47#include "llvm/IR/IntrinsicsNVPTX.h"
70#define DEBUG_TYPE "nvptx-lower"
82 cl::desc(
"NVPTX Specific: FMA contraction (0: don't do it"
83 " 1: do it 2: do it aggressively"),
88 cl::desc(
"NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
89 " IEEE Compliant F32 div.rnd if available."),
94 cl::desc(
"NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
98 "nvptx-force-min-byval-param-align",
cl::Hidden,
99 cl::desc(
"NVPTX Specific: force 4-byte minimal alignment for byval"
100 " params of device functions."),
172static std::optional<std::pair<unsigned int, EVT>>
201 return std::pair(NumElts, EltVT);
219 return std::pair(NumElts / NPerWord,
245 Offsets->push_back(StartingOffset + 0);
246 Offsets->push_back(StartingOffset + 8);
253 if (
StructType *STy = dyn_cast<StructType>(Ty)) {
254 auto const *SL =
DL.getStructLayout(STy);
256 for(
auto *EI : STy->elements()) {
258 StartingOffset + SL->getElementOffset(ElementNum));
265 if (
ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
266 Type *EltTy = ATy->getElementType();
267 uint64_t EltSize =
DL.getTypeAllocSize(EltTy);
268 for (
int I : llvm::seq<int>(ATy->getNumElements()))
274 for (
unsigned i = 0, e = TempVTs.
size(); i != e; ++i) {
310 NumElts = (NumElts + 3) / 4;
311 }
else if (EltVT.
getSimpleVT() == MVT::i8 && NumElts == 2) {
316 for (
unsigned j = 0; j != NumElts; ++j) {
324 Offsets->push_back(Off);
339 "Promotion is not suitable for scalars of size larger than 64-bits");
341 *PromotedVT = MVT::i1;
346 *PromotedVT = MVT::i8;
349 *PromotedVT = MVT::i16;
352 *PromotedVT = MVT::i32;
355 *PromotedVT = MVT::i64;
358 return EVT(*PromotedVT) != VT;
378 if (ParamAlignment < AccessSize)
381 if (Offsets[
Idx] & (AccessSize - 1))
384 EVT EltVT = ValueVTs[
Idx];
388 if (EltSize >= AccessSize)
391 unsigned NumElts = AccessSize / EltSize;
393 if (AccessSize != EltSize * NumElts)
397 if (
Idx + NumElts > ValueVTs.
size())
401 if (NumElts != 4 && NumElts != 2)
404 for (
unsigned j =
Idx + 1; j <
Idx + NumElts; ++j) {
406 if (ValueVTs[j] != EltVT)
410 if (Offsets[j] - Offsets[j - 1] != EltSize)
438 Align ParamAlignment,
bool IsVAArg =
false) {
448 for (
int I = 0, E = ValueVTs.
size();
I != E; ++
I) {
451 for (
unsigned AccessSize : {16, 8, 4, 2}) {
453 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
462 assert(
I + 1 < E &&
"Not enough elements.");
468 assert(
I + 3 < E &&
"Not enough elements.");
486 if (
Value->getValueType(0) == VT)
567 Op, VT, IsOpSupported ? Action : NoBF16Action);
572 bool IsOpSupported =
false;
658 for (
MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
659 MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16, MVT::v4i8,
660 MVT::i32, MVT::i64}) {
685 {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
784 for (
const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
866 const bool IsFP16FP16x2NegAvailable = STI.
getSmVersion() >= 53 &&
869 for (
const auto &VT : {MVT::f16, MVT::v2f16})
894 for (
MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
903 for (
MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
932 for (
const auto &
Op :
966 bool SupportsF32MinMaxNaN =
994#define MAKE_CASE(V) \
1081 bool Reciprocal)
const {
1102 if (Reciprocal || ExtraSteps > 0) {
1104 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1105 : Intrinsic::nvvm_rsqrt_approx_f);
1106 else if (VT == MVT::f64)
1107 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1112 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1113 : Intrinsic::nvvm_sqrt_approx_f);
1121 DAG.
getConstant(Intrinsic::nvvm_rcp_approx_ftz_d,
DL, MVT::i32),
1122 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1144 std::optional<std::pair<unsigned, const APInt &>> VAInfo,
1145 const CallBase &CB,
unsigned UniqueCallSite)
const {
1149 assert(isABI &&
"Non-ABI compilation is not supported");
1153 std::string Prototype;
1155 O <<
"prototype_" << UniqueCallSite <<
" : .callprototype ";
1164 if (
auto *ITy = dyn_cast<IntegerType>(retTy)) {
1165 size = ITy->getBitWidth();
1168 "Floating point type expected here");
1176 O <<
".param .b" <<
size <<
" _";
1177 }
else if (isa<PointerType>(retTy)) {
1178 O <<
".param .b" << PtrVT.getSizeInBits() <<
" _";
1180 O <<
".param .align " << (retAlignment ? retAlignment->value() : 0)
1181 <<
" .b8 _[" <<
DL.getTypeAllocSize(retTy) <<
"]";
1191 unsigned NumArgs = VAInfo ? VAInfo->first : Args.size();
1192 for (
unsigned i = 0, OIdx = 0; i != NumArgs; ++i, ++OIdx) {
1193 Type *Ty = Args[i].Ty;
1199 if (!Outs[OIdx].Flags.isByVal()) {
1203 O <<
".param .align " << ParamAlign.
value() <<
" .b8 ";
1205 O <<
"[" <<
DL.getTypeAllocSize(Ty) <<
"]";
1209 if (
unsigned len = vtparts.
size())
1215 (
getValueType(
DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1216 "type mismatch between callee prototype and arguments");
1219 if (isa<IntegerType>(Ty)) {
1220 sz = cast<IntegerType>(Ty)->getBitWidth();
1222 }
else if (isa<PointerType>(Ty)) {
1223 sz = PtrVT.getSizeInBits();
1227 O <<
".param .b" << sz <<
" ";
1234 Type *ETy = Args[i].IndirectType;
1235 Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1236 Align ParamByValAlign =
1239 O <<
".param .align " << ParamByValAlign.
value() <<
" .b8 ";
1241 O <<
"[" << Outs[OIdx].Flags.getByValSize() <<
"]";
1245 O << (first ?
"" :
",") <<
" .param .align " << VAInfo->second
1265 return DL.getABITypeAlign(Ty);
1270 if (!DirectCallee) {
1275 if (
const auto *CI = dyn_cast<CallInst>(CB)) {
1278 return StackAlign.value();
1289 return DL.getABITypeAlign(Ty);
1293 switch (ElementType.getSimpleVT().SimpleTy) {
1298 ElementType = MVT::i16;
1303 ElementType = MVT::i32;
1306 ElementType = MVT::i64;
1318 unsigned ArgID,
const SDLoc &dl) {
1325 for (
unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
1351 EVT MergedType = ElementType;
1358 for (
unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
1385 if (ElementType != MergedType)
1395 if (
auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal()))
1405 "Support for variadic functions (unsized array parameter) introduced "
1406 "in PTX ISA version 6.0 and requires target sm_30.");
1422 assert(isABI &&
"Non-ABI compilation is not supported");
1444 unsigned VAOffset = 0;
1451 unsigned ParamCount = 0;
1464 for (
unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1465 EVT VT = Outs[OIdx].VT;
1466 Type *Ty = Args[i].Ty;
1468 bool IsByVal = Outs[OIdx].Flags.isByVal();
1473 assert((!IsByVal || Args[i].IndirectType) &&
1474 "byval arg must have indirect type");
1475 Type *ETy = (IsByVal ? Args[i].IndirectType : Ty);
1483 Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1487 VAOffset =
alignTo(VAOffset, ArgAlign);
1489 ArgAlign = getArgumentAlignment(CB, Ty, ParamCount + 1,
DL);
1493 (IsByVal ? Outs[OIdx].Flags.getByValSize() :
DL.getTypeAllocSize(Ty));
1499 if (ParamCount == FirstVAArg) {
1505 DeclareParamVTs, DeclareParamOps);
1507 NeedAlign = PassAsArray;
1508 }
else if (PassAsArray) {
1525 SDValue DeclareScalarParamOps[] = {
1530 DeclareScalarParamOps);
1539 bool ExtendIntegerParam =
1544 for (
unsigned j = 0, je = VTs.
