LLVM 22.0.0git
NVPTXISelLowering.cpp
Go to the documentation of this file.
1//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that NVPTX uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "NVPTXISelLowering.h"
16#include "NVPTX.h"
17#include "NVPTXISelDAGToDAG.h"
19#include "NVPTXSubtarget.h"
20#include "NVPTXTargetMachine.h"
22#include "NVPTXUtilities.h"
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/StringRef.h"
40#include "llvm/IR/Argument.h"
41#include "llvm/IR/Attributes.h"
42#include "llvm/IR/Constants.h"
43#include "llvm/IR/DataLayout.h"
46#include "llvm/IR/FPEnv.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/GlobalValue.h"
49#include "llvm/IR/IRBuilder.h"
50#include "llvm/IR/Instruction.h"
52#include "llvm/IR/IntrinsicsNVPTX.h"
53#include "llvm/IR/Module.h"
54#include "llvm/IR/Type.h"
55#include "llvm/IR/Value.h"
67#include <algorithm>
68#include <cassert>
69#include <cmath>
70#include <cstdint>
71#include <iterator>
72#include <optional>
73#include <string>
74#include <tuple>
75#include <utility>
76#include <vector>
77
78#define DEBUG_TYPE "nvptx-lower"
79
80using namespace llvm;
81
83 "nvptx-sched4reg",
84 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
85
87 "nvptx-fma-level", cl::Hidden,
88 cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
89 " 1: do it 2: do it aggressively"),
90 cl::init(2));
91
93 "nvptx-prec-divf32", cl::Hidden,
95 "NVPTX Specific: Override the precision of the lowering for f32 fdiv"),
97 clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"),
98 clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"),
100 "Use IEEE Compliant F32 div.rnd if available (default)"),
102 "Use IEEE Compliant F32 div.rnd if available, no FTZ")),
104
106 "nvptx-prec-sqrtf32", cl::Hidden,
107 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
108 cl::init(true));
109
110/// Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it
111/// does NOT use lg2.approx for log2, so this is disabled by default.
113 "nvptx-approx-log2f32",
114 cl::desc("NVPTX Specific: whether to use lg2.approx for log2"),
115 cl::init(false));
116
118 "nvptx-force-min-byval-param-align", cl::Hidden,
119 cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval"
120 " params of device functions."),
121 cl::init(false));
122
125 const SDNode &N) const {
126 // If nvptx-prec-div32=N is used on the command-line, always honor it
127 if (UsePrecDivF32.getNumOccurrences() > 0)
128 return UsePrecDivF32;
129
130 const SDNodeFlags Flags = N.getFlags();
131 if (Flags.hasApproximateFuncs())
133
135}
136
138 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
139 if (UsePrecSqrtF32.getNumOccurrences() > 0)
140 return UsePrecSqrtF32;
141
142 if (N) {
143 const SDNodeFlags Flags = N->getFlags();
144 if (Flags.hasApproximateFuncs())
145 return false;
146 }
147
148 return true;
149}
150
155
156static bool IsPTXVectorType(MVT VT) {
157 switch (VT.SimpleTy) {
158 default:
159 return false;
160 case MVT::v2i1:
161 case MVT::v4i1:
162 case MVT::v2i8:
163 case MVT::v4i8:
164 case MVT::v8i8: // <2 x i8x4>
165 case MVT::v16i8: // <4 x i8x4>
166 case MVT::v2i16:
167 case MVT::v4i16:
168 case MVT::v8i16: // <4 x i16x2>
169 case MVT::v2i32:
170 case MVT::v4i32:
171 case MVT::v2i64:
172 case MVT::v2f16:
173 case MVT::v4f16:
174 case MVT::v8f16: // <4 x f16x2>
175 case MVT::v2bf16:
176 case MVT::v4bf16:
177 case MVT::v8bf16: // <4 x bf16x2>
178 case MVT::v2f32:
179 case MVT::v4f32:
180 case MVT::v2f64:
181 case MVT::v4i64:
182 case MVT::v4f64:
183 case MVT::v8i32:
184 case MVT::v8f32:
185 case MVT::v16f16: // <8 x f16x2>
186 case MVT::v16bf16: // <8 x bf16x2>
187 case MVT::v16i16: // <8 x i16x2>
188 case MVT::v32i8: // <8 x i8x4>
189 return true;
190 }
191}
192
193// When legalizing vector loads/stores, this function is called, which does two
194// things:
195// 1. Determines Whether the vector is something we want to custom lower,
196// std::nullopt is returned if we do not want to custom lower it.
197// 2. If we do want to handle it, returns two parameters:
198// - unsigned int NumElts - The number of elements in the final vector
199// - EVT EltVT - The type of the elements in the final vector
200static std::optional<std::pair<unsigned int, MVT>>
202 unsigned AddressSpace) {
203 const bool CanLowerTo256Bit = STI.has256BitVectorLoadStore(AddressSpace);
204
205 if (CanLowerTo256Bit && VectorEVT.isScalarInteger() &&
206 VectorEVT.getSizeInBits() == 256)
207 return {{4, MVT::i64}};
208
209 if (!VectorEVT.isSimple())
210 return std::nullopt;
211 const MVT VectorVT = VectorEVT.getSimpleVT();
212
213 if (!VectorVT.isVector()) {
214 if (VectorVT == MVT::i128 || VectorVT == MVT::f128)
215 return {{2, MVT::i64}};
216 return std::nullopt;
217 }
218
219 const MVT EltVT = VectorVT.getVectorElementType();
220 const unsigned NumElts = VectorVT.getVectorNumElements();
221
222 // The size of the PTX virtual register that holds a packed type.
223 unsigned PackRegSize;
224
225 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
226 // legal. We can (and should) split that into 2 stores of <2 x double> here
227 // but I'm leaving that as a TODO for now.
228 switch (VectorVT.SimpleTy) {
229 default:
230 return std::nullopt;
231
232 case MVT::v4i64:
233 case MVT::v4f64:
234 // This is a "native" vector type iff the address space is global and the
235 // target supports 256-bit loads/stores
236 if (!CanLowerTo256Bit)
237 return std::nullopt;
238 [[fallthrough]];
239 case MVT::v2i8:
240 case MVT::v2i64:
241 case MVT::v2f64:
242 // This is a "native" vector type
243 return std::pair(NumElts, EltVT);
244
245 case MVT::v16f16: // <8 x f16x2>
246 case MVT::v16bf16: // <8 x bf16x2>
247 case MVT::v16i16: // <8 x i16x2>
248 case MVT::v32i8: // <8 x i8x4>
249 // This can be upsized into a "native" vector type iff the address space is
250 // global and the target supports 256-bit loads/stores.
251 if (!CanLowerTo256Bit)
252 return std::nullopt;
253 [[fallthrough]];
254 case MVT::v2i16: // <1 x i16x2>
255 case MVT::v2f16: // <1 x f16x2>
256 case MVT::v2bf16: // <1 x bf16x2>
257 case MVT::v4i8: // <1 x i8x4>
258 case MVT::v4i16: // <2 x i16x2>
259 case MVT::v4f16: // <2 x f16x2>
260 case MVT::v4bf16: // <2 x bf16x2>
261 case MVT::v8i8: // <2 x i8x4>
262 case MVT::v8f16: // <4 x f16x2>
263 case MVT::v8bf16: // <4 x bf16x2>
264 case MVT::v8i16: // <4 x i16x2>
265 case MVT::v16i8: // <4 x i8x4>
266 PackRegSize = 32;
267 break;
268
269 case MVT::v8f32: // <4 x f32x2>
270 case MVT::v8i32: // <4 x i32x2>
271 // This is a "native" vector type iff the address space is global and the
272 // target supports 256-bit loads/stores
273 if (!CanLowerTo256Bit)
274 return std::nullopt;
275 [[fallthrough]];
276 case MVT::v2f32: // <1 x f32x2>
277 case MVT::v4f32: // <2 x f32x2>
278 case MVT::v2i32: // <1 x i32x2>
279 case MVT::v4i32: // <2 x i32x2>
280 if (!STI.hasF32x2Instructions())
281 return std::pair(NumElts, EltVT);
282 PackRegSize = 64;
283 break;
284 }
285
286 // If we reach here, then we can pack 2 or more elements into a single 32-bit
287 // or 64-bit PTX register and treat the vector as a new vector containing
288 // packed elements.
289
290 // Number of elements to pack in one word.
291 const unsigned NPerReg = PackRegSize / EltVT.getSizeInBits();
292
293 return std::pair(NumElts / NPerReg, MVT::getVectorVT(EltVT, NPerReg));
294}
295
296/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
297/// legal-ish MVTs that compose it. Unlike ComputeValueVTs, this will legalize
298/// the types as required by the calling convention (with special handling for
299/// i8s).
300/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
301/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
302/// LowerCall, and LowerReturn.
303static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
304 LLVMContext &Ctx, CallingConv::ID CallConv,
305 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
307 uint64_t StartingOffset = 0) {
308 SmallVector<EVT, 16> TempVTs;
309 SmallVector<uint64_t, 16> TempOffsets;
310 ComputeValueVTs(TLI, DL, Ty, TempVTs, /*MemVTs=*/nullptr, &TempOffsets,
311 StartingOffset);
312
313 for (const auto [VT, Off] : zip(TempVTs, TempOffsets)) {
314 MVT RegisterVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
315 unsigned NumRegs = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
316
317 // Since we actually can load/store b8, we need to ensure that we'll use
318 // the original sized type for any i8s or i8 vectors.
319 if (VT.getScalarType() == MVT::i8) {
320 if (RegisterVT == MVT::i16)
321 RegisterVT = MVT::i8;
322 else if (RegisterVT == MVT::v2i16)
323 RegisterVT = MVT::v2i8;
324 else
325 assert(RegisterVT == MVT::v4i8 &&
326 "Expected v4i8, v2i16, or i16 for i8 RegisterVT");
327 }
328
329 // TODO: This is horribly incorrect for cases where the vector elements are
330 // not a multiple of bytes (ex i1) and legal or i8. However, this problem
331 // has existed for as long as NVPTX has and no one has complained, so we'll
332 // leave it for now.
333 for (unsigned I : seq(NumRegs)) {
334 ValueVTs.push_back(RegisterVT);
335 Offsets.push_back(Off + I * RegisterVT.getStoreSize());
336 }
337 }
338}
339
340// We return an EVT that can hold N VTs
341// If the VT is a vector, the resulting EVT is a flat vector with the same
342// element type as VT's element type.
343static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C) {
344 if (N == 1)
345 return VT;
346
347 return VT.isVector() ? EVT::getVectorVT(C, VT.getScalarType(),
348 VT.getVectorNumElements() * N)
349 : EVT::getVectorVT(C, VT, N);
350}
351
353 const SDLoc &dl, SelectionDAG &DAG) {
354 if (V.getValueType() == VT) {
355 assert(I == 0 && "Index must be 0 for scalar value");
356 return V;
357 }
358
359 if (!VT.isVector())
360 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, V,
361 DAG.getVectorIdxConstant(I, dl));
362
363 return DAG.getNode(
364 ISD::EXTRACT_SUBVECTOR, dl, VT, V,
366}
367
368template <typename T>
369static inline SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl,
370 SelectionDAG &DAG, T GetElement) {
371 if (N == 1)
372 return GetElement(0);
373
375 for (const unsigned I : llvm::seq(N)) {
376 SDValue Val = GetElement(I);
377 if (Val.getValueType().isVector())
378 DAG.ExtractVectorElements(Val, Values);
379 else
380 Values.push_back(Val);
381 }
382
383 EVT VT = EVT::getVectorVT(*DAG.getContext(), Values[0].getValueType(),
384 Values.size());
385 return DAG.getBuildVector(VT, dl, Values);
386}
387
388/// PromoteScalarIntegerPTX
389/// Used to make sure the arguments/returns are suitable for passing
390/// and promote them to a larger size if they're not.
391///
392/// The promoted type is placed in \p PromoteVT if the function returns true.
394 if (VT.isScalarInteger()) {
395 switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
396 default:
398 "Promotion is not suitable for scalars of size larger than 64-bits");
399 case 1:
400 return MVT::i1;
401 case 2:
402 case 4:
403 case 8:
404 return MVT::i8;
405 case 16:
406 return MVT::i16;
407 case 32:
408 return MVT::i32;
409 case 64:
410 return MVT::i64;
411 }
412 }
413 return VT;
414}
415
416// Check whether we can merge loads/stores of some of the pieces of a
417// flattened function parameter or return value into a single vector
418// load/store.
419//
420// The flattened parameter is represented as a list of EVTs and
421// offsets, and the whole structure is aligned to ParamAlignment. This
422// function determines whether we can load/store pieces of the
423// parameter starting at index Idx using a single vectorized op of
424// size AccessSize. If so, it returns the number of param pieces
425// covered by the vector op. Otherwise, it returns 1.
426template <typename T>
428 unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
429 const SmallVectorImpl<T> &Offsets, Align ParamAlignment) {
430
431 // Can't vectorize if param alignment is not sufficient.
432 if (ParamAlignment < AccessSize)
433 return 1;
434 // Can't vectorize if offset is not aligned.
435 if (Offsets[Idx] & (AccessSize - 1))
436 return 1;
437
438 EVT EltVT = ValueVTs[Idx];
439 unsigned EltSize = EltVT.getStoreSize();
440
441 // Element is too large to vectorize.
442 if (EltSize >= AccessSize)
443 return 1;
444
445 unsigned NumElts = AccessSize / EltSize;
446 // Can't vectorize if AccessBytes if not a multiple of EltSize.
447 if (AccessSize != EltSize * NumElts)
448 return 1;
449
450 // We don't have enough elements to vectorize.
451 if (Idx + NumElts > ValueVTs.size())
452 return 1;
453
454 // PTX ISA can only deal with 2- and 4-element vector ops.
455 if (NumElts != 4 && NumElts != 2)
456 return 1;
457
458 for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
459 // Types do not match.
460 if (ValueVTs[j] != EltVT)
461 return 1;
462
463 // Elements are not contiguous.
464 if (Offsets[j] - Offsets[j - 1] != EltSize)
465 return 1;
466 }
467 // OK. We can vectorize ValueVTs[i..i+NumElts)
468 return NumElts;
469}
470
471// Computes whether and how we can vectorize the loads/stores of a
472// flattened function parameter or return value.
473//
474// The flattened parameter is represented as the list of ValueVTs and
475// Offsets, and is aligned to ParamAlignment bytes. We return a vector
476// of the same size as ValueVTs indicating how each piece should be
477// loaded/stored (i.e. as a scalar, or as part of a vector
478// load/store).
479template <typename T>
482 const SmallVectorImpl<T> &Offsets, Align ParamAlignment,
483 bool IsVAArg = false) {
484 // Set vector size to match ValueVTs and mark all elements as
485 // scalars by default.
486
487 if (IsVAArg)
488 return SmallVector<unsigned>(ValueVTs.size(), 1);
489
490 SmallVector<unsigned, 16> VectorInfo;
491
492 const auto GetNumElts = [&](unsigned I) -> unsigned {
493 for (const unsigned AccessSize : {16, 8, 4, 2}) {
494 const unsigned NumElts = canMergeParamLoadStoresStartingAt(
495 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
496 assert((NumElts == 1 || NumElts == 2 || NumElts == 4) &&
497 "Unexpected vectorization size");
498 if (NumElts != 1)
499 return NumElts;
500 }
501 return 1;
502 };
503
504 // Check what we can vectorize using 128/64/32-bit accesses.
505 for (unsigned I = 0, E = ValueVTs.size(); I != E;) {
506 const unsigned NumElts = GetNumElts(I);
507 VectorInfo.push_back(NumElts);
508 I += NumElts;
509 }
510 assert(std::accumulate(VectorInfo.begin(), VectorInfo.end(), 0u) ==
511 ValueVTs.size());
512 return VectorInfo;
513}
514
515// NVPTXTargetLowering Constructor.
517 const NVPTXSubtarget &STI)
518 : TargetLowering(TM, STI), nvTM(&TM), STI(STI), GlobalUniqueCallSite(0) {
519 // always lower memset, memcpy, and memmove intrinsics to load/store
520 // instructions, rather
521 // then generating calls to memset, mempcy or memmove.
525
528
529 // Jump is Expensive. Don't create extra control flow for 'and', 'or'
530 // condition branches.
531 setJumpIsExpensive(true);
532
533 // Wide divides are _very_ slow. Try to reduce the width of the divide if
534 // possible.
535 addBypassSlowDiv(64, 32);
536
537 // By default, use the Source scheduling
538 if (sched4reg)
540 else
542
543 auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
544 LegalizeAction NoF16Action) {
545 bool IsOpSupported = STI.allowFP16Math();
546 switch (Op) {
547 // Several FP16 instructions are available on sm_80 only.
548 case ISD::FMINNUM:
549 case ISD::FMAXNUM:
552 case ISD::FMAXIMUM:
553 case ISD::FMINIMUM:
554 case ISD::FMAXIMUMNUM:
555 case ISD::FMINIMUMNUM:
556 IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
557 break;
558 case ISD::FEXP2:
559 IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70;
560 break;
561 }
562 setOperationAction(Op, VT, IsOpSupported ? Action : NoF16Action);
563 };
564
565 auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
566 LegalizeAction NoBF16Action) {
567 bool IsOpSupported = STI.hasNativeBF16Support(Op);
569 Op, VT, IsOpSupported ? Action : NoBF16Action);
570 };
571
572 auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
573 LegalizeAction NoI16x2Action) {
574 bool IsOpSupported = false;
575 // instructions are available on sm_90 only
576 switch (Op) {
577 case ISD::ADD:
578 case ISD::SMAX:
579 case ISD::SMIN:
580 case ISD::UMIN:
581 case ISD::UMAX:
582 IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80;
583 break;
584 }
585 setOperationAction(Op, VT, IsOpSupported ? Action : NoI16x2Action);
586 };
587
588 addRegisterClass(MVT::i1, &NVPTX::B1RegClass);
589 addRegisterClass(MVT::i16, &NVPTX::B16RegClass);
590 addRegisterClass(MVT::v2i16, &NVPTX::B32RegClass);
591 addRegisterClass(MVT::v4i8, &NVPTX::B32RegClass);
592 addRegisterClass(MVT::i32, &NVPTX::B32RegClass);
593 addRegisterClass(MVT::i64, &NVPTX::B64RegClass);
594 addRegisterClass(MVT::f32, &NVPTX::B32RegClass);
595 addRegisterClass(MVT::f64, &NVPTX::B64RegClass);
596 addRegisterClass(MVT::f16, &NVPTX::B16RegClass);
597 addRegisterClass(MVT::v2f16, &NVPTX::B32RegClass);
598 addRegisterClass(MVT::bf16, &NVPTX::B16RegClass);
599 addRegisterClass(MVT::v2bf16, &NVPTX::B32RegClass);
600
601 if (STI.hasF32x2Instructions()) {
602 addRegisterClass(MVT::v2f32, &NVPTX::B64RegClass);
603 addRegisterClass(MVT::v2i32, &NVPTX::B64RegClass);
604 }
605
606 // Conversion to/from FP16/FP16x2 is always legal.
611
613 if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31)
615
616 setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
617 setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
618
619 // Conversion to/from BFP16/BFP16x2 is always legal.
624
625 setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand);
626 setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote);
627 if (getOperationAction(ISD::SETCC, MVT::bf16) == Promote)
628 AddPromotedToType(ISD::SETCC, MVT::bf16, MVT::f32);
629
630 // Conversion to/from i16/i16x2 is always legal.
635
640
641 // No support for these operations with v2f32/v2i32
642 setOperationAction(ISD::INSERT_VECTOR_ELT, {MVT::v2f32, MVT::v2i32}, Expand);
643 setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v2f32, MVT::v2i32}, Expand);
644
647 MVT::v2i32, Expand);
648
649 // Need custom lowering in case the index is dynamic.
650 if (STI.hasF32x2Instructions())
651 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2f32, MVT::v2i32},
652 Custom);
653
654 // Custom conversions to/from v2i8.
656
657 // Only logical ops can be done on v4i8/v2i32 directly, others must be done
658 // elementwise.
675 {MVT::v4i8, MVT::v2i32}, Expand);
676
677 // Operations not directly supported by NVPTX.
678 for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
679 MVT::v2f32, MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16,
680 MVT::v4i8, MVT::i32, MVT::v2i32, MVT::i64}) {
683 }
684
685 // We don't want ops like FMINIMUM or UMAX to be lowered to SETCC+VSELECT.
686 setOperationAction(ISD::VSELECT, {MVT::v2f32, MVT::v2i32}, Expand);
687
688 // Some SIGN_EXTEND_INREG can be done using cvt instruction.
689 // For others we will expand to a SHL/SRA pair.
695 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v2i32}, Expand);
696
703
706
708 {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
709 Expand);
710
711 if (STI.hasHWROT32()) {
714 Custom);
715 }
716
717 setOperationAction(ISD::BR_JT, MVT::Other, STI.hasBrx() ? Legal : Expand);
719
720 // We want to legalize constant related memmove and memcopy
721 // intrinsics.
723
724 // FP extload/truncstore is not legal in PTX. We need to expand all these.
725 for (auto FloatVTs :
727 for (MVT ValVT : FloatVTs) {
728 for (MVT MemVT : FloatVTs) {
729 setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Expand);
730 setTruncStoreAction(ValVT, MemVT, Expand);
731 }
732 }
733 }
734
735 // To improve CodeGen we'll legalize any-extend loads to zext loads. This is
736 // how they'll be lowered in ISel anyway, and by doing this a little earlier
737 // we allow for more DAG combine opportunities.
738 for (auto IntVTs :
740 for (MVT ValVT : IntVTs)
741 for (MVT MemVT : IntVTs)
742 if (isTypeLegal(ValVT))
743 setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Custom);
744
745 // PTX does not support load / store predicate registers
747 for (MVT VT : MVT::integer_valuetypes()) {
749 Promote);
750 setTruncStoreAction(VT, MVT::i1, Expand);
751 }
752
753 // Disable generations of extload/truncstore for v2i32/v2i16/v2i8. The generic
754 // expansion for these nodes when they are unaligned is incorrect if the
755 // type is a vector.
756 //
757 // TODO: Fix the generic expansion for these nodes found in
758 // TargetLowering::expandUnalignedLoad/Store.
760 MVT::v2i8, Expand);
762 {MVT::v2i8, MVT::v2i16}, Expand);
763 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
764 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
765 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
766
767 // Register custom handling for illegal type loads/stores. We'll try to custom
768 // lower almost all illegal types and logic in the lowering will discard cases
769 // we can't handle.
770 setOperationAction({ISD::LOAD, ISD::STORE}, {MVT::i128, MVT::i256, MVT::f128},
771 Custom);
773 if (!isTypeLegal(VT) && VT.getStoreSizeInBits() <= 256)
775 Custom);
776
777 // Custom legalization for LDU intrinsics.
778 // TODO: The logic to lower these is not very robust and we should rewrite it.
779 // Perhaps LDU should not be represented as an intrinsic at all.
782 if (IsPTXVectorType(VT))
784
788 MVT::i1, Expand);
789
790 // This is legal in NVPTX
795
796 setOperationAction(ISD::DYNAMIC_STACKALLOC, {MVT::i32, MVT::i64}, Custom);
798
799 // TRAP can be lowered to PTX trap
800 setOperationAction(ISD::TRAP, MVT::Other, Legal);
801 // DEBUGTRAP can be lowered to PTX brkpt
803
804 // Support varargs.
809
811 {MVT::i16, MVT::i32, MVT::i64}, Legal);
812
814 Promote);
817
818 setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom);
819 setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom);
820 setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom);
821 setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom);
822 setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom);
823 setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand);
824 setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand);
825
826 setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom);
827 setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom);
828 setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom);
829 setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom);
830 setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom);
831 setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom);
832
833 // Other arithmetic and logic ops are unsupported.
837 {MVT::v2i16, MVT::v2i32}, Expand);
838
839 // v2i32 is not supported for any arithmetic operations
844 MVT::v2i32, Expand);
845
850 if (STI.getPTXVersion() >= 43) {
855 }
856
858 setOperationAction(ISD::CTTZ, {MVT::v2i16, MVT::v2i32}, Expand);
861
862 // PTX does not directly support SELP of i1, so promote to i32 first
864
865 // PTX cannot multiply two i64s in a single instruction.
868
869 // We have some custom DAG combine patterns for these nodes
879
880 // setcc for f16x2 and bf16x2 needs special handling to prevent
881 // legalizer's attempt to scalarize it due to v2i1 not being legal.
882 if (STI.allowFP16Math() || STI.hasBF16Math())
884
885 // Vector reduction operations. These may be turned into shuffle or tree
886 // reductions depending on what instructions are available for each type.
888 MVT EltVT = VT.getVectorElementType();
889 if (EltVT == MVT::f32 || EltVT == MVT::f64) {
892 VT, Custom);
893 }
894 }
895
896 // Promote fp16 arithmetic if fp16 hardware isn't available or the
897 // user passed --nvptx-no-fp16-math. The flag is useful because,
898 // although sm_53+ GPUs have some sort of FP16 support in
899 // hardware, only sm_53 and sm_60 have full implementation. Others
900 // only have token amount of hardware and are likely to run faster
901 // by using fp32 units instead.
902 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
903 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
904 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
905 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
906 // bf16 must be promoted to f32.
907 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
908 if (getOperationAction(Op, MVT::bf16) == Promote)
909 AddPromotedToType(Op, MVT::bf16, MVT::f32);
910 setOperationAction(Op, MVT::v2f32,
911 STI.hasF32x2Instructions() ? Legal : Expand);
912 }
913
914 // On SM80, we select add/mul/sub as fma to avoid promotion to float
915 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB}) {
916 for (const auto &VT : {MVT::bf16, MVT::v2bf16}) {
917 if (!STI.hasNativeBF16Support(Op) && STI.hasNativeBF16Support(ISD::FMA)) {
919 }
920 }
921 }
922
923 // f16/f16x2 neg was introduced in PTX 60, SM_53.
924 const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
925 STI.getPTXVersion() >= 60 &&
926 STI.allowFP16Math();
927 for (const auto &VT : {MVT::f16, MVT::v2f16})
929 IsFP16FP16x2NegAvailable ? Legal : Expand);
930
931 setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand);
932 setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand);
933 setOperationAction(ISD::FNEG, MVT::v2f32, Expand);
934 // (would be) Library functions.
935
936 // These map to conversion instructions for scalar FP types.
937 for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
939 setOperationAction(Op, MVT::f16, Legal);
940 setOperationAction(Op, MVT::f32, Legal);
941 setOperationAction(Op, MVT::f64, Legal);
942 setOperationAction(Op, MVT::v2f16, Expand);
943 setOperationAction(Op, MVT::v2bf16, Expand);
944 setOperationAction(Op, MVT::v2f32, Expand);
945 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
946 if (getOperationAction(Op, MVT::bf16) == Promote)
947 AddPromotedToType(Op, MVT::bf16, MVT::f32);
948 }
949
950 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) {
952 }
953 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
954 for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
957 }
958 }
959
960 // Expand v2f32 = fp_extend
962 // Expand v2[b]f16 = fp_round v2f32
963 setOperationAction(ISD::FP_ROUND, {MVT::v2bf16, MVT::v2f16}, Expand);
964
965 // sm_80 only has conversions between f32 and bf16. Custom lower all other
966 // bf16 conversions.
967 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
968 for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
971 VT, Custom);
972 }
975 MVT::bf16, Custom);
976 }
977
984 AddPromotedToType(ISD::FROUND, MVT::bf16, MVT::f32);
985
986 // 'Expand' implements FCOPYSIGN without calling an external library.
993
994 // These map to corresponding instructions for f32/f64. f16 must be
995 // promoted to f32. v2f16 is expanded to f16, which is then promoted
996 // to f32.
997 for (const auto &Op :
999 setOperationAction(Op, MVT::f16, Promote);
1000 setOperationAction(Op, MVT::f32, Legal);
1001 // only div/rem/sqrt are legal for f64
1002 if (Op == ISD::FDIV || Op == ISD::FREM || Op == ISD::FSQRT) {
1003 setOperationAction(Op, MVT::f64, Legal);
1004 }
1005 setOperationAction(Op, {MVT::v2f16, MVT::v2bf16, MVT::v2f32}, Expand);
1006 setOperationAction(Op, MVT::bf16, Promote);
1007 AddPromotedToType(Op, MVT::bf16, MVT::f32);
1008 }
1009 setOperationAction(ISD::FREM, {MVT::f32, MVT::f64}, Custom);
1010
1011 setOperationAction(ISD::FABS, {MVT::f32, MVT::f64}, Legal);
1012 setOperationAction(ISD::FABS, MVT::v2f32, Expand);
1013 if (STI.getPTXVersion() >= 65) {
1014 setFP16OperationAction(ISD::FABS, MVT::f16, Legal, Promote);
1015 setFP16OperationAction(ISD::FABS, MVT::v2f16, Legal, Expand);
1016 } else {
1018 setOperationAction(ISD::FABS, MVT::v2f16, Expand);
1019 }
1020 setBF16OperationAction(ISD::FABS, MVT::v2bf16, Legal, Expand);
1021 setBF16OperationAction(ISD::FABS, MVT::bf16, Legal, Promote);
1022 if (getOperationAction(ISD::FABS, MVT::bf16) == Promote)
1023 AddPromotedToType(ISD::FABS, MVT::bf16, MVT::f32);
1024
1025 for (const auto &Op :
1027 setOperationAction(Op, MVT::f32, Legal);
1028 setOperationAction(Op, MVT::f64, Legal);
1029 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
1030 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
1031 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
1032 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
1033 if (getOperationAction(Op, MVT::bf16) == Promote)
1034 AddPromotedToType(Op, MVT::bf16, MVT::f32);
1035 setOperationAction(Op, MVT::v2f32, Expand);
1036 }
1037 bool SupportsF32MinMaxNaN =
1038 STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
1039 for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
1040 setOperationAction(Op, MVT::f32, SupportsF32MinMaxNaN ? Legal : Expand);
1041 setFP16OperationAction(Op, MVT::f16, Legal, Expand);
1042 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
1043 setBF16OperationAction(Op, MVT::bf16, Legal, Expand);
1044 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
1045 setOperationAction(Op, MVT::v2f32, Expand);
1046 }
1047
1048 // Custom lowering for inline asm with 128-bit operands
1051
1052 // FEXP2 support:
1053 // - f32
1054 // - f16/f16x2 (sm_70+, PTX 7.0+)
1055 // - bf16/bf16x2 (sm_90+, PTX 7.8+)
1056 // When f16/bf16 types aren't supported, they are promoted/expanded to f32.
1058 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
1059 setFP16OperationAction(ISD::FEXP2, MVT::f16, Legal, Promote);
1060 setFP16OperationAction(ISD::FEXP2, MVT::v2f16, Legal, Expand);
1061 setBF16OperationAction(ISD::FEXP2, MVT::bf16, Legal, Promote);
1062 setBF16OperationAction(ISD::FEXP2, MVT::v2bf16, Legal, Expand);
1063
1064 // FLOG2 supports f32 only
1065 // f16/bf16 types aren't supported, but they are promoted/expanded to f32.
1066 if (UseApproxLog2F32) {
1068 setOperationPromotedToType(ISD::FLOG2, MVT::f16, MVT::f32);
1069 setOperationPromotedToType(ISD::FLOG2, MVT::bf16, MVT::f32);
1070 setOperationAction(ISD::FLOG2, {MVT::v2f16, MVT::v2bf16, MVT::v2f32},
1071 Expand);
1072 }
1073
1074 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
1075
1076 setOperationAction(ISD::ATOMIC_LOAD_SUB, {MVT::i32, MVT::i64}, Expand);
1077
1078 // atom.b128 is legal in PTX but since we don't represent i128 as a legal
1079 // type, we need to custom lower it.
