadRegs[0]);
3450 TRI->getRegSizeInBits(*RC)));
3458 for (
auto Reg : PreloadRegs) {
3465 PreloadRegs.size()),
3482 NewArg = convertArgType(DAG, VT, MemVT,
DL, NewArg,
3483 Ins[i].Flags.isSExt(), &Ins[i]);
3495 "hidden argument in kernel signature was not preloaded",
3501 lowerKernargMemParameter(DAG, VT, MemVT,
DL, Chain,
Offset,
3502 Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
3522 if (!IsEntryFunc && VA.
isMemLoc()) {
3523 SDValue Val = lowerStackParameter(DAG, VA,
DL, Chain, Arg);
3534 if (AMDGPU::VGPR_32RegClass.
contains(Reg))
3535 RC = &AMDGPU::VGPR_32RegClass;
3536 else if (AMDGPU::SGPR_32RegClass.
contains(Reg))
3537 RC = &AMDGPU::SGPR_32RegClass;
3557 Val = convertABITypeToValueType(DAG, Val, VA,
DL);
3573 Info->setBytesInStackArgArea(StackArgSize);
3575 return Chains.
empty() ? Chain
3584 const Type *RetTy)
const {
3592 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3597 unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF);
3598 unsigned TotalNumVGPRs = Subtarget->getAddressableNumArchVGPRs();
3599 for (
unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
3600 if (CCInfo.
isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
3623 Info->setIfReturnsVoid(Outs.
empty());
3624 bool IsWaveEnd = Info->returnsVoid() && IsShader;
3643 for (
unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.
size();
I != E;
3644 ++
I, ++RealRVLocIdx) {
3648 SDValue Arg = OutVals[RealRVLocIdx];
3671 ReadFirstLane, Arg);
3678 if (!Info->isEntryFunction()) {
3684 if (AMDGPU::SReg_64RegClass.
contains(*
I))
3686 else if (AMDGPU::SReg_32RegClass.
contains(*
I))
3787 auto &ArgUsageInfo =
3789 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
3817 const auto [OutgoingArg, ArgRC, ArgTy] =
3822 const auto [IncomingArg, IncomingArgRC, Ty] =
3824 assert(IncomingArgRC == ArgRC);
3827 EVT ArgVT =
TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
3835 InputReg = getImplicitArgPtr(DAG,
DL);
3837 std::optional<uint32_t> Id =
3839 if (Id.has_value()) {
3850 if (OutgoingArg->isRegister()) {
3851 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3852 if (!CCInfo.
AllocateReg(OutgoingArg->getRegister()))
3855 unsigned SpecialArgOffset =
3866 auto [OutgoingArg, ArgRC, Ty] =
3869 std::tie(OutgoingArg, ArgRC, Ty) =
3872 std::tie(OutgoingArg, ArgRC, Ty) =
3887 const bool NeedWorkItemIDX = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-x");
3888 const bool NeedWorkItemIDY = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-y");
3889 const bool NeedWorkItemIDZ = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-z");
3894 if (Subtarget->getMaxWorkitemID(
F, 0) != 0) {
3902 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(
F, 1) != 0) {
3912 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(
F, 2) != 0) {
3921 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
3922 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
3933 : IncomingArgY ? *IncomingArgY
3940 if (OutgoingArg->isRegister()) {
3942 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3968 if (Callee->isDivergent())
3975 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
3979 if (!CallerPreserved)
3982 bool CCMatch = CallerCC == CalleeCC;
3995 if (Arg.hasByValAttr())
4009 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
4010 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
4019 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
4032 for (
const auto &[CCVA, ArgVal] :
zip_equal(ArgLocs, OutVals)) {
4034 if (!CCVA.isRegLoc())
4039 if (ArgVal->
isDivergent() &&
TRI->isSGPRPhysReg(CCVA.getLocReg())) {
4041 dbgs() <<
"Cannot tail call due to divergent outgoing argument in "
4065enum ChainCallArgIdx {
4087 bool UsesDynamicVGPRs =
false;
4088 if (IsChainCallConv) {
4093 auto RequestedExecIt =
4095 return Arg.OrigArgIndex == 2;
4097 assert(RequestedExecIt != CLI.
Outs.end() &&
"No node for EXEC");
4099 size_t SpecialArgsBeginIdx = RequestedExecIt - CLI.
Outs.begin();
4102 CLI.
Outs.erase(RequestedExecIt, CLI.
Outs.end());
4105 "Haven't popped all the special args");
4108 CLI.
Args[ChainCallArgIdx::Exec];
4109 if (!RequestedExecArg.
Ty->
isIntegerTy(Subtarget->getWavefrontSize()))
4117 ArgNode->getAPIntValue(),
DL, ArgNode->getValueType(0)));
4119 ChainCallSpecialArgs.
push_back(Arg.Node);
4122 PushNodeOrTargetConstant(RequestedExecArg);
4128 if (FlagsValue.
isZero()) {
4129 if (CLI.
Args.size() > ChainCallArgIdx::Flags + 1)
4131 "no additional args allowed if flags == 0");
4133 if (CLI.
Args.size() != ChainCallArgIdx::FallbackCallee + 1) {
4137 if (!Subtarget->isWave32()) {
4139 CLI, InVals,
"dynamic VGPR mode is only supported for wave32");
4142 UsesDynamicVGPRs =
true;
4143 std::for_each(CLI.
Args.begin() + ChainCallArgIdx::NumVGPRs,
4144 CLI.
Args.end(), PushNodeOrTargetConstant);
4153 bool IsSibCall =
false;
4167 "unsupported call to variadic function ");
4175 "unsupported required tail call to function ");
4180 Outs, OutVals, Ins, DAG);
4184 "site marked musttail or on llvm.amdgcn.cs.chain");
4191 if (!TailCallOpt && IsTailCall)
4231 auto *
TRI = Subtarget->getRegisterInfo();
4238 if (!IsSibCall || IsChainCallConv) {
4239 if (!Subtarget->enableFlatScratch()) {
4245 RegsToPass.emplace_back(IsChainCallConv
4246 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
4247 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
4254 const unsigned NumSpecialInputs = RegsToPass.size();
4256 MVT PtrVT = MVT::i32;
4259 for (
unsigned i = 0, e = ArgLocs.
size(); i != e; ++i) {
4287 RegsToPass.push_back(std::pair(VA.
getLocReg(), Arg));
4295 int32_t
Offset = LocMemOffset;
4302 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize()
4308 ? Flags.getNonZeroByValAlign()
4335 if (Outs[i].Flags.isByVal()) {
4337 DAG.
getConstant(Outs[i].Flags.getByValSize(),
DL, MVT::i32);
4340 Outs[i].Flags.getNonZeroByValAlign(),
4342 nullptr, std::nullopt, DstInfo,
4348 DAG.
getStore(Chain,
DL, Arg, DstAddr, DstInfo, Alignment);
4354 if (!MemOpChains.
empty())
4362 TokenGlue = DAG.
getNode(ISD::CONVERGENCECTRL_GLUE,
DL, MVT::Glue,
4370 unsigned ArgIdx = 0;
4371 for (
auto [Reg, Val] : RegsToPass) {
4372 if (ArgIdx++ >= NumSpecialInputs &&
4373 (IsChainCallConv || !Val->
isDivergent()) &&
TRI->isSGPRPhysReg(Reg)) {
4399 if (IsTailCall && !IsSibCall) {
4404 std::vector<SDValue>
Ops({Chain});
4410 Ops.push_back(Callee);
4427 Ops.push_back(Callee);
4438 if (IsChainCallConv)
4443 for (
auto &[Reg, Val] : RegsToPass)
4447 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
4448 assert(Mask &&
"Missing call preserved mask for calling convention");
4458 MVT::Glue, GlueOps),
4463 Ops.push_back(InGlue);
4483 if (Info->isWholeWaveFunction())
4491 Chain =
Call.getValue(0);
4492 InGlue =
Call.getValue(1);
4494 uint64_t CalleePopBytes = NumBytes;
4515 EVT VT =
Op.getValueType();
4529 "Stack grows upwards for AMDGPU");
4531 Chain = BaseAddr.getValue(1);
4533 if (Alignment > StackAlign) {
4535 << Subtarget->getWavefrontSizeLog2();
4536 uint64_t StackAlignMask = ScaledAlignment - 1;
4543 assert(
Size.getValueType() == MVT::i32 &&
"Size must be 32-bit");
4549 DAG.
getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
4560 DAG.
getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
4576 if (
Op.getValueType() != MVT::i32)
4595 assert(
Op.getValueType() == MVT::i32);
4604 Op.getOperand(0), IntrinID, GetRoundBothImm);
4638 SDValue RoundModeTimesNumBits =
4658 TableEntry, EnumOffset);
4674 static_cast<uint32_t>(ConstMode->getZExtValue()),
4686 if (UseReducedTable) {
4692 SDValue RoundModeTimesNumBits =
4712 SDValue RoundModeTimesNumBits =
4721 NewMode = TruncTable;
4730 ReadFirstLaneID, NewMode);
4743 IntrinID, RoundBothImm, NewMode);
4749 if (
Op->isDivergent() &&
4750 (!Subtarget->hasVmemPrefInsts() || !
Op.getConstantOperandVal(4)))
4760 if (Subtarget->hasSafeSmemPrefetch())
4768 if (!Subtarget->hasSafeSmemPrefetch() && !
Op.getConstantOperandVal(4))
4777 SDValue Src =
Op.getOperand(IsStrict ? 1 : 0);
4778 EVT SrcVT = Src.getValueType();
4787 EVT DstVT =
Op.getValueType();
4791 return DAG.
getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast);
4796 if (
Op.getValueType() != MVT::i64)
4810 Op.getOperand(0), IntrinID, ModeHwRegImm);
4812 Op.getOperand(0), IntrinID, TrapHwRegImm);
4819 SDValue Result = DAG.
getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
4826 if (
Op.getOperand(1).getValueType() != MVT::i64)
4838 ReadFirstLaneID, NewModeReg);
4840 ReadFirstLaneID, NewTrapReg);
4842 unsigned ModeHwReg =
4845 unsigned TrapHwReg =
4853 IntrinID, ModeHwRegImm, NewModeReg);
4856 IntrinID, TrapHwRegImm, NewTrapReg);
4865 .
Case(
"m0", AMDGPU::M0)
4866 .
Case(
"exec", AMDGPU::EXEC)
4867 .
Case(
"exec_lo", AMDGPU::EXEC_LO)
4868 .
Case(
"exec_hi", AMDGPU::EXEC_HI)
4869 .
Case(
"flat_scratch", AMDGPU::FLAT_SCR)
4870 .
Case(
"flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
4871 .
Case(
"flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
4876 if (!Subtarget->hasFlatScrRegister() &&
4877 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
4879 "\" for subtarget."));
4884 case AMDGPU::EXEC_LO:
4885 case AMDGPU::EXEC_HI:
4886 case AMDGPU::FLAT_SCR_LO:
4887 case AMDGPU::FLAT_SCR_HI:
4892 case AMDGPU::FLAT_SCR:
4911 MI.setDesc(
TII->getKillTerminatorFromPseudo(
MI.getOpcode()));
4920static std::pair<MachineBasicBlock *, MachineBasicBlock *>
4942 auto Next = std::next(
I);
4953 MBB.addSuccessor(LoopBB);
4955 return std::pair(LoopBB, RemainderBB);
4962 auto I =
MI.getIterator();
4963 auto E = std::next(
I);
4985 Src->setIsKill(
false);
4995 BuildMI(*LoopBB, LoopBB->begin(),
DL,
TII->get(AMDGPU::S_SETREG_IMM32_B32))
5001 Register Reg =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5004 BuildMI(*LoopBB,
I,
DL,
TII->get(AMDGPU::S_GETREG_B32), Reg)
5028 unsigned InitReg,
unsigned ResultReg,
unsigned PhiReg,
5029 unsigned InitSaveExecReg,
int Offset,
bool UseGPRIdxMode,
5039 Register PhiExec =
MRI.createVirtualRegister(BoolRC);
5040 Register NewExec =
MRI.createVirtualRegister(BoolRC);
5042 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5043 Register CondReg =
MRI.createVirtualRegister(BoolRC);
5051 BuildMI(LoopBB,
I,
DL,
TII->get(TargetOpcode::PHI), PhiExec)
5058 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
5062 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
5070 MRI.setSimpleHint(NewExec, CondReg);
5072 if (UseGPRIdxMode) {
5074 SGPRIdxReg = CurrentIdxReg;
5076 SGPRIdxReg =
MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
5077 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
5087 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
5118 unsigned InitResultReg,
unsigned PhiReg,
int Offset,
5119 bool UseGPRIdxMode,
Register &SGPRIdxReg) {
5127 const auto *BoolXExecRC =
TRI->getWaveMaskRegClass();
5129 Register SaveExec =
MRI.createVirtualRegister(BoolXExecRC);
5130 Register TmpExec =
MRI.createVirtualRegister(BoolXExecRC);
5146 InitResultReg, DstReg, PhiReg, TmpExec,
5147 Offset, UseGPRIdxMode, SGPRIdxReg);
5153 LoopBB->removeSuccessor(RemainderBB);
5155 LoopBB->addSuccessor(LandingPad);
5166static std::pair<unsigned, int>
5170 int NumElts =
TRI.getRegSizeInBits(*SuperRC) / 32;
5175 return std::pair(AMDGPU::sub0,
Offset);
5215 Register Tmp =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5232 Register SrcReg =
TII->getNamedOperand(
MI, AMDGPU::OpName::src)->getReg();
5233 int Offset =
TII->getNamedOperand(
MI, AMDGPU::OpName::offset)->getImm();
5242 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
5245 if (
TII->getRegisterInfo().isSGPRClass(IdxRC)) {
5249 if (UseGPRIdxMode) {
5256 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
true);
5269 MI.eraseFromParent();
5278 Register PhiReg =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5279 Register InitReg =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5285 UseGPRIdxMode, SGPRIdxReg);
5289 if (UseGPRIdxMode) {
5291 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
true);
5293 BuildMI(*LoopBB, InsPt,
DL, GPRIDXDesc, Dst)
5298 BuildMI(*LoopBB, InsPt,
DL,
TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
5303 MI.eraseFromParent();
5320 int Offset =
TII->getNamedOperand(
MI, AMDGPU::OpName::offset)->getImm();
5330 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
5332 if (Idx->
getReg() == AMDGPU::NoRegister) {
5343 MI.eraseFromParent();
5348 if (
TII->getRegisterInfo().isSGPRClass(IdxRC)) {
5352 if (UseGPRIdxMode) {
5356 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
false);
5365 const MCInstrDesc &MovRelDesc =
TII->getIndirectRegWriteMovRelPseudo(
5366 TRI.getRegSizeInBits(*VecRC), 32,
false);
5372 MI.eraseFromParent();
5382 Register PhiReg =
MRI.createVirtualRegister(VecRC);
5386 UseGPRIdxMode, SGPRIdxReg);
5389 if (UseGPRIdxMode) {
5391 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
false);
5393 BuildMI(*LoopBB, InsPt,
DL, GPRIDXDesc, Dst)
5399 const MCInstrDesc &MovRelDesc =
TII->getIndirectRegWriteMovRelPseudo(
5400 TRI.getRegSizeInBits(*VecRC), 32,
false);
5401 BuildMI(*LoopBB, InsPt,
DL, MovRelDesc, Dst)
5407 MI.eraseFromParent();
5423 bool IsAdd = (
MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
5424 if (ST.hasScalarAddSub64()) {
5425 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64;
5435 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5436 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5439 MI,
MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5441 MI,
MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5444 MI,
MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5446 MI,
MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5448 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
5449 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
5458 MI.eraseFromParent();
5464 case AMDGPU::S_MIN_U32:
5465 return std::numeric_limits<uint32_t>::max();
5466 case AMDGPU::S_MIN_I32:
5467 return std::numeric_limits<int32_t>::max();
5468 case AMDGPU::S_MAX_U32:
5469 return std::numeric_limits<uint32_t>::min();
5470 case AMDGPU::S_MAX_I32:
5471 return std::numeric_limits<int32_t>::min();
5472 case AMDGPU::S_ADD_I32:
5473 case AMDGPU::S_SUB_I32:
5474 case AMDGPU::S_OR_B32:
5475 case AMDGPU::S_XOR_B32:
5476 return std::numeric_limits<uint32_t>::min();
5477 case AMDGPU::S_AND_B32:
5478 return std::numeric_limits<uint32_t>::max();
5481 "Unexpected opcode in getIdentityValueFor32BitWaveReduction");
5487 case AMDGPU::V_CMP_LT_U64_e64:
5488 return std::numeric_limits<uint64_t>::max();
5489 case AMDGPU::V_CMP_LT_I64_e64:
5490 return std::numeric_limits<int64_t>::max();
5491 case AMDGPU::V_CMP_GT_U64_e64:
5492 return std::numeric_limits<uint64_t>::min();
5493 case AMDGPU::V_CMP_GT_I64_e64:
5494 return std::numeric_limits<int64_t>::min();
5495 case AMDGPU::S_ADD_U64_PSEUDO:
5496 case AMDGPU::S_SUB_U64_PSEUDO:
5497 case AMDGPU::S_OR_B64:
5498 case AMDGPU::S_XOR_B64:
5499 return std::numeric_limits<uint64_t>::min();
5500 case AMDGPU::S_AND_B64:
5501 return std::numeric_limits<uint64_t>::max();
5504 "Unexpected opcode in getIdentityValueFor64BitWaveReduction");
5509 return Opc == AMDGPU::S_MIN_U32 ||
Opc == AMDGPU::S_MIN_I32 ||
5510 Opc == AMDGPU::S_MAX_U32 ||
Opc == AMDGPU::S_MAX_I32 ||
5511 Opc == AMDGPU::S_ADD_I32 ||
Opc == AMDGPU::S_SUB_I32 ||
5512 Opc == AMDGPU::S_AND_B32 ||
Opc == AMDGPU::S_OR_B32 ||
5513 Opc == AMDGPU::S_XOR_B32;
5527 bool isSGPR =
TRI->isSGPRClass(
MRI.getRegClass(SrcReg));
5532 case AMDGPU::S_MIN_U32:
5533 case AMDGPU::S_MIN_I32:
5534 case AMDGPU::S_MAX_U32:
5535 case AMDGPU::S_MAX_I32:
5536 case AMDGPU::S_AND_B32:
5537 case AMDGPU::S_OR_B32: {
5543 case AMDGPU::V_CMP_LT_U64_e64:
5544 case AMDGPU::V_CMP_LT_I64_e64:
5545 case AMDGPU::V_CMP_GT_U64_e64:
5546 case AMDGPU::V_CMP_GT_I64_e64:
5547 case AMDGPU::S_AND_B64:
5548 case AMDGPU::S_OR_B64: {
5554 case AMDGPU::S_XOR_B32:
5555 case AMDGPU::S_XOR_B64:
5556 case AMDGPU::S_ADD_I32:
5557 case AMDGPU::S_ADD_U64_PSEUDO:
5558 case AMDGPU::S_SUB_I32:
5559 case AMDGPU::S_SUB_U64_PSEUDO: {
5562 Register ExecMask =
MRI.createVirtualRegister(WaveMaskRegClass);
5564 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5566 bool IsWave32 = ST.isWave32();
5567 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5568 MCRegister ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5569 unsigned BitCountOpc =
5570 IsWave32 ? AMDGPU::S_BCNT1_I32_B32 : AMDGPU::S_BCNT1_I32_B64;
5574 auto NewAccumulator =
5579 case AMDGPU::S_XOR_B32:
5580 case AMDGPU::S_XOR_B64: {
5586 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5589 .
addReg(NewAccumulator->getOperand(0).getReg())
5592 if (
Opc == AMDGPU::S_XOR_B32) {
5598 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5600 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5604 TRI->getSubRegisterClass(SrcRC, AMDGPU::sub0);
5607 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub0, SrcSubRC);
5609 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub1, SrcSubRC);
5619 BuildMI(BB,
MI,
DL,
TII->get(TargetOpcode::REG_SEQUENCE), DstReg)
5627 case AMDGPU::S_SUB_I32: {
5628 Register NegatedVal =
MRI.createVirtualRegister(DstRegClass);
5636 .
addReg(NewAccumulator->getOperand(0).getReg());
5639 case AMDGPU::S_ADD_I32: {
5642 .
addReg(NewAccumulator->getOperand(0).getReg());
5645 case AMDGPU::S_ADD_U64_PSEUDO:
5646 case AMDGPU::S_SUB_U64_PSEUDO: {
5647 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5648 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5650 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5652 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5653 Register CarryReg =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5654 Register AddReg =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5656 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5658 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5662 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub0);
5665 MI,
MRI,
MI.getOperand(1), Src1RC, AMDGPU::sub0, Src1SubRC);
5667 MI,
MRI,
MI.getOperand(1), Src1RC, AMDGPU::sub1, Src1SubRC);
5669 if (
Opc == AMDGPU::S_SUB_U64_PSEUDO) {
5672 .
addReg(NewAccumulator->getOperand(0).getReg())
5682 Register LowOpcode =
Opc == AMDGPU::S_SUB_U64_PSEUDO
5684 : NewAccumulator->getOperand(0).getReg();
5695 Register HiVal =
Opc == AMDGPU::S_SUB_U64_PSEUDO ? AddReg : DestSub1;
5701 if (
Opc == AMDGPU::S_SUB_U64_PSEUDO) {
5707 BuildMI(BB,
MI,
DL,
TII->get(TargetOpcode::REG_SEQUENCE), DstReg)
5739 Register LoopIterator =
MRI.createVirtualRegister(WaveMaskRegClass);
5740 Register IdentityValReg =
MRI.createVirtualRegister(DstRegClass);
5741 Register AccumulatorReg =
MRI.createVirtualRegister(DstRegClass);
5742 Register ActiveBitsReg =
MRI.createVirtualRegister(WaveMaskRegClass);
5743 Register NewActiveBitsReg =
MRI.createVirtualRegister(WaveMaskRegClass);
5744 Register FF1Reg =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5745 Register LaneValueReg =
MRI.createVirtualRegister(DstRegClass);
5747 bool IsWave32 = ST.isWave32();
5748 unsigned MovOpcForExec = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5749 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5756 BuildMI(BB,
I,
DL,
TII->get(AMDGPU::S_MOV_B32), IdentityValReg)
5760 BuildMI(BB,
I,
DL,
TII->get(AMDGPU::S_MOV_B64_IMM_PSEUDO), IdentityValReg)
5769 I = ComputeLoop->begin();
5771 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::PHI), AccumulatorReg)
5775 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::PHI), ActiveBitsReg)
5779 I = ComputeLoop->end();
5782 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
5786 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::V_READLANE_B32),
5795 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5797 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5798 Register LaneValReg =
MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
5801 TRI->getSubRegisterClass(SrcRC, AMDGPU::sub0);
5803 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub0, SrcSubRC);
5805 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub1, SrcSubRC);
5807 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::V_READLANE_B32),
5811 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::V_READLANE_B32),
5815 auto LaneValue =
BuildMI(*ComputeLoop,
I,
DL,
5816 TII->get(TargetOpcode::REG_SEQUENCE), LaneValReg)
5822 case AMDGPU::S_OR_B64:
5823 case AMDGPU::S_AND_B64:
5824 case AMDGPU::S_XOR_B64: {
5827 .
addReg(LaneValue->getOperand(0).getReg())
5831 case AMDGPU::V_CMP_GT_I64_e64:
5832 case AMDGPU::V_CMP_GT_U64_e64:
5833 case AMDGPU::V_CMP_LT_I64_e64:
5834 case AMDGPU::V_CMP_LT_U64_e64: {
5835 Register LaneMaskReg =
MRI.createVirtualRegister(WaveMaskRegClass);
5837 MRI.createVirtualRegister(WaveMaskRegClass);
5840 TRI->getSubRegisterClass(VregClass, AMDGPU::sub0);
5841 Register AccumulatorVReg =
MRI.createVirtualRegister(VregClass);
5844 VregClass, AMDGPU::sub0, VSubRegClass);
5847 VregClass, AMDGPU::sub1, VSubRegClass);
5848 BuildMI(*ComputeLoop,
I,
DL,
TII->get(TargetOpcode::REG_SEQUENCE),
5855 .
addReg(LaneValue->getOperand(0).getReg())
5856 .
addReg(AccumulatorVReg);
5858 unsigned AndOpc = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
5859 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AndOpc), ComparisonResultReg)
5863 NewAccumulator =
BuildMI(*ComputeLoop,
I,
DL,
5864 TII->get(AMDGPU::S_CSELECT_B64), DstReg)
5865 .
addReg(LaneValue->getOperand(0).getReg())
5869 case AMDGPU::S_ADD_U64_PSEUDO:
5870 case AMDGPU::S_SUB_U64_PSEUDO: {
5873 .
addReg(LaneValue->getOperand(0).getReg());
5880 unsigned BITSETOpc =
5881 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
5882 BuildMI(*ComputeLoop,
I,
DL,
TII->get(BITSETOpc), NewActiveBitsReg)
5888 ActiveBits.addReg(NewActiveBitsReg).addMBB(ComputeLoop);
5891 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
5893 .