size(); j != je; ++j) {
1546 int CurOffset = Offsets[j];
1551 SDValue StVal = OutVals[OIdx];
1555 EltVT =
EVT(PromotedVT);
1560 StVal = DAG.
getNode(Ext, dl, PromotedVT, StVal);
1569 }
else if (ExtendIntegerParam) {
1570 assert(VTs.
size() == 1 &&
"Scalar can't have multiple parts.");
1574 dl, MVT::i32, StVal);
1585 if (VectorInfo[j] ==
PVF_SCALAR && !IsVAArg && PartAlign.has_value() &&
1588 assert(StoreOperands.
empty() &&
"Unfinished preceeding store.");
1590 DAG, Chain, IsByVal ? CurOffset + VAOffset : CurOffset, EltVT,
1591 StVal, InGlue, ParamCount, dl);
1602 assert(StoreOperands.
empty() &&
"Unfinished preceding store.");
1605 DAG.
getConstant(IsVAArg ? FirstVAArg : ParamCount, dl, MVT::i32));
1608 IsByVal ? CurOffset + VAOffset : (IsVAArg ? VAOffset : CurOffset),
1616 unsigned NumElts = StoreOperands.
size() - 3;
1636 EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1639 Op, dl, DAG.
getVTList(MVT::Other, MVT::Glue), StoreOperands,
1645 StoreOperands.
clear();
1649 if (!IsByVal && IsVAArg) {
1651 "Vectorization is expected to be disabled for variadics.");
1652 VAOffset +=
DL.getTypeAllocSize(
1659 assert(StoreOperands.
empty() &&
"Unfinished parameter store.");
1660 if (!IsByVal && VTs.
size() > 0)
1663 if (IsByVal && IsVAArg)
1671 if (Ins.size() > 0) {
1678 unsigned resultsz =
DL.getTypeAllocSizeInBits(
RetTy);
1689 retAlignment = getArgumentAlignment(CB,
RetTy, 0,
DL);
1690 assert(retAlignment &&
"retAlignment is guaranteed to be set");
1693 Chain, DAG.
getConstant(retAlignment->value(), dl, MVT::i32),
1711 VADeclareParam->
getVTList(), DeclareParamOps);
1723 if (isa<ExternalSymbolSDNode>(Callee)) {
1728 assert(CalleeFunc !=
nullptr &&
"Libcall callee must be set.");
1732 CalleeFunc->
addFnAttr(
"nvptx-libcall-callee",
"true");
1745 DL,
RetTy, Args, Outs, retAlignment,
1747 ? std::optional<std::pair<unsigned, const APInt &>>(std::make_pair(
1750 *CB, UniqueCallSite);
1763 Chain, DAG.
getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InGlue
1770 Chain = DAG.
getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1773 if (ConvertToIndirectCall) {
1776 EVT DestVT = Callee.getValueType();
1787 SDValue CallVoidOps[] = { Chain, Callee, InGlue };
1793 SDValue CallArgBeginOps[] = { Chain, InGlue };
1798 for (
unsigned i = 0, e = std::min(CLI.
NumFixedArgs + 1, ParamCount); i != e;
1808 Chain = DAG.
getNode(opcode, dl, CallArgVTs, CallArgOps);
1812 SDValue CallArgEndOps[] = { Chain,
1821 Chain, DAG.
getConstant(UniqueCallSite, dl, MVT::i32), InGlue};
1838 if (Ins.size() > 0) {
1842 assert(VTs.
size() == Ins.size() &&
"Bad value decomposition");
1844 Align RetAlign = getArgumentAlignment(CB,
RetTy, 0,
DL);
1853 bool ExtendIntegerRetVal =
1854 RetTy->isIntegerTy() &&
DL.getTypeAllocSizeInBits(
RetTy) < 32;
1856 for (
unsigned i = 0, e = VTs.
size(); i != e; ++i) {
1857 bool needTruncate =
false;
1858 EVT TheLoadType = VTs[i];
1859 EVT EltType = Ins[i].VT;
1864 TheLoadType =
EVT(PromotedVT);
1865 EltType =
EVT(PromotedVT);
1866 needTruncate =
true;
1869 if (ExtendIntegerRetVal) {
1870 TheLoadType = MVT::i32;
1872 needTruncate =
true;
1874 if (VTs[i].isInteger())
1875 needTruncate =
true;
1882 EltAlign <
DL.getABITypeAlign(
1884 assert(VecIdx == -1 && LoadVTs.
empty() &&
"Orphaned operand list.");
1886 DAG, Chain, Offsets[i], TheLoadType, InGlue, TempProxyRegOps, dl);
1888 ProxyRegTruncates.
push_back(std::optional<MVT>());
1897 assert(VecIdx == -1 && LoadVTs.
empty() &&
"Orphaned operand list.");
1904 unsigned NumElts = LoadVTs.
size();
1924 DAG.
getConstant(Offsets[VecIdx], dl, MVT::i32), InGlue};
1926 Op, dl, DAG.
getVTList(LoadVTs), LoadOperands, TheLoadType,
1930 for (
unsigned j = 0; j < NumElts; ++j) {
1934 ProxyRegTruncates.
push_back(std::optional<MVT>(Ins[VecIdx + j].VT));
1936 ProxyRegTruncates.
push_back(std::optional<MVT>());
1940 InGlue = RetVal.
getValue(NumElts + 1);
1950 DAG.
getCALLSEQ_END(Chain, UniqueCallSite, UniqueCallSite + 1, InGlue, dl);
1956 for (
unsigned i = 0; i < ProxyRegOps.
size(); ++i) {
1957 if (i < RetElts.
