LLVM 22.0.0git
NVPTXISelLowering.cpp
Go to the documentation of this file.
1//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that NVPTX uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "NVPTXISelLowering.h"
16#include "NVPTX.h"
17#include "NVPTXISelDAGToDAG.h"
19#include "NVPTXSubtarget.h"
20#include "NVPTXTargetMachine.h"
22#include "NVPTXUtilities.h"
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/StringRef.h"
39#include "llvm/IR/Argument.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DataLayout.h"
45#include "llvm/IR/FPEnv.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/GlobalValue.h"
48#include "llvm/IR/IRBuilder.h"
49#include "llvm/IR/Instruction.h"
51#include "llvm/IR/IntrinsicsNVPTX.h"
52#include "llvm/IR/Module.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
66#include <algorithm>
67#include <cassert>
68#include <cmath>
69#include <cstdint>
70#include <iterator>
71#include <optional>
72#include <string>
73#include <tuple>
74#include <utility>
75#include <vector>
76
77#define DEBUG_TYPE "nvptx-lower"
78
79using namespace llvm;
80
82 "nvptx-sched4reg",
83 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
84
86 "nvptx-fma-level", cl::Hidden,
87 cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
88 " 1: do it 2: do it aggressively"),
89 cl::init(2));
90
92 "nvptx-prec-divf32", cl::Hidden,
94 "NVPTX Specific: Override the precision of the lowering for f32 fdiv"),
96 clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"),
97 clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"),
99 "Use IEEE Compliant F32 div.rnd if available (default)"),
101 "Use IEEE Compliant F32 div.rnd if available, no FTZ")),
103
105 "nvptx-prec-sqrtf32", cl::Hidden,
106 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
107 cl::init(true));
108
109/// Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it
110/// does NOT use lg2.approx for log2, so this is disabled by default.
112 "nvptx-approx-log2f32",
113 cl::desc("NVPTX Specific: whether to use lg2.approx for log2"),
114 cl::init(false));
115
117 "nvptx-force-min-byval-param-align", cl::Hidden,
118 cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval"
119 " params of device functions."),
120 cl::init(false));
121
124 const SDNode &N) const {
125 // If nvptx-prec-div32=N is used on the command-line, always honor it
126 if (UsePrecDivF32.getNumOccurrences() > 0)
127 return UsePrecDivF32;
128
129 const SDNodeFlags Flags = N.getFlags();
130 if (Flags.hasApproximateFuncs())
132
134}
135
137 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
138 if (UsePrecSqrtF32.getNumOccurrences() > 0)
139 return UsePrecSqrtF32;
140
141 if (N) {
142 const SDNodeFlags Flags = N->getFlags();
143 if (Flags.hasApproximateFuncs())
144 return false;
145 }
146
147 return true;
148}
149
154
155static bool IsPTXVectorType(MVT VT) {
156 switch (VT.SimpleTy) {
157 default:
158 return false;
159 case MVT::v2i1:
160 case MVT::v4i1:
161 case MVT::v2i8:
162 case MVT::v4i8:
163 case MVT::v8i8: // <2 x i8x4>
164 case MVT::v16i8: // <4 x i8x4>
165 case MVT::v2i16:
166 case MVT::v4i16:
167 case MVT::v8i16: // <4 x i16x2>
168 case MVT::v2i32:
169 case MVT::v4i32:
170 case MVT::v2i64:
171 case MVT::v2f16:
172 case MVT::v4f16:
173 case MVT::v8f16: // <4 x f16x2>
174 case MVT::v2bf16:
175 case MVT::v4bf16:
176 case MVT::v8bf16: // <4 x bf16x2>
177 case MVT::v2f32:
178 case MVT::v4f32:
179 case MVT::v2f64:
180 case MVT::v4i64:
181 case MVT::v4f64:
182 case MVT::v8i32:
183 case MVT::v8f32:
184 case MVT::v16f16: // <8 x f16x2>
185 case MVT::v16bf16: // <8 x bf16x2>
186 case MVT::v16i16: // <8 x i16x2>
187 case MVT::v32i8: // <8 x i8x4>
188 return true;
189 }
190}
191
192// When legalizing vector loads/stores, this function is called, which does two
193// things:
194// 1. Determines Whether the vector is something we want to custom lower,
195// std::nullopt is returned if we do not want to custom lower it.
196// 2. If we do want to handle it, returns two parameters:
197// - unsigned int NumElts - The number of elements in the final vector
198// - EVT EltVT - The type of the elements in the final vector
199static std::optional<std::pair<unsigned int, MVT>>
201 unsigned AddressSpace) {
202 const bool CanLowerTo256Bit = STI.has256BitVectorLoadStore(AddressSpace);
203
204 if (CanLowerTo256Bit && VectorEVT.isScalarInteger() &&
205 VectorEVT.getSizeInBits() == 256)
206 return {{4, MVT::i64}};
207
208 if (!VectorEVT.isSimple())
209 return std::nullopt;
210 const MVT VectorVT = VectorEVT.getSimpleVT();
211
212 if (!VectorVT.isVector()) {
213 if (VectorVT == MVT::i128 || VectorVT == MVT::f128)
214 return {{2, MVT::i64}};
215 return std::nullopt;
216 }
217
218 const MVT EltVT = VectorVT.getVectorElementType();
219 const unsigned NumElts = VectorVT.getVectorNumElements();
220
221 // The size of the PTX virtual register that holds a packed type.
222 unsigned PackRegSize;
223
224 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
225 // legal. We can (and should) split that into 2 stores of <2 x double> here
226 // but I'm leaving that as a TODO for now.
227 switch (VectorVT.SimpleTy) {
228 default:
229 return std::nullopt;
230
231 case MVT::v4i64:
232 case MVT::v4f64:
233 // This is a "native" vector type iff the address space is global and the
234 // target supports 256-bit loads/stores
235 if (!CanLowerTo256Bit)
236 return std::nullopt;
237 [[fallthrough]];
238 case MVT::v2i8:
239 case MVT::v2i64:
240 case MVT::v2f64:
241 // This is a "native" vector type
242 return std::pair(NumElts, EltVT);
243
244 case MVT::v16f16: // <8 x f16x2>
245 case MVT::v16bf16: // <8 x bf16x2>
246 case MVT::v16i16: // <8 x i16x2>
247 case MVT::v32i8: // <8 x i8x4>
248 // This can be upsized into a "native" vector type iff the address space is
249 // global and the target supports 256-bit loads/stores.
250 if (!CanLowerTo256Bit)
251 return std::nullopt;
252 [[fallthrough]];
253 case MVT::v2i16: // <1 x i16x2>
254 case MVT::v2f16: // <1 x f16x2>
255 case MVT::v2bf16: // <1 x bf16x2>
256 case MVT::v4i8: // <1 x i8x4>
257 case MVT::v4i16: // <2 x i16x2>
258 case MVT::v4f16: // <2 x f16x2>
259 case MVT::v4bf16: // <2 x bf16x2>
260 case MVT::v8i8: // <2 x i8x4>
261 case MVT::v8f16: // <4 x f16x2>
262 case MVT::v8bf16: // <4 x bf16x2>
263 case MVT::v8i16: // <4 x i16x2>
264 case MVT::v16i8: // <4 x i8x4>
265 PackRegSize = 32;
266 break;
267
268 case MVT::v8f32: // <4 x f32x2>
269 case MVT::v8i32: // <4 x i32x2>
270 // This is a "native" vector type iff the address space is global and the
271 // target supports 256-bit loads/stores
272 if (!CanLowerTo256Bit)
273 return std::nullopt;
274 [[fallthrough]];
275 case MVT::v2f32: // <1 x f32x2>
276 case MVT::v4f32: // <2 x f32x2>
277 case MVT::v2i32: // <1 x i32x2>
278 case MVT::v4i32: // <2 x i32x2>
279 if (!STI.hasF32x2Instructions())
280 return std::pair(NumElts, EltVT);
281 PackRegSize = 64;
282 break;
283 }
284
285 // If we reach here, then we can pack 2 or more elements into a single 32-bit
286 // or 64-bit PTX register and treat the vector as a new vector containing
287 // packed elements.
288
289 // Number of elements to pack in one word.
290 const unsigned NPerReg = PackRegSize / EltVT.getSizeInBits();
291
292 return std::pair(NumElts / NPerReg, MVT::getVectorVT(EltVT, NPerReg));
293}
294
295/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
296/// legal-ish MVTs that compose it. Unlike ComputeValueVTs, this will legalize
297/// the types as required by the calling convention (with special handling for
298/// i8s).
299/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
300/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
301/// LowerCall, and LowerReturn.
302static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
303 LLVMContext &Ctx, CallingConv::ID CallConv,
304 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
306 uint64_t StartingOffset = 0) {
307 SmallVector<EVT, 16> TempVTs;
308 SmallVector<uint64_t, 16> TempOffsets;
309 ComputeValueVTs(TLI, DL, Ty, TempVTs, /*MemVTs=*/nullptr, &TempOffsets,
310 StartingOffset);
311
312 for (const auto [VT, Off] : zip(TempVTs, TempOffsets)) {
313 MVT RegisterVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
314 unsigned NumRegs = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
315
316 // Since we actually can load/store b8, we need to ensure that we'll use
317 // the original sized type for any i8s or i8 vectors.
318 if (VT.getScalarType() == MVT::i8) {
319 if (RegisterVT == MVT::i16)
320 RegisterVT = MVT::i8;
321 else if (RegisterVT == MVT::v2i16)
322 RegisterVT = MVT::v2i8;
323 else
324 assert(RegisterVT == MVT::v4i8 &&
325 "Expected v4i8, v2i16, or i16 for i8 RegisterVT");
326 }
327
328 // TODO: This is horribly incorrect for cases where the vector elements are
329 // not a multiple of bytes (ex i1) and legal or i8. However, this problem
330 // has existed for as long as NVPTX has and no one has complained, so we'll
331 // leave it for now.
332 for (unsigned I : seq(NumRegs)) {
333 ValueVTs.push_back(RegisterVT);
334 Offsets.push_back(Off + I * RegisterVT.getStoreSize());
335 }
336 }
337}
338
339// We return an EVT that can hold N VTs
340// If the VT is a vector, the resulting EVT is a flat vector with the same
341// element type as VT's element type.
342static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C) {
343 if (N == 1)
344 return VT;
345
346 return VT.isVector() ? EVT::getVectorVT(C, VT.getScalarType(),
347 VT.getVectorNumElements() * N)
348 : EVT::getVectorVT(C, VT, N);
349}
350
352 const SDLoc &dl, SelectionDAG &DAG) {
353 if (V.getValueType() == VT) {
354 assert(I == 0 && "Index must be 0 for scalar value");
355 return V;
356 }
357
358 if (!VT.isVector())
359 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, V,
360 DAG.getVectorIdxConstant(I, dl));
361
362 return DAG.getNode(
363 ISD::EXTRACT_SUBVECTOR, dl, VT, V,
365}
366
367template <typename T>
368static inline SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl,
369 SelectionDAG &DAG, T GetElement) {
370 if (N == 1)
371 return GetElement(0);
372
374 for (const unsigned I : llvm::seq(N)) {
375 SDValue Val = GetElement(I);
376 if (Val.getValueType().isVector())
377 DAG.ExtractVectorElements(Val, Values);
378 else
379 Values.push_back(Val);
380 }
381
382 EVT VT = EVT::getVectorVT(*DAG.getContext(), Values[0].getValueType(),
383 Values.size());
384 return DAG.getBuildVector(VT, dl, Values);
385}
386
387/// PromoteScalarIntegerPTX
388/// Used to make sure the arguments/returns are suitable for passing
389/// and promote them to a larger size if they're not.
390///
391/// The promoted type is placed in \p PromoteVT if the function returns true.
393 if (VT.isScalarInteger()) {
394 switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
395 default:
397 "Promotion is not suitable for scalars of size larger than 64-bits");
398 case 1:
399 return MVT::i1;
400 case 2:
401 case 4:
402 case 8:
403 return MVT::i8;
404 case 16:
405 return MVT::i16;
406 case 32:
407 return MVT::i32;
408 case 64:
409 return MVT::i64;
410 }
411 }
412 return VT;
413}
414
415// Check whether we can merge loads/stores of some of the pieces of a
416// flattened function parameter or return value into a single vector
417// load/store.
418//
419// The flattened parameter is represented as a list of EVTs and
420// offsets, and the whole structure is aligned to ParamAlignment. This
421// function determines whether we can load/store pieces of the
422// parameter starting at index Idx using a single vectorized op of
423// size AccessSize. If so, it returns the number of param pieces
424// covered by the vector op. Otherwise, it returns 1.
425template <typename T>
427 unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
428 const SmallVectorImpl<T> &Offsets, Align ParamAlignment) {
429
430 // Can't vectorize if param alignment is not sufficient.
431 if (ParamAlignment < AccessSize)
432 return 1;
433 // Can't vectorize if offset is not aligned.
434 if (Offsets[Idx] & (AccessSize - 1))
435 return 1;
436
437 EVT EltVT = ValueVTs[Idx];
438 unsigned EltSize = EltVT.getStoreSize();
439
440 // Element is too large to vectorize.
441 if (EltSize >= AccessSize)
442 return 1;
443
444 unsigned NumElts = AccessSize / EltSize;
445 // Can't vectorize if AccessBytes if not a multiple of EltSize.
446 if (AccessSize != EltSize * NumElts)
447 return 1;
448
449 // We don't have enough elements to vectorize.
450 if (Idx + NumElts > ValueVTs.size())
451 return 1;
452
453 // PTX ISA can only deal with 2- and 4-element vector ops.
454 if (NumElts != 4 && NumElts != 2)
455 return 1;
456
457 for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
458 // Types do not match.
459 if (ValueVTs[j] != EltVT)
460 return 1;
461
462 // Elements are not contiguous.
463 if (Offsets[j] - Offsets[j - 1] != EltSize)
464 return 1;
465 }
466 // OK. We can vectorize ValueVTs[i..i+NumElts)
467 return NumElts;
468}
469
470// Computes whether and how we can vectorize the loads/stores of a
471// flattened function parameter or return value.
472//
473// The flattened parameter is represented as the list of ValueVTs and
474// Offsets, and is aligned to ParamAlignment bytes. We return a vector
475// of the same size as ValueVTs indicating how each piece should be
476// loaded/stored (i.e. as a scalar, or as part of a vector
477// load/store).
478template <typename T>
481 const SmallVectorImpl<T> &Offsets, Align ParamAlignment,
482 bool IsVAArg = false) {
483 // Set vector size to match ValueVTs and mark all elements as
484 // scalars by default.
485
486 if (IsVAArg)
487 return SmallVector<unsigned>(ValueVTs.size(), 1);
488
489 SmallVector<unsigned, 16> VectorInfo;
490
491 const auto GetNumElts = [&](unsigned I) -> unsigned {
492 for (const unsigned AccessSize : {16, 8, 4, 2}) {
493 const unsigned NumElts = canMergeParamLoadStoresStartingAt(
494 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
495 assert((NumElts == 1 || NumElts == 2 || NumElts == 4) &&
496 "Unexpected vectorization size");
497 if (NumElts != 1)
498 return NumElts;
499 }
500 return 1;
501 };
502
503 // Check what we can vectorize using 128/64/32-bit accesses.
504 for (unsigned I = 0, E = ValueVTs.size(); I != E;) {
505 const unsigned NumElts = GetNumElts(I);
506 VectorInfo.push_back(NumElts);
507 I += NumElts;
508 }
509 assert(std::accumulate(VectorInfo.begin(), VectorInfo.end(), 0u) ==
510 ValueVTs.size());
511 return VectorInfo;
512}
513
514// NVPTXTargetLowering Constructor.
516 const NVPTXSubtarget &STI)
517 : TargetLowering(TM, STI), nvTM(&TM), STI(STI), GlobalUniqueCallSite(0) {
518 // always lower memset, memcpy, and memmove intrinsics to load/store
519 // instructions, rather
520 // then generating calls to memset, mempcy or memmove.
524
527
528 // Jump is Expensive. Don't create extra control flow for 'and', 'or'
529 // condition branches.
530 setJumpIsExpensive(true);
531
532 // Wide divides are _very_ slow. Try to reduce the width of the divide if
533 // possible.
534 addBypassSlowDiv(64, 32);
535
536 // By default, use the Source scheduling
537 if (sched4reg)
539 else
541
542 auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
543 LegalizeAction NoF16Action) {
544 bool IsOpSupported = STI.allowFP16Math();
545 switch (Op) {
546 // Several FP16 instructions are available on sm_80 only.
547 case ISD::FMINNUM:
548 case ISD::FMAXNUM:
551 case ISD::FMAXIMUM:
552 case ISD::FMINIMUM:
553 case ISD::FMAXIMUMNUM:
554 case ISD::FMINIMUMNUM:
555 IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
556 break;
557 case ISD::FEXP2:
558 IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70;
559 break;
560 }
561 setOperationAction(Op, VT, IsOpSupported ? Action : NoF16Action);
562 };
563
564 auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
565 LegalizeAction NoBF16Action) {
566 bool IsOpSupported = STI.hasNativeBF16Support(Op);
568 Op, VT, IsOpSupported ? Action : NoBF16Action);
569 };
570
571 auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
572 LegalizeAction NoI16x2Action) {
573 bool IsOpSupported = false;
574 // instructions are available on sm_90 only
575 switch (Op) {
576 case ISD::ADD:
577 case ISD::SMAX:
578 case ISD::SMIN:
579 case ISD::UMIN:
580 case ISD::UMAX:
581 IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80;
582 break;
583 }
584 setOperationAction(Op, VT, IsOpSupported ? Action : NoI16x2Action);
585 };
586
587 addRegisterClass(MVT::i1, &NVPTX::B1RegClass);
588 addRegisterClass(MVT::i16, &NVPTX::B16RegClass);
589 addRegisterClass(MVT::v2i16, &NVPTX::B32RegClass);
590 addRegisterClass(MVT::v4i8, &NVPTX::B32RegClass);
591 addRegisterClass(MVT::i32, &NVPTX::B32RegClass);
592 addRegisterClass(MVT::i64, &NVPTX::B64RegClass);
593 addRegisterClass(MVT::f32, &NVPTX::B32RegClass);
594 addRegisterClass(MVT::f64, &NVPTX::B64RegClass);
595 addRegisterClass(MVT::f16, &NVPTX::B16RegClass);
596 addRegisterClass(MVT::v2f16, &NVPTX::B32RegClass);
597 addRegisterClass(MVT::bf16, &NVPTX::B16RegClass);
598 addRegisterClass(MVT::v2bf16, &NVPTX::B32RegClass);
599
600 if (STI.hasF32x2Instructions()) {
601 addRegisterClass(MVT::v2f32, &NVPTX::B64RegClass);
602 addRegisterClass(MVT::v2i32, &NVPTX::B64RegClass);
603 }
604
605 // Conversion to/from FP16/FP16x2 is always legal.
610
612 if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31)
614
615 setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
616 setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
617
618 // Conversion to/from BFP16/BFP16x2 is always legal.
623
624 setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand);
625 setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote);
626 if (getOperationAction(ISD::SETCC, MVT::bf16) == Promote)
627 AddPromotedToType(ISD::SETCC, MVT::bf16, MVT::f32);
628
629 // Conversion to/from i16/i16x2 is always legal.
634
639
640 // No support for these operations with v2f32/v2i32
641 setOperationAction(ISD::INSERT_VECTOR_ELT, {MVT::v2f32, MVT::v2i32}, Expand);
642 setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v2f32, MVT::v2i32}, Expand);
643
646 MVT::v2i32, Expand);
647
648 // Need custom lowering in case the index is dynamic.
649 if (STI.hasF32x2Instructions())
650 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2f32, MVT::v2i32},
651 Custom);
652
653 // Custom conversions to/from v2i8.
655
656 // Only logical ops can be done on v4i8/v2i32 directly, others must be done
657 // elementwise.
674 {MVT::v4i8, MVT::v2i32}, Expand);
675
676 // Operations not directly supported by NVPTX.
677 for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
678 MVT::v2f32, MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16,
679 MVT::v4i8, MVT::i32, MVT::v2i32, MVT::i64}) {
682 }
683
684 // We don't want ops like FMINIMUM or UMAX to be lowered to SETCC+VSELECT.
685 setOperationAction(ISD::VSELECT, {MVT::v2f32, MVT::v2i32}, Expand);
686
687 // Some SIGN_EXTEND_INREG can be done using cvt instruction.
688 // For others we will expand to a SHL/SRA pair.
694 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v2i32}, Expand);
695
702
705
707 {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
708 Expand);
709
710 if (STI.hasHWROT32()) {
713 Custom);
714 }
715
716 setOperationAction(ISD::BR_JT, MVT::Other, STI.hasBrx() ? Legal : Expand);
718
719 // We want to legalize constant related memmove and memcopy
720 // intrinsics.
722
723 // FP extload/truncstore is not legal in PTX. We need to expand all these.
724 for (auto FloatVTs :
726 for (MVT ValVT : FloatVTs) {
727 for (MVT MemVT : FloatVTs) {
728 setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Expand);
729 setTruncStoreAction(ValVT, MemVT, Expand);
730 }
731 }
732 }
733
734 // To improve CodeGen we'll legalize any-extend loads to zext loads. This is
735 // how they'll be lowered in ISel anyway, and by doing this a little earlier
736 // we allow for more DAG combine opportunities.
737 for (auto IntVTs :
739 for (MVT ValVT : IntVTs)
740 for (MVT MemVT : IntVTs)
741 if (isTypeLegal(ValVT))
742 setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Custom);
743
744 // PTX does not support load / store predicate registers
746 for (MVT VT : MVT::integer_valuetypes()) {
748 Promote);
749 setTruncStoreAction(VT, MVT::i1, Expand);
750 }
751
752 // Disable generations of extload/truncstore for v2i32/v2i16/v2i8. The generic
753 // expansion for these nodes when they are unaligned is incorrect if the
754 // type is a vector.
755 //
756 // TODO: Fix the generic expansion for these nodes found in
757 // TargetLowering::expandUnalignedLoad/Store.
759 MVT::v2i8, Expand);
761 {MVT::v2i8, MVT::v2i16}, Expand);
762 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
763 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
764 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
765
766 // Register custom handling for illegal type loads/stores. We'll try to custom
767 // lower almost all illegal types and logic in the lowering will discard cases
768 // we can't handle.
769 setOperationAction({ISD::LOAD, ISD::STORE}, {MVT::i128, MVT::i256, MVT::f128},
770 Custom);
772 if (!isTypeLegal(VT) && VT.getStoreSizeInBits() <= 256)
774 Custom);
775
776 // Custom legalization for LDU intrinsics.
777 // TODO: The logic to lower these is not very robust and we should rewrite it.
778 // Perhaps LDU should not be represented as an intrinsic at all.
781 if (IsPTXVectorType(VT))
783
787 MVT::i1, Expand);
788
789 // This is legal in NVPTX
794
795 setOperationAction(ISD::DYNAMIC_STACKALLOC, {MVT::i32, MVT::i64}, Custom);
797
798 // TRAP can be lowered to PTX trap
799 setOperationAction(ISD::TRAP, MVT::Other, Legal);
800 // DEBUGTRAP can be lowered to PTX brkpt
802
803 // Support varargs.
808
810 {MVT::i16, MVT::i32, MVT::i64}, Legal);
811
813 Promote);
816
817 setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom);
818 setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom);
819 setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom);
820 setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom);
821 setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom);
822 setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand);
823 setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand);
824
825 setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom);
826 setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom);
827 setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom);
828 setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom);
829 setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom);
830 setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom);
831
832 // Other arithmetic and logic ops are unsupported.
836 {MVT::v2i16, MVT::v2i32}, Expand);
837
838 // v2i32 is not supported for any arithmetic operations
843 MVT::v2i32, Expand);
844
849 if (STI.getPTXVersion() >= 43) {
854 }
855
857 setOperationAction(ISD::CTTZ, {MVT::v2i16, MVT::v2i32}, Expand);
860
861 // PTX does not directly support SELP of i1, so promote to i32 first
863
864 // PTX cannot multiply two i64s in a single instruction.
867
868 // We have some custom DAG combine patterns for these nodes
877
878 // setcc for f16x2 and bf16x2 needs special handling to prevent
879 // legalizer's attempt to scalarize it due to v2i1 not being legal.
880 if (STI.allowFP16Math() || STI.hasBF16Math())
882
883 // Vector reduction operations. These may be turned into shuffle or tree
884 // reductions depending on what instructions are available for each type.
886 MVT EltVT = VT.getVectorElementType();
887 if (EltVT == MVT::f32 || EltVT == MVT::f64) {
890 VT, Custom);
891 }
892 }
893
894 // Promote fp16 arithmetic if fp16 hardware isn't available or the
895 // user passed --nvptx-no-fp16-math. The flag is useful because,
896 // although sm_53+ GPUs have some sort of FP16 support in
897 // hardware, only sm_53 and sm_60 have full implementation. Others
898 // only have token amount of hardware and are likely to run faster
899 // by using fp32 units instead.
900 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
901 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
902 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
903 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
904 // bf16 must be promoted to f32.
905 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
906 if (getOperationAction(Op, MVT::bf16) == Promote)
907 AddPromotedToType(Op, MVT::bf16, MVT::f32);
908 setOperationAction(Op, MVT::v2f32,
909 STI.hasF32x2Instructions() ? Legal : Expand);
910 }
911
912 // On SM80, we select add/mul/sub as fma to avoid promotion to float
913 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB}) {
914 for (const auto &VT : {MVT::bf16, MVT::v2bf16}) {
915 if (!STI.hasNativeBF16Support(Op) && STI.hasNativeBF16Support(ISD::FMA)) {
917 }
918 }
919 }
920
921 // f16/f16x2 neg was introduced in PTX 60, SM_53.
922 const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
923 STI.getPTXVersion() >= 60 &&
924 STI.allowFP16Math();
925 for (const auto &VT : {MVT::f16, MVT::v2f16})
927 IsFP16FP16x2NegAvailable ? Legal : Expand);
928
929 setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand);
930 setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand);
931 setOperationAction(ISD::FNEG, MVT::v2f32, Expand);
932 // (would be) Library functions.
933
934 // These map to conversion instructions for scalar FP types.
935 for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
937 setOperationAction(Op, MVT::f16, Legal);
938 setOperationAction(Op, MVT::f32, Legal);
939 setOperationAction(Op, MVT::f64, Legal);
940 setOperationAction(Op, MVT::v2f16, Expand);
941 setOperationAction(Op, MVT::v2bf16, Expand);
942 setOperationAction(Op, MVT::v2f32, Expand);
943 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
944 if (getOperationAction(Op, MVT::bf16) == Promote)
945 AddPromotedToType(Op, MVT::bf16, MVT::f32);
946 }
947
948 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) {
950 }
951 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
952 for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
955 }
956 }
957
958 // Expand v2f32 = fp_extend
960 // Expand v2[b]f16 = fp_round v2f32
961 setOperationAction(ISD::FP_ROUND, {MVT::v2bf16, MVT::v2f16}, Expand);
962
963 // sm_80 only has conversions between f32 and bf16. Custom lower all other
964 // bf16 conversions.
965 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
966 for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
969 VT, Custom);
970 }
973 MVT::bf16, Custom);
974 }
975
982 AddPromotedToType(ISD::FROUND, MVT::bf16, MVT::f32);
983
984 // 'Expand' implements FCOPYSIGN without calling an external library.
991
992 // These map to corresponding instructions for f32/f64. f16 must be
993 // promoted to f32. v2f16 is expanded to f16, which is then promoted
994 // to f32.
995 for (const auto &Op :
997 setOperationAction(Op, MVT::f16, Promote);
998 setOperationAction(Op, MVT::f32, Legal);
999 // only div/rem/sqrt are legal for f64
1000 if (Op == ISD::FDIV || Op == ISD::FREM || Op == ISD::FSQRT) {
1001 setOperationAction(Op, MVT::f64, Legal);
1002 }
1003 setOperationAction(Op, {MVT::v2f16, MVT::v2bf16, MVT::v2f32}, Expand);
1004 setOperationAction(Op, MVT::bf16, Promote);
1005 AddPromotedToType(Op, MVT::bf16, MVT::f32);
1006 }
1007 setOperationAction(ISD::FREM, {MVT::f32, MVT::f64}, Custom);
1008
1009 setOperationAction(ISD::FABS, {MVT::f32, MVT::f64}, Legal);
1010 setOperationAction(ISD::FABS, MVT::v2f32, Expand);
1011 if (STI.getPTXVersion() >= 65) {
1012 setFP16OperationAction(ISD::FABS, MVT::f16, Legal, Promote);
1013 setFP16OperationAction(ISD::FABS, MVT::v2f16, Legal, Expand);
1014 } else {
1016 setOperationAction(ISD::FABS, MVT::v2f16, Expand);
1017 }
1018 setBF16OperationAction(ISD::FABS, MVT::v2bf16, Legal, Expand);
1019 setBF16OperationAction(ISD::FABS, MVT::bf16, Legal, Promote);
1020 if (getOperationAction(ISD::FABS, MVT::bf16) == Promote)
1021 AddPromotedToType(ISD::FABS, MVT::bf16, MVT::f32);
1022
1023 for (const auto &Op :
1025 setOperationAction(Op, MVT::f32, Legal);
1026 setOperationAction(Op, MVT::f64, Legal);
1027 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
1028 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
1029 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
1030 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
1031 if (getOperationAction(Op, MVT::bf16) == Promote)
1032 AddPromotedToType(Op, MVT::bf16, MVT::f32);
1033 setOperationAction(Op, MVT::v2f32, Expand);
1034 }
1035 bool SupportsF32MinMaxNaN =
1036 STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
1037 for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
1038 setOperationAction(Op, MVT::f32, SupportsF32MinMaxNaN ? Legal : Expand);
1039 setFP16OperationAction(Op, MVT::f16, Legal, Expand);
1040 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
1041 setBF16OperationAction(Op, MVT::bf16, Legal, Expand);
1042 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
1043 setOperationAction(Op, MVT::v2f32, Expand);
1044 }
1045
1046 // Custom lowering for inline asm with 128-bit operands
1049
1050 // FEXP2 support:
1051 // - f32
1052 // - f16/f16x2 (sm_70+, PTX 7.0+)
1053 // - bf16/bf16x2 (sm_90+, PTX 7.8+)
1054 // When f16/bf16 types aren't supported, they are promoted/expanded to f32.