1081 Custom);
1082
1083 // Now deduce the information based on the above mentioned
1084 // actions
1085 computeRegisterProperties(STI.getRegisterInfo());
1086
1087 // PTX support for 16-bit CAS is emulated. Only use 32+
1088 setMinCmpXchgSizeInBits(STI.getMinCmpXchgSizeInBits());
1089 setMaxAtomicSizeInBitsSupported(STI.hasAtomSwap128() ? 128 : 64);
1091
1092 // Custom lowering for tcgen05.ld vector operands
1094 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1095 MVT::v32i32, MVT::v64i32, MVT::v128i32},
1096 Custom);
1097
1098 // Custom lowering for tcgen05.st vector operands
1100 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1101 MVT::v32i32, MVT::v64i32, MVT::v128i32, MVT::Other},
1102 Custom);
1103
1104 // Enable custom lowering for the following:
1105 // * MVT::i128 - clusterlaunchcontrol
1106 // * MVT::i32 - prmt
1107 // * MVT::v4f32 - cvt_rs fp{4/6/8}x4 intrinsics
1108 // * MVT::Other - internal.addrspace.wrap
1110 {MVT::i32, MVT::i128, MVT::v4f32, MVT::Other}, Custom);
1111
1112 // Custom lowering for bswap
1113 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::i32, MVT::i64, MVT::v2i16},
1114 Custom);
1115}
1116
1119 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1120 VT.getScalarType() == MVT::i1)
1121 return TypeSplitVector;
1123}
1124
1126 int Enabled, int &ExtraSteps,
1127 bool &UseOneConst,
1128 bool Reciprocal) const {
1131 return SDValue();
1132
1133 if (ExtraSteps == ReciprocalEstimate::Unspecified)
1134 ExtraSteps = 0;
1135
1136 SDLoc DL(Operand);
1137 EVT VT = Operand.getValueType();
1138 bool Ftz = useF32FTZ(DAG.getMachineFunction());
1139
1140 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1141 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1142 DAG.getConstant(IID, DL, MVT::i32), Operand);
1143 };
1144
1145 // The sqrt and rsqrt refinement processes assume we always start out with an
1146 // approximation of the rsqrt. Therefore, if we're going to do any refinement
1147 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
1148 // any refinement, we must return a regular sqrt.
1149 if (Reciprocal || ExtraSteps > 0) {
1150 if (VT == MVT::f32)
1151 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1152 : Intrinsic::nvvm_rsqrt_approx_f);
1153 else if (VT == MVT::f64)
1154 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1155 else
1156 return SDValue();
1157 } else {
1158 if (VT == MVT::f32)
1159 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1160 : Intrinsic::nvvm_sqrt_approx_f);
1161 else {
1162 // There's no sqrt.approx.f64 instruction, so we emit
1163 // reciprocal(rsqrt(x)). This is faster than
1164 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
1165 // x * rsqrt(x).)
1166 return DAG.getNode(
1168 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1169 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1170 }
1171 }
1172}
1173
1175 const DataLayout &DL, Type *RetTy, const ArgListTy &Args,
1177 std::optional<unsigned> FirstVAArg, const CallBase &CB,
1178 unsigned UniqueCallSite) const {
1179 auto PtrVT = getPointerTy(DL);
1180
1181 std::string Prototype;
1182 raw_string_ostream O(Prototype);
1183 O << "prototype_" << UniqueCallSite << " : .callprototype ";
1184
1185 if (RetTy->isVoidTy()) {
1186 O << "()";
1187 } else {
1188 O << "(";
1189 if (shouldPassAsArray(RetTy)) {
1190 const Align RetAlign = getArgumentAlignment(&CB, RetTy, 0, DL);
1191 O << ".param .align " << RetAlign.value() << " .b8 _["
1192 << DL.getTypeAllocSize(RetTy) << "]";
1193 } else if (RetTy->isFloatingPointTy() || RetTy->isIntegerTy()) {
1194 unsigned size = 0;
1195 if (auto *ITy = dyn_cast<IntegerType>(RetTy)) {
1196 size = ITy->getBitWidth();
1197 } else {
1198 assert(RetTy->isFloatingPointTy() &&
1199 "Floating point type expected here");
1200 size = RetTy->getPrimitiveSizeInBits();
1201 }
1202 // PTX ABI requires all scalar return values to be at least 32
1203 // bits in size. fp16 normally uses .b16 as its storage type in
1204 // PTX, so its size must be adjusted here, too.
1206
1207 O << ".param .b" << size << " _";
1208 } else if (isa<PointerType>(RetTy)) {
1209 O << ".param .b" << PtrVT.getSizeInBits() << " _";
1210 } else {
1211 llvm_unreachable("Unknown return type");
1212 }
1213 O << ") ";
1214 }
1215 O << "_ (";
1216
1217 bool first = true;
1218
1219 const unsigned NumArgs = FirstVAArg.value_or(Args.size());
1220 auto AllOuts = ArrayRef(Outs);
1221 for (const unsigned I : llvm::seq(NumArgs)) {
1222 const auto ArgOuts =
1223 AllOuts.take_while([I](auto O) { return O.OrigArgIndex == I; });
1224 AllOuts = AllOuts.drop_front(ArgOuts.size());
1225
1226 Type *Ty = Args[I].Ty;
1227 if (!first) {
1228 O << ", ";
1229 }
1230 first = false;
1231
1232 if (ArgOuts[0].Flags.isByVal()) {
1233 // Indirect calls need strict ABI alignment so we disable optimizations by
1234 // not providing a function to optimize.
1235 Type *ETy = Args[I].IndirectType;
1236 Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1237 Align ParamByValAlign =
1238 getFunctionByValParamAlign(/*F=*/nullptr, ETy, InitialAlign, DL);
1239
1240 O << ".param .align " << ParamByValAlign.value() << " .b8 _["
1241 << ArgOuts[0].Flags.getByValSize() << "]";
1242 } else {
1243 if (shouldPassAsArray(Ty)) {
1244 Align ParamAlign =
1245 getArgumentAlignment(&CB, Ty, I + AttributeList::FirstArgIndex, DL);
1246 O << ".param .align " << ParamAlign.value() << " .b8 _["
1247 << DL.getTypeAllocSize(Ty) << "]";
1248 continue;
1249 }
1250 // i8 types in IR will be i16 types in SDAG
1251 assert((getValueType(DL, Ty) == ArgOuts[0].VT ||
1252 (getValueType(DL, Ty) == MVT::i8 && ArgOuts[0].VT == MVT::i16)) &&
1253 "type mismatch between callee prototype and arguments");
1254 // scalar type
1255 unsigned sz = 0;
1256 if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
1257 sz = promoteScalarArgumentSize(ITy->getBitWidth());
1258 } else if (isa<PointerType>(Ty)) {
1259 sz = PtrVT.getSizeInBits();
1260 } else {
1261 sz = Ty->getPrimitiveSizeInBits();
1262 }
1263 O << ".param .b" << sz << " _";
1264 }
1265 }
1266
1267 if (FirstVAArg)
1268 O << (first ? "" : ",") << " .param .align "
1269 << STI.getMaxRequiredAlignment() << " .b8 _[]";
1270 O << ")";
1271 if (shouldEmitPTXNoReturn(&CB, *nvTM))
1272 O << " .noreturn";
1273 O << ";";
1274
1275 return Prototype;
1276}
1277
1279 const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const {
1280 return getAlign(*F, Idx).value_or(getFunctionParamOptimizedAlign(F, Ty, DL));
1281}
1282
1283Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty,
1284 unsigned Idx,
1285 const DataLayout &DL) const {
1286 if (!CB) {
1287 // CallSite is zero, fallback to ABI type alignment
1288 return DL.getABITypeAlign(Ty);
1289 }
1290
1291 const Function *DirectCallee = CB->getCalledFunction();
1292
1293 if (!DirectCallee) {
1294 // We don't have a direct function symbol, but that may be because of
1295 // constant cast instructions in the call.
1296
1297 // With bitcast'd call targets, the instruction will be the call
1298 if (const auto *CI = dyn_cast<CallInst>(CB)) {
1299 // Check if we have call alignment metadata
1300 if (MaybeAlign StackAlign = getAlign(*CI, Idx))
1301 return StackAlign.value();
1302 }
1303 DirectCallee = getMaybeBitcastedCallee(CB);
1304 }
1305
1306 // Check for function alignment information if we found that the
1307 // ultimate target is a Function
1308 if (DirectCallee)
1309 return getFunctionArgumentAlignment(DirectCallee, Ty, Idx, DL);
1310
1311 // Call is indirect, fall back to the ABI type alignment
1312 return DL.getABITypeAlign(Ty);
1313}
1314
1316 const GlobalAddressSDNode *Func) {
1317 if (!Func)
1318 return false;
1319 if (auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal()))
1320 return CB->getFunctionType() != CalleeFunc->getFunctionType();
1321 return false;
1322}
1323
1325 const DataLayout &DL,
1326 const TargetLowering &TL) {
1327 if (Ptr->getOpcode() == ISD::FrameIndex) {
1328 auto Ty = TL.getPointerTy(DL, ADDRESS_SPACE_LOCAL);
1329 Ptr = DAG.getAddrSpaceCast(SDLoc(), Ty, Ptr, ADDRESS_SPACE_GENERIC,
1331
1333 }
1334
1335 // Peel of an addrspacecast to generic and load directly from the specific
1336 // address space.
1337 if (Ptr->getOpcode() == ISD::ADDRSPACECAST) {
1338 const auto *ASC = cast<AddrSpaceCastSDNode>(Ptr);
1339 if (ASC->getDestAddressSpace() == ADDRESS_SPACE_GENERIC) {
1340 Ptr = ASC->getOperand(0);
1341 return MachinePointerInfo(ASC->getSrcAddressSpace());
1342 }
1343 }
1344
1345 return MachinePointerInfo();
1346}
1347
1349 if (Flags.isSExt())
1350 return ISD::SIGN_EXTEND;
1351 if (Flags.isZExt())
1352 return ISD::ZERO_EXTEND;
1353 return ISD::ANY_EXTEND;
1354}
1355
1357 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1358 SDLoc dl) {
1359 const EVT ActualVT = V.getValueType();
1360 assert((ActualVT == ExpectedVT ||
1361 (ExpectedVT.isInteger() && ActualVT.isInteger())) &&
1362 "Non-integer argument type size mismatch");
1363 if (ExpectedVT.bitsGT(ActualVT))
1364 return DAG.getNode(getExtOpcode(Flags), dl, ExpectedVT, V);
1365 if (ExpectedVT.bitsLT(ActualVT))
1366 return DAG.getNode(ISD::TRUNCATE, dl, ExpectedVT, V);
1367
1368 return V;
1369}
1370
1372 SmallVectorImpl<SDValue> &InVals) const {
1373
1374 if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
1376 "Support for variadic functions (unsized array parameter) introduced "
1377 "in PTX ISA version 6.0 and requires target sm_30.");
1378
1379 SelectionDAG &DAG = CLI.DAG;
1380 SDLoc dl = CLI.DL;
1381 const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1382 SDValue Callee = CLI.Callee;
1383 ArgListTy &Args = CLI.getArgs();
1384 Type *RetTy = CLI.RetTy;
1385 const CallBase *CB = CLI.CB;
1386 const DataLayout &DL = DAG.getDataLayout();
1387 LLVMContext &Ctx = *DAG.getContext();
1388
1389 const auto GetI32 = [&](const unsigned I) {
1390 return DAG.getConstant(I, dl, MVT::i32);
1391 };
1392
1393 const unsigned UniqueCallSite = GlobalUniqueCallSite++;
1394 const SDValue CallChain = CLI.Chain;
1395 const SDValue StartChain =
1396 DAG.getCALLSEQ_START(CallChain, UniqueCallSite, 0, dl);
1397 SDValue DeclareGlue = StartChain.getValue(1);
1398
1399 SmallVector<SDValue, 16> CallPrereqs{StartChain};
1400
1401 const auto MakeDeclareScalarParam = [&](SDValue Symbol, unsigned Size) {
1402 // PTX ABI requires integral types to be at least 32 bits in size. FP16 is
1403 // loaded/stored using i16, so it's handled here as well.
1404 const unsigned SizeBits = promoteScalarArgumentSize(Size * 8);
1405 SDValue Declare =
1406 DAG.getNode(NVPTXISD::DeclareScalarParam, dl, {MVT::Other, MVT::Glue},
1407 {StartChain, Symbol, GetI32(SizeBits), DeclareGlue});
1408 CallPrereqs.push_back(Declare);
1409 DeclareGlue = Declare.getValue(1);
1410 return Declare;
1411 };
1412
1413 const auto MakeDeclareArrayParam = [&](SDValue Symbol, Align Align,
1414 unsigned Size) {
1415 SDValue Declare = DAG.getNode(
1416 NVPTXISD::DeclareArrayParam, dl, {MVT::Other, MVT::Glue},
1417 {StartChain, Symbol, GetI32(Align.value()), GetI32(Size), DeclareGlue});
1418 CallPrereqs.push_back(Declare);
1419 DeclareGlue = Declare.getValue(1);
1420 return Declare;
1421 };
1422
1423 // Variadic arguments.
1424 //
1425 // Normally, for each argument, we declare a param scalar or a param
1426 // byte array in the .param space, and store the argument value to that
1427 // param scalar or array starting at offset 0.
1428 //
1429 // In the case of the first variadic argument, we declare a vararg byte array
1430 // with size 0. The exact size of this array isn't known at this point, so
1431 // it'll be patched later. All the variadic arguments will be stored to this
1432 // array at a certain offset (which gets tracked by 'VAOffset'). The offset is
1433 // initially set to 0, so it can be used for non-variadic arguments (which use
1434 // 0 offset) to simplify the code.
1435 //
1436 // After all vararg is processed, 'VAOffset' holds the size of the
1437 // vararg byte array.
1438 assert((CLI.IsVarArg || CLI.Args.size() == CLI.NumFixedArgs) &&
1439 "Non-VarArg function with extra arguments");
1440
1441 const unsigned FirstVAArg = CLI.NumFixedArgs; // position of first variadic
1442 unsigned VAOffset = 0; // current offset in the param array
1443
1444 const SDValue VADeclareParam =
1445 CLI.Args.size() > FirstVAArg
1446 ? MakeDeclareArrayParam(getCallParamSymbol(DAG, FirstVAArg, MVT::i32),
1447 Align(STI.getMaxRequiredAlignment()), 0)
1448 : SDValue();
1449
1450 // Args.size() and Outs.size() need not match.
1451 // Outs.size() will be larger
1452 // * if there is an aggregate argument with multiple fields (each field
1453 // showing up separately in Outs)
1454 // * if there is a vector argument with more than typical vector-length
1455 // elements (generally if more than 4) where each vector element is
1456 // individually present in Outs.
1457 // So a different index should be used for indexing into Outs/OutVals.
1458 // See similar issue in LowerFormalArguments.
1459 auto AllOuts = ArrayRef(CLI.Outs);
1460 auto AllOutVals = ArrayRef(CLI.OutVals);
1461 assert(AllOuts.size() == AllOutVals.size() &&
1462 "Outs and OutVals must be the same size");
1463 // Declare the .params or .reg need to pass values
1464 // to the function
1465 for (const auto E : llvm::enumerate(Args)) {
1466 const auto ArgI = E.index();
1467 const auto Arg = E.value();
1468 const auto ArgOuts =
1469 AllOuts.take_while([&](auto O) { return O.OrigArgIndex == ArgI; });
1470 const auto ArgOutVals = AllOutVals.take_front(ArgOuts.size());
1471 AllOuts = AllOuts.drop_front(ArgOuts.size());
1472 AllOutVals = AllOutVals.drop_front(ArgOuts.size());
1473
1474 const bool IsVAArg = (ArgI >= FirstVAArg);
1475 const bool IsByVal = Arg.IsByVal;
1476
1477 const SDValue ParamSymbol =
1478 getCallParamSymbol(DAG, IsVAArg ? FirstVAArg : ArgI, MVT::i32);
1479
1480 assert((!IsByVal || Arg.IndirectType) &&
1481 "byval arg must have indirect type");
1482 Type *ETy = (IsByVal ? Arg.IndirectType : Arg.Ty);
1483
1484 const Align ArgAlign = [&]() {
1485 if (IsByVal) {
1486 // The ByValAlign in the Outs[OIdx].Flags is always set at this point,
1487 // so we don't need to worry whether it's naturally aligned or not.
1488 // See TargetLowering::LowerCallTo().
1489 const Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1491 InitialAlign, DL);
1492 }
1493 return getArgumentAlignment(CB, Arg.Ty, ArgI + 1, DL);
1494 }();
1495
1496 const unsigned TySize = DL.getTypeAllocSize(ETy);
1497 assert((!IsByVal || TySize == ArgOuts[0].Flags.getByValSize()) &&
1498 "type size mismatch");
1499
1500 const SDValue ArgDeclare = [&]() {
1501 if (IsVAArg)
1502 return VADeclareParam;
1503
1504 if (IsByVal || shouldPassAsArray(Arg.Ty))
1505 return MakeDeclareArrayParam(ParamSymbol, ArgAlign, TySize);
1506
1507 assert(ArgOuts.size() == 1 && "We must pass only one value as non-array");
1508 assert((ArgOuts[0].VT.isInteger() || ArgOuts[0].VT.isFloatingPoint()) &&
1509 "Only int and float types are supported as non-array arguments");
1510
1511 return MakeDeclareScalarParam(ParamSymbol, TySize);
1512 }();
1513
1514 if (IsByVal) {
1515 assert(ArgOutVals.size() == 1 && "We must pass only one value as byval");
1516 SDValue SrcPtr = ArgOutVals[0];
1517 const auto PointerInfo = refinePtrAS(SrcPtr, DAG, DL, *this);
1518 const Align BaseSrcAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1519
1520 if (IsVAArg)
1521 VAOffset = alignTo(VAOffset, ArgAlign);
1522
1523 SmallVector<EVT, 4> ValueVTs, MemVTs;
1525 ComputeValueVTs(*this, DL, ETy, ValueVTs, &MemVTs, &Offsets);
1526
1527 unsigned J = 0;
1528 const auto VI = VectorizePTXValueVTs(MemVTs, Offsets, ArgAlign, IsVAArg);
1529 for (const unsigned NumElts : VI) {
1530 EVT LoadVT = getVectorizedVT(MemVTs[J], NumElts, Ctx);
1531 Align SrcAlign = commonAlignment(BaseSrcAlign, Offsets[J]);
1532 SDValue SrcAddr = DAG.getObjectPtrOffset(dl, SrcPtr, Offsets[J]);
1533 SDValue SrcLoad =
1534 DAG.getLoad(LoadVT, dl, CallChain, SrcAddr, PointerInfo, SrcAlign);
1535
1536 TypeSize ParamOffset = Offsets[J].getWithIncrement(VAOffset);
1537 Align ParamAlign = commonAlignment(ArgAlign, ParamOffset);
1538 SDValue ParamAddr =
1539 DAG.getObjectPtrOffset(dl, ParamSymbol, ParamOffset);
1540 SDValue StoreParam =
1541 DAG.getStore(ArgDeclare, dl, SrcLoad, ParamAddr,
1543 CallPrereqs.push_back(StoreParam);
1544
1545 J += NumElts;
1546 }
1547 if (IsVAArg)
1548 VAOffset += TySize;
1549 } else {
1552 ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, Arg.Ty, VTs, Offsets,
1553 VAOffset);
1554 assert(VTs.size() == Offsets.size() && "Size mismatch");
1555 assert(VTs.size() == ArgOuts.size() && "Size mismatch");
1556
1557 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1558 // than 32-bits are sign extended or zero extended, depending on
1559 // whether they are signed or unsigned types. This case applies
1560 // only to scalar parameters and not to aggregate values.
1561 const bool ExtendIntegerParam =
1562 Arg.Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Arg.Ty) < 32;
1563
1564 const auto GetStoredValue = [&](const unsigned I) {
1565 SDValue StVal = ArgOutVals[I];
1567 StVal.getValueType() &&
1568 "OutVal type should always be legal");
1569
1570 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
1571 const EVT StoreVT =
1572 ExtendIntegerParam ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1573
1574 return correctParamType(StVal, StoreVT, ArgOuts[I].Flags, DAG, dl);
1575 };
1576
1577 unsigned J = 0;
1578 const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg);
1579 for (const unsigned NumElts : VI) {
1580 const EVT EltVT = promoteScalarIntegerPTX(VTs[J]);
1581
1582 unsigned Offset;
1583 if (IsVAArg) {
1584 // TODO: We may need to support vector types that can be passed
1585 // as scalars in variadic arguments.
1586 assert(NumElts == 1 &&
1587 "Vectorization should be disabled for vaargs.");
1588
1589 // Align each part of the variadic argument to their type.
1590 VAOffset = alignTo(VAOffset, DAG.getEVTAlign(EltVT));
1591 Offset = VAOffset;
1592
1593 const EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1594 VAOffset += DL.getTypeAllocSize(TheStoreType.getTypeForEVT(Ctx));
1595 } else {
1596 assert(VAOffset == 0 && "VAOffset must be 0 for non-VA args");
1597 Offset = Offsets[J];
1598 }
1599
1600 SDValue Ptr =
1601 DAG.getObjectPtrOffset(dl, ParamSymbol, TypeSize::getFixed(Offset));
1602
1603 const MaybeAlign CurrentAlign = ExtendIntegerParam
1604 ? MaybeAlign(std::nullopt)
1605 : commonAlignment(ArgAlign, Offset);
1606
1607 SDValue Val =
1608 getBuildVectorizedValue(NumElts, dl, DAG, [&](unsigned K) {
1609 return GetStoredValue(J + K);
1610 });
1611
1612 SDValue StoreParam =
1613 DAG.getStore(ArgDeclare, dl, Val, Ptr,
1615 CallPrereqs.push_back(StoreParam);
1616
1617 J += NumElts;
1618 }
1619 }
1620 }
1621
1622 // Handle Result
1623 if (!Ins.empty()) {
1624 const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32);
1625 const unsigned ResultSize = DL.getTypeAllocSize(RetTy);
1626 if (shouldPassAsArray(RetTy)) {
1627 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
1628 MakeDeclareArrayParam(RetSymbol, RetAlign, ResultSize);
1629 } else {
1630 MakeDeclareScalarParam(RetSymbol, ResultSize);
1631 }
1632 }
1633
1634 // Set the size of the vararg param byte array if the callee is a variadic
1635 // function and the variadic part is not empty.
1636 if (VADeclareParam) {
1637 SDValue DeclareParamOps[] = {VADeclareParam.getOperand(0),
1638 VADeclareParam.getOperand(1),
1639 VADeclareParam.getOperand(2), GetI32(VAOffset),
1640 VADeclareParam.getOperand(4)};
1641 DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(),
1642 VADeclareParam->getVTList(), DeclareParamOps);
1643 }
1644
1645 const auto *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1646 // If the type of the callsite does not match that of the function, convert
1647 // the callsite to an indirect call.
1648 const bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func);
1649
1650 // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1651 // between them we must rely on the call site value which is valid for
1652 // indirect calls but is always null for libcalls.
1653 const bool IsIndirectCall = (!Func && CB) || ConvertToIndirectCall;
1654
1655 if (isa<ExternalSymbolSDNode>(Callee)) {
1656 Function* CalleeFunc = nullptr;
1657
1658 // Try to find the callee in the current module.
1659 Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1660 assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1661
1662 // Set the "libcall callee" attribute to indicate that the function
1663 // must always have a declaration.
1664 CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1665 }
1666
1667 if (IsIndirectCall) {
1668 // This is indirect function call case : PTX requires a prototype of the
1669 // form
1670 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1671 // to be emitted, and the label has to used as the last arg of call
1672 // instruction.
1673 // The prototype is embedded in a string and put as the operand for a
1674 // CallPrototype SDNode which will print out to the value of the string.
1675 const bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs);
1676 std::string Proto =
1677 getPrototype(DL, RetTy, Args, CLI.Outs,
1678 HasVAArgs ? std::optional(FirstVAArg) : std::nullopt, *CB,
1679 UniqueCallSite);
1680 const char *ProtoStr = nvTM->getStrPool().save(Proto).data();
1681 const SDValue PrototypeDeclare = DAG.getNode(
1682 NVPTXISD::CallPrototype, dl, MVT::Other,
1683 {StartChain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32)});
1684 CallPrereqs.push_back(PrototypeDeclare);
1685 }
1686
1687 const unsigned Proto = IsIndirectCall ? UniqueCallSite : 0;
1688 const unsigned NumArgs =
1689 std::min<unsigned>(CLI.NumFixedArgs + 1, Args.size());
1690 /// CALL(Chain, IsConvergent, IsIndirectCall/IsUniform, NumReturns,
1691 /// NumParams, Callee, Proto)
1692 const SDValue CallToken = DAG.getTokenFactor(dl, CallPrereqs);
1693 const SDValue Call = DAG.getNode(
1694 NVPTXISD::CALL, dl, MVT::Other,
1695 {CallToken, GetI32(CLI.IsConvergent), GetI32(IsIndirectCall),
1696 GetI32(Ins.empty() ? 0 : 1), GetI32(NumArgs), Callee, GetI32(Proto)});
1697
1698 SmallVector<SDValue, 16> LoadChains{Call};
1699 SmallVector<SDValue, 16> ProxyRegOps;
1700 if (!Ins.empty()) {
1703 ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, RetTy, VTs, Offsets);
1704 assert(VTs.size() == Ins.size() && "Bad value decomposition");
1705
1706 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
1707 const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32);
1708
1709 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1710 // 32-bits are sign extended or zero extended, depending on whether
1711 // they are signed or unsigned types.
1712 const bool ExtendIntegerRetVal =
1713 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1714
1715 unsigned I = 0;
1716 const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1717 for (const unsigned NumElts : VI) {
1718 const MaybeAlign CurrentAlign =
1719 ExtendIntegerRetVal ? MaybeAlign(std::nullopt)
1720 : commonAlignment(RetAlign, Offsets[I]);
1721
1722 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
1723 const EVT LoadVT =
1724 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1725 const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx);
1726 SDValue Ptr =
1727 DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I]));
1728
1729 SDValue R =
1730 DAG.getLoad(VecVT, dl, Call, Ptr,
1732
1733 LoadChains.push_back(R.getValue(1));
1734 for (const unsigned J : llvm::seq(NumElts))
1735 ProxyRegOps.push_back(getExtractVectorizedValue(R, J, LoadVT, dl, DAG));
1736 I += NumElts;
1737 }
1738 }
1739
1740 const SDValue EndToken = DAG.getTokenFactor(dl, LoadChains);
1741 const SDValue CallEnd = DAG.getCALLSEQ_END(EndToken, UniqueCallSite,
1742 UniqueCallSite + 1, SDValue(), dl);
1743
1744 // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1745 // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1746 // dangling.
1747 for (const auto [I, Reg] : llvm::enumerate(ProxyRegOps)) {
1748 SDValue Proxy =
1749 DAG.getNode(NVPTXISD::ProxyReg, dl, Reg.getValueType(), {CallEnd, Reg});
1750 SDValue Ret = correctParamType(Proxy, Ins[I].VT, Ins[I].Flags, DAG, dl);
1751 InVals.push_back(Ret);
1752 }
1753
1754 // set IsTailCall to false for now, until we figure out how to express
1755 // tail call optimization in PTX
1756 CLI.IsTailCall = false;
1757 return CallEnd;
1758}
1759
1761 SelectionDAG &DAG) const {
1762
1763 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1764 const Function &Fn = DAG.getMachineFunction().getFunction();
1765
1767 Fn,
1768 "Support for dynamic alloca introduced in PTX ISA version 7.3 and "
1769 "requires target sm_52.",
1770 SDLoc(Op).getDebugLoc()));
1771 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()),
1772 Op.getOperand(0)};
1773 return DAG.getMergeValues(Ops, SDLoc());
1774 }
1775
1776 SDLoc DL(Op.getNode());
1777 SDValue Chain = Op.getOperand(0);
1778 SDValue Size = Op.getOperand(1);
1779 uint64_t Align = Op.getConstantOperandVal(2);
1780
1781 // The alignment on a ISD::DYNAMIC_STACKALLOC node may be 0 to indicate that
1782 // the default stack alignment should be used.
1783 if (Align == 0)
1785
1786 // The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32.
1787 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1788
1789 SDValue Alloc =
1790 DAG.getNode(NVPTXISD::DYNAMIC_STACKALLOC, DL, {LocalVT, MVT::Other},
1791 {Chain, DAG.getZExtOrTrunc(Size, DL, LocalVT),
1792 DAG.getTargetConstant(Align, DL, MVT::i32)});
1793
1794 SDValue ASC = DAG.getAddrSpaceCast(
1796
1797 return DAG.getMergeValues({ASC, SDValue(Alloc.getNode(), 1)}, DL);
1798}
1799
1801 SelectionDAG &DAG) const {
1802 SDLoc DL(Op.getNode());
1803 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1804 const Function &Fn = DAG.getMachineFunction().getFunction();
1805
1807 Fn,
1808 "Support for stackrestore requires PTX ISA version >= 7.3 and target "
1809 ">= sm_52.",
1810 DL.getDebugLoc()));
1811 return Op.getOperand(0);
1812 }
1813
1814 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1815 SDValue Chain = Op.getOperand(0);
1816 SDValue Ptr = Op.getOperand(1);
1817 SDValue ASC = DAG.getAddrSpaceCast(DL, LocalVT, Ptr, ADDRESS_SPACE_GENERIC,
1819 return DAG.getNode(NVPTXISD::STACKRESTORE, DL, MVT::Other, {Chain, ASC});
1820}
1821
1823 SelectionDAG &DAG) const {
1824 SDLoc DL(Op.getNode());
1825 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1826 const Function &Fn = DAG.getMachineFunction().getFunction();
1827
1829 Fn,
1830 "Support for stacksave requires PTX ISA version >= 7.3 and target >= "
1831 "sm_52.",
1832 DL.getDebugLoc()));
1833 auto Ops = {DAG.getConstant(0, DL, Op.getValueType()), Op.getOperand(0)};
1834 return DAG.getMergeValues(Ops, DL);
1835 }
1836
1837 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1838 SDValue Chain = Op.getOperand(0);
1839 SDValue SS =
1840 DAG.getNode(NVPTXISD::STACKSAVE, DL, {LocalVT, MVT::Other}, Chain);
1841 SDValue ASC = DAG.getAddrSpaceCast(
1842 DL, Op.getValueType(), SS, ADDRESS_SPACE_LOCAL, ADDRESS_SPACE_GENERIC);
1843 return DAG.getMergeValues({ASC, SDValue(SS.getNode(), 1)}, DL);
1844}
1845
1846// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1847// (see LegalizeDAG.cpp). This is slow and uses local memory.
1848// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1849SDValue
1850NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1851 SDNode *Node = Op.getNode();
1852 SDLoc dl(Node);
1854 unsigned NumOperands = Node->getNumOperands();
1855 for (unsigned i = 0; i < NumOperands; ++i) {
1856 SDValue SubOp = Node->getOperand(i);
1857 EVT VVT = SubOp.getNode()->getValueType(0);
1858 EVT EltVT = VVT.getVectorElementType();
1859 unsigned NumSubElem = VVT.getVectorNumElements();
1860 for (unsigned j = 0; j < NumSubElem; ++j) {
1861 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1862 DAG.getIntPtrConstant(j, dl)));
1863 }
1864 }
1865 return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1866}
1867
1869 SelectionDAG &DAG,
1870 unsigned Mode = NVPTX::PTXPrmtMode::NONE) {
1871 assert(A.getValueType() == MVT::i32 && B.getValueType() == MVT::i32 &&
1872 Selector.getValueType() == MVT::i32 && "PRMT must have i32 operands");
1873 return DAG.getNode(NVPTXISD::PRMT, DL, MVT::i32,
1874 {A, B, Selector, DAG.getConstant(Mode, DL, MVT::i32)});
1875}
1876
1878 SelectionDAG &DAG,
1879 unsigned Mode = NVPTX::PTXPrmtMode::NONE) {
1880 return getPRMT(A, B, DAG.getConstant(Selector, DL, MVT::i32), DL, DAG, Mode);
1881}
1882
1883/// Reduces the elements using the scalar operations provided. The operations
1884/// are sorted descending in number of inputs they take. The flags on the
1885/// original reduction operation will be propagated to each scalar operation.
1886/// Nearby elements are grouped in tree reduction, unlike the shuffle reduction
1887/// used in ExpandReductions and SelectionDAG.
1889 const SmallVector<SDValue> &Elements, EVT EltTy,
1890 ArrayRef<std::pair<unsigned /*NodeType*/, unsigned /*NumInputs*/>> Ops,
1891 const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG) {
1892 // Build the reduction tree at each level, starting with all the elements.
1893 SmallVector<SDValue> Level = Elements;
1894
1895 unsigned OpIdx = 0;
1896 while (Level.size() > 1) {
1897 // Try to reduce this level using the current operator.
1898 const auto [Op, NumInputs] = Ops[OpIdx];
1899
1900 // Build the next level by partially reducing all elements.
1901 SmallVector<SDValue> ReducedLevel;
1902 unsigned I = 0, E = Level.size();
1903 for (; I + NumInputs <= E; I += NumInputs) {
1904 // Reduce elements in groups of [NumInputs], as much as possible.
1905 ReducedLevel.push_back(DAG.getNode(
1906 Op, DL, EltTy, ArrayRef<SDValue>(Level).slice(I, NumInputs), Flags));
1907 }
1908
1909 if (I < E) {
1910 // Handle leftover elements.