size() && RetElts[i]) {
1964 DAG.
getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1965 { Chain, ProxyRegOps[i], InGlue }
1968 Chain = Ret.getValue(1);
1969 InGlue = Ret.getValue(2);
1971 if (ProxyRegTruncates[i]) {
1978 for (
SDValue &
T : TempProxyRegOps) {
1981 DAG.
getVTList(
T.getSimpleValueType(), MVT::Other, MVT::Glue),
1982 {Chain, T.getOperand(0), InGlue});
2004 "Support for dynamic alloca introduced in PTX ISA version 7.3 and "
2005 "requires target sm_52.",
2015 uint64_t Align = cast<ConstantSDNode>(
Op.getOperand(2))->getZExtValue();
2023 EVT RetTypes[] = {ValueSizeTy, MVT::Other};
2035 "Support for stackrestore requires PTX ISA version >= 7.3 and target "
2039 return Op.getOperand(0);
2058 "Support for stacksave requires PTX ISA version >= 7.3 and target >= "
2083 unsigned NumOperands = Node->getNumOperands();
2084 for (
unsigned i = 0; i < NumOperands; ++i) {
2085 SDValue SubOp = Node->getOperand(i);
2089 for (
unsigned j = 0; j < NumSubElem; ++j) {
2100 EVT FromVT =
Op->getOperand(0)->getValueType(0);
2101 if (FromVT != MVT::v2i8) {
2117 EVT ToVT =
Op->getValueType(0);
2127 EVT VT =
Op->getValueType(0);
2128 if (!(
Isv2x16VT(VT) || VT == MVT::v4i8))
2133 return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
2134 isa<ConstantFPSDNode>(Operand);
2136 if (VT != MVT::v4i8)
2153 auto PRMT__10 = GetPRMT(
Op->getOperand(0),
Op->getOperand(1),
true, 0x3340);
2154 auto PRMT__32 = GetPRMT(
Op->getOperand(2),
Op->getOperand(3),
true, 0x3340);
2155 auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32,
false, 0x5410);
2162 EVT VT =
Op->getValueType(0);
2164 return APInt(32, 0);
2166 if (VT == MVT::v2f16 || VT == MVT::v2bf16)
2167 Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt();
2168 else if (VT == MVT::v2i16 || VT == MVT::v4i8)
2174 if (VT == MVT::v4i8)
2176 return Value.zext(32);
2180 Value = GetOperand(
Op, 0) | GetOperand(
Op, 1).shl(16);
2181 }
else if (VT == MVT::v4i8) {
2182 Value = GetOperand(
Op, 0) | GetOperand(
Op, 1).shl(8) |
2183 GetOperand(
Op, 2).shl(16) | GetOperand(
Op, 3).shl(24);
2198 if (VectorVT == MVT::v4i8) {
2210 if (isa<ConstantSDNode>(
Index.getNode()))
2231 if (VectorVT != MVT::v4i8)
2235 if (
Value->isUndef())
2254 if (VectorVT != MVT::v4i8 ||
Op.getValueType() != MVT::v4i8)
2262 if (
I.value() != -1)
2263 Selector |= (
I.value() << (
I.index() * 4));
2281 EVT VT =
Op.getValueType();
2342 EVT VT =
Op.getValueType();
2396 EVT VT =
Op.getValueType();
2410 EVT VT =
Op.getValueType();
2413 return LowerFROUND32(
Op, DAG);
2416 return LowerFROUND64(
Op, DAG);
2432 EVT VT =
Op.getValueType();
2438 const unsigned SignBitMask = 0x80000000;
2441 const unsigned PointFiveInBits = 0x3F000000;
2442 SDValue PointFiveWithSignRaw =
2473 EVT VT =
Op.getValueType();
2505 if (
Op.getValueType() == MVT::bf16) {
2509 DAG.
getNode(
Op.getOpcode(), Loc, MVT::f32,
Op.getOperand(0)),
2521 if (
Op.getOperand(0).getValueType() == MVT::bf16) {
2524 Op.getOpcode(), Loc,
Op.getValueType(),
2534 EVT NarrowVT =
Op.getValueType();
2571 EVT WideVT =
Op.getValueType();
2598 if (
Op.getValueType() != MVT::v2i16)
2600 EVT EltVT =
Op.getValueType().getVectorElementType();
2602 for (
int I = 0, E =
Op.getValueType().getVectorNumElements();
I < E;
I++) {
2605 [&](
const SDUse &O) {
2606 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
2607 O.get(), DAG.getIntPtrConstant(I, DL));
2618 switch (
Op.getOpcode()) {
2628 return LowerBUILD_VECTOR(
Op, DAG);
2630 return LowerBITCAST(
Op, DAG);
2634 return LowerEXTRACT_VECTOR_ELT(
Op, DAG);
2636 return LowerINSERT_VECTOR_ELT(
Op, DAG);
2638 return LowerVECTOR_SHUFFLE(
Op, DAG);
2640 return LowerCONCAT_VECTORS(
Op, DAG);
2642 return LowerSTORE(
Op, DAG);
2644 return LowerLOAD(
Op, DAG);
2646 return LowerShiftLeftParts(
Op, DAG);
2649 return LowerShiftRightParts(
Op, DAG);
2651 return LowerSelect(
Op, DAG);
2653 return LowerFROUND(
Op, DAG);
2655 return LowerFCOPYSIGN(
Op, DAG);
2658 return LowerINT_TO_FP(
Op, DAG);
2661 return LowerFP_TO_INT(
Op, DAG);
2663 return LowerFP_ROUND(
Op, DAG);
2665 return LowerFP_EXTEND(
Op, DAG);
2667 return LowerBR_JT(
Op, DAG);
2669 return LowerVAARG(
Op, DAG);
2671 return LowerVASTART(
Op, DAG);
2691 return LowerCopyToReg_128(
Op, DAG);
2700 const auto *JT = cast<JumpTableSDNode>(
Op.getOperand(1));
2703 unsigned JId = JT->getIndex();
2739 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2740 EVT VT = Node->getValueType(0);
2742 SDValue Tmp1 = Node->getOperand(0);
2743 SDValue Tmp2 = Node->getOperand(1);
2744 const MaybeAlign MA(Node->getConstantOperandVal(3));
2782 SDValue Arg = getParamSymbol(DAG, -1, PtrVT);
2785 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
2786 return DAG.
getStore(
Op.getOperand(0),
DL, VAReg,
Op.getOperand(1),
2796 assert(
Op.getValueType() == MVT::i1 &&
"Custom lowering enabled only for i1");
2807 if (
Op.getValueType() == MVT::i1)
2808 return LowerLOADi1(
Op, DAG);
2812 EVT VT =
Op.getValueType();
2815 EVT MemVT =
Load->getMemoryVT();
2817 MemVT, *
Load->getMemOperand())) {
2837 "Custom lowering for i1 load only");
2839 LD->getBasePtr(),
LD->getPointerInfo(),
2840 MVT::i8,
LD->getAlign(),
2841 LD->getMemOperand()->getFlags());
2846 SDValue Ops[] = { result,
LD->getChain() };
2855 return LowerSTOREi1(
Op, DAG);
2859 if ((
Isv2x16VT(VT) || VT == MVT::v4i8) &&
2861 VT, *
Store->getMemOperand()))
2869 return LowerSTOREVector(
Op, DAG);
2882 if (!NumEltsAndEltVT)
2884 auto [NumElts, EltVT] = NumEltsAndEltVT.value();
2891 if (Alignment < PrefAlign) {
2903 bool NeedExt =
false;
2907 unsigned Opcode = 0;
2926 "NumElts should not increase, only decrease or stay the same.");
2935 for (
unsigned i = 0; i < NumElts; ++i) {
2938 NumEltsPerSubVector);
2943 for (
unsigned i = 0; i < NumElts; ++i) {
2953 Ops.
append(
N->op_begin() + 2,
N->op_end());
2977 DAG.
getTruncStore(Tmp1, dl, Tmp3, Tmp2,
ST->getPointerInfo(), MVT::i8,
2978 ST->getAlign(),
ST->getMemOperand()->getFlags());
2987 assert(
Op.getOperand(1).getValueType() == MVT::i128 &&
2988 "Custom lowering for 128-bit CopyToReg only");
3002 NewOps[0] =
Op->getOperand(0);
3003 NewOps[1] =
Op->getOperand(1);
3007 NewOps[4] =
Op->getOperand(3);
3012unsigned NVPTXTargetLowering::getNumRegisters(
3014 std::optional<MVT> RegisterVT = std::nullopt)
const {
3015 if (VT == MVT::i128 && RegisterVT == MVT::i128)
3020bool NVPTXTargetLowering::splitValueIntoRegisterParts(
3022 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID>
CC)
const {
3023 if (Val.