1056 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
1057 setFP16OperationAction(ISD::FEXP2, MVT::f16, Legal, Promote);
1058 setFP16OperationAction(ISD::FEXP2, MVT::v2f16, Legal, Expand);
1059 setBF16OperationAction(ISD::FEXP2, MVT::bf16, Legal, Promote);
1060 setBF16OperationAction(ISD::FEXP2, MVT::v2bf16, Legal, Expand);
1061
1062 // FLOG2 supports f32 only
1063 // f16/bf16 types aren't supported, but they are promoted/expanded to f32.
1064 if (UseApproxLog2F32) {
1066 setOperationPromotedToType(ISD::FLOG2, MVT::f16, MVT::f32);
1067 setOperationPromotedToType(ISD::FLOG2, MVT::bf16, MVT::f32);
1068 setOperationAction(ISD::FLOG2, {MVT::v2f16, MVT::v2bf16, MVT::v2f32},
1069 Expand);
1070 }
1071
1072 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
1073
1074 setOperationAction(ISD::ATOMIC_LOAD_SUB, {MVT::i32, MVT::i64}, Expand);
1075
1076 // atom.b128 is legal in PTX but since we don't represent i128 as a legal
1077 // type, we need to custom lower it.
1079 Custom);
1080
1081 // Now deduce the information based on the above mentioned
1082 // actions
1083 computeRegisterProperties(STI.getRegisterInfo());
1084
1085 // PTX support for 16-bit CAS is emulated. Only use 32+
1086 setMinCmpXchgSizeInBits(STI.getMinCmpXchgSizeInBits());
1087 setMaxAtomicSizeInBitsSupported(STI.hasAtomSwap128() ? 128 : 64);
1089
1090 // Custom lowering for tcgen05.ld vector operands
1092 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1093 MVT::v32i32, MVT::v64i32, MVT::v128i32},
1094 Custom);
1095
1096 // Custom lowering for tcgen05.st vector operands
1098 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1099 MVT::v32i32, MVT::v64i32, MVT::v128i32, MVT::Other},
1100 Custom);
1101
1102 // Enable custom lowering for the following:
1103 // * MVT::i128 - clusterlaunchcontrol
1104 // * MVT::i32 - prmt
1105 // * MVT::v4f32 - cvt_rs fp{4/6/8}x4 intrinsics
1106 // * MVT::Other - internal.addrspace.wrap
1108 {MVT::i32, MVT::i128, MVT::v4f32, MVT::Other}, Custom);
1109
1110 // Custom lowering for bswap
1111 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::i32, MVT::i64, MVT::v2i16},
1112 Custom);
1113}
1114
1117 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1118 VT.getScalarType() == MVT::i1)
1119 return TypeSplitVector;
1121}
1122
1124 int Enabled, int &ExtraSteps,
1125 bool &UseOneConst,
1126 bool Reciprocal) const {
1129 return SDValue();
1130
1131 if (ExtraSteps == ReciprocalEstimate::Unspecified)
1132 ExtraSteps = 0;
1133
1134 SDLoc DL(Operand);
1135 EVT VT = Operand.getValueType();
1136 bool Ftz = useF32FTZ(DAG.getMachineFunction());
1137
1138 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1139 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1140 DAG.getConstant(IID, DL, MVT::i32), Operand);
1141 };
1142
1143 // The sqrt and rsqrt refinement processes assume we always start out with an
1144 // approximation of the rsqrt. Therefore, if we're going to do any refinement
1145 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
1146 // any refinement, we must return a regular sqrt.
1147 if (Reciprocal || ExtraSteps > 0) {
1148 if (VT == MVT::f32)
1149 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1150 : Intrinsic::nvvm_rsqrt_approx_f);
1151 else if (VT == MVT::f64)
1152 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1153 else
1154 return SDValue();
1155 } else {
1156 if (VT == MVT::f32)
1157 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1158 : Intrinsic::nvvm_sqrt_approx_f);
1159 else {
1160 // There's no sqrt.approx.f64 instruction, so we emit
1161 // reciprocal(rsqrt(x)). This is faster than
1162 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
1163 // x * rsqrt(x).)
1164 return DAG.getNode(
1166 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1167 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1168 }
1169 }
1170}
1171
1173 const DataLayout &DL, Type *RetTy, const ArgListTy &Args,
1175 std::optional<unsigned> FirstVAArg, const CallBase &CB,
1176 unsigned UniqueCallSite) const {
1177 auto PtrVT = getPointerTy(DL);
1178
1179 std::string Prototype;
1180 raw_string_ostream O(Prototype);
1181 O << "prototype_" << UniqueCallSite << " : .callprototype ";
1182
1183 if (RetTy->isVoidTy()) {
1184 O << "()";
1185 } else {
1186 O << "(";
1187 if (shouldPassAsArray(RetTy)) {
1188 const Align RetAlign = getArgumentAlignment(&CB, RetTy, 0, DL);
1189 O << ".param .align " << RetAlign.value() << " .b8 _["
1190 << DL.getTypeAllocSize(RetTy) << "]";
1191 } else if (RetTy->isFloatingPointTy() || RetTy->isIntegerTy()) {
1192 unsigned size = 0;
1193 if (auto *ITy = dyn_cast<IntegerType>(RetTy)) {
1194 size = ITy->getBitWidth();
1195 } else {
1196 assert(RetTy->isFloatingPointTy() &&
1197 "Floating point type expected here");
1198 size = RetTy->getPrimitiveSizeInBits();
1199 }
1200 // PTX ABI requires all scalar return values to be at least 32
1201 // bits in size. fp16 normally uses .b16 as its storage type in
1202 // PTX, so its size must be adjusted here, too.
1204
1205 O << ".param .b" << size << " _";
1206 } else if (isa<PointerType>(RetTy)) {
1207 O << ".param .b" << PtrVT.getSizeInBits() << " _";
1208 } else {
1209 llvm_unreachable("Unknown return type");
1210 }
1211 O << ") ";
1212 }
1213 O << "_ (";
1214
1215 bool first = true;
1216
1217 const unsigned NumArgs = FirstVAArg.value_or(Args.size());
1218 auto AllOuts = ArrayRef(Outs);
1219 for (const unsigned I : llvm::seq(NumArgs)) {
1220 const auto ArgOuts =
1221 AllOuts.take_while([I](auto O) { return O.OrigArgIndex == I; });
1222 AllOuts = AllOuts.drop_front(ArgOuts.size());
1223
1224 Type *Ty = Args[I].Ty;
1225 if (!first) {
1226 O << ", ";
1227 }
1228 first = false;
1229
1230 if (ArgOuts[0].Flags.isByVal()) {
1231 // Indirect calls need strict ABI alignment so we disable optimizations by
1232 // not providing a function to optimize.
1233 Type *ETy = Args[I].IndirectType;
1234 Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1235 Align ParamByValAlign =
1236 getFunctionByValParamAlign(/*F=*/nullptr, ETy, InitialAlign, DL);
1237
1238 O << ".param .align " << ParamByValAlign.value() << " .b8 _["
1239 << ArgOuts[0].Flags.getByValSize() << "]";
1240 } else {
1241 if (shouldPassAsArray(Ty)) {
1242 Align ParamAlign =
1243 getArgumentAlignment(&CB, Ty, I + AttributeList::FirstArgIndex, DL);
1244 O << ".param .align " << ParamAlign.value() << " .b8 _["
1245 << DL.getTypeAllocSize(Ty) << "]";
1246 continue;
1247 }
1248 // i8 types in IR will be i16 types in SDAG
1249 assert((getValueType(DL, Ty) == ArgOuts[0].VT ||
1250 (getValueType(DL, Ty) == MVT::i8 && ArgOuts[0].VT == MVT::i16)) &&
1251 "type mismatch between callee prototype and arguments");
1252 // scalar type
1253 unsigned sz = 0;
1254 if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
1255 sz = promoteScalarArgumentSize(ITy->getBitWidth());
1256 } else if (isa<PointerType>(Ty)) {
1257 sz = PtrVT.getSizeInBits();
1258 } else {
1259 sz = Ty->getPrimitiveSizeInBits();
1260 }
1261 O << ".param .b" << sz << " _";
1262 }
1263 }
1264
1265 if (FirstVAArg)
1266 O << (first ? "" : ",") << " .param .align "
1267 << STI.getMaxRequiredAlignment() << " .b8 _[]";
1268 O << ")";
1269 if (shouldEmitPTXNoReturn(&CB, *nvTM))
1270 O << " .noreturn";
1271 O << ";";
1272
1273 return Prototype;
1274}
1275
1277 const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const {
1278 return getAlign(*F, Idx).value_or(getFunctionParamOptimizedAlign(F, Ty, DL));
1279}
1280
1281Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty,
1282 unsigned Idx,
1283 const DataLayout &DL) const {
1284 if (!CB) {
1285 // CallSite is zero, fallback to ABI type alignment
1286 return DL.getABITypeAlign(Ty);
1287 }
1288
1289 const Function *DirectCallee = CB->getCalledFunction();
1290
1291 if (!DirectCallee) {
1292 // We don't have a direct function symbol, but that may be because of
1293 // constant cast instructions in the call.
1294
1295 // With bitcast'd call targets, the instruction will be the call
1296 if (const auto *CI = dyn_cast<CallInst>(CB)) {
1297 // Check if we have call alignment metadata
1298 if (MaybeAlign StackAlign = getAlign(*CI, Idx))
1299 return StackAlign.value();
1300 }
1301 DirectCallee = getMaybeBitcastedCallee(CB);
1302 }
1303
1304 // Check for function alignment information if we found that the
1305 // ultimate target is a Function
1306 if (DirectCallee)
1307 return getFunctionArgumentAlignment(DirectCallee, Ty, Idx, DL);
1308
1309 // Call is indirect, fall back to the ABI type alignment
1310 return DL.getABITypeAlign(Ty);
1311}
1312
1314 const GlobalAddressSDNode *Func) {
1315 if (!Func)
1316 return false;
1317 if (auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal()))
1318 return CB->getFunctionType() != CalleeFunc->getFunctionType();
1319 return false;
1320}
1321
1323 const DataLayout &DL,
1324 const TargetLowering &TL) {
1325 if (Ptr->getOpcode() == ISD::FrameIndex) {
1326 auto Ty = TL.getPointerTy(DL, ADDRESS_SPACE_LOCAL);
1327 Ptr = DAG.getAddrSpaceCast(SDLoc(), Ty, Ptr, ADDRESS_SPACE_GENERIC,
1329
1331 }
1332
1333 // Peel of an addrspacecast to generic and load directly from the specific
1334 // address space.
1335 if (Ptr->getOpcode() == ISD::ADDRSPACECAST) {
1336 const auto *ASC = cast<AddrSpaceCastSDNode>(Ptr);
1337 if (ASC->getDestAddressSpace() == ADDRESS_SPACE_GENERIC) {
1338 Ptr = ASC->getOperand(0);
1339 return MachinePointerInfo(ASC->getSrcAddressSpace());
1340 }
1341 }
1342
1343 return MachinePointerInfo();
1344}
1345
1347 if (Flags.isSExt())
1348 return ISD::SIGN_EXTEND;
1349 if (Flags.isZExt())
1350 return ISD::ZERO_EXTEND;
1351 return ISD::ANY_EXTEND;
1352}
1353
1355 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1356 SDLoc dl) {
1357 const EVT ActualVT = V.getValueType();
1358 assert((ActualVT == ExpectedVT ||
1359 (ExpectedVT.isInteger() && ActualVT.isInteger())) &&
1360 "Non-integer argument type size mismatch");
1361 if (ExpectedVT.bitsGT(ActualVT))
1362 return DAG.getNode(getExtOpcode(Flags), dl, ExpectedVT, V);
1363 if (ExpectedVT.bitsLT(ActualVT))
1364 return DAG.getNode(ISD::TRUNCATE, dl, ExpectedVT, V);
1365
1366 return V;
1367}
1368
1370 SmallVectorImpl<SDValue> &InVals) const {
1371
1372 if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
1374 "Support for variadic functions (unsized array parameter) introduced "
1375 "in PTX ISA version 6.0 and requires target sm_30.");
1376
1377 SelectionDAG &DAG = CLI.DAG;
1378 SDLoc dl = CLI.DL;
1379 const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1380 SDValue Callee = CLI.Callee;
1381 ArgListTy &Args = CLI.getArgs();
1382 Type *RetTy = CLI.RetTy;
1383 const CallBase *CB = CLI.CB;
1384 const DataLayout &DL = DAG.getDataLayout();
1385 LLVMContext &Ctx = *DAG.getContext();
1386
1387 const auto GetI32 = [&](const unsigned I) {
1388 return DAG.getConstant(I, dl, MVT::i32);
1389 };
1390
1391 const unsigned UniqueCallSite = GlobalUniqueCallSite++;
1392 const SDValue CallChain = CLI.Chain;
1393 const SDValue StartChain =
1394 DAG.getCALLSEQ_START(CallChain, UniqueCallSite, 0, dl);
1395 SDValue DeclareGlue = StartChain.getValue(1);
1396
1397 SmallVector<SDValue, 16> CallPrereqs{StartChain};
1398
1399 const auto MakeDeclareScalarParam = [&](SDValue Symbol, unsigned Size) {
1400 // PTX ABI requires integral types to be at least 32 bits in size. FP16 is
1401 // loaded/stored using i16, so it's handled here as well.
1402 const unsigned SizeBits = promoteScalarArgumentSize(Size * 8);
1403 SDValue Declare =
1404 DAG.getNode(NVPTXISD::DeclareScalarParam, dl, {MVT::Other, MVT::Glue},
1405 {StartChain, Symbol, GetI32(SizeBits), DeclareGlue});
1406 CallPrereqs.push_back(Declare);
1407 DeclareGlue = Declare.getValue(1);
1408 return Declare;
1409 };
1410
1411 const auto MakeDeclareArrayParam = [&](SDValue Symbol, Align Align,
1412 unsigned Size) {
1413 SDValue Declare = DAG.getNode(
1414 NVPTXISD::DeclareArrayParam, dl, {MVT::Other, MVT::Glue},
1415 {StartChain, Symbol, GetI32(Align.value()), GetI32(Size), DeclareGlue});
1416 CallPrereqs.push_back(Declare);
1417 DeclareGlue = Declare.getValue(1);
1418 return Declare;
1419 };
1420
1421 // Variadic arguments.
1422 //
1423 // Normally, for each argument, we declare a param scalar or a param
1424 // byte array in the .param space, and store the argument value to that
1425 // param scalar or array starting at offset 0.
1426 //
1427 // In the case of the first variadic argument, we declare a vararg byte array
1428 // with size 0. The exact size of this array isn't known at this point, so
1429 // it'll be patched later. All the variadic arguments will be stored to this
1430 // array at a certain offset (which gets tracked by 'VAOffset'). The offset is
1431 // initially set to 0, so it can be used for non-variadic arguments (which use
1432 // 0 offset) to simplify the code.
1433 //
1434 // After all vararg is processed, 'VAOffset' holds the size of the
1435 // vararg byte array.
1436 assert((CLI.IsVarArg || CLI.Args.size() == CLI.NumFixedArgs) &&
1437 "Non-VarArg function with extra arguments");
1438
1439 const unsigned FirstVAArg = CLI.NumFixedArgs; // position of first variadic
1440 unsigned VAOffset = 0; // current offset in the param array
1441
1442 const SDValue VADeclareParam =
1443 CLI.Args.size() > FirstVAArg
1444 ? MakeDeclareArrayParam(getCallParamSymbol(DAG, FirstVAArg, MVT::i32),
1445 Align(STI.getMaxRequiredAlignment()), 0)
1446 : SDValue();
1447
1448 // Args.size() and Outs.size() need not match.
1449 // Outs.size() will be larger
1450 // * if there is an aggregate argument with multiple fields (each field
1451 // showing up separately in Outs)
1452 // * if there is a vector argument with more than typical vector-length
1453 // elements (generally if more than 4) where each vector element is
1454 // individually present in Outs.
1455 // So a different index should be used for indexing into Outs/OutVals.
1456 // See similar issue in LowerFormalArguments.
1457 auto AllOuts = ArrayRef(CLI.Outs);
1458 auto AllOutVals = ArrayRef(CLI.OutVals);
1459 assert(AllOuts.size() == AllOutVals.size() &&
1460 "Outs and OutVals must be the same size");
1461 // Declare the .params or .reg need to pass values
1462 // to the function
1463 for (const auto E : llvm::enumerate(Args)) {
1464 const auto ArgI = E.index();
1465 const auto Arg = E.value();
1466 const auto ArgOuts =
1467 AllOuts.take_while([&](auto O) { return O.OrigArgIndex == ArgI; });
1468 const auto ArgOutVals = AllOutVals.take_front(ArgOuts.size());
1469 AllOuts = AllOuts.drop_front(ArgOuts.size());
1470 AllOutVals = AllOutVals.drop_front(ArgOuts.size());
1471
1472 const bool IsVAArg = (ArgI >= FirstVAArg);
1473 const bool IsByVal = Arg.IsByVal;
1474
1475 const SDValue ParamSymbol =
1476 getCallParamSymbol(DAG, IsVAArg ? FirstVAArg : ArgI, MVT::i32);
1477
1478 assert((!IsByVal || Arg.IndirectType) &&
1479 "byval arg must have indirect type");
1480 Type *ETy = (IsByVal ? Arg.IndirectType : Arg.Ty);
1481
1482 const Align ArgAlign = [&]() {
1483 if (IsByVal) {
1484 // The ByValAlign in the Outs[OIdx].Flags is always set at this point,
1485 // so we don't need to worry whether it's naturally aligned or not.
1486 // See TargetLowering::LowerCallTo().
1487 const Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1489 InitialAlign, DL);
1490 }
1491 return getArgumentAlignment(CB, Arg.Ty, ArgI + 1, DL);
1492 }();
1493
1494 const unsigned TySize = DL.getTypeAllocSize(ETy);
1495 assert((!IsByVal || TySize == ArgOuts[0].Flags.getByValSize()) &&
1496 "type size mismatch");
1497
1498 const SDValue ArgDeclare = [&]() {
1499 if (IsVAArg)
1500 return VADeclareParam;
1501
1502 if (IsByVal || shouldPassAsArray(Arg.Ty))
1503 return MakeDeclareArrayParam(ParamSymbol, ArgAlign, TySize);
1504
1505 assert(ArgOuts.size() == 1 && "We must pass only one value as non-array");
1506 assert((ArgOuts[0].VT.isInteger() || ArgOuts[0].VT.isFloatingPoint()) &&
1507 "Only int and float types are supported as non-array arguments");
1508
1509 return MakeDeclareScalarParam(ParamSymbol, TySize);
1510 }();
1511
1512 if (IsByVal) {
1513 assert(ArgOutVals.size() == 1 && "We must pass only one value as byval");
1514 SDValue SrcPtr = ArgOutVals[0];
1515 const auto PointerInfo = refinePtrAS(SrcPtr, DAG, DL, *this);
1516 const Align BaseSrcAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1517
1518 if (IsVAArg)
1519 VAOffset = alignTo(VAOffset, ArgAlign);
1520
1521 SmallVector<EVT, 4> ValueVTs, MemVTs;
1523 ComputeValueVTs(*this, DL, ETy, ValueVTs, &MemVTs, &Offsets);
1524
1525 unsigned J = 0;
1526 const auto VI = VectorizePTXValueVTs(MemVTs, Offsets, ArgAlign, IsVAArg);
1527 for (const unsigned NumElts : VI) {
1528 EVT LoadVT = getVectorizedVT(MemVTs[J], NumElts, Ctx);
1529 Align SrcAlign = commonAlignment(BaseSrcAlign, Offsets[J]);
1530 SDValue SrcAddr = DAG.getObjectPtrOffset(dl, SrcPtr, Offsets[J]);
1531 SDValue SrcLoad =
1532 DAG.getLoad(LoadVT, dl, CallChain, SrcAddr, PointerInfo, SrcAlign);
1533
1534 TypeSize ParamOffset = Offsets[J].getWithIncrement(VAOffset);
1535 Align ParamAlign = commonAlignment(ArgAlign, ParamOffset);
1536 SDValue ParamAddr =
1537 DAG.getObjectPtrOffset(dl, ParamSymbol, ParamOffset);
1538 SDValue StoreParam =
1539 DAG.getStore(ArgDeclare, dl, SrcLoad, ParamAddr,
1541 CallPrereqs.push_back(StoreParam);
1542
1543 J += NumElts;
1544 }
1545 if (IsVAArg)
1546 VAOffset += TySize;
1547 } else {
1550 ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, Arg.Ty, VTs, Offsets,
1551 VAOffset);
1552 assert(VTs.size() == Offsets.size() && "Size mismatch");
1553 assert(VTs.size() == ArgOuts.size() && "Size mismatch");
1554
1555 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1556 // than 32-bits are sign extended or zero extended, depending on
1557 // whether they are signed or unsigned types. This case applies
1558 // only to scalar parameters and not to aggregate values.
1559 const bool ExtendIntegerParam =
1560 Arg.Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Arg.Ty) < 32;
1561
1562 const auto GetStoredValue = [&](const unsigned I) {
1563 SDValue StVal = ArgOutVals[I];
1565 StVal.getValueType() &&
1566 "OutVal type should always be legal");
1567
1568 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
1569 const EVT StoreVT =
1570 ExtendIntegerParam ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1571
1572 return correctParamType(StVal, StoreVT, ArgOuts[I].Flags, DAG, dl);
1573 };
1574
1575 unsigned J = 0;
1576 const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg);
1577 for (const unsigned NumElts : VI) {
1578 const EVT EltVT = promoteScalarIntegerPTX(VTs[J]);
1579
1580 unsigned Offset;
1581 if (IsVAArg) {
1582 // TODO: We may need to support vector types that can be passed
1583 // as scalars in variadic arguments.
1584 assert(NumElts == 1 &&
1585 "Vectorization should be disabled for vaargs.");
1586
1587 // Align each part of the variadic argument to their type.
1588 VAOffset = alignTo(VAOffset, DAG.getEVTAlign(EltVT));
1589 Offset = VAOffset;
1590
1591 const EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1592 VAOffset += DL.getTypeAllocSize(TheStoreType.getTypeForEVT(Ctx));
1593 } else {
1594 assert(VAOffset == 0 && "VAOffset must be 0 for non-VA args");
1595 Offset = Offsets[J];
1596 }
1597
1598 SDValue Ptr =
1599 DAG.getObjectPtrOffset(dl, ParamSymbol, TypeSize::getFixed(Offset));
1600
1601 const MaybeAlign CurrentAlign = ExtendIntegerParam
1602 ? MaybeAlign(std::nullopt)
1603 : commonAlignment(ArgAlign, Offset);
1604
1605 SDValue Val =
1606 getBuildVectorizedValue(NumElts, dl, DAG, [&](unsigned K) {
1607 return GetStoredValue(J + K);
1608 });
1609
1610 SDValue StoreParam =
1611 DAG.getStore(ArgDeclare, dl, Val, Ptr,
1613 CallPrereqs.push_back(StoreParam);
1614
1615 J += NumElts;
1616 }
1617 }
1618 }
1619
1620 // Handle Result
1621 if (!Ins.empty()) {
1622 const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32);
1623 const unsigned ResultSize = DL.getTypeAllocSize(RetTy);
1624 if (shouldPassAsArray(RetTy)) {
1625 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
1626 MakeDeclareArrayParam(RetSymbol, RetAlign, ResultSize);
1627 } else {
1628 MakeDeclareScalarParam(RetSymbol, ResultSize);
1629 }
1630 }
1631
1632 // Set the size of the vararg param byte array if the callee is a variadic
1633 // function and the variadic part is not empty.
1634 if (VADeclareParam) {
1635 SDValue DeclareParamOps[] = {VADeclareParam.getOperand(0),
1636 VADeclareParam.getOperand(1),
1637 VADeclareParam.getOperand(2), GetI32(VAOffset),
1638 VADeclareParam.getOperand(4)};
1639 DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(),
1640 VADeclareParam->getVTList(), DeclareParamOps);
1641 }
1642
1643 const auto *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1644 // If the type of the callsite does not match that of the function, convert
1645 // the callsite to an indirect call.
1646 const bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func);
1647
1648 // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1649 // between them we must rely on the call site value which is valid for
1650 // indirect calls but is always null for libcalls.
1651 const bool IsIndirectCall = (!Func && CB) || ConvertToIndirectCall;
1652
1653 if (isa<ExternalSymbolSDNode>(Callee)) {
1654 Function* CalleeFunc = nullptr;
1655
1656 // Try to find the callee in the current module.
1657 Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1658 assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1659
1660 // Set the "libcall callee" attribute to indicate that the function
1661 // must always have a declaration.
1662 CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1663 }
1664
1665 if (IsIndirectCall) {
1666 // This is indirect function call case : PTX requires a prototype of the
1667 // form
1668 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1669 // to be emitted, and the label has to used as the last arg of call
1670 // instruction.
1671 // The prototype is embedded in a string and put as the operand for a
1672 // CallPrototype SDNode which will print out to the value of the string.
1673 const bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs);
1674 std::string Proto =
1675 getPrototype(DL, RetTy, Args, CLI.Outs,
1676 HasVAArgs ? std::optional(FirstVAArg) : std::nullopt, *CB,
1677 UniqueCallSite);
1678 const char *ProtoStr = nvTM->getStrPool().save(Proto).data();
1679 const SDValue PrototypeDeclare = DAG.getNode(
1680 NVPTXISD::CallPrototype, dl, MVT::Other,
1681 {StartChain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32)});
1682 CallPrereqs.push_back(PrototypeDeclare);
1683 }
1684
1685 const unsigned Proto = IsIndirectCall ? UniqueCallSite : 0;
1686 const unsigned NumArgs =
1687 std::min<unsigned>(CLI.NumFixedArgs + 1, Args.size());
1688 /// CALL(Chain, IsConvergent, IsIndirectCall/IsUniform, NumReturns,
1689 /// NumParams, Callee, Proto)
1690 const SDValue CallToken = DAG.getTokenFactor(dl, CallPrereqs);
1691 const SDValue Call = DAG.getNode(
1692 NVPTXISD::CALL, dl, MVT::Other,
1693 {CallToken, GetI32(CLI.IsConvergent), GetI32(IsIndirectCall),
1694 GetI32(Ins.empty() ? 0 : 1), GetI32(NumArgs), Callee, GetI32(Proto)});
1695
1696 SmallVector<SDValue, 16> LoadChains{Call};
1697 SmallVector<SDValue, 16> ProxyRegOps;
1698 if (!Ins.empty()) {
1701 ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, RetTy, VTs, Offsets);
1702 assert(VTs.size() == Ins.size() && "Bad value decomposition");
1703
1704 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
1705 const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32);
1706
1707 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1708 // 32-bits are sign extended or zero extended, depending on whether
1709 // they are signed or unsigned types.
1710 const bool ExtendIntegerRetVal =
1711 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1712
1713 unsigned I = 0;
1714 const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1715 for (const unsigned NumElts : VI) {
1716 const MaybeAlign CurrentAlign =
1717 ExtendIntegerRetVal ? MaybeAlign(std::nullopt)
1718 : commonAlignment(RetAlign, Offsets[I]);
1719
1720 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
1721 const EVT LoadVT =
1722 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1723 const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx);
1724 SDValue Ptr =
1725 DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I]));
1726
1727 SDValue R =
1728 DAG.getLoad(VecVT, dl, Call, Ptr,
1730
1731 LoadChains.push_back(R.getValue(1));
1732 for (const unsigned J : llvm::seq(NumElts))
1733 ProxyRegOps.push_back(getExtractVectorizedValue(R, J, LoadVT, dl, DAG));
1734 I += NumElts;
1735 }
1736 }
1737
1738 const SDValue EndToken = DAG.getTokenFactor(dl, LoadChains);
1739 const SDValue CallEnd = DAG.getCALLSEQ_END(EndToken, UniqueCallSite,
1740 UniqueCallSite + 1, SDValue(), dl);
1741
1742 // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1743 // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1744 // dangling.
1745 for (const auto [I, Reg] : llvm::enumerate(ProxyRegOps)) {
1746 SDValue Proxy =
1747 DAG.getNode(NVPTXISD::ProxyReg, dl, Reg.getValueType(), {CallEnd, Reg});
1748 SDValue Ret = correctParamType(Proxy, Ins[I].VT, Ins[I].Flags, DAG, dl);
1749 InVals.push_back(Ret);
1750 }
1751
1752 // set IsTailCall to false for now, until we figure out how to express
1753 // tail call optimization in PTX
1754 CLI.IsTailCall = false;
1755 return CallEnd;
1756}
1757
1759 SelectionDAG &DAG) const {
1760
1761 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1762 const Function &Fn = DAG.getMachineFunction().getFunction();
1763
1765 Fn,
1766 "Support for dynamic alloca introduced in PTX ISA version 7.3 and "
1767 "requires target sm_52.",
1768 SDLoc(Op).getDebugLoc()));
1769 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()),
1770 Op.getOperand(0)};
1771 return DAG.getMergeValues(Ops, SDLoc());
1772 }
1773
1774 SDLoc DL(Op.getNode());
1775 SDValue Chain = Op.getOperand(0);
1776 SDValue Size = Op.getOperand(1);
1777 uint64_t Align = Op.getConstantOperandVal(2);
1778
1779 // The alignment on a ISD::DYNAMIC_STACKALLOC node may be 0 to indicate that
1780 // the default stack alignment should be used.
1781 if (Align == 0)
1783
1784 // The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32.
1785 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1786
1787 SDValue Alloc =
1788 DAG.getNode(NVPTXISD::DYNAMIC_STACKALLOC, DL, {LocalVT, MVT::Other},
1789 {Chain, DAG.getZExtOrTrunc(Size, DL, LocalVT),
1790 DAG.getTargetConstant(Align, DL, MVT::i32)});
1791
1792 SDValue ASC = DAG.getAddrSpaceCast(
1794
1795 return DAG.getMergeValues({ASC, SDValue(Alloc.getNode(), 1)}, DL);
1796}
1797
1799 SelectionDAG &DAG) const {
1800 SDLoc DL(Op.getNode());
1801 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1802 const Function &Fn = DAG.getMachineFunction().getFunction();
1803
1805 Fn,
1806 "Support for stackrestore requires PTX ISA version >= 7.3 and target "
1807 ">= sm_52.",
1808 DL.getDebugLoc()));
1809 return Op.getOperand(0);
1810 }
1811
1812 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1813 SDValue Chain = Op.getOperand(0);
1814 SDValue Ptr = Op.getOperand(1);
1815 SDValue ASC = DAG.getAddrSpaceCast(DL, LocalVT, Ptr, ADDRESS_SPACE_GENERIC,
1817 return DAG.getNode(NVPTXISD::STACKRESTORE, DL, MVT::Other, {Chain, ASC});
1818}
1819
1821 SelectionDAG &DAG) const {
1822 SDLoc DL(Op.getNode());
1823 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1824 const Function &Fn = DAG.getMachineFunction().getFunction();
1825
1827 Fn,
1828 "Support for stacksave requires PTX ISA version >= 7.3 and target >= "
1829 "sm_52.",
1830 DL.getDebugLoc()));
1831 auto Ops = {DAG.getConstant(0, DL, Op.getValueType()), Op.getOperand(0)};
1832 return DAG.getMergeValues(Ops, DL);
1833 }
1834
1835 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1836 SDValue Chain = Op.getOperand(0);
1837 SDValue SS =
1838 DAG.getNode(NVPTXISD::STACKSAVE, DL, {LocalVT, MVT::Other}, Chain);
1839 SDValue ASC = DAG.getAddrSpaceCast(
1840 DL, Op.getValueType(), SS, ADDRESS_SPACE_LOCAL, ADDRESS_SPACE_GENERIC);
1841 return DAG.getMergeValues({ASC, SDValue(SS.getNode(), 1)}, DL);
1842}
1843
1844// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1845// (see LegalizeDAG.cpp). This is slow and uses local memory.