addReg(NewActiveBitsReg)
5895 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::S_CBRANCH_SCC1))
5900 MI.eraseFromParent();
5915 switch (
MI.getOpcode()) {
5916 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
5918 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U64:
5920 case AMDGPU::WAVE_REDUCE_MIN_PSEUDO_I32:
5922 case AMDGPU::WAVE_REDUCE_MIN_PSEUDO_I64:
5924 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
5926 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U64:
5928 case AMDGPU::WAVE_REDUCE_MAX_PSEUDO_I32:
5930 case AMDGPU::WAVE_REDUCE_MAX_PSEUDO_I64:
5932 case AMDGPU::WAVE_REDUCE_ADD_PSEUDO_I32:
5934 case AMDGPU::WAVE_REDUCE_ADD_PSEUDO_U64:
5936 case AMDGPU::WAVE_REDUCE_SUB_PSEUDO_I32:
5938 case AMDGPU::WAVE_REDUCE_SUB_PSEUDO_U64:
5940 case AMDGPU::WAVE_REDUCE_AND_PSEUDO_B32:
5942 case AMDGPU::WAVE_REDUCE_AND_PSEUDO_B64:
5944 case AMDGPU::WAVE_REDUCE_OR_PSEUDO_B32:
5946 case AMDGPU::WAVE_REDUCE_OR_PSEUDO_B64:
5948 case AMDGPU::WAVE_REDUCE_XOR_PSEUDO_B32:
5950 case AMDGPU::WAVE_REDUCE_XOR_PSEUDO_B64:
5952 case AMDGPU::S_UADDO_PSEUDO:
5953 case AMDGPU::S_USUBO_PSEUDO: {
5959 unsigned Opc = (
MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
5961 : AMDGPU::S_SUB_U32;
5969 Subtarget->isWave64() ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
5972 MI.eraseFromParent();
5975 case AMDGPU::S_ADD_U64_PSEUDO:
5976 case AMDGPU::S_SUB_U64_PSEUDO: {
5979 case AMDGPU::V_ADD_U64_PSEUDO:
5980 case AMDGPU::V_SUB_U64_PSEUDO: {
5981 bool IsAdd = (
MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
5987 if (ST.hasAddSubU64Insts()) {
5989 TII->get(IsAdd ? AMDGPU::V_ADD_U64_e64
5990 : AMDGPU::V_SUB_U64_e64),
5995 TII->legalizeOperands(*
I);
5996 MI.eraseFromParent();
6000 if (IsAdd && ST.hasLshlAddU64Inst()) {
6006 TII->legalizeOperands(*
Add);
6007 MI.eraseFromParent();
6011 const auto *CarryRC =
TRI->getWaveMaskRegClass();
6013 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6014 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6016 Register CarryReg =
MRI.createVirtualRegister(CarryRC);
6017 Register DeadCarryReg =
MRI.createVirtualRegister(CarryRC);
6021 : &AMDGPU::VReg_64RegClass;
6024 : &AMDGPU::VReg_64RegClass;
6027 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
6029 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
6032 MI,
MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
6034 MI,
MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
6037 MI,
MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
6039 MI,
MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
6042 IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
6049 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
6063 TII->legalizeOperands(*LoHalf);
6064 TII->legalizeOperands(*HiHalf);
6065 MI.eraseFromParent();
6068 case AMDGPU::S_ADD_CO_PSEUDO:
6069 case AMDGPU::S_SUB_CO_PSEUDO: {
6080 Register RegOp0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6081 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
6086 Register RegOp1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6087 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
6091 Register RegOp2 =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6093 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
6098 if (ST.isWave64()) {
6099 if (ST.hasScalarCompareEq64()) {
6106 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
6108 MII,
MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
6110 MII,
MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
6111 Register Src2_32 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6113 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::S_OR_B32), Src2_32)
6127 unsigned Opc =
MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO
6128 ? AMDGPU::S_ADDC_U32
6129 : AMDGPU::S_SUBB_U32;
6134 ST.isWave64() ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
6140 MI.eraseFromParent();
6143 case AMDGPU::SI_INIT_M0: {
6146 TII->get(M0Init.
isReg() ? AMDGPU::COPY : AMDGPU::S_MOV_B32),
6149 MI.eraseFromParent();
6152 case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM: {
6155 TII->get(AMDGPU::S_CMP_EQ_U32))
6160 case AMDGPU::GET_GROUPSTATICSIZE: {
6164 .
add(
MI.getOperand(0))
6166 MI.eraseFromParent();
6169 case AMDGPU::GET_SHADERCYCLESHILO: {
6182 Register RegHi1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6184 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
6185 Register RegLo1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6187 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32));
6188 Register RegHi2 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6190 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
6194 Register RegLo =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6199 .
add(
MI.getOperand(0))
6204 MI.eraseFromParent();
6207 case AMDGPU::SI_INDIRECT_SRC_V1:
6208 case AMDGPU::SI_INDIRECT_SRC_V2:
6209 case AMDGPU::SI_INDIRECT_SRC_V4:
6210 case AMDGPU::SI_INDIRECT_SRC_V8:
6211 case AMDGPU::SI_INDIRECT_SRC_V9:
6212 case AMDGPU::SI_INDIRECT_SRC_V10:
6213 case AMDGPU::SI_INDIRECT_SRC_V11:
6214 case AMDGPU::SI_INDIRECT_SRC_V12:
6215 case AMDGPU::SI_INDIRECT_SRC_V16:
6216 case AMDGPU::SI_INDIRECT_SRC_V32:
6218 case AMDGPU::SI_INDIRECT_DST_V1:
6219 case AMDGPU::SI_INDIRECT_DST_V2:
6220 case AMDGPU::SI_INDIRECT_DST_V4:
6221 case AMDGPU::SI_INDIRECT_DST_V8:
6222 case AMDGPU::SI_INDIRECT_DST_V9:
6223 case AMDGPU::SI_INDIRECT_DST_V10:
6224 case AMDGPU::SI_INDIRECT_DST_V11:
6225 case AMDGPU::SI_INDIRECT_DST_V12:
6226 case AMDGPU::SI_INDIRECT_DST_V16:
6227 case AMDGPU::SI_INDIRECT_DST_V32:
6229 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
6230 case AMDGPU::SI_KILL_I1_PSEUDO:
6232 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
6236 Register SrcCond =
MI.getOperand(3).getReg();
6238 Register DstLo =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6239 Register DstHi =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6240 const auto *CondRC =
TRI->getWaveMaskRegClass();
6241 Register SrcCondCopy =
MRI.createVirtualRegister(CondRC);
6245 : &AMDGPU::VReg_64RegClass;
6248 : &AMDGPU::VReg_64RegClass;
6251 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
6253 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
6256 MI,
MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
6258 MI,
MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
6261 MI,
MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
6263 MI,
MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
6284 MI.eraseFromParent();
6287 case AMDGPU::SI_BR_UNDEF: {
6289 .
add(
MI.getOperand(0));
6291 MI.eraseFromParent();
6294 case AMDGPU::ADJCALLSTACKUP:
6295 case AMDGPU::ADJCALLSTACKDOWN: {
6302 case AMDGPU::SI_CALL_ISEL: {
6303 unsigned ReturnAddrReg =
TII->getRegisterInfo().getReturnAddressReg(*MF);
6306 MIB =
BuildMI(*BB,
MI,
DL,
TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
6312 MI.eraseFromParent();
6315 case AMDGPU::V_ADD_CO_U32_e32:
6316 case AMDGPU::V_SUB_CO_U32_e32:
6317 case AMDGPU::V_SUBREV_CO_U32_e32: {
6319 unsigned Opc =
MI.getOpcode();
6321 bool NeedClampOperand =
false;
6322 if (
TII->pseudoToMCOpcode(
Opc) == -1) {
6324 NeedClampOperand =
true;
6328 if (
TII->isVOP3(*
I)) {
6331 I.add(
MI.getOperand(1)).add(
MI.getOperand(2));
6332 if (NeedClampOperand)
6335 TII->legalizeOperands(*
I);
6337 MI.eraseFromParent();
6340 case AMDGPU::V_ADDC_U32_e32:
6341 case AMDGPU::V_SUBB_U32_e32:
6342 case AMDGPU::V_SUBBREV_U32_e32:
6345 TII->legalizeOperands(
MI);
6347 case AMDGPU::DS_GWS_INIT:
6348 case AMDGPU::DS_GWS_SEMA_BR:
6349 case AMDGPU::DS_GWS_BARRIER:
6350 TII->enforceOperandRCAlignment(
MI, AMDGPU::OpName::data0);
6352 case AMDGPU::DS_GWS_SEMA_V:
6353 case AMDGPU::DS_GWS_SEMA_P:
6354 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
6362 case AMDGPU::S_SETREG_B32: {
6378 const unsigned SetMask = WidthMask <<
Offset;
6381 unsigned SetDenormOp = 0;
6382 unsigned SetRoundOp = 0;
6390 SetRoundOp = AMDGPU::S_ROUND_MODE;
6391 SetDenormOp = AMDGPU::S_DENORM_MODE;
6393 SetRoundOp = AMDGPU::S_ROUND_MODE;
6395 SetDenormOp = AMDGPU::S_DENORM_MODE;
6398 if (SetRoundOp || SetDenormOp) {
6400 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
6401 unsigned ImmVal = Def->getOperand(1).getImm();
6415 MI.eraseFromParent();
6424 MI.setDesc(
TII->get(AMDGPU::S_SETREG_B32_mode));
6428 case AMDGPU::S_INVERSE_BALLOT_U32:
6429 case AMDGPU::S_INVERSE_BALLOT_U64:
6432 MI.setDesc(
TII->get(AMDGPU::COPY));
6434 case AMDGPU::ENDPGM_TRAP: {
6436 MI.setDesc(
TII->get(AMDGPU::S_ENDPGM));
6456 MI.eraseFromParent();
6459 case AMDGPU::SIMULATED_TRAP: {
6460 assert(Subtarget->hasPrivEnabledTrap2NopBug());
6462 TII->insertSimulatedTrap(
MRI, *BB,
MI,
MI.getDebugLoc());
6463 MI.eraseFromParent();
6466 case AMDGPU::SI_TCRETURN_GFX_WholeWave:
6467 case AMDGPU::SI_WHOLE_WAVE_FUNC_RETURN: {
6473 assert(Setup &&
"Couldn't find SI_SETUP_WHOLE_WAVE_FUNC");
6474 Register OriginalExec = Setup->getOperand(0).getReg();
6476 MI.getOperand(0).setReg(OriginalExec);
6513 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
6517 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
6544 if (!Subtarget->hasMadMacF32Insts())
6545 return Subtarget->hasFastFMAF32();
6551 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
6554 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
6570 switch (Ty.getScalarSizeInBits()) {
6588 if (Ty.getScalarSizeInBits() == 16)
6590 if (Ty.getScalarSizeInBits() == 32)
6591 return Subtarget->hasMadMacF32Insts() &&
6601 EVT VT =
N->getValueType(0);
6603 return Subtarget->hasMadMacF32Insts() &&
6605 if (VT == MVT::f16) {
6606 return Subtarget->hasMadF16() &&
6621 unsigned Opc =
Op.getOpcode();
6622 EVT VT =
Op.getValueType();
6623 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16 ||
6624 VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 ||
6625 VT == MVT::v8bf16 || VT == MVT::v16i16 || VT == MVT::v16f16 ||
6626 VT == MVT::v16bf16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6627 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16 ||
6628 VT == MVT::v32bf16);
6644 [[maybe_unused]]
EVT VT =
Op.getValueType();
6646 assert((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v8i32 ||
6647 VT == MVT::v16i32) &&
6648 "Unexpected ValueType.");
6657 unsigned Opc =
Op.getOpcode();
6658 EVT VT =
Op.getValueType();
6659 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16 ||
6660 VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 ||
6661 VT == MVT::v8bf16 || VT == MVT::v16i16 || VT == MVT::v16f16 ||
6662 VT == MVT::v16bf16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6663 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16 ||
6664 VT == MVT::v32bf16);
6672 DAG.
getNode(
Opc, SL, Lo0.getValueType(), Lo0, Lo1,
Op->getFlags());
6674 DAG.
getNode(
Opc, SL, Hi0.getValueType(), Hi0, Hi1,
Op->getFlags());
6681 unsigned Opc =
Op.getOpcode();
6682 EVT VT =
Op.getValueType();
6683 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
6684 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
6685 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6686 VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 ||
6687 VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 ||
6688 VT == MVT::v32bf16);
6693 : std::pair(Op0, Op0);
6702 DAG.
getNode(
Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
Op->getFlags());
6704 DAG.
getNode(
Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
Op->getFlags());
6710 switch (
Op.getOpcode()) {
6714 return LowerBRCOND(
Op, DAG);
6716 return LowerRETURNADDR(
Op, DAG);
6719 assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) &&
6720 "Load should return a value and a chain");
6724 EVT VT =
Op.getValueType();
6726 return lowerFSQRTF32(
Op, DAG);
6728 return lowerFSQRTF64(
Op, DAG);
6733 return LowerTrig(
Op, DAG);
6735 return LowerSELECT(
Op, DAG);
6737 return LowerFDIV(
Op, DAG);
6739 return LowerFFREXP(
Op, DAG);
6740 case ISD::ATOMIC_CMP_SWAP:
6741 return LowerATOMIC_CMP_SWAP(
Op, DAG);
6743 return LowerSTORE(
Op, DAG);
6747 return LowerGlobalAddress(MFI,
Op, DAG);
6750 return LowerINTRINSIC_WO_CHAIN(
Op, DAG);
6752 return LowerINTRINSIC_W_CHAIN(
Op, DAG);
6754 return LowerINTRINSIC_VOID(
Op, DAG);
6755 case ISD::ADDRSPACECAST:
6756 return lowerADDRSPACECAST(
Op, DAG);
6758 return lowerINSERT_SUBVECTOR(
Op, DAG);
6760 return lowerINSERT_VECTOR_ELT(
Op, DAG);
6762 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
6764 return lowerVECTOR_SHUFFLE(
Op, DAG);
6766 return lowerSCALAR_TO_VECTOR(
Op, DAG);
6768 return lowerBUILD_VECTOR(
Op, DAG);
6771 return lowerFP_ROUND(
Op, DAG);
6773 return lowerTRAP(
Op, DAG);
6774 case ISD::DEBUGTRAP:
6775 return lowerDEBUGTRAP(
Op, DAG);
6784 return lowerFMINNUM_FMAXNUM(
Op, DAG);
6785 case ISD::FMINIMUMNUM:
6786 case ISD::FMAXIMUMNUM:
6787 return lowerFMINIMUMNUM_FMAXIMUMNUM(
Op, DAG);
6790 return lowerFMINIMUM_FMAXIMUM(
Op, DAG);
6793 return lowerFLDEXP(
Op, DAG);
6810 case ISD::FMINNUM_IEEE:
6811 case ISD::FMAXNUM_IEEE:
6818 return lowerFCOPYSIGN(
Op, DAG);
6820 return lowerMUL(
Op, DAG);
6823 return lowerXMULO(
Op, DAG);
6826 return lowerXMUL_LOHI(
Op, DAG);
6827 case ISD::DYNAMIC_STACKALLOC:
6829 case ISD::STACKSAVE:
6833 case ISD::SET_ROUNDING:
6837 case ISD::FP_EXTEND:
6840 case ISD::GET_FPENV:
6842 case ISD::SET_FPENV:
6861 EVT FittingLoadVT = LoadVT;
6886 return DAG.
getNode(ISD::BITCAST,
DL, FittingLoadVT, Result);
6890 return DAG.
getNode(ISD::BITCAST,
DL, FittingLoadVT, Result);
6893SDValue SITargetLowering::adjustLoadValueType(
unsigned Opcode,
MemSDNode *M,
6896 bool IsIntrinsic)
const {
6899 bool Unpacked = Subtarget->hasUnpackedD16VMem();
6900 EVT LoadVT =
M->getValueType(0);
6902 EVT EquivLoadVT = LoadVT;
6916 SDVTList VTList = DAG.
getVTList(EquivLoadVT, MVT::Other);
6920 M->getMemoryVT(),
M->getMemOperand());
6931 EVT LoadVT =
M->getValueType(0);
6937 assert(
M->getNumValues() == 2 ||
M->getNumValues() == 3);
6938 bool IsTFE =
M->getNumValues() == 3;
6951 return handleByteShortBufferLoads(DAG, LoadVT,
DL,
Ops,
M->getMemOperand(),
6955 return getMemIntrinsicNode(
Opc,
DL,
M->getVTList(),
Ops, IntVT,
6956 M->getMemOperand(), DAG);
6960 SDVTList VTList = DAG.
getVTList(CastVT, MVT::Other);
6962 M->getMemOperand(), DAG);
6970 EVT VT =
N->getValueType(0);
6971 unsigned CondCode =
N->getConstantOperandVal(3);
6982 EVT CmpVT =
LHS.getValueType();
6983 if (CmpVT == MVT::i16 && !TLI.
isTypeLegal(MVT::i16)) {
6984 unsigned PromoteOp =
7004 EVT VT =
N->getValueType(0);
7006 unsigned CondCode =
N->getConstantOperandVal(3);
7015 if (CmpVT == MVT::f16 && !TLI.
isTypeLegal(CmpVT)) {
7016 Src0 = DAG.
getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7017 Src1 = DAG.
getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7033 EVT VT =
N->getValueType(0);
7040 Src.getOperand(1), Src.getOperand(2));
7051 Exec = AMDGPU::EXEC_LO;
7053 Exec = AMDGPU::EXEC;
7070 EVT VT =
N->getValueType(0);
7072 unsigned IID =
N->getConstantOperandVal(0);
7073 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
7074 IID == Intrinsic::amdgcn_permlanex16;
7075 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
7076 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
7080 unsigned SplitSize = 32;
7081 if (IID == Intrinsic::amdgcn_update_dpp && (ValSize % 64 == 0) &&
7082 ST->hasDPALU_DPP() &&
7090 case Intrinsic::amdgcn_permlane16:
7091 case Intrinsic::amdgcn_permlanex16:
7092 case Intrinsic::amdgcn_update_dpp:
7097 case Intrinsic::amdgcn_writelane:
7100 case Intrinsic::amdgcn_readlane:
7101 case Intrinsic::amdgcn_set_inactive:
7102 case Intrinsic::amdgcn_set_inactive_chain_arg:
7103 case Intrinsic::amdgcn_mov_dpp8:
7106 case Intrinsic::amdgcn_readfirstlane:
7107 case Intrinsic::amdgcn_permlane64:
7115 std::reverse(Operands.
begin(), Operands.
end());
7117 if (
SDNode *GL =
N->getGluedNode()) {
7118 assert(GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
7119 GL = GL->getOperand(0).getNode();
7129 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
7130 IID == Intrinsic::amdgcn_mov_dpp8 ||
7131 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
7132 Src1 =
N->getOperand(2);
7133 if (IID == Intrinsic::amdgcn_writelane ||
7134 IID == Intrinsic::amdgcn_update_dpp || IsPermLane16)
7135 Src2 =
N->getOperand(3);
7138 if (ValSize == SplitSize) {
7148 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
7153 if (IID == Intrinsic::amdgcn_writelane) {
7158 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, MVT::i32);
7160 return IsFloat ? DAG.
getBitcast(VT, Trunc) : Trunc;
7163 if (ValSize % SplitSize != 0)
7167 EVT VT =
N->getValueType(0);
7171 unsigned NumOperands =
N->getNumOperands();
7173 SDNode *GL =
N->getGluedNode();
7178 for (
unsigned i = 0; i != NE; ++i) {
7179 for (
unsigned j = 0, e = GL ? NumOperands - 1 : NumOperands; j != e;
7181 SDValue Operand =
N->getOperand(j);
7190 Operands[j] = Operand;
7195 Operands[NumOperands - 1] =
7196 DAG.
getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue,
7211 if (SplitSize == 32) {
7213 return unrollLaneOp(LaneOp.
getNode());
7219 unsigned SubVecNumElt =
7223 SDValue Src0SubVec, Src1SubVec, Src2SubVec;
7224 for (
unsigned i = 0, EltIdx = 0; i < ValSize / SplitSize; i++) {
7228 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive ||
7233 if (IID == Intrinsic::amdgcn_writelane)
7238 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16
7239 ? createLaneOp(Src0SubVec, Src1SubVec, Src2, SubVecVT)
7240 : createLaneOp(Src0SubVec, Src1, Src2SubVec, SubVecVT));
7241 EltIdx += SubVecNumElt;
7255 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
7258 if (IID == Intrinsic::amdgcn_writelane)
7261 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VecVT);
7269 switch (
N->getOpcode()) {
7281 unsigned IID =
N->getConstantOperandVal(0);
7283 case Intrinsic::amdgcn_make_buffer_rsrc:
7284 Results.push_back(lowerPointerAsRsrcIntrin(
N, DAG));
7286 case Intrinsic::amdgcn_cvt_pkrtz: {
7292 Results.push_back(DAG.
getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
7295 case Intrinsic::amdgcn_cvt_pknorm_i16:
7296 case Intrinsic::amdgcn_cvt_pknorm_u16:
7297 case Intrinsic::amdgcn_cvt_pk_i16:
7298 case Intrinsic::amdgcn_cvt_pk_u16: {
7304 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
7306 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
7308 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
7313 EVT VT =
N->getValueType(0);
7318 Results.push_back(DAG.
getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
7322 case Intrinsic::amdgcn_s_buffer_load: {
7328 if (!Subtarget->hasScalarSubwordLoads())
7334 EVT VT =
Op.getValueType();
7335 assert(VT == MVT::i8 &&
"Expected 8-bit s_buffer_load intrinsics.\n");
7347 if (!
Offset->isDivergent()) {
7366 LoadVal = handleByteShortBufferLoads(DAG, VT,
DL,
Ops, MMO);
7371 case Intrinsic::amdgcn_dead: {
7372 for (
unsigned I = 0, E =
N->getNumValues();
I < E; ++
I)
7383 for (
unsigned I = 0;
I < Res.getNumOperands();
I++) {
7384 Results.push_back(Res.getOperand(
I));
7388 Results.push_back(Res.getValue(1));
7397 EVT VT =
N->getValueType(0);
7402 EVT SelectVT = NewVT;
7403 if (NewVT.
bitsLT(MVT::i32)) {
7406 SelectVT = MVT::i32;
7412 if (NewVT != SelectVT)
7418 if (
N->getValueType(0) != MVT::v2f16)
7422 SDValue BC = DAG.
getNode(ISD::BITCAST, SL, MVT::i32,
N->getOperand(0));
7430 if (
N->getValueType(0) != MVT::v2f16)
7434 SDValue BC = DAG.
getNode(ISD::BITCAST, SL, MVT::i32,
N->getOperand(0));
7442 if (
N->getValueType(0) != MVT::f16)
7457 if (U.get() !=
Value)
7460 if (U.getUser()->getOpcode() == Opcode)
7466unsigned SITargetLowering::isCFIntrinsic(
const SDNode *Intr)
const {
7469 case Intrinsic::amdgcn_if:
7471 case Intrinsic::amdgcn_else:
7473 case Intrinsic::amdgcn_loop:
7475 case Intrinsic::amdgcn_end_cf:
7495 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS())
7522 SDNode *Intr = BRCOND.getOperand(1).getNode();
7539 Intr =
LHS.getNode();
7547 assert(BR &&
"brcond missing unconditional branch user");
7552 unsigned CFNode = isCFIntrinsic(Intr);
7572 Ops.push_back(Target);
7595 for (
unsigned i = 1, e = Intr->
getNumValues() - 1; i != e; ++i) {
7614 MVT VT =
Op.getSimpleValueType();
7617 if (
Op.getConstantOperandVal(0) != 0)
7621 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
7623 if (
Info->isEntryFunction())
7640 return Op.getValueType().bitsLE(VT)
7648 EVT DstVT =
Op.getValueType();
7655 unsigned Opc =
Op.getOpcode();
7667 EVT SrcVT = Src.getValueType();
7668 EVT DstVT =
Op.getValueType();
7671 assert(Subtarget->hasCvtPkF16F32Inst() &&
"support v_cvt_pk_f16_f32");
7674 return SrcVT == MVT::v2f32 ?