1911
1912 if (ReducedLevel.empty()) {
1913 // We didn't reduce anything at this level. We need to pick a smaller
1914 // operator.
1915 ++OpIdx;
1916 assert(OpIdx < Ops.size() && "no smaller operators for reduction");
1917 continue;
1918 }
1919
1920 // We reduced some things but there's still more left, meaning the
1921 // operator's number of inputs doesn't evenly divide this level size. Move
1922 // these elements to the next level.
1923 for (; I < E; ++I)
1924 ReducedLevel.push_back(Level[I]);
1925 }
1926
1927 // Process the next level.
1928 Level = ReducedLevel;
1929 }
1930
1931 return *Level.begin();
1932}
1933
1934// Get scalar reduction opcode
1935static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode) {
1936 switch (ReductionOpcode) {
1938 return ISD::FMAXNUM;
1940 return ISD::FMINNUM;
1942 return ISD::FMAXIMUM;
1944 return ISD::FMINIMUM;
1945 default:
1946 llvm_unreachable("unhandled reduction opcode");
1947 }
1948}
1949
1950/// Get 3-input scalar reduction opcode
1951static std::optional<unsigned>
1952getScalar3OpcodeForReduction(unsigned ReductionOpcode) {
1953 switch (ReductionOpcode) {
1955 return NVPTXISD::FMAXNUM3;
1957 return NVPTXISD::FMINNUM3;
1959 return NVPTXISD::FMAXIMUM3;
1961 return NVPTXISD::FMINIMUM3;
1962 default:
1963 return std::nullopt;
1964 }
1965}
1966
1967/// Lower reductions to either a sequence of operations or a tree if
1968/// reassociations are allowed. This method will use larger operations like
1969/// max3/min3 when the target supports them.
1970SDValue NVPTXTargetLowering::LowerVECREDUCE(SDValue Op,
1971 SelectionDAG &DAG) const {
1972 SDLoc DL(Op);
1973 const SDNodeFlags Flags = Op->getFlags();
1974 SDValue Vector = Op.getOperand(0);
1975
1976 const unsigned Opcode = Op->getOpcode();
1977 const EVT EltTy = Vector.getValueType().getVectorElementType();
1978
1979 // Whether we can use 3-input min/max when expanding the reduction.
1980 const bool CanUseMinMax3 =
1981 EltTy == MVT::f32 && STI.getSmVersion() >= 100 &&
1982 STI.getPTXVersion() >= 88 &&
1983 (Opcode == ISD::VECREDUCE_FMAX || Opcode == ISD::VECREDUCE_FMIN ||
1984 Opcode == ISD::VECREDUCE_FMAXIMUM || Opcode == ISD::VECREDUCE_FMINIMUM);
1985
1986 // A list of SDNode opcodes with equivalent semantics, sorted descending by
1987 // number of inputs they take.
1988 SmallVector<std::pair<unsigned /*Op*/, unsigned /*NumIn*/>, 2> ScalarOps;
1989
1990 if (auto Opcode3Elem = getScalar3OpcodeForReduction(Opcode);
1991 CanUseMinMax3 && Opcode3Elem)
1992 ScalarOps.push_back({*Opcode3Elem, 3});
1993 ScalarOps.push_back({getScalarOpcodeForReduction(Opcode), 2});
1994
1996 DAG.ExtractVectorElements(Vector, Elements);
1997
1998 return buildTreeReduction(Elements, EltTy, ScalarOps, DL, Flags, DAG);
1999}
2000
2001SDValue NVPTXTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2002 // Handle bitcasting from v2i8 without hitting the default promotion
2003 // strategy which goes through stack memory.
2004 EVT FromVT = Op->getOperand(0)->getValueType(0);
2005 if (FromVT != MVT::v2i8) {
2006 return Op;
2007 }
2008
2009 // Pack vector elements into i16 and bitcast to final type
2010 SDLoc DL(Op);
2011 SDValue Vec0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
2012 Op->getOperand(0), DAG.getIntPtrConstant(0, DL));
2013 SDValue Vec1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
2014 Op->getOperand(0), DAG.getIntPtrConstant(1, DL));
2015 SDValue Extend0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec0);
2016 SDValue Extend1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec1);
2017 SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
2018 SDValue AsInt = DAG.getNode(
2019 ISD::OR, DL, MVT::i16,
2020 {Extend0, DAG.getNode(ISD::SHL, DL, MVT::i16, {Extend1, Const8})});
2021 EVT ToVT = Op->getValueType(0);
2022 return DAG.getBitcast(ToVT, AsInt);
2023}
2024
2025// We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it
2026// would get lowered as two constant loads and vector-packing move.
2027// Instead we want just a constant move:
2028// mov.b32 %r2, 0x40003C00
2029SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2030 SelectionDAG &DAG) const {
2031 EVT VT = Op->getValueType(0);
2032 if (!(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector()))
2033 return Op;
2034 SDLoc DL(Op);
2035
2036 if (!llvm::all_of(Op->ops(), [](SDValue Operand) {
2037 return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
2038 isa<ConstantFPSDNode>(Operand);
2039 })) {
2040 if (VT != MVT::v4i8)
2041 return Op;
2042 // Lower non-const v4i8 vector as byte-wise constructed i32, which allows us
2043 // to optimize calculation of constant parts.
2044 auto GetPRMT = [&](const SDValue Left, const SDValue Right, bool Cast,
2045 uint64_t SelectionValue) -> SDValue {
2046 SDValue L = Left;
2047 SDValue R = Right;
2048 if (Cast) {
2049 L = DAG.getAnyExtOrTrunc(L, DL, MVT::i32);
2050 R = DAG.getAnyExtOrTrunc(R, DL, MVT::i32);
2051 }
2052 return getPRMT(L, R, SelectionValue, DL, DAG);
2053 };
2054 auto PRMT__10 = GetPRMT(Op->getOperand(0), Op->getOperand(1), true, 0x3340);
2055 auto PRMT__32 = GetPRMT(Op->getOperand(2), Op->getOperand(3), true, 0x3340);
2056 auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32, false, 0x5410);
2057 return DAG.getBitcast(VT, PRMT3210);
2058 }
2059
2060 // Get value or the Nth operand as an APInt(32). Undef values treated as 0.
2061 auto GetOperand = [](SDValue Op, int N) -> APInt {
2062 const SDValue &Operand = Op->getOperand(N);
2063 EVT VT = Op->getValueType(0);
2064 if (Operand->isUndef())
2065 return APInt(32, 0);
2066 APInt Value;
2067 if (VT == MVT::v2f16 || VT == MVT::v2bf16)
2068 Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt();
2069 else if (VT == MVT::v2i16 || VT == MVT::v4i8)
2070 Value = Operand->getAsAPIntVal();
2071 else
2072 llvm_unreachable("Unsupported type");
2073 // i8 values are carried around as i16, so we need to zero out upper bits,
2074 // so they do not get in the way of combining individual byte values
2075 if (VT == MVT::v4i8)
2076 Value = Value.trunc(8);
2077 return Value.zext(32);
2078 };
2079
2080 // Construct a 32-bit constant by shifting into place smaller values
2081 // (elements of the vector type VT).
2082 // For example, if VT has 2 elements, then N == 2:
2083 // ShiftAmount = 32 / N = 16
2084 // Value |= Op0 (b16) << 0
2085 // Value |= Op1 (b16) << 16
2086 // If N == 4:
2087 // ShiftAmount = 32 / N = 8
2088 // Value |= Op0 (b8) << 0
2089 // Value |= Op1 (b8) << 8
2090 // Value |= Op2 (b8) << 16
2091 // Value |= Op3 (b8) << 24
2092 // ...etc
2093 APInt Value(32, 0);
2094 const unsigned NumElements = VT.getVectorNumElements();
2095 assert(32 % NumElements == 0 && "must evenly divide bit length");
2096 const unsigned ShiftAmount = 32 / NumElements;
2097 for (unsigned ElementNo : seq(NumElements))
2098 Value |= GetOperand(Op, ElementNo).shl(ElementNo * ShiftAmount);
2099 SDValue Const = DAG.getConstant(Value, DL, MVT::i32);
2100 return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), Const);
2101}
2102
2103SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2104 SelectionDAG &DAG) const {
2105 SDValue Index = Op->getOperand(1);
2106 SDValue Vector = Op->getOperand(0);
2107 SDLoc DL(Op);
2108 EVT VectorVT = Vector.getValueType();
2109
2110 if (VectorVT == MVT::v4i8) {
2111 SDValue Selector = DAG.getNode(ISD::OR, DL, MVT::i32,
2112 DAG.getZExtOrTrunc(Index, DL, MVT::i32),
2113 DAG.getConstant(0x7770, DL, MVT::i32));
2114 SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, Vector),
2115 DAG.getConstant(0, DL, MVT::i32), Selector, DL, DAG);
2116 SDValue Ext = DAG.getAnyExtOrTrunc(PRMT, DL, Op->getValueType(0));
2117 SDNodeFlags Flags;
2118 Flags.setNoSignedWrap(Ext.getScalarValueSizeInBits() > 8);
2119 Flags.setNoUnsignedWrap(Ext.getScalarValueSizeInBits() >= 8);
2120 Ext->setFlags(Flags);
2121 return Ext;
2122 }
2123
2124 // Constant index will be matched by tablegen.
2125 if (isa<ConstantSDNode>(Index.getNode()))
2126 return Op;
2127
2128 // Extract individual elements and select one of them.
2129 assert(NVPTX::isPackedVectorTy(VectorVT) &&
2130 VectorVT.getVectorNumElements() == 2 && "Unexpected vector type.");
2131 EVT EltVT = VectorVT.getVectorElementType();
2132
2133 SDLoc dl(Op.getNode());
2134 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2135 DAG.getIntPtrConstant(0, dl));
2136 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2137 DAG.getIntPtrConstant(1, dl));
2138 return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
2140}
2141
2142SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2143 SelectionDAG &DAG) const {
2144 SDValue Vector = Op->getOperand(0);
2145 EVT VectorVT = Vector.getValueType();
2146
2147 if (VectorVT != MVT::v4i8)
2148 return Op;
2149 SDLoc DL(Op);
2150 SDValue Value = Op->getOperand(1);
2151 if (Value->isUndef())
2152 return Vector;
2153
2154 SDValue Index = Op->getOperand(2);
2155
2156 SDValue BFI =
2157 DAG.getNode(NVPTXISD::BFI, DL, MVT::i32,
2158 {DAG.getZExtOrTrunc(Value, DL, MVT::i32), Vector,
2159 DAG.getNode(ISD::MUL, DL, MVT::i32,
2160 DAG.getZExtOrTrunc(Index, DL, MVT::i32),
2161 DAG.getConstant(8, DL, MVT::i32)),
2162 DAG.getConstant(8, DL, MVT::i32)});
2163 return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), BFI);
2164}
2165
2166SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2167 SelectionDAG &DAG) const {
2168 SDValue V1 = Op.getOperand(0);
2169 EVT VectorVT = V1.getValueType();
2170 if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8)
2171 return Op;
2172
2173 // Lower shuffle to PRMT instruction.
2174 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2175 SDValue V2 = Op.getOperand(1);
2176 uint32_t Selector = 0;
2177 for (auto I : llvm::enumerate(SVN->getMask())) {
2178 if (I.value() != -1) // -1 is a placeholder for undef.
2179 Selector |= (I.value() << (I.index() * 4));
2180 }
2181
2182 SDLoc DL(Op);
2183 SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, V1),
2184 DAG.getBitcast(MVT::i32, V2), Selector, DL, DAG);
2185 return DAG.getBitcast(Op.getValueType(), PRMT);
2186}
2187/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
2188/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2189/// amount, or
2190/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2191/// amount.
2192SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
2193 SelectionDAG &DAG) const {
2194 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2195 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2196
2197 EVT VT = Op.getValueType();
2198 unsigned VTBits = VT.getSizeInBits();
2199 SDLoc dl(Op);
2200 SDValue ShOpLo = Op.getOperand(0);
2201 SDValue ShOpHi = Op.getOperand(1);
2202 SDValue ShAmt = Op.getOperand(2);
2203 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2204
2205 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2206 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2207 // {dHi, dLo} = {aHi, aLo} >> Amt
2208 // dHi = aHi >> Amt
2209 // dLo = shf.r.clamp aLo, aHi, Amt
2210
2211 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2212 SDValue Lo =
2213 DAG.getNode(NVPTXISD::FSHR_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
2214
2215 SDValue Ops[2] = { Lo, Hi };
2216 return DAG.getMergeValues(Ops, dl);
2217 }
2218 else {
2219 // {dHi, dLo} = {aHi, aLo} >> Amt
2220 // - if (Amt>=size) then
2221 // dLo = aHi >> (Amt-size)
2222 // dHi = aHi >> Amt (this is either all 0 or all 1)
2223 // else
2224 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
2225 // dHi = aHi >> Amt
2226
2227 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2228 DAG.getConstant(VTBits, dl, MVT::i32),
2229 ShAmt);
2230 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2231 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2232 DAG.getConstant(VTBits, dl, MVT::i32));
2233 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2234 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2235 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2236
2237 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2238 DAG.getConstant(VTBits, dl, MVT::i32),
2239 ISD::SETGE);
2240 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2241 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2242
2243 SDValue Ops[2] = { Lo, Hi };
2244 return DAG.getMergeValues(Ops, dl);
2245 }
2246}
2247
2248/// LowerShiftLeftParts - Lower SHL_PARTS, which
2249/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2250/// amount, or
2251/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2252/// amount.
2253SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2254 SelectionDAG &DAG) const {
2255 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2256 assert(Op.getOpcode() == ISD::SHL_PARTS);
2257
2258 EVT VT = Op.getValueType();
2259 unsigned VTBits = VT.getSizeInBits();
2260 SDLoc dl(Op);
2261 SDValue ShOpLo = Op.getOperand(0);
2262 SDValue ShOpHi = Op.getOperand(1);
2263 SDValue ShAmt = Op.getOperand(2);
2264
2265 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2266 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2267 // {dHi, dLo} = {aHi, aLo} << Amt
2268 // dHi = shf.l.clamp aLo, aHi, Amt
2269 // dLo = aLo << Amt
2270
2271 SDValue Hi =
2272 DAG.getNode(NVPTXISD::FSHL_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
2273 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2274
2275 SDValue Ops[2] = { Lo, Hi };
2276 return DAG.getMergeValues(Ops, dl);
2277 }
2278 else {
2279 // {dHi, dLo} = {aHi, aLo} << Amt
2280 // - if (Amt>=size) then
2281 // dLo = aLo << Amt (all 0)
2282 // dLo = aLo << (Amt-size)
2283 // else
2284 // dLo = aLo << Amt
2285 // dHi = (aHi << Amt) | (aLo >> (size-Amt))
2286
2287 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2288 DAG.getConstant(VTBits, dl, MVT::i32),
2289 ShAmt);
2290 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2291 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2292 DAG.getConstant(VTBits, dl, MVT::i32));
2293 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2294 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2295 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2296
2297 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2298 DAG.getConstant(VTBits, dl, MVT::i32),
2299 ISD::SETGE);
2300 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2301 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2302
2303 SDValue Ops[2] = { Lo, Hi };
2304 return DAG.getMergeValues(Ops, dl);
2305 }
2306}
2307
2308/// If the types match, convert the generic copysign to the NVPTXISD version,
2309/// otherwise bail ensuring that mismatched cases are properly expaned.
2310SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op,
2311 SelectionDAG &DAG) const {
2312 EVT VT = Op.getValueType();
2313 SDLoc DL(Op);
2314
2315 SDValue In1 = Op.getOperand(0);
2316 SDValue In2 = Op.getOperand(1);
2317 EVT SrcVT = In2.getValueType();
2318
2319 if (!SrcVT.bitsEq(VT))
2320 return SDValue();
2321
2322 return DAG.getNode(NVPTXISD::FCOPYSIGN, DL, VT, In1, In2);
2323}
2324
2325SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2326 EVT VT = Op.getValueType();
2327
2328 if (VT == MVT::f32)
2329 return LowerFROUND32(Op, DAG);
2330
2331 if (VT == MVT::f64)
2332 return LowerFROUND64(Op, DAG);
2333
2334 llvm_unreachable("unhandled type");
2335}
2336
2337// This is the the rounding method used in CUDA libdevice in C like code:
2338// float roundf(float A)
2339// {
2340// float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2341// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2342// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2343// }
2344SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2345 SelectionDAG &DAG) const {
2346 SDLoc SL(Op);
2347 SDValue A = Op.getOperand(0);
2348 EVT VT = Op.getValueType();
2349
2350 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2351
2352 // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2353 SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2354 const unsigned SignBitMask = 0x80000000;
2355 SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2356 DAG.getConstant(SignBitMask, SL, MVT::i32));
2357 const unsigned PointFiveInBits = 0x3F000000;
2358 SDValue PointFiveWithSignRaw =
2359 DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2360 DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2361 SDValue PointFiveWithSign =
2362 DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2363 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2364 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2365
2366 // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2367 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2368 SDValue IsLarge =
2369 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2370 ISD::SETOGT);
2371 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2372
2373 // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2374 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2375 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2376 SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2377 return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2378}
2379
2380// The implementation of round(double) is similar to that of round(float) in
2381// that they both separate the value range into three regions and use a method
2382// specific to the region to round the values. However, round(double) first
2383// calculates the round of the absolute value and then adds the sign back while
2384// round(float) directly rounds the value with sign.
2385SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2386 SelectionDAG &DAG) const {
2387 SDLoc SL(Op);
2388 SDValue A = Op.getOperand(0);
2389 EVT VT = Op.getValueType();
2390
2391 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2392
2393 // double RoundedA = (double) (int) (abs(A) + 0.5f);
2394 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2395 DAG.getConstantFP(0.5, SL, VT));
2396 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2397
2398 // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2399 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2400 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2401 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2402 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2403 DAG.getConstantFP(0, SL, VT),
2404 RoundedA);
2405
2406 // Add sign to rounded_A
2407 RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2408 DAG.getNode(ISD::FTRUNC, SL, VT, A);
2409
2410 // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2411 SDValue IsLarge =
2412 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2413 ISD::SETOGT);
2414 return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2415}
2416
2418 EVT VT = N->getValueType(0);
2419 EVT NVT = MVT::f32;
2420 if (VT.isVector()) {
2421 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
2422 }
2423 SDLoc DL(N);
2424 SDValue Tmp0 = DAG.getFPExtendOrRound(N->getOperand(0), DL, NVT);
2425 SDValue Tmp1 = DAG.getFPExtendOrRound(N->getOperand(1), DL, NVT);
2426 SDValue Res = DAG.getNode(N->getOpcode(), DL, NVT, Tmp0, Tmp1, N->getFlags());
2427 return DAG.getFPExtendOrRound(Res, DL, VT);
2428}
2429
2430SDValue NVPTXTargetLowering::PromoteBinOpIfF32FTZ(SDValue Op,
2431 SelectionDAG &DAG) const {
2432 if (useF32FTZ(DAG.getMachineFunction())) {
2433 return PromoteBinOpToF32(Op.getNode(), DAG);
2434 }
2435 return Op;
2436}
2437
2438SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op,
2439 SelectionDAG &DAG) const {
2440 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2441
2442 if (Op.getValueType() == MVT::bf16) {
2443 SDLoc Loc(Op);
2444 return DAG.getNode(
2445 ISD::FP_ROUND, Loc, MVT::bf16,
2446 DAG.getNode(Op.getOpcode(), Loc, MVT::f32, Op.getOperand(0)),
2447 DAG.getIntPtrConstant(0, Loc, /*isTarget=*/true));
2448 }
2449
2450 // Everything else is considered legal.
2451 return Op;
2452}
2453
2454SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op,
2455 SelectionDAG &DAG) const {
2456 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2457
2458 if (Op.getOperand(0).getValueType() == MVT::bf16) {
2459 SDLoc Loc(Op);
2460 return DAG.getNode(
2461 Op.getOpcode(), Loc, Op.getValueType(),
2462 DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, Op.getOperand(0)));
2463 }
2464
2465 // Everything else is considered legal.
2466 return Op;
2467}
2468
2469SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op,
2470 SelectionDAG &DAG) const {
2471 EVT NarrowVT = Op.getValueType();
2472 SDValue Wide = Op.getOperand(0);
2473 EVT WideVT = Wide.getValueType();
2474 if (NarrowVT.getScalarType() == MVT::bf16) {
2475 const TargetLowering *TLI = STI.getTargetLowering();
2476 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) {
2477 return TLI->expandFP_ROUND(Op.getNode(), DAG);
2478 }
2479 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
2480 // This combination was the first to support f32 -> bf16.
2481 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) {
2482 if (WideVT.getScalarType() == MVT::f32) {
2483 return Op;
2484 }
2485 if (WideVT.getScalarType() == MVT::f64) {
2486 SDLoc Loc(Op);
2487 // Round-inexact-to-odd f64 to f32, then do the final rounding using
2488 // the hardware f32 -> bf16 instruction.
2490 WideVT.isVector() ? WideVT.changeVectorElementType(MVT::f32)
2491 : MVT::f32,
2492 Wide, Loc, DAG);
2493 return DAG.getFPExtendOrRound(rod, Loc, NarrowVT);
2494 }
2495 }
2496 return TLI->expandFP_ROUND(Op.getNode(), DAG);
2497 }
2498 }
2499
2500 // Everything else is considered legal.
2501 return Op;
2502}
2503
2504SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op,
2505 SelectionDAG &DAG) const {
2506 SDValue Narrow = Op.getOperand(0);
2507 EVT NarrowVT = Narrow.getValueType();
2508 EVT WideVT = Op.getValueType();
2509 if (NarrowVT.getScalarType() == MVT::bf16) {
2510 if (WideVT.getScalarType() == MVT::f32 &&
2511 (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) {
2512 SDLoc Loc(Op);
2513 return DAG.getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow);
2514 }
2515 if (WideVT.getScalarType() == MVT::f64 &&
2516 (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) {
2517 EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(MVT::f32)
2518 : MVT::f32;
2519 SDLoc Loc(Op);
2520 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) {
2521 Op = DAG.getNode(ISD::FP_EXTEND, Loc, F32, Narrow);
2522 } else {
2523 Op = DAG.getNode(ISD::BF16_TO_FP, Loc, F32, Narrow);
2524 }
2525 return DAG.getNode(ISD::FP_EXTEND, Loc, WideVT, Op);
2526 }
2527 }
2528
2529 // Everything else is considered legal.
2530 return Op;
2531}
2532
2534 SDLoc DL(Op);
2535 if (Op.getValueType() != MVT::v2i16)
2536 return Op;
2537 EVT EltVT = Op.getValueType().getVectorElementType();
2538 SmallVector<SDValue> VecElements;
2539 for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) {
2540 SmallVector<SDValue> ScalarArgs;
2541 llvm::transform(Op->ops(), std::back_inserter(ScalarArgs),
2542 [&](const SDUse &O) {
2543 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
2544 O.get(), DAG.getIntPtrConstant(I, DL));
2545 });
2546 VecElements.push_back(DAG.getNode(Op.getOpcode(), DL, EltVT, ScalarArgs));
2547 }
2548 SDValue V =
2549 DAG.getNode(ISD::BUILD_VECTOR, DL, Op.getValueType(), VecElements);
2550 return V;
2551}
2552
2554 SDNode *N = Op.getNode();
2555 SDLoc DL(N);
2557
2558 // split the vector argument
2559 for (size_t I = 0; I < N->getNumOperands(); I++) {
2560 SDValue Val = N->getOperand(I);
2561 EVT ValVT = Val.getValueType();
2562 if (ValVT.isVector()) {
2563 EVT EltVT = ValVT.getVectorElementType();
2564 for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++)
2565 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2566 DAG.getIntPtrConstant(J, DL)));
2567 } else
2568 Ops.push_back(Val);
2569 }
2570
2572 SDValue Tcgen05StNode =
2573 DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, N->getVTList(), Ops,
2574 MemSD->getMemoryVT(), MemSD->getMemOperand());
2575
2576 return Tcgen05StNode;
2577}
2578
2580 SDLoc DL(Op);
2581 SDValue Src = Op.getOperand(0);
2582 EVT VT = Op.getValueType();
2583
2584 switch (VT.getSimpleVT().SimpleTy) {
2585 case MVT::i16: {
2586 SDValue Extended = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Src);
2587 SDValue Swapped =
2588 getPRMT(Extended, DAG.getConstant(0, DL, MVT::i32), 0x7701, DL, DAG);
2589 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Swapped);
2590 }
2591 case MVT::i32: {
2592 return getPRMT(Src, DAG.getConstant(0, DL, MVT::i32), 0x0123, DL, DAG);
2593 }
2594 case MVT::v2i16: {
2595 SDValue Converted = DAG.getBitcast(MVT::i32, Src);
2596 SDValue Swapped =
2597 getPRMT(Converted, DAG.getConstant(0, DL, MVT::i32), 0x2301, DL, DAG);
2598 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i16, Swapped);
2599 }
2600 case MVT::i64: {
2601 SDValue UnpackSrc =
2602 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, Src);
2603 SDValue SwappedLow =
2604 getPRMT(UnpackSrc.getValue(0), DAG.getConstant(0, DL, MVT::i32), 0x0123,
2605 DL, DAG);
2606 SDValue SwappedHigh =
2607 getPRMT(UnpackSrc.getValue(1), DAG.getConstant(0, DL, MVT::i32), 0x0123,
2608 DL, DAG);
2609 return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64,
2610 {SwappedHigh, SwappedLow});
2611 }
2612 default:
2613 llvm_unreachable("unsupported type for bswap");
2614 }
2615}
2616
2617static unsigned getTcgen05MMADisableOutputLane(unsigned IID) {
2618 switch (IID) {
2619 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
2620 return NVPTXISD::TCGEN05_MMA_SHARED_DISABLE_OUTPUT_LANE_CG1;
2621 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
2622 return NVPTXISD::TCGEN05_MMA_SHARED_DISABLE_OUTPUT_LANE_CG2;
2623 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
2624 return NVPTXISD::TCGEN05_MMA_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2625 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
2626 return NVPTXISD::TCGEN05_MMA_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2627 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
2628 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG1;
2629 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
2630 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG2;
2631 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
2632 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2633 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
2634 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2635 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
2636 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2637 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
2638 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2639 case Intrinsic::
2640 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
2641 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2642 case Intrinsic::
2643 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
2644 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2645 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
2646 return NVPTXISD::TCGEN05_MMA_SP_SHARED_DISABLE_OUTPUT_LANE_CG1;
2647 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
2648 return NVPTXISD::TCGEN05_MMA_SP_SHARED_DISABLE_OUTPUT_LANE_CG2;
2649 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
2650 return NVPTXISD::TCGEN05_MMA_SP_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2651 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
2652 return NVPTXISD::TCGEN05_MMA_SP_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2653 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
2654 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG1;
2655 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
2656 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG2;
2657 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
2658 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2659 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
2660 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2661 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
2662 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2663 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
2664 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2665 case Intrinsic::
2666 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift:
2667 return NVPTXISD::
2668 TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2669 case Intrinsic::
2670 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift:
2671 return NVPTXISD::
2672 TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2673 };
2674 llvm_unreachable("unhandled tcgen05.mma.disable_output_lane intrinsic");
2675}
2676
2678 SDNode *N = Op.getNode();
2679 SDLoc DL(N);
2680 unsigned IID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2681
2683 // split the vector argument
2684 for (size_t I = 0; I < N->getNumOperands(); I++) {
2685 if (I == 1)
2686 continue; // skip IID
2687 SDValue Val = N->getOperand(I);
2688 EVT ValVT = Val.getValueType();
2689 if (ValVT.isVector()) {
2690 EVT EltVT = ValVT.getVectorElementType();
2691 for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++)
2692 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2693 DAG.getIntPtrConstant(J, DL)));
2694 } else
2695 Ops.push_back(Val);
2696 }
2697
2699 SDValue Tcgen05MMANode = DAG.getMemIntrinsicNode(
2700 getTcgen05MMADisableOutputLane(IID), DL, N->getVTList(), Ops,
2701 MemSD->getMemoryVT(), MemSD->getMemOperand());
2702
2703 return Tcgen05MMANode;
2704}
2705
2706// Lower vector return type of tcgen05.ld intrinsics
2707static std::optional<std::pair<SDValue, SDValue>>
2708lowerTcgen05Ld(SDNode *N, SelectionDAG &DAG, bool HasOffset = false) {
2709 SDLoc DL(N);
2710 EVT ResVT = N->getValueType(0);
2711 if (!ResVT.isVector())
2712 return {}; // already legalized.
2713
2714 const unsigned NumElts = ResVT.getVectorNumElements();
2715
2716 // Create the return type of the instructions
2717 SmallVector<EVT, 5> ListVTs;
2718 for (unsigned i = 0; i < NumElts; ++i)
2719 ListVTs.push_back(MVT::i32);
2720
2721 ListVTs.push_back(N->getValueType(1)); // Chain
2722
2723 SDVTList ResVTs = DAG.getVTList(ListVTs);
2724
2725 SmallVector<SDValue, 8> Ops{N->getOperand(0), N->getOperand(1),
2726 N->getOperand(2)};
2727
2728 if (HasOffset) {
2729 Ops.push_back(N->getOperand(3)); // offset
2730 Ops.push_back(N->getOperand(4)); // Pack flag
2731 } else
2732 Ops.push_back(N->getOperand(3)); // Pack flag
2733
2735 SDValue NewNode =
2737 MemSD->getMemoryVT(), MemSD->getMemOperand());
2738
2739 // split the vector result
2740 SmallVector<SDValue, 4> ScalarRes;
2741 for (unsigned i = 0; i < NumElts; ++i) {
2742 SDValue Res = NewNode.getValue(i);
2743 ScalarRes.push_back(Res);
2744 }
2745
2746 SDValue Chain = NewNode.getValue(NumElts);
2747 SDValue BuildVector = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
2748 return {{BuildVector, Chain}};
2749}
2750
2752 SDNode *N = Op.getNode();
2753 SDValue Intrin = N->getOperand(1);
2754
2755 // Get the intrinsic ID
2756 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
2757 switch (IntrinNo) {
2758 default:
2759 break;
2760 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
2761 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
2762 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
2763 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
2764 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
2765 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
2766 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
2767 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
2768 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
2769 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
2770 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
2771 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
2772 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
2773 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
2774 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
2775 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
2776 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
2777 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
2778 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
2779 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
2780 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1:
2781 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2:
2782 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4:
2783 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8:
2784 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16:
2785 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32:
2786 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64:
2787 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128:
2788 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
2789 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
2790 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
2791 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
2792 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
2793 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
2794 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
2795 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
2796 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
2797 return lowerTcgen05St(Op, DAG);
2798 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
2799 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
2800 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
2801 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
2802 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
2803 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
2804 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
2805 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
2806 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
2807 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
2808 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
2809 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
2810 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
2811 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
2812 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
2813 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
2814 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
2815 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
2816 case Intrinsic::
2817 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
2818 case Intrinsic::
2819 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
2820 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
2821 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
2822 case Intrinsic::
2823 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift:
2824 case Intrinsic::
2825 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift:
2827 }
2828 return Op;
2829}
2830
2832 SelectionDAG &DAG) {
2833
2834 SDNode *N = Op.getNode();
2835 if (N->getOperand(1).getValueType() != MVT::i128) {
2836 // return, if the operand is already lowered
2837 return SDValue();
2838 }
2839
2840 unsigned IID =
2841 cast<ConstantSDNode>(N->getOperand(0).getNode())->getZExtValue();
2842 auto Opcode = [&]() {
2843 switch (IID) {
2844 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2845 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED;
2846 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2847 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X;
2848 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2849 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y;
2850 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2851 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z;
2852 default:
2853 llvm_unreachable("unsupported/unhandled intrinsic");
2854 }
2855 }();
2856
2857 SDLoc DL(N);
2858 SDValue TryCancelResponse = N->getOperand(1);
2859 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TryCancelResponse);
2860 SDValue TryCancelResponse0 =
2861 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
2862 DAG.getIntPtrConstant(0, DL));
2863 SDValue TryCancelResponse1 =
2864 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
2865 DAG.getIntPtrConstant(1, DL));
2866
2867 return DAG.getNode(Opcode, DL, N->getVTList(),
2868 {TryCancelResponse0, TryCancelResponse1});
2869}
2870
2872 SDNode *N = Op.getNode();
2873 SDLoc DL(N);
2874 SDValue F32Vec = N->getOperand(1);
2875 SDValue RBits = N->getOperand(2);
2876
2877 unsigned IntrinsicID = N->getConstantOperandVal(0);
2878
2879 // Extract the 4 float elements from the vector
2881 for (unsigned i = 0; i < 4; ++i)
2882 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, F32Vec,
2883 DAG.getIntPtrConstant(i, DL)));
2884
2886
2887 auto [OpCode, RetTy, CvtModeFlag] =
2888 [&]() -> std::tuple<unsigned, MVT::SimpleValueType, uint32_t> {
2889 switch (IntrinsicID) {
2890 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_relu_satfinite:
2891 return {NVPTXISD::CVT_E4M3X4_F32X4_RS_SF, MVT::v4i8,
2892 CvtMode::RS | CvtMode::RELU_FLAG};
2893 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_satfinite:
2894 return {NVPTXISD::CVT_E4M3X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2895 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_relu_satfinite:
2896 return {NVPTXISD::CVT_E5M2X4_F32X4_RS_SF, MVT::v4i8,
2897 CvtMode::RS | CvtMode::RELU_FLAG};
2898 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_satfinite:
2899 return {NVPTXISD::CVT_E5M2X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2900 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_relu_satfinite:
2901 return {NVPTXISD::CVT_E2M3X4_F32X4_RS_SF, MVT::v4i8,
2902 CvtMode::RS | CvtMode::RELU_FLAG};
2903 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_satfinite:
2904 return {NVPTXISD::CVT_E2M3X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2905 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_relu_satfinite:
2906 return {NVPTXISD::CVT_E3M2X4_F32X4_RS_SF, MVT::v4i8,
2907 CvtMode::RS | CvtMode::RELU_FLAG};
2908 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_satfinite:
2909 return {NVPTXISD::CVT_E3M2X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2910 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_relu_satfinite:
2911 return {NVPTXISD::CVT_E2M1X4_F32X4_RS_SF, MVT::i16,
2912 CvtMode::RS | CvtMode::RELU_FLAG};
2913 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_satfinite:
2914 return {NVPTXISD::CVT_E2M1X4_F32X4_RS_SF, MVT::i16, CvtMode::RS};
2915 default:
2916 llvm_unreachable("unsupported/unhandled intrinsic");
2917 }
2918 }();
2919
2920 Ops.push_back(RBits);
2921 Ops.push_back(DAG.getConstant(CvtModeFlag, DL, MVT::i32));
2922
2923 return DAG.getNode(OpCode, DL, RetTy, Ops);
2924}
2925
2927 const unsigned Mode = [&]() {
2928 switch (Op->getConstantOperandVal(0)) {
2929 case Intrinsic::nvvm_prmt:
2931 case Intrinsic::nvvm_prmt_b4e:
2933 case Intrinsic::nvvm_prmt_ecl:
2935 case Intrinsic::nvvm_prmt_ecr:
2937 case Intrinsic::nvvm_prmt_f4e:
2939 case Intrinsic::nvvm_prmt_rc16:
2941 case Intrinsic::nvvm_prmt_rc8:
2943 default:
2944 llvm_unreachable("unsupported/unhandled intrinsic");
2945 }
2946 }();
2947 SDLoc DL(Op);
2948 SDValue A = Op->getOperand(1);
2949 SDValue B = Op.getNumOperands() == 4 ? Op.getOperand(2)
2950 : DAG.getConstant(0, DL, MVT::i32);
2951 SDValue Selector = (Op->op_end() - 1)->get();
2952 return getPRMT(A, B, Selector, DL, DAG, Mode);
2953}
2954
2956 switch (Op->getConstantOperandVal(1)) {
2957 default:
2958 return Op;
2959
2960 // These tcgen05 intrinsics return a v2i32, which is legal, so we have to
2961 // lower them through LowerOperation() instead of ReplaceNodeResults().