1846// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1847SDValue
1848NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1849 SDNode *Node = Op.getNode();
1850 SDLoc dl(Node);
1852 unsigned NumOperands = Node->getNumOperands();
1853 for (unsigned i = 0; i < NumOperands; ++i) {
1854 SDValue SubOp = Node->getOperand(i);
1855 EVT VVT = SubOp.getNode()->getValueType(0);
1856 EVT EltVT = VVT.getVectorElementType();
1857 unsigned NumSubElem = VVT.getVectorNumElements();
1858 for (unsigned j = 0; j < NumSubElem; ++j) {
1859 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1860 DAG.getIntPtrConstant(j, dl)));
1861 }
1862 }
1863 return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1864}
1865
1867 SelectionDAG &DAG,
1868 unsigned Mode = NVPTX::PTXPrmtMode::NONE) {
1869 assert(A.getValueType() == MVT::i32 && B.getValueType() == MVT::i32 &&
1870 Selector.getValueType() == MVT::i32 && "PRMT must have i32 operands");
1871 return DAG.getNode(NVPTXISD::PRMT, DL, MVT::i32,
1872 {A, B, Selector, DAG.getConstant(Mode, DL, MVT::i32)});
1873}
1874
1876 SelectionDAG &DAG,
1877 unsigned Mode = NVPTX::PTXPrmtMode::NONE) {
1878 return getPRMT(A, B, DAG.getConstant(Selector, DL, MVT::i32), DL, DAG, Mode);
1879}
1880
1881/// Reduces the elements using the scalar operations provided. The operations
1882/// are sorted descending in number of inputs they take. The flags on the
1883/// original reduction operation will be propagated to each scalar operation.
1884/// Nearby elements are grouped in tree reduction, unlike the shuffle reduction
1885/// used in ExpandReductions and SelectionDAG.
1887 const SmallVector<SDValue> &Elements, EVT EltTy,
1888 ArrayRef<std::pair<unsigned /*NodeType*/, unsigned /*NumInputs*/>> Ops,
1889 const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG) {
1890 // Build the reduction tree at each level, starting with all the elements.
1891 SmallVector<SDValue> Level = Elements;
1892
1893 unsigned OpIdx = 0;
1894 while (Level.size() > 1) {
1895 // Try to reduce this level using the current operator.
1896 const auto [Op, NumInputs] = Ops[OpIdx];
1897
1898 // Build the next level by partially reducing all elements.
1899 SmallVector<SDValue> ReducedLevel;
1900 unsigned I = 0, E = Level.size();
1901 for (; I + NumInputs <= E; I += NumInputs) {
1902 // Reduce elements in groups of [NumInputs], as much as possible.
1903 ReducedLevel.push_back(DAG.getNode(
1904 Op, DL, EltTy, ArrayRef<SDValue>(Level).slice(I, NumInputs), Flags));
1905 }
1906
1907 if (I < E) {
1908 // Handle leftover elements.
1909
1910 if (ReducedLevel.empty()) {
1911 // We didn't reduce anything at this level. We need to pick a smaller
1912 // operator.
1913 ++OpIdx;
1914 assert(OpIdx < Ops.size() && "no smaller operators for reduction");
1915 continue;
1916 }
1917
1918 // We reduced some things but there's still more left, meaning the
1919 // operator's number of inputs doesn't evenly divide this level size. Move
1920 // these elements to the next level.
1921 for (; I < E; ++I)
1922 ReducedLevel.push_back(Level[I]);
1923 }
1924
1925 // Process the next level.
1926 Level = ReducedLevel;
1927 }
1928
1929 return *Level.begin();
1930}
1931
1932// Get scalar reduction opcode
1933static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode) {
1934 switch (ReductionOpcode) {
1936 return ISD::FMAXNUM;
1938 return ISD::FMINNUM;
1940 return ISD::FMAXIMUM;
1942 return ISD::FMINIMUM;
1943 default:
1944 llvm_unreachable("unhandled reduction opcode");
1945 }
1946}
1947
1948/// Get 3-input scalar reduction opcode
1949static std::optional<unsigned>
1950getScalar3OpcodeForReduction(unsigned ReductionOpcode) {
1951 switch (ReductionOpcode) {
1953 return NVPTXISD::FMAXNUM3;
1955 return NVPTXISD::FMINNUM3;
1957 return NVPTXISD::FMAXIMUM3;
1959 return NVPTXISD::FMINIMUM3;
1960 default:
1961 return std::nullopt;
1962 }
1963}
1964
1965/// Lower reductions to either a sequence of operations or a tree if
1966/// reassociations are allowed. This method will use larger operations like
1967/// max3/min3 when the target supports them.
1968SDValue NVPTXTargetLowering::LowerVECREDUCE(SDValue Op,
1969 SelectionDAG &DAG) const {
1970 SDLoc DL(Op);
1971 const SDNodeFlags Flags = Op->getFlags();
1972 SDValue Vector = Op.getOperand(0);
1973
1974 const unsigned Opcode = Op->getOpcode();
1975 const EVT EltTy = Vector.getValueType().getVectorElementType();
1976
1977 // Whether we can use 3-input min/max when expanding the reduction.
1978 const bool CanUseMinMax3 =
1979 EltTy == MVT::f32 && STI.getSmVersion() >= 100 &&
1980 STI.getPTXVersion() >= 88 &&
1981 (Opcode == ISD::VECREDUCE_FMAX || Opcode == ISD::VECREDUCE_FMIN ||
1982 Opcode == ISD::VECREDUCE_FMAXIMUM || Opcode == ISD::VECREDUCE_FMINIMUM);
1983
1984 // A list of SDNode opcodes with equivalent semantics, sorted descending by
1985 // number of inputs they take.
1986 SmallVector<std::pair<unsigned /*Op*/, unsigned /*NumIn*/>, 2> ScalarOps;
1987
1988 if (auto Opcode3Elem = getScalar3OpcodeForReduction(Opcode);
1989 CanUseMinMax3 && Opcode3Elem)
1990 ScalarOps.push_back({*Opcode3Elem, 3});
1991 ScalarOps.push_back({getScalarOpcodeForReduction(Opcode), 2});
1992
1994 DAG.ExtractVectorElements(Vector, Elements);
1995
1996 return buildTreeReduction(Elements, EltTy, ScalarOps, DL, Flags, DAG);
1997}
1998
1999SDValue NVPTXTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2000 // Handle bitcasting from v2i8 without hitting the default promotion
2001 // strategy which goes through stack memory.
2002 EVT FromVT = Op->getOperand(0)->getValueType(0);
2003 if (FromVT != MVT::v2i8) {
2004 return Op;
2005 }
2006
2007 // Pack vector elements into i16 and bitcast to final type
2008 SDLoc DL(Op);
2009 SDValue Vec0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
2010 Op->getOperand(0), DAG.getIntPtrConstant(0, DL));
2011 SDValue Vec1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
2012 Op->getOperand(0), DAG.getIntPtrConstant(1, DL));
2013 SDValue Extend0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec0);
2014 SDValue Extend1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec1);
2015 SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
2016 SDValue AsInt = DAG.getNode(
2017 ISD::OR, DL, MVT::i16,
2018 {Extend0, DAG.getNode(ISD::SHL, DL, MVT::i16, {Extend1, Const8})});
2019 EVT ToVT = Op->getValueType(0);
2020 return DAG.getBitcast(ToVT, AsInt);
2021}
2022
2023// We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it
2024// would get lowered as two constant loads and vector-packing move.
2025// Instead we want just a constant move:
2026// mov.b32 %r2, 0x40003C00
2027SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2028 SelectionDAG &DAG) const {
2029 EVT VT = Op->getValueType(0);
2030 if (!(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector()))
2031 return Op;
2032 SDLoc DL(Op);
2033
2034 if (!llvm::all_of(Op->ops(), [](SDValue Operand) {
2035 return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
2036 isa<ConstantFPSDNode>(Operand);
2037 })) {
2038 if (VT != MVT::v4i8)
2039 return Op;
2040 // Lower non-const v4i8 vector as byte-wise constructed i32, which allows us
2041 // to optimize calculation of constant parts.
2042 auto GetPRMT = [&](const SDValue Left, const SDValue Right, bool Cast,
2043 uint64_t SelectionValue) -> SDValue {
2044 SDValue L = Left;
2045 SDValue R = Right;
2046 if (Cast) {
2047 L = DAG.getAnyExtOrTrunc(L, DL, MVT::i32);
2048 R = DAG.getAnyExtOrTrunc(R, DL, MVT::i32);
2049 }
2050 return getPRMT(L, R, SelectionValue, DL, DAG);
2051 };
2052 auto PRMT__10 = GetPRMT(Op->getOperand(0), Op->getOperand(1), true, 0x3340);
2053 auto PRMT__32 = GetPRMT(Op->getOperand(2), Op->getOperand(3), true, 0x3340);
2054 auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32, false, 0x5410);
2055 return DAG.getBitcast(VT, PRMT3210);
2056 }
2057
2058 // Get value or the Nth operand as an APInt(32). Undef values treated as 0.
2059 auto GetOperand = [](SDValue Op, int N) -> APInt {
2060 const SDValue &Operand = Op->getOperand(N);
2061 EVT VT = Op->getValueType(0);
2062 if (Operand->isUndef())
2063 return APInt(32, 0);
2064 APInt Value;
2065 if (VT == MVT::v2f16 || VT == MVT::v2bf16)
2066 Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt();
2067 else if (VT == MVT::v2i16 || VT == MVT::v4i8)
2068 Value = Operand->getAsAPIntVal();
2069 else
2070 llvm_unreachable("Unsupported type");
2071 // i8 values are carried around as i16, so we need to zero out upper bits,
2072 // so they do not get in the way of combining individual byte values
2073 if (VT == MVT::v4i8)
2074 Value = Value.trunc(8);
2075 return Value.zext(32);
2076 };
2077
2078 // Construct a 32-bit constant by shifting into place smaller values
2079 // (elements of the vector type VT).
2080 // For example, if VT has 2 elements, then N == 2:
2081 // ShiftAmount = 32 / N = 16
2082 // Value |= Op0 (b16) << 0
2083 // Value |= Op1 (b16) << 16
2084 // If N == 4:
2085 // ShiftAmount = 32 / N = 8
2086 // Value |= Op0 (b8) << 0
2087 // Value |= Op1 (b8) << 8
2088 // Value |= Op2 (b8) << 16
2089 // Value |= Op3 (b8) << 24
2090 // ...etc
2091 APInt Value(32, 0);
2092 const unsigned NumElements = VT.getVectorNumElements();
2093 assert(32 % NumElements == 0 && "must evenly divide bit length");
2094 const unsigned ShiftAmount = 32 / NumElements;
2095 for (unsigned ElementNo : seq(NumElements))
2096 Value |= GetOperand(Op, ElementNo).shl(ElementNo * ShiftAmount);
2097 SDValue Const = DAG.getConstant(Value, DL, MVT::i32);
2098 return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), Const);
2099}
2100
2101SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2102 SelectionDAG &DAG) const {
2103 SDValue Index = Op->getOperand(1);
2104 SDValue Vector = Op->getOperand(0);
2105 SDLoc DL(Op);
2106 EVT VectorVT = Vector.getValueType();
2107
2108 if (VectorVT == MVT::v4i8) {
2109 SDValue Selector = DAG.getNode(ISD::OR, DL, MVT::i32,
2110 DAG.getZExtOrTrunc(Index, DL, MVT::i32),
2111 DAG.getConstant(0x7770, DL, MVT::i32));
2112 SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, Vector),
2113 DAG.getConstant(0, DL, MVT::i32), Selector, DL, DAG);
2114 SDValue Ext = DAG.getAnyExtOrTrunc(PRMT, DL, Op->getValueType(0));
2115 SDNodeFlags Flags;
2116 Flags.setNoSignedWrap(Ext.getScalarValueSizeInBits() > 8);
2117 Flags.setNoUnsignedWrap(Ext.getScalarValueSizeInBits() >= 8);
2118 Ext->setFlags(Flags);
2119 return Ext;
2120 }
2121
2122 // Constant index will be matched by tablegen.
2123 if (isa<ConstantSDNode>(Index.getNode()))
2124 return Op;
2125
2126 // Extract individual elements and select one of them.
2127 assert(NVPTX::isPackedVectorTy(VectorVT) &&
2128 VectorVT.getVectorNumElements() == 2 && "Unexpected vector type.");
2129 EVT EltVT = VectorVT.getVectorElementType();
2130
2131 SDLoc dl(Op.getNode());
2132 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2133 DAG.getIntPtrConstant(0, dl));
2134 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2135 DAG.getIntPtrConstant(1, dl));
2136 return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
2138}
2139
2140SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2141 SelectionDAG &DAG) const {
2142 SDValue Vector = Op->getOperand(0);
2143 EVT VectorVT = Vector.getValueType();
2144
2145 if (VectorVT != MVT::v4i8)
2146 return Op;
2147 SDLoc DL(Op);
2148 SDValue Value = Op->getOperand(1);
2149 if (Value->isUndef())
2150 return Vector;
2151
2152 SDValue Index = Op->getOperand(2);
2153
2154 SDValue BFI =
2155 DAG.getNode(NVPTXISD::BFI, DL, MVT::i32,
2156 {DAG.getZExtOrTrunc(Value, DL, MVT::i32), Vector,
2157 DAG.getNode(ISD::MUL, DL, MVT::i32,
2158 DAG.getZExtOrTrunc(Index, DL, MVT::i32),
2159 DAG.getConstant(8, DL, MVT::i32)),
2160 DAG.getConstant(8, DL, MVT::i32)});
2161 return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), BFI);
2162}
2163
2164SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2165 SelectionDAG &DAG) const {
2166 SDValue V1 = Op.getOperand(0);
2167 EVT VectorVT = V1.getValueType();
2168 if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8)
2169 return Op;
2170
2171 // Lower shuffle to PRMT instruction.
2172 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2173 SDValue V2 = Op.getOperand(1);
2174 uint32_t Selector = 0;
2175 for (auto I : llvm::enumerate(SVN->getMask())) {
2176 if (I.value() != -1) // -1 is a placeholder for undef.
2177 Selector |= (I.value() << (I.index() * 4));
2178 }
2179
2180 SDLoc DL(Op);
2181 SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, V1),
2182 DAG.getBitcast(MVT::i32, V2), Selector, DL, DAG);
2183 return DAG.getBitcast(Op.getValueType(), PRMT);
2184}
2185/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
2186/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2187/// amount, or
2188/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2189/// amount.
2190SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
2191 SelectionDAG &DAG) const {
2192 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2193 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2194
2195 EVT VT = Op.getValueType();
2196 unsigned VTBits = VT.getSizeInBits();
2197 SDLoc dl(Op);
2198 SDValue ShOpLo = Op.getOperand(0);
2199 SDValue ShOpHi = Op.getOperand(1);
2200 SDValue ShAmt = Op.getOperand(2);
2201 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2202
2203 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2204 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2205 // {dHi, dLo} = {aHi, aLo} >> Amt
2206 // dHi = aHi >> Amt
2207 // dLo = shf.r.clamp aLo, aHi, Amt
2208
2209 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2210 SDValue Lo =
2211 DAG.getNode(NVPTXISD::FSHR_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
2212
2213 SDValue Ops[2] = { Lo, Hi };
2214 return DAG.getMergeValues(Ops, dl);
2215 }
2216 else {
2217 // {dHi, dLo} = {aHi, aLo} >> Amt
2218 // - if (Amt>=size) then
2219 // dLo = aHi >> (Amt-size)
2220 // dHi = aHi >> Amt (this is either all 0 or all 1)
2221 // else
2222 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
2223 // dHi = aHi >> Amt
2224
2225 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2226 DAG.getConstant(VTBits, dl, MVT::i32),
2227 ShAmt);
2228 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2229 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2230 DAG.getConstant(VTBits, dl, MVT::i32));
2231 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2232 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2233 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2234
2235 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2236 DAG.getConstant(VTBits, dl, MVT::i32),
2237 ISD::SETGE);
2238 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2239 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2240
2241 SDValue Ops[2] = { Lo, Hi };
2242 return DAG.getMergeValues(Ops, dl);
2243 }
2244}
2245
2246/// LowerShiftLeftParts - Lower SHL_PARTS, which
2247/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2248/// amount, or
2249/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2250/// amount.
2251SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2252 SelectionDAG &DAG) const {
2253 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2254 assert(Op.getOpcode() == ISD::SHL_PARTS);
2255
2256 EVT VT = Op.getValueType();
2257 unsigned VTBits = VT.getSizeInBits();
2258 SDLoc dl(Op);
2259 SDValue ShOpLo = Op.getOperand(0);
2260 SDValue ShOpHi = Op.getOperand(1);
2261 SDValue ShAmt = Op.getOperand(2);
2262
2263 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2264 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2265 // {dHi, dLo} = {aHi, aLo} << Amt
2266 // dHi = shf.l.clamp aLo, aHi, Amt
2267 // dLo = aLo << Amt
2268
2269 SDValue Hi =
2270 DAG.getNode(NVPTXISD::FSHL_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
2271 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2272
2273 SDValue Ops[2] = { Lo, Hi };
2274 return DAG.getMergeValues(Ops, dl);
2275 }
2276 else {
2277 // {dHi, dLo} = {aHi, aLo} << Amt
2278 // - if (Amt>=size) then
2279 // dLo = aLo << Amt (all 0)
2280 // dLo = aLo << (Amt-size)
2281 // else
2282 // dLo = aLo << Amt
2283 // dHi = (aHi << Amt) | (aLo >> (size-Amt))
2284
2285 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2286 DAG.getConstant(VTBits, dl, MVT::i32),
2287 ShAmt);
2288 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2289 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2290 DAG.getConstant(VTBits, dl, MVT::i32));
2291 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2292 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2293 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2294
2295 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2296 DAG.getConstant(VTBits, dl, MVT::i32),
2297 ISD::SETGE);
2298 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2299 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2300
2301 SDValue Ops[2] = { Lo, Hi };
2302 return DAG.getMergeValues(Ops, dl);
2303 }
2304}
2305
2306/// If the types match, convert the generic copysign to the NVPTXISD version,
2307/// otherwise bail ensuring that mismatched cases are properly expaned.
2308SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op,
2309 SelectionDAG &DAG) const {
2310 EVT VT = Op.getValueType();
2311 SDLoc DL(Op);
2312
2313 SDValue In1 = Op.getOperand(0);
2314 SDValue In2 = Op.getOperand(1);
2315 EVT SrcVT = In2.getValueType();
2316
2317 if (!SrcVT.bitsEq(VT))
2318 return SDValue();
2319
2320 return DAG.getNode(NVPTXISD::FCOPYSIGN, DL, VT, In1, In2);
2321}
2322
2323SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2324 EVT VT = Op.getValueType();
2325
2326 if (VT == MVT::f32)
2327 return LowerFROUND32(Op, DAG);
2328
2329 if (VT == MVT::f64)
2330 return LowerFROUND64(Op, DAG);
2331
2332 llvm_unreachable("unhandled type");
2333}
2334
2335// This is the the rounding method used in CUDA libdevice in C like code:
2336// float roundf(float A)
2337// {
2338// float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2339// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2340// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2341// }
2342SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2343 SelectionDAG &DAG) const {
2344 SDLoc SL(Op);
2345 SDValue A = Op.getOperand(0);
2346 EVT VT = Op.getValueType();
2347
2348 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2349
2350 // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2351 SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2352 const unsigned SignBitMask = 0x80000000;
2353 SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2354 DAG.getConstant(SignBitMask, SL, MVT::i32));
2355 const unsigned PointFiveInBits = 0x3F000000;
2356 SDValue PointFiveWithSignRaw =
2357 DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2358 DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2359 SDValue PointFiveWithSign =
2360 DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2361 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2362 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2363
2364 // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2365 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2366 SDValue IsLarge =
2367 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2368 ISD::SETOGT);
2369 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2370
2371 // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2372 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2373 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2374 SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2375 return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2376}
2377
2378// The implementation of round(double) is similar to that of round(float) in
2379// that they both separate the value range into three regions and use a method
2380// specific to the region to round the values. However, round(double) first
2381// calculates the round of the absolute value and then adds the sign back while
2382// round(float) directly rounds the value with sign.
2383SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2384 SelectionDAG &DAG) const {
2385 SDLoc SL(Op);
2386 SDValue A = Op.getOperand(0);
2387 EVT VT = Op.getValueType();
2388
2389 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2390
2391 // double RoundedA = (double) (int) (abs(A) + 0.5f);
2392 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2393 DAG.getConstantFP(0.5, SL, VT));
2394 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2395
2396 // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2397 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2398 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2399 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2400 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2401 DAG.getConstantFP(0, SL, VT),
2402 RoundedA);
2403
2404 // Add sign to rounded_A
2405 RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2406 DAG.getNode(ISD::FTRUNC, SL, VT, A);
2407
2408 // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2409 SDValue IsLarge =
2410 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2411 ISD::SETOGT);
2412 return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2413}
2414
2416 EVT VT = N->getValueType(0);
2417 EVT NVT = MVT::f32;
2418 if (VT.isVector()) {
2419 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
2420 }
2421 SDLoc DL(N);
2422 SDValue Tmp0 = DAG.getFPExtendOrRound(N->getOperand(0), DL, NVT);
2423 SDValue Tmp1 = DAG.getFPExtendOrRound(N->getOperand(1), DL, NVT);
2424 SDValue Res = DAG.getNode(N->getOpcode(), DL, NVT, Tmp0, Tmp1, N->getFlags());
2425 return DAG.getFPExtendOrRound(Res, DL, VT);
2426}
2427
2428SDValue NVPTXTargetLowering::PromoteBinOpIfF32FTZ(SDValue Op,
2429 SelectionDAG &DAG) const {
2430 if (useF32FTZ(DAG.getMachineFunction())) {
2431 return PromoteBinOpToF32(Op.getNode(), DAG);
2432 }
2433 return Op;
2434}
2435
2436SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op,
2437 SelectionDAG &DAG) const {
2438 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2439
2440 if (Op.getValueType() == MVT::bf16) {
2441 SDLoc Loc(Op);
2442 return DAG.getNode(
2443 ISD::FP_ROUND, Loc, MVT::bf16,
2444 DAG.getNode(Op.getOpcode(), Loc, MVT::f32, Op.getOperand(0)),
2445 DAG.getIntPtrConstant(0, Loc, /*isTarget=*/true));
2446 }
2447
2448 // Everything else is considered legal.
2449 return Op;
2450}
2451
2452SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op,
2453 SelectionDAG &DAG) const {
2454 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2455
2456 if (Op.getOperand(0).getValueType() == MVT::bf16) {
2457 SDLoc Loc(Op);
2458 return DAG.getNode(
2459 Op.getOpcode(), Loc, Op.getValueType(),
2460 DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, Op.getOperand(0)));
2461 }
2462
2463 // Everything else is considered legal.
2464 return Op;
2465}
2466
2467SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op,
2468 SelectionDAG &DAG) const {
2469 EVT NarrowVT = Op.getValueType();
2470 SDValue Wide = Op.getOperand(0);
2471 EVT WideVT = Wide.getValueType();
2472 if (NarrowVT.getScalarType() == MVT::bf16) {
2473 const TargetLowering *TLI = STI.getTargetLowering();
2474 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) {
2475 return TLI->expandFP_ROUND(Op.getNode(), DAG);
2476 }
2477 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
2478 // This combination was the first to support f32 -> bf16.
2479 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) {
2480 if (WideVT.getScalarType() == MVT::f32) {
2481 return Op;
2482 }
2483 if (WideVT.getScalarType() == MVT::f64) {
2484 SDLoc Loc(Op);
2485 // Round-inexact-to-odd f64 to f32, then do the final rounding using
2486 // the hardware f32 -> bf16 instruction.
2488 WideVT.isVector() ? WideVT.changeVectorElementType(MVT::f32)
2489 : MVT::f32,
2490 Wide, Loc, DAG);
2491 return DAG.getFPExtendOrRound(rod, Loc, NarrowVT);
2492 }
2493 }
2494 return TLI->expandFP_ROUND(Op.getNode(), DAG);
2495 }
2496 }
2497
2498 // Everything else is considered legal.
2499 return Op;
2500}
2501
2502SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op,
2503 SelectionDAG &DAG) const {
2504 SDValue Narrow = Op.getOperand(0);
2505 EVT NarrowVT = Narrow.getValueType();
2506 EVT WideVT = Op.getValueType();
2507 if (NarrowVT.getScalarType() == MVT::bf16) {
2508 if (WideVT.getScalarType() == MVT::f32 &&
2509 (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) {
2510 SDLoc Loc(Op);
2511 return DAG.getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow);
2512 }
2513 if (WideVT.getScalarType() == MVT::f64 &&
2514 (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) {
2515 EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(MVT::f32)
2516 : MVT::f32;
2517 SDLoc Loc(Op);
2518 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) {
2519 Op = DAG.getNode(ISD::FP_EXTEND, Loc, F32, Narrow);
2520 } else {
2521 Op = DAG.getNode(ISD::BF16_TO_FP, Loc, F32, Narrow);
2522 }
2523 return DAG.getNode(ISD::FP_EXTEND, Loc, WideVT, Op);
2524 }
2525 }
2526
2527 // Everything else is considered legal.
2528 return Op;
2529}
2530
2532 SDLoc DL(Op);
2533 if (Op.getValueType() != MVT::v2i16)
2534 return Op;
2535 EVT EltVT = Op.getValueType().getVectorElementType();
2536 SmallVector<SDValue> VecElements;
2537 for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) {
2538 SmallVector<SDValue> ScalarArgs;
2539 llvm::transform(Op->ops(), std::back_inserter(ScalarArgs),
2540 [&](const SDUse &O) {
2541 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
2542 O.get(), DAG.getIntPtrConstant(I, DL));
2543 });
2544 VecElements.push_back(DAG.getNode(Op.getOpcode(), DL, EltVT, ScalarArgs));
2545 }
2546 SDValue V =
2547 DAG.getNode(ISD::BUILD_VECTOR, DL, Op.getValueType(), VecElements);
2548 return V;
2549}
2550
2552 SDNode *N = Op.getNode();
2553 SDLoc DL(N);
2555
2556 // split the vector argument
2557 for (size_t I = 0; I < N->getNumOperands(); I++) {
2558 SDValue Val = N->getOperand(I);
2559 EVT ValVT = Val.getValueType();
2560 if (ValVT.isVector()) {
2561 EVT EltVT = ValVT.getVectorElementType();
2562 for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++)
2563 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2564 DAG.getIntPtrConstant(J, DL)));
2565 } else
2566 Ops.push_back(Val);
2567 }
2568
2570 SDValue Tcgen05StNode =
2571 DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, N->getVTList(), Ops,
2572 MemSD->getMemoryVT(), MemSD->getMemOperand());
2573
2574 return Tcgen05StNode;
2575}
2576
2578 SDLoc DL(Op);
2579 SDValue Src = Op.getOperand(0);
2580 EVT VT = Op.getValueType();
2581
2582 switch (VT.getSimpleVT().SimpleTy) {
2583 case MVT::i16: {
2584 SDValue Extended = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Src);
2585 SDValue Swapped =
2586 getPRMT(Extended, DAG.getConstant(0, DL, MVT::i32), 0x7701, DL, DAG);
2587 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Swapped);
2588 }
2589 case MVT::i32: {
2590 return getPRMT(Src, DAG.getConstant(0, DL, MVT::i32), 0x0123, DL, DAG);
2591 }
2592 case MVT::v2i16: {
2593 SDValue Converted = DAG.getBitcast(MVT::i32, Src);
2594 SDValue Swapped =
2595 getPRMT(Converted, DAG.getConstant(0, DL, MVT::i32), 0x2301, DL, DAG);
2596 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i16, Swapped);
2597 }
2598 case MVT::i64: {
2599 SDValue UnpackSrc =
2600 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, Src);
2601 SDValue SwappedLow =
2602 getPRMT(UnpackSrc.getValue(0), DAG.getConstant(0, DL, MVT::i32), 0x0123,
2603 DL, DAG);
2604 SDValue SwappedHigh =
2605 getPRMT(UnpackSrc.getValue(1), DAG.getConstant(0, DL, MVT::i32), 0x0123,
2606 DL, DAG);
2607 return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64,
2608 {SwappedHigh, SwappedLow});
2609 }
2610 default:
2611 llvm_unreachable("unsupported type for bswap");
2612 }
2613}
2614
2615static unsigned getTcgen05MMADisableOutputLane(unsigned IID) {
2616 switch (IID) {
2617 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
2618 return NVPTXISD::TCGEN05_MMA_SHARED_DISABLE_OUTPUT_LANE_CG1;
2619 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
2620 return NVPTXISD::TCGEN05_MMA_SHARED_DISABLE_OUTPUT_LANE_CG2;
2621 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
2622 return NVPTXISD::TCGEN05_MMA_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2623 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
2624 return NVPTXISD::TCGEN05_MMA_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2625 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
2626 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG1;
2627 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
2628 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG2;
2629 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
2630 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2631 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
2632 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2633 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
2634 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2635 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
2636 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2637 case Intrinsic::
2638 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
2639 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2640 case Intrinsic::
2641 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
2642 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2643 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
2644 return NVPTXISD::TCGEN05_MMA_SP_SHARED_DISABLE_OUTPUT_LANE_CG1;
2645 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
2646 return NVPTXISD::TCGEN05_MMA_SP_SHARED_DISABLE_OUTPUT_LANE_CG2;
2647 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
2648 return NVPTXISD::TCGEN05_MMA_SP_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2649 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
2650 return NVPTXISD::TCGEN05_MMA_SP_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2651 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
2652 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG1;
2653 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
2654 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG2;
2655 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
2656 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2657 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
2658 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2659 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
2660 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2661 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
2662 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2663 case Intrinsic::
2664 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift:
2665 return NVPTXISD::
2666 TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2667 case Intrinsic::
2668 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift:
2669 return NVPTXISD::
2670 TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2671 };
2672 llvm_unreachable("unhandled tcgen05.mma.disable_output_lane intrinsic");
2673}
2674
2676 SDNode *N = Op.getNode();
2677 SDLoc DL(N);
2678 unsigned IID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2679
2681 // split the vector argument
2682 for (size_t I = 0; I < N->getNumOperands(); I++) {
2683 if (I == 1)
2684 continue; // skip IID
2685 SDValue Val = N->getOperand(I);
2686 EVT ValVT = Val.getValueType();
2687 if (ValVT.isVector()) {
2688 EVT EltVT = ValVT.getVectorElementType();
2689 for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++)
2690 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2691 DAG.getIntPtrConstant(J, DL)));
2692 } else
2693 Ops.push_back(Val);
2694 }
2695
2697 SDValue Tcgen05MMANode = DAG.getMemIntrinsicNode(
2698 getTcgen05MMADisableOutputLane(IID), DL, N->getVTList(), Ops,
2699 MemSD->getMemoryVT(), MemSD->getMemOperand());
2700
2701 return Tcgen05MMANode;
2702}
2703
2704// Lower vector return type of tcgen05.ld intrinsics
2705static std::optional<std::pair<SDValue, SDValue>>
2706lowerTcgen05Ld(SDNode *N, SelectionDAG &DAG, bool HasOffset = false) {
2707 SDLoc DL(N);
2708 EVT ResVT = N->getValueType(0);
2709 if (!ResVT.isVector())
2710 return {}; // already legalized.