Op : splitFP_ROUNDVectorOp(
Op, DAG);
7681 if (DstVT == MVT::f16) {
7686 if (!Subtarget->has16BitInsts()) {
7689 return DAG.
getNode(ISD::BITCAST,
DL, MVT::f16, Trunc);
7691 if (
Op->getFlags().hasApproximateFuncs()) {
7698 return DAG.
getNode(ISD::BITCAST,
DL, MVT::f16, Trunc);
7702 "custom lower FP_ROUND for f16 or bf16");
7703 assert(Subtarget->hasBF16ConversionInsts() &&
"f32 -> bf16 is legal");
7716 EVT VT =
Op.getValueType();
7718 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
7719 bool IsIEEEMode =
Info->getMode().IEEE;
7728 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
7735SITargetLowering::lowerFMINIMUMNUM_FMAXIMUMNUM(
SDValue Op,
7737 EVT VT =
Op.getValueType();
7739 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
7740 bool IsIEEEMode =
Info->getMode().IEEE;
7745 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
7753 EVT VT =
Op.getValueType();
7757 assert(!Subtarget->hasIEEEMinimumMaximumInsts() &&
7758 !Subtarget->hasMinimum3Maximum3F16() &&
7759 Subtarget->hasMinimum3Maximum3PKF16() && VT == MVT::f16 &&
7760 "should not need to widen f16 minimum/maximum to v2f16");
7774 DAG.
getNode(
Op.getOpcode(), SL, MVT::v2f16, WideSrc0, WideSrc1);
7782 EVT VT =
Op.getValueType();
7786 EVT ExpVT =
Exp.getValueType();
7787 if (ExpVT == MVT::i16)
7808 {
Op.getOperand(0),
Op.getOperand(1), TruncExp});
7811 return DAG.
getNode(ISD::FLDEXP,
DL, VT,
Op.getOperand(0), TruncExp);
7815 switch (
Op->getOpcode()) {
7845 DAGCombinerInfo &DCI)
const {
7846 const unsigned Opc =
Op.getOpcode();
7854 :
Op->getOperand(0).getValueType();
7857 if (DCI.isBeforeLegalizeOps() ||
7861 auto &DAG = DCI.DAG;
7867 LHS =
Op->getOperand(1);
7868 RHS =
Op->getOperand(2);
7870 LHS =
Op->getOperand(0);
7871 RHS =
Op->getOperand(1);
7910 if (MagVT == SignVT)
7917 SDValue SignAsInt32 = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i32, Sign);
7920 SDValue SignAsHalf16 = DAG.
getNode(ISD::BITCAST, SL, MagVT, SignAsInt16);
7927 EVT VT =
Op.getValueType();
7933 assert(VT == MVT::i64 &&
"The following code is a special for s_mul_u64");
7960 if (
Op->isDivergent())
7973 if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32)
7975 DAG.
getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0);
7978 if (Op0SignBits >= 33 && Op1SignBits >= 33)
7980 DAG.
getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0);
7986 EVT VT =
Op.getValueType();
7993 const APInt &
C = RHSC->getAPIntValue();
7995 if (
C.isPowerOf2()) {
7997 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
8024 if (
Op->isDivergent()) {
8028 if (Subtarget->hasSMulHi()) {
8039 if (!Subtarget->isTrapHandlerEnabled() ||
8041 return lowerTrapEndpgm(
Op, DAG);
8043 return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(
Op, DAG)
8044 : lowerTrapHsaQueuePtr(
Op, DAG);
8054SITargetLowering::loadImplicitKernelArgument(
SelectionDAG &DAG,
MVT VT,
8056 ImplicitParameter Param)
const {
8076 loadImplicitKernelArgument(DAG, MVT::i64, SL,
Align(8),
QUEUE_PTR);
8079 SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
8082 if (UserSGPR == AMDGPU::NoRegister) {
8108 if (Subtarget->hasPrivEnabledTrap2NopBug())
8121 if (!Subtarget->isTrapHandlerEnabled() ||
8125 "debugtrap handler not supported",
8136SDValue SITargetLowering::getSegmentAperture(
unsigned AS,
const SDLoc &
DL,
8138 if (Subtarget->hasApertureRegs()) {
8140 ? AMDGPU::SRC_SHARED_BASE
8141 : AMDGPU::SRC_PRIVATE_BASE;
8142 assert((ApertureRegNo != AMDGPU::SRC_PRIVATE_BASE ||
8143 !Subtarget->hasGloballyAddressableScratch()) &&
8144 "Cannot use src_private_base with globally addressable scratch!");
8165 return loadImplicitKernelArgument(DAG, MVT::i32,
DL,
Align(4), Param);
8169 SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
8171 if (UserSGPR == AMDGPU::NoRegister) {
8205 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
8216 const AMDGPUTargetMachine &TM =
8219 unsigned DestAS, SrcAS;
8221 bool IsNonNull =
false;
8223 SrcAS = ASC->getSrcAddressSpace();
8224 Src = ASC->getOperand(0);
8225 DestAS = ASC->getDestAddressSpace();
8228 Op.getConstantOperandVal(0) ==
8229 Intrinsic::amdgcn_addrspacecast_nonnull);
8230 Src =
Op->getOperand(1);
8231 SrcAS =
Op->getConstantOperandVal(2);
8232 DestAS =
Op->getConstantOperandVal(3);
8245 Subtarget->hasGloballyAddressableScratch()) {
8250 AMDGPU::S_MOV_B32, SL, MVT::i32,
8251 DAG.
getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE_LO, MVT::i32)),
8259 unsigned NullVal = TM.getNullPointerValue(DestAS);
8274 Subtarget->hasGloballyAddressableScratch()) {
8283 if (Subtarget->isWave64())
8289 57 - 32 - Subtarget->getWavefrontSizeLog2(), MVT::i32, SL);
8292 CvtPtr = DAG.
getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
8297 AMDGPU::S_MOV_B64, SL, MVT::i64,
8298 DAG.
getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE, MVT::i64)),
8300 CvtPtr = DAG.
getNode(
ISD::ADD, SL, MVT::i64, CvtPtr, FlatScratchBase);
8302 SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG);
8304 CvtPtr = DAG.
getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
8310 unsigned NullVal = TM.getNullPointerValue(SrcAS);
8322 Op.getValueType() == MVT::i64) {
8323 const SIMachineFunctionInfo *
Info =
8327 return DAG.
getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8331 Src.getValueType() == MVT::i64)
8351 EVT InsVT =
Ins.getValueType();
8359 assert(InsNumElts % 2 == 0 &&
"expect legal vector types");
8364 EVT NewInsVT = InsNumElts == 2 ? MVT::i32
8366 MVT::i32, InsNumElts / 2);
8368 Vec = DAG.
getNode(ISD::BITCAST, SL, NewVecVT, Vec);
8369 Ins = DAG.
getNode(ISD::BITCAST, SL, NewInsVT, Ins);
8371 for (
unsigned I = 0;
I != InsNumElts / 2; ++
I) {
8373 if (InsNumElts == 2) {
8383 return DAG.
getNode(ISD::BITCAST, SL, VecVT, Vec);
8386 for (
unsigned I = 0;
I != InsNumElts; ++
I) {
8409 if (NumElts == 4 && EltSize == 16 && KIdx) {
8417 SDValue LoVec = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
8418 SDValue HiVec = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
8420 unsigned Idx = KIdx->getZExtValue();
8421 bool InsertLo = Idx < 2;
8424 DAG.
getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
8425 DAG.
getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
8427 InsHalf = DAG.
getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
8431 : DAG.getBuildVector(MVT::v2i32, SL, {LoHalf, InsHalf});
8444 assert(VecSize <= 64 &&
"Expected target vector size to be <= 64 bits");
8472 return DAG.
getNode(ISD::BITCAST, SL, VecVT, BFI);
8479 EVT ResultVT =
Op.getValueType();
8492 if (
SDValue Combined = performExtractVectorEltCombine(
Op.getNode(), DCI))
8495 if (VecSize == 128 || VecSize == 256 || VecSize == 512) {
8499 if (VecSize == 128) {
8507 }
else if (VecSize == 256) {
8510 for (
unsigned P = 0;
P < 4; ++
P) {
8516 Parts[0], Parts[1]));
8518 Parts[2], Parts[3]));
8524 for (
unsigned P = 0;
P < 8; ++
P) {
8531 Parts[0], Parts[1], Parts[2], Parts[3]));
8534 Parts[4], Parts[5], Parts[6], Parts[7]));
8554 Src = DAG.
getBitcast(Src.getValueType().changeTypeToInteger(), Src);
8569 if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) {
8571 return DAG.
getNode(ISD::BITCAST, SL, ResultVT, Result);
8579 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
8584 return Mask[Elt] >= 0 && Mask[Elt + 1] >= 0 && (Mask[Elt] & 1) &&
8585 !(Mask[Elt + 1] & 1);
8591 EVT ResultVT =
Op.getValueType();
8594 const int NewSrcNumElts = 2;
8596 int SrcNumElts =
Op.getOperand(0).getValueType().getVectorNumElements();
8612 const bool ShouldUseConsecutiveExtract = EltVT.
getSizeInBits() == 16;
8634 if (ShouldUseConsecutiveExtract &&
8637 int VecIdx = Idx < SrcNumElts ? 0 : 1;
8638 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
8650 if (Idx0 >= SrcNumElts) {
8655 if (Idx1 >= SrcNumElts) {
8660 int AlignedIdx0 = Idx0 & ~(NewSrcNumElts - 1);
8661 int AlignedIdx1 = Idx1 & ~(NewSrcNumElts - 1);
8669 int NewMaskIdx0 = Idx0 - AlignedIdx0;
8670 int NewMaskIdx1 = Idx1 - AlignedIdx1;
8675 if (SubVec0 != SubVec1) {
8676 NewMaskIdx1 += NewSrcNumElts;
8683 {NewMaskIdx0, NewMaskIdx1});
8688 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
8689 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
8690 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
8691 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
8710 EVT ResultVT =
Op.getValueType();
8726 EVT VT =
Op.getValueType();
8728 if (VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16) {
8729 assert(!Subtarget->hasVOP3PInsts() &&
"this should be legal");
8738 return DAG.
getNode(ISD::BITCAST, SL, VT, ExtLo);
8747 return DAG.
getNode(ISD::BITCAST, SL, VT, ShlHi);
8754 return DAG.
getNode(ISD::BITCAST, SL, VT,
Or);
8763 for (
unsigned P = 0;
P < NumParts; ++
P) {
8765 PartVT, SL, {
Op.getOperand(
P * 2),
Op.getOperand(
P * 2 + 1)});
8771 return DAG.
getNode(ISD::BITCAST, SL, VT, Blend);
8784 if (!Subtarget->isAmdHsaOS())
8844 EVT PtrVT =
Op.getValueType();
8846 const GlobalValue *GV = GSD->
getGlobal();
8860 assert(PtrVT == MVT::i32 &&
"32-bit pointer is expected.");
8878 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) {
8879 if (Subtarget->has64BitLiterals()) {
8910 MachinePointerInfo PtrInfo =
8938 SDValue Param = lowerKernargMemParameter(
8949 "non-hsa intrinsic with hsa target",
DL.getDebugLoc()));
8957 "intrinsic not supported on subtarget",
DL.getDebugLoc()));
8965 unsigned NumElts = Elts.
size();
8967 if (NumElts <= 12) {
8976 for (
unsigned i = 0; i < Elts.
size(); ++i) {
8982 for (
unsigned i = Elts.
size(); i < NumElts; ++i)
8992 EVT SrcVT = Src.getValueType();
9013 bool Unpacked,
bool IsD16,
int DMaskPop,
9014 int NumVDataDwords,
bool IsAtomicPacked16Bit,
9018 EVT ReqRetVT = ResultTypes[0];
9020 int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit)
9021 ? (ReqRetNumElts + 1) / 2
9024 int MaskPopDwords = (!IsD16 || Unpacked) ? DMaskPop : (DMaskPop + 1) / 2;
9035 if (DMaskPop > 0 &&
Data.getValueType() != MaskPopVT) {
9046 if (DataDwordVT.
isVector() && !IsAtomicPacked16Bit)
9048 NumDataDwords - MaskPopDwords);
9053 EVT LegalReqRetVT = ReqRetVT;
9055 if (!
Data.getValueType().isInteger())
9057 Data.getValueType().changeTypeToInteger(),
Data);
9078 if (Result->getNumValues() == 1)
9085 SDValue *LWE,
bool &IsTexFail) {
9105 unsigned DimIdx,
unsigned EndIdx,
9106 unsigned NumGradients) {
9108 for (
unsigned I = DimIdx;
I < EndIdx;
I++) {
9116 if (((
I + 1) >= EndIdx) ||
9117 ((NumGradients / 2) % 2 == 1 && (
I == DimIdx + (NumGradients / 2) - 1 ||
9118 I == DimIdx + NumGradients - 1))) {
9137 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
9151 int NumVDataDwords = 0;
9152 bool AdjustRetType =
false;
9153 bool IsAtomicPacked16Bit =
false;
9156 const unsigned ArgOffset = WithChain ? 2 : 1;
9159 unsigned DMaskLanes = 0;
9161 if (BaseOpcode->Atomic) {
9162 VData =
Op.getOperand(2);
9164 IsAtomicPacked16Bit =
9165 (Intr->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
9166 Intr->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
9169 if (BaseOpcode->AtomicX2) {
9176 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
9177 DMask = Is64Bit ? 0xf : 0x3;
9178 NumVDataDwords = Is64Bit ? 4 : 2;
9180 DMask = Is64Bit ? 0x3 : 0x1;
9181 NumVDataDwords = Is64Bit ? 2 : 1;
9184 DMask =
Op->getConstantOperandVal(ArgOffset + Intr->
DMaskIndex);
9187 if (BaseOpcode->Store) {
9188 VData =
Op.getOperand(2);
9192 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
9196 VData = handleD16VData(VData, DAG,
true);
9199 NumVDataDwords = (VData.
getValueType().getSizeInBits() + 31) / 32;
9200 }
else if (!BaseOpcode->NoReturn) {
9205 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
9213 (!LoadVT.
isVector() && DMaskLanes > 1))
9219 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
9220 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
9221 NumVDataDwords = (DMaskLanes + 1) / 2;
9223 NumVDataDwords = DMaskLanes;
9225 AdjustRetType =
true;
9229 unsigned VAddrEnd = ArgOffset + Intr->
VAddrEnd;
9236 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
9237 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
9239 VAddrVT =
Op.getOperand(ArgOffset + Intr->
CoordStart).getSimpleValueType();
9241 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
9242 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
9246 if (IsA16 && (
Op.getOperand(ArgOffset +
I).getValueType() == MVT::f16)) {
9252 {
Op.getOperand(ArgOffset +
I), DAG.
getPOISON(MVT::f16)});
9256 "Bias needs to be converted to 16 bit in A16 mode");
9261 if (BaseOpcode->Gradients && !
ST->hasG16() && (IsA16 != IsG16)) {
9265 dbgs() <<
"Failed to lower image intrinsic: 16 bit addresses "
9266 "require 16 bit args for both gradients and addresses");
9271 if (!
ST->hasA16()) {
9272 LLVM_DEBUG(
dbgs() <<
"Failed to lower image intrinsic: Target does not "
9273 "support 16 bit addresses\n");
9283 if (BaseOpcode->Gradients && IsG16 &&
ST->hasG16()) {
9285 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
9287 IntrOpcode = G16MappingInfo->
G16;
9310 for (
unsigned I = ArgOffset + Intr->
CoordStart;
I < VAddrEnd;
I++)
9328 const unsigned NSAMaxSize =
ST->getNSAMaxSize(BaseOpcode->Sampler);
9329 const bool HasPartialNSAEncoding =
ST->hasPartialNSAEncoding();
9330 const bool UseNSA =
ST->hasNSAEncoding() &&
9331 VAddrs.
size() >=
ST->getNSAThreshold(MF) &&
9332 (VAddrs.
size() <= NSAMaxSize || HasPartialNSAEncoding);
9333 const bool UsePartialNSA =
9334 UseNSA && HasPartialNSAEncoding && VAddrs.
size() > NSAMaxSize;
9337 if (UsePartialNSA) {
9339 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
9340 }
else if (!UseNSA) {
9347 if (!BaseOpcode->Sampler) {
9350 uint64_t UnormConst =
9351 Op.getConstantOperandVal(ArgOffset + Intr->
UnormIndex);
9353 Unorm = UnormConst ? True : False;
9359 bool IsTexFail =
false;
9360 if (!
parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
9371 NumVDataDwords += 1;
9372 AdjustRetType =
true;
9377 if (AdjustRetType) {
9380 if (DMaskLanes == 0 && !BaseOpcode->Store) {
9389 MVT::i32, NumVDataDwords)
9392 ResultTypes[0] = NewVT;
9393 if (ResultTypes.size() == 3) {
9397 ResultTypes.erase(&ResultTypes[1]);
9402 if (BaseOpcode->Atomic)
9409 if (BaseOpcode->Store || BaseOpcode->Atomic)
9410 Ops.push_back(VData);
9411 if (UsePartialNSA) {
9413 Ops.push_back(VAddr);
9417 Ops.push_back(VAddr);
9420 if (RsrcVT != MVT::v4i32 && RsrcVT != MVT::v8i32)
9422 Ops.push_back(Rsrc);
9423 if (BaseOpcode->Sampler) {
9427 Ops.push_back(Samp);
9432 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
9433 Ops.push_back(Unorm);
9435 Ops.push_back(IsA16 &&
9436 ST->hasFeature(AMDGPU::FeatureR128A16)
9440 Ops.push_back(IsA16 ? True : False);
9442 if (!Subtarget->hasGFX90AInsts())
9447 "TFE is not supported on this GPU",
DL.getDebugLoc()));
9450 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
9453 Ops.push_back(DimInfo->
DA ? True : False);
9454 if (BaseOpcode->HasD16)
9455 Ops.push_back(IsD16 ? True : False);
9457 Ops.push_back(
Op.getOperand(0));
9459 int NumVAddrDwords =
9465 NumVDataDwords, NumVAddrDwords);
9466 }
else if (IsGFX11Plus) {
9468 UseNSA ? AMDGPU::MIMGEncGfx11NSA
9469 : AMDGPU::MIMGEncGfx11Default,
9470 NumVDataDwords, NumVAddrDwords);
9471 }
else if (IsGFX10Plus) {
9473 UseNSA ? AMDGPU::MIMGEncGfx10NSA
9474 : AMDGPU::MIMGEncGfx10Default,
9475 NumVDataDwords, NumVAddrDwords);
9477 if (Subtarget->hasGFX90AInsts()) {
9479 NumVDataDwords, NumVAddrDwords);
9483 "requested image instruction is not supported on this GPU",
9488 for (EVT VT : OrigResultTypes) {
9489 if (VT == MVT::Other)
9490 RetValues[Idx++] =
Op.getOperand(0);
9501 NumVDataDwords, NumVAddrDwords);
9504 NumVDataDwords, NumVAddrDwords);
9511 MachineMemOperand *MemRef = MemOp->getMemOperand();
9515 if (BaseOpcode->AtomicX2) {
9520 if (BaseOpcode->NoReturn)
9523 Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes,
9524 NumVDataDwords, IsAtomicPacked16Bit,
DL);
9537 MachinePointerInfo(),
9542 if (!
Offset->isDivergent()) {
9549 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
9558 !Subtarget->hasScalarDwordx3Loads()) {
9585 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
9587 return handleByteShortBufferLoads(DAG, VT,
DL,
Ops, MMO);
9591 unsigned NumLoads = 1;
9597 if (NumElts == 8 || NumElts == 16) {
9598 NumLoads = NumElts / 4;
9602 SDVTList VTList = DAG.
getVTList({LoadVT, MVT::Other});
9607 NumLoads > 1 ?
Align(16 * NumLoads) :
Align(4));
9609 uint64_t InstOffset =
Ops[5]->getAsZExtVal();
9610 for (
unsigned i = 0; i < NumLoads; ++i) {
9616 if (NumElts == 8 || NumElts == 16)
9624 if (!Subtarget->hasArchitectedSGPRs())
9636 unsigned Width)
const {
9638 using namespace AMDGPU::Hwreg;
9640 AMDGPU::S_GETREG_B32_const, SL, MVT::i32,
9679 auto *MFI = MF.
getInfo<SIMachineFunctionInfo>();
9681 EVT VT =
Op.getValueType();
9683 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
9687 switch (IntrinsicID) {
9688 case Intrinsic::amdgcn_implicit_buffer_ptr: {
9691 return getPreloadedValue(DAG, *MFI, VT,
9694 case Intrinsic::amdgcn_dispatch_ptr:
9695 case Intrinsic::amdgcn_queue_ptr: {
9696 if (!Subtarget->isAmdHsaOrMesa(MF.
getFunction())) {
9698 MF.
getFunction(),
"unsupported hsa intrinsic without hsa target",
9703 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr
9706 return getPreloadedValue(DAG, *MFI, VT, RegID);
9708 case Intrinsic::amdgcn_implicitarg_ptr: {
9710 return getImplicitArgPtr(DAG,
DL);
9711 return getPreloadedValue(DAG, *MFI, VT,
9714 case Intrinsic::amdgcn_kernarg_segment_ptr: {
9720 return getPreloadedValue(DAG, *MFI, VT,
9723 case Intrinsic::amdgcn_dispatch_id: {
9726 case Intrinsic::amdgcn_rcp:
9728 case Intrinsic::amdgcn_rsq:
9730 case Intrinsic::amdgcn_rsq_legacy:
9734 case Intrinsic::amdgcn_rcp_legacy:
9738 case Intrinsic::amdgcn_rsq_clamp: {
9749 return DAG.
getNode(ISD::FMAXNUM,
DL, VT, Tmp,
9752 case Intrinsic::r600_read_ngroups_x:
9753 if (Subtarget->isAmdHsaOS())
9756 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
9759 case Intrinsic::r600_read_ngroups_y:
9760 if (Subtarget->isAmdHsaOS())
9763 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
9766 case Intrinsic::r600_read_ngroups_z:
9767 if (Subtarget->isAmdHsaOS())
9770 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
9773 case Intrinsic::r600_read_local_size_x:
9774 if (Subtarget->isAmdHsaOS())
9777 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
9779 case Intrinsic::r600_read_local_size_y:
9780 if (Subtarget->isAmdHsaOS())
9783 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
9785 case Intrinsic::r600_read_local_size_z:
9786 if (Subtarget->isAmdHsaOS())
9789 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
9791 case Intrinsic::amdgcn_workgroup_id_x:
9792 return lowerWorkGroupId(DAG, *MFI, VT,
9796 case Intrinsic::amdgcn_workgroup_id_y:
9797 return lowerWorkGroupId(DAG, *MFI, VT,
9801 case Intrinsic::amdgcn_workgroup_id_z:
9802 return lowerWorkGroupId(DAG, *MFI, VT,
9806 case Intrinsic::amdgcn_cluster_id_x:
9807 return Subtarget->hasClusters()
9808 ? getPreloadedValue(DAG, *MFI, VT,
9810 : DAG.getPOISON(VT);
9811 case Intrinsic::amdgcn_cluster_id_y:
9812 return Subtarget->hasClusters()
9813 ? getPreloadedValue(DAG, *MFI, VT,
9816 case Intrinsic::amdgcn_cluster_id_z:
9817 return Subtarget->hasClusters()
9818 ? getPreloadedValue(DAG, *MFI, VT,
9821 case Intrinsic::amdgcn_cluster_workgroup_id_x:
9822 return Subtarget->hasClusters()
9823 ? getPreloadedValue(
9827 case Intrinsic::amdgcn_cluster_workgroup_id_y:
9828 return Subtarget->hasClusters()
9829 ? getPreloadedValue(
9833 case Intrinsic::amdgcn_cluster_workgroup_id_z:
9834 return Subtarget->hasClusters()
9835 ? getPreloadedValue(
9839 case Intrinsic::amdgcn_cluster_workgroup_flat_id:
9840 return Subtarget->hasClusters()
9843 case Intrinsic::amdgcn_cluster_workgroup_max_id_x:
9844 return Subtarget->hasClusters()
9845 ? getPreloadedValue(
9849 case Intrinsic::amdgcn_cluster_workgroup_max_id_y:
9850 return Subtarget->hasClusters()
9851 ? getPreloadedValue(
9855 case Intrinsic::amdgcn_cluster_workgroup_max_id_z:
9856 return Subtarget->hasClusters()
9857 ? getPreloadedValue(
9861 case Intrinsic::amdgcn_cluster_workgroup_max_flat_id:
9862 return Subtarget->hasClusters()
9863 ? getPreloadedValue(
9867 case Intrinsic::amdgcn_wave_id:
9868 return lowerWaveID(DAG,
Op);
9869 case Intrinsic::amdgcn_lds_kernel_id: {
9871 return getLDSKernelId(DAG,
DL);
9872 return getPreloadedValue(DAG, *MFI, VT,
9875 case Intrinsic::amdgcn_workitem_id_x:
9876 return lowerWorkitemID(DAG,
Op, 0, MFI->getArgInfo().WorkItemIDX);
9877 case Intrinsic::amdgcn_workitem_id_y:
9878 return lowerWorkitemID(DAG,
Op, 1, MFI->getArgInfo().WorkItemIDY);
9879 case Intrinsic::amdgcn_workitem_id_z:
9880 return lowerWorkitemID(DAG,
Op, 2, MFI->getArgInfo().WorkItemIDZ);
9881 case Intrinsic::amdgcn_wavefrontsize:
9883 SDLoc(
Op), MVT::i32);
9884 case Intrinsic::amdgcn_s_buffer_load: {
9885 unsigned CPol =
Op.getConstantOperandVal(3);
9892 return lowerSBuffer(VT,
DL,
Op.getOperand(1),
Op.getOperand(2),
9893 Op.getOperand(3), DAG);
9895 case Intrinsic::amdgcn_fdiv_fast:
9896 return lowerFDIV_FAST(
Op, DAG);
9897 case Intrinsic::amdgcn_sin:
9900 case Intrinsic::amdgcn_cos:
9903 case Intrinsic::amdgcn_mul_u24:
9906 case Intrinsic::amdgcn_mul_i24:
9910 case Intrinsic::amdgcn_log_clamp: {
9916 case Intrinsic::amdgcn_fract:
9919 case Intrinsic::amdgcn_class:
9922 case Intrinsic::amdgcn_div_fmas:
9924 Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
9926 case Intrinsic::amdgcn_div_fixup:
9928 Op.getOperand(2),
Op.getOperand(3));
9930 case Intrinsic::amdgcn_div_scale: {
9943 SDValue Src0 =
Param->isAllOnes() ? Numerator : Denominator;
9946 Denominator, Numerator);
9948 case Intrinsic::amdgcn_icmp: {
9950 if (
Op.getOperand(1).getValueType() == MVT::i1 &&
9951 Op.getConstantOperandVal(2) == 0 &&
9956 case Intrinsic::amdgcn_fcmp: {
9959 case Intrinsic::amdgcn_ballot:
9961 case Intrinsic::amdgcn_fmed3:
9963 Op.getOperand(2),
Op.getOperand(3));
9964 case Intrinsic::amdgcn_fdot2:
9966 Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
9967 case Intrinsic::amdgcn_fmul_legacy:
9970 case Intrinsic::amdgcn_sffbh:
9972 case Intrinsic::amdgcn_sbfe:
9974 Op.getOperand(2),
Op.getOperand(3));
9975 case Intrinsic::amdgcn_ubfe:
9977 Op.getOperand(2),
Op.getOperand(3));
9978 case Intrinsic::amdgcn_cvt_pkrtz:
9979 case Intrinsic::amdgcn_cvt_pknorm_i16:
9980 case Intrinsic::amdgcn_cvt_pknorm_u16:
9981 case Intrinsic::amdgcn_cvt_pk_i16:
9982 case Intrinsic::amdgcn_cvt_pk_u16: {
9984 EVT VT =
Op.getValueType();
9987 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
9989 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
9991 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
9993 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
9999 return DAG.
getNode(Opcode,
DL, VT,
Op.getOperand(1),
Op.getOperand(2));
10002 DAG.
getNode(Opcode,
DL, MVT::i32,
Op.getOperand(1),
Op.getOperand(2));
10003 return DAG.
getNode(ISD::BITCAST,
DL, VT, Node);
10005 case Intrinsic::amdgcn_fmad_ftz:
10007 Op.getOperand(2),
Op.getOperand(3));
10009 case Intrinsic::amdgcn_if_break:
10011 Op->getOperand(1),
Op->getOperand(2)),
10014 case Intrinsic::amdgcn_groupstaticsize: {
10020 const GlobalValue *GV =
10026 case Intrinsic::amdgcn_is_shared:
10027 case Intrinsic::amdgcn_is_private: {
10030 DAG.
getNode(ISD::BITCAST,
DL, MVT::v2i32,
Op.getOperand(1));
10034 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared)
10038 Subtarget->hasGloballyAddressableScratch()) {
10041 AMDGPU::S_MOV_B32,
DL, MVT::i32,
10042 DAG.
getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE_HI, MVT::i32)),
10051 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
10054 case Intrinsic::amdgcn_perm:
10056 Op.getOperand(2),
Op.getOperand(3));
10057 case Intrinsic::amdgcn_reloc_constant: {
10067 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
10068 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
10069 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
10070 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
10071 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
10072 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
10073 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
10074 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
10075 if (
Op.getOperand(4).getValueType() == MVT::i32)
10081 Op.getOperand(0),
Op.getOperand(1),
Op.getOperand(2),
10082 Op.getOperand(3), IndexKeyi32);
10084 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_fp8:
10085 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_bf8:
10086 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_fp8:
10087 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_bf8:
10088 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_fp8:
10089 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_bf8:
10090 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_fp8:
10091 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_bf8: {
10092 if (
Op.getOperand(4).getValueType() == MVT::i64)
10098 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10099 Op.getOperand(3), IndexKeyi64, Op.getOperand(5),
10100 Op.getOperand(6)});
10102 case Intrinsic::amdgcn_swmmac_f16_16x16x64_f16:
10103 case Intrinsic::amdgcn_swmmac_bf16_16x16x64_bf16:
10104 case Intrinsic::amdgcn_swmmac_f32_16x16x64_bf16:
10105 case Intrinsic::amdgcn_swmmac_bf16f32_16x16x64_bf16:
10106 case Intrinsic::amdgcn_swmmac_f32_16x16x64_f16:
10107 case Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8: {
10108 EVT IndexKeyTy = IntrinsicID == Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8
10111 if (
Op.getOperand(6).getValueType() == IndexKeyTy)
10117 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10118 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
10119 IndexKey, Op.getOperand(7),
10120 Op.getOperand(8)});
10122 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
10123 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
10124 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
10125 if (
Op.getOperand(6).getValueType() == MVT::i32)
10131 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10132 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
10133 IndexKeyi32, Op.getOperand(7)});
10135 case Intrinsic::amdgcn_addrspacecast_nonnull:
10136 return lowerADDRSPACECAST(
Op, DAG);
10137 case Intrinsic::amdgcn_readlane:
10138 case Intrinsic::amdgcn_readfirstlane:
10139 case Intrinsic::amdgcn_writelane:
10140 case Intrinsic::amdgcn_permlane16:
10141 case Intrinsic::amdgcn_permlanex16:
10142 case Intrinsic::amdgcn_permlane64:
10143 case Intrinsic::amdgcn_set_inactive:
10144 case Intrinsic::amdgcn_set_inactive_chain_arg:
10145 case Intrinsic::amdgcn_mov_dpp8:
10146 case Intrinsic::amdgcn_update_dpp:
10148 case Intrinsic::amdgcn_dead: {
10150 for (
const EVT ValTy :
Op.getNode()->values())
10155 if (
const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
10157 return lowerImage(
Op, ImageDimIntr, DAG,
false);
10168 return DAG.