2962 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
2963 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
2964 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
2965 if (auto Res = lowerTcgen05Ld(Op.getNode(), DAG))
2966 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(Op));
2967 return SDValue();
2968
2969 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2:
2970 if (auto Res = lowerTcgen05Ld(Op.getNode(), DAG, /*HasOffset=*/true))
2971 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(Op));
2972 return SDValue();
2973 }
2974}
2975
2977 switch (Op->getConstantOperandVal(0)) {
2978 default:
2979 return Op;
2980 case Intrinsic::nvvm_prmt:
2981 case Intrinsic::nvvm_prmt_b4e:
2982 case Intrinsic::nvvm_prmt_ecl:
2983 case Intrinsic::nvvm_prmt_ecr:
2984 case Intrinsic::nvvm_prmt_f4e:
2985 case Intrinsic::nvvm_prmt_rc16:
2986 case Intrinsic::nvvm_prmt_rc8:
2987 return lowerPrmtIntrinsic(Op, DAG);
2988 case Intrinsic::nvvm_internal_addrspace_wrap:
2989 return Op.getOperand(1);
2990 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2991 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2992 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2993 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2995 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_satfinite:
2996 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_relu_satfinite:
2997 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_satfinite:
2998 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_relu_satfinite:
2999 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_satfinite:
3000 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_relu_satfinite:
3001 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_satfinite:
3002 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_relu_satfinite:
3003 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_satfinite:
3004 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_relu_satfinite:
3005 return lowerCvtRSIntrinsics(Op, DAG);
3006 }
3007}
3008
3009// In PTX 64-bit CTLZ and CTPOP are supported, but they return a 32-bit value.
3010// Lower these into a node returning the correct type which is zero-extended
3011// back to the correct size.
3013 SDValue V = Op->getOperand(0);
3014 assert(V.getValueType() == MVT::i64 &&
3015 "Unexpected CTLZ/CTPOP type to legalize");
3016
3017 SDLoc DL(Op);
3018 SDValue CT = DAG.getNode(Op->getOpcode(), DL, MVT::i32, V);
3019 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, CT, SDNodeFlags::NonNeg);
3020}
3021
3023 unsigned Opcode, SelectionDAG &DAG) {
3024 assert(A.getValueType() == MVT::i64 && B.getValueType() == MVT::i64);
3025
3026 const auto *AmtConst = dyn_cast<ConstantSDNode>(ShiftAmount);
3027 if (!AmtConst)
3028 return SDValue();
3029 const auto Amt = AmtConst->getZExtValue() & 63;
3030
3031 SDValue UnpackA =
3032 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, A);
3033 SDValue UnpackB =
3034 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, B);
3035
3036 // Arch is Little endiain: 0 = low bits, 1 = high bits
3037 SDValue ALo = UnpackA.getValue(0);
3038 SDValue AHi = UnpackA.getValue(1);
3039 SDValue BLo = UnpackB.getValue(0);
3040 SDValue BHi = UnpackB.getValue(1);
3041
3042 // The bitfeild consists of { AHi : ALo : BHi : BLo }
3043 //
3044 // * FSHL, Amt < 32 - The window will contain { AHi : ALo : BHi }
3045 // * FSHL, Amt >= 32 - The window will contain { ALo : BHi : BLo }
3046 // * FSHR, Amt < 32 - The window will contain { ALo : BHi : BLo }
3047 // * FSHR, Amt >= 32 - The window will contain { AHi : ALo : BHi }
3048 //
3049 // Note that Amt = 0 and Amt = 32 are special cases where 32-bit funnel shifts
3050 // are not needed at all. Amt = 0 is a no-op producing either A or B depending
3051 // on the direction. Amt = 32 can be implemented by a packing and unpacking
3052 // move to select and arrange the 32bit values. For simplicity, these cases
3053 // are not handled here explicitly and instead we rely on DAGCombiner to
3054 // remove the no-op funnel shifts we insert.
3055 auto [High, Mid, Low] = ((Opcode == ISD::FSHL) == (Amt < 32))
3056 ? std::make_tuple(AHi, ALo, BHi)
3057 : std::make_tuple(ALo, BHi, BLo);
3058
3059 SDValue NewAmt = DAG.getConstant(Amt & 31, DL, MVT::i32);
3060 SDValue RHi = DAG.getNode(Opcode, DL, MVT::i32, {High, Mid, NewAmt});
3061 SDValue RLo = DAG.getNode(Opcode, DL, MVT::i32, {Mid, Low, NewAmt});
3062
3063 return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64, {RLo, RHi});
3064}
3065
3067 return expandFSH64(Op->getOperand(0), Op->getOperand(1), Op->getOperand(2),
3068 SDLoc(Op), Op->getOpcode(), DAG);
3069}
3070
3072 unsigned Opcode = Op->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR;
3073 return expandFSH64(Op->getOperand(0), Op->getOperand(0), Op->getOperand(1),
3074 SDLoc(Op), Opcode, DAG);
3075}
3076
3078 // Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)),
3079 // i.e. "poor man's fmod()". When y is infinite, x is returned. This matches
3080 // the semantics of LLVM's frem.
3081 SDLoc DL(Op);
3082 SDValue X = Op->getOperand(0);
3083 SDValue Y = Op->getOperand(1);
3084 EVT Ty = Op.getValueType();
3085 SDNodeFlags Flags = Op->getFlags();
3086
3087 SDValue Div = DAG.getNode(ISD::FDIV, DL, Ty, X, Y, Flags);
3088 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, Ty, Div, Flags);
3089 SDValue Mul = DAG.getNode(ISD::FMUL, DL, Ty, Trunc, Y,
3091 SDValue Sub = DAG.getNode(ISD::FSUB, DL, Ty, X, Mul,
3093
3094 if (Flags.hasNoInfs())
3095 return Sub;
3096
3097 // If Y is infinite, return X
3098 SDValue AbsY = DAG.getNode(ISD::FABS, DL, Ty, Y);
3099 SDValue Inf =
3100 DAG.getConstantFP(APFloat::getInf(Ty.getFltSemantics()), DL, Ty);
3101 SDValue IsInf = DAG.getSetCC(DL, MVT::i1, AbsY, Inf, ISD::SETEQ);
3102 return DAG.getSelect(DL, Ty, IsInf, X, Sub);
3103}
3104
3106 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
3107
3108 SDValue Cond = Op->getOperand(0);
3109 SDValue TrueVal = Op->getOperand(1);
3110 SDValue FalseVal = Op->getOperand(2);
3111 SDLoc DL(Op);
3112
3113 // If both operands are truncated, we push the select through the truncates.
3114 if (TrueVal.getOpcode() == ISD::TRUNCATE &&
3115 FalseVal.getOpcode() == ISD::TRUNCATE) {
3116 TrueVal = TrueVal.getOperand(0);
3117 FalseVal = FalseVal.getOperand(0);
3118
3119 EVT VT = TrueVal.getSimpleValueType().bitsLE(FalseVal.getSimpleValueType())
3120 ? TrueVal.getValueType()
3121 : FalseVal.getValueType();
3122 TrueVal = DAG.getAnyExtOrTrunc(TrueVal, DL, VT);
3123 FalseVal = DAG.getAnyExtOrTrunc(FalseVal, DL, VT);
3124 SDValue Select = DAG.getSelect(DL, VT, Cond, TrueVal, FalseVal);
3125 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
3126 }
3127
3128 // Otherwise, expand the select into a series of logical operations. These
3129 // often can be folded into other operations either by us or ptxas.
3130 TrueVal = DAG.getFreeze(TrueVal);
3131 FalseVal = DAG.getFreeze(FalseVal);
3132 SDValue And1 = DAG.getNode(ISD::AND, DL, MVT::i1, Cond, TrueVal);
3133 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
3134 SDValue And2 = DAG.getNode(ISD::AND, DL, MVT::i1, NotCond, FalseVal);
3135 SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i1, And1, And2);
3136 return Or;
3137}
3138
3140 SDNode *N = Op.getNode();
3141
3142 SDValue Chain = N->getOperand(0);
3143 SDValue Val = N->getOperand(1);
3144 SDValue BasePtr = N->getOperand(2);
3145 SDValue Offset = N->getOperand(3);
3146 SDValue Mask = N->getOperand(4);
3147
3148 SDLoc DL(N);
3149 EVT ValVT = Val.getValueType();
3150 MemSDNode *MemSD = cast<MemSDNode>(N);
3151 assert(ValVT.isVector() && "Masked vector store must have vector type");
3152 assert(MemSD->getAlign() >= DAG.getEVTAlign(ValVT) &&
3153 "Unexpected alignment for masked store");
3154
3155 unsigned Opcode = 0;
3156 switch (ValVT.getSimpleVT().SimpleTy) {
3157 default:
3158 llvm_unreachable("Unexpected masked vector store type");
3159 case MVT::v4i64:
3160 case MVT::v4f64: {
3161 Opcode = NVPTXISD::StoreV4;
3162 break;
3163 }
3164 case MVT::v8i32:
3165 case MVT::v8f32: {
3166 Opcode = NVPTXISD::StoreV8;
3167 break;
3168 }
3169 }
3170
3172
3173 // Construct the new SDNode. First operand is the chain.
3174 Ops.push_back(Chain);
3175
3176 // The next N operands are the values to store. Encode the mask into the
3177 // values using the sentinel register 0 to represent a masked-off element.
3178 assert(Mask.getValueType().isVector() &&
3179 Mask.getValueType().getVectorElementType() == MVT::i1 &&
3180 "Mask must be a vector of i1");
3181 assert(Mask.getOpcode() == ISD::BUILD_VECTOR &&
3182 "Mask expected to be a BUILD_VECTOR");
3183 assert(Mask.getValueType().getVectorNumElements() ==
3184 ValVT.getVectorNumElements() &&
3185 "Mask size must be the same as the vector size");
3186 for (auto [I, Op] : enumerate(Mask->ops())) {
3187 // Mask elements must be constants.
3188 if (Op.getNode()->getAsZExtVal() == 0) {
3189 // Append a sentinel register 0 to the Ops vector to represent a masked
3190 // off element, this will be handled in tablegen
3192 ValVT.getVectorElementType()));
3193 } else {
3194 // Extract the element from the vector to store
3195 SDValue ExtVal =
3197 Val, DAG.getIntPtrConstant(I, DL));
3198 Ops.push_back(ExtVal);
3199 }
3200 }
3201
3202 // Next, the pointer operand.
3203 Ops.push_back(BasePtr);
3204
3205 // Finally, the offset operand. We expect this to always be undef, and it will
3206 // be ignored in lowering, but to mirror the handling of the other vector
3207 // store instructions we include it in the new SDNode.
3208 assert(Offset.getOpcode() == ISD::UNDEF &&
3209 "Offset operand expected to be undef");
3210 Ops.push_back(Offset);
3211
3212 SDValue NewSt =
3213 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
3214 MemSD->getMemoryVT(), MemSD->getMemOperand());
3215
3216 return NewSt;
3217}
3218
3219SDValue
3221 switch (Op.getOpcode()) {
3222 case ISD::RETURNADDR:
3223 return SDValue();
3224 case ISD::FRAMEADDR:
3225 return SDValue();
3226 case ISD::ADDRSPACECAST:
3227 return LowerADDRSPACECAST(Op, DAG);
3229 return lowerIntrinsicWChain(Op, DAG);
3231 return lowerIntrinsicWOChain(Op, DAG);
3233 return lowerIntrinsicVoid(Op, DAG);
3234 case ISD::BUILD_VECTOR:
3235 return LowerBUILD_VECTOR(Op, DAG);
3236 case ISD::BITCAST:
3237 return LowerBITCAST(Op, DAG);
3239 return Op;
3241 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3243 return LowerINSERT_VECTOR_ELT(Op, DAG);
3245 return LowerVECTOR_SHUFFLE(Op, DAG);
3247 return LowerCONCAT_VECTORS(Op, DAG);
3252 return LowerVECREDUCE(Op, DAG);
3253 case ISD::STORE:
3254 return LowerSTORE(Op, DAG);
3255 case ISD::MSTORE: {
3256 assert(STI.has256BitVectorLoadStore(
3257 cast<MemSDNode>(Op.getNode())->getAddressSpace()) &&
3258 "Masked store vector not supported on subtarget.");
3259 return lowerMSTORE(Op, DAG);
3260 }
3261 case ISD::LOAD:
3262 return LowerLOAD(Op, DAG);
3263 case ISD::MLOAD:
3264 return LowerMLOAD(Op, DAG);
3265 case ISD::SHL_PARTS:
3266 return LowerShiftLeftParts(Op, DAG);
3267 case ISD::SRA_PARTS:
3268 case ISD::SRL_PARTS:
3269 return LowerShiftRightParts(Op, DAG);
3270 case ISD::SELECT:
3271 return lowerSELECT(Op, DAG);
3272 case ISD::FROUND:
3273 return LowerFROUND(Op, DAG);
3274 case ISD::FCOPYSIGN:
3275 return LowerFCOPYSIGN(Op, DAG);
3276 case ISD::SINT_TO_FP:
3277 case ISD::UINT_TO_FP:
3278 return LowerINT_TO_FP(Op, DAG);
3279 case ISD::FP_TO_SINT:
3280 case ISD::FP_TO_UINT:
3281 return LowerFP_TO_INT(Op, DAG);
3282 case ISD::FP_ROUND:
3283 return LowerFP_ROUND(Op, DAG);
3284 case ISD::FP_EXTEND:
3285 return LowerFP_EXTEND(Op, DAG);
3286 case ISD::VAARG:
3287 return LowerVAARG(Op, DAG);
3288 case ISD::VASTART:
3289 return LowerVASTART(Op, DAG);
3290 case ISD::FSHL:
3291 case ISD::FSHR:
3292 return lowerFSH(Op, DAG);
3293 case ISD::ROTL:
3294 case ISD::ROTR:
3295 return lowerROT(Op, DAG);
3296 case ISD::ABS:
3297 case ISD::SMIN:
3298 case ISD::SMAX:
3299 case ISD::UMIN:
3300 case ISD::UMAX:
3301 case ISD::ADD:
3302 case ISD::SUB:
3303 case ISD::MUL:
3304 case ISD::SHL:
3305 case ISD::SREM:
3306 case ISD::UREM:
3307 return LowerVectorArith(Op, DAG);
3309 return LowerDYNAMIC_STACKALLOC(Op, DAG);
3310 case ISD::STACKRESTORE:
3311 return LowerSTACKRESTORE(Op, DAG);
3312 case ISD::STACKSAVE:
3313 return LowerSTACKSAVE(Op, DAG);
3314 case ISD::CopyToReg:
3315 return LowerCopyToReg_128(Op, DAG);
3316 case ISD::FADD:
3317 case ISD::FSUB:
3318 case ISD::FMUL:
3319 // Used only for bf16 on SM80, where we select fma for non-ftz operation
3320 return PromoteBinOpIfF32FTZ(Op, DAG);
3321 case ISD::CTPOP:
3322 case ISD::CTLZ:
3323 return lowerCTLZCTPOP(Op, DAG);
3324 case ISD::FREM:
3325 return lowerFREM(Op, DAG);
3326 case ISD::BSWAP:
3327 return lowerBSWAP(Op, DAG);
3328 default:
3329 llvm_unreachable("Custom lowering not defined for operation");
3330 }
3331}
3332
3333// This will prevent AsmPrinter from trying to print the jump tables itself.
3337
3338SDValue NVPTXTargetLowering::LowerADDRSPACECAST(SDValue Op,
3339 SelectionDAG &DAG) const {
3341 unsigned SrcAS = N->getSrcAddressSpace();
3342 unsigned DestAS = N->getDestAddressSpace();
3343 if (SrcAS != llvm::ADDRESS_SPACE_GENERIC &&
3344 DestAS != llvm::ADDRESS_SPACE_GENERIC) {
3345 // Shared and SharedCluster can be converted to each other through generic
3346 // space
3347 if ((SrcAS == llvm::ADDRESS_SPACE_SHARED &&
3350 DestAS == llvm::ADDRESS_SPACE_SHARED)) {
3351 SDLoc DL(Op.getNode());
3352 const MVT GenerictVT =
3354 SDValue GenericConversion = DAG.getAddrSpaceCast(
3355 DL, GenerictVT, Op.getOperand(0), SrcAS, ADDRESS_SPACE_GENERIC);
3356 SDValue SharedClusterConversion =
3357 DAG.getAddrSpaceCast(DL, Op.getValueType(), GenericConversion,
3358 ADDRESS_SPACE_GENERIC, DestAS);
3359 return SharedClusterConversion;
3360 }
3361
3362 return DAG.getUNDEF(Op.getValueType());
3363 }
3364
3365 return Op;
3366}
3367
3368// This function is almost a copy of SelectionDAG::expandVAArg().
3369// The only diff is that this one produces loads from local address space.
3370SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3371 const TargetLowering *TLI = STI.getTargetLowering();
3372 SDLoc DL(Op);
3373
3374 SDNode *Node = Op.getNode();
3375 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3376 EVT VT = Node->getValueType(0);
3377 auto *Ty = VT.getTypeForEVT(*DAG.getContext());
3378 SDValue Tmp1 = Node->getOperand(0);
3379 SDValue Tmp2 = Node->getOperand(1);
3380 const MaybeAlign MA(Node->getConstantOperandVal(3));
3381
3382 SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL,
3383 Tmp1, Tmp2, MachinePointerInfo(V));
3384 SDValue VAList = VAListLoad;
3385
3386 if (MA && *MA > TLI->getMinStackArgumentAlignment()) {
3387 VAList = DAG.getNode(
3388 ISD::ADD, DL, VAList.getValueType(), VAList,
3389 DAG.getConstant(MA->value() - 1, DL, VAList.getValueType()));
3390
3391 VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
3392 DAG.getSignedConstant(-(int64_t)MA->value(), DL,
3393 VAList.getValueType()));
3394 }
3395
3396 // Increment the pointer, VAList, to the next vaarg
3397 Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
3399 DL, VAList.getValueType()));
3400
3401 // Store the incremented VAList to the legalized pointer
3402 Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2,
3403 MachinePointerInfo(V));
3404
3405 const Value *SrcV = Constant::getNullValue(
3407
3408 // Load the actual argument out of the pointer VAList
3409 return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV));
3410}
3411
3412SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3413 const TargetLowering *TLI = STI.getTargetLowering();
3414 SDLoc DL(Op);
3415 EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout());
3416
3417 // Store the address of unsized array <function>_vararg[] in the ap object.
3418 SDValue VAReg = getParamSymbol(DAG, /* vararg */ -1, PtrVT);
3419
3420 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3421 return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1),
3422 MachinePointerInfo(SV));
3423}
3424
3425static std::pair<MemSDNode *, uint32_t>
3427 const NVPTXSubtarget &STI) {
3428 SDValue Chain = N->getOperand(0);
3429 SDValue BasePtr = N->getOperand(1);
3430 SDValue Mask = N->getOperand(3);
3431 [[maybe_unused]] SDValue Passthru = N->getOperand(4);
3432
3433 SDLoc DL(N);
3434 EVT ResVT = N->getValueType(0);
3435 assert(ResVT.isVector() && "Masked vector load must have vector type");
3436 // While we only expect poison passthru vectors as an input to the backend,
3437 // when the legalization framework splits a poison vector in half, it creates
3438 // two undef vectors, so we can technically expect those too.
3439 assert((Passthru.getOpcode() == ISD::POISON ||
3440 Passthru.getOpcode() == ISD::UNDEF) &&
3441 "Passthru operand expected to be poison or undef");
3442
3443 // Extract the mask and convert it to a uint32_t representing the used bytes
3444 // of the entire vector load
3445 uint32_t UsedBytesMask = 0;
3446 uint32_t ElementSizeInBits = ResVT.getVectorElementType().getSizeInBits();
3447 assert(ElementSizeInBits % 8 == 0 && "Unexpected element size");
3448 uint32_t ElementSizeInBytes = ElementSizeInBits / 8;
3449 uint32_t ElementMask = (1u << ElementSizeInBytes) - 1u;
3450
3451 for (SDValue Op : reverse(Mask->ops())) {
3452 // We technically only want to do this shift for every
3453 // iteration *but* the first, but in the first iteration UsedBytesMask is 0,
3454 // so this shift is a no-op.
3455 UsedBytesMask <<= ElementSizeInBytes;
3456
3457 // Mask elements must be constants.
3458 if (Op->getAsZExtVal() != 0)
3459 UsedBytesMask |= ElementMask;
3460 }
3461
3462 assert(UsedBytesMask != 0 && UsedBytesMask != UINT32_MAX &&
3463 "Unexpected masked load with elements masked all on or all off");
3464
3465 // Create a new load sd node to be handled normally by ReplaceLoadVector.
3466 MemSDNode *NewLD = cast<MemSDNode>(
3467 DAG.getLoad(ResVT, DL, Chain, BasePtr, N->getMemOperand()).getNode());
3468
3469 // If our subtarget does not support the used bytes mask pragma, "drop" the
3470 // mask by setting it to UINT32_MAX
3471 if (!STI.hasUsedBytesMaskPragma())
3472 UsedBytesMask = UINT32_MAX;
3473
3474 return {NewLD, UsedBytesMask};
3475}
3476
3477/// replaceLoadVector - Convert vector loads into multi-output scalar loads.
3478static std::optional<std::pair<SDValue, SDValue>>
3481 const EVT ResVT = LD->getValueType(0);
3482 const EVT MemVT = LD->getMemoryVT();
3483
3484 // If we're doing sign/zero extension as part of the load, avoid lowering to
3485 // a LoadV node. TODO: consider relaxing this restriction.
3486 if (ResVT != MemVT)
3487 return std::nullopt;
3488
3489 const auto NumEltsAndEltVT =
3490 getVectorLoweringShape(ResVT, STI, LD->getAddressSpace());
3491 if (!NumEltsAndEltVT)
3492 return std::nullopt;
3493 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3494
3495 Align Alignment = LD->getAlign();
3496 const auto &TD = DAG.getDataLayout();
3497 Align PrefAlign = TD.getPrefTypeAlign(MemVT.getTypeForEVT(*DAG.getContext()));
3498 if (Alignment < PrefAlign) {
3499 // This load is not sufficiently aligned, so bail out and let this vector
3500 // load be scalarized. Note that we may still be able to emit smaller
3501 // vector loads. For example, if we are loading a <4 x float> with an
3502 // alignment of 8, this check will fail but the legalizer will try again
3503 // with 2 x <2 x float>, which will succeed with an alignment of 8.
3504 return std::nullopt;
3505 }
3506
3507 // If we have a masked load, convert it to a normal load now
3508 std::optional<uint32_t> UsedBytesMask = std::nullopt;
3509 if (LD->getOpcode() == ISD::MLOAD)
3510 std::tie(LD, UsedBytesMask) =
3512
3513 // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
3514 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
3515 // loaded type to i16 and propagate the "real" type as the memory type.
3516 const MVT LoadEltVT = (EltVT.getSizeInBits() < 16) ? MVT::i16 : EltVT;
3517
3518 unsigned Opcode;
3519 switch (NumElts) {
3520 default:
3521 return std::nullopt;
3522 case 2:
3523 Opcode = NVPTXISD::LoadV2;
3524 break;
3525 case 4:
3526 Opcode = NVPTXISD::LoadV4;
3527 break;
3528 case 8:
3529 Opcode = NVPTXISD::LoadV8;
3530 break;
3531 }
3532 auto ListVTs = SmallVector<EVT, 9>(NumElts, LoadEltVT);
3533 ListVTs.push_back(MVT::Other);
3534 SDVTList LdResVTs = DAG.getVTList(ListVTs);
3535
3536 SDLoc DL(LD);
3537
3538 // Copy regular operands
3539 SmallVector<SDValue, 8> OtherOps(LD->ops());
3540
3541 OtherOps.push_back(
3542 DAG.getConstant(UsedBytesMask.value_or(UINT32_MAX), DL, MVT::i32));
3543
3544 // The select routine does not have access to the LoadSDNode instance, so
3545 // pass along the extension information
3546 OtherOps.push_back(
3547 DAG.getIntPtrConstant(cast<LoadSDNode>(LD)->getExtensionType(), DL));
3548
3549 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, MemVT,
3550 LD->getMemOperand());
3551
3552 SmallVector<SDValue> ScalarRes;
3553 if (EltVT.isVector()) {
3555 assert(NumElts * EltVT.getVectorNumElements() ==
3556 ResVT.getVectorNumElements());
3557 // Generate EXTRACT_VECTOR_ELTs to split v2[i,f,bf]16/v4i8 subvectors back
3558 // into individual elements.
3559 for (const unsigned I : llvm::seq(NumElts)) {
3560 SDValue SubVector = NewLD.getValue(I);
3561 DAG.ExtractVectorElements(SubVector, ScalarRes);
3562 }
3563 } else {
3564 for (const unsigned I : llvm::seq(NumElts)) {
3565 SDValue Res = NewLD.getValue(I);
3566 if (LoadEltVT != EltVT)
3567 Res = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
3568 ScalarRes.push_back(Res);
3569 }
3570 }
3571
3572 SDValue LoadChain = NewLD.getValue(NumElts);
3573
3574 const MVT BuildVecVT =
3575 MVT::getVectorVT(EltVT.getScalarType(), ScalarRes.size());
3576 SDValue BuildVec = DAG.getBuildVector(BuildVecVT, DL, ScalarRes);
3577 SDValue LoadValue = DAG.getBitcast(ResVT, BuildVec);
3578
3579 return {{LoadValue, LoadChain}};
3580}
3581
3584 const NVPTXSubtarget &STI) {
3585 if (auto Res = replaceLoadVector(N, DAG, STI))
3586 Results.append({Res->first, Res->second});
3587}
3588
3590 const NVPTXSubtarget &STI) {
3591 if (auto Res = replaceLoadVector(N, DAG, STI))
3592 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(N));
3593 return SDValue();
3594}
3595
3596// v = ld i1* addr
3597// =>
3598// v1 = ld i8* addr (-> i16)
3599// v = trunc i16 to i1
3601 SDLoc dl(LD);
3602 assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
3603 assert(LD->getValueType(0) == MVT::i1 && "Custom lowering for i1 load only");
3604 SDValue newLD = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i16, LD->getChain(),
3605 LD->getBasePtr(), LD->getPointerInfo(),
3606 MVT::i8, LD->getAlign(),
3607 LD->getMemOperand()->getFlags());
3608 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
3609 // The legalizer (the caller) is expecting two values from the legalized
3610 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
3611 // in LegalizeDAG.cpp which also uses MergeValues.
3612 return DAG.getMergeValues({result, LD->getChain()}, dl);
3613}
3614
3615SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
3616 LoadSDNode *LD = cast<LoadSDNode>(Op);
3617
3618 if (Op.getValueType() == MVT::i1)
3619 return lowerLOADi1(LD, DAG);
3620
3621 // To improve CodeGen we'll legalize any-extend loads to zext loads. This is
3622 // how they'll be lowered in ISel anyway, and by doing this a little earlier
3623 // we allow for more DAG combine opportunities.
3624 if (LD->getExtensionType() == ISD::EXTLOAD) {
3625 assert(LD->getValueType(0).isInteger() && LD->getMemoryVT().isInteger() &&
3626 "Unexpected fpext-load");
3627 return DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Op), Op.getValueType(),
3628 LD->getChain(), LD->getBasePtr(), LD->getMemoryVT(),
3629 LD->getMemOperand());
3630 }
3631
3632 llvm_unreachable("Unexpected custom lowering for load");
3633}
3634
3635SDValue NVPTXTargetLowering::LowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
3636 // v2f16/v2bf16/v2i16/v4i8 are legal, so we can't rely on legalizer to handle
3637 // masked loads of these types and have to handle them here.
3638 // v2f32 also needs to be handled here if the subtarget has f32x2
3639 // instructions, making it legal.
3640 //
3641 // Note: misaligned masked loads should never reach this point
3642 // because the override of isLegalMaskedLoad in NVPTXTargetTransformInfo.cpp
3643 // will validate alignment. Therefore, we do not need to special case handle
3644 // them here.
3645 EVT VT = Op.getValueType();
3646 if (NVPTX::isPackedVectorTy(VT)) {
3648 cast<MemSDNode>(Op.getNode()), DAG, STI);
3649 MemSDNode *LD = std::get<0>(Result);
3650 uint32_t UsedBytesMask = std::get<1>(Result);
3651
3652 SDLoc DL(LD);
3653
3654 // Copy regular operands
3655 SmallVector<SDValue, 8> OtherOps(LD->ops());
3656
3657 OtherOps.push_back(DAG.getConstant(UsedBytesMask, DL, MVT::i32));
3658
3659 // We currently are not lowering extending loads, but pass the extension
3660 // type anyway as later handling expects it.
3661 OtherOps.push_back(
3662 DAG.getIntPtrConstant(cast<LoadSDNode>(LD)->getExtensionType(), DL));
3663 SDValue NewLD =
3664 DAG.getMemIntrinsicNode(NVPTXISD::MLoad, DL, LD->getVTList(), OtherOps,
3665 LD->getMemoryVT(), LD->getMemOperand());
3666 return NewLD;
3667 }
3668 return SDValue();
3669}
3670
3672 const NVPTXSubtarget &STI) {
3673 MemSDNode *N = cast<MemSDNode>(Op.getNode());
3674 SDValue Val = N->getOperand(1);
3675 SDLoc DL(N);
3676 const EVT ValVT = Val.getValueType();
3677 const EVT MemVT = N->getMemoryVT();
3678
3679 // If we're truncating as part of the store, avoid lowering to a StoreV node.