2711
2712 const unsigned NumElts = ResVT.getVectorNumElements();
2713
2714 // Create the return type of the instructions
2715 SmallVector<EVT, 5> ListVTs;
2716 for (unsigned i = 0; i < NumElts; ++i)
2717 ListVTs.push_back(MVT::i32);
2718
2719 ListVTs.push_back(N->getValueType(1)); // Chain
2720
2721 SDVTList ResVTs = DAG.getVTList(ListVTs);
2722
2723 SmallVector<SDValue, 8> Ops{N->getOperand(0), N->getOperand(1),
2724 N->getOperand(2)};
2725
2726 if (HasOffset) {
2727 Ops.push_back(N->getOperand(3)); // offset
2728 Ops.push_back(N->getOperand(4)); // Pack flag
2729 } else
2730 Ops.push_back(N->getOperand(3)); // Pack flag
2731
2733 SDValue NewNode =
2735 MemSD->getMemoryVT(), MemSD->getMemOperand());
2736
2737 // split the vector result
2738 SmallVector<SDValue, 4> ScalarRes;
2739 for (unsigned i = 0; i < NumElts; ++i) {
2740 SDValue Res = NewNode.getValue(i);
2741 ScalarRes.push_back(Res);
2742 }
2743
2744 SDValue Chain = NewNode.getValue(NumElts);
2745 SDValue BuildVector = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
2746 return {{BuildVector, Chain}};
2747}
2748
2750 SDNode *N = Op.getNode();
2751 SDValue Intrin = N->getOperand(1);
2752
2753 // Get the intrinsic ID
2754 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
2755 switch (IntrinNo) {
2756 default:
2757 break;
2758 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
2759 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
2760 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
2761 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
2762 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
2763 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
2764 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
2765 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
2766 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
2767 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
2768 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
2769 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
2770 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
2771 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
2772 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
2773 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
2774 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
2775 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
2776 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
2777 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
2778 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1:
2779 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2:
2780 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4:
2781 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8:
2782 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16:
2783 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32:
2784 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64:
2785 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128:
2786 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
2787 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
2788 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
2789 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
2790 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
2791 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
2792 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
2793 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
2794 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
2795 return lowerTcgen05St(Op, DAG);
2796 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
2797 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
2798 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
2799 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
2800 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
2801 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
2802 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
2803 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
2804 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
2805 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
2806 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
2807 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
2808 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
2809 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
2810 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
2811 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
2812 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
2813 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
2814 case Intrinsic::
2815 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
2816 case Intrinsic::
2817 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
2818 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
2819 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
2820 case Intrinsic::
2821 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift:
2822 case Intrinsic::
2823 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift:
2825 }
2826 return Op;
2827}
2828
2830 SelectionDAG &DAG) {
2831
2832 SDNode *N = Op.getNode();
2833 if (N->getOperand(1).getValueType() != MVT::i128) {
2834 // return, if the operand is already lowered
2835 return SDValue();
2836 }
2837
2838 unsigned IID =
2839 cast<ConstantSDNode>(N->getOperand(0).getNode())->getZExtValue();
2840 auto Opcode = [&]() {
2841 switch (IID) {
2842 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2843 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED;
2844 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2845 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X;
2846 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2847 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y;
2848 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2849 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z;
2850 default:
2851 llvm_unreachable("unsupported/unhandled intrinsic");
2852 }
2853 }();
2854
2855 SDLoc DL(N);
2856 SDValue TryCancelResponse = N->getOperand(1);
2857 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TryCancelResponse);
2858 SDValue TryCancelResponse0 =
2859 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
2860 DAG.getIntPtrConstant(0, DL));
2861 SDValue TryCancelResponse1 =
2862 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
2863 DAG.getIntPtrConstant(1, DL));
2864
2865 return DAG.getNode(Opcode, DL, N->getVTList(),
2866 {TryCancelResponse0, TryCancelResponse1});
2867}
2868
2870 SDNode *N = Op.getNode();
2871 SDLoc DL(N);
2872 SDValue F32Vec = N->getOperand(1);
2873 SDValue RBits = N->getOperand(2);
2874
2875 unsigned IntrinsicID = N->getConstantOperandVal(0);
2876
2877 // Extract the 4 float elements from the vector
2879 for (unsigned i = 0; i < 4; ++i)
2880 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, F32Vec,
2881 DAG.getIntPtrConstant(i, DL)));
2882
2884
2885 auto [OpCode, RetTy, CvtModeFlag] =
2886 [&]() -> std::tuple<unsigned, MVT::SimpleValueType, uint32_t> {
2887 switch (IntrinsicID) {
2888 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_relu_satfinite:
2889 return {NVPTXISD::CVT_E4M3X4_F32X4_RS_SF, MVT::v4i8,
2890 CvtMode::RS | CvtMode::RELU_FLAG};
2891 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_satfinite:
2892 return {NVPTXISD::CVT_E4M3X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2893 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_relu_satfinite:
2894 return {NVPTXISD::CVT_E5M2X4_F32X4_RS_SF, MVT::v4i8,
2895 CvtMode::RS | CvtMode::RELU_FLAG};
2896 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_satfinite:
2897 return {NVPTXISD::CVT_E5M2X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2898 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_relu_satfinite:
2899 return {NVPTXISD::CVT_E2M3X4_F32X4_RS_SF, MVT::v4i8,
2900 CvtMode::RS | CvtMode::RELU_FLAG};
2901 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_satfinite:
2902 return {NVPTXISD::CVT_E2M3X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2903 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_relu_satfinite:
2904 return {NVPTXISD::CVT_E3M2X4_F32X4_RS_SF, MVT::v4i8,
2905 CvtMode::RS | CvtMode::RELU_FLAG};
2906 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_satfinite:
2907 return {NVPTXISD::CVT_E3M2X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2908 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_relu_satfinite:
2909 return {NVPTXISD::CVT_E2M1X4_F32X4_RS_SF, MVT::i16,
2910 CvtMode::RS | CvtMode::RELU_FLAG};
2911 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_satfinite:
2912 return {NVPTXISD::CVT_E2M1X4_F32X4_RS_SF, MVT::i16, CvtMode::RS};
2913 default:
2914 llvm_unreachable("unsupported/unhandled intrinsic");
2915 }
2916 }();
2917
2918 Ops.push_back(RBits);
2919 Ops.push_back(DAG.getConstant(CvtModeFlag, DL, MVT::i32));
2920
2921 return DAG.getNode(OpCode, DL, RetTy, Ops);
2922}
2923
2925 const unsigned Mode = [&]() {
2926 switch (Op->getConstantOperandVal(0)) {
2927 case Intrinsic::nvvm_prmt:
2929 case Intrinsic::nvvm_prmt_b4e:
2931 case Intrinsic::nvvm_prmt_ecl:
2933 case Intrinsic::nvvm_prmt_ecr:
2935 case Intrinsic::nvvm_prmt_f4e:
2937 case Intrinsic::nvvm_prmt_rc16:
2939 case Intrinsic::nvvm_prmt_rc8:
2941 default:
2942 llvm_unreachable("unsupported/unhandled intrinsic");
2943 }
2944 }();
2945 SDLoc DL(Op);
2946 SDValue A = Op->getOperand(1);
2947 SDValue B = Op.getNumOperands() == 4 ? Op.getOperand(2)
2948 : DAG.getConstant(0, DL, MVT::i32);
2949 SDValue Selector = (Op->op_end() - 1)->get();
2950 return getPRMT(A, B, Selector, DL, DAG, Mode);
2951}
2952
2954 switch (Op->getConstantOperandVal(1)) {
2955 default:
2956 return Op;
2957
2958 // These tcgen05 intrinsics return a v2i32, which is legal, so we have to
2959 // lower them through LowerOperation() instead of ReplaceNodeResults().
2960 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
2961 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
2962 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
2963 if (auto Res = lowerTcgen05Ld(Op.getNode(), DAG))
2964 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(Op));
2965 return SDValue();
2966
2967 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2:
2968 if (auto Res = lowerTcgen05Ld(Op.getNode(), DAG, /*HasOffset=*/true))
2969 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(Op));
2970 return SDValue();
2971 }
2972}
2973
2975 switch (Op->getConstantOperandVal(0)) {
2976 default:
2977 return Op;
2978 case Intrinsic::nvvm_prmt:
2979 case Intrinsic::nvvm_prmt_b4e:
2980 case Intrinsic::nvvm_prmt_ecl:
2981 case Intrinsic::nvvm_prmt_ecr:
2982 case Intrinsic::nvvm_prmt_f4e:
2983 case Intrinsic::nvvm_prmt_rc16:
2984 case Intrinsic::nvvm_prmt_rc8:
2985 return lowerPrmtIntrinsic(Op, DAG);
2986 case Intrinsic::nvvm_internal_addrspace_wrap:
2987 return Op.getOperand(1);
2988 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2989 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2990 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2991 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2993 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_satfinite:
2994 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_relu_satfinite:
2995 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_satfinite:
2996 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_relu_satfinite:
2997 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_satfinite:
2998 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_relu_satfinite:
2999 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_satfinite:
3000 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_relu_satfinite:
3001 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_satfinite:
3002 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_relu_satfinite:
3003 return lowerCvtRSIntrinsics(Op, DAG);
3004 }
3005}
3006
3007// In PTX 64-bit CTLZ and CTPOP are supported, but they return a 32-bit value.
3008// Lower these into a node returning the correct type which is zero-extended
3009// back to the correct size.
3011 SDValue V = Op->getOperand(0);
3012 assert(V.getValueType() == MVT::i64 &&
3013 "Unexpected CTLZ/CTPOP type to legalize");
3014
3015 SDLoc DL(Op);
3016 SDValue CT = DAG.getNode(Op->getOpcode(), DL, MVT::i32, V);
3017 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, CT, SDNodeFlags::NonNeg);
3018}
3019
3021 unsigned Opcode, SelectionDAG &DAG) {
3022 assert(A.getValueType() == MVT::i64 && B.getValueType() == MVT::i64);
3023
3024 const auto *AmtConst = dyn_cast<ConstantSDNode>(ShiftAmount);
3025 if (!AmtConst)
3026 return SDValue();
3027 const auto Amt = AmtConst->getZExtValue() & 63;
3028
3029 SDValue UnpackA =
3030 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, A);
3031 SDValue UnpackB =
3032 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, B);
3033
3034 // Arch is Little endiain: 0 = low bits, 1 = high bits
3035 SDValue ALo = UnpackA.getValue(0);
3036 SDValue AHi = UnpackA.getValue(1);
3037 SDValue BLo = UnpackB.getValue(0);
3038 SDValue BHi = UnpackB.getValue(1);
3039
3040 // The bitfeild consists of { AHi : ALo : BHi : BLo }
3041 //
3042 // * FSHL, Amt < 32 - The window will contain { AHi : ALo : BHi }
3043 // * FSHL, Amt >= 32 - The window will contain { ALo : BHi : BLo }
3044 // * FSHR, Amt < 32 - The window will contain { ALo : BHi : BLo }
3045 // * FSHR, Amt >= 32 - The window will contain { AHi : ALo : BHi }
3046 //
3047 // Note that Amt = 0 and Amt = 32 are special cases where 32-bit funnel shifts
3048 // are not needed at all. Amt = 0 is a no-op producing either A or B depending
3049 // on the direction. Amt = 32 can be implemented by a packing and unpacking
3050 // move to select and arrange the 32bit values. For simplicity, these cases
3051 // are not handled here explicitly and instead we rely on DAGCombiner to
3052 // remove the no-op funnel shifts we insert.
3053 auto [High, Mid, Low] = ((Opcode == ISD::FSHL) == (Amt < 32))
3054 ? std::make_tuple(AHi, ALo, BHi)
3055 : std::make_tuple(ALo, BHi, BLo);
3056
3057 SDValue NewAmt = DAG.getConstant(Amt & 31, DL, MVT::i32);
3058 SDValue RHi = DAG.getNode(Opcode, DL, MVT::i32, {High, Mid, NewAmt});
3059 SDValue RLo = DAG.getNode(Opcode, DL, MVT::i32, {Mid, Low, NewAmt});
3060
3061 return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64, {RLo, RHi});
3062}
3063
3065 return expandFSH64(Op->getOperand(0), Op->getOperand(1), Op->getOperand(2),
3066 SDLoc(Op), Op->getOpcode(), DAG);
3067}
3068
3070 unsigned Opcode = Op->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR;
3071 return expandFSH64(Op->getOperand(0), Op->getOperand(0), Op->getOperand(1),
3072 SDLoc(Op), Opcode, DAG);
3073}
3074
3076 // Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)),
3077 // i.e. "poor man's fmod()". When y is infinite, x is returned. This matches
3078 // the semantics of LLVM's frem.
3079 SDLoc DL(Op);
3080 SDValue X = Op->getOperand(0);
3081 SDValue Y = Op->getOperand(1);
3082 EVT Ty = Op.getValueType();
3083 SDNodeFlags Flags = Op->getFlags();
3084
3085 SDValue Div = DAG.getNode(ISD::FDIV, DL, Ty, X, Y, Flags);
3086 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, Ty, Div, Flags);
3087 SDValue Mul = DAG.getNode(ISD::FMUL, DL, Ty, Trunc, Y,
3089 SDValue Sub = DAG.getNode(ISD::FSUB, DL, Ty, X, Mul,
3091
3092 if (Flags.hasNoInfs())
3093 return Sub;
3094
3095 // If Y is infinite, return X
3096 SDValue AbsY = DAG.getNode(ISD::FABS, DL, Ty, Y);
3097 SDValue Inf =
3098 DAG.getConstantFP(APFloat::getInf(Ty.getFltSemantics()), DL, Ty);
3099 SDValue IsInf = DAG.getSetCC(DL, MVT::i1, AbsY, Inf, ISD::SETEQ);
3100 return DAG.getSelect(DL, Ty, IsInf, X, Sub);
3101}
3102
3104 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
3105
3106 SDValue Cond = Op->getOperand(0);
3107 SDValue TrueVal = Op->getOperand(1);
3108 SDValue FalseVal = Op->getOperand(2);
3109 SDLoc DL(Op);
3110
3111 // If both operands are truncated, we push the select through the truncates.
3112 if (TrueVal.getOpcode() == ISD::TRUNCATE &&
3113 FalseVal.getOpcode() == ISD::TRUNCATE) {
3114 TrueVal = TrueVal.getOperand(0);
3115 FalseVal = FalseVal.getOperand(0);
3116
3117 EVT VT = TrueVal.getSimpleValueType().bitsLE(FalseVal.getSimpleValueType())
3118 ? TrueVal.getValueType()
3119 : FalseVal.getValueType();
3120 TrueVal = DAG.getAnyExtOrTrunc(TrueVal, DL, VT);
3121 FalseVal = DAG.getAnyExtOrTrunc(FalseVal, DL, VT);
3122 SDValue Select = DAG.getSelect(DL, VT, Cond, TrueVal, FalseVal);
3123 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
3124 }
3125
3126 // Otherwise, expand the select into a series of logical operations. These
3127 // often can be folded into other operations either by us or ptxas.
3128 TrueVal = DAG.getFreeze(TrueVal);
3129 FalseVal = DAG.getFreeze(FalseVal);
3130 SDValue And1 = DAG.getNode(ISD::AND, DL, MVT::i1, Cond, TrueVal);
3131 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
3132 SDValue And2 = DAG.getNode(ISD::AND, DL, MVT::i1, NotCond, FalseVal);
3133 SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i1, And1, And2);
3134 return Or;
3135}
3136
3138 SDNode *N = Op.getNode();
3139
3140 SDValue Chain = N->getOperand(0);
3141 SDValue Val = N->getOperand(1);
3142 SDValue BasePtr = N->getOperand(2);
3143 SDValue Offset = N->getOperand(3);
3144 SDValue Mask = N->getOperand(4);
3145
3146 SDLoc DL(N);
3147 EVT ValVT = Val.getValueType();
3148 MemSDNode *MemSD = cast<MemSDNode>(N);
3149 assert(ValVT.isVector() && "Masked vector store must have vector type");
3150 assert(MemSD->getAlign() >= DAG.getEVTAlign(ValVT) &&
3151 "Unexpected alignment for masked store");
3152
3153 unsigned Opcode = 0;
3154 switch (ValVT.getSimpleVT().SimpleTy) {
3155 default:
3156 llvm_unreachable("Unexpected masked vector store type");
3157 case MVT::v4i64:
3158 case MVT::v4f64: {
3159 Opcode = NVPTXISD::StoreV4;
3160 break;
3161 }
3162 case MVT::v8i32:
3163 case MVT::v8f32: {
3164 Opcode = NVPTXISD::StoreV8;
3165 break;
3166 }
3167 }
3168
3170
3171 // Construct the new SDNode. First operand is the chain.
3172 Ops.push_back(Chain);
3173
3174 // The next N operands are the values to store. Encode the mask into the
3175 // values using the sentinel register 0 to represent a masked-off element.
3176 assert(Mask.getValueType().isVector() &&
3177 Mask.getValueType().getVectorElementType() == MVT::i1 &&
3178 "Mask must be a vector of i1");
3179 assert(Mask.getOpcode() == ISD::BUILD_VECTOR &&
3180 "Mask expected to be a BUILD_VECTOR");
3181 assert(Mask.getValueType().getVectorNumElements() ==
3182 ValVT.getVectorNumElements() &&
3183 "Mask size must be the same as the vector size");
3184 for (auto [I, Op] : enumerate(Mask->ops())) {
3185 // Mask elements must be constants.
3186 if (Op.getNode()->getAsZExtVal() == 0) {
3187 // Append a sentinel register 0 to the Ops vector to represent a masked
3188 // off element, this will be handled in tablegen
3190 ValVT.getVectorElementType()));
3191 } else {
3192 // Extract the element from the vector to store
3193 SDValue ExtVal =
3195 Val, DAG.getIntPtrConstant(I, DL));
3196 Ops.push_back(ExtVal);
3197 }
3198 }
3199
3200 // Next, the pointer operand.
3201 Ops.push_back(BasePtr);
3202
3203 // Finally, the offset operand. We expect this to always be undef, and it will
3204 // be ignored in lowering, but to mirror the handling of the other vector
3205 // store instructions we include it in the new SDNode.
3206 assert(Offset.getOpcode() == ISD::UNDEF &&
3207 "Offset operand expected to be undef");
3208 Ops.push_back(Offset);
3209
3210 SDValue NewSt =
3211 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
3212 MemSD->getMemoryVT(), MemSD->getMemOperand());
3213
3214 return NewSt;
3215}
3216
3217SDValue
3219 switch (Op.getOpcode()) {
3220 case ISD::RETURNADDR:
3221 return SDValue();
3222 case ISD::FRAMEADDR:
3223 return SDValue();
3224 case ISD::ADDRSPACECAST:
3225 return LowerADDRSPACECAST(Op, DAG);
3227 return lowerIntrinsicWChain(Op, DAG);
3229 return lowerIntrinsicWOChain(Op, DAG);
3231 return lowerIntrinsicVoid(Op, DAG);
3232 case ISD::BUILD_VECTOR:
3233 return LowerBUILD_VECTOR(Op, DAG);
3234 case ISD::BITCAST:
3235 return LowerBITCAST(Op, DAG);
3237 return Op;
3239 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3241 return LowerINSERT_VECTOR_ELT(Op, DAG);
3243 return LowerVECTOR_SHUFFLE(Op, DAG);
3245 return LowerCONCAT_VECTORS(Op, DAG);
3250 return LowerVECREDUCE(Op, DAG);
3251 case ISD::STORE:
3252 return LowerSTORE(Op, DAG);
3253 case ISD::MSTORE: {
3254 assert(STI.has256BitVectorLoadStore(
3255 cast<MemSDNode>(Op.getNode())->getAddressSpace()) &&
3256 "Masked store vector not supported on subtarget.");
3257 return lowerMSTORE(Op, DAG);
3258 }
3259 case ISD::LOAD:
3260 return LowerLOAD(Op, DAG);
3261 case ISD::MLOAD:
3262 return LowerMLOAD(Op, DAG);
3263 case ISD::SHL_PARTS:
3264 return LowerShiftLeftParts(Op, DAG);
3265 case ISD::SRA_PARTS:
3266 case ISD::SRL_PARTS:
3267 return LowerShiftRightParts(Op, DAG);
3268 case ISD::SELECT:
3269 return lowerSELECT(Op, DAG);
3270 case ISD::FROUND:
3271 return LowerFROUND(Op, DAG);
3272 case ISD::FCOPYSIGN:
3273 return LowerFCOPYSIGN(Op, DAG);
3274 case ISD::SINT_TO_FP:
3275 case ISD::UINT_TO_FP:
3276 return LowerINT_TO_FP(Op, DAG);
3277 case ISD::FP_TO_SINT:
3278 case ISD::FP_TO_UINT:
3279 return LowerFP_TO_INT(Op, DAG);
3280 case ISD::FP_ROUND:
3281 return LowerFP_ROUND(Op, DAG);
3282 case ISD::FP_EXTEND:
3283 return LowerFP_EXTEND(Op, DAG);
3284 case ISD::VAARG:
3285 return LowerVAARG(Op, DAG);
3286 case ISD::VASTART:
3287 return LowerVASTART(Op, DAG);
3288 case ISD::FSHL:
3289 case ISD::FSHR:
3290 return lowerFSH(Op, DAG);
3291 case ISD::ROTL:
3292 case ISD::ROTR:
3293 return lowerROT(Op, DAG);
3294 case ISD::ABS:
3295 case ISD::SMIN:
3296 case ISD::SMAX:
3297 case ISD::UMIN:
3298 case ISD::UMAX:
3299 case ISD::ADD:
3300 case ISD::SUB:
3301 case ISD::MUL:
3302 case ISD::SHL:
3303 case ISD::SREM:
3304 case ISD::UREM:
3305 return LowerVectorArith(Op, DAG);
3307 return LowerDYNAMIC_STACKALLOC(Op, DAG);
3308 case ISD::STACKRESTORE:
3309 return LowerSTACKRESTORE(Op, DAG);
3310 case ISD::STACKSAVE:
3311 return LowerSTACKSAVE(Op, DAG);
3312 case ISD::CopyToReg:
3313 return LowerCopyToReg_128(Op, DAG);
3314 case ISD::FADD:
3315 case ISD::FSUB:
3316 case ISD::FMUL:
3317 // Used only for bf16 on SM80, where we select fma for non-ftz operation
3318 return PromoteBinOpIfF32FTZ(Op, DAG);
3319 case ISD::CTPOP:
3320 case ISD::CTLZ:
3321 return lowerCTLZCTPOP(Op, DAG);
3322 case ISD::FREM:
3323 return lowerFREM(Op, DAG);
3324 case ISD::BSWAP:
3325 return lowerBSWAP(Op, DAG);
3326 default:
3327 llvm_unreachable("Custom lowering not defined for operation");
3328 }
3329}
3330
3331// This will prevent AsmPrinter from trying to print the jump tables itself.
3335
3336SDValue NVPTXTargetLowering::LowerADDRSPACECAST(SDValue Op,
3337 SelectionDAG &DAG) const {
3339 unsigned SrcAS = N->getSrcAddressSpace();
3340 unsigned DestAS = N->getDestAddressSpace();
3341 if (SrcAS != llvm::ADDRESS_SPACE_GENERIC &&
3342 DestAS != llvm::ADDRESS_SPACE_GENERIC) {
3343 // Shared and SharedCluster can be converted to each other through generic
3344 // space
3345 if ((SrcAS == llvm::ADDRESS_SPACE_SHARED &&
3348 DestAS == llvm::ADDRESS_SPACE_SHARED)) {
3349 SDLoc DL(Op.getNode());
3350 const MVT GenerictVT =
3352 SDValue GenericConversion = DAG.getAddrSpaceCast(
3353 DL, GenerictVT, Op.getOperand(0), SrcAS, ADDRESS_SPACE_GENERIC);
3354 SDValue SharedClusterConversion =
3355 DAG.getAddrSpaceCast(DL, Op.getValueType(), GenericConversion,
3356 ADDRESS_SPACE_GENERIC, DestAS);
3357 return SharedClusterConversion;
3358 }
3359
3360 return DAG.getUNDEF(Op.getValueType());
3361 }
3362
3363 return Op;
3364}
3365
3366// This function is almost a copy of SelectionDAG::expandVAArg().
3367// The only diff is that this one produces loads from local address space.
3368SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3369 const TargetLowering *TLI = STI.getTargetLowering();
3370 SDLoc DL(Op);
3371
3372 SDNode *Node = Op.getNode();
3373 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3374 EVT VT = Node->getValueType(0);
3375 auto *Ty = VT.getTypeForEVT(*DAG.getContext());
3376 SDValue Tmp1 = Node->getOperand(0);
3377 SDValue Tmp2 = Node->getOperand(1);
3378 const MaybeAlign MA(Node->getConstantOperandVal(3));
3379
3380 SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL,
3381 Tmp1, Tmp2, MachinePointerInfo(V));
3382 SDValue VAList = VAListLoad;
3383
3384 if (MA && *MA > TLI->getMinStackArgumentAlignment()) {
3385 VAList = DAG.getNode(
3386 ISD::ADD, DL, VAList.getValueType(), VAList,
3387 DAG.getConstant(MA->value() - 1, DL, VAList.getValueType()));
3388
3389 VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
3390 DAG.getSignedConstant(-(int64_t)MA->value(), DL,
3391 VAList.getValueType()));
3392 }
3393
3394 // Increment the pointer, VAList, to the next vaarg
3395 Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
3397 DL, VAList.getValueType()));
3398
3399 // Store the incremented VAList to the legalized pointer
3400 Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2,
3401 MachinePointerInfo(V));
3402
3403 const Value *SrcV = Constant::getNullValue(
3405
3406 // Load the actual argument out of the pointer VAList
3407 return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV));
3408}
3409
3410SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3411 const TargetLowering *TLI = STI.getTargetLowering();
3412 SDLoc DL(Op);
3413 EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout());
3414
3415 // Store the address of unsized array <function>_vararg[] in the ap object.
3416 SDValue VAReg = getParamSymbol(DAG, /* vararg */ -1, PtrVT);
3417
3418 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3419 return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1),
3420 MachinePointerInfo(SV));
3421}
3422
3423static std::pair<MemSDNode *, uint32_t>
3425 const NVPTXSubtarget &STI) {
3426 SDValue Chain = N->getOperand(0);
3427 SDValue BasePtr = N->getOperand(1);
3428 SDValue Mask = N->getOperand(3);
3429 [[maybe_unused]] SDValue Passthru = N->getOperand(4);
3430
3431 SDLoc DL(N);
3432 EVT ResVT = N->getValueType(0);
3433 assert(ResVT.isVector() && "Masked vector load must have vector type");
3434 // While we only expect poison passthru vectors as an input to the backend,
3435 // when the legalization framework splits a poison vector in half, it creates
3436 // two undef vectors, so we can technically expect those too.
3437 assert((Passthru.getOpcode() == ISD::POISON ||
3438 Passthru.getOpcode() == ISD::UNDEF) &&
3439 "Passthru operand expected to be poison or undef");
3440
3441 // Extract the mask and convert it to a uint32_t representing the used bytes
3442 // of the entire vector load
3443 uint32_t UsedBytesMask = 0;
3444 uint32_t ElementSizeInBits = ResVT.getVectorElementType().getSizeInBits();
3445 assert(ElementSizeInBits % 8 == 0 && "Unexpected element size");
3446 uint32_t ElementSizeInBytes = ElementSizeInBits / 8;
3447 uint32_t ElementMask = (1u << ElementSizeInBytes) - 1u;
3448
3449 for (SDValue Op : reverse(Mask->ops())) {
3450 // We technically only want to do this shift for every
3451 // iteration *but* the first, but in the first iteration UsedBytesMask is 0,
3452 // so this shift is a no-op.
3453 UsedBytesMask <<= ElementSizeInBytes;
3454
3455 // Mask elements must be constants.
3456 if (Op->getAsZExtVal() != 0)
3457 UsedBytesMask |= ElementMask;
3458 }
3459
3460 assert(UsedBytesMask != 0 && UsedBytesMask != UINT32_MAX &&
3461 "Unexpected masked load with elements masked all on or all off");
3462
3463 // Create a new load sd node to be handled normally by ReplaceLoadVector.
3464 MemSDNode *NewLD = cast<MemSDNode>(
3465 DAG.getLoad(ResVT, DL, Chain, BasePtr, N->getMemOperand()).getNode());
3466
3467 // If our subtarget does not support the used bytes mask pragma, "drop" the
3468 // mask by setting it to UINT32_MAX
3469 if (!STI.hasUsedBytesMaskPragma())
3470 UsedBytesMask = UINT32_MAX;
3471
3472 return {NewLD, UsedBytesMask};
3473}
3474
3475/// replaceLoadVector - Convert vector loads into multi-output scalar loads.
3476static std::optional<std::pair<SDValue, SDValue>>
3479 const EVT ResVT = LD->getValueType(0);
3480 const EVT MemVT = LD->getMemoryVT();
3481
3482 // If we're doing sign/zero extension as part of the load, avoid lowering to
3483 // a LoadV node. TODO: consider relaxing this restriction.