getValueType() == MVT::i128 && NumParts == 1) {
3054 std::vector<SDValue> OutChains;
3057 assert(isABI &&
"Non-ABI compilation is not supported");
3061 std::vector<Type *> argTypes;
3062 std::vector<const Argument *> theArgs;
3064 theArgs.push_back(&
I);
3065 argTypes.push_back(
I.getType());
3076 unsigned InsIdx = 0;
3078 for (
unsigned i = 0, e = theArgs.size(); i != e; ++i, ++InsIdx) {
3079 Type *Ty = argTypes[i];
3081 if (theArgs[i]->use_empty()) {
3087 if (vtparts.
empty())
3090 for (
unsigned parti = 0, parte = vtparts.
size(); parti != parte;
3095 if (vtparts.
size() > 0)
3102 for (
unsigned parti = 0; parti < NumRegs; ++parti) {
3119 bool aggregateIsPacked =
false;
3120 if (
StructType *STy = dyn_cast<StructType>(Ty))
3121 aggregateIsPacked = STy->isPacked();
3133 SDValue Arg = getParamSymbol(DAG, i, PtrVT);
3135 for (
unsigned parti = 0, parte = VTs.
size(); parti != parte; ++parti) {
3137 assert(VecIdx == -1 &&
"Orphaned vector.");
3142 if (VectorInfo[parti] &
PVF_LAST) {
3143 unsigned NumElts = parti - VecIdx + 1;
3144 EVT EltVT = VTs[parti];
3147 if (EltVT == MVT::i1)
3149 else if (
Isv2x16VT(EltVT) || EltVT == MVT::v4i8)
3163 if (aggregateIsPacked)
3166 return std::nullopt;
3176 P.getNode()->setIROrder(i + 1);
3177 for (
unsigned j = 0; j < NumElts; ++j) {
3181 if (EltVT == MVT::i1)
3184 else if (EltVT != LoadVT)
3196 Ins[InsIdx].VT.getFixedSizeInBits() >
3200 Elt = DAG.
getNode(Extend, dl, Ins[InsIdx].VT, Elt);
3223 assert(ObjectVT == Ins[InsIdx].VT &&
3224 "Ins type did not match function type");
3225 SDValue Arg = getParamSymbol(DAG, i, PtrVT);
3228 p.getNode()->setIROrder(i + 1);
3232 if (!OutChains.empty())
3248 for (
unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
3258 DAG.
getVTList(MVT::Other), StoreOperands,
3276 assert(isABI &&
"Non-ABI compilation is not supported");
3285 assert(VTs.
size() == OutVals.
size() &&
"Bad return value decomposition");
3287 for (
unsigned i = 0, e = VTs.
size(); i != e; ++i) {
3288 SDValue PromotedOutVal = OutVals[i];
3291 VTs[i] =
EVT(PromotedVT);
3296 PromotedOutVal = DAG.
getNode(Ext, dl, PromotedVT, PromotedOutVal);
3298 PromotedOutVals.
push_back(PromotedOutVal);
3309 bool ExtendIntegerRetVal =
3310 RetTy->isIntegerTy() &&
DL.getTypeAllocSizeInBits(
RetTy) < 32;
3313 for (
unsigned i = 0, e = VTs.
size(); i != e; ++i) {
3315 SDValue RetVal = PromotedOutVals[i];
3317 if (ExtendIntegerRetVal) {
3320 dl, MVT::i32, RetVal);
3330 EVT ElementType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
3331 Align ElementTypeAlign =
3332 DL.getABITypeAlign(ElementType.getTypeForEVT(
RetTy->getContext()));
3333 Align ElementAlign =
3335 if (ElementAlign < ElementTypeAlign) {
3336 assert(StoreOperands.
empty() &&
"Orphaned operand list.");
3348 assert(StoreOperands.
empty() &&
"Orphaned operand list.");
3359 unsigned NumElts = StoreOperands.
size() - 2;
3376 EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
3378 Op, dl, DAG.
getVTList(MVT::Other), StoreOperands, TheStoreType,
3381 StoreOperands.
clear();
3391 if (Constraint.
size() > 1)
3404 switch (Intrinsic) {
3407 case Intrinsic::nvvm_match_all_sync_i32p:
3408 case Intrinsic::nvvm_match_all_sync_i64p:
3413 Info.memVT = MVT::i1;
3418 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3419 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3420 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3421 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3422 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3423 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3424 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3425 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3426 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3427 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3428 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3429 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3430 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3431 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3432 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3433 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3434 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3435 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3436 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3437 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3438 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3439 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3440 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3441 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3443 Info.memVT = MVT::v8f16;
3444 Info.ptrVal =
I.getArgOperand(0);
3450 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3451 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3452 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3453 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3454 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3455 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3456 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3457 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3458 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3459 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3460 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3461 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3462 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3463 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3464 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3465 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3466 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3467 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3468 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3469 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3470 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3471 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3472 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3473 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3475 Info.memVT = MVT::v2i32;
3476 Info.ptrVal =
I.getArgOperand(0);
3483 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3484 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3485 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3486 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3487 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3488 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3489 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3490 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3491 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3492 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3493 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3494 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3495 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3496 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3497 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3498 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3500 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3501 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3502 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3503 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3504 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3505 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3506 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3507 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3508 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3509 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3510 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3511 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3512 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3513 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3514 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3515 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
3516 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
3517 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
3519 Info.memVT = MVT::v4i32;
3520 Info.ptrVal =
I.getArgOperand(0);
3527 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3528 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3529 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3530 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3531 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3532 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3533 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3534 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3536 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3537 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3538 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3539 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3540 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3541 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3542 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3543 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3544 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3545 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3546 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3547 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3548 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3549 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3550 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3551 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3552 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3553 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3554 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3555 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
3556 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
3557 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
3559 Info.memVT = MVT::i32;
3560 Info.ptrVal =
I.getArgOperand(0);
3567 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3568 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3569 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3570 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3571 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3572 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3573 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3574 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3575 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3576 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3577 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3578 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3580 Info.memVT = MVT::v4f16;
3581 Info.ptrVal =
I.getArgOperand(0);
3588 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3589 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3590 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3591 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3592 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3593 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3594 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3595 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3596 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3597 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3598 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3599 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3600 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3601 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3602 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3603 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3605 Info.memVT = MVT::v8f32;
3606 Info.ptrVal =
I.getArgOperand(0);
3613 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3614 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3615 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3616 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3618 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3619 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3620 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3621 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3623 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3624 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3625 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3626 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3627 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3628 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3629 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3630 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3631 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3632 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3633 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3634 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3636 Info.memVT = MVT::v8i32;