3680 // TODO: consider relaxing this restriction.
3681 if (ValVT != MemVT)
3682 return SDValue();
3683
3684 const auto NumEltsAndEltVT =
3685 getVectorLoweringShape(ValVT, STI, N->getAddressSpace());
3686 if (!NumEltsAndEltVT)
3687 return SDValue();
3688 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3689
3690 const DataLayout &TD = DAG.getDataLayout();
3691
3692 Align Alignment = N->getAlign();
3693 Align PrefAlign = TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
3694 if (Alignment < PrefAlign) {
3695 // This store is not sufficiently aligned, so bail out and let this vector
3696 // store be scalarized. Note that we may still be able to emit smaller
3697 // vector stores. For example, if we are storing a <4 x float> with an
3698 // alignment of 8, this check will fail but the legalizer will try again
3699 // with 2 x <2 x float>, which will succeed with an alignment of 8.
3700 return SDValue();
3701 }
3702
3703 unsigned Opcode;
3704 switch (NumElts) {
3705 default:
3706 return SDValue();
3707 case 2:
3708 Opcode = NVPTXISD::StoreV2;
3709 break;
3710 case 4:
3711 Opcode = NVPTXISD::StoreV4;
3712 break;
3713 case 8:
3714 Opcode = NVPTXISD::StoreV8;
3715 break;
3716 }
3717
3719
3720 // First is the chain
3721 Ops.push_back(N->getOperand(0));
3722
3723 // Then the split values
3724 if (EltVT.isVector()) {
3726 assert(NumElts * EltVT.getVectorNumElements() ==
3727 ValVT.getVectorNumElements());
3728 // Combine individual elements into v2[i,f,bf]16/v4i8 subvectors to be
3729 // stored as b32s
3730 const unsigned NumEltsPerSubVector = EltVT.getVectorNumElements();
3731 for (const unsigned I : llvm::seq(NumElts)) {
3732 SmallVector<SDValue, 4> SubVectorElts;
3733 DAG.ExtractVectorElements(Val, SubVectorElts, I * NumEltsPerSubVector,
3734 NumEltsPerSubVector);
3735 Ops.push_back(DAG.getBuildVector(EltVT, DL, SubVectorElts));
3736 }
3737 } else {
3738 SDValue V = DAG.getBitcast(MVT::getVectorVT(EltVT, NumElts), Val);
3739 for (const unsigned I : llvm::seq(NumElts)) {
3740 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, V,
3741 DAG.getIntPtrConstant(I, DL));
3742
3743 // Since StoreV2 is a target node, we cannot rely on DAG type
3744 // legalization. Therefore, we must ensure the type is legal. For i1 and
3745 // i8, we set the stored type to i16 and propagate the "real" type as the
3746 // memory type.
3747 if (EltVT.getSizeInBits() < 16)
3748 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
3749 Ops.push_back(ExtVal);
3750 }
3751 }
3752
3753 // Then any remaining arguments
3754 Ops.append(N->op_begin() + 2, N->op_end());
3755
3756 SDValue NewSt =
3757 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
3758 N->getMemoryVT(), N->getMemOperand());
3759
3760 // return DCI.CombineTo(N, NewSt, true);
3761 return NewSt;
3762}
3763
3764SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
3765 StoreSDNode *Store = cast<StoreSDNode>(Op);
3766 EVT VT = Store->getMemoryVT();
3767
3768 if (VT == MVT::i1)
3769 return LowerSTOREi1(Op, DAG);
3770
3771 // Lower store of any other vector type, including v2f32 as we want to break
3772 // it apart since this is not a widely-supported type.
3773 return lowerSTOREVector(Op, DAG, STI);
3774}
3775
3776// st i1 v, addr
3777// =>
3778// v1 = zxt v to i16
3779// st.u8 i16, addr
3780SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
3781 SDNode *Node = Op.getNode();
3782 SDLoc dl(Node);
3783 StoreSDNode *ST = cast<StoreSDNode>(Node);
3784 SDValue Tmp1 = ST->getChain();
3785 SDValue Tmp2 = ST->getBasePtr();
3786 SDValue Tmp3 = ST->getValue();
3787 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
3788 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
3789 SDValue Result =
3790 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
3791 ST->getAlign(), ST->getMemOperand()->getFlags());
3792 return Result;
3793}
3794
3795SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op,
3796 SelectionDAG &DAG) const {
3797 // Change the CopyToReg to take in two 64-bit operands instead of a 128-bit
3798 // operand so that it can pass the legalization.
3799
3800 assert(Op.getOperand(1).getValueType() == MVT::i128 &&
3801 "Custom lowering for 128-bit CopyToReg only");
3802
3803 SDNode *Node = Op.getNode();
3804 SDLoc DL(Node);
3805
3806 SDValue Cast = DAG.getBitcast(MVT::v2i64, Op->getOperand(2));
3807 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
3808 DAG.getIntPtrConstant(0, DL));
3809 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
3810 DAG.getIntPtrConstant(1, DL));
3811
3813 SmallVector<EVT, 3> ResultsType(Node->values());
3814
3815 NewOps[0] = Op->getOperand(0); // Chain
3816 NewOps[1] = Op->getOperand(1); // Dst Reg
3817 NewOps[2] = Lo; // Lower 64-bit
3818 NewOps[3] = Hi; // Higher 64-bit
3819 if (Op.getNumOperands() == 4)
3820 NewOps[4] = Op->getOperand(3); // Glue if exists
3821
3822 return DAG.getNode(ISD::CopyToReg, DL, ResultsType, NewOps);
3823}
3824
3825unsigned NVPTXTargetLowering::getNumRegisters(
3826 LLVMContext &Context, EVT VT,
3827 std::optional<MVT> RegisterVT = std::nullopt) const {
3828 if (VT == MVT::i128 && RegisterVT == MVT::i128)
3829 return 1;
3830 return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT);
3831}
3832
3833bool NVPTXTargetLowering::splitValueIntoRegisterParts(
3834 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
3835 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
3836 if (Val.getValueType() == MVT::i128 && NumParts == 1) {
3837 Parts[0] = Val;
3838 return true;
3839 }
3840 return false;
3841}
3842
3843// This creates target external symbol for a function parameter.
3844// Name of the symbol is composed from its index and the function name.
3845// Negative index corresponds to special parameter (unsized array) used for
3846// passing variable arguments.
3847SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int I,
3848 EVT T) const {
3849 StringRef SavedStr = nvTM->getStrPool().save(
3851 return DAG.getExternalSymbol(SavedStr.data(), T);
3852}
3853
3854SDValue NVPTXTargetLowering::getCallParamSymbol(SelectionDAG &DAG, int I,
3855 EVT T) const {
3856 const StringRef SavedStr = nvTM->getStrPool().save("param" + Twine(I));
3857 return DAG.getExternalSymbol(SavedStr.data(), T);
3858}
3859
3861 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3862 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3863 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3864 const DataLayout &DL = DAG.getDataLayout();
3865 LLVMContext &Ctx = *DAG.getContext();
3866 auto PtrVT = getPointerTy(DAG.getDataLayout());
3867
3868 const Function &F = DAG.getMachineFunction().getFunction();
3869
3870 SDValue Root = DAG.getRoot();
3871 SmallVector<SDValue, 16> OutChains;
3872
3873 // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
3874 // Ins.size() will be larger
3875 // * if there is an aggregate argument with multiple fields (each field
3876 // showing up separately in Ins)
3877 // * if there is a vector argument with more than typical vector-length
3878 // elements (generally if more than 4) where each vector element is
3879 // individually present in Ins.
3880 // So a different index should be used for indexing into Ins.
3881 // See similar issue in LowerCall.
3882
3883 auto AllIns = ArrayRef(Ins);
3884 for (const auto &Arg : F.args()) {
3885 const auto ArgIns = AllIns.take_while(
3886 [&](auto I) { return I.OrigArgIndex == Arg.getArgNo(); });
3887 AllIns = AllIns.drop_front(ArgIns.size());
3888
3889 Type *Ty = Arg.getType();
3890
3891 if (ArgIns.empty())
3892 report_fatal_error("Empty parameter types are not supported");
3893
3894 if (Arg.use_empty()) {
3895 // argument is dead
3896 for (const auto &In : ArgIns) {
3897 assert(!In.Used && "Arg.use_empty() is true but Arg is used?");
3898 InVals.push_back(DAG.getUNDEF(In.VT));
3899 }
3900 continue;
3901 }
3902
3903 SDValue ArgSymbol = getParamSymbol(DAG, Arg.getArgNo(), PtrVT);
3904
3905 // In the following cases, assign a node order of "i+1"
3906 // to newly created nodes. The SDNodes for params have to
3907 // appear in the same order as their order of appearance
3908 // in the original function. "i+1" holds that order.
3909 if (Arg.hasByValAttr()) {
3910 // Param has ByVal attribute
3911 // Return MoveParam(param symbol).
3912 // Ideally, the param symbol can be returned directly,
3913 // but when SDNode builder decides to use it in a CopyToReg(),
3914 // machine instruction fails because TargetExternalSymbol
3915 // (not lowered) is target dependent, and CopyToReg assumes
3916 // the source is lowered.
3917 assert(ArgIns.size() == 1 && "ByVal argument must be a pointer");
3918 const auto &ByvalIn = ArgIns[0];
3919 assert(getValueType(DL, Ty) == ByvalIn.VT &&
3920 "Ins type did not match function type");
3921 assert(ByvalIn.VT == PtrVT && "ByVal argument must be a pointer");
3922
3923 SDValue P;
3924 if (isKernelFunction(F)) {
3925 P = ArgSymbol;
3926 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3927 } else {
3928 P = DAG.getNode(NVPTXISD::MoveParam, dl, ByvalIn.VT, ArgSymbol);
3929 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3930 P = DAG.getAddrSpaceCast(dl, ByvalIn.VT, P, ADDRESS_SPACE_LOCAL,
3932 }
3933 InVals.push_back(P);
3934 } else {
3937 ComputePTXValueVTs(*this, DL, Ctx, CallConv, Ty, VTs, Offsets);
3938 assert(VTs.size() == ArgIns.size() && "Size mismatch");
3939 assert(VTs.size() == Offsets.size() && "Size mismatch");
3940
3941 const Align ArgAlign = getFunctionArgumentAlignment(
3942 &F, Ty, Arg.getArgNo() + AttributeList::FirstArgIndex, DL);
3943
3944 unsigned I = 0;
3945 const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
3946 for (const unsigned NumElts : VI) {
3947 // i1 is loaded/stored as i8
3948 const EVT LoadVT = VTs[I] == MVT::i1 ? MVT::i8 : VTs[I];
3949 const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx);
3950
3951 SDValue VecAddr = DAG.getObjectPtrOffset(
3952 dl, ArgSymbol, TypeSize::getFixed(Offsets[I]));
3953
3954 const Align PartAlign = commonAlignment(ArgAlign, Offsets[I]);
3955 SDValue P =
3956 DAG.getLoad(VecVT, dl, Root, VecAddr,
3960 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3961 for (const unsigned J : llvm::seq(NumElts)) {
3962 SDValue Elt = getExtractVectorizedValue(P, J, LoadVT, dl, DAG);
3963
3964 Elt = correctParamType(Elt, ArgIns[I + J].VT, ArgIns[I + J].Flags,
3965 DAG, dl);
3966 InVals.push_back(Elt);
3967 }
3968 I += NumElts;
3969 }
3970 }
3971 }
3972
3973 if (!OutChains.empty())
3974 DAG.setRoot(DAG.getTokenFactor(dl, OutChains));
3975
3976 return Chain;
3977}
3978
3979SDValue
3981 bool isVarArg,
3983 const SmallVectorImpl<SDValue> &OutVals,
3984 const SDLoc &dl, SelectionDAG &DAG) const {
3985 const Function &F = DAG.getMachineFunction().getFunction();
3986 Type *RetTy = F.getReturnType();
3987
3988 if (RetTy->isVoidTy()) {
3989 assert(OutVals.empty() && Outs.empty() && "Return value expected for void");
3990 return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
3991 }
3992
3993 const DataLayout &DL = DAG.getDataLayout();
3994 LLVMContext &Ctx = *DAG.getContext();
3995
3996 const SDValue RetSymbol = DAG.getExternalSymbol("func_retval0", MVT::i32);
3997 const auto RetAlign = getFunctionParamOptimizedAlign(&F, RetTy, DL);
3998
3999 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
4000 // 32-bits are sign extended or zero extended, depending on whether
4001 // they are signed or unsigned types.
4002 const bool ExtendIntegerRetVal =
4003 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
4004
4007 ComputePTXValueVTs(*this, DL, Ctx, CallConv, RetTy, VTs, Offsets);
4008 assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
4009
4010 const auto GetRetVal = [&](unsigned I) -> SDValue {
4011 SDValue RetVal = OutVals[I];
4013 RetVal.getValueType() &&
4014 "OutVal type should always be legal");
4015
4016 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
4017 const EVT StoreVT =
4018 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
4019 return correctParamType(RetVal, StoreVT, Outs[I].Flags, DAG, dl);
4020 };
4021
4022 unsigned I = 0;
4023 const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
4024 for (const unsigned NumElts : VI) {
4025 const MaybeAlign CurrentAlign = ExtendIntegerRetVal
4026 ? MaybeAlign(std::nullopt)
4027 : commonAlignment(RetAlign, Offsets[I]);
4028
4030 NumElts, dl, DAG, [&](unsigned K) { return GetRetVal(I + K); });
4031
4032 SDValue Ptr =
4033 DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I]));
4034
4035 Chain = DAG.getStore(Chain, dl, Val, Ptr,
4037
4038 I += NumElts;
4039 }
4040
4041 return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
4042}
4043
4045 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
4046 SelectionDAG &DAG) const {
4047 if (Constraint.size() > 1)
4048 return;
4050}
4051
4052// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
4053// TgtMemIntrinsic
4054// because we need the information that is only available in the "Value" type
4055// of destination
4056// pointer. In particular, the address space information.
4058 const CallBase &I,
4059 MachineFunction &MF,
4060 unsigned Intrinsic) const {
4061 switch (Intrinsic) {
4062 default:
4063 return false;
4064 case Intrinsic::nvvm_match_all_sync_i32p:
4065 case Intrinsic::nvvm_match_all_sync_i64p:
4066 Info.opc = ISD::INTRINSIC_W_CHAIN;
4067 // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
4068 // in order to model data exchange with other threads, but perform no real
4069 // memory accesses.
4070 Info.memVT = MVT::i1;
4071
4072 // Our result depends on both our and other thread's arguments.
4074 return true;
4075 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
4076 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
4077 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
4078 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
4079 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
4080 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
4081 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
4082 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
4083 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
4084 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
4085 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
4086 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
4087 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
4088 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
4089 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
4090 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
4091 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
4092 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
4093 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
4094 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
4095 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
4096 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
4097 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
4098 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
4099 Info.opc = ISD::INTRINSIC_W_CHAIN;
4100 Info.memVT = MVT::v8f16;
4101 Info.ptrVal = I.getArgOperand(0);
4102 Info.offset = 0;
4103 Info.flags = MachineMemOperand::MOLoad;
4104 Info.align = Align(16);
4105 return true;
4106 }
4107 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
4108 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
4109 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
4110 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
4111 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
4112 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
4113 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
4114 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
4115 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
4116 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
4117 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
4118 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
4119 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
4120 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
4121 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
4122 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
4123 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
4124 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
4125 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
4126 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
4127 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
4128 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
4129 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
4130 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
4131 Info.opc = ISD::INTRINSIC_W_CHAIN;
4132 Info.memVT = MVT::v2i32;
4133 Info.ptrVal = I.getArgOperand(0);
4134 Info.offset = 0;
4135 Info.flags = MachineMemOperand::MOLoad;
4136 Info.align = Align(8);
4137 return true;
4138 }
4139
4140 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
4141 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
4142 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
4143 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
4144 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
4145 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
4146 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
4147 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
4148 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
4149 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
4150 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
4151 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
4152 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
4153 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
4154 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
4155 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
4156
4157 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
4158 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
4159 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
4160 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
4161 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
4162 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
4163 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
4164 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
4165 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
4166 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
4167 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
4168 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
4169 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
4170 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
4171 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
4172 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
4173 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
4174 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16:
4175 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8:
4176 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64:
4177 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32:
4178 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64:
4179 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: {
4180 Info.opc = ISD::INTRINSIC_W_CHAIN;
4181 Info.memVT = MVT::v4i32;
4182 Info.ptrVal = I.getArgOperand(0);
4183 Info.offset = 0;
4184 Info.flags = MachineMemOperand::MOLoad;
4185 Info.align = Align(16);
4186 return true;
4187 }
4188
4189 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
4190 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
4191 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
4192 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
4193 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
4194 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
4195 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
4196 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
4197
4198 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
4199 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
4200 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
4201 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
4202 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
4203 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
4204 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
4205 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
4206 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
4207 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
4208 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
4209 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
4210 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
4211 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
4212 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
4213 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
4214 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
4215 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
4216 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
4217 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
4218 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
4219 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16:
4220 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64:
4221 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: {
4222 Info.opc = ISD::INTRINSIC_W_CHAIN;
4223 Info.memVT = MVT::i32;
4224 Info.ptrVal = I.getArgOperand(0);
4225 Info.offset = 0;
4226 Info.flags = MachineMemOperand::MOLoad;
4227 Info.align = Align(4);
4228 return true;
4229 }
4230
4231 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
4232 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
4233 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
4234 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
4235 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
4236 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
4237 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
4238 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
4239 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
4240 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
4241 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
4242 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
4243 Info.opc = ISD::INTRINSIC_W_CHAIN;
4244 Info.memVT = MVT::v4f16;
4245 Info.ptrVal = I.getArgOperand(0);
4246 Info.offset = 0;
4247 Info.flags = MachineMemOperand::MOLoad;
4248 Info.align = Align(16);
4249 return true;
4250 }
4251
4252 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
4253 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
4254 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
4255 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
4256 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
4257 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
4258 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
4259 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
4260 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
4261 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
4262 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
4263 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
4264 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
4265 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
4266 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
4267 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
4268 Info.opc = ISD::INTRINSIC_W_CHAIN;
4269 Info.memVT = MVT::v8f32;
4270 Info.ptrVal = I.getArgOperand(0);
4271 Info.offset = 0;
4272 Info.flags = MachineMemOperand::MOLoad;
4273 Info.align = Align(16);
4274 return true;
4275 }
4276
4277 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
4278 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
4279 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
4280 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
4281
4282 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
4283 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
4284 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
4285 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
4286
4287 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
4288 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
4289 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
4290 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
4291 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
4292 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
4293 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
4294 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
4295 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
4296 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
4297 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
4298 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
4299 Info.opc = ISD::INTRINSIC_W_CHAIN;
4300 Info.memVT = MVT::v8i32;
4301 Info.ptrVal = I.getArgOperand(0);
4302 Info.offset = 0;
4303 Info.flags = MachineMemOperand::MOLoad;
4304 Info.align = Align(16);
4305 return true;
4306 }
4307
4308 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
4309 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
4310 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
4311 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
4312 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
4313 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
4314 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
4315 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
4316 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
4317 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16:
4318 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8:
4319 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64:
4320 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32:
4321 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64:
4322 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: {
4323 Info.opc = ISD::INTRINSIC_W_CHAIN;
4324 Info.memVT = MVT::v2i32;
4325 Info.ptrVal = I.getArgOperand(0);
4326 Info.offset = 0;
4327 Info.flags = MachineMemOperand::MOLoad;
4328 Info.align = Align(8);
4329 return true;
4330 }
4331
4332 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
4333 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
4334 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
4335 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
4336
4337 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
4338 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
4339 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
4340 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
4341 Info.opc = ISD::INTRINSIC_W_CHAIN;
4342 Info.memVT = MVT::f64;
4343 Info.ptrVal = I.getArgOperand(0);
4344 Info.offset = 0;
4345 Info.flags = MachineMemOperand::MOLoad;
4346 Info.align = Align(8);
4347 return true;
4348 }
4349
4350 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
4351 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
4352 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
4353 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
4354 Info.opc = ISD::INTRINSIC_W_CHAIN;
4355 Info.memVT = MVT::v2f64;
4356 Info.ptrVal = I.getArgOperand(0);
4357 Info.offset = 0;
4358 Info.flags = MachineMemOperand::MOLoad;
4359 Info.align = Align(16);
4360 return true;
4361 }
4362
4363 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
4364 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
4365 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
4366 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
4367 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
4368 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
4369 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
4370 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
4371 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
4372 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
4373 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
4374 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
4375 Info.opc = ISD::INTRINSIC_VOID;
4376 Info.memVT = MVT::v4f16;
4377 Info.ptrVal = I.getArgOperand(0);
4378 Info.offset = 0;
4379 Info.flags = MachineMemOperand::MOStore;
4380 Info.align = Align(16);
4381 return true;
4382 }
4383
4384 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
4385 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
4386 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
4387 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
4388 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
4389 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
4390 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
4391 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
4392 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
4393 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
4394 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
4395 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
4396 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
4397 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
4398 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
4399 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
4400 Info.opc = ISD::INTRINSIC_VOID;
4401 Info.memVT = MVT::v8f32;
4402 Info.ptrVal = I.getArgOperand(0);
4403 Info.offset = 0;
4404 Info.flags = MachineMemOperand::MOStore;
4405 Info.align = Align(16);
4406 return true;
4407 }
4408
4409 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
4410 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
4411 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
4412 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
4413 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
4414 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
4415 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
4416 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
4417 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
4418 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
4419 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
4420 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
4421 Info.opc = ISD::INTRINSIC_VOID;
4422 Info.memVT = MVT::v8i32;
4423 Info.ptrVal = I.getArgOperand(0);
4424 Info.offset = 0;
4425 Info.flags = MachineMemOperand::MOStore;
4426 Info.align = Align(16);
4427 return true;
4428 }
4429
4430 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
4431 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
4432 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
4433 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
4434 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
4435 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
4436 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
4437 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride:
4438 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_b16:
4439 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_trans_b16:
4440 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x2_trans_b8: {
4441 Info.opc = ISD::INTRINSIC_VOID;
4442 Info.memVT = MVT::v2i32;
4443 Info.ptrVal = I.getArgOperand(0);
4444 Info.offset = 0;
4445 Info.flags = MachineMemOperand::MOStore;
4446 Info.align = Align(8);
4447 return true;
4448 }
4449
4450 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
4451 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
4452 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
4453 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
4454 Info.opc = ISD::INTRINSIC_VOID;
4455 Info.memVT = MVT::v2f64;
4456 Info.ptrVal = I.getArgOperand(0);
4457 Info.offset = 0;
4458 Info.flags = MachineMemOperand::MOStore;
4459 Info.align = Align(16);
4460 return true;
4461 }
4462
4463 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_b16:
4464 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_trans_b16:
4465 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x1_trans_b8: {
4466 Info.opc = ISD::INTRINSIC_VOID;
4467 Info.memVT = MVT::i32;
4468 Info.ptrVal = I.getArgOperand(0);
4469 Info.offset = 0;
4470 Info.flags = MachineMemOperand::MOStore;
4471 Info.align = Align(4);
4472 return true;
4473 }
4474
4475 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_b16:
4476 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_trans_b16:
4477 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x4_trans_b8: {
4478 Info.opc = ISD::INTRINSIC_VOID;
4479 Info.memVT = MVT::v4i32;
4480 Info.ptrVal = I.getArgOperand(0);
4481 Info.offset = 0;
4482 Info.flags = MachineMemOperand::MOStore;
4483 Info.align = Align(16);
4484 return true;
4485 }
4486
4487 case Intrinsic::nvvm_atomic_add_gen_f_cta:
4488 case Intrinsic::nvvm_atomic_add_gen_f_sys:
4489 case Intrinsic::nvvm_atomic_add_gen_i_cta:
4490 case Intrinsic::nvvm_atomic_add_gen_i_sys:
4491 case Intrinsic::nvvm_atomic_and_gen_i_cta:
4492 case Intrinsic::nvvm_atomic_and_gen_i_sys:
4493 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
4494 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
4495 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
4496 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
4497 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
4498 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
4499 case Intrinsic::nvvm_atomic_max_gen_i_cta:
4500 case Intrinsic::nvvm_atomic_max_gen_i_sys:
4501 case Intrinsic::nvvm_atomic_min_gen_i_cta:
4502 case Intrinsic::nvvm_atomic_min_gen_i_sys:
4503 case Intrinsic::nvvm_atomic_or_gen_i_cta:
4504 case Intrinsic::nvvm_atomic_or_gen_i_sys:
4505 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
4506 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
4507 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
4508 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
4509 auto &DL = I.getDataLayout();
4510 Info.opc = ISD::INTRINSIC_W_CHAIN;
4511 Info.memVT = getValueType(DL, I.getType());
4512 Info.ptrVal = I.getArgOperand(0);
4513 Info.offset = 0;
4515 Info.align.reset();
4516 return true;
4517 }
4518
4519 case Intrinsic::nvvm_prefetch_tensormap: {
4520 auto &DL = I.getDataLayout();
4521 Info.opc = ISD::INTRINSIC_VOID;
4522 Info.memVT = getPointerTy(DL);
4523 Info.ptrVal = I.getArgOperand(0);
4524 Info.offset = 0;
4525 Info.flags =
4527 Info.align.reset();
4528 return true;
4529 }
4530
4531 case Intrinsic::nvvm_ldu_global_i:
4532 case Intrinsic::nvvm_ldu_global_f:
4533 case Intrinsic::nvvm_ldu_global_p: {
4534 Info.opc = ISD::INTRINSIC_W_CHAIN;
4535 Info.memVT = getValueType(I.getDataLayout(), I.getType());
4536 Info.ptrVal = I.getArgOperand(0);
4537 Info.offset = 0;
4538 Info.flags = MachineMemOperand::MOLoad;
4539 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4540
4541 return true;
4542 }
4543 case Intrinsic::nvvm_tex_1d_v4f32_s32:
4544 case Intrinsic::nvvm_tex_1d_v4f32_f32:
4545 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
4546 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
4547 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
4548 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
4549 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
4550 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
4551 case Intrinsic::nvvm_tex_2d_v4f32_s32:
4552 case Intrinsic::nvvm_tex_2d_v4f32_f32:
4553 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
4554 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
4555 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
4556 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
4557 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
4558 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
4559 case Intrinsic::nvvm_tex_3d_v4f32_s32:
4560 case Intrinsic::nvvm_tex_3d_v4f32_f32:
4561 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
4562 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
4563 case Intrinsic::nvvm_tex_cube_v4f32_f32:
4564 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
4565 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
4566 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
4567 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
4568 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
4569 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
4570 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
4571 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
4572 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
4573 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
4574 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
4575 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
4576 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
4577 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
4578 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
4579 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
4580 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
4581 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
4582 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
4583 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
4584 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
4585 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
4586 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
4587 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
4588 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
4589 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
4590 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
4591 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
4592 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
4593 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
4594 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
4595 case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
4596 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
4597 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
4598 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
4599 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
4600 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
4601 Info.opc = ISD::INTRINSIC_W_CHAIN;
4602 Info.memVT = MVT::v4f32;
4603 Info.ptrVal = nullptr;
4604 Info.offset = 0;
4605 Info.flags = MachineMemOperand::MOLoad;
4606 Info.align = Align(16);
4607 return true;
4608
4609 case Intrinsic::nvvm_tex_1d_v4s32_s32:
4610 case Intrinsic::nvvm_tex_1d_v4s32_f32:
4611 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
4612 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
4613 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
4614 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
4615 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
4616 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
4617 case Intrinsic::nvvm_tex_2d_v4s32_s32:
4618 case Intrinsic::nvvm_tex_2d_v4s32_f32:
4619 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
4620 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
4621 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
4622 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
4623 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
4624 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
4625 case Intrinsic::nvvm_tex_3d_v4s32_s32:
4626 case Intrinsic::nvvm_tex_3d_v4s32_f32:
4627 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
4628 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
4629 case Intrinsic::nvvm_tex_cube_v4s32_f32:
4630 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
4631 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
4632 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4633 case Intrinsic::nvvm_tex_cube_v4u32_f32:
4634 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4635 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4636 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4637 case Intrinsic::nvvm_tex_1d_v4u32_s32:
4638 case Intrinsic::nvvm_tex_1d_v4u32_f32:
4639 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4640 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4641 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4642 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4643 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4644 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4645 case Intrinsic::nvvm_tex_2d_v4u32_s32:
4646 case Intrinsic::nvvm_tex_2d_v4u32_f32:
4647 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4648 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4649 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4650 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4651 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4652 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4653 case Intrinsic::nvvm_tex_3d_v4u32_s32:
4654 case Intrinsic::nvvm_tex_3d_v4u32_f32:
4655 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4656 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4657 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4658 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4659 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4660 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4661 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4662 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4663 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4664 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4665 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4666 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4667 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4668 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4669 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4670 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4671 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4672 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4673 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4674 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4675 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4676 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4677 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4678 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4679 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4680 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4681 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4682 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4683 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4684 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4685 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4686 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4687 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4688 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4689 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4690 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4691 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4692 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4693 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4694 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4695 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4696 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4697 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4698 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4699 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4700 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4701 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4702 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4703 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4704 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4705 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4706 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4707 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4708 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4709 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4710 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4711 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4712 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4713 case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
4714 case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
4715 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
4716 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
4717 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4718 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4719 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4720 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4721 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4722 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4723 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4724 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4725 Info.opc = ISD::INTRINSIC_W_CHAIN;
4726 Info.memVT = MVT::v4i32;
4727 Info.ptrVal = nullptr;
4728 Info.offset = 0;
4729 Info.flags = MachineMemOperand::MOLoad;
4730 Info.align = Align(16);
4731 return true;
4732
4733 case Intrinsic::nvvm_suld_1d_i8_clamp:
4734 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4735 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4736 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4737 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4738 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4739 case Intrinsic::nvvm_suld_2d_i8_clamp:
4740 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4741 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4742 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4743 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4744 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4745 case Intrinsic::nvvm_suld_3d_i8_clamp:
4746 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4747 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4748 case Intrinsic::nvvm_suld_1d_i8_trap:
4749 case Intrinsic::nvvm_suld_1d_v2i8_trap:
4750 case Intrinsic::nvvm_suld_1d_v4i8_trap:
4751 case Intrinsic::nvvm_suld_1d_array_i8_trap:
4752 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4753 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4754 case Intrinsic::nvvm_suld_2d_i8_trap:
4755 case Intrinsic::nvvm_suld_2d_v2i8_trap:
4756 case Intrinsic::nvvm_suld_2d_v4i8_trap:
4757 case Intrinsic::nvvm_suld_2d_array_i8_trap:
4758 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4759 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4760 case Intrinsic::nvvm_suld_3d_i8_trap:
4761 case Intrinsic::nvvm_suld_3d_v2i8_trap:
4762 case Intrinsic::nvvm_suld_3d_v4i8_trap:
4763 case Intrinsic::nvvm_suld_1d_i8_zero:
4764 case Intrinsic::nvvm_suld_1d_v2i8_zero:
4765 case Intrinsic::nvvm_suld_1d_v4i8_zero:
4766 case Intrinsic::nvvm_suld_1d_array_i8_zero:
4767 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4768 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4769 case Intrinsic::nvvm_suld_2d_i8_zero:
4770 case Intrinsic::nvvm_suld_2d_v2i8_zero:
4771 case Intrinsic::nvvm_suld_2d_v4i8_zero:
4772 case Intrinsic::nvvm_suld_2d_array_i8_zero:
4773 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4774 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4775 case Intrinsic::nvvm_suld_3d_i8_zero:
4776 case Intrinsic::nvvm_suld_3d_v2i8_zero:
4777 case Intrinsic::nvvm_suld_3d_v4i8_zero:
4778 Info.opc = ISD::INTRINSIC_W_CHAIN;
4779 Info.memVT = MVT::i8;
4780 Info.ptrVal = nullptr;
4781 Info.offset = 0;
4782 Info.flags = MachineMemOperand::MOLoad;
4783 Info.align = Align(16);
4784 return true;
4785
4786 case Intrinsic::nvvm_suld_1d_i16_clamp:
4787 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4788 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4789 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4790 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4791 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4792 case Intrinsic::nvvm_suld_2d_i16_clamp:
4793 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4794 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4795 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4796 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4797 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4798 case Intrinsic::nvvm_suld_3d_i16_clamp:
4799 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4800 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4801 case Intrinsic::nvvm_suld_1d_i16_trap:
4802 case Intrinsic::nvvm_suld_1d_v2i16_trap:
4803 case Intrinsic::nvvm_suld_1d_v4i16_trap:
4804 case Intrinsic::nvvm_suld_1d_array_i16_trap:
4805 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4806 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4807 case Intrinsic::nvvm_suld_2d_i16_trap:
4808 case Intrinsic::nvvm_suld_2d_v2i16_trap:
4809 case Intrinsic::nvvm_suld_2d_v4i16_trap:
4810 case Intrinsic::nvvm_suld_2d_array_i16_trap:
4811 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4812 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4813 case Intrinsic::nvvm_suld_3d_i16_trap:
4814 case Intrinsic::nvvm_suld_3d_v2i16_trap:
4815 case Intrinsic::nvvm_suld_3d_v4i16_trap:
4816 case Intrinsic::nvvm_suld_1d_i16_zero:
4817 case Intrinsic::nvvm_suld_1d_v2i16_zero:
4818 case Intrinsic::nvvm_suld_1d_v4i16_zero:
4819 case Intrinsic::nvvm_suld_1d_array_i16_zero:
4820 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4821 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4822 case Intrinsic::nvvm_suld_2d_i16_zero:
4823 case Intrinsic::nvvm_suld_2d_v2i16_zero:
4824 case Intrinsic::nvvm_suld_2d_v4i16_zero:
4825 case Intrinsic::nvvm_suld_2d_array_i16_zero:
4826 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4827 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4828 case Intrinsic::nvvm_suld_3d_i16_zero:
4829 case Intrinsic::nvvm_suld_3d_v2i16_zero:
4830 case Intrinsic::nvvm_suld_3d_v4i16_zero:
4831 Info.opc = ISD::INTRINSIC_W_CHAIN;
4832 Info.memVT = MVT::i16;
4833 Info.ptrVal = nullptr;
4834 Info.offset = 0;
4835 Info.flags = MachineMemOperand::MOLoad;
4836 Info.align = Align(16);
4837 return true;
4838
4839 case Intrinsic::nvvm_suld_1d_i32_clamp:
4840 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4841 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4842 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4843 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4844 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4845 case Intrinsic::nvvm_suld_2d_i32_clamp:
4846 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4847 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4848 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4849 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4850 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4851 case Intrinsic::nvvm_suld_3d_i32_clamp:
4852 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4853 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4854 case Intrinsic::nvvm_suld_1d_i32_trap:
4855 case Intrinsic::nvvm_suld_1d_v2i32_trap:
4856 case Intrinsic::nvvm_suld_1d_v4i32_trap:
4857 case Intrinsic::nvvm_suld_1d_array_i32_trap:
4858 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4859 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4860 case Intrinsic::nvvm_suld_2d_i32_trap:
4861 case Intrinsic::nvvm_suld_2d_v2i32_trap:
4862 case Intrinsic::nvvm_suld_2d_v4i32_trap:
4863 case Intrinsic::nvvm_suld_2d_array_i32_trap:
4864 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4865 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4866 case Intrinsic::nvvm_suld_3d_i32_trap:
4867 case Intrinsic::nvvm_suld_3d_v2i32_trap:
4868 case Intrinsic::nvvm_suld_3d_v4i32_trap:
4869 case Intrinsic::nvvm_suld_1d_i32_zero:
4870 case Intrinsic::nvvm_suld_1d_v2i32_zero:
4871 case Intrinsic::nvvm_suld_1d_v4i32_zero:
4872 case Intrinsic::nvvm_suld_1d_array_i32_zero:
4873 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4874 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4875 case Intrinsic::nvvm_suld_2d_i32_zero:
4876 case Intrinsic::nvvm_suld_2d_v2i32_zero:
4877 case Intrinsic::nvvm_suld_2d_v4i32_zero:
4878 case Intrinsic::nvvm_suld_2d_array_i32_zero:
4879 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4880 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4881 case Intrinsic::nvvm_suld_3d_i32_zero:
4882 case Intrinsic::nvvm_suld_3d_v2i32_zero:
4883 case Intrinsic::nvvm_suld_3d_v4i32_zero:
4884 Info.opc = ISD::INTRINSIC_W_CHAIN;
4885 Info.memVT = MVT::i32;
4886 Info.ptrVal = nullptr;
4887 Info.offset = 0;
4888 Info.flags = MachineMemOperand::MOLoad;
4889 Info.align = Align(16);
4890 return true;
4891
4892 case Intrinsic::nvvm_suld_1d_i64_clamp:
4893 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4894 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4895 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4896 case Intrinsic::nvvm_suld_2d_i64_clamp:
4897 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4898 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4899 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4900 case Intrinsic::nvvm_suld_3d_i64_clamp:
4901 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4902 case Intrinsic::nvvm_suld_1d_i64_trap:
4903 case Intrinsic::nvvm_suld_1d_v2i64_trap:
4904 case Intrinsic::nvvm_suld_1d_array_i64_trap:
4905 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4906 case Intrinsic::nvvm_suld_2d_i64_trap:
4907 case Intrinsic::nvvm_suld_2d_v2i64_trap:
4908 case Intrinsic::nvvm_suld_2d_array_i64_trap:
4909 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4910 case Intrinsic::nvvm_suld_3d_i64_trap:
4911 case Intrinsic::nvvm_suld_3d_v2i64_trap:
4912 case Intrinsic::nvvm_suld_1d_i64_zero:
4913 case Intrinsic::nvvm_suld_1d_v2i64_zero:
4914 case Intrinsic::nvvm_suld_1d_array_i64_zero:
4915 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4916 case Intrinsic::nvvm_suld_2d_i64_zero:
4917 case Intrinsic::nvvm_suld_2d_v2i64_zero:
4918 case Intrinsic::nvvm_suld_2d_array_i64_zero:
4919 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4920 case Intrinsic::nvvm_suld_3d_i64_zero:
4921 case Intrinsic::nvvm_suld_3d_v2i64_zero:
4922 Info.opc = ISD::INTRINSIC_W_CHAIN;
4923 Info.memVT = MVT::i64;
4924 Info.ptrVal = nullptr;
4925 Info.offset = 0;
4926 Info.flags = MachineMemOperand::MOLoad;
4927 Info.align = Align(16);
4928 return true;
4929
4930 case Intrinsic::nvvm_tcgen05_ld_16x64b_x1:
4931 case Intrinsic::nvvm_tcgen05_ld_32x32b_x1:
4932 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: {
4933 Info.opc = ISD::INTRINSIC_W_CHAIN;
4934 Info.memVT = MVT::v1i32;
4935 Info.ptrVal = I.getArgOperand(0);
4936 Info.offset = 0;
4937 Info.flags = MachineMemOperand::MOLoad;
4938 Info.align.reset();
4939 return true;
4940 }
4941
4942 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
4943 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
4944 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
4945 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: {
4946 Info.opc = ISD::INTRINSIC_W_CHAIN;
4947 Info.memVT = MVT::v2i32;
4948 Info.ptrVal = I.getArgOperand(0);
4949 Info.offset = 0;
4950 Info.flags = MachineMemOperand::MOLoad;
4951 Info.align.reset();
4952 return true;
4953 }
4954
4955 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
4956 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
4957 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
4958 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
4959 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: {
4960 Info.opc = ISD::INTRINSIC_W_CHAIN;
4961 Info.memVT = MVT::v4i32;
4962 Info.ptrVal = I.getArgOperand(0);
4963 Info.offset = 0;
4964 Info.flags = MachineMemOperand::MOLoad;
4965 Info.align.reset();
4966 return true;
4967 }
4968
4969 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
4970 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
4971 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
4972 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
4973 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: {
4974 Info.opc = ISD::INTRINSIC_W_CHAIN;
4975 Info.memVT = MVT::v8i32;
4976 Info.ptrVal = I.getArgOperand(0);
4977 Info.offset = 0;
4978 Info.flags = MachineMemOperand::MOLoad;
4979 Info.align.reset();
4980 return true;
4981 }
4982
4983 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
4984 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
4985 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
4986 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
4987 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: {
4988 Info.opc = ISD::INTRINSIC_W_CHAIN;
4989 Info.memVT = MVT::v16i32;
4990 Info.ptrVal = I.getArgOperand(0);
4991 Info.offset = 0;
4992 Info.flags = MachineMemOperand::MOLoad;
4993 Info.align.reset();
4994 return true;
4995 }
4996
4997 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
4998 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
4999 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
5000 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
5001 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: {
5002 Info.opc = ISD::INTRINSIC_W_CHAIN;
5003 Info.memVT = MVT::v32i32;
5004 Info.ptrVal = I.getArgOperand(0);
5005 Info.offset = 0;
5006 Info.flags = MachineMemOperand::MOLoad;
5007 Info.align.reset();
5008 return true;
5009 }
5010
5011 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
5012 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
5013 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
5014 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
5015 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: {
5016 Info.opc = ISD::INTRINSIC_W_CHAIN;
5017 Info.memVT = MVT::v64i32;
5018 Info.ptrVal = I.getArgOperand(0);
5019 Info.offset = 0;
5020 Info.flags = MachineMemOperand::MOLoad;
5021 Info.align.reset();
5022 return true;
5023 }
5024
5025 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
5026 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
5027 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
5028 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
5029 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: {
5030 Info.opc = ISD::INTRINSIC_W_CHAIN;
5031 Info.memVT = MVT::v128i32;
5032 Info.ptrVal = I.getArgOperand(0);
5033 Info.offset = 0;
5034 Info.flags = MachineMemOperand::MOLoad;
5035 Info.align.reset();
5036 return true;
5037 }
5038
5039 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
5040 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
5041 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: {
5042 Info.opc = ISD::INTRINSIC_VOID;
5043 Info.memVT = MVT::i32;
5044 Info.ptrVal = I.getArgOperand(0);
5045 Info.offset = 0;
5046 Info.flags = MachineMemOperand::MOStore;
5047 Info.align.reset();
5048 return true;
5049 }
5050
5051 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
5052 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
5053 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
5054 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: {
5055 Info.opc = ISD::INTRINSIC_VOID;
5056 Info.memVT = MVT::v2i32;
5057 Info.ptrVal = I.getArgOperand(0);
5058 Info.offset = 0;
5059 Info.flags = MachineMemOperand::MOStore;
5060 Info.align.reset();
5061 return true;
5062 }
5063
5064 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
5065 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
5066 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
5067 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
5068 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: {
5069 Info.opc = ISD::INTRINSIC_VOID;
5070 Info.memVT = MVT::v4i32;
5071 Info.ptrVal = I.getArgOperand(0);
5072 Info.offset = 0;
5073 Info.flags = MachineMemOperand::MOStore;
5074 Info.align.reset();
5075 return true;
5076 }
5077
5078 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
5079 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
5080 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
5081 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
5082 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: {
5083 Info.opc = ISD::INTRINSIC_VOID;
5084 Info.memVT = MVT::v8i32;
5085 Info.ptrVal = I.getArgOperand(0);
5086 Info.offset = 0;
5087 Info.flags = MachineMemOperand::MOStore;
5088 Info.align.reset();
5089 return true;
5090 }
5091
5092 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
5093 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
5094 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
5095 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
5096 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: {
5097 Info.opc = ISD::INTRINSIC_VOID;
5098 Info.memVT = MVT::v16i32;
5099 Info.ptrVal = I.getArgOperand(0);
5100 Info.offset = 0;
5101 Info.flags = MachineMemOperand::MOStore;
5102 Info.align.reset();
5103 return true;
5104 }
5105
5106 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
5107 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
5108 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
5109 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
5110 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: {
5111 Info.opc = ISD::INTRINSIC_VOID;
5112 Info.memVT = MVT::v32i32;
5113 Info.ptrVal = I.getArgOperand(0);
5114 Info.offset = 0;
5115 Info.flags = MachineMemOperand::MOStore;
5116 Info.align.reset();
5117 return true;
5118 }
5119
5120 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
5121 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
5122 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
5123 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
5124 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: {
5125 Info.opc = ISD::INTRINSIC_VOID;
5126 Info.memVT = MVT::v64i32;
5127 Info.ptrVal = I.getArgOperand(0);
5128 Info.offset = 0;
5129 Info.flags = MachineMemOperand::MOStore;
5130 Info.align.reset();
5131 return true;
5132 }
5133
5134 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
5135 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
5136 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
5137 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
5138 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: {
5139 Info.opc = ISD::INTRINSIC_VOID;
5140 Info.memVT = MVT::v128i32;
5141 Info.ptrVal = I.getArgOperand(0);
5142 Info.offset = 0;
5143 Info.flags = MachineMemOperand::MOStore;
5144 Info.align.reset();
5145 return true;
5146 }
5147 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
5148 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
5149 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
5150 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
5151 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
5152 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
5153 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
5154 case Intrinsic::
5155 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
5156 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
5157 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
5158 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
5159 case Intrinsic::
5160 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift: {
5161 // We are reading and writing back to TMem
5162 Info.opc = ISD::INTRINSIC_VOID;
5163 Info.memVT = MVT::v4i32;
5164 Info.ptrVal = I.getArgOperand(0);
5165 Info.offset = 0;
5167 Info.align = Align(16);
5168 return true;
5169 }
5170
5171 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
5172 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
5173 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
5174 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
5175 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
5176 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
5177 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
5178 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
5179 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
5180 case Intrinsic::
5181 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
5182 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
5183 case Intrinsic::
5184 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift: {
5185 // We are reading and writing back to TMem
5186 Info.opc = ISD::INTRINSIC_VOID;
5187 Info.memVT = MVT::v8i32;
5188 Info.ptrVal = I.getArgOperand(0);
5189 Info.offset = 0;
5191 Info.align = Align(16);
5192 return true;
5193 }
5194 }
5195 return false;
5196}
5197
5198/// getFunctionParamOptimizedAlign - since function arguments are passed via
5199/// .param space, we may want to increase their alignment in a way that
5200/// ensures that we can effectively vectorize their loads & stores. We can
5201/// increase alignment only if the function has internal or has private
5202/// linkage as for other linkage types callers may already rely on default
5203/// alignment. To allow using 128-bit vectorized loads/stores, this function
5204/// ensures that alignment is 16 or greater.
5206 const Function *F, Type *ArgTy, const DataLayout &DL) const {
5207 // Capping the alignment to 128 bytes as that is the maximum alignment
5208 // supported by PTX.
5209 const Align ABITypeAlign = std::min(Align(128), DL.getABITypeAlign(ArgTy));
5210
5211 // If a function has linkage different from internal or private, we
5212 // must use default ABI alignment as external users rely on it. Same
5213 // for a function that may be called from a function pointer.
5214 if (!F || !F->hasLocalLinkage() ||
5215 F->hasAddressTaken(/*Users=*/nullptr,
5216 /*IgnoreCallbackUses=*/false,
5217 /*IgnoreAssumeLikeCalls=*/true,
5218 /*IgnoreLLVMUsed=*/true))
5219 return ABITypeAlign;
5220
5221 assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
5222 return std::max(Align(16), ABITypeAlign);
5223}
5224
5225/// Helper for computing alignment of a device function byval parameter.
5227 const Function *F, Type *ArgTy, Align InitialAlign,
5228 const DataLayout &DL) const {
5229 Align ArgAlign = InitialAlign;
5230 // Try to increase alignment to enhance vectorization options.
5231 if (F)
5232 ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL));
5233
5234 // Old ptx versions have a bug. When PTX code takes address of
5235 // byval parameter with alignment < 4, ptxas generates code to
5236 // spill argument into memory. Alas on sm_50+ ptxas generates
5237 // SASS code that fails with misaligned access. To work around
5238 // the problem, make sure that we align byval parameters by at
5239 // least 4. This bug seems to be fixed at least starting from
5240 // ptxas > 9.0.
5241 // TODO: remove this after verifying the bug is not reproduced
5242 // on non-deprecated ptxas versions.
5244 ArgAlign = std::max(ArgAlign, Align(4));
5245
5246 return ArgAlign;
5247}
5248
5249// Helper for getting a function parameter name. Name is composed from
5250// its index and the function name. Negative index corresponds to special
5251// parameter (unsized array) used for passing variable arguments.
5253 int Idx) const {
5254 std::string ParamName;
5255 raw_string_ostream ParamStr(ParamName);
5256
5257 ParamStr << getTargetMachine().getSymbol(F)->getName();
5258 if (Idx < 0)
5259 ParamStr << "_vararg";
5260 else
5261 ParamStr << "_param_" << Idx;
5262
5263 return ParamName;
5264}
5265
5266/// isLegalAddressingMode - Return true if the addressing mode represented
5267/// by AM is legal for this target, for a load/store of the specified type.
5268/// Used to guide target specific optimizations, like loop strength reduction
5269/// (LoopStrengthReduce.cpp) and memory optimization for address mode
5270/// (CodeGenPrepare.cpp)
5272 const AddrMode &AM, Type *Ty,
5273 unsigned AS, Instruction *I) const {
5274 // AddrMode - This represents an addressing mode of:
5275 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
5276 //
5277 // The legal address modes are
5278 // - [avar]
5279 // - [areg]
5280 // - [areg+immoff]
5281 // - [immAddr]
5282
5283 // immoff must fit in a signed 32-bit int
5284 if (!APInt(64, AM.BaseOffs).isSignedIntN(32))
5285 return false;
5286
5287 if (AM.BaseGV)
5288 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
5289
5290 switch (AM.Scale) {
5291 case 0: // "r", "r+i" or "i" is allowed
5292 break;
5293 case 1:
5294 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
5295 return false;
5296 // Otherwise we have r+i.
5297 break;
5298 default:
5299 // No scale > 1 is allowed
5300 return false;
5301 }
5302 return true;
5303}
5304
5305//===----------------------------------------------------------------------===//
5306// NVPTX Inline Assembly Support
5307//===----------------------------------------------------------------------===//
5308
5309/// getConstraintType - Given a constraint letter, return the type of
5310/// constraint it is for this target.
5313 if (Constraint.size() == 1) {
5314 switch (Constraint[0]) {
5315 default:
5316 break;
5317 case 'b':
5318 case 'r':
5319 case 'h':
5320 case 'c':
5321 case 'l':
5322 case 'f':
5323 case 'd':
5324 case 'q':
5325 case '0':
5326 case 'N':
5327 return C_RegisterClass;
5328 }
5329 }
5330 return TargetLowering::getConstraintType(Constraint);
5331}
5332
5333std::pair<unsigned, const TargetRegisterClass *>
5335 StringRef Constraint,
5336 MVT VT) const {
5337 if (Constraint.size() == 1) {
5338 switch (Constraint[0]) {
5339 case 'b':
5340 return std::make_pair(0U, &NVPTX::B1RegClass);
5341 case 'c':
5342 case 'h':
5343 return std::make_pair(0U, &NVPTX::B16RegClass);
5344 case 'r':
5345 case 'f':
5346 return std::make_pair(0U, &NVPTX::B32RegClass);
5347 case 'l':
5348 case 'N':
5349 case 'd':
5350 return std::make_pair(0U, &NVPTX::B64RegClass);
5351 case 'q': {
5352 if (STI.getSmVersion() < 70)
5353 report_fatal_error("Inline asm with 128 bit operands is only "
5354 "supported for sm_70 and higher!");
5355 return std::make_pair(0U, &NVPTX::B128RegClass);
5356 }
5357 }
5358 }
5359 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5360}
5361
5362//===----------------------------------------------------------------------===//
5363// NVPTX DAG Combining
5364//===----------------------------------------------------------------------===//
5365
5367 CodeGenOptLevel OptLevel) const {
5368 // Always honor command-line argument
5369 if (FMAContractLevelOpt.getNumOccurrences() > 0)
5370 return FMAContractLevelOpt > 0;
5371
5372 // Do not contract if we're not optimizing the code.
5373 if (OptLevel == CodeGenOptLevel::None)
5374 return false;
5375
5376 // Honor TargetOptions flags that explicitly say fusion is okay.
5378 return true;
5379
5380 return false;
5381}
5382
5383static bool isConstZero(const SDValue &Operand) {
5384 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
5385 return Const && Const->getZExtValue() == 0;
5386}
5387
5388/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5389/// operands N0 and N1. This is a helper for PerformADDCombine that is
5390/// called with the default operands, and if that fails, with commuted
5391/// operands.
5392static SDValue
5395 EVT VT = N0.getValueType();
5396
5397 // Since integer multiply-add costs the same as integer multiply
5398 // but is more costly than integer add, do the fusion only when
5399 // the mul is only used in the add.
5400 // TODO: this may not be true for later architectures, consider relaxing this
5401 if (!N0.getNode()->hasOneUse())
5402 return SDValue();
5403
5404 // fold (add (select cond, 0, (mul a, b)), c)
5405 // -> (select cond, c, (add (mul a, b), c))
5406 //
5407 if (N0.getOpcode() == ISD::SELECT) {
5408 unsigned ZeroOpNum;
5409 if (isConstZero(N0->getOperand(1)))
5410 ZeroOpNum = 1;
5411 else if (isConstZero(N0->getOperand(2)))
5412 ZeroOpNum = 2;
5413 else
5414 return SDValue();
5415
5416 SDValue M = N0->getOperand((ZeroOpNum == 1) ? 2 : 1);
5417 if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse())
5418 return SDValue();
5419
5420 SDLoc DL(N);
5421 SDValue Mul =
5422 DCI.DAG.getNode(ISD::MUL, DL, VT, M->getOperand(0), M->getOperand(1));
5423 SDValue MAD = DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, N1);
5424 return DCI.DAG.getSelect(SDLoc(N), VT, N0->getOperand(0),
5425 ((ZeroOpNum == 1) ? N1 : MAD),
5426 ((ZeroOpNum == 1) ? MAD : N1));
5427 }
5428
5429 return SDValue();
5430}
5431
5432static SDValue
5435 CodeGenOptLevel OptLevel) {
5436 EVT VT = N0.getValueType();
5437 if (N0.getOpcode() == ISD::FMUL) {
5438 const auto *TLI = static_cast<const NVPTXTargetLowering *>(
5439 &DCI.DAG.getTargetLoweringInfo());
5440 if (!(TLI->allowFMA(DCI.DAG.getMachineFunction(), OptLevel) ||
5441 (N->getFlags().hasAllowContract() &&
5442 N0->getFlags().hasAllowContract())))
5443 return SDValue();
5444
5445 // For floating point:
5446 // Do the fusion only when the mul has less than 5 uses and all
5447 // are add.
5448 // The heuristic is that if a use is not an add, then that use
5449 // cannot be fused into fma, therefore mul is still needed anyway.
5450 // If there are more than 4 uses, even if they are all add, fusing
5451 // them will increase register pressue.
5452 //
5453 int numUses = 0;
5454 int nonAddCount = 0;
5455 for (const SDNode *User : N0.getNode()->users()) {
5456 numUses++;
5457 if (User->getOpcode() != ISD::FADD)
5458 ++nonAddCount;
5459 if (numUses >= 5)
5460 return SDValue();
5461 }
5462 if (nonAddCount) {
5463 int orderNo = N->getIROrder();
5464 int orderNo2 = N0.getNode()->getIROrder();
5465 // simple heuristics here for considering potential register
5466 // pressure, the logics here is that the differnce are used
5467 // to measure the distance between def and use, the longer distance
5468 // more likely cause register pressure.
5469 if (orderNo - orderNo2 < 500)
5470 return SDValue();
5471
5472 // Now, check if at least one of the FMUL's operands is live beyond the
5473 // node N, which guarantees that the FMA will not increase register
5474 // pressure at node N.
5475 bool opIsLive = false;
5476 const SDNode *left = N0.getOperand(0).getNode();
5477 const SDNode *right = N0.getOperand(1).getNode();
5478
5479 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
5480 opIsLive = true;
5481
5482 if (!opIsLive)
5483 for (const SDNode *User : left->users()) {
5484 int orderNo3 = User->getIROrder();
5485 if (orderNo3 > orderNo) {
5486 opIsLive = true;
5487 break;
5488 }
5489 }
5490
5491 if (!opIsLive)
5492 for (const SDNode *User : right->users()) {
5493 int orderNo3 = User->getIROrder();
5494 if (orderNo3 > orderNo) {
5495 opIsLive = true;
5496 break;
5497 }
5498 }
5499
5500 if (!opIsLive)
5501 return SDValue();
5502 }
5503
5504 return DCI.DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0),
5505 N0.getOperand(1), N1);
5506 }
5507
5508 return SDValue();
5509}
5510
5511/// Fold unpacking movs into a load by increasing the number of return values.
5512///
5513/// ex:
5514/// L: v2f16,ch = load <p>
5515/// a: f16 = extractelt L:0, 0
5516/// b: f16 = extractelt L:0, 1
5517/// use(a, b)
5518///
5519/// ...is turned into...
5520///
5521/// L: f16,f16,ch = LoadV2 <p>
5522/// use(L:0, L:1)
5523static SDValue
5525 // Don't run this optimization before the legalizer
5526 if (!DCI.isAfterLegalizeDAG())
5527 return SDValue();
5528
5529 EVT ElementVT = N->getValueType(0);
5530 // Avoid non-packed types and v4i8
5531 if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8)
5532 return SDValue();
5533
5534 // Check whether all outputs are either used by an extractelt or are
5535 // glue/chain nodes
5536 if (!all_of(N->uses(), [&](SDUse &U) {
5537 // Skip glue, chain nodes
5538 if (U.getValueType() == MVT::Glue || U.getValueType() == MVT::Other)
5539 return true;
5540 if (U.getUser()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5541 if (N->getOpcode() != ISD::LOAD)
5542 return true;
5543 // Since this is an ISD::LOAD, check all extractelts are used. If
5544 // any are not used, we don't want to defeat another optimization that
5545 // will narrow the load.
5546 //
5547 // For example:
5548 //
5549 // L: v2f16,ch = load <p>
5550 // e0: f16 = extractelt L:0, 0
5551 // e1: f16 = extractelt L:0, 1 <-- unused
5552 // store e0
5553 //
5554 // Can be optimized by DAGCombiner to:
5555 //
5556 // L: f16,ch = load <p>
5557 // store L:0
5558 return !U.getUser()->use_empty();
5559 }
5560
5561 // Otherwise, this use prevents us from splitting a value.
5562 return false;
5563 }))
5564 return SDValue();
5565
5566 auto *LD = cast<MemSDNode>(N);
5567 SDLoc DL(LD);
5568
5569 // the new opcode after we double the number of operands
5570 unsigned Opcode;
5571 SmallVector<SDValue> Operands(LD->ops());
5572 unsigned OldNumOutputs; // non-glue, non-chain outputs
5573 switch (LD->getOpcode()) {
5574 case ISD::LOAD:
5575 OldNumOutputs = 1;
5576 // Any packed type is legal, so the legalizer will not have lowered
5577 // ISD::LOAD -> NVPTXISD::Load (unless it's under-aligned). We have to do it
5578 // here.
5579 Opcode = NVPTXISD::LoadV2;
5580 // append a "full" used bytes mask operand right before the extension type
5581 // operand, signifying that all bytes are used.
5582 Operands.push_back(DCI.DAG.getConstant(UINT32_MAX, DL, MVT::i32));
5583 Operands.push_back(DCI.DAG.getIntPtrConstant(
5584 cast<LoadSDNode>(LD)->getExtensionType(), DL));
5585 break;
5586 case NVPTXISD::LoadV2:
5587 OldNumOutputs = 2;
5588 Opcode = NVPTXISD::LoadV4;
5589 break;
5590 case NVPTXISD::LoadV4:
5591 // V8 is only supported for f32/i32. Don't forget, we're not changing the
5592 // load size here. This is already a 256-bit load.
5593 if (ElementVT != MVT::v2f32 && ElementVT != MVT::v2i32)
5594 return SDValue();
5595 OldNumOutputs = 4;
5596 Opcode = NVPTXISD::LoadV8;
5597 break;
5598 case NVPTXISD::LoadV8:
5599 // PTX doesn't support the next doubling of outputs
5600 return SDValue();
5601 }
5602
5603 // the non-glue, non-chain outputs in the new load
5604 const unsigned NewNumOutputs = OldNumOutputs * 2;
5605 SmallVector<EVT> NewVTs(NewNumOutputs, ElementVT.getVectorElementType());
5606 // add remaining chain and glue values
5607 NewVTs.append(LD->value_begin() + OldNumOutputs, LD->value_end());
5608
5609 // Create the new load
5610 SDValue NewLoad = DCI.DAG.getMemIntrinsicNode(
5611 Opcode, DL, DCI.DAG.getVTList(NewVTs), Operands, LD->getMemoryVT(),
5612 LD->getMemOperand());
5613
5614 // Now we use a combination of BUILD_VECTORs and a MERGE_VALUES node to keep
5615 // the outputs the same. These nodes will be optimized away in later
5616 // DAGCombiner iterations.
5618 for (unsigned I : seq(OldNumOutputs))
5619 Results.push_back(DCI.DAG.getBuildVector(
5620 ElementVT, DL, {NewLoad.getValue(I * 2), NewLoad.getValue(I * 2 + 1)}));
5621 // Add remaining chain and glue nodes
5622 for (unsigned I : seq(NewLoad->getNumValues() - NewNumOutputs))
5623 Results.push_back(NewLoad.getValue(NewNumOutputs + I));
5624
5625 return DCI.DAG.getMergeValues(Results, DL);
5626}
5627
5628/// Fold packing movs into a store.
5629///
5630/// ex:
5631/// v1: v2f16 = BUILD_VECTOR a:f16, b:f16
5632/// v2: v2f16 = BUILD_VECTOR c:f16, d:f16
5633/// StoreV2 v1, v2
5634///
5635/// ...is turned into...
5636///
5637/// StoreV4 a, b, c, d
5640 unsigned Front, unsigned Back) {
5641 // We want to run this as late as possible since other optimizations may
5642 // eliminate the BUILD_VECTORs.
5643 if (!DCI.isAfterLegalizeDAG())
5644 return SDValue();
5645
5646 // Get the type of the operands being stored.
5647 EVT ElementVT = N->getOperand(Front).getValueType();
5648
5649 // Avoid non-packed types and v4i8
5650 if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8)
5651 return SDValue();
5652
5653 auto *ST = cast<MemSDNode>(N);
5654
5655 // The new opcode after we double the number of operands.
5656 unsigned Opcode;
5657 switch (N->getOpcode()) {
5658 case ISD::STORE:
5659 // Any packed type is legal, so the legalizer will not have lowered
5660 // ISD::STORE -> NVPTXISD::Store (unless it's under-aligned). We have to do
5661 // it here.
5662 Opcode = NVPTXISD::StoreV2;
5663 break;
5664 case NVPTXISD::StoreV2:
5665 Opcode = NVPTXISD::StoreV4;
5666 break;
5667 case NVPTXISD::StoreV4:
5668 // V8 is only supported for f32/i32. Don't forget, we're not changing the
5669 // store size here. This is already a 256-bit store.
5670 if (ElementVT != MVT::v2f32 && ElementVT != MVT::v2i32)
5671 return SDValue();
5672 Opcode = NVPTXISD::StoreV8;
5673 break;
5674 case NVPTXISD::StoreV8:
5675 // PTX doesn't support the next doubling of operands
5676 return SDValue();
5677 default:
5678 llvm_unreachable("Unhandled store opcode");
5679 }
5680
5681 // Scan the operands and if they're all BUILD_VECTORs, we'll have gathered
5682 // their elements.
5683 SmallVector<SDValue, 4> Operands(N->ops().take_front(Front));
5684 for (SDValue BV : N->ops().drop_front(Front).drop_back(Back)) {
5685 if (BV.getOpcode() != ISD::BUILD_VECTOR)
5686 return SDValue();
5687
5688 // If the operand has multiple uses, this optimization can increase register
5689 // pressure.
5690 if (!BV.hasOneUse())
5691 return SDValue();
5692
5693 // DAGCombiner visits nodes bottom-up. Check the BUILD_VECTOR operands for
5694 // any signs they may be folded by some other pattern or rule.
5695 for (SDValue Op : BV->ops()) {
5696 // Peek through bitcasts
5697 if (Op.getOpcode() == ISD::BITCAST)
5698 Op = Op.getOperand(0);
5699
5700 // This may be folded into a PRMT.
5701 if (Op.getValueType() == MVT::i16 && Op.getOpcode() == ISD::TRUNCATE &&
5702 Op->getOperand(0).getValueType() == MVT::i32)
5703 return SDValue();
5704
5705 // This may be folded into cvt.bf16x2
5706 if (Op.getOpcode() == ISD::FP_ROUND)
5707 return SDValue();
5708 }
5709 Operands.append({BV.getOperand(0), BV.getOperand(1)});
5710 }
5711 Operands.append(N->op_end() - Back, N->op_end());
5712
5713 // Now we replace the store
5714 return DCI.DAG.getMemIntrinsicNode(Opcode, SDLoc(N), N->getVTList(), Operands,
5715 ST->getMemoryVT(), ST->getMemOperand());
5716}
5717
5719 const NVPTXSubtarget &STI) {
5720
5721 if (DCI.isBeforeLegalize() && N->getOpcode() == ISD::STORE) {
5722 // Here is our chance to custom lower a store with a non-simple type.