3484 if (ResVT != MemVT)
3485 return std::nullopt;
3486
3487 const auto NumEltsAndEltVT =
3488 getVectorLoweringShape(ResVT, STI, LD->getAddressSpace());
3489 if (!NumEltsAndEltVT)
3490 return std::nullopt;
3491 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3492
3493 Align Alignment = LD->getAlign();
3494 const auto &TD = DAG.getDataLayout();
3495 Align PrefAlign = TD.getPrefTypeAlign(MemVT.getTypeForEVT(*DAG.getContext()));
3496 if (Alignment < PrefAlign) {
3497 // This load is not sufficiently aligned, so bail out and let this vector
3498 // load be scalarized. Note that we may still be able to emit smaller
3499 // vector loads. For example, if we are loading a <4 x float> with an
3500 // alignment of 8, this check will fail but the legalizer will try again
3501 // with 2 x <2 x float>, which will succeed with an alignment of 8.
3502 return std::nullopt;
3503 }
3504
3505 // If we have a masked load, convert it to a normal load now
3506 std::optional<uint32_t> UsedBytesMask = std::nullopt;
3507 if (LD->getOpcode() == ISD::MLOAD)
3508 std::tie(LD, UsedBytesMask) =
3510
3511 // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
3512 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
3513 // loaded type to i16 and propagate the "real" type as the memory type.
3514 const MVT LoadEltVT = (EltVT.getSizeInBits() < 16) ? MVT::i16 : EltVT;
3515
3516 unsigned Opcode;
3517 switch (NumElts) {
3518 default:
3519 return std::nullopt;
3520 case 2:
3521 Opcode = NVPTXISD::LoadV2;
3522 break;
3523 case 4:
3524 Opcode = NVPTXISD::LoadV4;
3525 break;
3526 case 8:
3527 Opcode = NVPTXISD::LoadV8;
3528 break;
3529 }
3530 auto ListVTs = SmallVector<EVT, 9>(NumElts, LoadEltVT);
3531 ListVTs.push_back(MVT::Other);
3532 SDVTList LdResVTs = DAG.getVTList(ListVTs);
3533
3534 SDLoc DL(LD);
3535
3536 // Copy regular operands
3537 SmallVector<SDValue, 8> OtherOps(LD->ops());
3538
3539 OtherOps.push_back(
3540 DAG.getConstant(UsedBytesMask.value_or(UINT32_MAX), DL, MVT::i32));
3541
3542 // The select routine does not have access to the LoadSDNode instance, so
3543 // pass along the extension information
3544 OtherOps.push_back(
3545 DAG.getIntPtrConstant(cast<LoadSDNode>(LD)->getExtensionType(), DL));
3546
3547 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, MemVT,
3548 LD->getMemOperand());
3549
3550 SmallVector<SDValue> ScalarRes;
3551 if (EltVT.isVector()) {
3553 assert(NumElts * EltVT.getVectorNumElements() ==
3554 ResVT.getVectorNumElements());
3555 // Generate EXTRACT_VECTOR_ELTs to split v2[i,f,bf]16/v4i8 subvectors back
3556 // into individual elements.
3557 for (const unsigned I : llvm::seq(NumElts)) {
3558 SDValue SubVector = NewLD.getValue(I);
3559 DAG.ExtractVectorElements(SubVector, ScalarRes);
3560 }
3561 } else {
3562 for (const unsigned I : llvm::seq(NumElts)) {
3563 SDValue Res = NewLD.getValue(I);
3564 if (LoadEltVT != EltVT)
3565 Res = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
3566 ScalarRes.push_back(Res);
3567 }
3568 }
3569
3570 SDValue LoadChain = NewLD.getValue(NumElts);
3571
3572 const MVT BuildVecVT =
3573 MVT::getVectorVT(EltVT.getScalarType(), ScalarRes.size());
3574 SDValue BuildVec = DAG.getBuildVector(BuildVecVT, DL, ScalarRes);
3575 SDValue LoadValue = DAG.getBitcast(ResVT, BuildVec);
3576
3577 return {{LoadValue, LoadChain}};
3578}
3579
3582 const NVPTXSubtarget &STI) {
3583 if (auto Res = replaceLoadVector(N, DAG, STI))
3584 Results.append({Res->first, Res->second});
3585}
3586
3588 const NVPTXSubtarget &STI) {
3589 if (auto Res = replaceLoadVector(N, DAG, STI))
3590 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(N));
3591 return SDValue();
3592}
3593
3594// v = ld i1* addr
3595// =>
3596// v1 = ld i8* addr (-> i16)
3597// v = trunc i16 to i1
3599 SDLoc dl(LD);
3600 assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
3601 assert(LD->getValueType(0) == MVT::i1 && "Custom lowering for i1 load only");
3602 SDValue newLD = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i16, LD->getChain(),
3603 LD->getBasePtr(), LD->getPointerInfo(),
3604 MVT::i8, LD->getAlign(),
3605 LD->getMemOperand()->getFlags());
3606 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
3607 // The legalizer (the caller) is expecting two values from the legalized
3608 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
3609 // in LegalizeDAG.cpp which also uses MergeValues.
3610 return DAG.getMergeValues({result, LD->getChain()}, dl);
3611}
3612
3613SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
3614 LoadSDNode *LD = cast<LoadSDNode>(Op);
3615
3616 if (Op.getValueType() == MVT::i1)
3617 return lowerLOADi1(LD, DAG);
3618
3619 // To improve CodeGen we'll legalize any-extend loads to zext loads. This is
3620 // how they'll be lowered in ISel anyway, and by doing this a little earlier
3621 // we allow for more DAG combine opportunities.
3622 if (LD->getExtensionType() == ISD::EXTLOAD) {
3623 assert(LD->getValueType(0).isInteger() && LD->getMemoryVT().isInteger() &&
3624 "Unexpected fpext-load");
3625 return DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Op), Op.getValueType(),
3626 LD->getChain(), LD->getBasePtr(), LD->getMemoryVT(),
3627 LD->getMemOperand());
3628 }
3629
3630 llvm_unreachable("Unexpected custom lowering for load");
3631}
3632
3633SDValue NVPTXTargetLowering::LowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
3634 // v2f16/v2bf16/v2i16/v4i8 are legal, so we can't rely on legalizer to handle
3635 // masked loads of these types and have to handle them here.
3636 // v2f32 also needs to be handled here if the subtarget has f32x2
3637 // instructions, making it legal.
3638 //
3639 // Note: misaligned masked loads should never reach this point
3640 // because the override of isLegalMaskedLoad in NVPTXTargetTransformInfo.cpp
3641 // will validate alignment. Therefore, we do not need to special case handle
3642 // them here.
3643 EVT VT = Op.getValueType();
3644 if (NVPTX::isPackedVectorTy(VT)) {
3646 cast<MemSDNode>(Op.getNode()), DAG, STI);
3647 MemSDNode *LD = std::get<0>(Result);
3648 uint32_t UsedBytesMask = std::get<1>(Result);
3649
3650 SDLoc DL(LD);
3651
3652 // Copy regular operands
3653 SmallVector<SDValue, 8> OtherOps(LD->ops());
3654
3655 OtherOps.push_back(DAG.getConstant(UsedBytesMask, DL, MVT::i32));
3656
3657 // We currently are not lowering extending loads, but pass the extension
3658 // type anyway as later handling expects it.
3659 OtherOps.push_back(
3660 DAG.getIntPtrConstant(cast<LoadSDNode>(LD)->getExtensionType(), DL));
3661 SDValue NewLD =
3662 DAG.getMemIntrinsicNode(NVPTXISD::MLoad, DL, LD->getVTList(), OtherOps,
3663 LD->getMemoryVT(), LD->getMemOperand());
3664 return NewLD;
3665 }
3666 return SDValue();
3667}
3668
3670 const NVPTXSubtarget &STI) {
3671 MemSDNode *N = cast<MemSDNode>(Op.getNode());
3672 SDValue Val = N->getOperand(1);
3673 SDLoc DL(N);
3674 const EVT ValVT = Val.getValueType();
3675 const EVT MemVT = N->getMemoryVT();
3676
3677 // If we're truncating as part of the store, avoid lowering to a StoreV node.
3678 // TODO: consider relaxing this restriction.
3679 if (ValVT != MemVT)
3680 return SDValue();
3681
3682 const auto NumEltsAndEltVT =
3683 getVectorLoweringShape(ValVT, STI, N->getAddressSpace());
3684 if (!NumEltsAndEltVT)
3685 return SDValue();
3686 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3687
3688 const DataLayout &TD = DAG.getDataLayout();
3689
3690 Align Alignment = N->getAlign();
3691 Align PrefAlign = TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
3692 if (Alignment < PrefAlign) {
3693 // This store is not sufficiently aligned, so bail out and let this vector
3694 // store be scalarized. Note that we may still be able to emit smaller
3695 // vector stores. For example, if we are storing a <4 x float> with an
3696 // alignment of 8, this check will fail but the legalizer will try again
3697 // with 2 x <2 x float>, which will succeed with an alignment of 8.
3698 return SDValue();
3699 }
3700
3701 unsigned Opcode;
3702 switch (NumElts) {
3703 default:
3704 return SDValue();
3705 case 2:
3706 Opcode = NVPTXISD::StoreV2;
3707 break;
3708 case 4:
3709 Opcode = NVPTXISD::StoreV4;
3710 break;
3711 case 8:
3712 Opcode = NVPTXISD::StoreV8;
3713 break;
3714 }
3715
3717
3718 // First is the chain
3719 Ops.push_back(N->getOperand(0));
3720
3721 // Then the split values
3722 if (EltVT.isVector()) {
3724 assert(NumElts * EltVT.getVectorNumElements() ==
3725 ValVT.getVectorNumElements());
3726 // Combine individual elements into v2[i,f,bf]16/v4i8 subvectors to be
3727 // stored as b32s
3728 const unsigned NumEltsPerSubVector = EltVT.getVectorNumElements();
3729 for (const unsigned I : llvm::seq(NumElts)) {
3730 SmallVector<SDValue, 4> SubVectorElts;
3731 DAG.ExtractVectorElements(Val, SubVectorElts, I * NumEltsPerSubVector,
3732 NumEltsPerSubVector);
3733 Ops.push_back(DAG.getBuildVector(EltVT, DL, SubVectorElts));
3734 }
3735 } else {
3736 SDValue V = DAG.getBitcast(MVT::getVectorVT(EltVT, NumElts), Val);
3737 for (const unsigned I : llvm::seq(NumElts)) {
3738 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, V,
3739 DAG.getIntPtrConstant(I, DL));
3740
3741 // Since StoreV2 is a target node, we cannot rely on DAG type
3742 // legalization. Therefore, we must ensure the type is legal. For i1 and
3743 // i8, we set the stored type to i16 and propagate the "real" type as the
3744 // memory type.
3745 if (EltVT.getSizeInBits() < 16)
3746 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
3747 Ops.push_back(ExtVal);
3748 }
3749 }
3750
3751 // Then any remaining arguments
3752 Ops.append(N->op_begin() + 2, N->op_end());
3753
3754 SDValue NewSt =
3755 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
3756 N->getMemoryVT(), N->getMemOperand());
3757
3758 // return DCI.CombineTo(N, NewSt, true);
3759 return NewSt;
3760}
3761
3762SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
3763 StoreSDNode *Store = cast<StoreSDNode>(Op);
3764 EVT VT = Store->getMemoryVT();
3765
3766 if (VT == MVT::i1)
3767 return LowerSTOREi1(Op, DAG);
3768
3769 // Lower store of any other vector type, including v2f32 as we want to break
3770 // it apart since this is not a widely-supported type.
3771 return lowerSTOREVector(Op, DAG, STI);
3772}
3773
3774// st i1 v, addr
3775// =>
3776// v1 = zxt v to i16
3777// st.u8 i16, addr
3778SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
3779 SDNode *Node = Op.getNode();
3780 SDLoc dl(Node);
3781 StoreSDNode *ST = cast<StoreSDNode>(Node);
3782 SDValue Tmp1 = ST->getChain();
3783 SDValue Tmp2 = ST->getBasePtr();
3784 SDValue Tmp3 = ST->getValue();
3785 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
3786 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
3787 SDValue Result =
3788 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
3789 ST->getAlign(), ST->getMemOperand()->getFlags());
3790 return Result;
3791}
3792
3793SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op,
3794 SelectionDAG &DAG) const {
3795 // Change the CopyToReg to take in two 64-bit operands instead of a 128-bit
3796 // operand so that it can pass the legalization.
3797
3798 assert(Op.getOperand(1).getValueType() == MVT::i128 &&
3799 "Custom lowering for 128-bit CopyToReg only");
3800
3801 SDNode *Node = Op.getNode();
3802 SDLoc DL(Node);
3803
3804 SDValue Cast = DAG.getBitcast(MVT::v2i64, Op->getOperand(2));
3805 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
3806 DAG.getIntPtrConstant(0, DL));
3807 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
3808 DAG.getIntPtrConstant(1, DL));
3809
3811 SmallVector<EVT, 3> ResultsType(Node->values());
3812
3813 NewOps[0] = Op->getOperand(0); // Chain
3814 NewOps[1] = Op->getOperand(1); // Dst Reg
3815 NewOps[2] = Lo; // Lower 64-bit
3816 NewOps[3] = Hi; // Higher 64-bit
3817 if (Op.getNumOperands() == 4)
3818 NewOps[4] = Op->getOperand(3); // Glue if exists
3819
3820 return DAG.getNode(ISD::CopyToReg, DL, ResultsType, NewOps);
3821}
3822
3823unsigned NVPTXTargetLowering::getNumRegisters(
3824 LLVMContext &Context, EVT VT,
3825 std::optional<MVT> RegisterVT = std::nullopt) const {
3826 if (VT == MVT::i128 && RegisterVT == MVT::i128)
3827 return 1;
3828 return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT);
3829}
3830
3831bool NVPTXTargetLowering::splitValueIntoRegisterParts(
3832 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
3833 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
3834 if (Val.getValueType() == MVT::i128 && NumParts == 1) {
3835 Parts[0] = Val;
3836 return true;
3837 }
3838 return false;
3839}
3840
3841// This creates target external symbol for a function parameter.
3842// Name of the symbol is composed from its index and the function name.
3843// Negative index corresponds to special parameter (unsized array) used for
3844// passing variable arguments.
3845SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int I,
3846 EVT T) const {
3847 StringRef SavedStr = nvTM->getStrPool().save(
3849 return DAG.getExternalSymbol(SavedStr.data(), T);
3850}
3851
3852SDValue NVPTXTargetLowering::getCallParamSymbol(SelectionDAG &DAG, int I,
3853 EVT T) const {
3854 const StringRef SavedStr = nvTM->getStrPool().save("param" + Twine(I));
3855 return DAG.getExternalSymbol(SavedStr.data(), T);
3856}
3857
3859 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3860 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3861 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3862 const DataLayout &DL = DAG.getDataLayout();
3863 LLVMContext &Ctx = *DAG.getContext();
3864 auto PtrVT = getPointerTy(DAG.getDataLayout());
3865
3866 const Function &F = DAG.getMachineFunction().getFunction();
3867
3868 SDValue Root = DAG.getRoot();
3869 SmallVector<SDValue, 16> OutChains;
3870
3871 // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
3872 // Ins.size() will be larger
3873 // * if there is an aggregate argument with multiple fields (each field
3874 // showing up separately in Ins)
3875 // * if there is a vector argument with more than typical vector-length
3876 // elements (generally if more than 4) where each vector element is
3877 // individually present in Ins.
3878 // So a different index should be used for indexing into Ins.
3879 // See similar issue in LowerCall.
3880
3881 auto AllIns = ArrayRef(Ins);
3882 for (const auto &Arg : F.args()) {
3883 const auto ArgIns = AllIns.take_while(
3884 [&](auto I) { return I.OrigArgIndex == Arg.getArgNo(); });
3885 AllIns = AllIns.drop_front(ArgIns.size());
3886
3887 Type *Ty = Arg.getType();
3888
3889 if (ArgIns.empty())
3890 report_fatal_error("Empty parameter types are not supported");
3891
3892 if (Arg.use_empty()) {
3893 // argument is dead
3894 for (const auto &In : ArgIns) {
3895 assert(!In.Used && "Arg.use_empty() is true but Arg is used?");
3896 InVals.push_back(DAG.getUNDEF(In.VT));
3897 }
3898 continue;
3899 }
3900
3901 SDValue ArgSymbol = getParamSymbol(DAG, Arg.getArgNo(), PtrVT);
3902
3903 // In the following cases, assign a node order of "i+1"
3904 // to newly created nodes. The SDNodes for params have to
3905 // appear in the same order as their order of appearance
3906 // in the original function. "i+1" holds that order.
3907 if (Arg.hasByValAttr()) {
3908 // Param has ByVal attribute
3909 // Return MoveParam(param symbol).
3910 // Ideally, the param symbol can be returned directly,
3911 // but when SDNode builder decides to use it in a CopyToReg(),
3912 // machine instruction fails because TargetExternalSymbol
3913 // (not lowered) is target dependent, and CopyToReg assumes
3914 // the source is lowered.
3915 assert(ArgIns.size() == 1 && "ByVal argument must be a pointer");
3916 const auto &ByvalIn = ArgIns[0];
3917 assert(getValueType(DL, Ty) == ByvalIn.VT &&
3918 "Ins type did not match function type");
3919 assert(ByvalIn.VT == PtrVT && "ByVal argument must be a pointer");
3920
3921 SDValue P;
3922 if (isKernelFunction(F)) {
3923 P = ArgSymbol;
3924 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3925 } else {
3926 P = DAG.getNode(NVPTXISD::MoveParam, dl, ByvalIn.VT, ArgSymbol);
3927 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3928 P = DAG.getAddrSpaceCast(dl, ByvalIn.VT, P, ADDRESS_SPACE_LOCAL,
3930 }
3931 InVals.push_back(P);
3932 } else {
3935 ComputePTXValueVTs(*this, DL, Ctx, CallConv, Ty, VTs, Offsets);
3936 assert(VTs.size() == ArgIns.size() && "Size mismatch");
3937 assert(VTs.size() == Offsets.size() && "Size mismatch");
3938
3939 const Align ArgAlign = getFunctionArgumentAlignment(
3940 &F, Ty, Arg.getArgNo() + AttributeList::FirstArgIndex, DL);
3941
3942 unsigned I = 0;
3943 const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
3944 for (const unsigned NumElts : VI) {
3945 // i1 is loaded/stored as i8
3946 const EVT LoadVT = VTs[I] == MVT::i1 ? MVT::i8 : VTs[I];
3947 const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx);
3948
3949 SDValue VecAddr = DAG.getObjectPtrOffset(
3950 dl, ArgSymbol, TypeSize::getFixed(Offsets[I]));
3951
3952 const Align PartAlign = commonAlignment(ArgAlign, Offsets[I]);
3953 SDValue P =
3954 DAG.getLoad(VecVT, dl, Root, VecAddr,
3958 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3959 for (const unsigned J : llvm::seq(NumElts)) {
3960 SDValue Elt = getExtractVectorizedValue(P, J, LoadVT, dl, DAG);
3961
3962 Elt = correctParamType(Elt, ArgIns[I + J].VT, ArgIns[I + J].Flags,
3963 DAG, dl);
3964 InVals.push_back(Elt);
3965 }
3966 I += NumElts;
3967 }
3968 }
3969 }
3970
3971 if (!OutChains.empty())
3972 DAG.setRoot(DAG.getTokenFactor(dl, OutChains));
3973
3974 return Chain;
3975}
3976
3977SDValue
3979 bool isVarArg,
3981 const SmallVectorImpl<SDValue> &OutVals,
3982 const SDLoc &dl, SelectionDAG &DAG) const {
3983 const Function &F = DAG.getMachineFunction().getFunction();
3984 Type *RetTy = F.getReturnType();
3985
3986 if (RetTy->isVoidTy()) {
3987 assert(OutVals.empty() && Outs.empty() && "Return value expected for void");
3988 return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
3989 }
3990
3991 const DataLayout &DL = DAG.getDataLayout();
3992 LLVMContext &Ctx = *DAG.getContext();
3993
3994 const SDValue RetSymbol = DAG.getExternalSymbol("func_retval0", MVT::i32);
3995 const auto RetAlign = getFunctionParamOptimizedAlign(&F, RetTy, DL);
3996
3997 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
3998 // 32-bits are sign extended or zero extended, depending on whether
3999 // they are signed or unsigned types.
4000 const bool ExtendIntegerRetVal =
4001 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
4002
4005 ComputePTXValueVTs(*this, DL, Ctx, CallConv, RetTy, VTs, Offsets);
4006 assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
4007
4008 const auto GetRetVal = [&](unsigned I) -> SDValue {
4009 SDValue RetVal = OutVals[I];
4011 RetVal.getValueType() &&
4012 "OutVal type should always be legal");
4013
4014 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
4015 const EVT StoreVT =
4016 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
4017 return correctParamType(RetVal, StoreVT, Outs[I].Flags, DAG, dl);
4018 };
4019
4020 unsigned I = 0;
4021 const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
4022 for (const unsigned NumElts : VI) {
4023 const MaybeAlign CurrentAlign = ExtendIntegerRetVal
4024 ? MaybeAlign(std::nullopt)
4025 : commonAlignment(RetAlign, Offsets[I]);
4026
4028 NumElts, dl, DAG, [&](unsigned K) { return GetRetVal(I + K); });
4029
4030 SDValue Ptr =
4031 DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I]));
4032
4033 Chain = DAG.getStore(Chain, dl, Val, Ptr,
4035
4036 I += NumElts;
4037 }
4038
4039 return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
4040}
4041
4043 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
4044 SelectionDAG &DAG) const {
4045 if (Constraint.size() > 1)
4046 return;
4048}
4049
4050// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
4051// TgtMemIntrinsic
4052// because we need the information that is only available in the "Value" type
4053// of destination
4054// pointer. In particular, the address space information.
4056 const CallBase &I,
4057 MachineFunction &MF,
4058 unsigned Intrinsic) const {
4059 switch (Intrinsic) {
4060 default:
4061 return false;
4062 case Intrinsic::nvvm_match_all_sync_i32p:
4063 case Intrinsic::nvvm_match_all_sync_i64p:
4064 Info.opc = ISD::INTRINSIC_W_CHAIN;
4065 // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
4066 // in order to model data exchange with other threads, but perform no real
4067 // memory accesses.
4068 Info.memVT = MVT::i1;
4069
4070 // Our result depends on both our and other thread's arguments.