getRegister(AMDGPU::SGPR_NULL, MVT::i32);
10174 unsigned NewOpcode)
const {
10178 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
10179 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
10197 M->getMemOperand());
10202 unsigned NewOpcode)
const {
10206 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
10207 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
10225 M->getMemOperand());
10230 unsigned IntrID =
Op.getConstantOperandVal(1);
10234 case Intrinsic::amdgcn_ds_ordered_add:
10235 case Intrinsic::amdgcn_ds_ordered_swap: {
10240 unsigned IndexOperand =
M->getConstantOperandVal(7);
10241 unsigned WaveRelease =
M->getConstantOperandVal(8);
10242 unsigned WaveDone =
M->getConstantOperandVal(9);
10244 unsigned OrderedCountIndex = IndexOperand & 0x3f;
10245 IndexOperand &= ~0x3f;
10246 unsigned CountDw = 0;
10249 CountDw = (IndexOperand >> 24) & 0xf;
10250 IndexOperand &= ~(0xf << 24);
10252 if (CountDw < 1 || CountDw > 4) {
10255 Fn,
"ds_ordered_count: dword count must be between 1 and 4",
10256 DL.getDebugLoc()));
10261 if (IndexOperand) {
10264 Fn,
"ds_ordered_count: bad index operand",
DL.getDebugLoc()));
10267 if (WaveDone && !WaveRelease) {
10271 Fn,
"ds_ordered_count: wave_done requires wave_release",
10272 DL.getDebugLoc()));
10275 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
10276 unsigned ShaderType =
10278 unsigned Offset0 = OrderedCountIndex << 2;
10279 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
10282 Offset1 |= (CountDw - 1) << 6;
10285 Offset1 |= ShaderType << 2;
10287 unsigned Offset = Offset0 | (Offset1 << 8);
10294 M->getVTList(),
Ops,
M->getMemoryVT(),
10295 M->getMemOperand());
10297 case Intrinsic::amdgcn_raw_buffer_load:
10298 case Intrinsic::amdgcn_raw_ptr_buffer_load:
10299 case Intrinsic::amdgcn_raw_atomic_buffer_load:
10300 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
10301 case Intrinsic::amdgcn_raw_buffer_load_format:
10302 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
10303 const bool IsFormat =
10304 IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
10305 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
10307 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10308 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(3), DAG);
10322 return lowerIntrinsicLoad(M, IsFormat, DAG,
Ops);
10324 case Intrinsic::amdgcn_struct_buffer_load:
10325 case Intrinsic::amdgcn_struct_ptr_buffer_load:
10326 case Intrinsic::amdgcn_struct_buffer_load_format:
10327 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
10328 case Intrinsic::amdgcn_struct_atomic_buffer_load:
10329 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
10330 const bool IsFormat =
10331 IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
10332 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
10334 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10335 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
10350 case Intrinsic::amdgcn_raw_tbuffer_load:
10351 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
10353 EVT LoadVT =
Op.getValueType();
10354 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10355 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(3), DAG);
10374 Op->getVTList(),
Ops, LoadVT,
M->getMemOperand(),
10377 case Intrinsic::amdgcn_struct_tbuffer_load:
10378 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
10380 EVT LoadVT =
Op.getValueType();
10381 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10382 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
10401 Op->getVTList(),
Ops, LoadVT,
M->getMemOperand(),
10404 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
10405 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
10407 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
10408 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
10409 return lowerStructBufferAtomicIntrin(
Op, DAG,
10411 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
10412 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
10414 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
10415 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
10416 return lowerStructBufferAtomicIntrin(
Op, DAG,
10418 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
10419 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
10421 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
10422 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
10423 return lowerStructBufferAtomicIntrin(
Op, DAG,
10425 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
10426 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
10428 case Intrinsic::amdgcn_raw_buffer_atomic_add:
10429 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
10431 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
10432 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
10434 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
10435 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
10437 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
10438 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
10440 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
10441 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
10443 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
10444 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
10446 case Intrinsic::amdgcn_raw_buffer_atomic_and:
10447 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
10449 case Intrinsic::amdgcn_raw_buffer_atomic_or:
10450 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
10452 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
10453 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
10455 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
10456 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
10458 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
10459 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
10461 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
10462 return lowerRawBufferAtomicIntrin(
Op, DAG,
10464 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
10465 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
10466 return lowerStructBufferAtomicIntrin(
Op, DAG,
10468 case Intrinsic::amdgcn_struct_buffer_atomic_add:
10469 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
10471 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
10472 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
10474 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
10475 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
10476 return lowerStructBufferAtomicIntrin(
Op, DAG,
10478 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
10479 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
10480 return lowerStructBufferAtomicIntrin(
Op, DAG,
10482 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
10483 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
10484 return lowerStructBufferAtomicIntrin(
Op, DAG,
10486 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
10487 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
10488 return lowerStructBufferAtomicIntrin(
Op, DAG,
10490 case Intrinsic::amdgcn_struct_buffer_atomic_and:
10491 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
10493 case Intrinsic::amdgcn_struct_buffer_atomic_or:
10494 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
10496 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
10497 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
10499 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
10500 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
10502 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
10503 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
10505 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
10506 return lowerStructBufferAtomicIntrin(
Op, DAG,
10509 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
10510 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
10511 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(4), DAG);
10512 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
10526 EVT VT =
Op.getValueType();
10530 Op->getVTList(),
Ops, VT,
10531 M->getMemOperand());
10533 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
10534 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
10535 SDValue Rsrc = bufferRsrcPtrToVector(
Op->getOperand(4), DAG);
10536 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(6), DAG);
10550 EVT VT =
Op.getValueType();
10554 Op->getVTList(),
Ops, VT,
10555 M->getMemOperand());
10557 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
10558 case Intrinsic::amdgcn_image_bvh8_intersect_ray: {
10560 SDValue NodePtr =
M->getOperand(2);
10561 SDValue RayExtent =
M->getOperand(3);
10562 SDValue InstanceMask =
M->getOperand(4);
10563 SDValue RayOrigin =
M->getOperand(5);
10564 SDValue RayDir =
M->getOperand(6);
10566 SDValue TDescr =
M->getOperand(8);
10571 if (!Subtarget->hasBVHDualAndBVH8Insts()) {
10576 bool IsBVH8 = IntrID == Intrinsic::amdgcn_image_bvh8_intersect_ray;
10577 const unsigned NumVDataDwords = 10;
10578 const unsigned NumVAddrDwords = IsBVH8 ? 11 : 12;
10580 IsBVH8 ? AMDGPU::IMAGE_BVH8_INTERSECT_RAY
10581 : AMDGPU::IMAGE_BVH_DUAL_INTERSECT_RAY,
10582 AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords);
10586 Ops.push_back(NodePtr);
10589 {DAG.getBitcast(MVT::i32, RayExtent),
10590 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, InstanceMask)}));
10591 Ops.push_back(RayOrigin);
10592 Ops.push_back(RayDir);
10593 Ops.push_back(Offsets);
10594 Ops.push_back(TDescr);
10595 Ops.push_back(
M->getChain());
10598 MachineMemOperand *MemRef =
M->getMemOperand();
10602 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
10604 SDValue NodePtr =
M->getOperand(2);
10605 SDValue RayExtent =
M->getOperand(3);
10606 SDValue RayOrigin =
M->getOperand(4);
10607 SDValue RayDir =
M->getOperand(5);
10608 SDValue RayInvDir =
M->getOperand(6);
10609 SDValue TDescr =
M->getOperand(7);
10616 if (!Subtarget->hasGFX10_AEncoding()) {
10626 const unsigned NumVDataDwords = 4;
10627 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
10628 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
10629 const bool UseNSA = (Subtarget->hasNSAEncoding() &&
10632 const unsigned BaseOpcodes[2][2] = {
10633 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
10634 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
10635 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
10639 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
10640 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
10641 : AMDGPU::MIMGEncGfx10NSA,
10642 NumVDataDwords, NumVAddrDwords);
10646 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
10647 : AMDGPU::MIMGEncGfx10Default,
10648 NumVDataDwords, NumVAddrDwords);
10654 auto packLanes = [&DAG, &
Ops, &
DL](
SDValue Op,
bool IsAligned) {
10657 if (Lanes[0].getValueSizeInBits() == 32) {
10658 for (
unsigned I = 0;
I < 3; ++
I)
10665 Ops.push_back(Lanes[2]);
10677 if (UseNSA && IsGFX11Plus) {
10678 Ops.push_back(NodePtr);
10680 Ops.push_back(RayOrigin);
10685 for (
unsigned I = 0;
I < 3; ++
I) {
10688 {DirLanes[I], InvDirLanes[I]})));
10692 Ops.push_back(RayDir);
10693 Ops.push_back(RayInvDir);
10700 Ops.push_back(NodePtr);
10703 packLanes(RayOrigin,
true);
10704 packLanes(RayDir,
true);
10705 packLanes(RayInvDir,
false);
10710 if (NumVAddrDwords > 12) {
10712 Ops.append(16 -
Ops.size(), Undef);
10718 Ops.push_back(MergedOps);
10721 Ops.push_back(TDescr);
10723 Ops.push_back(
M->getChain());
10726 MachineMemOperand *MemRef =
M->getMemOperand();
10730 case Intrinsic::amdgcn_global_atomic_fmin_num:
10731 case Intrinsic::amdgcn_global_atomic_fmax_num:
10732 case Intrinsic::amdgcn_flat_atomic_fmin_num:
10733 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
10740 unsigned Opcode = 0;
10742 case Intrinsic::amdgcn_global_atomic_fmin_num:
10743 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
10744 Opcode = ISD::ATOMIC_LOAD_FMIN;
10747 case Intrinsic::amdgcn_global_atomic_fmax_num:
10748 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
10749 Opcode = ISD::ATOMIC_LOAD_FMAX;
10755 return DAG.
getAtomic(Opcode, SDLoc(
Op),
M->getMemoryVT(),
M->getVTList(),
10756 Ops,
M->getMemOperand());
10758 case Intrinsic::amdgcn_s_get_barrier_state:
10759 case Intrinsic::amdgcn_s_get_named_barrier_state: {
10766 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state)
10767 BarID = (BarID >> 4) & 0x3F;
10768 Opc = AMDGPU::S_GET_BARRIER_STATE_IMM;
10771 Ops.push_back(Chain);
10773 Opc = AMDGPU::S_GET_BARRIER_STATE_M0;
10774 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state) {
10782 Ops.push_back(
copyToM0(DAG, Chain,
DL, M0Val).getValue(0));
10790 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
10791 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
10792 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B: {
10796 EVT VT =
Op->getValueType(0);
10802 if (
const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
10804 return lowerImage(
Op, ImageDimIntr, DAG,
true);
10812SDValue SITargetLowering::getMemIntrinsicNode(
unsigned Opcode,
const SDLoc &
DL,
10819 EVT VT = VTList.
VTs[0];
10822 bool IsTFE = VTList.
NumVTs == 3;
10825 unsigned NumOpDWords = NumValueDWords + 1;
10827 SDVTList OpDWordsVTList = DAG.
getVTList(OpDWordsVT, VTList.
VTs[2]);
10828 MachineMemOperand *OpDWordsMMO =
10830 SDValue Op = getMemIntrinsicNode(Opcode,
DL, OpDWordsVTList,
Ops,
10831 OpDWordsVT, OpDWordsMMO, DAG);
10836 NumValueDWords == 1
10845 if (!Subtarget->hasDwordx3LoadStores() &&
10846 (VT == MVT::v3i32 || VT == MVT::v3f32)) {
10850 SDVTList WidenedVTList = DAG.
getVTList(WidenedVT, VTList.
VTs[1]);
10852 WidenedMemVT, WidenedMMO);
10862 bool ImageStore)
const {
10872 if (Subtarget->hasUnpackedD16VMem()) {
10886 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
10897 for (
unsigned I = 0;
I < Elts.
size() / 2;
I += 1) {
10903 if ((NumElements % 2) == 1) {
10905 unsigned I = Elts.
size() / 2;
10921 if (NumElements == 3) {
10931 return DAG.
getNode(ISD::BITCAST,
DL, WidenedStoreVT, ZExt);
10942 unsigned IntrinsicID =
Op.getConstantOperandVal(1);
10945 switch (IntrinsicID) {
10946 case Intrinsic::amdgcn_exp_compr: {
10947 if (!Subtarget->hasCompressedExport()) {
10950 "intrinsic not supported on subtarget",
DL.getDebugLoc()));
10962 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Src0),
10963 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Src1),
10972 unsigned Opc =
Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
10976 case Intrinsic::amdgcn_struct_tbuffer_store:
10977 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
10979 bool IsD16 = (VData.
getValueType().getScalarType() == MVT::f16);
10981 VData = handleD16VData(VData, DAG);
10982 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
10983 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
11001 M->getMemoryVT(),
M->getMemOperand());
11004 case Intrinsic::amdgcn_raw_tbuffer_store:
11005 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
11007 bool IsD16 = (VData.
getValueType().getScalarType() == MVT::f16);
11009 VData = handleD16VData(VData, DAG);
11010 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
11011 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
11029 M->getMemoryVT(),
M->getMemOperand());
11032 case Intrinsic::amdgcn_raw_buffer_store:
11033 case Intrinsic::amdgcn_raw_ptr_buffer_store:
11034 case Intrinsic::amdgcn_raw_buffer_store_format:
11035 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
11036 const bool IsFormat =
11037 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
11038 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
11045 VData = handleD16VData(VData, DAG);
11055 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
11056 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
11076 return handleByteShortBufferStores(DAG, VDataVT,
DL,
Ops, M);
11079 M->getMemoryVT(),
M->getMemOperand());
11082 case Intrinsic::amdgcn_struct_buffer_store:
11083 case Intrinsic::amdgcn_struct_ptr_buffer_store:
11084 case Intrinsic::amdgcn_struct_buffer_store_format:
11085 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
11086 const bool IsFormat =
11087 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
11088 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
11096 VData = handleD16VData(VData, DAG);
11106 auto Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
11107 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
11126 EVT VDataType = VData.getValueType().getScalarType();
11128 return handleByteShortBufferStores(DAG, VDataType,
DL,
Ops, M);
11131 M->getMemoryVT(),
M->getMemOperand());
11133 case Intrinsic::amdgcn_raw_buffer_load_lds:
11134 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
11135 case Intrinsic::amdgcn_struct_buffer_load_lds:
11136 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
11137 if (!Subtarget->hasVMemToLDSLoad())
11141 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
11142 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
11143 unsigned OpOffset = HasVIndex ? 1 : 0;
11144 SDValue VOffset =
Op.getOperand(5 + OpOffset);
11146 unsigned Size =
Op->getConstantOperandVal(4);
11152 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
11153 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
11154 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
11155 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
11158 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
11159 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
11160 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
11161 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
11164 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
11165 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
11166 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
11167 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
11170 if (!Subtarget->hasLDSLoadB96_B128())
11172 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_BOTHEN
11173 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_IDXEN
11174 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFEN
11175 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFSET;
11178 if (!Subtarget->hasLDSLoadB96_B128())
11180 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_BOTHEN
11181 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_IDXEN
11182 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFEN
11183 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFSET;
11191 if (HasVIndex && HasVOffset)
11195 else if (HasVIndex)
11196 Ops.push_back(
Op.getOperand(5));
11197 else if (HasVOffset)
11198 Ops.push_back(VOffset);
11200 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
11201 Ops.push_back(Rsrc);
11202 Ops.push_back(
Op.getOperand(6 + OpOffset));
11203 Ops.push_back(
Op.getOperand(7 + OpOffset));
11205 unsigned Aux =
Op.getConstantOperandVal(8 + OpOffset);
11218 MachineMemOperand *LoadMMO =
M->getMemOperand();
11223 MachinePointerInfo StorePtrI = LoadPtrI;
11247 case Intrinsic::amdgcn_load_to_lds:
11248 case Intrinsic::amdgcn_global_load_lds: {
11249 if (!Subtarget->hasVMemToLDSLoad())
11253 unsigned Size =
Op->getConstantOperandVal(4);
11258 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
11261 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
11264 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
11267 if (!Subtarget->hasLDSLoadB96_B128())
11269 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX3;
11272 if (!Subtarget->hasLDSLoadB96_B128())
11274 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX4;
11290 if (
LHS->isDivergent())
11294 RHS.getOperand(0).getValueType() == MVT::i32) {
11297 VOffset =
RHS.getOperand(0);
11301 Ops.push_back(Addr);
11309 Ops.push_back(VOffset);
11312 Ops.push_back(
Op.getOperand(5));
11314 unsigned Aux =
Op.getConstantOperandVal(6);
11322 MachineMemOperand *LoadMMO =
M->getMemOperand();
11324 LoadPtrI.
Offset =
Op->getConstantOperandVal(5);
11325 MachinePointerInfo StorePtrI = LoadPtrI;
11344 case Intrinsic::amdgcn_end_cf:
11346 Op->getOperand(2), Chain),
11348 case Intrinsic::amdgcn_s_barrier_init:
11349 case Intrinsic::amdgcn_s_barrier_signal_var: {
11356 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_s_barrier_init
11357 ? AMDGPU::S_BARRIER_INIT_M0
11358 : AMDGPU::S_BARRIER_SIGNAL_M0;
11373 constexpr unsigned ShAmt = 16;
11380 Ops.push_back(
copyToM0(DAG, Chain,
DL, M0Val).getValue(0));
11385 case Intrinsic::amdgcn_s_barrier_join: {
11394 Opc = AMDGPU::S_BARRIER_JOIN_IMM;
11397 unsigned BarID = (BarVal >> 4) & 0x3F;
11400 Ops.push_back(Chain);
11402 Opc = AMDGPU::S_BARRIER_JOIN_M0;
11412 Ops.push_back(
copyToM0(DAG, Chain,
DL, M0Val).getValue(0));
11418 case Intrinsic::amdgcn_s_prefetch_data: {
11421 return Op.getOperand(0);
11424 case Intrinsic::amdgcn_s_buffer_prefetch_data: {
11426 Chain, bufferRsrcPtrToVector(
Op.getOperand(2), DAG),
11433 Op->getVTList(),
Ops,
M->getMemoryVT(),
11434 M->getMemOperand());
11436 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
11437 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
11438 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
11447 if (
const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
11449 return lowerImage(
Op, ImageDimIntr, DAG,
true);
11465 return PtrVT == MVT::i64;
11479std::pair<SDValue, SDValue>
11509 unsigned Overflow = ImmOffset & ~MaxImm;
11510 ImmOffset -= Overflow;
11511 if ((int32_t)Overflow < 0) {
11512 Overflow += ImmOffset;
11517 auto OverflowVal = DAG.
getConstant(Overflow,
DL, MVT::i32);
11536void SITargetLowering::setBufferOffsets(
SDValue CombinedOffset,
11538 Align Alignment)
const {
11540 SDLoc
DL(CombinedOffset);
11542 uint32_t
Imm =
C->getZExtValue();
11543 uint32_t SOffset, ImmOffset;
11544 if (
TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
11554 uint32_t SOffset, ImmOffset;
11557 TII->splitMUBUFOffset(
Offset, SOffset, ImmOffset, Alignment)) {
11565 SDValue SOffsetZero = Subtarget->hasRestrictedSOffset()
11574SDValue SITargetLowering::bufferRsrcPtrToVector(
SDValue MaybePointer,
11577 return MaybePointer;
11591 SDValue NumRecords =
Op->getOperand(3);
11597 if (Subtarget->has45BitNumRecordsBufferResource()) {
11616 SDValue ExtShiftedStrideVec =
11619 DAG.
getNode(ISD::BITCAST, Loc, MVT::i64, ExtShiftedStrideVec);
11626 DAG.
getNode(ISD::BITCAST, Loc, MVT::i64, ExtShiftedFlagsVec);
11628 DAG.
getNode(
ISD::OR, Loc, MVT::i64, NumRecordsRHS, ExtShiftedStride);
11630 DAG.
getNode(
ISD::OR, Loc, MVT::i64, CombinedFields, ExtShiftedFlags);
11635 auto [LowHalf, HighHalf] =
11636 DAG.
SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
11646 NumRecords, Flags);
11649 SDValue RsrcPtr = DAG.
getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc);
11658 bool IsTFE)
const {
11667 SDVTList VTs = DAG.
getVTList(MVT::v2i32, MVT::Other);
11682 SDVTList ResList = DAG.
getVTList(MVT::i32, MVT::Other);
11686 LoadVal = DAG.
getNode(ISD::BITCAST,
DL, LoadVT, LoadVal);
11696 if (VDataType == MVT::f16 || VDataType == MVT::bf16)
11700 Ops[1] = BufferStoreExt;
11705 M->getMemOperand());
11730 DAGCombinerInfo &DCI)
const {
11731 SelectionDAG &DAG = DCI.DAG;
11746 if ((MemVT.
isSimple() && !DCI.isAfterLegalizeDAG()) ||
11753 "unexpected vector extload");
11766 "unexpected fp extload");
11784 DCI.AddToWorklist(Cvt.
getNode());
11789 DCI.AddToWorklist(Cvt.
getNode());
11792 Cvt = DAG.
getNode(ISD::BITCAST, SL, VT, Cvt);
11800 if (
Info.isEntryFunction())
11801 return Info.getUserSGPRInfo().hasFlatScratchInit();
11809 EVT MemVT =
Load->getMemoryVT();
11810 MachineMemOperand *MMO =
Load->getMemOperand();
11822 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
11850 assert(
Op.getValueType().getVectorElementType() == MVT::i32 &&
11851 "Custom lowering for non-i32 vectors hasn't been implemented.");
11854 unsigned AS =
Load->getAddressSpace();
11861 SIMachineFunctionInfo *MFI = MF.
getInfo<SIMachineFunctionInfo>();
11865 !Subtarget->hasMultiDwordFlatScratchAddressing())
11875 Subtarget->getScalarizeGlobalBehavior() &&
Load->isSimple() &&
11878 Alignment >=
Align(4) && NumElements < 32) {
11880 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
11892 if (NumElements > 4)
11895 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
11905 switch (Subtarget->getMaxPrivateElementSize()) {
11911 if (NumElements > 2)
11916 if (NumElements > 4)
11919 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
11928 auto Flags =
Load->getMemOperand()->getFlags();
11930 Load->getAlign(), Flags, &
Fast) &&
11939 MemVT, *
Load->getMemOperand())) {
11948 EVT VT =
Op.getValueType();
11975 return DAG.
getNode(ISD::BITCAST,
DL, VT, Res);
11985 EVT VT =
Op.getValueType();
11986 const SDNodeFlags
Flags =
Op->getFlags();
11988 bool AllowInaccurateRcp =
Flags.hasApproximateFuncs();
11994 if (!AllowInaccurateRcp && VT != MVT::f16 && VT != MVT::bf16)
11997 if (CLHS->isExactlyValue(1.0)) {
12014 if (CLHS->isExactlyValue(-1.0)) {
12023 if (!AllowInaccurateRcp &&
12024 ((VT != MVT::f16 && VT != MVT::bf16) || !