3637 Info.ptrVal =
I.getArgOperand(0);
3644 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3645 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3646 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3647 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3648 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3649 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3650 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3651 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
3652 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
3653 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
3655 Info.memVT = MVT::v2i32;
3656 Info.ptrVal =
I.getArgOperand(0);
3663 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3664 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3665 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3666 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3668 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3669 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3670 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3671 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3673 Info.memVT = MVT::f64;
3674 Info.ptrVal =
I.getArgOperand(0);
3681 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3682 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3683 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3684 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3686 Info.memVT = MVT::v2f64;
3687 Info.ptrVal =
I.getArgOperand(0);
3694 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3695 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3696 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3697 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3698 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3699 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3700 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3701 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3702 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3703 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3704 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3705 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3707 Info.memVT = MVT::v4f16;
3708 Info.ptrVal =
I.getArgOperand(0);
3715 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3716 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3717 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3718 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3719 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3720 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3721 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3722 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3723 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3724 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3725 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3726 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
3727 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
3728 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
3729 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
3730 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
3732 Info.memVT = MVT::v8f32;
3733 Info.ptrVal =
I.getArgOperand(0);
3740 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3741 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3742 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3743 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3744 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3745 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3746 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3747 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3748 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3749 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3750 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3751 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3753 Info.memVT = MVT::v8i32;
3754 Info.ptrVal =
I.getArgOperand(0);
3761 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3762 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3763 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3764 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3765 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3766 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3767 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3768 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3770 Info.memVT = MVT::v2i32;
3771 Info.ptrVal =
I.getArgOperand(0);
3778 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
3779 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
3780 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
3781 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
3783 Info.memVT = MVT::v2f64;
3784 Info.ptrVal =
I.getArgOperand(0);
3791 case Intrinsic::nvvm_atomic_load_inc_32:
3792 case Intrinsic::nvvm_atomic_load_dec_32:
3794 case Intrinsic::nvvm_atomic_add_gen_f_cta:
3795 case Intrinsic::nvvm_atomic_add_gen_f_sys:
3796 case Intrinsic::nvvm_atomic_add_gen_i_cta:
3797 case Intrinsic::nvvm_atomic_add_gen_i_sys:
3798 case Intrinsic::nvvm_atomic_and_gen_i_cta:
3799 case Intrinsic::nvvm_atomic_and_gen_i_sys:
3800 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3801 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3802 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3803 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3804 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3805 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3806 case Intrinsic::nvvm_atomic_max_gen_i_cta:
3807 case Intrinsic::nvvm_atomic_max_gen_i_sys:
3808 case Intrinsic::nvvm_atomic_min_gen_i_cta:
3809 case Intrinsic::nvvm_atomic_min_gen_i_sys:
3810 case Intrinsic::nvvm_atomic_or_gen_i_cta:
3811 case Intrinsic::nvvm_atomic_or_gen_i_sys:
3812 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3813 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3814 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3815 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3816 auto &
DL =
I.getDataLayout();
3819 Info.ptrVal =
I.getArgOperand(0);
3826 case Intrinsic::nvvm_ldu_global_i:
3827 case Intrinsic::nvvm_ldu_global_f:
3828 case Intrinsic::nvvm_ldu_global_p: {
3829 auto &
DL =
I.getDataLayout();
3831 if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3833 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3837 Info.ptrVal =
I.getArgOperand(0);
3840 Info.align = cast<ConstantInt>(
I.getArgOperand(1))->getMaybeAlignValue();
3844 case Intrinsic::nvvm_tex_1d_v4f32_s32:
3845 case Intrinsic::nvvm_tex_1d_v4f32_f32:
3846 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3847 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3848 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3849 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3850 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3851 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3852 case Intrinsic::nvvm_tex_2d_v4f32_s32:
3853 case Intrinsic::nvvm_tex_2d_v4f32_f32:
3854 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3855 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3856 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3857 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3858 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3859 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3860 case Intrinsic::nvvm_tex_3d_v4f32_s32:
3861 case Intrinsic::nvvm_tex_3d_v4f32_f32:
3862 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3863 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3864 case Intrinsic::nvvm_tex_cube_v4f32_f32:
3865 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3866 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3867 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3868 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3869 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3870 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3871 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3872 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3873 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3874 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3875 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3876 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3877 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3878 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3879 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3880 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3881 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3882 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3883 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3884 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3885 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3886 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3887 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3888 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3889 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3890 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3891 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3892 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3893 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3894 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3895 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3896 case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
3897 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
3898 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3899 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3900 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3901 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3903 Info.memVT = MVT::v4f32;
3904 Info.ptrVal =
nullptr;
3910 case Intrinsic::nvvm_tex_1d_v4s32_s32:
3911 case Intrinsic::nvvm_tex_1d_v4s32_f32:
3912 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3913 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3914 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3915 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3916 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3917 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3918 case Intrinsic::nvvm_tex_2d_v4s32_s32:
3919 case Intrinsic::nvvm_tex_2d_v4s32_f32:
3920 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3921 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3922 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3923 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3924 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3925 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3926 case Intrinsic::nvvm_tex_3d_v4s32_s32:
3927 case Intrinsic::nvvm_tex_3d_v4s32_f32:
3928 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3929 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3930 case Intrinsic::nvvm_tex_cube_v4s32_f32:
3931 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3932 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3933 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3934 case Intrinsic::nvvm_tex_cube_v4u32_f32:
3935 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3936 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3937 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3938 case Intrinsic::nvvm_tex_1d_v4u32_s32:
3939 case Intrinsic::nvvm_tex_1d_v4u32_f32:
3940 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3941 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3942 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3943 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3944 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3945 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3946 case Intrinsic::nvvm_tex_2d_v4u32_s32:
3947 case Intrinsic::nvvm_tex_2d_v4u32_f32:
3948 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3949 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3950 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3951 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3952 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3953 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3954 case Intrinsic::nvvm_tex_3d_v4u32_s32:
3955 case Intrinsic::nvvm_tex_3d_v4u32_f32:
3956 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3957 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3958 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3959 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3960 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3961 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3962 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3963 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3964 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3965 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3966 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3967 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3968 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3969 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3970 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3971 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3972 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3973 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3974 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3975 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3976 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3977 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3978 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3979 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3980 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3981 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3982 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3983 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3984 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3985 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3986 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3987 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3988 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3989 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3990 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3991 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3992 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3993 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3994 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3995 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3996 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3997 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3998 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3999 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4000 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4001 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4002 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4003 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4004 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4005 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4006 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4007 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4008 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4009 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4010 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4011 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4012 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4013 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4014 case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
4015 case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
4016 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
4017 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
4018 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4019 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4020 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4021 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4022 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4023 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4024 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4025 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4027 Info.memVT = MVT::v4i32;
4028 Info.ptrVal =
nullptr;
4034 case Intrinsic::nvvm_suld_1d_i8_clamp:
4035 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4036 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4037 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4038 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4039 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4040 case Intrinsic::nvvm_suld_2d_i8_clamp:
4041 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4042 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4043 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4044 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4045 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4046 case Intrinsic::nvvm_suld_3d_i8_clamp:
4047 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4048 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4049 case Intrinsic::nvvm_suld_1d_i8_trap:
4050 case Intrinsic::nvvm_suld_1d_v2i8_trap:
4051 case Intrinsic::nvvm_suld_1d_v4i8_trap:
4052 case Intrinsic::nvvm_suld_1d_array_i8_trap:
4053 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4054 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4055 case Intrinsic::nvvm_suld_2d_i8_trap:
4056 case Intrinsic::nvvm_suld_2d_v2i8_trap:
4057 case Intrinsic::nvvm_suld_2d_v4i8_trap:
4058 case Intrinsic::nvvm_suld_2d_array_i8_trap:
4059 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4060 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4061 case Intrinsic::nvvm_suld_3d_i8_trap:
4062 case Intrinsic::nvvm_suld_3d_v2i8_trap:
4063 case Intrinsic::nvvm_suld_3d_v4i8_trap:
4064 case Intrinsic::nvvm_suld_1d_i8_zero:
4065 case Intrinsic::nvvm_suld_1d_v2i8_zero:
4066 case Intrinsic::nvvm_suld_1d_v4i8_zero:
4067 case Intrinsic::nvvm_suld_1d_array_i8_zero:
4068 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4069 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4070 case Intrinsic::nvvm_suld_2d_i8_zero:
4071 case Intrinsic::nvvm_suld_2d_v2i8_zero:
4072 case Intrinsic::nvvm_suld_2d_v4i8_zero:
4073 case Intrinsic::nvvm_suld_2d_array_i8_zero:
4074 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4075 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4076 case Intrinsic::nvvm_suld_3d_i8_zero:
4077 case Intrinsic::nvvm_suld_3d_v2i8_zero:
4078 case Intrinsic::nvvm_suld_3d_v4i8_zero:
4080 Info.memVT = MVT::i8;
4081 Info.ptrVal =
nullptr;
4087 case Intrinsic::nvvm_suld_1d_i16_clamp:
4088 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4089 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4090 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4091 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4092 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4093 case Intrinsic::nvvm_suld_2d_i16_clamp:
4094 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4095 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4096 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4097 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4098 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4099 case Intrinsic::nvvm_suld_3d_i16_clamp:
4100 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4101 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4102 case Intrinsic::nvvm_suld_1d_i16_trap:
4103 case Intrinsic::nvvm_suld_1d_v2i16_trap:
4104 case Intrinsic::nvvm_suld_1d_v4i16_trap:
4105 case Intrinsic::nvvm_suld_1d_array_i16_trap:
4106 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4107 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4108 case Intrinsic::nvvm_suld_2d_i16_trap:
4109 case Intrinsic::nvvm_suld_2d_v2i16_trap:
4110 case Intrinsic::nvvm_suld_2d_v4i16_trap:
4111 case Intrinsic::nvvm_suld_2d_array_i16_trap:
4112 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4113 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4114 case Intrinsic::nvvm_suld_3d_i16_trap:
4115 case Intrinsic::nvvm_suld_3d_v2i16_trap:
4116 case Intrinsic::nvvm_suld_3d_v4i16_trap:
4117 case Intrinsic::nvvm_suld_1d_i16_zero:
4118 case Intrinsic::nvvm_suld_1d_v2i16_zero:
4119 case Intrinsic::nvvm_suld_1d_v4i16_zero:
4120 case Intrinsic::nvvm_suld_1d_array_i16_zero:
4121 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4122 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4123 case Intrinsic::nvvm_suld_2d_i16_zero:
4124 case Intrinsic::nvvm_suld_2d_v2i16_zero:
4125 case Intrinsic::nvvm_suld_2d_v4i16_zero:
4126 case Intrinsic::nvvm_suld_2d_array_i16_zero:
4127 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4128 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4129 case Intrinsic::nvvm_suld_3d_i16_zero:
4130 case Intrinsic::nvvm_suld_3d_v2i16_zero:
4131 case Intrinsic::nvvm_suld_3d_v4i16_zero:
4133 Info.memVT = MVT::i16;
4134 Info.ptrVal =
nullptr;
4140 case Intrinsic::nvvm_suld_1d_i32_clamp:
4141 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4142 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4143 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4144 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4145 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4146 case Intrinsic::nvvm_suld_2d_i32_clamp:
4147 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4148 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4149 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4150 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4151 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4152 case Intrinsic::nvvm_suld_3d_i32_clamp:
4153 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4154 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4155 case Intrinsic::nvvm_suld_1d_i32_trap:
4156 case Intrinsic::nvvm_suld_1d_v2i32_trap:
4157 case Intrinsic::nvvm_suld_1d_v4i32_trap:
4158 case Intrinsic::nvvm_suld_1d_array_i32_trap:
4159 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4160 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4161 case Intrinsic::nvvm_suld_2d_i32_trap:
4162 case Intrinsic::nvvm_suld_2d_v2i32_trap:
4163 case Intrinsic::nvvm_suld_2d_v4i32_trap:
4164 case Intrinsic::nvvm_suld_2d_array_i32_trap:
4165 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4166 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4167 case Intrinsic::nvvm_suld_3d_i32_trap:
4168 case Intrinsic::nvvm_suld_3d_v2i32_trap:
4169 case Intrinsic::nvvm_suld_3d_v4i32_trap:
4170 case Intrinsic::nvvm_suld_1d_i32_zero:
4171 case Intrinsic::nvvm_suld_1d_v2i32_zero:
4172 case Intrinsic::nvvm_suld_1d_v4i32_zero:
4173 case Intrinsic::nvvm_suld_1d_array_i32_zero:
4174 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4175 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4176 case Intrinsic::nvvm_suld_2d_i32_zero:
4177 case Intrinsic::nvvm_suld_2d_v2i32_zero:
4178 case Intrinsic::nvvm_suld_2d_v4i32_zero:
4179 case Intrinsic::nvvm_suld_2d_array_i32_zero:
4180 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4181 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4182 case Intrinsic::nvvm_suld_3d_i32_zero:
4183 case Intrinsic::nvvm_suld_3d_v2i32_zero:
4184 case Intrinsic::nvvm_suld_3d_v4i32_zero:
4186 Info.memVT = MVT::i32;
4187 Info.ptrVal =
nullptr;
4193 case Intrinsic::nvvm_suld_1d_i64_clamp:
4194 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4195 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4196 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4197 case Intrinsic::nvvm_suld_2d_i64_clamp:
4198 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4199 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4200 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4201 case Intrinsic::nvvm_suld_3d_i64_clamp:
4202 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4203 case Intrinsic::nvvm_suld_1d_i64_trap:
4204 case Intrinsic::nvvm_suld_1d_v2i64_trap:
4205 case Intrinsic::nvvm_suld_1d_array_i64_trap:
4206 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4207 case Intrinsic::nvvm_suld_2d_i64_trap:
4208 case Intrinsic::nvvm_suld_2d_v2i64_trap:
4209 case Intrinsic::nvvm_suld_2d_array_i64_trap:
4210 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4211 case Intrinsic::nvvm_suld_3d_i64_trap:
4212 case Intrinsic::nvvm_suld_3d_v2i64_trap:
4213 case Intrinsic::nvvm_suld_1d_i64_zero:
4214 case Intrinsic::nvvm_suld_1d_v2i64_zero:
4215 case Intrinsic::nvvm_suld_1d_array_i64_zero:
4216 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4217 case Intrinsic::nvvm_suld_2d_i64_zero:
4218 case Intrinsic::nvvm_suld_2d_v2i64_zero:
4219 case Intrinsic::nvvm_suld_2d_array_i64_zero:
4220 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4221 case Intrinsic::nvvm_suld_3d_i64_zero:
4222 case Intrinsic::nvvm_suld_3d_v2i64_zero:
4224 Info.memVT = MVT::i64;
4225 Info.ptrVal =
nullptr;
4245 const Align ABITypeAlign = std::min(
Align(128),
DL.getABITypeAlign(ArgTy));
4250 if (!
F || !