4072 return true;
4073 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
4074 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
4075 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
4076 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
4077 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
4078 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
4079 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
4080 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
4081 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
4082 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
4083 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
4084 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
4085 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
4086 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
4087 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
4088 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
4089 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
4090 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
4091 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
4092 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
4093 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
4094 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
4095 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
4096 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
4097 Info.opc = ISD::INTRINSIC_W_CHAIN;
4098 Info.memVT = MVT::v8f16;
4099 Info.ptrVal = I.getArgOperand(0);
4100 Info.offset = 0;
4101 Info.flags = MachineMemOperand::MOLoad;
4102 Info.align = Align(16);
4103 return true;
4104 }
4105 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
4106 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
4107 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
4108 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
4109 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
4110 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
4111 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
4112 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
4113 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
4114 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
4115 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
4116 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
4117 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
4118 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
4119 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
4120 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
4121 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
4122 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
4123 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
4124 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
4125 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
4126 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
4127 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
4128 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
4129 Info.opc = ISD::INTRINSIC_W_CHAIN;
4130 Info.memVT = MVT::v2i32;
4131 Info.ptrVal = I.getArgOperand(0);
4132 Info.offset = 0;
4133 Info.flags = MachineMemOperand::MOLoad;
4134 Info.align = Align(8);
4135 return true;
4136 }
4137
4138 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
4139 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
4140 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
4141 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
4142 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
4143 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
4144 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
4145 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
4146 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
4147 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
4148 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
4149 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
4150 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
4151 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
4152 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
4153 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
4154
4155 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
4156 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
4157 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
4158 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
4159 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
4160 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
4161 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
4162 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
4163 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
4164 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
4165 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
4166 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
4167 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
4168 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
4169 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
4170 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
4171 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
4172 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16:
4173 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8:
4174 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64:
4175 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32:
4176 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64:
4177 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: {
4178 Info.opc = ISD::INTRINSIC_W_CHAIN;
4179 Info.memVT = MVT::v4i32;
4180 Info.ptrVal = I.getArgOperand(0);
4181 Info.offset = 0;
4182 Info.flags = MachineMemOperand::MOLoad;
4183 Info.align = Align(16);
4184 return true;
4185 }
4186
4187 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
4188 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
4189 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
4190 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
4191 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
4192 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
4193 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
4194 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
4195
4196 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
4197 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
4198 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
4199 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
4200 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
4201 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
4202 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
4203 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
4204 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
4205 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
4206 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
4207 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
4208 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
4209 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
4210 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
4211 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
4212 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
4213 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
4214 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
4215 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
4216 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
4217 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16:
4218 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64:
4219 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: {
4220 Info.opc = ISD::INTRINSIC_W_CHAIN;
4221 Info.memVT = MVT::i32;
4222 Info.ptrVal = I.getArgOperand(0);
4223 Info.offset = 0;
4224 Info.flags = MachineMemOperand::MOLoad;
4225 Info.align = Align(4);
4226 return true;
4227 }
4228
4229 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
4230 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
4231 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
4232 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
4233 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
4234 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
4235 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
4236 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
4237 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
4238 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
4239 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
4240 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
4241 Info.opc = ISD::INTRINSIC_W_CHAIN;
4242 Info.memVT = MVT::v4f16;
4243 Info.ptrVal = I.getArgOperand(0);
4244 Info.offset = 0;
4245 Info.flags = MachineMemOperand::MOLoad;
4246 Info.align = Align(16);
4247 return true;
4248 }
4249
4250 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
4251 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
4252 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
4253 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
4254 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
4255 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
4256 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
4257 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
4258 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
4259 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
4260 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
4261 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
4262 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
4263 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
4264 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
4265 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
4266 Info.opc = ISD::INTRINSIC_W_CHAIN;
4267 Info.memVT = MVT::v8f32;
4268 Info.ptrVal = I.getArgOperand(0);
4269 Info.offset = 0;
4270 Info.flags = MachineMemOperand::MOLoad;
4271 Info.align = Align(16);
4272 return true;
4273 }
4274
4275 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
4276 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
4277 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
4278 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
4279
4280 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
4281 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
4282 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
4283 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
4284
4285 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
4286 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
4287 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
4288 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
4289 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
4290 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
4291 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
4292 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
4293 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
4294 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
4295 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
4296 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
4297 Info.opc = ISD::INTRINSIC_W_CHAIN;
4298 Info.memVT = MVT::v8i32;
4299 Info.ptrVal = I.getArgOperand(0);
4300 Info.offset = 0;
4301 Info.flags = MachineMemOperand::MOLoad;
4302 Info.align = Align(16);
4303 return true;
4304 }
4305
4306 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
4307 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
4308 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
4309 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
4310 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
4311 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
4312 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
4313 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
4314 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
4315 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16:
4316 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8:
4317 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64:
4318 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32:
4319 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64:
4320 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: {
4321 Info.opc = ISD::INTRINSIC_W_CHAIN;
4322 Info.memVT = MVT::v2i32;
4323 Info.ptrVal = I.getArgOperand(0);
4324 Info.offset = 0;
4325 Info.flags = MachineMemOperand::MOLoad;
4326 Info.align = Align(8);
4327 return true;
4328 }
4329
4330 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
4331 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
4332 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
4333 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
4334
4335 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
4336 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
4337 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
4338 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
4339 Info.opc = ISD::INTRINSIC_W_CHAIN;
4340 Info.memVT = MVT::f64;
4341 Info.ptrVal = I.getArgOperand(0);
4342 Info.offset = 0;
4343 Info.flags = MachineMemOperand::MOLoad;
4344 Info.align = Align(8);
4345 return true;
4346 }
4347
4348 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
4349 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
4350 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
4351 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
4352 Info.opc = ISD::INTRINSIC_W_CHAIN;
4353 Info.memVT = MVT::v2f64;
4354 Info.ptrVal = I.getArgOperand(0);
4355 Info.offset = 0;
4356 Info.flags = MachineMemOperand::MOLoad;
4357 Info.align = Align(16);
4358 return true;
4359 }
4360
4361 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
4362 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
4363 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
4364 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
4365 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
4366 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
4367 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
4368 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
4369 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
4370 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
4371 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
4372 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
4373 Info.opc = ISD::INTRINSIC_VOID;
4374 Info.memVT = MVT::v4f16;
4375 Info.ptrVal = I.getArgOperand(0);
4376 Info.offset = 0;
4377 Info.flags = MachineMemOperand::MOStore;
4378 Info.align = Align(16);
4379 return true;
4380 }
4381
4382 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
4383 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
4384 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
4385 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
4386 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
4387 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
4388 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
4389 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
4390 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
4391 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
4392 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
4393 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
4394 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
4395 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
4396 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
4397 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
4398 Info.opc = ISD::INTRINSIC_VOID;
4399 Info.memVT = MVT::v8f32;
4400 Info.ptrVal = I.getArgOperand(0);
4401 Info.offset = 0;
4402 Info.flags = MachineMemOperand::MOStore;
4403 Info.align = Align(16);
4404 return true;
4405 }
4406
4407 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
4408 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
4409 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
4410 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
4411 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
4412 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
4413 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
4414 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
4415 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
4416 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
4417 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
4418 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
4419 Info.opc = ISD::INTRINSIC_VOID;
4420 Info.memVT = MVT::v8i32;
4421 Info.ptrVal = I.getArgOperand(0);
4422 Info.offset = 0;
4423 Info.flags = MachineMemOperand::MOStore;
4424 Info.align = Align(16);
4425 return true;
4426 }
4427
4428 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
4429 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
4430 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
4431 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
4432 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
4433 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
4434 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
4435 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride:
4436 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_b16:
4437 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_trans_b16:
4438 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x2_trans_b8: {
4439 Info.opc = ISD::INTRINSIC_VOID;
4440 Info.memVT = MVT::v2i32;
4441 Info.ptrVal = I.getArgOperand(0);
4442 Info.offset = 0;
4443 Info.flags = MachineMemOperand::MOStore;
4444 Info.align = Align(8);
4445 return true;
4446 }
4447
4448 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
4449 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
4450 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
4451 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
4452 Info.opc = ISD::INTRINSIC_VOID;
4453 Info.memVT = MVT::v2f64;
4454 Info.ptrVal = I.getArgOperand(0);
4455 Info.offset = 0;
4456 Info.flags = MachineMemOperand::MOStore;
4457 Info.align = Align(16);
4458 return true;
4459 }
4460
4461 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_b16:
4462 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_trans_b16:
4463 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x1_trans_b8: {
4464 Info.opc = ISD::INTRINSIC_VOID;
4465 Info.memVT = MVT::i32;
4466 Info.ptrVal = I.getArgOperand(0);
4467 Info.offset = 0;
4468 Info.flags = MachineMemOperand::MOStore;
4469 Info.align = Align(4);
4470 return true;
4471 }
4472
4473 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_b16:
4474 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_trans_b16:
4475 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x4_trans_b8: {
4476 Info.opc = ISD::INTRINSIC_VOID;
4477 Info.memVT = MVT::v4i32;
4478 Info.ptrVal = I.getArgOperand(0);
4479 Info.offset = 0;
4480 Info.flags = MachineMemOperand::MOStore;
4481 Info.align = Align(16);
4482 return true;
4483 }
4484
4485 case Intrinsic::nvvm_atomic_add_gen_f_cta:
4486 case Intrinsic::nvvm_atomic_add_gen_f_sys:
4487 case Intrinsic::nvvm_atomic_add_gen_i_cta:
4488 case Intrinsic::nvvm_atomic_add_gen_i_sys:
4489 case Intrinsic::nvvm_atomic_and_gen_i_cta:
4490 case Intrinsic::nvvm_atomic_and_gen_i_sys:
4491 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
4492 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
4493 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
4494 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
4495 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
4496 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
4497 case Intrinsic::nvvm_atomic_max_gen_i_cta:
4498 case Intrinsic::nvvm_atomic_max_gen_i_sys:
4499 case Intrinsic::nvvm_atomic_min_gen_i_cta:
4500 case Intrinsic::nvvm_atomic_min_gen_i_sys:
4501 case Intrinsic::nvvm_atomic_or_gen_i_cta:
4502 case Intrinsic::nvvm_atomic_or_gen_i_sys:
4503 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
4504 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
4505 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
4506 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
4507 auto &DL = I.getDataLayout();
4508 Info.opc = ISD::INTRINSIC_W_CHAIN;
4509 Info.memVT = getValueType(DL, I.getType());
4510 Info.ptrVal = I.getArgOperand(0);
4511 Info.offset = 0;
4513 Info.align.reset();
4514 return true;
4515 }
4516
4517 case Intrinsic::nvvm_prefetch_tensormap: {
4518 auto &DL = I.getDataLayout();
4519 Info.opc = ISD::INTRINSIC_VOID;
4520 Info.memVT = getPointerTy(DL);
4521 Info.ptrVal = I.getArgOperand(0);
4522 Info.offset = 0;
4523 Info.flags =
4525 Info.align.reset();
4526 return true;
4527 }
4528
4529 case Intrinsic::nvvm_ldu_global_i:
4530 case Intrinsic::nvvm_ldu_global_f:
4531 case Intrinsic::nvvm_ldu_global_p: {
4532 Info.opc = ISD::INTRINSIC_W_CHAIN;
4533 Info.memVT = getValueType(I.getDataLayout(), I.getType());
4534 Info.ptrVal = I.getArgOperand(0);
4535 Info.offset = 0;
4536 Info.flags = MachineMemOperand::MOLoad;
4537 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4538
4539 return true;
4540 }
4541 case Intrinsic::nvvm_tex_1d_v4f32_s32:
4542 case Intrinsic::nvvm_tex_1d_v4f32_f32:
4543 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
4544 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
4545 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
4546 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
4547 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
4548 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
4549 case Intrinsic::nvvm_tex_2d_v4f32_s32:
4550 case Intrinsic::nvvm_tex_2d_v4f32_f32:
4551 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
4552 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
4553 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
4554 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
4555 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
4556 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
4557 case Intrinsic::nvvm_tex_3d_v4f32_s32:
4558 case Intrinsic::nvvm_tex_3d_v4f32_f32:
4559 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
4560 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
4561 case Intrinsic::nvvm_tex_cube_v4f32_f32:
4562 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
4563 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
4564 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
4565 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
4566 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
4567 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
4568 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
4569 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
4570 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
4571 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
4572 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
4573 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
4574 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
4575 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
4576 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
4577 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
4578 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
4579 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
4580 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
4581 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
4582 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
4583 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
4584 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
4585 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
4586 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
4587 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
4588 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
4589 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
4590 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
4591 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
4592 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
4593 case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
4594 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
4595 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
4596 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
4597 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
4598 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
4599 Info.opc = ISD::INTRINSIC_W_CHAIN;
4600 Info.memVT = MVT::v4f32;
4601 Info.ptrVal = nullptr;
4602 Info.offset = 0;
4603 Info.flags = MachineMemOperand::MOLoad;
4604 Info.align = Align(16);
4605 return true;
4606
4607 case Intrinsic::nvvm_tex_1d_v4s32_s32:
4608 case Intrinsic::nvvm_tex_1d_v4s32_f32:
4609 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
4610 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
4611 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
4612 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
4613 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
4614 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
4615 case Intrinsic::nvvm_tex_2d_v4s32_s32:
4616 case Intrinsic::nvvm_tex_2d_v4s32_f32:
4617 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
4618 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
4619 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
4620 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
4621 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
4622 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
4623 case Intrinsic::nvvm_tex_3d_v4s32_s32:
4624 case Intrinsic::nvvm_tex_3d_v4s32_f32:
4625 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
4626 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
4627 case Intrinsic::nvvm_tex_cube_v4s32_f32:
4628 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
4629 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
4630 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4631 case Intrinsic::nvvm_tex_cube_v4u32_f32:
4632 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4633 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4634 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4635 case Intrinsic::nvvm_tex_1d_v4u32_s32:
4636 case Intrinsic::nvvm_tex_1d_v4u32_f32:
4637 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4638 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4639 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4640 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4641 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4642 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4643 case Intrinsic::nvvm_tex_2d_v4u32_s32:
4644 case Intrinsic::nvvm_tex_2d_v4u32_f32:
4645 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4646 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4647 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4648 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4649 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4650 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4651 case Intrinsic::nvvm_tex_3d_v4u32_s32:
4652 case Intrinsic::nvvm_tex_3d_v4u32_f32:
4653 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4654 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4655 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4656 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4657 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4658 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4659 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4660 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4661 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4662 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4663 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4664 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4665 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4666 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4667 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4668 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4669 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4670 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4671 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4672 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4673 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4674 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4675 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4676 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4677 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4678 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4679 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4680 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4681 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4682 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4683 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4684 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4685 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4686 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4687 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4688 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4689 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4690 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4691 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4692 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4693 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4694 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4695 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4696 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4697 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4698 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4699 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4700 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4701 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4702 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4703 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4704 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4705 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4706 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4707 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4708 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4709 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4710 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4711 case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
4712 case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
4713 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
4714 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
4715 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4716 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4717 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4718 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4719 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4720 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4721 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4722 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4723 Info.opc = ISD::INTRINSIC_W_CHAIN;
4724 Info.memVT = MVT::v4i32;
4725 Info.ptrVal = nullptr;
4726 Info.offset = 0;
4727 Info.flags = MachineMemOperand::MOLoad;
4728 Info.align = Align(16);
4729 return true;
4730
4731 case Intrinsic::nvvm_suld_1d_i8_clamp:
4732 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4733 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4734 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4735 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4736 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4737 case Intrinsic::nvvm_suld_2d_i8_clamp:
4738 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4739 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4740 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4741 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4742 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4743 case Intrinsic::nvvm_suld_3d_i8_clamp:
4744 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4745 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4746 case Intrinsic::nvvm_suld_1d_i8_trap:
4747 case Intrinsic::nvvm_suld_1d_v2i8_trap:
4748 case Intrinsic::nvvm_suld_1d_v4i8_trap:
4749 case Intrinsic::nvvm_suld_1d_array_i8_trap:
4750 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4751 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4752 case Intrinsic::nvvm_suld_2d_i8_trap:
4753 case Intrinsic::nvvm_suld_2d_v2i8_trap:
4754 case Intrinsic::nvvm_suld_2d_v4i8_trap:
4755 case Intrinsic::nvvm_suld_2d_array_i8_trap:
4756 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4757 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4758 case Intrinsic::nvvm_suld_3d_i8_trap:
4759 case Intrinsic::nvvm_suld_3d_v2i8_trap:
4760 case Intrinsic::nvvm_suld_3d_v4i8_trap:
4761 case Intrinsic::nvvm_suld_1d_i8_zero:
4762 case Intrinsic::nvvm_suld_1d_v2i8_zero:
4763 case Intrinsic::nvvm_suld_1d_v4i8_zero:
4764 case Intrinsic::nvvm_suld_1d_array_i8_zero:
4765 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4766 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4767 case Intrinsic::nvvm_suld_2d_i8_zero:
4768 case Intrinsic::nvvm_suld_2d_v2i8_zero:
4769 case Intrinsic::nvvm_suld_2d_v4i8_zero:
4770 case Intrinsic::nvvm_suld_2d_array_i8_zero:
4771 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4772 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4773 case Intrinsic::nvvm_suld_3d_i8_zero:
4774 case Intrinsic::nvvm_suld_3d_v2i8_zero:
4775 case Intrinsic::nvvm_suld_3d_v4i8_zero:
4776 Info.opc = ISD::INTRINSIC_W_CHAIN;
4777 Info.memVT = MVT::i8;
4778 Info.ptrVal = nullptr;
4779 Info.offset = 0;
4780 Info.flags = MachineMemOperand::MOLoad;
4781 Info.align = Align(16);
4782 return true;
4783
4784 case Intrinsic::nvvm_suld_1d_i16_clamp:
4785 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4786 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4787 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4788 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4789 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4790 case Intrinsic::nvvm_suld_2d_i16_clamp:
4791 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4792 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4793 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4794 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4795 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4796 case Intrinsic::nvvm_suld_3d_i16_clamp:
4797 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4798 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4799 case Intrinsic::nvvm_suld_1d_i16_trap:
4800 case Intrinsic::nvvm_suld_1d_v2i16_trap:
4801 case Intrinsic::nvvm_suld_1d_v4i16_trap:
4802 case Intrinsic::nvvm_suld_1d_array_i16_trap:
4803 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4804 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4805 case Intrinsic::nvvm_suld_2d_i16_trap:
4806 case Intrinsic::nvvm_suld_2d_v2i16_trap:
4807 case Intrinsic::nvvm_suld_2d_v4i16_trap:
4808 case Intrinsic::nvvm_suld_2d_array_i16_trap:
4809 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4810 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4811 case Intrinsic::nvvm_suld_3d_i16_trap:
4812 case Intrinsic::nvvm_suld_3d_v2i16_trap:
4813 case Intrinsic::nvvm_suld_3d_v4i16_trap:
4814 case Intrinsic::nvvm_suld_1d_i16_zero:
4815 case Intrinsic::nvvm_suld_1d_v2i16_zero:
4816 case Intrinsic::nvvm_suld_1d_v4i16_zero:
4817 case Intrinsic::nvvm_suld_1d_array_i16_zero:
4818 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4819 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4820 case Intrinsic::nvvm_suld_2d_i16_zero:
4821 case Intrinsic::nvvm_suld_2d_v2i16_zero:
4822 case Intrinsic::nvvm_suld_2d_v4i16_zero:
4823 case Intrinsic::nvvm_suld_2d_array_i16_zero:
4824 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4825 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4826 case Intrinsic::nvvm_suld_3d_i16_zero:
4827 case Intrinsic::nvvm_suld_3d_v2i16_zero:
4828 case Intrinsic::nvvm_suld_3d_v4i16_zero:
4829 Info.opc = ISD::INTRINSIC_W_CHAIN;
4830 Info.memVT = MVT::i16;
4831 Info.ptrVal = nullptr;
4832 Info.offset = 0;
4833 Info.flags = MachineMemOperand::MOLoad;
4834 Info.align = Align(16);
4835 return true;
4836
4837 case Intrinsic::nvvm_suld_1d_i32_clamp:
4838 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4839 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4840 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4841 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4842 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4843 case Intrinsic::nvvm_suld_2d_i32_clamp:
4844 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4845 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4846 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4847 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4848 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4849 case Intrinsic::nvvm_suld_3d_i32_clamp:
4850 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4851 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4852 case Intrinsic::nvvm_suld_1d_i32_trap:
4853 case Intrinsic::nvvm_suld_1d_v2i32_trap:
4854 case Intrinsic::nvvm_suld_1d_v4i32_trap:
4855 case Intrinsic::nvvm_suld_1d_array_i32_trap:
4856 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4857 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4858 case Intrinsic::nvvm_suld_2d_i32_trap:
4859 case Intrinsic::nvvm_suld_2d_v2i32_trap:
4860 case Intrinsic::nvvm_suld_2d_v4i32_trap:
4861 case Intrinsic::nvvm_suld_2d_array_i32_trap:
4862 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4863 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4864 case Intrinsic::nvvm_suld_3d_i32_trap:
4865 case Intrinsic::nvvm_suld_3d_v2i32_trap:
4866 case Intrinsic::nvvm_suld_3d_v4i32_trap:
4867 case Intrinsic::nvvm_suld_1d_i32_zero:
4868 case Intrinsic::nvvm_suld_1d_v2i32_zero:
4869 case Intrinsic::nvvm_suld_1d_v4i32_zero:
4870 case Intrinsic::nvvm_suld_1d_array_i32_zero:
4871 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4872 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4873 case Intrinsic::nvvm_suld_2d_i32_zero:
4874 case Intrinsic::nvvm_suld_2d_v2i32_zero:
4875 case Intrinsic::nvvm_suld_2d_v4i32_zero:
4876 case Intrinsic::nvvm_suld_2d_array_i32_zero:
4877 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4878 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4879 case Intrinsic::nvvm_suld_3d_i32_zero:
4880 case Intrinsic::nvvm_suld_3d_v2i32_zero:
4881 case Intrinsic::nvvm_suld_3d_v4i32_zero:
4882 Info.opc = ISD::INTRINSIC_W_CHAIN;
4883 Info.memVT = MVT::i32;
4884 Info.ptrVal = nullptr;
4885 Info.offset = 0;
4886 Info.flags = MachineMemOperand::MOLoad;
4887 Info.align = Align(16);
4888 return true;
4889
4890 case Intrinsic::nvvm_suld_1d_i64_clamp:
4891 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4892 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4893 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4894 case Intrinsic::nvvm_suld_2d_i64_clamp:
4895 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4896 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4897 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4898 case Intrinsic::nvvm_suld_3d_i64_clamp:
4899 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4900 case Intrinsic::nvvm_suld_1d_i64_trap:
4901 case Intrinsic::nvvm_suld_1d_v2i64_trap:
4902 case Intrinsic::nvvm_suld_1d_array_i64_trap:
4903 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4904 case Intrinsic::nvvm_suld_2d_i64_trap:
4905 case Intrinsic::nvvm_suld_2d_v2i64_trap:
4906 case Intrinsic::nvvm_suld_2d_array_i64_trap:
4907 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4908 case Intrinsic::nvvm_suld_3d_i64_trap:
4909 case Intrinsic::nvvm_suld_3d_v2i64_trap:
4910 case Intrinsic::nvvm_suld_1d_i64_zero:
4911 case Intrinsic::nvvm_suld_1d_v2i64_zero:
4912 case Intrinsic::nvvm_suld_1d_array_i64_zero:
4913 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4914 case Intrinsic::nvvm_suld_2d_i64_zero:
4915 case Intrinsic::nvvm_suld_2d_v2i64_zero:
4916 case Intrinsic::nvvm_suld_2d_array_i64_zero:
4917 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4918 case Intrinsic::nvvm_suld_3d_i64_zero:
4919 case Intrinsic::nvvm_suld_3d_v2i64_zero:
4920 Info.opc = ISD::INTRINSIC_W_CHAIN;
4921 Info.memVT = MVT::i64;
4922 Info.ptrVal = nullptr;
4923 Info.offset = 0;
4924 Info.flags = MachineMemOperand::MOLoad;
4925 Info.align = Align(16);
4926 return true;
4927
4928 case Intrinsic::nvvm_tcgen05_ld_16x64b_x1:
4929 case Intrinsic::nvvm_tcgen05_ld_32x32b_x1:
4930 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: {
4931 Info.opc = ISD::INTRINSIC_W_CHAIN;
4932 Info.memVT = MVT::v1i32;
4933 Info.ptrVal = I.getArgOperand(0);
4934 Info.offset = 0;
4935 Info.flags = MachineMemOperand::MOLoad;
4936 Info.align.reset();
4937 return true;
4938 }
4939
4940 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
4941 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
4942 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
4943 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: {
4944 Info.opc = ISD::INTRINSIC_W_CHAIN;
4945 Info.memVT = MVT::v2i32;
4946 Info.ptrVal = I.getArgOperand(0);
4947 Info.offset = 0;
4948 Info.flags = MachineMemOperand::MOLoad;
4949 Info.align.reset();
4950 return true;
4951 }
4952
4953 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
4954 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
4955 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
4956 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
4957 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: {
4958 Info.opc = ISD::INTRINSIC_W_CHAIN;
4959 Info.memVT = MVT::v4i32;
4960 Info.ptrVal = I.getArgOperand(0);
4961 Info.offset = 0;
4962 Info.flags = MachineMemOperand::MOLoad;
4963 Info.align.reset();
4964 return true;
4965 }
4966
4967 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
4968 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
4969 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
4970 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
4971 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: {
4972 Info.opc = ISD::INTRINSIC_W_CHAIN;
4973 Info.memVT = MVT::v8i32;
4974 Info.ptrVal = I.getArgOperand(0);
4975 Info.offset = 0;
4976 Info.flags = MachineMemOperand::MOLoad;
4977 Info.align.reset();
4978 return true;
4979 }
4980
4981 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
4982 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
4983 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
4984 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
4985 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: {
4986 Info.opc = ISD::INTRINSIC_W_CHAIN;
4987 Info.memVT = MVT::v16i32;
4988 Info.ptrVal = I.getArgOperand(0);
4989 Info.offset = 0;
4990 Info.flags = MachineMemOperand::MOLoad;
4991 Info.align.reset();
4992 return true;
4993 }
4994
4995 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
4996 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
4997 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
4998 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
4999 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: {
5000 Info.opc = ISD::INTRINSIC_W_CHAIN;
5001 Info.memVT = MVT::v32i32;
5002 Info.ptrVal = I.getArgOperand(0);
5003 Info.offset = 0;
5004 Info.flags = MachineMemOperand::MOLoad;
5005 Info.align.reset();
5006 return true;
5007 }
5008
5009 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
5010 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
5011 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
5012 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
5013 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: {
5014 Info.opc = ISD::INTRINSIC_W_CHAIN;
5015 Info.memVT = MVT::v64i32;
5016 Info.ptrVal = I.getArgOperand(0);
5017 Info.offset = 0;
5018 Info.flags = MachineMemOperand::MOLoad;
5019 Info.align.reset();
5020 return true;
5021 }
5022
5023 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
5024 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
5025 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
5026 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
5027 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: {
5028 Info.opc = ISD::INTRINSIC_W_CHAIN;
5029 Info.memVT = MVT::v128i32;
5030 Info.ptrVal = I.getArgOperand(0);
5031 Info.offset = 0;
5032 Info.flags = MachineMemOperand::MOLoad;
5033 Info.align.reset();
5034 return true;
5035 }
5036
5037 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
5038 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
5039 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: {
5040 Info.opc = ISD::INTRINSIC_VOID;
5041 Info.memVT = MVT::i32;
5042 Info.ptrVal = I.getArgOperand(0);
5043 Info.offset = 0;
5044 Info.flags = MachineMemOperand::MOStore;
5045 Info.align.reset();
5046 return true;
5047 }
5048
5049 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
5050 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
5051 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
5052 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: {
5053 Info.opc = ISD::INTRINSIC_VOID;
5054 Info.memVT = MVT::v2i32;
5055 Info.ptrVal = I.getArgOperand(0);
5056 Info.offset = 0;
5057 Info.flags = MachineMemOperand::MOStore;
5058 Info.align.reset();
5059 return true;
5060 }
5061
5062 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
5063 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
5064 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
5065 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
5066 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: {
5067 Info.opc = ISD::INTRINSIC_VOID;
5068 Info.memVT = MVT::v4i32;
5069 Info.ptrVal = I.getArgOperand(0);
5070 Info.offset = 0;
5071 Info.flags = MachineMemOperand::MOStore;
5072 Info.align.reset();
5073 return true;
5074 }
5075
5076 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
5077 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
5078 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
5079 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
5080 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: {
5081 Info.opc = ISD::INTRINSIC_VOID;
5082 Info.memVT = MVT::v8i32;
5083 Info.ptrVal = I.getArgOperand(0);
5084 Info.offset = 0;
5085 Info.flags = MachineMemOperand::MOStore;
5086 Info.align.reset();
5087 return true;
5088 }
5089
5090 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
5091 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
5092 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
5093 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
5094 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: {
5095 Info.opc = ISD::INTRINSIC_VOID;
5096 Info.memVT = MVT::v16i32;
5097 Info.ptrVal = I.getArgOperand(0);
5098 Info.offset = 0;
5099 Info.flags = MachineMemOperand::MOStore;
5100 Info.align.reset();
5101 return true;
5102 }
5103
5104 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
5105 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
5106 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
5107 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
5108 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: {
5109 Info.opc = ISD::INTRINSIC_VOID;
5110 Info.memVT = MVT::v32i32;
5111 Info.ptrVal = I.getArgOperand(0);
5112 Info.offset = 0;
5113 Info.flags = MachineMemOperand::MOStore;
5114 Info.align.reset();
5115 return true;
5116 }
5117
5118 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
5119 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
5120 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
5121 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
5122 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: {
5123 Info.opc = ISD::INTRINSIC_VOID;
5124 Info.memVT = MVT::v64i32;
5125 Info.ptrVal = I.getArgOperand(0);
5126 Info.offset = 0;
5127 Info.flags = MachineMemOperand::MOStore;
5128 Info.align.reset();
5129 return true;
5130 }
5131
5132 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
5133 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
5134 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
5135 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
5136 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: {
5137 Info.opc = ISD::INTRINSIC_VOID;
5138 Info.memVT = MVT::v128i32;
5139 Info.ptrVal = I.getArgOperand(0);
5140 Info.offset = 0;
5141 Info.flags = MachineMemOperand::MOStore;
5142 Info.align.reset();
5143 return true;
5144 }
5145 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
5146 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
5147 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
5148 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
5149 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
5150 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
5151 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
5152 case Intrinsic::
5153 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
5154 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
5155 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
5156 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
5157 case Intrinsic::
5158 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift: {
5159 // We are reading and writing back to TMem
5160 Info.opc = ISD::INTRINSIC_VOID;
5161 Info.memVT = MVT::v4i32;
5162 Info.ptrVal = I.getArgOperand(0);
5163 Info.offset = 0;
5165 Info.align = Align(16);
5166 return true;
5167 }
5168
5169 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
5170 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
5171 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
5172 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
5173 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
5174 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
5175 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
5176 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
5177 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
5178 case Intrinsic::
5179 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
5180 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
5181 case Intrinsic::
5182 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift: {
5183 // We are reading and writing back to TMem
5184 Info.opc = ISD::INTRINSIC_VOID;
5185 Info.memVT = MVT::v8i32;
5186 Info.ptrVal = I.getArgOperand(0);
5187 Info.offset = 0;
5189 Info.align = Align(16);
5190 return true;
5191 }
5192 }
5193 return false;
5194}
5195
5196/// getFunctionParamOptimizedAlign - since function arguments are passed via
5197/// .param space, we may want to increase their alignment in a way that
5198/// ensures that we can effectively vectorize their loads & stores. We can
5199/// increase alignment only if the function has internal or has private
5200/// linkage as for other linkage types callers may already rely on default
5201/// alignment. To allow using 128-bit vectorized loads/stores, this function
5202/// ensures that alignment is 16 or greater.
5204 const Function *F, Type *ArgTy, const DataLayout &DL) const {
5205 // Capping the alignment to 128 bytes as that is the maximum alignment
5206 // supported by PTX.
5207 const Align ABITypeAlign = std::min(Align(128), DL.getABITypeAlign(ArgTy));
5208
5209 // If a function has linkage different from internal or private, we
5210 // must use default ABI alignment as external users rely on it. Same
5211 // for a function that may be called from a function pointer.
5212 if (!F || !F->hasLocalLinkage() ||
5213 F->hasAddressTaken(/*Users=*/nullptr,
5214 /*IgnoreCallbackUses=*/false,
5215 /*IgnoreAssumeLikeCalls=*/true,
5216 /*IgnoreLLVMUsed=*/true))
5217 return ABITypeAlign;
5218
5219 assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
5220 return std::max(Align(16), ABITypeAlign);
5221}
5222
5223/// Helper for computing alignment of a device function byval parameter.
5225 const Function *F, Type *ArgTy, Align InitialAlign,
5226 const DataLayout &DL) const {
5227 Align ArgAlign = InitialAlign;
5228 // Try to increase alignment to enhance vectorization options.
5229 if (F)
5230 ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL));
5231
5232 // Old ptx versions have a bug. When PTX code takes address of
5233 // byval parameter with alignment < 4, ptxas generates code to
5234 // spill argument into memory. Alas on sm_50+ ptxas generates
5235 // SASS code that fails with misaligned access. To work around
5236 // the problem, make sure that we align byval parameters by at
5237 // least 4. This bug seems to be fixed at least starting from
5238 // ptxas > 9.0.
5239 // TODO: remove this after verifying the bug is not reproduced
5240 // on non-deprecated ptxas versions.
5242 ArgAlign = std::max(ArgAlign, Align(4));
5243
5244 return ArgAlign;
5245}
5246
5247// Helper for getting a function parameter name. Name is composed from
5248// its index and the function name. Negative index corresponds to special
5249// parameter (unsized array) used for passing variable arguments.
5251 int Idx) const {
5252 std::string ParamName;
5253 raw_string_ostream ParamStr(ParamName);
5254
5255 ParamStr << getTargetMachine().getSymbol(F)->getName();
5256 if (Idx < 0)
5257 ParamStr << "_vararg";
5258 else
5259 ParamStr << "_param_" << Idx;
5260
5261 return ParamName;
5262}
5263
5264/// isLegalAddressingMode - Return true if the addressing mode represented
5265/// by AM is legal for this target, for a load/store of the specified type.
5266/// Used to guide target specific optimizations, like loop strength reduction
5267/// (LoopStrengthReduce.cpp) and memory optimization for address mode
5268/// (CodeGenPrepare.cpp)
5270 const AddrMode &AM, Type *Ty,
5271 unsigned AS, Instruction *I) const {
5272 // AddrMode - This represents an addressing mode of:
5273 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
5274 //
5275 // The legal address modes are
5276 // - [avar]
5277 // - [areg]
5278 // - [areg+immoff]
5279 // - [immAddr]
5280
5281 // immoff must fit in a signed 32-bit int
5282 if (!APInt(64, AM.BaseOffs).isSignedIntN(32))
5283 return false;
5284
5285 if (AM.BaseGV)
5286 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
5287
5288 switch (AM.Scale) {
5289 case 0: // "r", "r+i" or "i" is allowed
5290 break;
5291 case 1:
5292 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
5293 return false;
5294 // Otherwise we have r+i.
5295 break;
5296 default:
5297 // No scale > 1 is allowed
5298 return false;
5299 }
5300 return true;
5301}
5302
5303//===----------------------------------------------------------------------===//
5304// NVPTX Inline Assembly Support
5305//===----------------------------------------------------------------------===//
5306
5307/// getConstraintType - Given a constraint letter, return the type of
5308/// constraint it is for this target.
5311 if (Constraint.size() == 1) {
5312 switch (Constraint[0]) {
5313 default:
5314 break;
5315 case 'b':
5316 case 'r':
5317 case 'h':
5318 case 'c':
5319 case 'l':
5320 case 'f':
5321 case 'd':
5322 case 'q':
5323 case '0':
5324 case 'N':
5325 return C_RegisterClass;
5326 }
5327 }
5328 return TargetLowering::getConstraintType(Constraint);
5329}
5330
5331std::pair<unsigned, const TargetRegisterClass *>
5333 StringRef Constraint,
5334 MVT VT) const {
5335 if (Constraint.size() == 1) {
5336 switch (Constraint[0]) {
5337 case 'b':
5338 return std::make_pair(0U, &NVPTX::B1RegClass);
5339 case 'c':
5340 case 'h':
5341 return std::make_pair(0U, &NVPTX::B16RegClass);
5342 case 'r':
5343 case 'f':
5344 return std::make_pair(0U, &NVPTX::B32RegClass);
5345 case 'l':
5346 case 'N':
5347 case 'd':
5348 return std::make_pair(0U, &NVPTX::B64RegClass);
5349 case 'q': {
5350 if (STI.getSmVersion() < 70)
5351 report_fatal_error("Inline asm with 128 bit operands is only "
5352 "supported for sm_70 and higher!");
5353 return std::make_pair(0U, &NVPTX::B128RegClass);
5354 }
5355 }
5356 }
5357 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5358}
5359
5360//===----------------------------------------------------------------------===//
5361// NVPTX DAG Combining
5362//===----------------------------------------------------------------------===//
5363
5365 CodeGenOptLevel OptLevel) const {
5366 // Always honor command-line argument
5367 if (FMAContractLevelOpt.getNumOccurrences() > 0)
5368 return FMAContractLevelOpt > 0;
5369
5370 // Do not contract if we're not optimizing the code.
5371 if (OptLevel == CodeGenOptLevel::None)
5372 return false;
5373
5374 // Honor TargetOptions flags that explicitly say fusion is okay.
5376 return true;
5377
5378 return false;
5379}
5380
5381static bool isConstZero(const SDValue &Operand) {
5382 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
5383 return Const && Const->getZExtValue() == 0;
5384}
5385
5386/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5387/// operands N0 and N1. This is a helper for PerformADDCombine that is
5388/// called with the default operands, and if that fails, with commuted
5389/// operands.
5390static SDValue
5393 EVT VT = N0.getValueType();
5394
5395 // Since integer multiply-add costs the same as integer multiply
5396 // but is more costly than integer add, do the fusion only when
5397 // the mul is only used in the add.