Flags.hasAllowReciprocal()))
12038 EVT VT =
Op.getValueType();
12039 const SDNodeFlags
Flags =
Op->getFlags();
12041 bool AllowInaccurateDiv =
Flags.hasApproximateFuncs();
12042 if (!AllowInaccurateDiv)
12063 return DAG.
getNode(Opcode, SL, VT,
A,
B, Flags);
12077 return DAG.
getNode(Opcode, SL, VTList,
12086 return DAG.
getNode(Opcode, SL, VT, {
A,
B,
C}, Flags);
12100 return DAG.
getNode(Opcode, SL, VTList,
12106 if (
SDValue FastLowered = lowerFastUnsafeFDIV(
Op, DAG))
12107 return FastLowered;
12110 EVT VT =
Op.getValueType();
12117 if (VT == MVT::bf16) {
12140 unsigned FMADOpCode =
12142 SDValue NegRHSExt = DAG.
getNode(ISD::FNEG, SL, MVT::f32, RHSExt);
12147 SDValue Err = DAG.
getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
12149 Quot = DAG.
getNode(FMADOpCode, SL, MVT::f32, Err, Rcp, Quot,
Op->getFlags());
12150 Err = DAG.
getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
12156 Tmp = DAG.
getNode(ISD::BITCAST, SL, MVT::f32, TmpCast);
12166 SDNodeFlags
Flags =
Op->getFlags();
12173 const APFloat K0Val(0x1p+96f);
12176 const APFloat K1Val(0x1p-32f);
12203 assert(ST->hasDenormModeInst() &&
"Requires S_DENORM_MODE");
12204 uint32_t DPDenormModeDefault =
Info->getMode().fpDenormModeDPValue();
12205 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
12210 if (
SDValue FastLowered = lowerFastUnsafeFDIV(
Op, DAG))
12211 return FastLowered;
12217 SDNodeFlags
Flags =
Op->getFlags();
12218 Flags.setNoFPExcept(
true);
12226 SDVTList ScaleVT = DAG.
getVTList(MVT::f32, MVT::i1);
12237 DAG.
getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled, Flags);
12239 using namespace AMDGPU::Hwreg;
12240 const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2);
12244 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
12245 const DenormalMode DenormMode =
Info->getMode().FP32Denormals;
12248 const bool HasDynamicDenormals =
12254 if (!PreservesDenormals) {
12259 SDVTList BindParamVTs = DAG.
getVTList(MVT::Other, MVT::Glue);
12262 if (HasDynamicDenormals) {
12266 SavedDenormMode =
SDValue(GetReg, 0);
12272 SDNode *EnableDenorm;
12273 if (Subtarget->hasDenormModeInst()) {
12274 const SDValue EnableDenormValue =
12281 const SDValue EnableDenormValue =
12283 EnableDenorm = DAG.
getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
12284 {EnableDenormValue,
BitField, Glue});
12294 ApproxRcp, One, NegDivScale0, Flags);
12297 ApproxRcp, Fma0, Flags);
12303 NumeratorScaled,
Mul, Flags);
12309 NumeratorScaled, Fma3, Flags);
12311 if (!PreservesDenormals) {
12312 SDNode *DisableDenorm;
12313 if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) {
12317 SDVTList BindParamVTs = DAG.
getVTList(MVT::Other, MVT::Glue);
12323 assert(HasDynamicDenormals == (
bool)SavedDenormMode);
12324 const SDValue DisableDenormValue =
12325 HasDynamicDenormals
12330 AMDGPU::S_SETREG_B32, SL, MVT::Other,
12341 {Fma4, Fma1, Fma3, Scale},
Flags);
12347 if (
SDValue FastLowered = lowerFastUnsafeFDIV64(
Op, DAG))
12348 return FastLowered;
12356 SDVTList ScaleVT = DAG.
getVTList(MVT::f64, MVT::i1);
12360 SDValue NegDivScale0 = DAG.
getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
12380 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
12389 SDValue Scale0BC = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
12390 SDValue Scale1BC = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
12416 EVT VT =
Op.getValueType();
12418 if (VT == MVT::f32)
12419 return LowerFDIV32(
Op, DAG);
12421 if (VT == MVT::f64)
12422 return LowerFDIV64(
Op, DAG);
12424 if (VT == MVT::f16 || VT == MVT::bf16)
12425 return LowerFDIV16(
Op, DAG);
12434 EVT ResultExpVT =
Op->getValueType(1);
12435 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
12445 if (Subtarget->hasFractBug()) {
12463 EVT VT =
Store->getMemoryVT();
12465 if (VT == MVT::i1) {
12469 Store->getBasePtr(), MVT::i1,
Store->getMemOperand());
12473 Store->getValue().getValueType().getScalarType() == MVT::i32);
12475 unsigned AS =
Store->getAddressSpace();
12483 SIMachineFunctionInfo *MFI = MF.
getInfo<SIMachineFunctionInfo>();
12487 !Subtarget->hasMultiDwordFlatScratchAddressing())
12494 if (NumElements > 4)
12497 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
12501 VT, *
Store->getMemOperand()))
12507 switch (Subtarget->getMaxPrivateElementSize()) {
12511 if (NumElements > 2)
12515 if (NumElements > 4 ||
12516 (NumElements == 3 && !Subtarget->enableFlatScratch()))
12524 auto Flags =
Store->getMemOperand()->getFlags();
12543 assert(!Subtarget->has16BitInsts());
12544 SDNodeFlags
Flags =
Op->getFlags();
12546 DAG.
getNode(ISD::FP_EXTEND, SL, MVT::f32,
Op.getOperand(0), Flags);
12558 SDNodeFlags
Flags =
Op->getFlags();
12559 MVT VT =
Op.getValueType().getSimpleVT();
12589 SDValue SqrtSNextDown = DAG.
getNode(ISD::BITCAST,
DL, VT, SqrtSNextDownInt);
12592 DAG.
getNode(ISD::FNEG,
DL, VT, SqrtSNextDown, Flags);
12601 SDValue NegSqrtSNextUp = DAG.
getNode(ISD::FNEG,
DL, VT, SqrtSNextUp, Flags);
12667 SDNodeFlags
Flags =
Op->getFlags();
12713 SqrtRet = DAG.
getNode(ISD::FLDEXP,
DL, MVT::f64, SqrtRet, ScaleDown, Flags);
12730 EVT VT =
Op.getValueType();
12740 if (Subtarget->hasTrigReducedRange()) {
12747 switch (
Op.getOpcode()) {
12774 EVT VT =
Op.getValueType();
12782 Op->getVTList(),
Ops, VT,
12791SITargetLowering::performUCharToFloatCombine(
SDNode *
N,
12792 DAGCombinerInfo &DCI)
const {
12793 EVT VT =
N->getValueType(0);
12795 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
12798 SelectionDAG &DAG = DCI.DAG;
12802 EVT SrcVT = Src.getValueType();
12808 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
12811 DCI.AddToWorklist(Cvt.
getNode());
12814 if (ScalarVT != MVT::f32) {
12826 DAGCombinerInfo &DCI)
const {
12833 if (SignOp.
getOpcode() == ISD::FP_EXTEND ||
12837 SelectionDAG &DAG = DCI.DAG;
12856 for (
unsigned I = 0;
I != NumElts; ++
I) {
12880 if (NewElts.
size() == 1)
12902 for (
unsigned I = 0;
I != NumElts; ++
I) {
12937SDValue SITargetLowering::performSHLPtrCombine(
SDNode *
N,
unsigned AddrSpace,
12939 DAGCombinerInfo &DCI)
const {
12956 SelectionDAG &DAG = DCI.DAG;
12969 AM.BaseOffs =
Offset.getSExtValue();
12974 EVT VT =
N->getValueType(0);
12980 Flags.setNoUnsignedWrap(
12981 N->getFlags().hasNoUnsignedWrap() &&
12993 switch (
N->getOpcode()) {
13004 DAGCombinerInfo &DCI)
const {
13005 SelectionDAG &DAG = DCI.DAG;
13012 SDValue NewPtr = performSHLPtrCombine(
Ptr.getNode(),
N->getAddressSpace(),
13013 N->getMemoryVT(), DCI);
13017 NewOps[PtrIdx] = NewPtr;
13026 return (
Opc ==
ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
13027 (
Opc ==
ISD::OR && (Val == 0xffffffff || Val == 0)) ||
13036SDValue SITargetLowering::splitBinaryBitConstantOp(
13040 uint32_t ValLo =
Lo_32(Val);
13041 uint32_t ValHi =
Hi_32(Val);
13048 if (Subtarget->has64BitLiterals() && CRHS->
hasOneUse() &&
13062 if (V.getValueType() != MVT::i1)
13064 switch (V.getOpcode()) {
13081 return V.getResNo() == 1;
13083 unsigned IntrinsicID = V.getConstantOperandVal(0);
13084 switch (IntrinsicID) {
13085 case Intrinsic::amdgcn_is_shared:
13086 case Intrinsic::amdgcn_is_private:
13103 if (!(
C & 0x000000ff))
13104 ZeroByteMask |= 0x000000ff;
13105 if (!(
C & 0x0000ff00))
13106 ZeroByteMask |= 0x0000ff00;
13107 if (!(
C & 0x00ff0000))
13108 ZeroByteMask |= 0x00ff0000;
13109 if (!(
C & 0xff000000))
13110 ZeroByteMask |= 0xff000000;
13111 uint32_t NonZeroByteMask = ~ZeroByteMask;
13112 if ((NonZeroByteMask &
C) != NonZeroByteMask)
13125 assert(V.getValueSizeInBits() == 32);
13127 if (V.getNumOperands() != 2)
13136 switch (V.getOpcode()) {
13141 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
13146 return (0x03020100 & ~ConstMask) | ConstMask;
13153 return uint32_t((0x030201000c0c0c0cull <<
C) >> 32);
13159 return uint32_t(0x0c0c0c0c03020100ull >>
C);
13166 DAGCombinerInfo &DCI)
const {
13167 if (DCI.isBeforeLegalize())
13170 SelectionDAG &DAG = DCI.DAG;
13171 EVT VT =
N->getValueType(0);
13176 if (VT == MVT::i64 && CRHS) {
13178 splitBinaryBitConstantOp(DCI, SDLoc(
N),
ISD::AND,
LHS, CRHS))
13182 if (CRHS && VT == MVT::i32) {
13192 unsigned Shift = CShift->getZExtValue();
13194 unsigned Offset = NB + Shift;
13195 if ((
Offset & (Bits - 1)) == 0) {
13219 Sel = (
LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
13234 if (
Y.getOpcode() != ISD::FABS ||
Y.getOperand(0) !=
X ||
13239 if (
X !=
LHS.getOperand(1))
13243 const ConstantFPSDNode *C1 =
13277 (
RHS.getOperand(0) ==
LHS.getOperand(0) &&
13278 LHS.getOperand(0) ==
LHS.getOperand(1))) {
13280 unsigned NewMask = LCC ==
ISD::SETO ?
Mask->getZExtValue() & ~OrdMask
13281 :
Mask->getZExtValue() & OrdMask;
13302 N->isDivergent() &&
TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
13305 if (LHSMask != ~0u && RHSMask != ~0u) {
13308 if (LHSMask > RHSMask) {
13315 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
13316 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
13319 if (!(LHSUsedLanes & RHSUsedLanes) &&
13322 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
13328 uint32_t
Mask = LHSMask & RHSMask;
13329 for (
unsigned I = 0;
I < 32;
I += 8) {
13330 uint32_t ByteSel = 0xff <<
I;
13331 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
13332 Mask &= (0x0c <<
I) & 0xffffffff;
13337 uint32_t Sel =
Mask | (LHSUsedLanes & 0x04040404);
13390static const std::optional<ByteProvider<SDValue>>
13392 unsigned Depth = 0) {
13395 return std::nullopt;
13397 if (
Op.getValueSizeInBits() < 8)
13398 return std::nullopt;
13400 if (
Op.getValueType().isVector())
13403 switch (
Op->getOpcode()) {
13415 NarrowVT = VTSign->getVT();
13418 return std::nullopt;
13421 if (SrcIndex >= NarrowByteWidth)
13422 return std::nullopt;
13430 return std::nullopt;
13432 uint64_t BitShift = ShiftOp->getZExtValue();
13434 if (BitShift % 8 != 0)
13435 return std::nullopt;
13437 SrcIndex += BitShift / 8;
13455static const std::optional<ByteProvider<SDValue>>
13457 unsigned StartingIndex = 0) {
13461 return std::nullopt;
13463 unsigned BitWidth =
Op.getScalarValueSizeInBits();
13465 return std::nullopt;
13467 return std::nullopt;
13469 bool IsVec =
Op.getValueType().isVector();
13470 switch (
Op.getOpcode()) {
13473 return std::nullopt;
13478 return std::nullopt;
13482 return std::nullopt;
13485 if (!
LHS->isConstantZero() && !
RHS->isConstantZero())
13486 return std::nullopt;
13487 if (!
LHS ||
LHS->isConstantZero())
13489 if (!
RHS ||
RHS->isConstantZero())
13491 return std::nullopt;
13496 return std::nullopt;
13500 return std::nullopt;
13502 uint32_t BitMask = BitMaskOp->getZExtValue();
13504 uint32_t IndexMask = 0xFF << (Index * 8);
13506 if ((IndexMask & BitMask) != IndexMask) {
13509 if (IndexMask & BitMask)
13510 return std::nullopt;
13519 return std::nullopt;
13523 if (!ShiftOp ||
Op.getValueType().isVector())
13524 return std::nullopt;
13526 uint64_t BitsProvided =
Op.getValueSizeInBits();
13527 if (BitsProvided % 8 != 0)
13528 return std::nullopt;
13530 uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided);
13532 return std::nullopt;
13534 uint64_t ConcatSizeInBytes = BitsProvided / 4;
13535 uint64_t ByteShift = BitShift / 8;
13537 uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes;
13538 uint64_t BytesProvided = BitsProvided / 8;
13539 SDValue NextOp =
Op.getOperand(NewIndex >= BytesProvided ? 0 : 1);
13540 NewIndex %= BytesProvided;
13547 return std::nullopt;
13551 return std::nullopt;
13553 uint64_t BitShift = ShiftOp->getZExtValue();
13555 return std::nullopt;
13557 auto BitsProvided =
Op.getScalarValueSizeInBits();
13558 if (BitsProvided % 8 != 0)
13559 return std::nullopt;
13561 uint64_t BytesProvided = BitsProvided / 8;
13562 uint64_t ByteShift = BitShift / 8;
13567 return BytesProvided - ByteShift > Index
13575 return std::nullopt;
13579 return std::nullopt;
13581 uint64_t BitShift = ShiftOp->getZExtValue();
13582 if (BitShift % 8 != 0)
13583 return std::nullopt;
13584 uint64_t ByteShift = BitShift / 8;
13590 return Index < ByteShift
13593 Depth + 1, StartingIndex);
13602 return std::nullopt;
13610 NarrowBitWidth = VTSign->getVT().getSizeInBits();
13612 if (NarrowBitWidth % 8 != 0)
13613 return std::nullopt;
13614 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
13616 if (Index >= NarrowByteWidth)
13618 ? std::optional<ByteProvider<SDValue>>(
13626 return std::nullopt;
13630 if (NarrowByteWidth >= Index) {
13635 return std::nullopt;
13642 return std::nullopt;
13648 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
13649 if (NarrowBitWidth % 8 != 0)
13650 return std::nullopt;
13651 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
13656 if (Index >= NarrowByteWidth) {
13658 ? std::optional<ByteProvider<SDValue>>(
13663 if (NarrowByteWidth > Index) {
13667 return std::nullopt;
13672 return std::nullopt;
13675 Depth + 1, StartingIndex);
13681 return std::nullopt;
13682 auto VecIdx = IdxOp->getZExtValue();
13683 auto ScalarSize =
Op.getScalarValueSizeInBits();
13684 if (ScalarSize < 32)
13685 Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index;
13687 StartingIndex, Index);
13692 return std::nullopt;
13696 return std::nullopt;
13699 (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8);
13700 if (IdxMask > 0x07 && IdxMask != 0x0c)
13701 return std::nullopt;
13703 auto NextOp =
Op.getOperand(IdxMask > 0x03 ? 0 : 1);
13704 auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask;
13706 return IdxMask != 0x0c ?
calculateSrcByte(NextOp, StartingIndex, NextIndex)
13712 return std::nullopt;
13727 return !OpVT.
isVector() && OpVT.getSizeInBits() == 16;
13734 auto MemVT = L->getMemoryVT();
13737 return L->getMemoryVT().getSizeInBits() == 16;
13747 int Low8 = Mask & 0xff;
13748 int Hi8 = (Mask & 0xff00) >> 8;
13750 assert(Low8 < 8 && Hi8 < 8);
13752 bool IsConsecutive = (Hi8 - Low8 == 1);
13757 bool Is16Aligned = !(Low8 % 2);
13759 return IsConsecutive && Is16Aligned;
13767 int Low16 = PermMask & 0xffff;
13768 int Hi16 = (PermMask & 0xffff0000) >> 16;
13778 auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 ||
13780 if (!OtherOpIs16Bit)
13788 unsigned DWordOffset) {
13793 assert(Src.getValueSizeInBits().isKnownMultipleOf(8));
13798 if (Src.getValueType().isVector()) {
13799 auto ScalarTySize = Src.getScalarValueSizeInBits();
13800 auto ScalarTy = Src.getValueType().getScalarType();
13801 if (ScalarTySize == 32) {
13805 if (ScalarTySize > 32) {
13808 DAG.
getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32));
13809 auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32));
13816 assert(ScalarTySize < 32);
13817 auto NumElements =
TypeSize / ScalarTySize;
13818 auto Trunc32Elements = (ScalarTySize * NumElements) / 32;
13819 auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize;
13820 auto NumElementsIn32 = 32 / ScalarTySize;
13821 auto NumAvailElements = DWordOffset < Trunc32Elements
13823 : NumElements - NormalizedTrunc;
13836 auto ShiftVal = 32 * DWordOffset;
13844 [[maybe_unused]]
EVT VT =
N->getValueType(0);
13849 for (
int i = 0; i < 4; i++) {
13851 std::optional<ByteProvider<SDValue>>
P =
13854 if (!
P ||
P->isConstantZero())
13859 if (PermNodes.
size() != 4)
13862 std::pair<unsigned, unsigned> FirstSrc(0, PermNodes[0].SrcOffset / 4);
13863 std::optional<std::pair<unsigned, unsigned>> SecondSrc;
13865 for (
size_t i = 0; i < PermNodes.
size(); i++) {
13866 auto PermOp = PermNodes[i];
13869 int SrcByteAdjust = 4;
13873 if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) ||
13874 ((PermOp.SrcOffset / 4) != FirstSrc.second)) {
13876 if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) ||
13877 ((PermOp.SrcOffset / 4) != SecondSrc->second))
13881 SecondSrc = {i, PermNodes[i].SrcOffset / 4};
13882 assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8));
13885 assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8);
13887 PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8);
13890 SDValue Op = *PermNodes[FirstSrc.first].Src;
13892 assert(
Op.getValueSizeInBits() == 32);
13896 int Low16 = PermMask & 0xffff;
13897 int Hi16 = (PermMask & 0xffff0000) >> 16;
13899 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
13900 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
13903 if (WellFormedLow && WellFormedHi)
13907 SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src :
Op;
13916 assert(
Op.getValueType().isByteSized() &&
13934 DAGCombinerInfo &DCI)
const {
13935 SelectionDAG &DAG = DCI.DAG;
13939 EVT VT =
N->getValueType(0);
13940 if (VT == MVT::i1) {
13945 if (Src !=
RHS.getOperand(0))
13950 if (!CLHS || !CRHS)
13954 static const uint32_t MaxMask = 0x3ff;
13974 Sel |=
LHS.getConstantOperandVal(2);
13983 N->isDivergent() &&
TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
13987 auto usesCombinedOperand = [](SDNode *OrUse) {
13989 if (OrUse->getOpcode() != ISD::BITCAST ||
13990 !OrUse->getValueType(0).isVector())
13994 for (
auto *VUser : OrUse->users()) {
13995 if (!VUser->getValueType(0).isVector())
14002 if (VUser->getOpcode() == VectorwiseOp)
14008 if (!
any_of(
N->users(), usesCombinedOperand))
14014 if (LHSMask != ~0u && RHSMask != ~0u) {
14017 if (LHSMask > RHSMask) {
14024 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
14025 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
14028 if (!(LHSUsedLanes & RHSUsedLanes) &&
14031 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
14033 LHSMask &= ~RHSUsedLanes;
14034 RHSMask &= ~LHSUsedLanes;
14036 LHSMask |= LHSUsedLanes & 0x04040404;
14038 uint32_t Sel = LHSMask | RHSMask;
14046 if (LHSMask == ~0u || RHSMask == ~0u) {
14087 return IdentitySrc;
14093 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
14108 if (SrcVT == MVT::i32) {
14113 DCI.AddToWorklist(LowOr.
getNode());
14114 DCI.AddToWorklist(HiBits.getNode());
14118 return DAG.
getNode(ISD::BITCAST, SL, MVT::i64, Vec);
14125 N->getOperand(0), CRHS))
14133 DAGCombinerInfo &DCI)
const {
14134 if (
SDValue RV = reassociateScalarOps(
N, DCI.DAG))
14141 SelectionDAG &DAG = DCI.DAG;
14143 EVT VT =
N->getValueType(0);
14144 if (CRHS && VT == MVT::i64) {
14146 splitBinaryBitConstantOp(DCI, SDLoc(
N),
ISD::XOR,
LHS, CRHS))
14153 unsigned Opc =
LHS.getOpcode();
14177 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32,
LHS->getOperand(1));
14179 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32,
LHS->getOperand(2));
14183 LHS->getOperand(0), FNegLHS, FNegRHS);
14184 return DAG.
getNode(ISD::BITCAST,
DL, VT, NewSelect);
14192 DAGCombinerInfo &DCI)
const {
14193 if (!Subtarget->has16BitInsts() ||
14197 EVT VT =
N->getValueType(0);
14198 if (VT != MVT::i32)
14202 if (Src.getValueType() != MVT::i16)
14209SITargetLowering::performSignExtendInRegCombine(
SDNode *
N,
14210 DAGCombinerInfo &DCI)
const {
14217 VTSign->getVT() == MVT::i8) ||
14219 VTSign->getVT() == MVT::i16))) {
14220 assert(Subtarget->hasScalarSubwordLoads() &&
14221 "s_buffer_load_{u8, i8} are supported "
14222 "in GFX12 (or newer) architectures.");
14223 EVT VT = Src.getValueType();
14228 SDVTList ResList = DCI.DAG.getVTList(MVT::i32);
14235 SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode(
14236 Opc,
DL, ResList,
Ops,
M->getMemoryVT(),
M->getMemOperand());
14241 VTSign->getVT() == MVT::i8) ||
14243 VTSign->getVT() == MVT::i16)) &&
14252 Src.getOperand(6), Src.getOperand(7)};
14255 DCI.DAG.getVTList(MVT::i32, Src.getOperand(0).getValueType());
14259 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(
14260 Opc, SDLoc(
N), ResList,
Ops,
M->getMemoryVT(),
M->getMemOperand());
14261 return DCI.DAG.getMergeValues(
14262 {BufferLoadSignExt, BufferLoadSignExt.
getValue(1)}, SDLoc(
N));
14268 DAGCombinerInfo &DCI)
const {
14269 SelectionDAG &DAG = DCI.DAG;
14276 if (
N->getOperand(0).isUndef())
14283 DAGCombinerInfo &DCI)
const {
14284 EVT VT =
N->getValueType(0);
14299 if ((VT == MVT::f16 && N0.
getOpcode() == ISD::FSQRT) &&
14309 unsigned MaxDepth)
const {
14310 unsigned Opcode =
Op.getOpcode();
14315 const auto &
F = CFP->getValueAPF();
14316 if (
F.isNaN() &&
F.isSignaling())
14318 if (!
F.isDenormal())
14344 case ISD::FP_EXTEND:
14345 case ISD::FP16_TO_FP:
14346 case ISD::FP_TO_FP16:
14347 case ISD::BF16_TO_FP:
14348 case ISD::FP_TO_BF16:
14381 if (
Op.getValueType() == MVT::i32) {
14387 if (RHS->getZExtValue() == 0xffff0000) {
14397 return Op.getValueType().getScalarType() != MVT::f16;
14401 case ISD::FMINNUM_IEEE:
14402 case ISD::FMAXNUM_IEEE:
14403 case ISD::FMINIMUM:
14404 case ISD::FMAXIMUM:
14405 case ISD::FMINIMUMNUM:
14406 case ISD::FMAXIMUMNUM:
14418 if (Subtarget->supportsMinMaxDenormModes() ||
14428 for (
unsigned I = 0, E =
Op.getNumOperands();
I != E; ++
I) {
14440 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
14467 if (
Op.getValueType() == MVT::i16) {
14470 TruncSrc.
getOpcode() == ISD::BITCAST &&
14478 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
14480 switch (IntrinsicID) {
14481 case Intrinsic::amdgcn_cvt_pkrtz:
14482 case Intrinsic::amdgcn_cubeid:
14483 case Intrinsic::amdgcn_frexp_mant:
14484 case Intrinsic::amdgcn_fdot2:
14485 case Intrinsic::amdgcn_rcp:
14486 case Intrinsic::amdgcn_rsq:
14487 case Intrinsic::amdgcn_rsq_clamp:
14488 case Intrinsic::amdgcn_rcp_legacy:
14489 case Intrinsic::amdgcn_rsq_legacy:
14490 case Intrinsic::amdgcn_trig_preop:
14491 case Intrinsic::amdgcn_tanh:
14492 case Intrinsic::amdgcn_log:
14493 case Intrinsic::amdgcn_exp2:
14494 case Intrinsic::amdgcn_sqrt:
14512 unsigned MaxDepth)
const {
14515 unsigned Opcode =
MI->getOpcode();
14517 if (Opcode == AMDGPU::G_FCANONICALIZE)
14520 std::optional<FPValueAndVReg> FCR;
14523 if (FCR->Value.isSignaling())
14525 if (!FCR->Value.isDenormal())
14536 case AMDGPU::G_FADD:
14537 case AMDGPU::G_FSUB:
14538 case AMDGPU::G_FMUL:
14539 case AMDGPU::G_FCEIL:
14540 case AMDGPU::G_FFLOOR:
14541 case AMDGPU::G_FRINT:
14542 case AMDGPU::G_FNEARBYINT:
14543 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
14544 case AMDGPU::G_INTRINSIC_TRUNC:
14545 case AMDGPU::G_INTRINSIC_ROUNDEVEN:
14546 case AMDGPU::G_FMA:
14547 case AMDGPU::G_FMAD:
14548 case AMDGPU::G_FSQRT:
14549 case AMDGPU::G_FDIV:
14550 case AMDGPU::G_FREM:
14551 case AMDGPU::G_FPOW:
14552 case AMDGPU::G_FPEXT:
14553 case AMDGPU::G_FLOG:
14554 case AMDGPU::G_FLOG2:
14555 case AMDGPU::G_FLOG10:
14556 case AMDGPU::G_FPTRUNC:
14557 case AMDGPU::G_AMDGPU_RCP_IFLAG:
14558 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
14559 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
14560 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
14561 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
14563 case AMDGPU::G_FNEG:
14564 case AMDGPU::G_FABS:
14565 case AMDGPU::G_FCOPYSIGN:
14567 case AMDGPU::G_FMINNUM:
14568 case AMDGPU::G_FMAXNUM:
14569 case AMDGPU::G_FMINNUM_IEEE:
14570 case AMDGPU::G_FMAXNUM_IEEE:
14571 case AMDGPU::G_FMINIMUM:
14572 case AMDGPU::G_FMAXIMUM:
14573 case AMDGPU::G_FMINIMUMNUM:
14574 case AMDGPU::G_FMAXIMUMNUM: {
14575 if (Subtarget->supportsMinMaxDenormModes() ||
14582 case AMDGPU::G_BUILD_VECTOR:
14587 case AMDGPU::G_INTRINSIC:
14588 case AMDGPU::G_INTRINSIC_CONVERGENT:
14590 case Intrinsic::amdgcn_fmul_legacy:
14591 case Intrinsic::amdgcn_fmad_ftz:
14592 case Intrinsic::amdgcn_sqrt:
14593 case Intrinsic::amdgcn_fmed3:
14594 case Intrinsic::amdgcn_sin:
14595 case Intrinsic::amdgcn_cos:
14596 case Intrinsic::amdgcn_log:
14597 case Intrinsic::amdgcn_exp2:
14598 case Intrinsic::amdgcn_log_clamp:
14599 case Intrinsic::amdgcn_rcp:
14600 case Intrinsic::amdgcn_rcp_legacy:
14601 case Intrinsic::amdgcn_rsq:
14602 case Intrinsic::amdgcn_rsq_clamp:
14603 case Intrinsic::amdgcn_rsq_legacy:
14604 case Intrinsic::amdgcn_div_scale:
14605 case Intrinsic::amdgcn_div_fmas:
14606 case Intrinsic::amdgcn_div_fixup:
14607 case Intrinsic::amdgcn_fract:
14608 case Intrinsic::amdgcn_cvt_pkrtz:
14609 case Intrinsic::amdgcn_cubeid:
14610 case Intrinsic::amdgcn_cubema:
14611 case Intrinsic::amdgcn_cubesc:
14612 case Intrinsic::amdgcn_cubetc:
14613 case Intrinsic::amdgcn_frexp_mant:
14614 case Intrinsic::amdgcn_fdot2:
14615 case Intrinsic::amdgcn_trig_preop:
14616 case Intrinsic::amdgcn_tanh:
14635 if (
C.isDenormal()) {
14649 if (
C.isSignaling()) {
14672SITargetLowering::performFCanonicalizeCombine(
SDNode *
N,
14673 DAGCombinerInfo &DCI)
const {
14674 SelectionDAG &DAG = DCI.DAG;
14676 EVT VT =
N->getValueType(0);
14685 EVT VT =
N->getValueType(0);
14686 return getCanonicalConstantFP(DAG, SDLoc(
N), VT, CFP->getValueAPF());
14702 EVT EltVT =
Lo.getValueType();
14705 for (
unsigned I = 0;
I != 2; ++
I) {
14709 getCanonicalConstantFP(DAG, SL, EltVT, CFP->getValueAPF());
14710 }
else if (
Op.isUndef()) {
14744 case ISD::FMAXNUM_IEEE:
14745 case ISD::FMAXIMUMNUM:
14747 case ISD::FMAXIMUM:
14754 case ISD::FMINNUM_IEEE:
14755 case ISD::FMINIMUMNUM:
14757 case ISD::FMINIMUM:
14783 if (!MinK || !MaxK)
14796 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16()))
14797 return DAG.
getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
14856 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
14862 if (
Info->getMode().DX10Clamp) {
14871 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
14899 case ISD::FMINNUM_IEEE:
14900 case ISD::FMAXNUM_IEEE:
14901 case ISD::FMINIMUMNUM:
14902 case ISD::FMAXIMUMNUM:
14905 return (VT == MVT::f32) || (VT == MVT::f16 && Subtarget.
hasMin3Max3_16()) ||
14907 case ISD::FMINIMUM:
14908 case ISD::FMAXIMUM:
14916 return (VT == MVT::i32) || (VT == MVT::i16 && Subtarget.
hasMin3Max3_16());
14925 DAGCombinerInfo &DCI)
const {
14926 SelectionDAG &DAG = DCI.DAG;
14958 if (
SDValue Med3 = performIntMed3ImmCombine(
14963 if (
SDValue Med3 = performIntMed3ImmCombine(
14969 if (
SDValue Med3 = performIntMed3ImmCombine(
14974 if (
SDValue Med3 = performIntMed3ImmCombine(
14984 if (((
Opc == ISD::FMINNUM && Op0.
getOpcode() == ISD::FMAXNUM) ||
14985 (
Opc == ISD::FMINNUM_IEEE && Op0.
getOpcode() == ISD::FMAXNUM_IEEE) ||
14986 (
Opc == ISD::FMINIMUMNUM && Op0.
getOpcode() == ISD::FMAXIMUMNUM) ||
14989 (VT == MVT::f32 || VT == MVT::f64 ||
14990 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
14991 (VT == MVT::bf16 && Subtarget->hasBF16PackedInsts()) ||
14992 (VT == MVT::v2bf16 && Subtarget->hasBF16PackedInsts()) ||
14993 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
14995 if (
SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(
N), Op0, Op1))
15002 const SDNodeFlags
Flags =
N->getFlags();
15003 if ((
Opc == ISD::FMINIMUM ||
Opc == ISD::FMAXIMUM) &&
15004 !Subtarget->hasIEEEMinimumMaximumInsts() &&
Flags.hasNoNaNs()) {
15006 Opc == ISD::FMINIMUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
15007 return DAG.
getNode(NewOpc, SDLoc(
N), VT, Op0, Op1, Flags);
15017 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
15018 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
15027 DAGCombinerInfo &DCI)
const {
15028 EVT VT =
N->getValueType(0);
15032 SelectionDAG &DAG = DCI.DAG;
15047 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
15051 if (
Info->getMode().DX10Clamp) {
15071 DAGCombinerInfo &DCI)
const {
15075 return DCI.DAG.getUNDEF(
N->getValueType(0));
15083 bool IsDivergentIdx,
15088 unsigned VecSize = EltSize * NumElem;
15091 if (VecSize <= 64 && EltSize < 32)
15100 if (IsDivergentIdx)
15104 unsigned NumInsts = NumElem +
15105 ((EltSize + 31) / 32) * NumElem ;
15109 if (Subtarget->useVGPRIndexMode())
15110 return NumInsts <= 16;
15114 if (Subtarget->hasMovrel())
15115 return NumInsts <= 15;
15121 SDValue Idx =
N->getOperand(
N->getNumOperands() - 1);
15136SITargetLowering::performExtractVectorEltCombine(
SDNode *
N,
15137 DAGCombinerInfo &DCI)
const {
15143 EVT ResVT =
N->getValueType(0);
15167 if (!
C ||
C->getZExtValue() != 0x1f)
15183 if (Vec.
hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
15202 case ISD::FMAXNUM_IEEE:
15203 case ISD::FMINNUM_IEEE:
15204 case ISD::FMAXIMUM:
15205 case ISD::FMINIMUM: {
15211 DCI.AddToWorklist(Elt0.
getNode());
15212 DCI.AddToWorklist(Elt1.
getNode());
15234 if (!DCI.isBeforeLegalize())
15242 VecSize > 32 && VecSize % 32 == 0 && Idx) {
15245 unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
15246 unsigned EltIdx = BitIndex / 32;
15247 unsigned LeftoverBitIdx = BitIndex % 32;
15251 DCI.AddToWorklist(Cast.
getNode());
15255 DCI.AddToWorklist(Elt.
getNode());
15258 DCI.AddToWorklist(Srl.
getNode());
15262 DCI.AddToWorklist(Trunc.
getNode());
15264 if (VecEltVT == ResVT) {
15265 return DAG.
getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
15276SITargetLowering::performInsertVectorEltCombine(
SDNode *
N,
15277 DAGCombinerInfo &DCI)
const {
15288 SelectionDAG &DAG = DCI.DAG;
15307 if (Src.getOpcode() == ISD::FP_EXTEND &&
15308 Src.getOperand(0).getValueType() == MVT::f16) {
15309 return Src.getOperand(0);
15313 APFloat Val = CFP->getValueAPF();
15314 bool LosesInfo =
true;
15324 DAGCombinerInfo &DCI)
const {
15325 assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() &&
15326 "combine only useful on gfx8");
15328 SDValue TruncSrc =
N->getOperand(0);
15329 EVT VT =
N->getValueType(0);
15330 if (VT != MVT::f16)
15337 SelectionDAG &DAG = DCI.DAG;
15365 return DAG.
getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1);
15368unsigned SITargetLowering::getFusedOpcode(
const SelectionDAG &DAG,
15370 const SDNode *N1)
const {
15375 if (((VT == MVT::f32 &&
15377 (VT == MVT::f16 && Subtarget->hasMadF16() &&
15397 EVT VT =
N->getValueType(0);
15398 if (VT != MVT::i32 && VT != MVT::i64)
15404 unsigned Opc =
N->getOpcode();
15459 if (!Const ||
Hi_32(Const->getZExtValue()) !=
uint32_t(-1))
15478 DAGCombinerInfo &DCI)
const {
15481 SelectionDAG &DAG = DCI.DAG;
15482 EVT VT =
N->getValueType(0);
15492 if (!
N->isDivergent() && Subtarget->hasSMulHi())
15496 if (NumBits <= 32 || NumBits > 64)
15507 if (!Subtarget->hasFullRate64Ops()) {
15508 unsigned NumUsers = 0;
15509 for (SDNode *User :
LHS->
users()) {
15512 if (!
User->isAnyAdd())
15536 bool MulSignedLo =
false;
15537 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
15546 if (VT != MVT::i64) {
15569 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
15571 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
15572 auto [AccumLo, AccumHi] = DAG.
SplitScalar(Accum, SL, MVT::i32, MVT::i32);
15574 if (!MulLHSUnsigned32) {
15581 if (!MulRHSUnsigned32) {
15592 if (VT != MVT::i64)
15598SITargetLowering::foldAddSub64WithZeroLowBitsTo32(
SDNode *
N,
15599 DAGCombinerInfo &DCI)
const {
15609 SelectionDAG &DAG = DCI.DAG;
15624 unsigned Opcode =
N->getOpcode();
15625 if (Opcode == ISD::PTRADD)
15628 DAG.
getNode(Opcode, SL, MVT::i32,
Hi, ConstHi32,
N->getFlags());
15639static std::optional<ByteProvider<SDValue>>
15642 if (!Byte0 || Byte0->isConstantZero()) {
15643 return std::nullopt;
15646 if (Byte1 && !Byte1->isConstantZero()) {
15647 return std::nullopt;
15653 unsigned FirstCs =
First & 0x0c0c0c0c;
15654 unsigned SecondCs = Second & 0x0c0c0c0c;
15655 unsigned FirstNoCs =
First & ~0x0c0c0c0c;
15656 unsigned SecondNoCs = Second & ~0x0c0c0c0c;
15658 assert((FirstCs & 0xFF) | (SecondCs & 0xFF));
15659 assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00));
15660 assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000));
15661 assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000));
15663 return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs);
15687 for (
int BPI = 0; BPI < 2; BPI++) {
15690 BPP = {Src1, Src0};
15692 unsigned ZeroMask = 0x0c0c0c0c;
15693 unsigned FMask = 0xFF << (8 * (3 - Step));
15695 unsigned FirstMask =
15696 (BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
15697 unsigned SecondMask =
15698 (BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
15702 int FirstGroup = -1;
15703 for (
int I = 0;
I < 2;
I++) {
15705 auto MatchesFirst = [&BPP](
DotSrc &IterElt) {
15706 return IterElt.SrcOp == *BPP.first.Src &&
15707 (IterElt.DWordOffset == (BPP.first.SrcOffset / 4));
15711 if (Match != Srcs.
end()) {
15712 Match->PermMask =
addPermMasks(FirstMask, Match->PermMask);
15717 if (FirstGroup != -1) {
15719 auto MatchesSecond = [&BPP](
DotSrc &IterElt) {
15720 return IterElt.SrcOp == *BPP.second.Src &&
15721 (IterElt.DWordOffset == (BPP.second.SrcOffset / 4));
15724 if (Match != Srcs.
end()) {
15725 Match->PermMask =
addPermMasks(SecondMask, Match->PermMask);
15727 Srcs.
push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4});
15735 unsigned ZeroMask = 0x0c0c0c0c;
15736 unsigned FMask = 0xFF << (8 * (3 - Step));
15740 ((Src0.
SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
15744 ((Src1.
SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
15753 if (Srcs.
size() == 1) {
15754 auto *Elt = Srcs.
begin();
15758 if (Elt->PermMask == 0x3020100)
15765 auto *FirstElt = Srcs.
begin();
15766 auto *SecondElt = std::next(FirstElt);
15773 auto FirstMask = FirstElt->PermMask;
15774 auto SecondMask = SecondElt->PermMask;
15776 unsigned FirstCs = FirstMask & 0x0c0c0c0c;
15777 unsigned FirstPlusFour = FirstMask | 0x04040404;
15780 FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs;
15792 FirstElt = std::next(SecondElt);
15793 if (FirstElt == Srcs.
end())
15796 SecondElt = std::next(FirstElt);
15799 if (SecondElt == Srcs.
end()) {
15805 DAG.
getConstant(FirstElt->PermMask, SL, MVT::i32)));
15811 return Perms.
size() == 2
15817 for (
auto &[EntryVal, EntryMask, EntryOffset] : Srcs) {
15818 EntryMask = EntryMask >> ((4 - ChainLength) * 8);
15819 auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000;
15820 EntryMask += ZeroMask;
15825 auto Opcode =
Op.getOpcode();
15831static std::optional<bool>
15842 bool S0IsSigned = Known0.countMinLeadingOnes() > 0;
15845 bool S1IsSigned = Known1.countMinLeadingOnes() > 0;
15847 assert(!(S0IsUnsigned && S0IsSigned));
15848 assert(!(S1IsUnsigned && S1IsSigned));
15856 if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned))
15862 if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned))
15863 return std::nullopt;
15875 if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) ||
15876 ((S1IsSigned && !(S0IsSigned || S0IsUnsigned))))
15881 if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned)))
15887 if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) ||
15888 ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned))))
15889 return std::nullopt;
15895 DAGCombinerInfo &DCI)
const {
15896 SelectionDAG &DAG = DCI.DAG;
15897 EVT VT =
N->getValueType(0);
15903 if (Subtarget->hasMad64_32()) {
15904 if (
SDValue Folded = tryFoldToMad64_32(
N, DCI))
15909 if (
SDValue V = reassociateScalarOps(
N, DAG)) {
15913 if (VT == MVT::i64) {
15914 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
15919 (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) {
15921 std::optional<bool> IsSigned;
15927 int ChainLength = 0;
15928 for (
int I = 0;
I < 4;
I++) {
15932 auto Src0 =
handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0));
15935 auto Src1 =
handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1));
15940 TempNode->getOperand(MulIdx), *Src0, *Src1,
15941 TempNode->getOperand(MulIdx)->getOperand(0),
15942 TempNode->getOperand(MulIdx)->getOperand(1), DAG);
15946 IsSigned = *IterIsSigned;
15947 if (*IterIsSigned != *IsSigned)
15950 auto AddIdx = 1 - MulIdx;
15953 if (
I == 2 &&
isMul(TempNode->getOperand(AddIdx))) {
15954 Src2s.
push_back(TempNode->getOperand(AddIdx));
15964 TempNode->getOperand(AddIdx), *Src0, *Src1,
15965 TempNode->getOperand(AddIdx)->getOperand(0),
15966 TempNode->getOperand(AddIdx)->getOperand(1), DAG);
15970 if (*IterIsSigned != *IsSigned)
15974 ChainLength =
I + 2;
15978 TempNode = TempNode->getOperand(AddIdx);
15980 ChainLength =
I + 1;
15981 if (TempNode->getNumOperands() < 2)
15983 LHS = TempNode->getOperand(0);
15984 RHS = TempNode->getOperand(1);
15987 if (ChainLength < 2)
15993 if (ChainLength < 4) {
16003 bool UseOriginalSrc =
false;
16004 if (ChainLength == 4 && Src0s.
size() == 1 && Src1s.
size() == 1 &&
16005 Src0s.
begin()->PermMask == Src1s.
begin()->PermMask &&
16006 Src0s.
begin()->SrcOp.getValueSizeInBits() >= 32 &&
16007 Src1s.
begin()->SrcOp.getValueSizeInBits() >= 32) {
16008 SmallVector<unsigned, 4> SrcBytes;
16009 auto Src0Mask = Src0s.
begin()->PermMask;
16010 SrcBytes.
push_back(Src0Mask & 0xFF000000);
16011 bool UniqueEntries =
true;
16012 for (
auto I = 1;
I < 4;
I++) {
16013 auto NextByte = Src0Mask & (0xFF << ((3 -
I) * 8));
16016 UniqueEntries =
false;
16022 if (UniqueEntries) {
16023 UseOriginalSrc =
true;
16025 auto *FirstElt = Src0s.
begin();
16029 auto *SecondElt = Src1s.
begin();
16031 SecondElt->DWordOffset);
16040 if (!UseOriginalSrc) {
16047 DAG.
getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32);
16050 : Intrinsic::amdgcn_udot4,
16060 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
16065 unsigned Opc =
LHS.getOpcode();
16077 auto Cond =
RHS.getOperand(0);
16082 SDVTList VTList = DAG.
getVTList(MVT::i32, MVT::i1);
16099 DAGCombinerInfo &DCI)
const {
16100 SelectionDAG &DAG = DCI.DAG;
16102 EVT VT =
N->getValueType(0);
16115 SDNodeFlags ShlFlags = N1->
getFlags();
16119 SDNodeFlags NewShlFlags =
16124 DCI.AddToWorklist(Inner.
getNode());
16131 if (Subtarget->hasMad64_32()) {
16132 if (
SDValue Folded = tryFoldToMad64_32(
N, DCI))
16141 if (VT == MVT::i64) {
16142 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
16155 if (!YIsConstant && !ZIsConstant && !
X->isDivergent() &&
16156 Y->isDivergent() !=
Z->isDivergent()) {
16165 if (
Y->isDivergent())
16168 SDNodeFlags ReassocFlags =
16171 DCI.AddToWorklist(UniformInner.
getNode());
16179 DAGCombinerInfo &DCI)
const {
16180 SelectionDAG &DAG = DCI.DAG;
16181 EVT VT =
N->getValueType(0);
16183 if (VT == MVT::i64) {
16184 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
16188 if (VT != MVT::i32)
16197 unsigned Opc =
RHS.getOpcode();
16204 auto Cond =
RHS.getOperand(0);
16209 SDVTList VTList = DAG.
getVTList(MVT::i32, MVT::i1);
16227SITargetLowering::performAddCarrySubCarryCombine(
SDNode *
N,
16228 DAGCombinerInfo &DCI)
const {
16230 if (
N->getValueType(0) != MVT::i32)
16236 SelectionDAG &DAG = DCI.DAG;
16241 unsigned LHSOpc =
LHS.getOpcode();
16242 unsigned Opc =
N->getOpcode();
16246 return DAG.
getNode(
Opc, SDLoc(
N),
N->getVTList(), Args);
16252 DAGCombinerInfo &DCI)
const {
16256 SelectionDAG &DAG = DCI.DAG;
16257 EVT VT =
N->getValueType(0);
16269 if (
A ==
LHS.getOperand(1)) {
16270 unsigned FusedOp = getFusedOpcode(DAG,
N,
LHS.getNode());
16271 if (FusedOp != 0) {
16273 return DAG.
getNode(FusedOp, SL, VT,
A, Two,
RHS);
16281 if (
A ==
RHS.getOperand(1)) {
16282 unsigned FusedOp = getFusedOpcode(DAG,
N,
RHS.getNode());
16283 if (FusedOp != 0) {
16285 return DAG.
getNode(FusedOp, SL, VT,
A, Two,
LHS);
16294 DAGCombinerInfo &DCI)
const {
16298 SelectionDAG &DAG = DCI.DAG;
16300 EVT VT =
N->getValueType(0);
16313 if (
A ==
LHS.getOperand(1)) {
16314 unsigned FusedOp = getFusedOpcode(DAG,
N,
LHS.getNode());
16315 if (FusedOp != 0) {
16319 return DAG.
getNode(FusedOp, SL, VT,
A, Two, NegRHS);
16328 if (
A ==
RHS.getOperand(1)) {
16329 unsigned FusedOp = getFusedOpcode(DAG,
N,
RHS.getNode());
16330 if (FusedOp != 0) {
16332 return DAG.
getNode(FusedOp, SL, VT,
A, NegTwo,
LHS);
16341 DAGCombinerInfo &DCI)
const {
16342 SelectionDAG &DAG = DCI.DAG;
16344 EVT VT =
N->getValueType(0);
16345 if ((VT != MVT::f16 && VT != MVT::bf16) || !Subtarget->has16BitInsts())
16351 SDNodeFlags
Flags =
N->getFlags();
16352 SDNodeFlags RHSFlags =
RHS->getFlags();
16358 bool IsNegative =
false;
16359 if (CLHS->isExactlyValue(1.0) ||
16360 (IsNegative = CLHS->isExactlyValue(-1.0))) {
16363 if (
RHS.getOpcode() == ISD::FSQRT) {
16367 return IsNegative ? DAG.
getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq;
16376 DAGCombinerInfo &DCI)
const {
16377 SelectionDAG &DAG = DCI.DAG;
16378 EVT VT =
N->getValueType(0);
16382 if (!
N->isDivergent() &&
getSubtarget()->hasSALUFloatInsts() &&
16383 (ScalarVT == MVT::f32 || ScalarVT == MVT::f16)) {
16398 if ((ScalarVT == MVT::f64 || ScalarVT == MVT::f32 || ScalarVT == MVT::f16) &&
16403 const ConstantFPSDNode *FalseNode =
16413 if (ScalarVT == MVT::f32 &&
16419 if (TrueNodeExpVal == INT_MIN)
16422 if (FalseNodeExpVal == INT_MIN)
16435 return DAG.
getNode(ISD::FLDEXP, SL, VT,
LHS, SelectNode,
N->getFlags());
16442 DAGCombinerInfo &DCI)
const {
16443 SelectionDAG &DAG = DCI.DAG;
16444 EVT VT =
N->getValueType(0);
16447 if (!Subtarget->hasDot10Insts() || VT != MVT::f32)
16465 (
N->getFlags().hasAllowContract() &&
16466 FMA->getFlags().hasAllowContract())) {
16481 if (FMAOp1.
getOpcode() != ISD::FP_EXTEND ||
16500 if (Vec1 == Vec2 || Vec3 == Vec4)
16506 if ((Vec1 == Vec3 && Vec2 == Vec4) || (Vec1 == Vec4 && Vec2 == Vec3)) {
16515 DAGCombinerInfo &DCI)
const {
16516 SelectionDAG &DAG = DCI.DAG;
16521 EVT VT =
LHS.getValueType();
16550 return LHS.getOperand(0);
16558 LHS.getConstantOperandVal(1) !=
LHS.getConstantOperandVal(2) &&
16565 const APInt &CT =
LHS.getConstantOperandAPInt(1);
16566 const APInt &CF =
LHS.getConstantOperandAPInt(2);
16574 return LHS.getOperand(0);
16606 DAG.
getVTList(MVT::i32, MVT::i1), {Op0Lo, Op1Lo});
16611 {Op0Hi, Op1Hi, CarryInHi});
16621 DCI.CombineTo(
LHS.getNode(), Result);
16625 if (VT != MVT::f32 && VT != MVT::f64 &&
16626 (!Subtarget->has16BitInsts() || VT != MVT::f16))
16634 LHS.getOpcode() == ISD::FABS) {
16641 const unsigned IsInfMask =
16643 const unsigned IsFiniteMask =
16657SITargetLowering::performCvtF32UByteNCombine(
SDNode *
N,
16658 DAGCombinerInfo &DCI)
const {
16659 SelectionDAG &DAG = DCI.DAG;
16680 unsigned ShiftOffset = 8 *
Offset;
16682 ShiftOffset -=
C->getZExtValue();
16684 ShiftOffset +=
C->getZExtValue();
16686 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
16688 MVT::f32, Shifted);
16699 DCI.AddToWorklist(
N);
16706 return DAG.
getNode(
N->getOpcode(), SL, MVT::f32, DemandedSrc);
16712 DAGCombinerInfo &DCI)
const {
16717 const MachineFunction &MF = DCI.DAG.getMachineFunction();
16721 (
F.isNaN() && MF.
getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
16722 return DCI.DAG.getConstantFP(Zero, SDLoc(
N),
N->getValueType(0));
16725 APFloat One(
F.getSemantics(),
"1.0");
16727 return DCI.DAG.getConstantFP(One, SDLoc(
N),
N->getValueType(0));
16733 DAGCombinerInfo &DCI)
const {
16754 bool isFloatingPoint =
LHS.getValueType().isFloatingPoint();
16755 bool isInteger =
LHS.getValueType().isInteger();
16758 if (!isFloatingPoint && !isInteger)
16763 if (!isEquality && !isNonEquality)
16780 if (isFloatingPoint) {
16782 if (!Val.
isNormal() || Subtarget->getInstrInfo()->isInlineConstant(Val))
16793 if (!(isEquality && TrueVal == ConstVal) &&
16794 !(isNonEquality && FalseVal == ConstVal))
16801 SelectLHS, SelectRHS);
16806 switch (
N->getOpcode()) {
16822 if (
auto Res = promoteUniformOpToI32(
SDValue(
N, 0), DCI))
16832 switch (
N->getOpcode()) {
16834 return performAddCombine(
N, DCI);
16836 return performPtrAddCombine(
N, DCI);
16838 return performSubCombine(
N, DCI);
16841 return performAddCarrySubCarryCombine(
N, DCI);
16843 return performFAddCombine(
N, DCI);
16845 return performFSubCombine(
N, DCI);
16847 return performFDivCombine(
N, DCI);
16849 return performFMulCombine(
N, DCI);
16851 return performSetCCCombine(
N, DCI);
16853 if (
auto Res = performSelectCombine(
N, DCI))
16858 case ISD::FMAXNUM_IEEE:
16859 case ISD::FMINNUM_IEEE:
16860 case ISD::FMAXIMUM:
16861 case ISD::FMINIMUM:
16862 case ISD::FMAXIMUMNUM:
16863 case ISD::FMINIMUMNUM:
16870 return performMinMaxCombine(
N, DCI);
16872 return performFMACombine(
N, DCI);
16874 return performAndCombine(
N, DCI);
16876 return performOrCombine(
N, DCI);
16879 if (
N->getValueType(0) == MVT::i32 &&
N->isDivergent() &&
16880 TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
16886 return performXorCombine(
N, DCI);
16888 return performZeroExtendCombine(
N, DCI);
16890 return performSignExtendInRegCombine(
N, DCI);
16892 return performClassCombine(
N, DCI);
16894 return performFCanonicalizeCombine(
N, DCI);
16896 return performRcpCombine(
N, DCI);
16911 return performUCharToFloatCombine(
N, DCI);
16913 return performFCopySignCombine(
N, DCI);
16918 return performCvtF32UByteNCombine(
N, DCI);
16920 return performFMed3Combine(
N, DCI);
16922 return performCvtPkRTZCombine(
N, DCI);
16924 return performClampCombine(
N, DCI);
16927 EVT VT =
N->getValueType(0);
16930 if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) {
16933 EVT EltVT = Src.getValueType();
16934 if (EltVT != MVT::i16)
16935 Src = DAG.
getNode(ISD::BITCAST, SL, MVT::i16, Src);
16938 return DAG.
getNode(ISD::BITCAST, SL, VT, Ext);
16944 return performExtractVectorEltCombine(
N, DCI);
16946 return performInsertVectorEltCombine(
N, DCI);
16948 return performFPRoundCombine(
N, DCI);
16957 return performMemSDNodeCombine(MemNode, DCI);
16988 unsigned Opcode =
Node->getMachineOpcode();
16991 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
16992 if (D16Idx >= 0 &&
Node->getConstantOperandVal(D16Idx))
16995 SDNode *
Users[5] = {
nullptr};
16997 unsigned DmaskIdx =
16998 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
16999 unsigned OldDmask =
Node->getConstantOperandVal(DmaskIdx);
17000 unsigned NewDmask = 0;
17001 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
17002 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
17003 bool UsesTFC = (int(TFEIdx) >= 0 &&
Node->getConstantOperandVal(TFEIdx)) ||
17004 (
int(LWEIdx) >= 0 &&
Node->getConstantOperandVal(LWEIdx));
17005 unsigned TFCLane = 0;
17006 bool HasChain =
Node->getNumValues() > 1;
17008 if (OldDmask == 0) {
17016 TFCLane = OldBitsSet;
17020 for (SDUse &Use :
Node->uses()) {
17023 if (
Use.getResNo() != 0)
17026 SDNode *
User =
Use.getUser();
17029 if (!