F->hasLocalLinkage() ||
4251 F->hasAddressTaken(
nullptr,
4255 return ABITypeAlign;
4258 return std::max(
Align(16), ABITypeAlign);
4265 Align ArgAlign = InitialAlign;
4280 ArgAlign = std::max(ArgAlign,
Align(4));
4290 std::string ParamName;
4295 ParamStr <<
"_vararg";
4297 ParamStr <<
"_param_" <<
Idx;
4349 if (Constraint.
size() == 1) {
4350 switch (Constraint[0]) {
4369std::pair<unsigned, const TargetRegisterClass *>
4373 if (Constraint.
size() == 1) {
4374 switch (Constraint[0]) {
4376 return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4378 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4380 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4382 return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4385 return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4389 "supported for sm_70 and higher!");
4390 return std::make_pair(0U, &NVPTX::Int128RegsRegClass);
4393 return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4395 return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4429 return F.getFnAttribute(
"unsafe-fp-math").getValueAsBool();
4433 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
4434 return Const && Const->getZExtValue() == 0;
4466 if (M->getOpcode() !=
ISD::MUL || !M.getNode()->hasOneUse())
4474 ((ZeroOpNum == 1) ? N1 : MAD),
4475 ((ZeroOpNum == 1) ? MAD : N1));
4501 int nonAddCount = 0;
4510 int orderNo =
N->getIROrder();
4516 if (orderNo - orderNo2 < 500)
4522 bool opIsLive =
false;
4526 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4531 int orderNo3 =
User->getIROrder();
4532 if (orderNo3 > orderNo) {
4540 int orderNo3 =
User->getIROrder();
4541 if (orderNo3 > orderNo) {
4560 if (
all_of(
N->ops().drop_front(Front).drop_back(Back),
4561 [](
const SDUse &U) { return U.get()->isUndef(); }))
4564 return N->getOperand(0);
4593 if (VT.
isVector() || VT != MVT::i32)
4613 if (VT.
isVector() || !(VT == MVT::f32 || VT == MVT::f64))
4634 if (isa<ConstantSDNode>(Val)) {
4648 ConstantSDNode *BFEBits = dyn_cast<ConstantSDNode>(BFE.getOperand(0));
4660 if (MaskVal != (
uint64_t(1) << BFEBitsVal) - 1)
4680 if (MaskVal != 0xff) {
4685 MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4692 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4705 if (AExt.
getNode() !=
nullptr) {
4730 EVT VT =
N->getValueType(0);
4734 const SDValue &Num =
N->getOperand(0);
4735 const SDValue &Den =
N->getOperand(1);
4738 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4739 U->getOperand(1) == Den) {
4766 EVT OrigVT =
Op.getOperand(0).getValueType();
4772 EVT OrigVT =
Op.getOperand(0).getValueType();
4799 IsSigned = (LHSSign ==
Signed);
4803 const APInt &Val = CI->getAPIntValue();
4805 return Val.
isIntN(OptSize);
4814 return LHSSign == RHSSign;
4824 EVT MulType =
N->getValueType(0);
4825 if (MulType != MVT::i32 && MulType != MVT::i64) {
4836 if (isa<ConstantSDNode>(
LHS)) {
4865 if (MulType == MVT::i32) {
4866 DemotedVT = MVT::i16;
4868 DemotedVT = MVT::i32;
4885 return DCI.
DAG.
getNode(Opc,
DL, MulType, TruncLHS, TruncRHS);
4889 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
4890 return Const && Const->getZExtValue() == 1;
4898 return Add->getOperand(1);
4901 return Add->getOperand(0);
4942 (ConstOpNo == 1) ?
X : NewMul,
4943 (ConstOpNo == 1) ? NewMul :
X);
4954 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
5005 EVT CCType =
N->getValueType(0);
5009 EVT AType =
A.getValueType();
5010 if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
5013 if (
A.getValueType() == MVT::v2bf16 &&
SmVersion < 90)
5024 DL, DCI.
DAG.
getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
5043 VectorVT == MVT::v4i8 || VectorVT == MVT::v8i8)
5052 if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
5057 if (!Index || Index->getZExtValue() == 0)
5072 if (EltVT != EltIVT)
5075 if (EltVT !=
N->getValueType(0))
5085 if (VectorVT != MVT::v4i8)
5096 for (
int I = 0;
I < 4; ++
I) {
5115 auto VT =
N->getValueType(0);
5119 auto Op0 =
N->getOperand(0);
5120 auto Op1 =
N->getOperand(1);
5127 std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes},
5133 for (
auto &[
Op, OpBytes] : OpData) {
5136 *
Op =
Op->getOperand(0);
5139 Op->getOperand(0).getValueType() == MVT::i32))
5144 if (!
Op->hasOneUse())
5147 *
Op =
Op->getOperand(0);
5151 if (
Op->getOpcode() ==
ISD::SRL && isa<ConstantSDNode>(
Op->getOperand(1))) {
5152 if (cast<ConstantSDNode>(
Op->getOperand(1))->getZExtValue() == 16) {
5155 assert((*OpBytes == 0x10 || *OpBytes == 0x54) &&
5156 "PRMT selector values out of range");
5158 *
Op =
Op->getOperand(0);
5164 auto &DAG = DCI.
DAG;
5168 {Op0, Op1, DAG.
getConstant((Op1Bytes << 8) | Op0Bytes,
DL, MVT::i32),
5174 DAGCombinerInfo &DCI)
const {
5176 switch (
N->getOpcode()) {
5216 EVT ToVT =
Op->getValueType(0);
5217 if (ToVT != MVT::v2i8) {
5236 EVT ResVT =
N->getValueType(0);
5242 if (!NumEltsAndEltVT)
5244 auto [NumElts, EltVT] = NumEltsAndEltVT.value();
5248 Align Alignment = LD->getAlign();
5252 if (Alignment < PrefAlign) {
5264 bool NeedTrunc =
false;
5270 unsigned Opcode = 0;
5278 LdResVTs = DAG.
getVTList(EltVT, EltVT, MVT::Other);
5282 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5297 LD->getMemOperand());
5301 "NumElts should not increase, only decrease or stay the same.");
5309 for (
unsigned i = 0; i < NumElts; ++i) {
5314 for (
unsigned i = 0; i < NumElts; ++i) {
5341 case Intrinsic::nvvm_ldu_global_i:
5342 case Intrinsic::nvvm_ldu_global_f:
5343 case Intrinsic::nvvm_ldu_global_p: {
5344 EVT ResVT =
N->getValueType(0);
5356 bool NeedTrunc =
false;
5362 unsigned Opcode = 0;
5370 LdResVTs = DAG.
getVTList(EltVT, EltVT, MVT::Other);
5374 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5387 OtherOps.
append(
N->op_begin() + 2,
N->op_end());
5397 for (
unsigned i = 0; i < NumElts; ++i) {
5415 "Custom handling of non-i8 ldu/ldg?");
5448 assert(Reg.getValueType() == MVT::i128 &&
5449 "Custom lowering for CopyFromReg with 128-bit reg only");
5451 N->getValueType(2)};
5463void NVPTXTargetLowering::ReplaceNodeResults(
5465 switch (
N->getOpcode()) {
5504 auto ITy = cast<llvm::IntegerType>(Ty);
5513 switch (ITy->getBitWidth()) {
5532 switch (ITy->getBitWidth()) {
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombineWithOperands - Try DAG combinations for an ADD with operands N0 and N1.
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformBUILD_VECTORCombine - Target-specific dag combine xforms for ISD::BUILD_VECTOR.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file contains the declarations of entities that describe floating point environment and related ...
Module.h This file contains the declarations for the Module class.