5398 // TODO: this may not be true for later architectures, consider relaxing this
5399 if (!N0.getNode()->hasOneUse())
5400 return SDValue();
5401
5402 // fold (add (select cond, 0, (mul a, b)), c)
5403 // -> (select cond, c, (add (mul a, b), c))
5404 //
5405 if (N0.getOpcode() == ISD::SELECT) {
5406 unsigned ZeroOpNum;
5407 if (isConstZero(N0->getOperand(1)))
5408 ZeroOpNum = 1;
5409 else if (isConstZero(N0->getOperand(2)))
5410 ZeroOpNum = 2;
5411 else
5412 return SDValue();
5413
5414 SDValue M = N0->getOperand((ZeroOpNum == 1) ? 2 : 1);
5415 if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse())
5416 return SDValue();
5417
5418 SDLoc DL(N);
5419 SDValue Mul =
5420 DCI.DAG.getNode(ISD::MUL, DL, VT, M->getOperand(0), M->getOperand(1));
5421 SDValue MAD = DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, N1);
5422 return DCI.DAG.getSelect(SDLoc(N), VT, N0->getOperand(0),
5423 ((ZeroOpNum == 1) ? N1 : MAD),
5424 ((ZeroOpNum == 1) ? MAD : N1));
5425 }
5426
5427 return SDValue();
5428}
5429
5430static SDValue
5433 CodeGenOptLevel OptLevel) {
5434 EVT VT = N0.getValueType();
5435 if (N0.getOpcode() == ISD::FMUL) {
5436 const auto *TLI = static_cast<const NVPTXTargetLowering *>(
5437 &DCI.DAG.getTargetLoweringInfo());
5438 if (!(TLI->allowFMA(DCI.DAG.getMachineFunction(), OptLevel) ||
5439 (N->getFlags().hasAllowContract() &&
5440 N0->getFlags().hasAllowContract())))
5441 return SDValue();
5442
5443 // For floating point:
5444 // Do the fusion only when the mul has less than 5 uses and all
5445 // are add.
5446 // The heuristic is that if a use is not an add, then that use
5447 // cannot be fused into fma, therefore mul is still needed anyway.
5448 // If there are more than 4 uses, even if they are all add, fusing
5449 // them will increase register pressue.
5450 //
5451 int numUses = 0;
5452 int nonAddCount = 0;
5453 for (const SDNode *User : N0.getNode()->users()) {
5454 numUses++;
5455 if (User->getOpcode() != ISD::FADD)
5456 ++nonAddCount;
5457 if (numUses >= 5)
5458 return SDValue();
5459 }
5460 if (nonAddCount) {
5461 int orderNo = N->getIROrder();
5462 int orderNo2 = N0.getNode()->getIROrder();
5463 // simple heuristics here for considering potential register
5464 // pressure, the logics here is that the differnce are used
5465 // to measure the distance between def and use, the longer distance
5466 // more likely cause register pressure.
5467 if (orderNo - orderNo2 < 500)
5468 return SDValue();
5469
5470 // Now, check if at least one of the FMUL's operands is live beyond the
5471 // node N, which guarantees that the FMA will not increase register
5472 // pressure at node N.
5473 bool opIsLive = false;
5474 const SDNode *left = N0.getOperand(0).getNode();
5475 const SDNode *right = N0.getOperand(1).getNode();
5476
5477 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
5478 opIsLive = true;
5479
5480 if (!opIsLive)
5481 for (const SDNode *User : left->users()) {
5482 int orderNo3 = User->getIROrder();
5483 if (orderNo3 > orderNo) {
5484 opIsLive = true;
5485 break;
5486 }
5487 }
5488
5489 if (!opIsLive)
5490 for (const SDNode *User : right->users()) {
5491 int orderNo3 = User->getIROrder();
5492 if (orderNo3 > orderNo) {
5493 opIsLive = true;
5494 break;
5495 }
5496 }
5497
5498 if (!opIsLive)
5499 return SDValue();
5500 }
5501
5502 return DCI.DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0),
5503 N0.getOperand(1), N1);
5504 }
5505
5506 return SDValue();
5507}
5508
5509/// Fold unpacking movs into a load by increasing the number of return values.
5510///
5511/// ex:
5512/// L: v2f16,ch = load <p>
5513/// a: f16 = extractelt L:0, 0
5514/// b: f16 = extractelt L:0, 1
5515/// use(a, b)
5516///
5517/// ...is turned into...
5518///
5519/// L: f16,f16,ch = LoadV2 <p>
5520/// use(L:0, L:1)
5521static SDValue
5523 // Don't run this optimization before the legalizer
5524 if (!DCI.isAfterLegalizeDAG())
5525 return SDValue();
5526
5527 EVT ElementVT = N->getValueType(0);
5528 // Avoid non-packed types and v4i8
5529 if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8)
5530 return SDValue();
5531
5532 // Check whether all outputs are either used by an extractelt or are
5533 // glue/chain nodes
5534 if (!all_of(N->uses(), [&](SDUse &U) {
5535 // Skip glue, chain nodes
5536 if (U.getValueType() == MVT::Glue || U.getValueType() == MVT::Other)
5537 return true;
5538 if (U.getUser()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5539 if (N->getOpcode() != ISD::LOAD)
5540 return true;
5541 // Since this is an ISD::LOAD, check all extractelts are used. If
5542 // any are not used, we don't want to defeat another optimization that
5543 // will narrow the load.
5544 //
5545 // For example:
5546 //
5547 // L: v2f16,ch = load <p>
5548 // e0: f16 = extractelt L:0, 0
5549 // e1: f16 = extractelt L:0, 1 <-- unused
5550 // store e0
5551 //
5552 // Can be optimized by DAGCombiner to:
5553 //
5554 // L: f16,ch = load <p>
5555 // store L:0
5556 return !U.getUser()->use_empty();
5557 }
5558
5559 // Otherwise, this use prevents us from splitting a value.
5560 return false;
5561 }))
5562 return SDValue();
5563
5564 auto *LD = cast<MemSDNode>(N);
5565 SDLoc DL(LD);
5566
5567 // the new opcode after we double the number of operands
5568 unsigned Opcode;
5569 SmallVector<SDValue> Operands(LD->ops());
5570 unsigned OldNumOutputs; // non-glue, non-chain outputs
5571 switch (LD->getOpcode()) {
5572 case ISD::LOAD:
5573 OldNumOutputs = 1;
5574 // Any packed type is legal, so the legalizer will not have lowered
5575 // ISD::LOAD -> NVPTXISD::Load (unless it's under-aligned). We have to do it
5576 // here.
5577 Opcode = NVPTXISD::LoadV2;
5578 // append a "full" used bytes mask operand right before the extension type
5579 // operand, signifying that all bytes are used.
5580 Operands.push_back(DCI.DAG.getConstant(UINT32_MAX, DL, MVT::i32));
5581 Operands.push_back(DCI.DAG.getIntPtrConstant(
5582 cast<LoadSDNode>(LD)->getExtensionType(), DL));
5583 break;
5584 case NVPTXISD::LoadV2:
5585 OldNumOutputs = 2;
5586 Opcode = NVPTXISD::LoadV4;
5587 break;
5588 case NVPTXISD::LoadV4:
5589 // V8 is only supported for f32/i32. Don't forget, we're not changing the
5590 // load size here. This is already a 256-bit load.
5591 if (ElementVT != MVT::v2f32 && ElementVT != MVT::v2i32)
5592 return SDValue();
5593 OldNumOutputs = 4;
5594 Opcode = NVPTXISD::LoadV8;
5595 break;
5596 case NVPTXISD::LoadV8:
5597 // PTX doesn't support the next doubling of outputs
5598 return SDValue();
5599 }
5600
5601 // the non-glue, non-chain outputs in the new load
5602 const unsigned NewNumOutputs = OldNumOutputs * 2;
5603 SmallVector<EVT> NewVTs(NewNumOutputs, ElementVT.getVectorElementType());
5604 // add remaining chain and glue values
5605 NewVTs.append(LD->value_begin() + OldNumOutputs, LD->value_end());
5606
5607 // Create the new load
5608 SDValue NewLoad = DCI.DAG.getMemIntrinsicNode(
5609 Opcode, DL, DCI.DAG.getVTList(NewVTs), Operands, LD->getMemoryVT(),
5610 LD->getMemOperand());
5611
5612 // Now we use a combination of BUILD_VECTORs and a MERGE_VALUES node to keep
5613 // the outputs the same. These nodes will be optimized away in later
5614 // DAGCombiner iterations.
5616 for (unsigned I : seq(OldNumOutputs))
5617 Results.push_back(DCI.DAG.getBuildVector(
5618 ElementVT, DL, {NewLoad.getValue(I * 2), NewLoad.getValue(I * 2 + 1)}));
5619 // Add remaining chain and glue nodes
5620 for (unsigned I : seq(NewLoad->getNumValues() - NewNumOutputs))
5621 Results.push_back(NewLoad.getValue(NewNumOutputs + I));
5622
5623 return DCI.DAG.getMergeValues(Results, DL);
5624}
5625
5626/// Fold packing movs into a store.
5627///
5628/// ex:
5629/// v1: v2f16 = BUILD_VECTOR a:f16, b:f16
5630/// v2: v2f16 = BUILD_VECTOR c:f16, d:f16
5631/// StoreV2 v1, v2
5632///
5633/// ...is turned into...
5634///
5635/// StoreV4 a, b, c, d
5638 unsigned Front, unsigned Back) {
5639 // We want to run this as late as possible since other optimizations may
5640 // eliminate the BUILD_VECTORs.
5641 if (!DCI.isAfterLegalizeDAG())
5642 return SDValue();
5643
5644 // Get the type of the operands being stored.
5645 EVT ElementVT = N->getOperand(Front).getValueType();
5646
5647 // Avoid non-packed types and v4i8
5648 if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8)
5649 return SDValue();
5650
5651 auto *ST = cast<MemSDNode>(N);
5652
5653 // The new opcode after we double the number of operands.
5654 unsigned Opcode;
5655 switch (N->getOpcode()) {
5656 case ISD::STORE:
5657 // Any packed type is legal, so the legalizer will not have lowered
5658 // ISD::STORE -> NVPTXISD::Store (unless it's under-aligned). We have to do
5659 // it here.
5660 Opcode = NVPTXISD::StoreV2;
5661 break;
5662 case NVPTXISD::StoreV2:
5663 Opcode = NVPTXISD::StoreV4;
5664 break;
5665 case NVPTXISD::StoreV4:
5666 // V8 is only supported for f32/i32. Don't forget, we're not changing the
5667 // store size here. This is already a 256-bit store.
5668 if (ElementVT != MVT::v2f32 && ElementVT != MVT::v2i32)
5669 return SDValue();
5670 Opcode = NVPTXISD::StoreV8;
5671 break;
5672 case NVPTXISD::StoreV8:
5673 // PTX doesn't support the next doubling of operands
5674 return SDValue();
5675 default:
5676 llvm_unreachable("Unhandled store opcode");
5677 }
5678
5679 // Scan the operands and if they're all BUILD_VECTORs, we'll have gathered
5680 // their elements.
5681 SmallVector<SDValue, 4> Operands(N->ops().take_front(Front));
5682 for (SDValue BV : N->ops().drop_front(Front).drop_back(Back)) {
5683 if (BV.getOpcode() != ISD::BUILD_VECTOR)
5684 return SDValue();
5685
5686 // If the operand has multiple uses, this optimization can increase register
5687 // pressure.
5688 if (!BV.hasOneUse())
5689 return SDValue();
5690
5691 // DAGCombiner visits nodes bottom-up. Check the BUILD_VECTOR operands for
5692 // any signs they may be folded by some other pattern or rule.
5693 for (SDValue Op : BV->ops()) {
5694 // Peek through bitcasts
5695 if (Op.getOpcode() == ISD::BITCAST)
5696 Op = Op.getOperand(0);
5697
5698 // This may be folded into a PRMT.
5699 if (Op.getValueType() == MVT::i16 && Op.getOpcode() == ISD::TRUNCATE &&
5700 Op->getOperand(0).getValueType() == MVT::i32)
5701 return SDValue();
5702
5703 // This may be folded into cvt.bf16x2
5704 if (Op.getOpcode() == ISD::FP_ROUND)
5705 return SDValue();
5706 }
5707 Operands.append({BV.getOperand(0), BV.getOperand(1)});
5708 }
5709 Operands.append(N->op_end() - Back, N->op_end());
5710
5711 // Now we replace the store
5712 return DCI.DAG.getMemIntrinsicNode(Opcode, SDLoc(N), N->getVTList(), Operands,
5713 ST->getMemoryVT(), ST->getMemOperand());
5714}
5715
5717 const NVPTXSubtarget &STI) {
5718
5719 if (DCI.isBeforeLegalize() && N->getOpcode() == ISD::STORE) {
5720 // Here is our chance to custom lower a store with a non-simple type.
5721 // Unfortunately, we can't do this in the legalizer because there is no
5722 // way to setOperationAction for an non-simple type.
5724 if (!ST->getValue().getValueType().isSimple())
5725 return lowerSTOREVector(SDValue(ST, 0), DCI.DAG, STI);
5726 }
5727
5728 return combinePackingMovIntoStore(N, DCI, 1, 2);
5729}
5730
5732 const NVPTXSubtarget &STI) {
5733 if (DCI.isBeforeLegalize() && N->getOpcode() == ISD::LOAD) {
5734 // Here is our chance to custom lower a load with a non-simple type.
5735 // Unfortunately, we can't do this in the legalizer because there is no
5736 // way to setOperationAction for an non-simple type.
5737 if (!N->getValueType(0).isSimple())
5738 return lowerLoadVector(N, DCI.DAG, STI);
5739 }
5740
5741 return combineUnpackingMovIntoLoad(N, DCI);
5742}
5743
5744/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5745///
5748 CodeGenOptLevel OptLevel) {
5749 if (OptLevel == CodeGenOptLevel::None)
5750 return SDValue();
5751
5752 SDValue N0 = N->getOperand(0);
5753 SDValue N1 = N->getOperand(1);
5754
5755 // Skip non-integer, non-scalar case
5756 EVT VT = N0.getValueType();
5757 if (VT.isVector() || VT != MVT::i32)
5758 return SDValue();
5759
5760 // First try with the default operand order.
5761 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI))
5762 return Result;
5763
5764 // If that didn't work, try again with the operands commuted.
5765 return PerformADDCombineWithOperands(N, N1, N0, DCI);
5766}
5767
5768/// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD.
5769///
5772 CodeGenOptLevel OptLevel) {
5773 SDValue N0 = N->getOperand(0);
5774 SDValue N1 = N->getOperand(1);
5775
5776 EVT VT = N0.getValueType();
5777 if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64))
5778 return SDValue();
5779
5780 // First try with the default operand order.
5781 if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel))
5782 return Result;
5783
5784 // If that didn't work, try again with the operands commuted.
5785 return PerformFADDCombineWithOperands(N, N1, N0, DCI, OptLevel);
5786}
5787
5788/// Get 3-input version of a 2-input min/max opcode
5789static unsigned getMinMax3Opcode(unsigned MinMax2Opcode) {
5790 switch (MinMax2Opcode) {
5791 case ISD::FMAXNUM:
5792 case ISD::FMAXIMUMNUM:
5793 return NVPTXISD::FMAXNUM3;
5794 case ISD::FMINNUM:
5795 case ISD::FMINIMUMNUM:
5796 return NVPTXISD::FMINNUM3;
5797 case ISD::FMAXIMUM:
5798 return NVPTXISD::FMAXIMUM3;
5799 case ISD::FMINIMUM:
5800 return NVPTXISD::FMINIMUM3;
5801 default:
5802 llvm_unreachable("Invalid 2-input min/max opcode");
5803 }
5804}
5805
5806/// PerformFMinMaxCombine - Combine (fmaxnum (fmaxnum a, b), c) into
5807/// (fmaxnum3 a, b, c). Also covers other llvm min/max intrinsics.
5810 unsigned PTXVersion, unsigned SmVersion) {
5811
5812 // 3-input min/max requires PTX 8.8+ and SM_100+, and only supports f32s
5813 EVT VT = N->getValueType(0);
5814 if (VT != MVT::f32 || PTXVersion < 88 || SmVersion < 100)
5815 return SDValue();
5816
5817 SDValue Op0 = N->getOperand(0);
5818 SDValue Op1 = N->getOperand(1);
5819 unsigned MinMaxOp2 = N->getOpcode();
5820 unsigned MinMaxOp3 = getMinMax3Opcode(MinMaxOp2);
5821
5822 if (Op0.getOpcode() == MinMaxOp2 && Op0.hasOneUse()) {
5823 // (maxnum (maxnum a, b), c) -> (maxnum3 a, b, c)
5824 SDValue A = Op0.getOperand(0);
5825 SDValue B = Op0.getOperand(1);
5826 SDValue C = Op1;
5827 return DCI.DAG.getNode(MinMaxOp3, SDLoc(N), VT, A, B, C, N->getFlags());
5828 } else if (Op1.getOpcode() == MinMaxOp2 && Op1.hasOneUse()) {
5829 // (maxnum a, (maxnum b, c)) -> (maxnum3 a, b, c)
5830 SDValue A = Op0;
5831 SDValue B = Op1.getOperand(0);
5832 SDValue C = Op1.getOperand(1);
5833 return DCI.DAG.getNode(MinMaxOp3, SDLoc(N), VT, A, B, C, N->getFlags());
5834 }
5835 return SDValue();
5836}
5837
5840 CodeGenOptLevel OptLevel) {
5841 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
5842
5843 // Don't do anything at less than -O2.
5844 if (OptLevel < CodeGenOptLevel::Default)
5845 return SDValue();
5846
5847 SelectionDAG &DAG = DCI.DAG;
5848 SDLoc DL(N);
5849 EVT VT = N->getValueType(0);
5850 bool IsSigned = N->getOpcode() == ISD::SREM;
5851 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
5852
5853 const SDValue &Num = N->getOperand(0);
5854 const SDValue &Den = N->getOperand(1);
5855
5856 for (const SDNode *U : Num->users()) {
5857 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
5858 U->getOperand(1) == Den) {
5859 // Num % Den -> Num - (Num / Den) * Den
5860 return DAG.getNode(ISD::SUB, DL, VT, Num,
5861 DAG.getNode(ISD::MUL, DL, VT,
5862 DAG.getNode(DivOpc, DL, VT, Num, Den),
5863 Den));
5864 }
5865 }
5866 return SDValue();
5867}
5868
5869// (sign_extend|zero_extend (mul|shl) x, y) -> (mul.wide x, y)
5871 CodeGenOptLevel OptLevel) {
5872 if (OptLevel == CodeGenOptLevel::None)
5873 return SDValue();
5874
5875 SDValue Op = N->getOperand(0);
5876 if (!Op.hasOneUse())
5877 return SDValue();
5878 EVT ToVT = N->getValueType(0);
5879 EVT FromVT = Op.getValueType();
5880 if (!((ToVT == MVT::i32 && FromVT == MVT::i16) ||
5881 (ToVT == MVT::i64 && FromVT == MVT::i32)))
5882 return SDValue();
5883 if (!(Op.getOpcode() == ISD::MUL ||
5884 (Op.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Op.getOperand(1)))))
5885 return SDValue();
5886
5887 SDLoc DL(N);
5888 unsigned ExtOpcode = N->getOpcode();
5889 unsigned Opcode = 0;
5890 if (ExtOpcode == ISD::SIGN_EXTEND && Op->getFlags().hasNoSignedWrap())
5891 Opcode = NVPTXISD::MUL_WIDE_SIGNED;
5892 else if (ExtOpcode == ISD::ZERO_EXTEND && Op->getFlags().hasNoUnsignedWrap())
5893 Opcode = NVPTXISD::MUL_WIDE_UNSIGNED;
5894 else
5895 return SDValue();
5896 SDValue RHS = Op.getOperand(1);
5897 if (Op.getOpcode() == ISD::SHL) {
5898 const auto ShiftAmt = Op.getConstantOperandVal(1);
5899 const auto MulVal = APInt(ToVT.getSizeInBits(), 1) << ShiftAmt;
5900 RHS = DCI.DAG.getConstant(MulVal, DL, ToVT);
5901 }
5902 return DCI.DAG.getNode(Opcode, DL, ToVT, Op.getOperand(0), RHS);
5903}
5904
5910
5911/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
5912/// that can be demoted to \p OptSize bits without loss of information. The
5913/// signedness of the operand, if determinable, is placed in \p S.
5915 unsigned OptSize,
5916 OperandSignedness &S) {
5917 S = Unknown;
5918
5919 if (Op.getOpcode() == ISD::SIGN_EXTEND ||
5920 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
5921 EVT OrigVT = Op.getOperand(0).getValueType();
5922 if (OrigVT.getFixedSizeInBits() <= OptSize) {
5923 S = Signed;
5924 return true;
5925 }
5926 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
5927 EVT OrigVT = Op.getOperand(0).getValueType();
5928 if (OrigVT.getFixedSizeInBits() <= OptSize) {
5929 S = Unsigned;
5930 return true;
5931 }
5932 }
5933
5934 return false;
5935}
5936
5937/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
5938/// be demoted to \p OptSize bits without loss of information. If the operands
5939/// contain a constant, it should appear as the RHS operand. The signedness of
5940/// the operands is placed in \p IsSigned.
5942 unsigned OptSize,
5943 bool &IsSigned) {
5944 OperandSignedness LHSSign;
5945
5946 // The LHS operand must be a demotable op
5947 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
5948 return false;
5949
5950 // We should have been able to determine the signedness from the LHS
5951 if (LHSSign == Unknown)
5952 return false;
5953
5954 IsSigned = (LHSSign == Signed);
5955
5956 // The RHS can be a demotable op or a constant
5958 const APInt &Val = CI->getAPIntValue();
5959 if (LHSSign == Unsigned) {
5960 return Val.isIntN(OptSize);
5961 } else {
5962 return Val.isSignedIntN(OptSize);
5963 }
5964 } else {
5965 OperandSignedness RHSSign;
5966 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
5967 return false;
5968
5969 return LHSSign == RHSSign;
5970 }
5971}
5972
5973/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
5974/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
5975/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
5976/// amount.
5979 EVT MulType = N->getValueType(0);
5980 if (MulType != MVT::i32 && MulType != MVT::i64) {
5981 return SDValue();
5982 }
5983
5984 SDLoc DL(N);
5985 unsigned OptSize = MulType.getSizeInBits() >> 1;
5986 SDValue LHS = N->getOperand(0);
5987 SDValue RHS = N->getOperand(1);
5988
5989 // Canonicalize the multiply so the constant (if any) is on the right
5990 if (N->getOpcode() == ISD::MUL) {
5991 if (isa<ConstantSDNode>(LHS)) {
5992 std::swap(LHS, RHS);
5993 }
5994 }
5995
5996 // If we have a SHL, determine the actual multiply amount
5997 if (N->getOpcode() == ISD::SHL) {
5999 if (!ShlRHS) {
6000 return SDValue();
6001 }
6002
6003 APInt ShiftAmt = ShlRHS->getAPIntValue();
6004 unsigned BitWidth = MulType.getSizeInBits();
6005 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
6006 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
6007 RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
6008 } else {
6009 return SDValue();
6010 }
6011 }
6012
6013 bool Signed;
6014 // Verify that our operands are demotable
6015 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
6016 return SDValue();
6017 }
6018
6019 EVT DemotedVT;
6020 if (MulType == MVT::i32) {
6021 DemotedVT = MVT::i16;
6022 } else {
6023 DemotedVT = MVT::i32;
6024 }
6025
6026 // Truncate the operands to the correct size. Note that these are just for
6027 // type consistency and will (likely) be eliminated in later phases.
6028 SDValue TruncLHS =
6029 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
6030 SDValue TruncRHS =
6031 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
6032
6033 unsigned Opc;
6034 if (Signed) {
6035 Opc = NVPTXISD::MUL_WIDE_SIGNED;
6036 } else {
6037 Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
6038 }
6039
6040 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
6041}
6042
6043static bool isConstOne(const SDValue &Operand) {
6044 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
6045 return Const && Const->getZExtValue() == 1;
6046}
6047
6049 if (Add->getOpcode() != ISD::ADD)
6050 return SDValue();
6051
6052 if (isConstOne(Add->getOperand(0)))
6053 return Add->getOperand(1);
6054
6055 if (isConstOne(Add->getOperand(1)))
6056 return Add->getOperand(0);
6057
6058 return SDValue();
6059}
6060
6063
6065 SDValue Mul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
6066 return DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, X);
6067 }
6068
6069 return SDValue();
6070}
6071
6073 SDLoc DL,
6075 if (Select->getOpcode() != ISD::SELECT)
6076 return SDValue();
6077
6078 SDValue Cond = Select->getOperand(0);
6079
6080 unsigned ConstOpNo;
6081 if (isConstOne(Select->getOperand(1)))
6082 ConstOpNo = 1;
6083 else if (isConstOne(Select->getOperand(2)))
6084 ConstOpNo = 2;
6085 else
6086 return SDValue();
6087
6088 SDValue Y = Select->getOperand((ConstOpNo == 1) ? 2 : 1);
6089
6090 // Do not combine if the resulting sequence is not obviously profitable.
6092 return SDValue();
6093
6094 SDValue NewMul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
6095
6096 return DCI.DAG.getNode(ISD::SELECT, DL, VT, Cond,
6097 (ConstOpNo == 1) ? X : NewMul,
6098 (ConstOpNo == 1) ? NewMul : X);
6099}
6100
6101static SDValue
6104
6105 EVT VT = N0.getValueType();
6106 if (VT.isVector())
6107 return SDValue();
6108
6109 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6110 return SDValue();
6111
6112 SDLoc DL(N);
6113
6114 // (mul x, (add y, 1)) -> (add (mul x, y), x)
6115 if (SDValue Res = combineMADConstOne(N0, N1, VT, DL, DCI))
6116 return Res;
6117 if (SDValue Res = combineMADConstOne(N1, N0, VT, DL, DCI))
6118 return Res;
6119
6120 // (mul x, (select y, 1)) -> (select (mul x, y), x)
6121 if (SDValue Res = combineMulSelectConstOne(N0, N1, VT, DL, DCI))
6122 return Res;
6123 if (SDValue Res = combineMulSelectConstOne(N1, N0, VT, DL, DCI))
6124 return Res;
6125
6126 return SDValue();
6127}
6128
6129/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
6132 CodeGenOptLevel OptLevel) {
6133 if (OptLevel == CodeGenOptLevel::None)
6134 return SDValue();
6135
6136 if (SDValue Ret = TryMULWIDECombine(N, DCI))
6137 return Ret;
6138
6139 SDValue N0 = N->getOperand(0);
6140 SDValue N1 = N->getOperand(1);
6141 return PerformMULCombineWithOperands(N, N0, N1, DCI);
6142}
6143
6144/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
6147 CodeGenOptLevel OptLevel) {
6148 if (OptLevel > CodeGenOptLevel::None) {
6149 // Try mul.wide combining at OptLevel > 0
6150 if (SDValue Ret = TryMULWIDECombine(N, DCI))
6151 return Ret;
6152 }
6153
6154 return SDValue();
6155}
6156
6159 unsigned int SmVersion) {
6160 EVT CCType = N->getValueType(0);
6161 SDValue A = N->getOperand(0);
6162 SDValue B = N->getOperand(1);
6163
6164 EVT AType = A.getValueType();
6165 if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
6166 return SDValue();
6167
6168 if (A.getValueType() == MVT::v2bf16 && SmVersion < 90)
6169 return SDValue();
6170
6171 SDLoc DL(N);
6172 // setp.f16x2 returns two scalar predicates, which we need to
6173 // convert back to v2i1. The returned result will be scalarized by
6174 // the legalizer, but the comparison will remain a single vector
6175 // instruction.
6176 SDValue CCNode = DCI.DAG.getNode(
6177 A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2
6179 DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
6180 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
6181 CCNode.getValue(1));
6182}
6183
6186 SDValue Vector = N->getOperand(0);
6187 if (Vector->getOpcode() == ISD::FREEZE)
6188 Vector = Vector->getOperand(0);
6189 SDLoc DL(N);
6190 EVT VectorVT = Vector.getValueType();
6191 if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() &&
6192 IsPTXVectorType(VectorVT.getSimpleVT()))
6193 return SDValue(); // Native vector loads already combine nicely w/
6194 // extract_vector_elt.
6195 // Don't mess with singletons or packed types (v2*32, v2*16, v4i8 and v8i8),
6196 // we already handle them OK.
6197 if (VectorVT.getVectorNumElements() == 1 ||
6198 NVPTX::isPackedVectorTy(VectorVT) || VectorVT == MVT::v8i8)
6199 return SDValue();
6200
6201 // Don't mess with undef values as sra may be simplified to 0, not undef.
6202 if (Vector->isUndef() || ISD::allOperandsUndef(Vector.getNode()))
6203 return SDValue();
6204
6205 uint64_t VectorBits = VectorVT.getSizeInBits();
6206 // We only handle the types we can extract in-register.
6207 if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
6208 return SDValue();
6209
6210 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(N->getOperand(1));
6211 // Index == 0 is handled by generic DAG combiner.
6212 if (!Index || Index->getZExtValue() == 0)
6213 return SDValue();
6214
6215 MVT IVT = MVT::getIntegerVT(VectorBits);
6216 EVT EltVT = VectorVT.getVectorElementType();
6217 EVT EltIVT = EltVT.changeTypeToInteger();
6218 uint64_t EltBits = EltVT.getScalarSizeInBits();
6219
6220 SDValue Result = DCI.DAG.getNode(
6221 ISD::TRUNCATE, DL, EltIVT,
6222 DCI.DAG.getNode(
6223 ISD::SRA, DL, IVT, DCI.DAG.getNode(ISD::BITCAST, DL, IVT, Vector),
6224 DCI.DAG.getConstant(Index->getZExtValue() * EltBits, DL, IVT)));
6225
6226 // If element has non-integer type, bitcast it back to the expected type.
6227 if (EltVT != EltIVT)
6228 Result = DCI.DAG.getNode(ISD::BITCAST, DL, EltVT, Result);
6229 // Past legalizer, we may need to extent i8 -> i16 to match the register type.
6230 if (EltVT != N->getValueType(0))
6231 Result = DCI.DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0), Result);
6232
6233 return Result;
6234}
6235
6238 SDValue VA = N->getOperand(1);
6239 EVT VectorVT = VA.getValueType();
6240 if (VectorVT != MVT::v4i8)
6241 return SDValue();
6242
6243 // We need to split vselect into individual per-element operations Because we
6244 // use BFE/BFI instruction for byte extraction/insertion, we do end up with
6245 // 32-bit values, so we may as well do comparison as i32 to avoid conversions
6246 // to/from i16 normally used for i8 values.