User->isMachineOpcode() ||
17030 User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
17042 if (UsesTFC && Lane == TFCLane) {
17047 for (
unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
17049 Dmask &= ~(1 << Comp);
17057 NewDmask |= 1 << Comp;
17062 bool NoChannels = !NewDmask;
17069 if (OldBitsSet == 1)
17075 if (NewDmask == OldDmask)
17084 unsigned NewChannels = BitsSet + UsesTFC;
17088 assert(NewOpcode != -1 &&
17089 NewOpcode !=
static_cast<int>(
Node->getMachineOpcode()) &&
17090 "failed to find equivalent MIMG op");
17098 MVT SVT =
Node->getValueType(0).getVectorElementType().getSimpleVT();
17100 MVT ResultVT = NewChannels == 1
17103 : NewChannels == 5 ? 8
17105 SDVTList NewVTList =
17108 MachineSDNode *NewNode =
17117 if (NewChannels == 1) {
17127 for (
unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
17132 if (i || !NoChannels)
17137 if (NewUser != User) {
17147 Idx = AMDGPU::sub1;
17150 Idx = AMDGPU::sub2;
17153 Idx = AMDGPU::sub3;
17156 Idx = AMDGPU::sub4;
17167 Op =
Op.getOperand(0);
17188 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
17192 Node->getOperand(0), SL, VReg, SrcVal,
17198 return ToResultReg.
getNode();
17203 for (
unsigned i = 0; i <
Node->getNumOperands(); ++i) {
17205 Ops.push_back(
Node->getOperand(i));
17211 Node->getOperand(i).getValueType(),
17212 Node->getOperand(i)),
17224 unsigned Opcode =
Node->getMachineOpcode();
17226 if (
TII->isImage(Opcode) && !
TII->get(Opcode).mayStore() &&
17227 !
TII->isGather4(Opcode) &&
17229 return adjustWritemask(
Node, DAG);
17232 if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) {
17238 case AMDGPU::V_DIV_SCALE_F32_e64:
17239 case AMDGPU::V_DIV_SCALE_F64_e64: {
17249 (Src0 == Src1 || Src0 == Src2))
17305 AMDGPU::getNamedOperandIdx(
MI.getOpcode(), AMDGPU::OpName::vdata);
17306 unsigned InitIdx = 0;
17308 if (
TII->isImage(
MI)) {
17316 unsigned TFEVal = TFE ? TFE->
getImm() : 0;
17317 unsigned LWEVal = LWE ? LWE->
getImm() : 0;
17318 unsigned D16Val = D16 ? D16->getImm() : 0;
17320 if (!TFEVal && !LWEVal)
17331 assert(MO_Dmask &&
"Expected dmask operand in instruction");
17333 unsigned dmask = MO_Dmask->
getImm();
17338 bool Packed = !Subtarget->hasUnpackedD16VMem();
17340 InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
17346 TRI.getRegSizeInBits(*
TII->getOpRegClass(
MI, DstIdx)) / 32;
17347 if (DstSize < InitIdx)
17350 InitIdx =
TRI.getRegSizeInBits(*
TII->getOpRegClass(
MI, DstIdx)) / 32;
17358 Register PrevDst =
MRI.cloneVirtualRegister(
MI.getOperand(DstIdx).getReg());
17359 unsigned NewDst = 0;
17364 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
17365 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
17368 for (; SizeLeft; SizeLeft--, CurrIdx++) {
17369 NewDst =
MRI.createVirtualRegister(
TII->getOpRegClass(
MI, DstIdx));
17389 MI.tieOperands(DstIdx,
MI.getNumOperands() - 1);
17401 if (
TII->isVOP3(
MI.getOpcode())) {
17403 TII->legalizeOperandsVOP3(
MRI,
MI);
17405 if (
TII->isMAI(
MI)) {
17410 int Src0Idx = AMDGPU::getNamedOperandIdx(
MI.getOpcode(),
17411 AMDGPU::OpName::scale_src0);
17412 if (Src0Idx != -1) {
17413 int Src1Idx = AMDGPU::getNamedOperandIdx(
MI.getOpcode(),
17414 AMDGPU::OpName::scale_src1);
17415 if (
TII->usesConstantBus(
MRI,
MI, Src0Idx) &&
17416 TII->usesConstantBus(
MRI,
MI, Src1Idx))
17417 TII->legalizeOpWithMove(
MI, Src1Idx);
17424 if (
TII->isImage(
MI))
17425 TII->enforceOperandRCAlignment(
MI, AMDGPU::OpName::vaddr);
17499std::pair<unsigned, const TargetRegisterClass *>
17506 if (Constraint.
size() == 1) {
17510 if (VT == MVT::Other)
17513 switch (Constraint[0]) {
17520 RC = &AMDGPU::SReg_32RegClass;
17523 RC = &AMDGPU::SGPR_64RegClass;
17528 return std::pair(0U,
nullptr);
17535 RC = Subtarget->useRealTrue16Insts() ? &AMDGPU::VGPR_16RegClass
17536 : &AMDGPU::VGPR_32_Lo256RegClass;
17539 RC = Subtarget->has1024AddressableVGPRs()
17540 ?
TRI->getAlignedLo256VGPRClassForBitWidth(
BitWidth)
17543 return std::pair(0U,
nullptr);
17548 if (!Subtarget->hasMAIInsts())
17552 RC = &AMDGPU::AGPR_32RegClass;
17557 return std::pair(0U,
nullptr);
17562 }
else if (Constraint ==
"VA" && Subtarget->hasGFX90AInsts()) {
17566 RC = &AMDGPU::AV_32RegClass;
17569 RC =
TRI->getVectorSuperClassForBitWidth(
BitWidth);
17571 return std::pair(0U,
nullptr);
17580 return std::pair(0U, RC);
17583 if (Kind !=
'\0') {
17585 RC = &AMDGPU::VGPR_32_Lo256RegClass;
17586 }
else if (Kind ==
's') {
17587 RC = &AMDGPU::SGPR_32RegClass;
17588 }
else if (Kind ==
'a') {
17589 RC = &AMDGPU::AGPR_32RegClass;
17595 return std::pair(0U,
nullptr);
17601 return std::pair(0U,
nullptr);
17605 RC =
TRI->getVGPRClassForBitWidth(Width);
17607 RC =
TRI->getSGPRClassForBitWidth(Width);
17609 RC =
TRI->getAGPRClassForBitWidth(Width);
17611 Reg =
TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
17616 return std::pair(0U,
nullptr);
17618 return std::pair(Reg, RC);
17624 return std::pair(0U,
nullptr);
17625 if (Idx < RC->getNumRegs())
17627 return std::pair(0U,
nullptr);
17633 Ret.second =
TRI->getPhysRegBaseClass(Ret.first);
17639 if (Constraint.
size() == 1) {
17640 switch (Constraint[0]) {
17650 }
else if (Constraint ==
"DA" || Constraint ==
"DB") {
17658 if (Constraint.
size() == 1) {
17659 switch (Constraint[0]) {
17667 }
else if (Constraint.
size() == 2) {
17668 if (Constraint ==
"VA")
17686 std::vector<SDValue> &
Ops,
17701 unsigned Size =
Op.getScalarValueSizeInBits();
17705 if (
Size == 16 && !Subtarget->has16BitInsts())
17709 Val =
C->getSExtValue();
17713 Val =
C->getValueAPF().bitcastToAPInt().getSExtValue();
17717 if (
Size != 16 ||
Op.getNumOperands() != 2)
17719 if (
Op.getOperand(0).isUndef() ||
Op.getOperand(1).isUndef())
17722 Val =
C->getSExtValue();
17726 Val =
C->getValueAPF().bitcastToAPInt().getSExtValue();
17736 if (Constraint.
size() == 1) {
17737 switch (Constraint[0]) {
17752 }
else if (Constraint.
size() == 2) {
17753 if (Constraint ==
"DA") {
17754 int64_t HiBits =
static_cast<int32_t
>(Val >> 32);
17755 int64_t LoBits =
static_cast<int32_t
>(Val);
17759 if (Constraint ==
"DB") {
17767 unsigned MaxSize)
const {
17768 unsigned Size = std::min<unsigned>(
Op.getScalarValueSizeInBits(), MaxSize);
17769 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
17771 MVT VT =
Op.getSimpleValueType();
17796 switch (UnalignedClassID) {
17797 case AMDGPU::VReg_64RegClassID:
17798 return AMDGPU::VReg_64_Align2RegClassID;
17799 case AMDGPU::VReg_96RegClassID:
17800 return AMDGPU::VReg_96_Align2RegClassID;
17801 case AMDGPU::VReg_128RegClassID:
17802 return AMDGPU::VReg_128_Align2RegClassID;
17803 case AMDGPU::VReg_160RegClassID:
17804 return AMDGPU::VReg_160_Align2RegClassID;
17805 case AMDGPU::VReg_192RegClassID:
17806 return AMDGPU::VReg_192_Align2RegClassID;
17807 case AMDGPU::VReg_224RegClassID:
17808 return AMDGPU::VReg_224_Align2RegClassID;
17809 case AMDGPU::VReg_256RegClassID:
17810 return AMDGPU::VReg_256_Align2RegClassID;
17811 case AMDGPU::VReg_288RegClassID:
17812 return AMDGPU::VReg_288_Align2RegClassID;
17813 case AMDGPU::VReg_320RegClassID:
17814 return AMDGPU::VReg_320_Align2RegClassID;
17815 case AMDGPU::VReg_352RegClassID:
17816 return AMDGPU::VReg_352_Align2RegClassID;
17817 case AMDGPU::VReg_384RegClassID:
17818 return AMDGPU::VReg_384_Align2RegClassID;
17819 case AMDGPU::VReg_512RegClassID:
17820 return AMDGPU::VReg_512_Align2RegClassID;
17821 case AMDGPU::VReg_1024RegClassID:
17822 return AMDGPU::VReg_1024_Align2RegClassID;
17823 case AMDGPU::AReg_64RegClassID:
17824 return AMDGPU::AReg_64_Align2RegClassID;
17825 case AMDGPU::AReg_96RegClassID:
17826 return AMDGPU::AReg_96_Align2RegClassID;
17827 case AMDGPU::AReg_128RegClassID:
17828 return AMDGPU::AReg_128_Align2RegClassID;
17829 case AMDGPU::AReg_160RegClassID:
17830 return AMDGPU::AReg_160_Align2RegClassID;
17831 case AMDGPU::AReg_192RegClassID:
17832 return AMDGPU::AReg_192_Align2RegClassID;
17833 case AMDGPU::AReg_256RegClassID:
17834 return AMDGPU::AReg_256_Align2RegClassID;
17835 case AMDGPU::AReg_512RegClassID:
17836 return AMDGPU::AReg_512_Align2RegClassID;
17837 case AMDGPU::AReg_1024RegClassID:
17838 return AMDGPU::AReg_1024_Align2RegClassID;
17854 if (Info->isEntryFunction()) {
17861 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
17863 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
17864 :
TRI->getAlignedHighSGPRForRC(MF, 2,
17865 &AMDGPU::SGPR_64RegClass);
17866 Info->setSGPRForEXECCopy(SReg);
17868 assert(!
TRI->isSubRegister(Info->getScratchRSrcReg(),
17869 Info->getStackPtrOffsetReg()));
17870 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
17871 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
17875 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
17876 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
17878 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
17879 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
17881 Info->limitOccupancy(MF);
17883 if (ST.isWave32() && !MF.
empty()) {
17884 for (
auto &
MBB : MF) {
17885 for (
auto &
MI :
MBB) {
17886 TII->fixImplicitOperands(
MI);
17896 if (ST.needsAlignedVGPRs()) {
17897 for (
unsigned I = 0, E =
MRI.getNumVirtRegs();
I != E; ++
I) {
17903 if (NewClassID != -1)
17904 MRI.setRegClass(Reg,
TRI->getRegClass(NewClassID));
17913 const APInt &DemandedElts,
17915 unsigned Depth)
const {
17917 unsigned Opc =
Op.getOpcode();
17920 unsigned IID =
Op.getConstantOperandVal(0);
17922 case Intrinsic::amdgcn_mbcnt_lo:
17923 case Intrinsic::amdgcn_mbcnt_hi: {
17929 IID == Intrinsic::amdgcn_mbcnt_lo ? ST.getWavefrontSizeLog2() : 5);
17939 Op, Known, DemandedElts, DAG,
Depth);
17955 unsigned MaxValue =
17962 unsigned BFEWidth,
bool SExt,
unsigned Depth) {
17966 unsigned Src1Cst = 0;
17967 if (Src1.
isImm()) {
17968 Src1Cst = Src1.
getImm();
17969 }
else if (Src1.
isReg()) {
17973 Src1Cst = Cst->Value.getZExtValue();
17984 if (Width >= BFEWidth)
17993 Known = Known.
sext(BFEWidth);
17995 Known = Known.
zext(BFEWidth);
18001 unsigned Depth)
const {
18004 switch (
MI->getOpcode()) {
18005 case AMDGPU::S_BFE_I32:
18008 case AMDGPU::S_BFE_U32:
18011 case AMDGPU::S_BFE_I64:
18014 case AMDGPU::S_BFE_U64:
18017 case AMDGPU::G_INTRINSIC:
18018 case AMDGPU::G_INTRINSIC_CONVERGENT: {
18021 case Intrinsic::amdgcn_workitem_id_x:
18024 case Intrinsic::amdgcn_workitem_id_y:
18027 case Intrinsic::amdgcn_workitem_id_z:
18030 case Intrinsic::amdgcn_mbcnt_lo:
18031 case Intrinsic::amdgcn_mbcnt_hi: {
18043 case Intrinsic::amdgcn_groupstaticsize: {
18054 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
18057 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
18060 case AMDGPU::G_AMDGPU_SMED3:
18061 case AMDGPU::G_AMDGPU_UMED3: {
18062 auto [Dst, Src0, Src1, Src2] =
MI->getFirst4Regs();
18089 unsigned Depth)
const {
18096 AttributeList Attrs =
18098 if (
MaybeAlign RetAlign = Attrs.getRetAlignment())
18125 if (Header->getAlignment() != PrefAlign)
18126 return Header->getAlignment();
18128 unsigned LoopSize = 0;
18133 LoopSize +=
MBB->getAlignment().value() / 2;
18136 LoopSize +=
TII->getInstSizeInBytes(
MI);
18137 if (LoopSize > 192)
18142 if (LoopSize <= 64)
18145 if (LoopSize <= 128)
18146 return CacheLineAlign;
18152 auto I = Exit->getFirstNonDebugInstr();
18153 if (
I != Exit->end() &&
I->getOpcode() == AMDGPU::S_INST_PREFETCH)
18154 return CacheLineAlign;
18163 if (PreTerm == Pre->
begin() ||
18164 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
18168 auto ExitHead = Exit->getFirstNonDebugInstr();
18169 if (ExitHead == Exit->end() ||
18170 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
18175 return CacheLineAlign;
18183 N =
N->getOperand(0).getNode();
18184 if (
N->getOpcode() == ISD::INLINEASM ||
N->getOpcode() == ISD::INLINEASM_BR)
18193 switch (
N->getOpcode()) {
18201 if (Reg.isPhysical() ||
MRI.isLiveIn(Reg))
18202 return !
TRI->isSGPRReg(
MRI, Reg);
18208 return !
TRI->isSGPRReg(
MRI, Reg);
18212 unsigned AS = L->getAddressSpace();
18216 case ISD::CALLSEQ_END:
18245 return A->readMem() &&
A->writeMem();
18266 switch (Ty.getScalarSizeInBits()) {
18278 const APInt &DemandedElts,
18281 unsigned Depth)
const {
18286 if (Info->getMode().DX10Clamp)
18298 if (RMW->
hasMetadata(
"amdgpu.ignore.denormal.mode"))
18318 <<
"Hardware instruction generated for atomic "
18320 <<
" operation at memory scope " << MemScope;
18325 Type *EltTy = VT->getElementType();
18326 return VT->getNumElements() == 2 &&
18346 unsigned BW =
IT->getBitWidth();
18347 return BW == 32 || BW == 64;
18361 unsigned BW =
DL.getPointerSizeInBits(PT->getAddressSpace());
18362 return BW == 32 || BW == 64;
18365 if (Ty->isFloatTy() || Ty->isDoubleTy())
18369 return VT->getNumElements() == 2 &&
18370 VT->getElementType()->getPrimitiveSizeInBits() == 16;
18380 bool HasSystemScope) {
18387 if (HasSystemScope) {
18396 return RMW->
hasMetadata(
"amdgpu.no.fine.grained.memory");
18409 const MDNode *MD =
I->getMetadata(LLVMContext::MD_noalias_addrspace);
18435 DL.getTypeSizeInBits(RMW->
getType()) == 64 &&
18448 bool HasSystemScope =
18474 if (Subtarget->hasEmulatedSystemScopeAtomics())
18490 if (!HasSystemScope &&
18491 Subtarget->supportsAgentScopeFineGrainedRemoteMemoryAtomics())
18503 if (RMW->
hasMetadata(
"amdgpu.no.fine.grained.memory"))
18511 ConstVal && ConstVal->isNullValue())
18549 if (Ty->isFloatTy()) {
18554 if (Ty->isDoubleTy()) {
18575 if (Ty->isFloatTy() &&
18576 !Subtarget->hasMemoryAtomicFaddF32DenormalSupport() &&
18589 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() &&
isV2F16(Ty))
18593 if (Subtarget->hasAtomicGlobalPkAddBF16Inst() &&
isV2BF16(Ty))
18597 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() &&
isV2F16(Ty))
18602 if (Subtarget->hasAtomicBufferPkAddBF16Inst() &&
isV2BF16(Ty))
18607 if (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() && Ty->isDoubleTy())
18611 if (Ty->isFloatTy()) {
18614 if (RMW->
use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
18617 if (!RMW->
use_empty() && Subtarget->hasAtomicFaddRtnInsts())
18622 Subtarget->hasAtomicBufferGlobalPkAddF16NoRtnInsts() &&
18630 if (Subtarget->hasFlatAtomicFaddF32Inst())
18639 if (Subtarget->hasLDSFPAtomicAddF32()) {
18640 if (RMW->
use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
18642 if (!RMW->
use_empty() && Subtarget->hasAtomicFaddRtnInsts())
18670 if (Subtarget->hasAtomicFMinFMaxF32FlatInsts() && Ty->isFloatTy())
18672 if (Subtarget->hasAtomicFMinFMaxF64FlatInsts() && Ty->isDoubleTy())
18676 if (Subtarget->hasAtomicFMinFMaxF32GlobalInsts() && Ty->isFloatTy())
18678 if (Subtarget->hasAtomicFMinFMaxF64GlobalInsts() && Ty->isDoubleTy())
18731 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
18732 return Subtarget->isWave64() ? &AMDGPU::SReg_64RegClass
18733 : &AMDGPU::SReg_32RegClass;
18734 if (!
TRI->isSGPRClass(RC) && !isDivergent)
18735 return TRI->getEquivalentSGPRClass(RC);
18736 if (
TRI->isSGPRClass(RC) && isDivergent)
18737 return TRI->getEquivalentVGPRClass(RC);
18749 unsigned WaveSize) {
18754 if (!
IT ||
IT->getBitWidth() != WaveSize)
18759 if (!Visited.
insert(V).second)
18761 bool Result =
false;
18762 for (
const auto *U : V->users()) {
18764 if (V == U->getOperand(1)) {
18769 case Intrinsic::amdgcn_if_break:
18770 case Intrinsic::amdgcn_if:
18771 case Intrinsic::amdgcn_else:
18776 if (V == U->getOperand(0)) {
18781 case Intrinsic::amdgcn_end_cf:
18782 case Intrinsic::amdgcn_loop:
18788 Result =
hasCFUser(U, Visited, WaveSize);
18797 const Value *V)
const {
18799 if (CI->isInlineAsm()) {
18808 for (
auto &TC : TargetConstraints) {
18822 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
18850 return MRI.hasOneNonDBGUse(N0);
18857 if (
I.getMetadata(
"amdgpu.noclobber"))
18859 if (
I.getMetadata(
"amdgpu.last.use"))
18923 Alignment = RMW->getAlign();
18936 bool FullFlatEmulation =
18938 ((Subtarget->hasAtomicFaddInsts() && RMW->getType()->isFloatTy()) ||
18939 (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() &&
18940 RMW->getType()->isDoubleTy()));
18943 bool ReturnValueIsUsed = !AI->
use_empty();
18952 if (FullFlatEmulation) {
18963 std::prev(BB->
end())->eraseFromParent();
18964 Builder.SetInsertPoint(BB);
18966 Value *LoadedShared =
nullptr;
18967 if (FullFlatEmulation) {
18968 CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared,
18969 {Addr},
nullptr,
"is.shared");
18970 Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
18971 Builder.SetInsertPoint(SharedBB);
18972 Value *CastToLocal = Builder.CreateAddrSpaceCast(
18978 LoadedShared = Clone;
18980 Builder.CreateBr(PhiBB);
18981 Builder.SetInsertPoint(CheckPrivateBB);
18984 CallInst *IsPrivate = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_private,
18985 {Addr},
nullptr,
"is.private");
18986 Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
18988 Builder.SetInsertPoint(PrivateBB);
18990 Value *CastToPrivate = Builder.CreateAddrSpaceCast(
18993 Value *LoadedPrivate;
18995 LoadedPrivate = Builder.CreateAlignedLoad(
18996 RMW->getType(), CastToPrivate, RMW->getAlign(),
"loaded.private");
18999 LoadedPrivate, RMW->getValOperand());
19001 Builder.CreateAlignedStore(NewVal, CastToPrivate, RMW->getAlign());
19003 auto [ResultLoad, Equal] =
19009 LoadedPrivate = Builder.CreateInsertValue(Insert, Equal, 1);
19012 Builder.CreateBr(PhiBB);
19014 Builder.SetInsertPoint(GlobalBB);
19018 if (FullFlatEmulation) {
19019 Value *CastToGlobal = Builder.CreateAddrSpaceCast(
19028 if (!FullFlatEmulation) {
19033 MDNode *RangeNotPrivate =
19036 LoadedGlobal->
setMetadata(LLVMContext::MD_noalias_addrspace,
19040 Builder.CreateBr(PhiBB);
19042 Builder.SetInsertPoint(PhiBB);
19044 if (ReturnValueIsUsed) {
19047 if (FullFlatEmulation)
19054 Builder.CreateBr(ExitBB);
19058 unsigned PtrOpIdx) {
19059 Value *PtrOp =
I->getOperand(PtrOpIdx);
19066 I->setOperand(PtrOpIdx, ASCast);
19078 ConstVal && ConstVal->isNullValue()) {
19108 "Expand Atomic Load only handles SCRATCH -> FLAT conversion");
19116 "Expand Atomic Store only handles SCRATCH -> FLAT conversion");
19131 LoadInst *LI = Builder.CreateAlignedLoad(
static bool isMul(MachineInstr *MI)
unsigned const MachineRegisterInfo * MRI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static constexpr std::pair< ImplicitArgumentMask, StringLiteral > ImplicitAttrs[]
static bool allUsesHaveSourceMods(MachineInstr &MI, MachineRegisterInfo &MRI, unsigned CostThreshold=4)
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static bool isNoUnsignedWrap(MachineInstr *Addr)
static bool parseTexFail(uint64_t TexFailCtrl, bool &TFE, bool &LWE, bool &IsTexFail)
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< SDByteProvider > calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, std::optional< uint64_t > VectorIndex, unsigned StartingIndex=0)
static bool isSigned(unsigned int Opcode)
Utilities for dealing with flags related to floating point properties and mode controls.
AMD GCN specific subclass of TargetSubtarget.
Provides analysis for querying information about KnownBits during GISel passes.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Contains matchers for matching SSA Machine Instructions.