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
unsigned const TargetRegisterInfo * TRI
NVPTX address space definition.
static bool shouldConvertToIndirectCall(const CallBase *CB, const GlobalAddressSDNode *Func)
static cl::opt< bool > sched4reg("nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false))
static SDValue PerformEXTRACTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isConstOne(const SDValue &Operand)
static cl::opt< unsigned > FMAContractLevelOpt("nvptx-fma-level", cl::Hidden, cl::desc("NVPTX Specific: FMA contraction (0: don't do it" " 1: do it 2: do it aggressively"), cl::init(2))
static bool IsPTXVectorType(MVT VT)
static cl::opt< int > UsePrecDivF32("nvptx-prec-divf32", cl::Hidden, cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" " IEEE Compliant F32 div.rnd if available."), cl::init(2))
static SDValue PerformStoreParamCombine(SDNode *N)
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static bool Is16bitsType(MVT VT)
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static bool IsTypePassedAsArray(const Type *Ty)
static SmallVector< ParamVectorizationFlags, 16 > VectorizePTXValueVTs(const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< uint64_t > &Offsets, Align ParamAlignment, bool IsVAArg=false)
static unsigned CanMergeParamLoadStoresStartingAt(unsigned Idx, uint32_t AccessSize, const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< uint64_t > &Offsets, Align ParamAlignment)
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static bool isConstZero(const SDValue &Operand)
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG)
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > *Offsets=nullptr, uint64_t StartingOffset=0)
ComputePTXValueVTs - For the given Type Ty, returns the set of primitive EVTs that compose it.
static bool IsMulWideOperandDemotable(SDValue Op, unsigned OptSize, OperandSignedness &S)
IsMulWideOperandDemotable - Checks if the provided DAG node is an operand that can be demoted to OptS...
static SDValue LowerUnalignedStoreParam(SelectionDAG &DAG, SDValue Chain, uint64_t Offset, EVT ElementType, SDValue StVal, SDValue &InGlue, unsigned ArgID, const SDLoc &dl)
static SDValue PerformREMCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static std::optional< std::pair< unsigned int, EVT > > getVectorLoweringShape(EVT VectorVT)
static SDValue PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI)
static SDValue PerformStoreRetvalCombine(SDNode *N)
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, unsigned OptSize, bool &IsSigned)
AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can be demoted to OptSize bits...
static SDValue PerformStoreCombineHelper(SDNode *N, std::size_t Front, std::size_t Back)
static bool adjustElementType(EVT &ElementType)
static SDValue TryMULWIDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply of M/2 bits that produces...
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue matchMADConstOnePattern(SDValue Add)
static SDValue MaybeBitcast(SelectionDAG &DAG, SDLoc DL, EVT VT, SDValue Value)
static cl::opt< bool > UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden, cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), cl::init(true))
static SDValue LowerUnalignedStoreRet(SelectionDAG &DAG, SDValue Chain, uint64_t Offset, EVT ElementType, SDValue RetVal, const SDLoc &dl)
static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT)
PromoteScalarIntegerPTX Used to make sure the arguments/returns are suitable for passing and promote ...
static SDValue PerformSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned int SmVersion)
static SDValue LowerUnalignedLoadRetParam(SelectionDAG &DAG, SDValue &Chain, uint64_t Offset, EVT ElementType, SDValue &InGlue, SmallVectorImpl< SDValue > &TempProxyRegOps, const SDLoc &dl)
static std::atomic< unsigned > GlobalUniqueCallSite
static cl::opt< bool > ForceMinByValParamAlign("nvptx-force-min-byval-param-align", cl::Hidden, cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" " params of device functions."), cl::init(false))
static SDValue PerformSHLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool slt(const APInt &RHS) const
Signed less than comparison.
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
an instruction that atomically reads a memory location, combines it with another value,...
@ Min
*p = old <signed v ? old : v
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
bool isFloatingPointOperation() const
BinOp getOperation() const
bool hasParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the attribute exists for the given argument.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
FunctionType * getFunctionType() const
This class represents a function call, abstracting a target machine's calling convention.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Diagnostic information for unsupported feature in backend.
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Type * getReturnType() const
Returns the type of the ret val.
unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
This is an important class for using LLVM in a threaded context.
void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
MCSection * getDataSection() const
Instances of this class represent a uniqued identifier for a section in the current translation unit.
StringRef getName() const
getName - Get the symbol name.
unsigned getVectorNumElements() const
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto integer_valuetypes()
static auto fixedlen_vector_valuetypes()
static MVT getVectorVT(MVT VT, unsigned NumElements)
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
const std::vector< MachineJumpTableEntry > & getJumpTables() const
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
EVT getMemoryVT() const
Return the type of the in-memory value.
unsigned getMaxRequiredAlignment() const
bool hasAtomMinMax64() const
bool hasAtomAddF64() const
const NVPTXTargetLowering * getTargetLowering() const override
unsigned getPTXVersion() const
const NVPTXRegisterInfo * getRegisterInfo() const override
unsigned int getSmVersion() const
bool hasAtomBitwise64() const
bool allowFP16Math() const
bool hasAtomCas16() const
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
const NVPTXTargetMachine * nvTM
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
NVPTXTargetLowering(const NVPTXTargetMachine &TM, const NVPTXSubtarget &STI)
bool useF32FTZ(const MachineFunction &MF) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
Align getFunctionArgumentAlignment(const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const
std::string getParamName(const Function *F, int Idx) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
std::string getPrototype(const DataLayout &DL, Type *, const ArgListTy &, const SmallVectorImpl< ISD::OutputArg > &, MaybeAlign retAlignment, std::optional< std::pair< unsigned, const APInt & > > VAInfo, const CallBase &CB, unsigned UniqueCallSite) const
Align getFunctionParamOptimizedAlign(const Function *F, Type *ArgTy, const DataLayout &DL) const
getFunctionParamOptimizedAlign - since function arguments are passed via .param space,...
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getFunctionByValParamAlign(const Function *F, Type *ArgTy, Align InitialAlign, const DataLayout &DL) const
Helper for computing alignment of a device function byval parameter.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool allowFMA(MachineFunction &MF, CodeGenOptLevel OptLevel) const
bool usePrecSqrtF32() const
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool allowUnsafeFPMath(MachineFunction &MF) const
int getDivF32Level() const
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
UniqueStringSaver & getStrPool() const
MCSection * SelectSectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const override
~NVPTXTargetObjectFile() override
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumOperands() const
Return the number of values used by this operation.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Return true if the type of the node type undefined.
iterator_range< user_iterator > users()
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SectionKind - This is a simple POD value that classifies the properties of a section.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
const TargetLowering & getTargetLoweringInfo() const
SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getBasicBlock(MachineBasicBlock *MBB)
SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
MachineFunction & getMachineFunction() const
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=0, const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrNegativeOneBooleanContent
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
std::vector< ArgListEntry > ArgListTy
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
MCSymbol * getSymbol(const GlobalValue *GV) const
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
FPOpFusion::FPOpFusionMode AllowFPOpFusion
AllowFPOpFusion - This flag is set by the -fp-contract=xxx option.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
@ VoidTyID
type with no size
bool isAggregateType() const
Return true if the type is an aggregate type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
StringRef save(const char *S)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
int getNumOccurrences() const
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SIGN_EXTEND
Conversion operators.
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
@ Bitcast
Perform the operation on a different, but equivalently sized type.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
static bool isIndirectCall(const MachineInstr &MI)
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
MaybeAlign getAlign(const Function &F, unsigned Index)
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
unsigned promoteScalarArgumentSize(unsigned size)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
CodeGenOptLevel
Code generation optimization level.
@ Mul
Product of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
constexpr unsigned BitWidth
bool isKernelFunction(const Function &F)
Function * getMaybeBitcastedCallee(const CallBase *CB)
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static const fltSemantics & IEEEsingle() LLVM_READNONE
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isAfterLegalizeDAG() const
SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)