5723 // Unfortunately, we can't do this in the legalizer because there is no
5724 // way to setOperationAction for an non-simple type.
5726 if (!ST->getValue().getValueType().isSimple())
5727 return lowerSTOREVector(SDValue(ST, 0), DCI.DAG, STI);
5728 }
5729
5730 return combinePackingMovIntoStore(N, DCI, 1, 2);
5731}
5732
5734 const NVPTXSubtarget &STI) {
5735 if (DCI.isBeforeLegalize() && N->getOpcode() == ISD::LOAD) {
5736 // Here is our chance to custom lower a load with a non-simple type.
5737 // Unfortunately, we can't do this in the legalizer because there is no
5738 // way to setOperationAction for an non-simple type.
5739 if (!N->getValueType(0).isSimple())
5740 return lowerLoadVector(N, DCI.DAG, STI);
5741 }
5742
5743 return combineUnpackingMovIntoLoad(N, DCI);
5744}
5745
5746/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5747///
5750 CodeGenOptLevel OptLevel) {
5751 if (OptLevel == CodeGenOptLevel::None)
5752 return SDValue();
5753
5754 SDValue N0 = N->getOperand(0);
5755 SDValue N1 = N->getOperand(1);
5756
5757 // Skip non-integer, non-scalar case
5758 EVT VT = N0.getValueType();
5759 if (VT.isVector() || VT != MVT::i32)
5760 return SDValue();
5761
5762 // First try with the default operand order.
5763 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI))
5764 return Result;
5765
5766 // If that didn't work, try again with the operands commuted.
5767 return PerformADDCombineWithOperands(N, N1, N0, DCI);
5768}
5769
5770/// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD.
5771///
5774 CodeGenOptLevel OptLevel) {
5775 SDValue N0 = N->getOperand(0);
5776 SDValue N1 = N->getOperand(1);
5777
5778 EVT VT = N0.getValueType();
5779 if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64))
5780 return SDValue();
5781
5782 // First try with the default operand order.
5783 if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel))
5784 return Result;
5785
5786 // If that didn't work, try again with the operands commuted.
5787 return PerformFADDCombineWithOperands(N, N1, N0, DCI, OptLevel);
5788}
5789
5790/// Get 3-input version of a 2-input min/max opcode
5791static unsigned getMinMax3Opcode(unsigned MinMax2Opcode) {
5792 switch (MinMax2Opcode) {
5793 case ISD::FMAXNUM:
5794 case ISD::FMAXIMUMNUM:
5795 return NVPTXISD::FMAXNUM3;
5796 case ISD::FMINNUM:
5797 case ISD::FMINIMUMNUM:
5798 return NVPTXISD::FMINNUM3;
5799 case ISD::FMAXIMUM:
5800 return NVPTXISD::FMAXIMUM3;
5801 case ISD::FMINIMUM:
5802 return NVPTXISD::FMINIMUM3;
5803 default:
5804 llvm_unreachable("Invalid 2-input min/max opcode");
5805 }
5806}
5807
5808/// PerformFMinMaxCombine - Combine (fmaxnum (fmaxnum a, b), c) into
5809/// (fmaxnum3 a, b, c). Also covers other llvm min/max intrinsics.
5812 unsigned PTXVersion, unsigned SmVersion) {
5813
5814 // 3-input min/max requires PTX 8.8+ and SM_100+, and only supports f32s
5815 EVT VT = N->getValueType(0);
5816 if (VT != MVT::f32 || PTXVersion < 88 || SmVersion < 100)
5817 return SDValue();
5818
5819 SDValue Op0 = N->getOperand(0);
5820 SDValue Op1 = N->getOperand(1);
5821 unsigned MinMaxOp2 = N->getOpcode();
5822 unsigned MinMaxOp3 = getMinMax3Opcode(MinMaxOp2);
5823
5824 if (Op0.getOpcode() == MinMaxOp2 && Op0.hasOneUse()) {
5825 // (maxnum (maxnum a, b), c) -> (maxnum3 a, b, c)
5826 SDValue A = Op0.getOperand(0);
5827 SDValue B = Op0.getOperand(1);
5828 SDValue C = Op1;
5829 return DCI.DAG.getNode(MinMaxOp3, SDLoc(N), VT, A, B, C, N->getFlags());
5830 } else if (Op1.getOpcode() == MinMaxOp2 && Op1.hasOneUse()) {
5831 // (maxnum a, (maxnum b, c)) -> (maxnum3 a, b, c)
5832 SDValue A = Op0;
5833 SDValue B = Op1.getOperand(0);
5834 SDValue C = Op1.getOperand(1);
5835 return DCI.DAG.getNode(MinMaxOp3, SDLoc(N), VT, A, B, C, N->getFlags());
5836 }
5837 return SDValue();
5838}
5839
5842 CodeGenOptLevel OptLevel) {
5843 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
5844
5845 // Don't do anything at less than -O2.
5846 if (OptLevel < CodeGenOptLevel::Default)
5847 return SDValue();
5848
5849 SelectionDAG &DAG = DCI.DAG;
5850 SDLoc DL(N);
5851 EVT VT = N->getValueType(0);
5852 bool IsSigned = N->getOpcode() == ISD::SREM;
5853 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
5854
5855 const SDValue &Num = N->getOperand(0);
5856 const SDValue &Den = N->getOperand(1);
5857
5858 for (const SDNode *U : Num->users()) {
5859 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
5860 U->getOperand(1) == Den) {
5861 // Num % Den -> Num - (Num / Den) * Den
5862 return DAG.getNode(ISD::SUB, DL, VT, Num,
5863 DAG.getNode(ISD::MUL, DL, VT,
5864 DAG.getNode(DivOpc, DL, VT, Num, Den),
5865 Den));
5866 }
5867 }
5868 return SDValue();
5869}
5870
5871// (sign_extend|zero_extend (mul|shl) x, y) -> (mul.wide x, y)
5873 CodeGenOptLevel OptLevel) {
5874 if (OptLevel == CodeGenOptLevel::None)
5875 return SDValue();
5876
5877 SDValue Op = N->getOperand(0);
5878 if (!Op.hasOneUse())
5879 return SDValue();
5880 EVT ToVT = N->getValueType(0);
5881 EVT FromVT = Op.getValueType();
5882 if (!((ToVT == MVT::i32 && FromVT == MVT::i16) ||
5883 (ToVT == MVT::i64 && FromVT == MVT::i32)))
5884 return SDValue();
5885 if (!(Op.getOpcode() == ISD::MUL ||
5886 (Op.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Op.getOperand(1)))))
5887 return SDValue();
5888
5889 SDLoc DL(N);
5890 unsigned ExtOpcode = N->getOpcode();
5891 unsigned Opcode = 0;
5892 if (ExtOpcode == ISD::SIGN_EXTEND && Op->getFlags().hasNoSignedWrap())
5893 Opcode = NVPTXISD::MUL_WIDE_SIGNED;
5894 else if (ExtOpcode == ISD::ZERO_EXTEND && Op->getFlags().hasNoUnsignedWrap())
5895 Opcode = NVPTXISD::MUL_WIDE_UNSIGNED;
5896 else
5897 return SDValue();
5898 SDValue RHS = Op.getOperand(1);
5899 if (Op.getOpcode() == ISD::SHL) {
5900 const auto ShiftAmt = Op.getConstantOperandVal(1);
5901 const auto MulVal = APInt(ToVT.getSizeInBits(), 1) << ShiftAmt;
5902 RHS = DCI.DAG.getConstant(MulVal, DL, ToVT);
5903 }
5904 return DCI.DAG.getNode(Opcode, DL, ToVT, Op.getOperand(0), RHS);
5905}
5906
5912
5913/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
5914/// that can be demoted to \p OptSize bits without loss of information. The
5915/// signedness of the operand, if determinable, is placed in \p S.
5917 unsigned OptSize,
5918 OperandSignedness &S) {
5919 S = Unknown;
5920
5921 if (Op.getOpcode() == ISD::SIGN_EXTEND ||
5922 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
5923 EVT OrigVT = Op.getOperand(0).getValueType();
5924 if (OrigVT.getFixedSizeInBits() <= OptSize) {
5925 S = Signed;
5926 return true;
5927 }
5928 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
5929 EVT OrigVT = Op.getOperand(0).getValueType();
5930 if (OrigVT.getFixedSizeInBits() <= OptSize) {
5931 S = Unsigned;
5932 return true;
5933 }
5934 }
5935
5936 return false;
5937}
5938
5939/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
5940/// be demoted to \p OptSize bits without loss of information. If the operands
5941/// contain a constant, it should appear as the RHS operand. The signedness of
5942/// the operands is placed in \p IsSigned.
5944 unsigned OptSize,
5945 bool &IsSigned) {
5946 OperandSignedness LHSSign;
5947
5948 // The LHS operand must be a demotable op
5949 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
5950 return false;
5951
5952 // We should have been able to determine the signedness from the LHS
5953 if (LHSSign == Unknown)
5954 return false;
5955
5956 IsSigned = (LHSSign == Signed);
5957
5958 // The RHS can be a demotable op or a constant
5960 const APInt &Val = CI->getAPIntValue();
5961 if (LHSSign == Unsigned) {
5962 return Val.isIntN(OptSize);
5963 } else {
5964 return Val.isSignedIntN(OptSize);
5965 }
5966 } else {
5967 OperandSignedness RHSSign;
5968 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
5969 return false;
5970
5971 return LHSSign == RHSSign;
5972 }
5973}
5974
5975/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
5976/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
5977/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
5978/// amount.
5981 EVT MulType = N->getValueType(0);
5982 if (MulType != MVT::i32 && MulType != MVT::i64) {
5983 return SDValue();
5984 }
5985
5986 SDLoc DL(N);
5987 unsigned OptSize = MulType.getSizeInBits() >> 1;
5988 SDValue LHS = N->getOperand(0);
5989 SDValue RHS = N->getOperand(1);
5990
5991 // Canonicalize the multiply so the constant (if any) is on the right
5992 if (N->getOpcode() == ISD::MUL) {
5993 if (isa<ConstantSDNode>(LHS)) {
5994 std::swap(LHS, RHS);
5995 }
5996 }
5997
5998 // If we have a SHL, determine the actual multiply amount
5999 if (N->getOpcode() == ISD::SHL) {
6001 if (!ShlRHS) {
6002 return SDValue();
6003 }
6004
6005 APInt ShiftAmt = ShlRHS->getAPIntValue();
6006 unsigned BitWidth = MulType.getSizeInBits();
6007 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
6008 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
6009 RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
6010 } else {
6011 return SDValue();
6012 }
6013 }
6014
6015 bool Signed;
6016 // Verify that our operands are demotable
6017 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
6018 return SDValue();
6019 }
6020
6021 EVT DemotedVT;
6022 if (MulType == MVT::i32) {
6023 DemotedVT = MVT::i16;
6024 } else {
6025 DemotedVT = MVT::i32;
6026 }
6027
6028 // Truncate the operands to the correct size. Note that these are just for
6029 // type consistency and will (likely) be eliminated in later phases.
6030 SDValue TruncLHS =
6031 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
6032 SDValue TruncRHS =
6033 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
6034
6035 unsigned Opc;
6036 if (Signed) {
6037 Opc = NVPTXISD::MUL_WIDE_SIGNED;
6038 } else {
6039 Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
6040 }
6041
6042 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
6043}
6044
6045static bool isConstOne(const SDValue &Operand) {
6046 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
6047 return Const && Const->getZExtValue() == 1;
6048}
6049
6051 if (Add->getOpcode() != ISD::ADD)
6052 return SDValue();
6053
6054 if (isConstOne(Add->getOperand(0)))
6055 return Add->getOperand(1);
6056
6057 if (isConstOne(Add->getOperand(1)))
6058 return Add->getOperand(0);
6059
6060 return SDValue();
6061}
6062
6065
6067 SDValue Mul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
6068 return DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, X);
6069 }
6070
6071 return SDValue();
6072}
6073
6075 SDLoc DL,
6077 if (Select->getOpcode() != ISD::SELECT)
6078 return SDValue();
6079
6080 SDValue Cond = Select->getOperand(0);
6081
6082 unsigned ConstOpNo;
6083 if (isConstOne(Select->getOperand(1)))
6084 ConstOpNo = 1;
6085 else if (isConstOne(Select->getOperand(2)))
6086 ConstOpNo = 2;
6087 else
6088 return SDValue();
6089
6090 SDValue Y = Select->getOperand((ConstOpNo == 1) ? 2 : 1);
6091
6092 // Do not combine if the resulting sequence is not obviously profitable.
6094 return SDValue();
6095
6096 SDValue NewMul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
6097
6098 return DCI.DAG.getNode(ISD::SELECT, DL, VT, Cond,
6099 (ConstOpNo == 1) ? X : NewMul,
6100 (ConstOpNo == 1) ? NewMul : X);
6101}
6102
6103static SDValue
6106
6107 EVT VT = N0.getValueType();
6108 if (VT.isVector())
6109 return SDValue();
6110
6111 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6112 return SDValue();
6113
6114 SDLoc DL(N);
6115
6116 // (mul x, (add y, 1)) -> (add (mul x, y), x)
6117 if (SDValue Res = combineMADConstOne(N0, N1, VT, DL, DCI))
6118 return Res;
6119 if (SDValue Res = combineMADConstOne(N1, N0, VT, DL, DCI))
6120 return Res;
6121
6122 // (mul x, (select y, 1)) -> (select (mul x, y), x)
6123 if (SDValue Res = combineMulSelectConstOne(N0, N1, VT, DL, DCI))
6124 return Res;
6125 if (SDValue Res = combineMulSelectConstOne(N1, N0, VT, DL, DCI))
6126 return Res;
6127
6128 return SDValue();
6129}
6130
6131/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
6134 CodeGenOptLevel OptLevel) {
6135 if (OptLevel == CodeGenOptLevel::None)
6136 return SDValue();
6137
6138 if (SDValue Ret = TryMULWIDECombine(N, DCI))
6139 return Ret;
6140
6141 SDValue N0 = N->getOperand(0);
6142 SDValue N1 = N->getOperand(1);
6143 return PerformMULCombineWithOperands(N, N0, N1, DCI);
6144}
6145
6146/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
6149 CodeGenOptLevel OptLevel) {
6150 if (OptLevel > CodeGenOptLevel::None) {
6151 // Try mul.wide combining at OptLevel > 0
6152 if (SDValue Ret = TryMULWIDECombine(N, DCI))
6153 return Ret;
6154 }
6155
6156 return SDValue();
6157}
6158
6161 unsigned int SmVersion) {
6162 EVT CCType = N->getValueType(0);
6163 SDValue A = N->getOperand(0);
6164 SDValue B = N->getOperand(1);
6165
6166 EVT AType = A.getValueType();
6167 if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
6168 return SDValue();
6169
6170 if (A.getValueType() == MVT::v2bf16 && SmVersion < 90)
6171 return SDValue();
6172
6173 SDLoc DL(N);
6174 // setp.f16x2 returns two scalar predicates, which we need to
6175 // convert back to v2i1. The returned result will be scalarized by
6176 // the legalizer, but the comparison will remain a single vector
6177 // instruction.
6178 SDValue CCNode = DCI.DAG.getNode(
6179 A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2
6181 DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
6182 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
6183 CCNode.getValue(1));
6184}
6185
6188 SDValue Vector = N->getOperand(0);
6189 if (Vector->getOpcode() == ISD::FREEZE)
6190 Vector = Vector->getOperand(0);
6191 SDLoc DL(N);
6192 EVT VectorVT = Vector.getValueType();
6193 if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() &&
6194 IsPTXVectorType(VectorVT.getSimpleVT()))
6195 return SDValue(); // Native vector loads already combine nicely w/
6196 // extract_vector_elt.
6197 // Don't mess with singletons or packed types (v2*32, v2*16, v4i8 and v8i8),
6198 // we already handle them OK.
6199 if (VectorVT.getVectorNumElements() == 1 ||
6200 NVPTX::isPackedVectorTy(VectorVT) || VectorVT == MVT::v8i8)
6201 return SDValue();
6202
6203 // Don't mess with undef values as sra may be simplified to 0, not undef.
6204 if (Vector->isUndef() || ISD::allOperandsUndef(Vector.getNode()))
6205 return SDValue();
6206
6207 uint64_t VectorBits = VectorVT.getSizeInBits();
6208 // We only handle the types we can extract in-register.
6209 if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
6210 return SDValue();
6211
6212 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(N->getOperand(1));
6213 // Index == 0 is handled by generic DAG combiner.
6214 if (!Index || Index->getZExtValue() == 0)
6215 return SDValue();
6216
6217 MVT IVT = MVT::getIntegerVT(VectorBits);
6218 EVT EltVT = VectorVT.getVectorElementType();
6219 EVT EltIVT = EltVT.changeTypeToInteger();
6220 uint64_t EltBits = EltVT.getScalarSizeInBits();
6221
6222 SDValue Result = DCI.DAG.getNode(
6223 ISD::TRUNCATE, DL, EltIVT,
6224 DCI.DAG.getNode(
6225 ISD::SRA, DL, IVT, DCI.DAG.getNode(ISD::BITCAST, DL, IVT, Vector),
6226 DCI.DAG.getConstant(Index->getZExtValue() * EltBits, DL, IVT)));
6227
6228 // If element has non-integer type, bitcast it back to the expected type.
6229 if (EltVT != EltIVT)
6230 Result = DCI.DAG.getNode(ISD::BITCAST, DL, EltVT, Result);
6231 // Past legalizer, we may need to extent i8 -> i16 to match the register type.
6232 if (EltVT != N->getValueType(0))
6233 Result = DCI.DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0), Result);
6234
6235 return Result;
6236}
6237
6238/// Transform patterns like:
6239/// (select (ugt shift_amt, BitWidth-1), 0, (srl/shl x, shift_amt))
6240/// (select (ult shift_amt, BitWidth), (srl/shl x, shift_amt), 0)
6241/// Into:
6242/// (NVPTXISD::SRL_CLAMP x, shift_amt) or (NVPTXISD::SHL_CLAMP x, shift_amt)
6243///
6244/// These patterns arise from C/C++ code like `shift >= 32 ? 0 : x >> shift`
6245/// which guards against undefined behavior. PTX shr/shl instructions clamp
6246/// shift amounts >= BitWidth to produce 0 for logical shifts, making the
6247/// guard redundant.
6248///
6249/// Note: We only handle SRL and SHL, not SRA, because arithmetic right
6250/// shifts could produce 0 or -1 when shift >= BitWidth.
6251/// Note: We don't handle uge or ule. These don't appear because of
6252/// canonicalization.
6255 if (!DCI.isAfterLegalizeDAG())
6256 return SDValue();
6257
6258 using namespace SDPatternMatch;
6259 unsigned BitWidth = N->getValueType(0).getSizeInBits();
6260 SDValue ShiftAmt, ShiftOp;
6261
6262 // Match logical shifts where the shift amount in the guard matches the shift
6263 // amount in the operation.
6264 auto LogicalShift =
6265 m_AllOf(m_Value(ShiftOp),
6266 m_AnyOf(m_Srl(m_Value(), m_TruncOrSelf(m_Deferred(ShiftAmt))),
6267 m_Shl(m_Value(), m_TruncOrSelf(m_Deferred(ShiftAmt)))));
6268
6269 // shift_amt > BitWidth-1 ? 0 : shift_op
6270 bool MatchedUGT =
6271 sd_match(N, m_Select(m_SetCC(m_Value(ShiftAmt),
6273 m_SpecificCondCode(ISD::SETUGT)),
6274 m_Zero(), LogicalShift));
6275 // shift_amt < BitWidth ? shift_op : 0
6276 bool MatchedULT =
6277 !MatchedUGT &&
6278 sd_match(N, m_Select(m_SetCC(m_Value(ShiftAmt),
6280 m_SpecificCondCode(ISD::SETULT)),
6281 LogicalShift, m_Zero()));
6282
6283 if (!MatchedUGT && !MatchedULT)
6284 return SDValue();
6285
6286 // Return a clamp shift operation, which has the same semantics as PTX shift.
6287 unsigned ClampOpc = ShiftOp.getOpcode() == ISD::SRL ? NVPTXISD::SRL_CLAMP
6288 : NVPTXISD::SHL_CLAMP;
6289 return DCI.DAG.getNode(ClampOpc, SDLoc(N), ShiftOp.getValueType(),
6290 ShiftOp.getOperand(0), ShiftOp.getOperand(1));
6291}
6292
6295 SDValue VA = N->getOperand(1);
6296 EVT VectorVT = VA.getValueType();
6297 if (VectorVT != MVT::v4i8)
6298 return SDValue();
6299
6300 // We need to split vselect into individual per-element operations Because we
6301 // use BFE/BFI instruction for byte extraction/insertion, we do end up with
6302 // 32-bit values, so we may as well do comparison as i32 to avoid conversions
6303 // to/from i16 normally used for i8 values.
6305 SDLoc DL(N);
6306 SDValue VCond = N->getOperand(0);
6307 SDValue VB = N->getOperand(2);
6308 for (int I = 0; I < 4; ++I) {
6309 SDValue C = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i1, VCond,
6310 DCI.DAG.getConstant(I, DL, MVT::i32));
6311 SDValue EA = DCI.DAG.getAnyExtOrTrunc(
6312 DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VA,
6313 DCI.DAG.getConstant(I, DL, MVT::i32)),
6314 DL, MVT::i32);
6315 SDValue EB = DCI.DAG.getAnyExtOrTrunc(
6316 DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VB,
6317 DCI.DAG.getConstant(I, DL, MVT::i32)),
6318 DL, MVT::i32);
6319 E.push_back(DCI.DAG.getAnyExtOrTrunc(
6320 DCI.DAG.getNode(ISD::SELECT, DL, MVT::i32, C, EA, EB), DL, MVT::i8));
6321 }
6322 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i8, E);
6323}
6324
6325static SDValue
6327 auto VT = N->getValueType(0);
6328 if (!DCI.isAfterLegalizeDAG() ||
6329 // only process v2*16 types
6330 !(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector() &&
6331 VT.getVectorNumElements() == 2))
6332 return SDValue();
6333
6334 auto Op0 = N->getOperand(0);
6335 auto Op1 = N->getOperand(1);
6336
6337 // Start out by assuming we want to take the lower 2 bytes of each i32
6338 // operand.
6339 uint64_t Op0Bytes = 0x10;
6340 uint64_t Op1Bytes = 0x54;
6341
6342 std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes},
6343 {&Op1, &Op1Bytes}};
6344
6345 // Check that each operand is an i16, truncated from an i32 operand. We'll
6346 // select individual bytes from those original operands. Optionally, fold in a
6347 // shift right of that original operand.
6348 for (auto &[Op, OpBytes] : OpData) {
6349 // Eat up any bitcast
6350 if (Op->getOpcode() == ISD::BITCAST)
6351 *Op = Op->getOperand(0);
6352
6353 if (!(Op->getValueType() == MVT::i16 && Op->getOpcode() == ISD::TRUNCATE &&
6354 Op->getOperand(0).getValueType() == MVT::i32))
6355 return SDValue();
6356
6357 // If the truncate has multiple uses, this optimization can increase
6358 // register pressure
6359 if (!Op->hasOneUse())
6360 return SDValue();
6361
6362 *Op = Op->getOperand(0);
6363
6364 // Optionally, fold in a shift-right of the original operand and let permute
6365 // pick the two higher bytes of the original value directly.
6366 if (Op->getOpcode() == ISD::SRL && isa<ConstantSDNode>(Op->getOperand(1))) {
6367 if (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue() == 16) {
6368 // Shift the PRMT byte selector to pick upper bytes from each respective
6369 // value, instead of the lower ones: 0x10 -> 0x32, 0x54 -> 0x76
6370 assert((*OpBytes == 0x10 || *OpBytes == 0x54) &&
6371 "PRMT selector values out of range");
6372 *OpBytes += 0x22;
6373 *Op = Op->getOperand(0);
6374 }
6375 }
6376 }
6377
6378 SDLoc DL(N);
6379 auto &DAG = DCI.DAG;
6380
6381 auto PRMT =
6382 getPRMT(DAG.getBitcast(MVT::i32, Op0), DAG.getBitcast(MVT::i32, Op1),
6383 (Op1Bytes << 8) | Op0Bytes, DL, DAG);
6384 return DAG.getBitcast(VT, PRMT);
6385}
6386
6389 auto *ASCN1 = cast<AddrSpaceCastSDNode>(N);
6390
6391 if (auto *ASCN2 = dyn_cast<AddrSpaceCastSDNode>(ASCN1->getOperand(0))) {
6392 assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace());
6393
6394 // Fold asc[B -> A](asc[A -> B](x)) -> x
6395 if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace())
6396 return ASCN2->getOperand(0);
6397 }
6398
6399 return SDValue();
6400}
6401
6402// Given a constant selector value and a prmt mode, return the selector value
6403// normalized to the generic prmt mode. See the PTX ISA documentation for more
6404// details:
6405// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-prmt
6406static APInt getPRMTSelector(const APInt &Selector, unsigned Mode) {
6407 assert(Selector.getBitWidth() == 32 && "PRMT must have i32 operands");
6408
6410 return Selector;
6411
6412 const unsigned V = Selector.trunc(2).getZExtValue();
6413
6414 const auto GetSelector = [](unsigned S0, unsigned S1, unsigned S2,
6415 unsigned S3) {
6416 return APInt(32, S0 | (S1 << 4) | (S2 << 8) | (S3 << 12));
6417 };
6418
6419 switch (Mode) {
6421 return GetSelector(V, V + 1, V + 2, V + 3);
6423 return GetSelector(V, (V - 1) & 7, (V - 2) & 7, (V - 3) & 7);
6425 return GetSelector(V, V, V, V);
6427 return GetSelector(V, std::max(V, 1U), std::max(V, 2U), 3U);
6429 return GetSelector(0, std::min(V, 1U), std::min(V, 2U), V);
6431 unsigned V1 = (V & 1) << 1;
6432 return GetSelector(V1, V1 + 1, V1, V1 + 1);
6433 }
6434 default:
6435 llvm_unreachable("Invalid PRMT mode");
6436 }
6437}
6438
6439static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode) {
6440 assert(A.getBitWidth() == 32 && B.getBitWidth() == 32 &&
6441 Selector.getBitWidth() == 32 && "PRMT must have i32 operands");
6442 // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}
6443 APInt BitField = B.concat(A);
6444 APInt SelectorVal = getPRMTSelector(Selector, Mode);
6445 APInt Result(32, 0);
6446 for (unsigned I : llvm::seq(4U)) {
6447 APInt Sel = SelectorVal.extractBits(4, I * 4);
6448 unsigned Idx = Sel.getLoBits(3).getZExtValue();
6449 unsigned Sign = Sel.getHiBits(1).getZExtValue();
6450 APInt Byte = BitField.extractBits(8, Idx * 8);
6451 if (Sign)
6452 Byte = Byte.ashr(8);
6453 Result.insertBits(Byte, I * 8);
6454 }
6455 return Result;
6456}
6457
6459 CodeGenOptLevel OptLevel) {
6460 if (OptLevel == CodeGenOptLevel::None)
6461 return SDValue();
6462
6463 // Constant fold PRMT
6464 if (isa<ConstantSDNode>(N->getOperand(0)) &&
6465 isa<ConstantSDNode>(N->getOperand(1)) &&
6466 isa<ConstantSDNode>(N->getOperand(2)))
6467 return DCI.DAG.getConstant(computePRMT(N->getConstantOperandAPInt(0),
6468 N->getConstantOperandAPInt(1),
6469 N->getConstantOperandAPInt(2),
6470 N->getConstantOperandVal(3)),
6471 SDLoc(N), N->getValueType(0));
6472 return SDValue();
6473}
6474
6475// During call lowering we wrap the return values in a ProxyReg node which
6476// depend on the chain value produced by the completed call. This ensures that
6477// the full call is emitted in cases where libcalls are used to legalize
6478// operations. To improve the functioning of other DAG combines we pull all
6479// operations we can through one of these nodes, ensuring that the ProxyReg
6480// directly wraps a load. That is:
6481//
6482// (ProxyReg (zext (load retval0))) => (zext (ProxyReg (load retval0)))
6483//
6486 switch (R.getOpcode()) {
6487 case ISD::TRUNCATE:
6488 case ISD::ANY_EXTEND:
6489 case ISD::SIGN_EXTEND:
6490 case ISD::ZERO_EXTEND:
6491 case ISD::BITCAST: {
6492 if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI))
6493 return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), V);
6494 return SDValue();
6495 }
6496 case ISD::SHL:
6497 case ISD::SRL:
6498 case ISD::SRA:
6499 case ISD::OR: {
6500 if (SDValue A = sinkProxyReg(R.getOperand(0), Chain, DCI))
6501 if (SDValue B = sinkProxyReg(R.getOperand(1), Chain, DCI))
6502 return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), A, B);
6503 return SDValue();
6504 }
6505 case ISD::Constant:
6506 return R;
6507 case ISD::LOAD:
6508 case NVPTXISD::LoadV2:
6509 case NVPTXISD::LoadV4: {
6510 return DCI.DAG.getNode(NVPTXISD::ProxyReg, SDLoc(R), R.getValueType(),
6511 {Chain, R});
6512 }
6513 case ISD::BUILD_VECTOR: {
6514 if (DCI.isBeforeLegalize())
6515 return SDValue();
6516
6518 for (auto &Op : R->ops()) {
6519 SDValue V = sinkProxyReg(Op, Chain, DCI);
6520 if (!V)
6521 return SDValue();
6522 Ops.push_back(V);
6523 }
6524 return DCI.DAG.getNode(ISD::BUILD_VECTOR, SDLoc(R), R.getValueType(), Ops);
6525 }
6527 if (DCI.isBeforeLegalize())
6528 return SDValue();
6529
6530 if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI))
6532 R.getValueType(), V, R.getOperand(1));
6533 return SDValue();
6534 }
6535 default:
6536 return SDValue();
6537 }
6538}
6539
6542
6543 SDValue Chain = N->getOperand(0);
6544 SDValue Reg = N->getOperand(1);
6545
6546 // If the ProxyReg is not wrapping a load, try to pull the operations through
6547 // the ProxyReg.
6548 if (Reg.getOpcode() != ISD::LOAD) {
6549 if (SDValue V = sinkProxyReg(Reg, Chain, DCI))
6550 return V;
6551 }
6552
6553 return SDValue();
6554}
6555
6556SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
6557 DAGCombinerInfo &DCI) const {
6559 switch (N->getOpcode()) {
6560 default:
6561 break;
6562 case ISD::ADD:
6563 return PerformADDCombine(N, DCI, OptLevel);
6564 case ISD::ADDRSPACECAST:
6565 return combineADDRSPACECAST(N, DCI);
6566 case ISD::SIGN_EXTEND:
6567 case ISD::ZERO_EXTEND:
6568 return combineMulWide(N, DCI, OptLevel);
6569 case ISD::BUILD_VECTOR:
6570 return PerformBUILD_VECTORCombine(N, DCI);
6572 return PerformEXTRACTCombine(N, DCI);
6573 case ISD::FADD:
6574 return PerformFADDCombine(N, DCI, OptLevel);
6575 case ISD::FMAXNUM:
6576 case ISD::FMINNUM:
6577 case ISD::FMAXIMUM:
6578 case ISD::FMINIMUM:
6579 case ISD::FMAXIMUMNUM:
6580 case ISD::FMINIMUMNUM:
6581 return PerformFMinMaxCombine(N, DCI, STI.getPTXVersion(),
6582 STI.getSmVersion());
6583 case ISD::LOAD:
6584 case NVPTXISD::LoadV2:
6585 case NVPTXISD::LoadV4:
6586 return combineLOAD(N, DCI, STI);
6587 case ISD::MUL:
6588 return PerformMULCombine(N, DCI, OptLevel);
6589 case NVPTXISD::PRMT:
6590 return combinePRMT(N, DCI, OptLevel);
6591 case NVPTXISD::ProxyReg:
6592 return combineProxyReg(N, DCI);
6593 case ISD::SETCC:
6594 return PerformSETCCCombine(N, DCI, STI.getSmVersion());
6595 case ISD::SHL:
6596 return PerformSHLCombine(N, DCI, OptLevel);
6597 case ISD::SREM:
6598 case ISD::UREM:
6599 return PerformREMCombine(N, DCI, OptLevel);
6600 case ISD::STORE:
6601 case NVPTXISD::StoreV2:
6602 case NVPTXISD::StoreV4:
6603 return combineSTORE(N, DCI, STI);
6604 case ISD::SELECT:
6605 return PerformSELECTShiftCombine(N, DCI);
6606 case ISD::VSELECT:
6607 return PerformVSELECTCombine(N, DCI);
6608 }
6609 return SDValue();
6610}
6611
6614 // Handle bitcasting to v2i8 without hitting the default promotion
6615 // strategy which goes through stack memory.