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
uint64_t IntrinsicInst * II
static constexpr MCPhysReg SPReg
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Contains matchers for matching SelectionDAG nodes and values.
static void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
#define FP_DENORM_FLUSH_NONE
#define FP_DENORM_FLUSH_IN_FLUSH_OUT
static void reservePrivateMemoryRegs(const TargetMachine &TM, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info)
static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, const SDLoc &DL, SelectionDAG &DAG, bool Unpacked)
static MachineBasicBlock * emitIndirectSrc(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF)
static bool isAtomicRMWLegalIntTy(Type *Ty)
static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelValueTracking &VT, KnownBits &Known, unsigned Dim)
static bool flatInstrMayAccessPrivate(const Instruction *I)
Return if a flat address space atomicrmw can access private memory.
static std::pair< unsigned, int > computeIndirectRegAndOffset(const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, unsigned VecReg, int Offset)
static bool denormalModeIsFlushAllF32(const MachineFunction &MF)
static bool addresses16Bits(int Mask)
static bool isClampZeroToOne(SDValue A, SDValue B)
static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc, EVT VT)
static unsigned findFirstFreeSGPR(CCState &CCInfo)
static uint32_t getPermuteMask(SDValue V)
static SDValue lowerLaneOp(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static int getAlignedAGPRClassID(unsigned UnalignedClassID)
static void processPSInputArgs(SmallVectorImpl< ISD::InputArg > &Splits, CallingConv::ID CallConv, ArrayRef< ISD::InputArg > Ins, BitVector &Skipped, FunctionType *FType, SIMachineFunctionInfo *Info)
static void getCoopAtomicOperandsInfo(const CallInst &CI, bool IsLoad, TargetLoweringBase::IntrinsicInfo &Info)
static uint64_t getIdentityValueFor64BitWaveReduction(unsigned Opc)
static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, const GCNSubtarget *Subtarget)
static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, ISD::LoadExtType ExtType, SDValue Op, const SDLoc &SL, EVT VT)
static bool globalMemoryFPAtomicIsLegal(const GCNSubtarget &Subtarget, const AtomicRMWInst *RMW, bool HasSystemScope)
static void fixMasks(SmallVectorImpl< DotSrc > &Srcs, unsigned ChainLength)
static bool is32bitWaveReduceOperation(unsigned Opc)
static TargetLowering::AtomicExpansionKind atomicSupportedIfLegalIntType(const AtomicRMWInst *RMW)
static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src)
Return the source of an fp_extend from f16 to f32, or a converted FP constant.
static bool isAtomicRMWLegalXChgTy(const AtomicRMWInst *RMW)
static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val)
static void convertScratchAtomicToFlatAtomic(Instruction *I, unsigned PtrOpIdx)
static bool isCopyFromRegOfInlineAsm(const SDNode *N)
static bool elementPairIsOddToEven(ArrayRef< int > Mask, int Elt)
static cl::opt< bool > DisableLoopAlignment("amdgpu-disable-loop-alignment", cl::desc("Do not align and prefetch loops"), cl::init(false))
static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src, unsigned DWordOffset)
static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, unsigned InitResultReg, unsigned PhiReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static bool isImmConstraint(StringRef Constraint)
static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, SDValue Src, int ExtraElts)
static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static bool hasCFUser(const Value *V, SmallPtrSet< const Value *, 16 > &Visited, unsigned WaveSize)
static OptimizationRemark emitAtomicRMWLegalRemark(const AtomicRMWInst *RMW)
static unsigned SubIdx2Lane(unsigned Idx)
Helper function for adjustWritemask.
static TargetLowering::AtomicExpansionKind getPrivateAtomicExpansionKind(const GCNSubtarget &STI)
static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, const SIMachineFunctionInfo &Info)
static MachineBasicBlock * lowerWaveReduce(MachineInstr &MI, MachineBasicBlock &BB, const GCNSubtarget &ST, unsigned Opc)
static bool elementPairIsContiguous(ArrayRef< int > Mask, int Elt)
static bool isV2BF16(Type *Ty)
static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, const TargetRegisterClass *RC, unsigned NumArgRegs)
static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue N0, SDValue N1, SDValue N2, bool Signed)
static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL, SmallVectorImpl< DotSrc > &Srcs, bool IsSigned, bool IsAny)
static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, SDValue &OtherOp)
static void placeSources(ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, SmallVectorImpl< DotSrc > &Src0s, SmallVectorImpl< DotSrc > &Src1s, int Step)
static EVT memVTFromLoadIntrReturn(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, const DebugLoc &DL, const MachineOperand &Idx, unsigned InitReg, unsigned ResultReg, unsigned PhiReg, unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isFrameIndexOp(SDValue Op)
static ConstantFPSDNode * getSplatConstantFP(SDValue Op)
static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg)
static void knownBitsForSBFE(const MachineInstr &MI, GISelValueTracking &VT, KnownBits &Known, const APInt &DemandedElts, unsigned BFEWidth, bool SExt, unsigned Depth)
static bool isExtendedFrom16Bits(SDValue &Operand)
static std::optional< bool > checkDot4MulSignedness(const SDValue &N, ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, const SDValue &S0Op, const SDValue &S1Op, const SelectionDAG &DAG)
static bool vectorEltWillFoldAway(SDValue Op)
static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, const SIMachineFunctionInfo *Info, const GCNSubtarget *ST)
static uint32_t getConstantPermuteMask(uint32_t C)
static MachineBasicBlock * emitIndirectDst(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask=~0u, ArgDescriptor Arg=ArgDescriptor())
static MachineBasicBlock * Expand64BitScalarArithmetic(MachineInstr &MI, MachineBasicBlock *BB)
static std::pair< MachineBasicBlock *, MachineBasicBlock * > splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop)
static uint32_t getIdentityValueFor32BitWaveReduction(unsigned Opc)
static unsigned getBasePtrIndex(const MemSDNode *N)
MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset by the chain and intrinsi...
static void allocateFixedSGPRInputImpl(CCState &CCInfo, const TargetRegisterClass *RC, MCRegister Reg)
static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, ArrayRef< EVT > ResultTypes, bool IsTexFail, bool Unpacked, bool IsD16, int DMaskPop, int NumVDataDwords, bool IsAtomicPacked16Bit, const SDLoc &DL)
static std::optional< ByteProvider< SDValue > > handleMulOperand(const SDValue &MulOperand)
static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static Register getIndirectSGPRIdx(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static EVT memVTFromLoadIntrData(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc)
static unsigned getExtOpcodeForPromotedOp(SDValue Op)
static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val)
static SDValue tryFoldMADwithSRL(SelectionDAG &DAG, const SDLoc &SL, SDValue MulLHS, SDValue MulRHS, SDValue AddRHS)
static unsigned getIntrMemWidth(unsigned IntrID)
static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, ArrayRef< SDValue > Elts)
static SDNode * findUser(SDValue Value, unsigned Opcode)
Helper function for LowerBRCOND.
static unsigned addPermMasks(unsigned First, unsigned Second)
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue C, SDValue GlueChain, SDNodeFlags Flags)
static bool isV2F16OrV2BF16(Type *Ty)
static bool atomicIgnoresDenormalModeOrFPModeIsFTZ(const AtomicRMWInst *RMW)
static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue GlueChain, SDNodeFlags Flags)
static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, const SDLoc &DL, int64_t Offset, EVT PtrVT, unsigned GAFlags=SIInstrInfo::MO_NONE)
static cl::opt< bool > UseDivergentRegisterIndexing("amdgpu-use-divergent-register-indexing", cl::Hidden, cl::desc("Use indirect register addressing for divergent indexes"), cl::init(false))
static const std::optional< ByteProvider< SDValue > > calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex=0, unsigned Depth=0)
static bool isV2F16(Type *Ty)
static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg)
SI DAG Lowering interface definition.
Interface definition for SIRegisterInfo.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
static const AMDGPUFunctionArgInfo FixedABIFunctionInfo
void setFuncArgInfo(const Function &F, const AMDGPUFunctionArgInfo &ArgInfo)
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
uint32_t getLDSSize() const
void setUsesDynamicLDS(bool DynLDS)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
bool isEntryFunction() const
unsigned getWavefrontSize() const
static unsigned numBitsSigned(SDValue Op, SelectionDAG &DAG)
SDValue SplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Split a vector load into 2 loads of half the vector.
void analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins) const
The SelectionDAGBuilder will automatically promote function arguments with illegal types.
SDValue LowerF64ToF16Safe(SDValue Src, const SDLoc &DL, SelectionDAG &DAG) const
SDValue storeStackInputValue(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, SDValue ArgVal, int64_t Offset) const
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue splitBinaryBitConstantOpImpl(DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, uint32_t ValLo, uint32_t ValHi) const
Split the 64-bit value LHS into two 32-bit components, and perform the binary operation Opc to it wit...
SDValue lowerUnhandledCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals, StringRef Reason) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const
bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
static bool needsDenormHandlingF32(const SelectionDAG &DAG, SDValue Src, SDNodeFlags Flags)
uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const
Helper function that returns the byte offset of the given type of implicit parameter.
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const
SDValue loadInputValue(SelectionDAG &DAG, const TargetRegisterClass *RC, EVT VT, const SDLoc &SL, const ArgDescriptor &Arg) const
static EVT getEquivalentMemType(LLVMContext &Context, EVT VT)
SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT, const SDLoc &SL, bool RawReg=false) const
Helper function that adds Reg to the LiveIn list of the DAG's MachineFunction.
SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const
Split a vector store into 2 stores of half the vector.
std::pair< SDValue, SDValue > split64BitValue(SDValue Op, SelectionDAG &DAG) const
Return 64-bit value Op as two 32-bit integers.
AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI)
static CCAssignFn * CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg)
static CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg)
Selects the correct CCAssignFn for a given CallingConvention value.
static unsigned numBitsUnsigned(SDValue Op, SelectionDAG &DAG)
static bool allowApproxFunc(const SelectionDAG &DAG, SDNodeFlags Flags)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
SDValue performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const
static bool shouldFoldFNegIntoSrc(SDNode *FNeg, SDValue FNegSrc)
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue WidenOrSplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Widen a suitably aligned v3 load.
SDValue getHiHalf64(SDValue Op, SelectionDAG &DAG) const
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast between SrcAS and DestAS is a noop.
const std::array< unsigned, 3 > & getDims() const
static const LaneMaskConstants & get(const GCNSubtarget &ST)
const unsigned XorTermOpc
const unsigned AndSaveExecOpc
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEhalf()
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
LLVM_READONLY int getExactLog2Abs() const
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
This class represents an incoming formal argument to a Function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
const Function * getParent() const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getNewValOperand()
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Value * getCompareOperand()
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Min
*p = old <signed v ? old : v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
void setOperation(BinOp Operation)
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
bool isCompareAndSwap() const
Returns true if this SDNode represents cmpxchg atomic operation, false otherwise.
This class holds the attributes for a particular argument, parameter, function, or return value.
LLVM_ABI MemoryEffects getMemoryEffects() const
LLVM_ABI bool getValueAsBool() const
Return the attribute's value as a boolean.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
Represents known origin of an individual byte in combine pattern.
static ByteProvider getConstantZero()
static ByteProvider getSrc(std::optional< ISelOp > Val, int64_t ByteOffset, int64_t VectorOffset)
std::optional< ISelOp > Src
CCState - This class holds information needed while lowering arguments and return values.
MachineFunction & getMachineFunction() const
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
static LLVM_ABI bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn)
Returns true if the results of the two calling conventions are compatible.
LLVM_ABI void AnalyzeCallResult(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeCallResult - Analyze the return values of a call, incorporating info about the passed values i...
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
LLVM_ABI bool CheckReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
CheckReturn - Analyze the return values of a function, returning true if the return can be performed ...
LLVM_ABI void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeReturn - Analyze the returned values of a return, incorporating info about the result values i...
int64_t AllocateStack(unsigned Size, Align Alignment)
AllocateStack - Allocate a chunk of stack space with the specified size and alignment.
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
bool isAllocated(MCRegister Reg) const
isAllocated - Return true if the specified register (or an alias) is allocated.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
static bool isFPPredicate(Predicate P)
static bool isIntPredicate(Predicate P)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isInfinity() const
Return true if the value is an infinity.
This is the shared class of boolean and integer constants.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Diagnostic information for unsupported feature in backend.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Register DemoteRegister
DemoteRegister - if CanLowerReturn is false, DemoteRegister is a vreg allocated to hold a pointer to ...
const Value * getValueFromVirtualReg(Register Vreg)
This method is called from TargetLowerinInfo::isSDNodeSourceOfDivergence to get the Value correspondi...
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
iterator_range< arg_iterator > args()
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Argument * getArg(unsigned i) const
bool hasMinimum3Maximum3F32() const
bool supportsAgentScopeFineGrainedRemoteMemoryAtomics() const
const SIInstrInfo * getInstrInfo() const override
bool hasMin3Max3PKF16() const
const SIRegisterInfo * getRegisterInfo() const override
bool hasMinimum3Maximum3PKF16() const
bool hasGloballyAddressableScratch() const
bool hasMinimum3Maximum3F16() const
bool hasRestrictedSOffset() const
bool hasMin3Max3_16() const
bool hasEmulatedSystemScopeAtomics() const
unsigned getKnownHighZeroBitsForFrameIndex() const
Return the number of high bits known to be zero for a frame index.
bool hasShaderCyclesHiLoRegisters() const
unsigned getMaxPrivateElementSize(bool ForBufferRSrc=false) const
bool hasKernargSegmentPtr() const
bool hasDispatchID() const
bool hasPrivateSegmentBuffer() const
unsigned getNumFreeUserSGPRs()
bool hasImplicitBufferPtr() const
bool hasPrivateSegmentSize() const
bool hasDispatchPtr() const
bool hasFlatScratchInit() const
const MachineFunction & getMachineFunction() const
void computeKnownBitsImpl(Register R, KnownBits &Known, const APInt &DemandedElts, unsigned Depth=0)
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool hasExternalLinkage() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
Class to represent integer types.
A wrapper class for inspecting calls to intrinsic functions.
constexpr unsigned getScalarSizeInBits() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
LLVM_ABI SyncScope::ID getOrInsertSyncScopeID(StringRef SSN)
getOrInsertSyncScopeID - Maps synchronization scope name to synchronization scope ID.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
static unsigned getPointerOperandIndex()
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
Describe properties that are true of each instruction in the target description file.
Wrapper class representing physical registers. Should be passed by value.
LLVM_ABI MDNode * createRange(const APInt &Lo, const APInt &Hi)
Return metadata describing the range [Lo, Hi).
const MDOperand & getOperand(unsigned I) const
Helper class for constructing bundles of MachineInstrs.
MachineBasicBlock::instr_iterator begin() const
Return an iterator to the first bundled instruction.
uint64_t getScalarSizeInBits() const
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
bool hasCalls() const
Return true if the current function has any function calls.
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
bool hasStackObjects() const
Return true if there are any stack objects in this function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & setOperandDead(unsigned OpIdx) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
Align getBaseAlign() const
Return the minimum known alignment in bytes of the base address, without the offset.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static MachineOperand CreateImm(int64_t Val)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI void clearKillFlags(Register Reg) const
clearKillFlags - Iterate over all the uses of the given register and clear the kill flag from the Mac...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This is an abstract virtual class for memory operations.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
value_iterator value_end() const
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
op_iterator op_end() const
bool isAnyAdd() const
Returns true if the node type is ADD or PTRADD.
value_iterator value_begin() const
op_iterator op_begin() const
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isMachineOpcode() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getMachineOpcode() const
unsigned getOpcode() const
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
static unsigned getDSShaderTypeValue(const MachineFunction &MF)
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool isWholeWaveFunction() const
bool hasWorkGroupIDZ() const
AMDGPU::ClusterDimsAttr getClusterDims() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
unsigned getBytesInStackArgArea() const
const AMDGPUGWSResourcePseudoSourceValue * getGWSPSV(const AMDGPUTargetMachine &TM)
static unsigned getSubRegFromChannel(unsigned Channel, unsigned NumRegs=1)
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
static bool isVGPRClass(const TargetRegisterClass *RC)
static bool isSGPRClass(const TargetRegisterClass *RC)
static bool isAGPRClass(const TargetRegisterClass *RC)
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
bool isTypeDesirableForOp(unsigned Op, EVT VT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDNode * PostISelFolding(MachineSDNode *N, SelectionDAG &DAG) const override
Fold the instructions after selecting them.
SDValue splitTernaryVectorOp(SDValue Op, SelectionDAG &DAG) const
MachineSDNode * wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
bool requiresUniformRegister(MachineFunction &MF, const Value *V) const override
Allows target to decide about the register class of the specific value that is live outside the defin...
bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const override
Returns true if be combined with to form an ISD::FMAD.
AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const override
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
void bundleInstWithWaitcnt(MachineInstr &MI) const
Insert MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
SDValue lowerROTR(SDValue Op, SelectionDAG &DAG) const
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
MVT getPointerTy(const DataLayout &DL, unsigned AS) const override
Map address space 7 to MVT::amdgpuBufferFatPointer because that's its in-memory representation.
bool denormalsEnabledForType(const SelectionDAG &DAG, EVT VT) const
void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const override
Insert explicit copies in entry and exit blocks.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
SDNode * legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const
Legalize target independent instructions (e.g.
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
SDValue lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const
const GCNSubtarget * getSubtarget() const
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
bool shouldEmitGOTReloc(const GlobalValue *GV) const
bool isCanonicalized(SelectionDAG &DAG, SDValue Op, unsigned MaxDepth=5) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
SDValue splitUnaryVectorOp(SDValue Op, SelectionDAG &DAG) const
SDValue lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const
void allocateSpecialInputSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const override
void allocateHSAUserSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
ArrayRef< MCPhysReg > getRoundingControlRegisters() const override
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint, return the type of constraint it is for this target.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent) const override
Return the register class that should be used for the specified value type.
void AddMemOpInit(MachineInstr &MI) const
MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const override
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
bool isLegalGlobalAddressingMode(const AddrMode &AM) const
void computeKnownBitsForFrameIndex(int FrameIdx, KnownBits &Known, const MachineFunction &MF) const override
Determine which of the bits of FrameIndex FIOp are known to be 0.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Return true if it is beneficial to convert a load of a constant to just the constant itself.
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
void emitExpandAtomicStore(StoreInst *SI) const override
Perform a atomic store using a target-specific way.
AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine the known alignment for the pointer value R.
bool getAsmOperandConstVal(SDValue Op, uint64_t &Val) const
bool isShuffleMaskLegal(ArrayRef< int >, EVT) const override
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
void emitExpandAtomicLoad(LoadInst *LI) const override
Perform a atomic load using a target-specific way.
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
Returns the target specific optimal type for load and store operations as a result of memset,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
LLT getPreferredShiftAmountTy(LLT Ty) const override
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
SDValue lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const
bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const override
True if target has some particular form of dealing with pointer arithmetic semantics for pointers wit...
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue lowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
void allocateSpecialInputVGPRsFixed(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments in fixed registers.
LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
MachineBasicBlock * emitGWSMemViolTestLoop(MachineInstr &MI, MachineBasicBlock *BB) const
bool getAddrModeArguments(const IntrinsicInst *I, SmallVectorImpl< Value * > &Ops, Type *&AccessTy) const override
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
bool checkAsmConstraintValA(SDValue Op, uint64_t Val, unsigned MaxSize=64) const
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool shouldEmitFixup(const GlobalValue *GV) const
MachineBasicBlock * splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const
void emitExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) const override
Perform a cmpxchg expansion using a target-specific method.
bool canTransformPtrArithOutOfBounds(const Function &F, EVT PtrVT) const override
True if the target allows transformations of in-bounds pointer arithmetic that cause out-of-bounds in...
bool hasMemSDNodeUser(SDNode *N) const
bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const override
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SmallVectorImpl< ISD::InputArg > &Ins, SelectionDAG &DAG) const
bool isMemOpHasNoClobberedMemOperand(const SDNode *N) const
bool isLegalFlatAddressingMode(const AddrMode &AM, unsigned AddrSpace) const
SDValue LowerCallResult(SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals, bool isThisReturn, SDValue ThisVal) const
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override
Assign the register class depending on the number of bits set in the writemask.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void allocateSpecialInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments at the end of allocated user arguments.
void finalizeLowering(MachineFunction &MF) const override
Execute target specific actions to finalize target lowering.
static bool isNonGlobalAddrSpace(unsigned AS)
void emitExpandAtomicAddrSpacePredicate(Instruction *AI) const
MachineSDNode * buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const
Return a resource descriptor with the 'Add TID' bit enabled The TID (Thread ID) is multiplied by the ...
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
bool mayBeEmittedAsTailCall(const CallInst *) const override
Return true if the target may be able emit the call instruction as a tail call.
void passSpecialInputs(CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info, SmallVectorImpl< std::pair< unsigned, SDValue > > &RegsToPass, SmallVectorImpl< SDValue > &MemOpChains, SDValue Chain) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool checkAsmConstraintVal(SDValue Op, StringRef Constraint, uint64_t Val) const
bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
static bool shouldExpandVectorDynExt(unsigned EltSize, unsigned NumElem, bool IsDivergentIdx, const GCNSubtarget *Subtarget)
Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be expanded into a set of cmp...
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool supportSplitCSR(MachineFunction *MF) const override
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const override
LLT handling variant.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const
SITargetLowering(const TargetMachine &tm, const GCNSubtarget &STI)
void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
bool shouldEmitPCReloc(const GlobalValue *GV) const
void initializeSplitCSR(MachineBasicBlock *Entry) const override
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
void allocateSpecialEntryInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocatePreloadKernArgSGPRs(CCState &CCInfo, SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ISD::InputArg > &Ins, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
SDValue copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const
bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &MF, unsigned IntrinsicID) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue splitBinaryVectorOp(SDValue Op, SelectionDAG &DAG) const
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
MVT getPointerMemTy(const DataLayout &DL, unsigned AS) const override
Similarly, the in-memory representation of a p7 is {p8, i32}, aka v8i32 when padding is added.
void allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF, SIMachineFunctionInfo &Info, CallingConv::ID CallConv, bool IsShader) const
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
const Pass * getPass() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node's operand with EXTRACT_SUBVECTOR and return the low/high part.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
Information about stack frame layout on the target.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
TargetInstrInfo - Interface to description of machine instruction set.
Type * Ty
Same as OrigTy, or partially legalized for soft float libcalls.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
TargetLowering(const TargetLowering &)=delete
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
unsigned getNumRegs() const
Return the number of registers in this class.
unsigned getID() const
Return the register class ID number.
MCRegister getRegister(unsigned i) const
Return the specified register in the class.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
OSType getOS() const
Get the parsed operating system type of this triple.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
bool isFunctionTy() const
True if this is an instance of FunctionType.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isZero() const
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ STREAMOUT_REGISTER
Internal address spaces. Can be freely renumbered.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
@ BUFFER_ATOMIC_COND_SUB_U32
@ TBUFFER_LOAD_FORMAT_D16
@ TBUFFER_STORE_FORMAT_D16
@ BUFFER_STORE_FORMAT_D16
@ TC_RETURN_GFX_WholeWave
@ CLAMP
CLAMP value between 0.0 and 1.0.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
LLVM_READONLY const MIMGG16MappingInfo * getMIMGG16MappingInfo(unsigned G)
LLVM_READONLY int getGlobalSaddrOp(uint16_t Opcode)
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
LLVM_READNONE constexpr bool isShader(CallingConv::ID CC)
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isFlatGlobalAddrSpace(unsigned AS)
const uint64_t FltRoundToHWConversionTable
bool isGFX12Plus(const MCSubtargetInfo &STI)
unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler)
bool isGFX11(const MCSubtargetInfo &STI)
bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val)
Checks if Val is inside MD, a !range-like metadata.
LLVM_READNONE bool isLegalDPALU_DPPControl(const MCSubtargetInfo &ST, unsigned DC)
LLVM_READNONE constexpr bool mayTailCallThisCC(CallingConv::ID CC)
Return true if we might ever do TCO for calls with this calling convention.
unsigned getAMDHSACodeObjectVersion(const Module &M)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx)
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LLVM_READNONE constexpr bool isEntryFunctionCC(CallingConv::ID CC)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
LLVM_READNONE constexpr bool isCompute(CallingConv::ID CC)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
bool getMUBUFTfe(unsigned Opc)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
std::tuple< char, unsigned, unsigned > parseAsmConstraintPhysReg(StringRef Constraint)
Returns a valid charcode or 0 in the first entry if this is a valid physical register constraint.
bool isGFX10Plus(const MCSubtargetInfo &STI)
LLVM_READONLY int getVOPe64(uint16_t Opcode)
@ TowardZeroF32_TowardNegativeF64
bool isUniformMMO(const MachineMemOperand *MMO)
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
uint32_t decodeFltRoundToHWConversionTable(uint32_t FltRounds)
Read the hardware rounding mode equivalent of a AMDGPUFltRounds value.
bool isGFX1250(const MCSubtargetInfo &STI)
bool isExtendedGlobalAddrSpace(unsigned AS)
LLVM_READONLY const MIMGDimInfo * getMIMGDimInfo(unsigned DimEnum)
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
LLVM_READNONE constexpr bool isChainCC(CallingConv::ID CC)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
LLVM_READNONE constexpr bool canGuaranteeTCO(CallingConv::ID CC)
LLVM_READNONE constexpr bool isGraphics(CallingConv::ID CC)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const RsrcIntrinsic * lookupRsrcIntrinsic(unsigned Intr)
const uint64_t FltRoundConversionTable
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SMULO
Same for multiplication.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
LLVM_ABI AttributeSet getFnAttributes(LLVMContext &C, ID id)
Return the function attributes for an intrinsic.
LLVM_ABI AttributeList getAttributes(LLVMContext &C, ID id, FunctionType *FT)
Return the attributes for an intrinsic.
LLVM_ABI FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys={})
Return the function type for an intrinsic.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
GFCstOrSplatGFCstMatch m_GFCstOrSplat(std::optional< FPValueAndVReg > &FPValReg)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
@ System
Synchronized with respect to all concurrently executing threads.
initializer< Ty > init(const Ty &Val)
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
FunctionAddr VTableAddr Value
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
LLVM_ABI void finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
finalizeBundle - Finalize a machine instruction bundle which includes a sequence of instructions star...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
std::pair< Value *, Value * > buildCmpXchgValue(IRBuilderBase &Builder, Value *Ptr, Value *Cmp, Value *Val, Align Alignment)
Emit IR to implement the given cmpxchg operation on values in registers, returning the new value.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
constexpr int64_t minIntN(int64_t N)
Gets the minimum value for a N-bit signed integer.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool isReleaseOrStronger(AtomicOrdering AO)
static const MachineMemOperand::Flags MONoClobber
Mark the MMO of a uniform load if there are no potentially clobbering stores on any path from the sta...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
AtomicOrderingCABI
Atomic ordering for C11 / C++11's memory models.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
bool isBoolSGPR(SDValue V)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
static const MachineMemOperand::Flags MOCooperative
Mark the MMO of cooperative load/store atomics.
Value * buildAtomicRMWValue(AtomicRMWInst::BinOp Op, IRBuilderBase &Builder, Value *Loaded, Value *Val)
Emit IR to implement the given atomicrmw operation on values in registers, returning the new value.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
unsigned getUndefRegState(bool B)
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
static const MachineMemOperand::Flags MOLastUse
Mark the MMO of a load as the last use.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
constexpr T maskTrailingOnes(unsigned N)
Create a bitmask with the N right-most bits set to 1, and all other bits set to 0.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
@ CLUSTER_WORKGROUP_MAX_ID_X
@ CLUSTER_WORKGROUP_MAX_ID_Z
@ CLUSTER_WORKGROUP_MAX_FLAT_ID
@ CLUSTER_WORKGROUP_MAX_ID_Y
ArgDescriptor WorkItemIDZ
ArgDescriptor WorkItemIDY
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(PreloadedValue Value) const
ArgDescriptor WorkItemIDX
static constexpr uint64_t encode(Fields... Values)
static std::tuple< typename Fields::ValueType... > decode(uint64_t Encoded)
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
static ArgDescriptor createStack(unsigned Offset, unsigned Mask=~0u)
MCRegister getRegister() const
static ArgDescriptor createArg(const ArgDescriptor &Arg, unsigned Mask)
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
Helper struct shared between Function Specialization and SCCP Solver.
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
EVT changeElementType(EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
uint64_t getScalarSizeInBits() const
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
unsigned getPointerAddrSpace() const
unsigned getByValSize() const
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
int64_t Offset
Offset - This is an offset from the base Value*.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasAllowContract() const
bool hasNoSignedWrap() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SDValue ConvergenceControlToken
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalize() const