6616 SDValue Op(Node, 0);
6617 EVT ToVT = Op->getValueType(0);
6618 if (ToVT != MVT::v2i8) {
6619 return;
6620 }
6621
6622 // Bitcast to i16 and unpack elements into a vector
6623 SDLoc DL(Node);
6624 SDValue AsInt = DAG.getBitcast(MVT::i16, Op->getOperand(0));
6625 SDValue Vec0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, AsInt);
6626 SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
6627 SDValue Vec1 =
6628 DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
6629 DAG.getNode(ISD::SRL, DL, MVT::i16, {AsInt, Const8}));
6630 Results.push_back(
6631 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i8, {Vec0, Vec1}));
6632}
6633
6636 SDValue Chain = N->getOperand(0);
6637 SDValue Intrin = N->getOperand(1);
6638 SDLoc DL(N);
6639
6640 // Get the intrinsic ID
6641 unsigned IntrinNo = Intrin.getNode()->getAsZExtVal();
6642 switch (IntrinNo) {
6643 default:
6644 return;
6645 case Intrinsic::nvvm_ldu_global_i:
6646 case Intrinsic::nvvm_ldu_global_f:
6647 case Intrinsic::nvvm_ldu_global_p: {
6648 EVT ResVT = N->getValueType(0);
6649
6650 if (ResVT.isVector()) {
6651 // Vector LDG/LDU
6652
6653 unsigned NumElts = ResVT.getVectorNumElements();
6654 EVT EltVT = ResVT.getVectorElementType();
6655
6656 // Since LDU/LDG are target nodes, we cannot rely on DAG type
6657 // legalization.
6658 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
6659 // loaded type to i16 and propagate the "real" type as the memory type.
6660 bool NeedTrunc = false;
6661 if (EltVT.getSizeInBits() < 16) {
6662 EltVT = MVT::i16;
6663 NeedTrunc = true;
6664 }
6665
6666 unsigned Opcode = 0;
6667 SDVTList LdResVTs;
6668
6669 switch (NumElts) {
6670 default:
6671 return;
6672 case 2:
6673 Opcode = NVPTXISD::LDUV2;
6674 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
6675 break;
6676 case 4: {
6677 Opcode = NVPTXISD::LDUV4;
6678 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
6679 LdResVTs = DAG.getVTList(ListVTs);
6680 break;
6681 }
6682 }
6683
6684 SmallVector<SDValue, 8> OtherOps;
6685
6686 // Copy regular operands
6687
6688 OtherOps.push_back(Chain); // Chain
6689 // Skip operand 1 (intrinsic ID)
6690 // Others
6691 OtherOps.append(N->op_begin() + 2, N->op_end());
6692
6694
6695 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
6696 MemSD->getMemoryVT(),
6697 MemSD->getMemOperand());
6698
6699 SmallVector<SDValue, 4> ScalarRes;
6700
6701 for (unsigned i = 0; i < NumElts; ++i) {
6702 SDValue Res = NewLD.getValue(i);
6703 if (NeedTrunc)
6704 Res =
6705 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
6706 ScalarRes.push_back(Res);
6707 }
6708
6709 SDValue LoadChain = NewLD.getValue(NumElts);
6710
6711 SDValue BuildVec =
6712 DAG.getBuildVector(ResVT, DL, ScalarRes);
6713
6714 Results.push_back(BuildVec);
6715 Results.push_back(LoadChain);
6716 } else {
6717 // i8 LDG/LDU
6718 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
6719 "Custom handling of non-i8 ldu/ldg?");
6720
6721 // Just copy all operands as-is
6723
6724 // Force output to i16
6725 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
6726
6728
6729 // We make sure the memory type is i8, which will be used during isel
6730 // to select the proper instruction.
6731 SDValue NewLD =
6733 MVT::i8, MemSD->getMemOperand());
6734
6735 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
6736 NewLD.getValue(0)));
6737 Results.push_back(NewLD.getValue(1));
6738 }
6739 return;
6740 }
6741
6742 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
6743 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
6744 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
6745 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
6746 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
6747 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
6748 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
6749 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
6750 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
6751 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
6752 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
6753 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
6754 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
6755 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
6756 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
6757 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
6758 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
6759 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
6760 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
6761 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
6762 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
6763 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
6764 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
6765 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
6766 if (auto Res = lowerTcgen05Ld(N, DAG)) {
6767 Results.push_back(Res->first);
6768 Results.push_back(Res->second);
6769 }
6770 return;
6771
6772 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4:
6773 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8:
6774 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16:
6775 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32:
6776 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64:
6777 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128:
6778 if (auto Res = lowerTcgen05Ld(N, DAG, /*HasOffset=*/true)) {
6779 Results.push_back(Res->first);
6780 Results.push_back(Res->second);
6781 }
6782 return;
6783 }
6784}
6785
6788 // Change the CopyFromReg to output 2 64-bit results instead of a 128-bit
6789 // result so that it can pass the legalization
6790 SDLoc DL(N);
6791 SDValue Chain = N->getOperand(0);
6792 SDValue Reg = N->getOperand(1);
6793 SDValue Glue = N->getOperand(2);
6794
6795 assert(Reg.getValueType() == MVT::i128 &&
6796 "Custom lowering for CopyFromReg with 128-bit reg only");
6797 SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(1),
6798 N->getValueType(2)};
6799 SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue};
6800
6801 SDValue NewValue = DAG.getNode(ISD::CopyFromReg, DL, ResultsType, NewOps);
6802 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
6803 {NewValue.getValue(0), NewValue.getValue(1)});
6804
6805 Results.push_back(Pair);
6806 Results.push_back(NewValue.getValue(2));
6807 Results.push_back(NewValue.getValue(3));
6808}
6809
6811 const TargetLowering &TLI,
6813 SDValue Chain = N->getOperand(0);
6814 SDValue Reg = N->getOperand(1);
6815
6816 MVT VT = TLI.getRegisterType(*DAG.getContext(), Reg.getValueType());
6817
6818 SDValue NewReg = DAG.getAnyExtOrTrunc(Reg, SDLoc(N), VT);
6819 SDValue NewProxy =
6820 DAG.getNode(NVPTXISD::ProxyReg, SDLoc(N), VT, {Chain, NewReg});
6821 SDValue Res = DAG.getAnyExtOrTrunc(NewProxy, SDLoc(N), N->getValueType(0));
6822
6823 Results.push_back(Res);
6824}
6825
6827 const NVPTXSubtarget &STI,
6829 assert(N->getValueType(0) == MVT::i128 &&
6830 "Custom lowering for atomic128 only supports i128");
6831
6833 SDLoc dl(N);
6834
6835 if (!STI.hasAtomSwap128()) {
6838 "Support for b128 atomics introduced in PTX ISA version 8.3 and "
6839 "requires target sm_90.",
6840 dl.getDebugLoc()));
6841
6842 Results.push_back(DAG.getUNDEF(MVT::i128));
6843 Results.push_back(AN->getOperand(0)); // Chain
6844 return;
6845 }
6846
6848 Ops.push_back(AN->getOperand(0)); // Chain
6849 Ops.push_back(AN->getOperand(1)); // Ptr
6850 for (const auto &Op : AN->ops().drop_front(2)) {
6851 // Low part
6852 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i64, Op,
6853 DAG.getIntPtrConstant(0, dl)));
6854 // High part
6855 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i64, Op,
6856 DAG.getIntPtrConstant(1, dl)));
6857 }
6858 unsigned Opcode = N->getOpcode() == ISD::ATOMIC_SWAP
6861 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
6862 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, MVT::i128,
6863 AN->getMemOperand());
6864 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i128,
6865 {Result.getValue(0), Result.getValue(1)}));
6866 Results.push_back(Result.getValue(2));
6867}
6868
6869void NVPTXTargetLowering::ReplaceNodeResults(
6871 switch (N->getOpcode()) {
6872 default:
6873 report_fatal_error("Unhandled custom legalization");
6874 case ISD::BITCAST:
6875 ReplaceBITCAST(N, DAG, Results);
6876 return;
6877 case ISD::LOAD:
6878 case ISD::MLOAD:
6879 replaceLoadVector(N, DAG, Results, STI);
6880 return;
6883 return;
6884 case ISD::CopyFromReg:
6886 return;
6887 case NVPTXISD::ProxyReg:
6888 replaceProxyReg(N, DAG, *this, Results);
6889 return;
6891 case ISD::ATOMIC_SWAP:
6892 replaceAtomicSwap128(N, DAG, STI, Results);
6893 return;
6894 }
6895}
6896
6899 Type *Ty = AI->getValOperand()->getType();
6900
6901 if (AI->isFloatingPointOperation()) {
6903 if (Ty->isHalfTy() && STI.getSmVersion() >= 70 &&
6904 STI.getPTXVersion() >= 63)
6906 if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 &&
6907 STI.getPTXVersion() >= 78)
6909 if (Ty->isFloatTy())
6911 if (Ty->isDoubleTy() && STI.hasAtomAddF64())
6913 }
6915 }
6916
6917 assert(Ty->isIntegerTy() && "Ty should be integer at this point");
6918 const unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
6919
6920 switch (AI->getOperation()) {
6921 default:
6924 if (BitWidth == 128)
6926 [[fallthrough]];
6930 switch (BitWidth) {
6931 case 8:
6932 case 16:
6934 case 32:
6936 case 64:
6937 if (STI.hasAtomBitwise64())
6940 case 128:
6942 default:
6943 llvm_unreachable("unsupported width encountered");
6944 }
6951 switch (BitWidth) {
6952 case 8:
6953 case 16:
6955 case 32:
6957 case 64:
6958 if (STI.hasAtomMinMax64())
6961 case 128:
6963 default:
6964 llvm_unreachable("unsupported width encountered");
6965 }
6968 switch (BitWidth) {
6969 case 32:
6971 case 8:
6972 case 16:
6973 case 64:
6974 case 128:
6976 default:
6977 llvm_unreachable("unsupported width encountered");
6978 }
6979 }
6980
6982}
6983
6985 const Instruction *I) const {
6986 auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
6987 // When CAS bitwidth is not supported on the hardware, the CAS is emulated
6988 // using a retry loop that uses a higher-bitwidth monotonic CAS. We enforce
6989 // the memory order using explicit fences around the retry loop.
6990 // The memory order of natively supported CAS operations can be enforced
6991 // by lowering to an atom.cas with the right memory synchronizing effect.
6992 // However, atom.cas only supports relaxed, acquire, release and acq_rel.
6993 // So we also use explicit fences for enforcing memory order for
6994 // seq_cast CAS with natively-supported bitwidths.
6995 return CI &&
6996 (cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() <
6997 STI.getMinCmpXchgSizeInBits() ||
6998 CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent);
6999}
7000
7002 const Instruction *I) const {
7003 auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
7004 bool BitwidthSupportedAndIsSeqCst =
7005 CI && CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent &&
7006 cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() >=
7007 STI.getMinCmpXchgSizeInBits();
7008 return BitwidthSupportedAndIsSeqCst ? AtomicOrdering::Acquire
7010}
7011
7013 Instruction *Inst,
7014 AtomicOrdering Ord) const {
7015 if (!isa<AtomicCmpXchgInst>(Inst))
7016 return TargetLoweringBase::emitLeadingFence(Builder, Inst, Ord);
7017
7018 // Specialize for cmpxchg
7019 // Emit a fence.sc leading fence for cmpxchg seq_cst which are not emulated
7020 SyncScope::ID SSID = cast<AtomicCmpXchgInst>(Inst)->getSyncScopeID();
7021 if (isReleaseOrStronger(Ord))
7022 return Builder.CreateFence(Ord == AtomicOrdering::SequentiallyConsistent
7023 ? Ord
7025 SSID);
7026
7027 return nullptr;
7028}
7029
7031 Instruction *Inst,
7032 AtomicOrdering Ord) const {
7033 // Specialize for cmpxchg
7034 if (!isa<AtomicCmpXchgInst>(Inst))
7035 return TargetLoweringBase::emitTrailingFence(Builder, Inst, Ord);
7036
7037 auto *CI = cast<AtomicCmpXchgInst>(Inst);
7038 auto CASWidth =
7039 cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth();
7040 SyncScope::ID SSID = CI->getSyncScopeID();
7041 // Do not emit a trailing fence for cmpxchg seq_cst which are not emulated
7042 if (isAcquireOrStronger(Ord) &&
7044 CASWidth < STI.getMinCmpXchgSizeInBits()))
7045 return Builder.CreateFence(AtomicOrdering::Acquire, SSID);
7046
7047 return nullptr;
7048}
7049
7050// Rather than default to SINT when both UINT and SINT are custom, we only
7051// change the opcode when UINT is not legal and SINT is. UINT is preferred when
7052// both are custom since unsigned CVT instructions can lead to slightly better
7053// SASS code with fewer instructions.
7055 EVT ToVT) const {
7056 if (isOperationLegal(Op, ToVT))
7057 return Op;
7058 switch (Op) {
7059 case ISD::FP_TO_UINT:
7061 return ISD::FP_TO_SINT;
7062 break;
7066 break;
7067 case ISD::VP_FP_TO_UINT:
7068 if (isOperationLegal(ISD::VP_FP_TO_SINT, ToVT))
7069 return ISD::VP_FP_TO_SINT;
7070 break;
7071 default:
7072 break;
7073 }
7074 return Op;
7075}
7076
7077// Pin NVPTXTargetObjectFile's vtables to this file.
7079
7084
7086 const SelectionDAG &DAG, unsigned Depth) {
7087 SDValue A = Op.getOperand(0);
7088 SDValue B = Op.getOperand(1);
7089 ConstantSDNode *Selector = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7090 unsigned Mode = Op.getConstantOperandVal(3);
7091
7092 if (!Selector)
7093 return;
7094
7095 KnownBits AKnown = DAG.computeKnownBits(A, Depth);
7096 KnownBits BKnown = DAG.computeKnownBits(B, Depth);
7097
7098 // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}
7099 assert(AKnown.getBitWidth() == 32 && BKnown.getBitWidth() == 32 &&
7100 "PRMT must have i32 operands");
7101 assert(Known.getBitWidth() == 32 && "PRMT must have i32 result");
7102 KnownBits BitField = BKnown.concat(AKnown);
7103
7104 APInt SelectorVal = getPRMTSelector(Selector->getAPIntValue(), Mode);
7105 for (unsigned I : llvm::seq(4)) {
7106 APInt Sel = SelectorVal.extractBits(4, I * 4);
7107 unsigned Idx = Sel.getLoBits(3).getZExtValue();
7108 unsigned Sign = Sel.getHiBits(1).getZExtValue();
7109 KnownBits Byte = BitField.extractBits(8, Idx * 8);
7110 if (Sign)
7111 Byte = KnownBits::ashr(Byte, 8);
7112 Known.insertBits(Byte, I * 8);
7113 }
7114}
7115
7116static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known) {
7118
7119 // We can't do anything without knowing the sign bit.
7120 auto ExtType = LD->getConstantOperandVal(LD->getNumOperands() - 1);
7121 if (ExtType == ISD::SEXTLOAD)
7122 return;
7123
7124 // ExtLoading to vector types is weird and may not work well with known bits.
7125 auto DestVT = LD->getValueType(0);
7126 if (DestVT.isVector())
7127 return;
7128
7129 assert(Known.getBitWidth() == DestVT.getSizeInBits());
7130 auto ElementBitWidth = NVPTXDAGToDAGISel::getFromTypeWidthForLoad(LD);
7131 Known.Zero.setHighBits(Known.getBitWidth() - ElementBitWidth);
7132}
7133
7135 const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
7136 const SelectionDAG &DAG, unsigned Depth) const {
7137 Known.resetAll();
7138
7139 switch (Op.getOpcode()) {
7140 case NVPTXISD::PRMT:
7141 computeKnownBitsForPRMT(Op, Known, DAG, Depth);
7142 break;
7143 case NVPTXISD::LoadV2:
7144 case NVPTXISD::LoadV4:
7145 case NVPTXISD::LoadV8:
7147 break;
7148 default:
7149 break;
7150 }
7151}
7152
7153static std::pair<APInt, APInt> getPRMTDemandedBits(const APInt &SelectorVal,
7154 const APInt &DemandedBits) {
7155 APInt DemandedLHS = APInt(32, 0);
7156 APInt DemandedRHS = APInt(32, 0);
7157
7158 for (unsigned I : llvm::seq(4)) {
7159 if (DemandedBits.extractBits(8, I * 8).isZero())
7160 continue;
7161
7162 APInt Sel = SelectorVal.extractBits(4, I * 4);
7163 unsigned Idx = Sel.getLoBits(3).getZExtValue();
7164 unsigned Sign = Sel.getHiBits(1).getZExtValue();
7165
7166 APInt &Src = Idx < 4 ? DemandedLHS : DemandedRHS;
7167 unsigned ByteStart = (Idx % 4) * 8;
7168 if (Sign)
7169 Src.setBit(ByteStart + 7);
7170 else
7171 Src.setBits(ByteStart, ByteStart + 8);
7172 }
7173
7174 return {DemandedLHS, DemandedRHS};
7175}
7176
7177// Replace undef with 0 as this is easier for other optimizations such as
7178// known bits.
7180 if (!Op)
7181 return SDValue();
7182 if (Op.isUndef())
7183 return DAG.getConstant(0, SDLoc(), MVT::i32);
7184 return Op;
7185}
7186
7188 const APInt &DemandedBits,
7189 SelectionDAG &DAG,
7190 const TargetLowering &TLI,
7191 unsigned Depth) {
7192 assert(PRMT.getOpcode() == NVPTXISD::PRMT);
7193 SDValue Op0 = PRMT.getOperand(0);
7194 SDValue Op1 = PRMT.getOperand(1);
7195 auto *SelectorConst = dyn_cast<ConstantSDNode>(PRMT.getOperand(2));
7196 if (!SelectorConst)
7197 return SDValue();
7198
7199 unsigned Mode = PRMT.getConstantOperandVal(3);
7200 const APInt Selector = getPRMTSelector(SelectorConst->getAPIntValue(), Mode);
7201
7202 // Try to simplify the PRMT to one of the inputs if the used bytes are all
7203 // from the same input in the correct order.
7204 const unsigned LeadingBytes = DemandedBits.countLeadingZeros() / 8;
7205 const unsigned SelBits = (4 - LeadingBytes) * 4;
7206 if (Selector.getLoBits(SelBits) == APInt(32, 0x3210).getLoBits(SelBits))
7207 return Op0;
7208 if (Selector.getLoBits(SelBits) == APInt(32, 0x7654).getLoBits(SelBits))
7209 return Op1;
7210
7211 auto [DemandedLHS, DemandedRHS] = getPRMTDemandedBits(Selector, DemandedBits);
7212
7213 // Attempt to avoid multi-use ops if we don't need anything from them.
7214 SDValue DemandedOp0 =
7215 TLI.SimplifyMultipleUseDemandedBits(Op0, DemandedLHS, DAG, Depth + 1);
7216 SDValue DemandedOp1 =
7217 TLI.SimplifyMultipleUseDemandedBits(Op1, DemandedRHS, DAG, Depth + 1);
7218
7219 DemandedOp0 = canonicalizePRMTInput(DemandedOp0, DAG);
7220 DemandedOp1 = canonicalizePRMTInput(DemandedOp1, DAG);
7221 if ((DemandedOp0 && DemandedOp0 != Op0) ||
7222 (DemandedOp1 && DemandedOp1 != Op1)) {
7223 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
7224 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
7225 return getPRMT(Op0, Op1, Selector.getZExtValue(), SDLoc(PRMT), DAG);
7226 }
7227
7228 return SDValue();
7229}
7230
7232 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7233 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
7234 Known.resetAll();
7235
7236 switch (Op.getOpcode()) {
7237 case NVPTXISD::PRMT:
7239 *this, Depth)) {
7240 TLO.CombineTo(Op, Result);
7241 return true;
7242 }
7243 break;
7244 default:
7245 break;
7246 }
7247
7248 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
7249 return false;
7250}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
constexpr LLT F32
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombineWithOperands - Try DAG combinations for an ADD with operands N0 and N1.
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformBUILD_VECTORCombine - Target-specific dag combine xforms for ISD::BUILD_VECTOR.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file contains the declarations of entities that describe floating point environment and related ...
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
Register Reg
Register const TargetRegisterInfo * TRI
#define T
NVPTX address space definition.
static bool shouldConvertToIndirectCall(const CallBase *CB, const GlobalAddressSDNode *Func)
static SDValue combineADDRSPACECAST(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< bool > sched4reg("nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false))
static SDValue lowerTcgen05St(SDValue Op, SelectionDAG &DAG)
static SDValue PerformEXTRACTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< NVPTX::DivPrecisionLevel > UsePrecDivF32("nvptx-prec-divf32", cl::Hidden, cl::desc("NVPTX Specific: Override the precision of the lowering for f32 fdiv"), cl::values(clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"), clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754, "2", "Use IEEE Compliant F32 div.rnd if available (default)"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754_NoFTZ, "3", "Use IEEE Compliant F32 div.rnd if available, no FTZ")), cl::init(NVPTX::DivPrecisionLevel::IEEE754))
static bool isConstOne(const SDValue &Operand)
static cl::opt< unsigned > FMAContractLevelOpt("nvptx-fma-level", cl::Hidden, cl::desc("NVPTX Specific: FMA contraction (0: don't do it" " 1: do it 2: do it aggressively"), cl::init(2))
static bool IsPTXVectorType(MVT VT)
static SDValue PerformSELECTShiftCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Transform patterns like: (select (ugt shift_amt, BitWidth-1), 0, (srl/shl x, shift_amt)) (select (ult...
static SDValue lowerLOADi1(LoadSDNode *LD, SelectionDAG &DAG)
static SDValue lowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG)
static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG, const DataLayout &DL, const TargetLowering &TL)
static SDValue lowerROT(SDValue Op, SelectionDAG &DAG)
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, LLVMContext &Ctx, CallingConv::ID CallConv, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > &Offsets, uint64_t StartingOffset=0)
ComputePTXValueVTs - For the given Type Ty, returns the set of primitive legal-ish MVTs that compose ...
static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static void replaceAtomicSwap128(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI, SmallVectorImpl< SDValue > &Results)
static unsigned getMinMax3Opcode(unsigned MinMax2Opcode)
Get 3-input version of a 2-input min/max opcode.
static SDValue lowerSTOREVector(SDValue Op, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static SDValue lowerLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static void replaceProxyReg(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, SmallVectorImpl< SDValue > &Results)
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG)
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue combinePRMT(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue combinePackingMovIntoStore(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned Front, unsigned Back)
Fold packing movs into a store.
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl, SelectionDAG &DAG, T GetElement)
static SDValue getExtractVectorizedValue(SDValue V, unsigned I, EVT VT, const SDLoc &dl, SelectionDAG &DAG)
static unsigned canMergeParamLoadStoresStartingAt(unsigned Idx, uint32_t AccessSize, const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment)
static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C)
static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG)
static SDValue PerformFMinMaxCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned PTXVersion, unsigned SmVersion)
PerformFMinMaxCombine - Combine (fmaxnum (fmaxnum a, b), c) into (fmaxnum3 a, b, c).
static SDValue combineMulWide(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static std::optional< unsigned > getScalar3OpcodeForReduction(unsigned ReductionOpcode)
Get 3-input scalar reduction opcode.
static SDValue lowerIntrinsicWChain(SDValue Op, SelectionDAG &DAG)
static bool isConstZero(const SDValue &Operand)
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG)
static SDValue LowerTcgen05MMADisableOutputLane(SDValue Op, SelectionDAG &DAG)
static bool IsMulWideOperandDemotable(SDValue Op, unsigned OptSize, OperandSignedness &S)
IsMulWideOperandDemotable - Checks if the provided DAG node is an operand that can be demoted to OptS...
static unsigned getTcgen05MMADisableOutputLane(unsigned IID)
static std::pair< APInt, APInt > getPRMTDemandedBits(const APInt &SelectorVal, const APInt &DemandedBits)
static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode)
static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode)
static SDValue PerformREMCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue lowerBSWAP(SDValue Op, SelectionDAG &DAG)
static SDValue lowerMSTORE(SDValue Op, SelectionDAG &DAG)
static SDValue PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI)
static void computeKnownBitsForPRMT(const SDValue Op, KnownBits &Known, const SelectionDAG &DAG, unsigned Depth)
static SDValue combineUnpackingMovIntoLoad(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Fold unpacking movs into a load by increasing the number of return values.
static SDValue LowerClusterLaunchControlQueryCancel(SDValue Op, SelectionDAG &DAG)
static std::optional< std::pair< SDValue, SDValue > > lowerTcgen05Ld(SDNode *N, SelectionDAG &DAG, bool HasOffset=false)
static SDValue lowerCvtRSIntrinsics(SDValue Op, SelectionDAG &DAG)
static std::optional< std::pair< SDValue, SDValue > > replaceLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
replaceLoadVector - Convert vector loads into multi-output scalar loads.
static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL, unsigned Opcode, SelectionDAG &DAG)
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, unsigned OptSize, bool &IsSigned)
AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can be demoted to OptSize bits...
static std::pair< MemSDNode *, uint32_t > convertMLOADToLoadWithUsedBytesMask(MemSDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static SDValue TryMULWIDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply of M/2 bits that produces...
static SDValue lowerPrmtIntrinsic(SDValue Op, SelectionDAG &DAG)
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue buildTreeReduction(const SmallVector< SDValue > &Elements, EVT EltTy, ArrayRef< std::pair< unsigned, unsigned > > Ops, const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG)
Reduces the elements using the scalar operations provided.
static SDValue combineProxyReg(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SmallVector< unsigned, 16 > VectorizePTXValueVTs(const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment, bool IsVAArg=false)
static SDValue getPRMT(SDValue A, SDValue B, SDValue Selector, SDLoc DL, SelectionDAG &DAG, unsigned Mode=NVPTX::PTXPrmtMode::NONE)
static SDValue matchMADConstOnePattern(SDValue Add)
static SDValue correctParamType(SDValue V, EVT ExpectedVT, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl)
static ISD::NodeType getExtOpcode(const ISD::ArgFlagsTy &Flags)
static cl::opt< bool > UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden, cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), cl::init(true))
static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known)
static APInt getPRMTSelector(const APInt &Selector, unsigned Mode)
static EVT promoteScalarIntegerPTX(const EVT VT)
PromoteScalarIntegerPTX Used to make sure the arguments/returns are suitable for passing and promote ...
static SDValue simplifyDemandedBitsForPRMT(SDValue PRMT, const APInt &DemandedBits, SelectionDAG &DAG, const TargetLowering &TLI, unsigned Depth)
static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG)
static SDValue canonicalizePRMTInput(SDValue Op, SelectionDAG &DAG)
static SDValue sinkProxyReg(SDValue R, SDValue Chain, TargetLowering::DAGCombinerInfo &DCI)
static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG)
static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG)
static SDValue PerformSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned int SmVersion)
static std::optional< std::pair< unsigned int, MVT > > getVectorLoweringShape(EVT VectorEVT, const NVPTXSubtarget &STI, unsigned AddressSpace)
static cl::opt< bool > ForceMinByValParamAlign("nvptx-force-min-byval-param-align", cl::Hidden, cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" " params of device functions."), cl::init(false))
static cl::opt< bool > UseApproxLog2F32("nvptx-approx-log2f32", cl::desc("NVPTX Specific: whether to use lg2.approx for log2"), cl::init(false))
Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it does NOT use lg2....
static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG)
static SDValue combineLOAD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue combineSTORE(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue PerformSHLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
MachineInstr unsigned OpIdx
uint64_t High
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Contains matchers for matching SelectionDAG nodes and values.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
Value * RHS
Value * LHS
BinaryOperator * Mul
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1080
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition APInt.cpp:644
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1392
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1331
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition APInt.h:436
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition APInt.h:433
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1238
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition ArrayRef.h:186
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
bool isFloatingPointOperation() const
BinOp getOperation() const
This is an SDNode representing atomic operations.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
FunctionType * getFunctionType() const
const APInt & getAPIntValue() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
LLVM_ABI TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Diagnostic information for unsupported feature in backend.
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Definition Function.cpp:640
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
MCSection * getDataSection() const
static constexpr unsigned NoRegister
Definition MCRegister.h:60
Instances of this class represent a uniqued identifier for a section in the current translation unit.
Definition MCSection.h:517
StringRef getName() const
getName - Get the symbol name.
Definition MCSymbol.h:188
Machine Value Type.
static auto integer_fixedlen_vector_valuetypes()
SimpleValueType SimpleTy
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
static auto fp_fixedlen_vector_valuetypes()
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
Align getAlign() const
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
EVT getMemoryVT() const
Return the type of the in-memory value.
static unsigned getFromTypeWidthForLoad(const MemSDNode *Mem)
bool hasUsedBytesMaskPragma() const
bool hasAtomSwap128() const
bool hasF32x2Instructions() const
bool has256BitVectorLoadStore(unsigned AS) const
AtomicOrdering atomicOperationOrderAfterFenceSplit(const Instruction *I) const override
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
const NVPTXTargetMachine * nvTM
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallBase &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
NVPTXTargetLowering(const NVPTXTargetMachine &TM, const NVPTXSubtarget &STI)
std::string getPrototype(const DataLayout &DL, Type *, const ArgListTy &, const SmallVectorImpl< ISD::OutputArg > &, std::optional< unsigned > FirstVAArg, const CallBase &CB, unsigned UniqueCallSite) const
unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, EVT ToVT) const override
bool useF32FTZ(const MachineFunction &MF) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
Align getFunctionArgumentAlignment(const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
std::string getParamName(const Function *F, int Idx) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
NVPTX::DivPrecisionLevel getDivF32Level(const MachineFunction &MF, const SDNode &N) const
bool shouldInsertFencesForAtomic(const Instruction *) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
Align getFunctionParamOptimizedAlign(const Function *F, Type *ArgTy, const DataLayout &DL) const
getFunctionParamOptimizedAlign - since function arguments are passed via .param space,...
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getFunctionByValParamAlign(const Function *F, Type *ArgTy, Align InitialAlign, const DataLayout &DL) const
Helper for computing alignment of a device function byval parameter.
bool allowFMA(MachineFunction &MF, CodeGenOptLevel OptLevel) const
bool usePrecSqrtF32(const SDNode *N=nullptr) const
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
MCSection * SelectSectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const override
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
unsigned getIROrder() const
Return the node ordering.
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
iterator_range< user_iterator > users()
void setFlags(SDNodeFlags NewFlags)
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition SectionKind.h:22
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
std::vector< ArgListEntry > ArgListTy
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
TargetOptions Options
MCSymbol * getSymbol(const GlobalValue *GV) const
FPOpFusion::FPOpFusionMode AllowFPOpFusion
AllowFPOpFusion - This flag is set by the -fp-contract=xxx option.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt pow(const APInt &X, int64_t N)
Compute X^N for N>=0.
Definition APInt.cpp:3155
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ MLOAD
Masked load and store - consecutive vector load and store operations with additional mask operand tha...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:981
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:701
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:607
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:799
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:966
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ STRICT_FP_TO_UINT
Definition ISDOpcodes.h:471
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:470
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
Definition ISDOpcodes.h:985
@ VECREDUCE_FMINIMUM
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:821
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
@ ATOMIC_CMP_SWAP_B128
These nodes are used to lower atomic instructions with i128 type.
bool isPackedVectorTy(EVT VT)
DivPrecisionLevel
Definition NVPTX.h:257
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM)
MaybeAlign getAlign(const CallInst &I, unsigned Index)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2503
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
constexpr bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:385
bool isReleaseOrStronger(AtomicOrdering AO)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1989
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
unsigned promoteScalarArgumentSize(unsigned size)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool shouldPassAsArray(Type *Ty)
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
@ Default
-O2, -Os, -Oz
Definition CodeGen.h:85
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAcquireOrStronger(AtomicOrdering AO)
constexpr unsigned BitWidth
bool isKernelFunction(const Function &F)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Function * getMaybeBitcastedCallee(const CallBase *CB)
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
bool is32BitVector() const
Return true if this is a 32-bit vector type.
Definition ValueTypes.h:197
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasAllowContract() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...