6248 SDLoc DL(N);
6249 SDValue VCond = N->getOperand(0);
6250 SDValue VB = N->getOperand(2);
6251 for (int I = 0; I < 4; ++I) {
6252 SDValue C = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i1, VCond,
6253 DCI.DAG.getConstant(I, DL, MVT::i32));
6254 SDValue EA = DCI.DAG.getAnyExtOrTrunc(
6255 DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VA,
6256 DCI.DAG.getConstant(I, DL, MVT::i32)),
6257 DL, MVT::i32);
6258 SDValue EB = DCI.DAG.getAnyExtOrTrunc(
6259 DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VB,
6260 DCI.DAG.getConstant(I, DL, MVT::i32)),
6261 DL, MVT::i32);
6262 E.push_back(DCI.DAG.getAnyExtOrTrunc(
6263 DCI.DAG.getNode(ISD::SELECT, DL, MVT::i32, C, EA, EB), DL, MVT::i8));
6264 }
6265 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i8, E);
6266}
6267
6268static SDValue
6270 auto VT = N->getValueType(0);
6271 if (!DCI.isAfterLegalizeDAG() ||
6272 // only process v2*16 types
6273 !(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector() &&
6274 VT.getVectorNumElements() == 2))
6275 return SDValue();
6276
6277 auto Op0 = N->getOperand(0);
6278 auto Op1 = N->getOperand(1);
6279
6280 // Start out by assuming we want to take the lower 2 bytes of each i32
6281 // operand.
6282 uint64_t Op0Bytes = 0x10;
6283 uint64_t Op1Bytes = 0x54;
6284
6285 std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes},
6286 {&Op1, &Op1Bytes}};
6287
6288 // Check that each operand is an i16, truncated from an i32 operand. We'll
6289 // select individual bytes from those original operands. Optionally, fold in a
6290 // shift right of that original operand.
6291 for (auto &[Op, OpBytes] : OpData) {
6292 // Eat up any bitcast
6293 if (Op->getOpcode() == ISD::BITCAST)
6294 *Op = Op->getOperand(0);
6295
6296 if (!(Op->getValueType() == MVT::i16 && Op->getOpcode() == ISD::TRUNCATE &&
6297 Op->getOperand(0).getValueType() == MVT::i32))
6298 return SDValue();
6299
6300 // If the truncate has multiple uses, this optimization can increase
6301 // register pressure
6302 if (!Op->hasOneUse())
6303 return SDValue();
6304
6305 *Op = Op->getOperand(0);
6306
6307 // Optionally, fold in a shift-right of the original operand and let permute
6308 // pick the two higher bytes of the original value directly.
6309 if (Op->getOpcode() == ISD::SRL && isa<ConstantSDNode>(Op->getOperand(1))) {
6310 if (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue() == 16) {
6311 // Shift the PRMT byte selector to pick upper bytes from each respective
6312 // value, instead of the lower ones: 0x10 -> 0x32, 0x54 -> 0x76
6313 assert((*OpBytes == 0x10 || *OpBytes == 0x54) &&
6314 "PRMT selector values out of range");
6315 *OpBytes += 0x22;
6316 *Op = Op->getOperand(0);
6317 }
6318 }
6319 }
6320
6321 SDLoc DL(N);
6322 auto &DAG = DCI.DAG;
6323
6324 auto PRMT =
6325 getPRMT(DAG.getBitcast(MVT::i32, Op0), DAG.getBitcast(MVT::i32, Op1),
6326 (Op1Bytes << 8) | Op0Bytes, DL, DAG);
6327 return DAG.getBitcast(VT, PRMT);
6328}
6329
6332 auto *ASCN1 = cast<AddrSpaceCastSDNode>(N);
6333
6334 if (auto *ASCN2 = dyn_cast<AddrSpaceCastSDNode>(ASCN1->getOperand(0))) {
6335 assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace());
6336
6337 // Fold asc[B -> A](asc[A -> B](x)) -> x
6338 if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace())
6339 return ASCN2->getOperand(0);
6340 }
6341
6342 return SDValue();
6343}
6344
6345// Given a constant selector value and a prmt mode, return the selector value
6346// normalized to the generic prmt mode. See the PTX ISA documentation for more
6347// details:
6348// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-prmt
6349static APInt getPRMTSelector(const APInt &Selector, unsigned Mode) {
6350 assert(Selector.getBitWidth() == 32 && "PRMT must have i32 operands");
6351
6353 return Selector;
6354
6355 const unsigned V = Selector.trunc(2).getZExtValue();
6356
6357 const auto GetSelector = [](unsigned S0, unsigned S1, unsigned S2,
6358 unsigned S3) {
6359 return APInt(32, S0 | (S1 << 4) | (S2 << 8) | (S3 << 12));
6360 };
6361
6362 switch (Mode) {
6364 return GetSelector(V, V + 1, V + 2, V + 3);
6366 return GetSelector(V, (V - 1) & 7, (V - 2) & 7, (V - 3) & 7);
6368 return GetSelector(V, V, V, V);
6370 return GetSelector(V, std::max(V, 1U), std::max(V, 2U), 3U);
6372 return GetSelector(0, std::min(V, 1U), std::min(V, 2U), V);
6374 unsigned V1 = (V & 1) << 1;
6375 return GetSelector(V1, V1 + 1, V1, V1 + 1);
6376 }
6377 default:
6378 llvm_unreachable("Invalid PRMT mode");
6379 }
6380}
6381
6382static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode) {
6383 assert(A.getBitWidth() == 32 && B.getBitWidth() == 32 &&
6384 Selector.getBitWidth() == 32 && "PRMT must have i32 operands");
6385 // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}
6386 APInt BitField = B.concat(A);
6387 APInt SelectorVal = getPRMTSelector(Selector, Mode);
6388 APInt Result(32, 0);
6389 for (unsigned I : llvm::seq(4U)) {
6390 APInt Sel = SelectorVal.extractBits(4, I * 4);
6391 unsigned Idx = Sel.getLoBits(3).getZExtValue();
6392 unsigned Sign = Sel.getHiBits(1).getZExtValue();
6393 APInt Byte = BitField.extractBits(8, Idx * 8);
6394 if (Sign)
6395 Byte = Byte.ashr(8);
6396 Result.insertBits(Byte, I * 8);
6397 }
6398 return Result;
6399}
6400
6402 CodeGenOptLevel OptLevel) {
6403 if (OptLevel == CodeGenOptLevel::None)
6404 return SDValue();
6405
6406 // Constant fold PRMT
6407 if (isa<ConstantSDNode>(N->getOperand(0)) &&
6408 isa<ConstantSDNode>(N->getOperand(1)) &&
6409 isa<ConstantSDNode>(N->getOperand(2)))
6410 return DCI.DAG.getConstant(computePRMT(N->getConstantOperandAPInt(0),
6411 N->getConstantOperandAPInt(1),
6412 N->getConstantOperandAPInt(2),
6413 N->getConstantOperandVal(3)),
6414 SDLoc(N), N->getValueType(0));
6415 return SDValue();
6416}
6417
6418// During call lowering we wrap the return values in a ProxyReg node which
6419// depend on the chain value produced by the completed call. This ensures that
6420// the full call is emitted in cases where libcalls are used to legalize
6421// operations. To improve the functioning of other DAG combines we pull all
6422// operations we can through one of these nodes, ensuring that the ProxyReg
6423// directly wraps a load. That is:
6424//
6425// (ProxyReg (zext (load retval0))) => (zext (ProxyReg (load retval0)))
6426//
6429 switch (R.getOpcode()) {
6430 case ISD::TRUNCATE:
6431 case ISD::ANY_EXTEND:
6432 case ISD::SIGN_EXTEND:
6433 case ISD::ZERO_EXTEND:
6434 case ISD::BITCAST: {
6435 if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI))
6436 return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), V);
6437 return SDValue();
6438 }
6439 case ISD::SHL:
6440 case ISD::SRL:
6441 case ISD::SRA:
6442 case ISD::OR: {
6443 if (SDValue A = sinkProxyReg(R.getOperand(0), Chain, DCI))
6444 if (SDValue B = sinkProxyReg(R.getOperand(1), Chain, DCI))
6445 return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), A, B);
6446 return SDValue();
6447 }
6448 case ISD::Constant:
6449 return R;
6450 case ISD::LOAD:
6451 case NVPTXISD::LoadV2:
6452 case NVPTXISD::LoadV4: {
6453 return DCI.DAG.getNode(NVPTXISD::ProxyReg, SDLoc(R), R.getValueType(),
6454 {Chain, R});
6455 }
6456 case ISD::BUILD_VECTOR: {
6457 if (DCI.isBeforeLegalize())
6458 return SDValue();
6459
6461 for (auto &Op : R->ops()) {
6462 SDValue V = sinkProxyReg(Op, Chain, DCI);
6463 if (!V)
6464 return SDValue();
6465 Ops.push_back(V);
6466 }
6467 return DCI.DAG.getNode(ISD::BUILD_VECTOR, SDLoc(R), R.getValueType(), Ops);
6468 }
6470 if (DCI.isBeforeLegalize())
6471 return SDValue();
6472
6473 if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI))
6475 R.getValueType(), V, R.getOperand(1));
6476 return SDValue();
6477 }
6478 default:
6479 return SDValue();
6480 }
6481}
6482
6485
6486 SDValue Chain = N->getOperand(0);
6487 SDValue Reg = N->getOperand(1);
6488
6489 // If the ProxyReg is not wrapping a load, try to pull the operations through
6490 // the ProxyReg.
6491 if (Reg.getOpcode() != ISD::LOAD) {
6492 if (SDValue V = sinkProxyReg(Reg, Chain, DCI))
6493 return V;
6494 }
6495
6496 return SDValue();
6497}
6498
6499SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
6500 DAGCombinerInfo &DCI) const {
6502 switch (N->getOpcode()) {
6503 default:
6504 break;
6505 case ISD::ADD:
6506 return PerformADDCombine(N, DCI, OptLevel);
6507 case ISD::ADDRSPACECAST:
6508 return combineADDRSPACECAST(N, DCI);
6509 case ISD::SIGN_EXTEND:
6510 case ISD::ZERO_EXTEND:
6511 return combineMulWide(N, DCI, OptLevel);
6512 case ISD::BUILD_VECTOR:
6513 return PerformBUILD_VECTORCombine(N, DCI);
6515 return PerformEXTRACTCombine(N, DCI);
6516 case ISD::FADD:
6517 return PerformFADDCombine(N, DCI, OptLevel);
6518 case ISD::FMAXNUM:
6519 case ISD::FMINNUM:
6520 case ISD::FMAXIMUM:
6521 case ISD::FMINIMUM:
6522 case ISD::FMAXIMUMNUM:
6523 case ISD::FMINIMUMNUM:
6524 return PerformFMinMaxCombine(N, DCI, STI.getPTXVersion(),
6525 STI.getSmVersion());
6526 case ISD::LOAD:
6527 case NVPTXISD::LoadV2:
6528 case NVPTXISD::LoadV4:
6529 return combineLOAD(N, DCI, STI);
6530 case ISD::MUL:
6531 return PerformMULCombine(N, DCI, OptLevel);
6532 case NVPTXISD::PRMT:
6533 return combinePRMT(N, DCI, OptLevel);
6534 case NVPTXISD::ProxyReg:
6535 return combineProxyReg(N, DCI);
6536 case ISD::SETCC:
6537 return PerformSETCCCombine(N, DCI, STI.getSmVersion());
6538 case ISD::SHL:
6539 return PerformSHLCombine(N, DCI, OptLevel);
6540 case ISD::SREM:
6541 case ISD::UREM:
6542 return PerformREMCombine(N, DCI, OptLevel);
6543 case ISD::STORE:
6544 case NVPTXISD::StoreV2:
6545 case NVPTXISD::StoreV4:
6546 return combineSTORE(N, DCI, STI);
6547 case ISD::VSELECT:
6548 return PerformVSELECTCombine(N, DCI);
6549 }
6550 return SDValue();
6551}
6552
6555 // Handle bitcasting to v2i8 without hitting the default promotion
6556 // strategy which goes through stack memory.
6557 SDValue Op(Node, 0);
6558 EVT ToVT = Op->getValueType(0);
6559 if (ToVT != MVT::v2i8) {
6560 return;
6561 }
6562
6563 // Bitcast to i16 and unpack elements into a vector
6564 SDLoc DL(Node);
6565 SDValue AsInt = DAG.getBitcast(MVT::i16, Op->getOperand(0));
6566 SDValue Vec0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, AsInt);
6567 SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
6568 SDValue Vec1 =
6569 DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
6570 DAG.getNode(ISD::SRL, DL, MVT::i16, {AsInt, Const8}));
6571 Results.push_back(
6572 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i8, {Vec0, Vec1}));
6573}
6574
6577 SDValue Chain = N->getOperand(0);
6578 SDValue Intrin = N->getOperand(1);
6579 SDLoc DL(N);
6580
6581 // Get the intrinsic ID
6582 unsigned IntrinNo = Intrin.getNode()->getAsZExtVal();
6583 switch (IntrinNo) {
6584 default:
6585 return;
6586 case Intrinsic::nvvm_ldu_global_i:
6587 case Intrinsic::nvvm_ldu_global_f:
6588 case Intrinsic::nvvm_ldu_global_p: {
6589 EVT ResVT = N->getValueType(0);
6590
6591 if (ResVT.isVector()) {
6592 // Vector LDG/LDU
6593
6594 unsigned NumElts = ResVT.getVectorNumElements();
6595 EVT EltVT = ResVT.getVectorElementType();
6596
6597 // Since LDU/LDG are target nodes, we cannot rely on DAG type
6598 // legalization.
6599 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
6600 // loaded type to i16 and propagate the "real" type as the memory type.
6601 bool NeedTrunc = false;
6602 if (EltVT.getSizeInBits() < 16) {
6603 EltVT = MVT::i16;
6604 NeedTrunc = true;
6605 }
6606
6607 unsigned Opcode = 0;
6608 SDVTList LdResVTs;
6609
6610 switch (NumElts) {
6611 default:
6612 return;
6613 case 2:
6614 Opcode = NVPTXISD::LDUV2;
6615 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
6616 break;
6617 case 4: {
6618 Opcode = NVPTXISD::LDUV4;
6619 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
6620 LdResVTs = DAG.getVTList(ListVTs);
6621 break;
6622 }
6623 }
6624
6625 SmallVector<SDValue, 8> OtherOps;
6626
6627 // Copy regular operands
6628
6629 OtherOps.push_back(Chain); // Chain
6630 // Skip operand 1 (intrinsic ID)
6631 // Others
6632 OtherOps.append(N->op_begin() + 2, N->op_end());
6633
6635
6636 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
6637 MemSD->getMemoryVT(),
6638 MemSD->getMemOperand());
6639
6640 SmallVector<SDValue, 4> ScalarRes;
6641
6642 for (unsigned i = 0; i < NumElts; ++i) {
6643 SDValue Res = NewLD.getValue(i);
6644 if (NeedTrunc)
6645 Res =
6646 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
6647 ScalarRes.push_back(Res);
6648 }
6649
6650 SDValue LoadChain = NewLD.getValue(NumElts);
6651
6652 SDValue BuildVec =
6653 DAG.getBuildVector(ResVT, DL, ScalarRes);
6654
6655 Results.push_back(BuildVec);
6656 Results.push_back(LoadChain);
6657 } else {
6658 // i8 LDG/LDU
6659 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
6660 "Custom handling of non-i8 ldu/ldg?");
6661
6662 // Just copy all operands as-is
6664
6665 // Force output to i16
6666 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
6667
6669
6670 // We make sure the memory type is i8, which will be used during isel
6671 // to select the proper instruction.
6672 SDValue NewLD =
6674 MVT::i8, MemSD->getMemOperand());
6675
6676 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
6677 NewLD.getValue(0)));
6678 Results.push_back(NewLD.getValue(1));
6679 }
6680 return;
6681 }
6682
6683 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
6684 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
6685 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
6686 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
6687 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
6688 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
6689 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
6690 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
6691 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
6692 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
6693 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
6694 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
6695 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
6696 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
6697 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
6698 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
6699 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
6700 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
6701 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
6702 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
6703 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
6704 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
6705 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
6706 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
6707 if (auto Res = lowerTcgen05Ld(N, DAG)) {
6708 Results.push_back(Res->first);
6709 Results.push_back(Res->second);
6710 }
6711 return;
6712
6713 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4:
6714 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8:
6715 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16:
6716 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32:
6717 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64:
6718 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128:
6719 if (auto Res = lowerTcgen05Ld(N, DAG, /*HasOffset=*/true)) {
6720 Results.push_back(Res->first);
6721 Results.push_back(Res->second);
6722 }
6723 return;
6724 }
6725}
6726
6729 // Change the CopyFromReg to output 2 64-bit results instead of a 128-bit
6730 // result so that it can pass the legalization
6731 SDLoc DL(N);
6732 SDValue Chain = N->getOperand(0);
6733 SDValue Reg = N->getOperand(1);
6734 SDValue Glue = N->getOperand(2);
6735
6736 assert(Reg.getValueType() == MVT::i128 &&
6737 "Custom lowering for CopyFromReg with 128-bit reg only");
6738 SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(1),
6739 N->getValueType(2)};
6740 SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue};
6741
6742 SDValue NewValue = DAG.getNode(ISD::CopyFromReg, DL, ResultsType, NewOps);
6743 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
6744 {NewValue.getValue(0), NewValue.getValue(1)});
6745
6746 Results.push_back(Pair);
6747 Results.push_back(NewValue.getValue(2));
6748 Results.push_back(NewValue.getValue(3));
6749}
6750
6752 const TargetLowering &TLI,
6754 SDValue Chain = N->getOperand(0);
6755 SDValue Reg = N->getOperand(1);
6756
6757 MVT VT = TLI.getRegisterType(*DAG.getContext(), Reg.getValueType());
6758
6759 SDValue NewReg = DAG.getAnyExtOrTrunc(Reg, SDLoc(N), VT);
6760 SDValue NewProxy =
6761 DAG.getNode(NVPTXISD::ProxyReg, SDLoc(N), VT, {Chain, NewReg});
6762 SDValue Res = DAG.getAnyExtOrTrunc(NewProxy, SDLoc(N), N->getValueType(0));
6763
6764 Results.push_back(Res);
6765}
6766
6768 const NVPTXSubtarget &STI,
6770 assert(N->getValueType(0) == MVT::i128 &&
6771 "Custom lowering for atomic128 only supports i128");
6772
6774 SDLoc dl(N);
6775
6776 if (!STI.hasAtomSwap128()) {
6779 "Support for b128 atomics introduced in PTX ISA version 8.3 and "
6780 "requires target sm_90.",
6781 dl.getDebugLoc()));
6782
6783 Results.push_back(DAG.getUNDEF(MVT::i128));
6784 Results.push_back(AN->getOperand(0)); // Chain
6785 return;
6786 }
6787
6789 Ops.push_back(AN->getOperand(0)); // Chain
6790 Ops.push_back(AN->getOperand(1)); // Ptr
6791 for (const auto &Op : AN->ops().drop_front(2)) {
6792 // Low part
6793 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i64, Op,
6794 DAG.getIntPtrConstant(0, dl)));
6795 // High part
6796 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i64, Op,
6797 DAG.getIntPtrConstant(1, dl)));
6798 }
6799 unsigned Opcode = N->getOpcode() == ISD::ATOMIC_SWAP
6802 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
6803 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, MVT::i128,
6804 AN->getMemOperand());
6805 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i128,
6806 {Result.getValue(0), Result.getValue(1)}));
6807 Results.push_back(Result.getValue(2));
6808}
6809
6810void NVPTXTargetLowering::ReplaceNodeResults(
6812 switch (N->getOpcode()) {
6813 default:
6814 report_fatal_error("Unhandled custom legalization");
6815 case ISD::BITCAST:
6816 ReplaceBITCAST(N, DAG, Results);
6817 return;
6818 case ISD::LOAD:
6819 case ISD::MLOAD:
6820 replaceLoadVector(N, DAG, Results, STI);
6821 return;
6824 return;
6825 case ISD::CopyFromReg:
6827 return;
6828 case NVPTXISD::ProxyReg:
6829 replaceProxyReg(N, DAG, *this, Results);
6830 return;
6832 case ISD::ATOMIC_SWAP:
6833 replaceAtomicSwap128(N, DAG, STI, Results);
6834 return;
6835 }
6836}
6837
6840 Type *Ty = AI->getValOperand()->getType();
6841
6842 if (AI->isFloatingPointOperation()) {
6844 if (Ty->isHalfTy() && STI.getSmVersion() >= 70 &&
6845 STI.getPTXVersion() >= 63)
6847 if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 &&
6848 STI.getPTXVersion() >= 78)
6850 if (Ty->isFloatTy())
6852 if (Ty->isDoubleTy() && STI.hasAtomAddF64())
6854 }
6856 }
6857
6858 assert(Ty->isIntegerTy() && "Ty should be integer at this point");
6859 const unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
6860
6861 switch (AI->getOperation()) {
6862 default:
6865 if (BitWidth == 128)
6867 [[fallthrough]];
6871 switch (BitWidth) {
6872 case 8:
6873 case 16:
6875 case 32:
6877 case 64:
6878 if (STI.hasAtomBitwise64())
6881 case 128:
6883 default:
6884 llvm_unreachable("unsupported width encountered");
6885 }
6892 switch (BitWidth) {
6893 case 8:
6894 case 16:
6896 case 32:
6898 case 64:
6899 if (STI.hasAtomMinMax64())
6902 case 128:
6904 default:
6905 llvm_unreachable("unsupported width encountered");
6906 }
6909 switch (BitWidth) {
6910 case 32:
6912 case 8:
6913 case 16:
6914 case 64:
6915 case 128:
6917 default:
6918 llvm_unreachable("unsupported width encountered");
6919 }
6920 }
6921
6923}
6924
6926 const Instruction *I) const {
6927 auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
6928 // When CAS bitwidth is not supported on the hardware, the CAS is emulated
6929 // using a retry loop that uses a higher-bitwidth monotonic CAS. We enforce
6930 // the memory order using explicit fences around the retry loop.
6931 // The memory order of natively supported CAS operations can be enforced
6932 // by lowering to an atom.cas with the right memory synchronizing effect.
6933 // However, atom.cas only supports relaxed, acquire, release and acq_rel.
6934 // So we also use explicit fences for enforcing memory order for
6935 // seq_cast CAS with natively-supported bitwidths.
6936 return CI &&
6937 (cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() <
6938 STI.getMinCmpXchgSizeInBits() ||
6939 CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent);
6940}
6941
6943 const Instruction *I) const {
6944 auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
6945 bool BitwidthSupportedAndIsSeqCst =
6946 CI && CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent &&
6947 cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() >=
6948 STI.getMinCmpXchgSizeInBits();
6949 return BitwidthSupportedAndIsSeqCst ? AtomicOrdering::Acquire
6951}
6952
6954 Instruction *Inst,
6955 AtomicOrdering Ord) const {
6956 if (!isa<AtomicCmpXchgInst>(Inst))
6957 return TargetLoweringBase::emitLeadingFence(Builder, Inst, Ord);
6958
6959 // Specialize for cmpxchg
6960 // Emit a fence.sc leading fence for cmpxchg seq_cst which are not emulated
6961 SyncScope::ID SSID = cast<AtomicCmpXchgInst>(Inst)->getSyncScopeID();
6962 if (isReleaseOrStronger(Ord))
6963 return Builder.CreateFence(Ord == AtomicOrdering::SequentiallyConsistent
6964 ? Ord
6966 SSID);
6967
6968 return nullptr;
6969}
6970
6972 Instruction *Inst,
6973 AtomicOrdering Ord) const {
6974 // Specialize for cmpxchg
6975 if (!isa<AtomicCmpXchgInst>(Inst))
6976 return TargetLoweringBase::emitTrailingFence(Builder, Inst, Ord);
6977
6978 auto *CI = cast<AtomicCmpXchgInst>(Inst);
6979 auto CASWidth =
6980 cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth();
6981 SyncScope::ID SSID = CI->getSyncScopeID();
6982 // Do not emit a trailing fence for cmpxchg seq_cst which are not emulated
6983 if (isAcquireOrStronger(Ord) &&
6985 CASWidth < STI.getMinCmpXchgSizeInBits()))
6986 return Builder.CreateFence(AtomicOrdering::Acquire, SSID);
6987
6988 return nullptr;
6989}
6990
6991// Rather than default to SINT when both UINT and SINT are custom, we only
6992// change the opcode when UINT is not legal and SINT is. UINT is preferred when
6993// both are custom since unsigned CVT instructions can lead to slightly better
6994// SASS code with fewer instructions.
6996 EVT ToVT) const {
6997 if (isOperationLegal(Op, ToVT))
6998 return Op;
6999 switch (Op) {
7000 case ISD::FP_TO_UINT:
7002 return ISD::FP_TO_SINT;
7003 break;
7007 break;
7008 case ISD::VP_FP_TO_UINT:
7009 if (isOperationLegal(ISD::VP_FP_TO_SINT, ToVT))
7010 return ISD::VP_FP_TO_SINT;
7011 break;
7012 default:
7013 break;
7014 }
7015 return Op;
7016}
7017
7018// Pin NVPTXTargetObjectFile's vtables to this file.
7020
7025
7027 const SelectionDAG &DAG, unsigned Depth) {
7028 SDValue A = Op.getOperand(0);
7029 SDValue B = Op.getOperand(1);
7030 ConstantSDNode *Selector = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7031 unsigned Mode = Op.getConstantOperandVal(3);
7032
7033 if (!Selector)
7034 return;
7035
7036 KnownBits AKnown = DAG.computeKnownBits(A, Depth);
7037 KnownBits BKnown = DAG.computeKnownBits(B, Depth);
7038
7039 // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}
7040 assert(AKnown.getBitWidth() == 32 && BKnown.getBitWidth() == 32 &&
7041 "PRMT must have i32 operands");
7042 assert(Known.getBitWidth() == 32 && "PRMT must have i32 result");
7043 KnownBits BitField = BKnown.concat(AKnown);
7044
7045 APInt SelectorVal = getPRMTSelector(Selector->getAPIntValue(), Mode);
7046 for (unsigned I : llvm::seq(4)) {
7047 APInt Sel = SelectorVal.extractBits(4, I * 4);
7048 unsigned Idx = Sel.getLoBits(3).getZExtValue();
7049 unsigned Sign = Sel.getHiBits(1).getZExtValue();
7050 KnownBits Byte = BitField.extractBits(8, Idx * 8);
7051 if (Sign)
7052 Byte = KnownBits::ashr(Byte, 8);
7053 Known.insertBits(Byte, I * 8);
7054 }
7055}
7056
7057static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known) {
7059
7060 // We can't do anything without knowing the sign bit.
7061 auto ExtType = LD->getConstantOperandVal(LD->getNumOperands() - 1);
7062 if (ExtType == ISD::SEXTLOAD)
7063 return;
7064
7065 // ExtLoading to vector types is weird and may not work well with known bits.
7066 auto DestVT = LD->getValueType(0);
7067 if (DestVT.isVector())
7068 return;
7069
7070 assert(Known.getBitWidth() == DestVT.getSizeInBits());
7071 auto ElementBitWidth = NVPTXDAGToDAGISel::getFromTypeWidthForLoad(LD);
7072 Known.Zero.setHighBits(Known.getBitWidth() - ElementBitWidth);
7073}
7074
7076 const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
7077 const SelectionDAG &DAG, unsigned Depth) const {
7078 Known.resetAll();
7079
7080 switch (Op.getOpcode()) {
7081 case NVPTXISD::PRMT:
7082 computeKnownBitsForPRMT(Op, Known, DAG, Depth);
7083 break;
7084 case NVPTXISD::LoadV2:
7085 case NVPTXISD::LoadV4:
7086 case NVPTXISD::LoadV8:
7088 break;
7089 default:
7090 break;
7091 }
7092}
7093
7094static std::pair<APInt, APInt> getPRMTDemandedBits(const APInt &SelectorVal,
7095 const APInt &DemandedBits) {
7096 APInt DemandedLHS = APInt(32, 0);
7097 APInt DemandedRHS = APInt(32, 0);
7098
7099 for (unsigned I : llvm::seq(4)) {
7100 if (DemandedBits.extractBits(8, I * 8).isZero())
7101 continue;
7102
7103 APInt Sel = SelectorVal.extractBits(4, I * 4);
7104 unsigned Idx = Sel.getLoBits(3).getZExtValue();
7105 unsigned Sign = Sel.getHiBits(1).getZExtValue();
7106
7107 APInt &Src = Idx < 4 ? DemandedLHS : DemandedRHS;
7108 unsigned ByteStart = (Idx % 4) * 8;
7109 if (Sign)
7110 Src.setBit(ByteStart + 7);
7111 else
7112 Src.setBits(ByteStart, ByteStart + 8);
7113 }
7114
7115 return {DemandedLHS, DemandedRHS};
7116}
7117
7118// Replace undef with 0 as this is easier for other optimizations such as
7119// known bits.
7121 if (!Op)
7122 return SDValue();
7123 if (Op.isUndef())
7124 return DAG.getConstant(0, SDLoc(), MVT::i32);
7125 return Op;
7126}
7127
7129 const APInt &DemandedBits,
7130 SelectionDAG &DAG,
7131 const TargetLowering &TLI,
7132 unsigned Depth) {
7133 assert(PRMT.getOpcode() == NVPTXISD::PRMT);
7134 SDValue Op0 = PRMT.getOperand(0);
7135 SDValue Op1 = PRMT.getOperand(1);
7136 auto *SelectorConst = dyn_cast<ConstantSDNode>(PRMT.getOperand(2));
7137 if (!SelectorConst)
7138 return SDValue();
7139
7140 unsigned Mode = PRMT.getConstantOperandVal(3);
7141 const APInt Selector = getPRMTSelector(SelectorConst->getAPIntValue(), Mode);
7142
7143 // Try to simplify the PRMT to one of the inputs if the used bytes are all
7144 // from the same input in the correct order.
7145 const unsigned LeadingBytes = DemandedBits.countLeadingZeros() / 8;
7146 const unsigned SelBits = (4 - LeadingBytes) * 4;
7147 if (Selector.getLoBits(SelBits) == APInt(32, 0x3210).getLoBits(SelBits))
7148 return Op0;
7149 if (Selector.getLoBits(SelBits) == APInt(32, 0x7654).getLoBits(SelBits))
7150 return Op1;
7151
7152 auto [DemandedLHS, DemandedRHS] = getPRMTDemandedBits(Selector, DemandedBits);
7153
7154 // Attempt to avoid multi-use ops if we don't need anything from them.
7155 SDValue DemandedOp0 =
7156 TLI.SimplifyMultipleUseDemandedBits(Op0, DemandedLHS, DAG, Depth + 1);
7157 SDValue DemandedOp1 =
7158 TLI.SimplifyMultipleUseDemandedBits(Op1, DemandedRHS, DAG, Depth + 1);
7159
7160 DemandedOp0 = canonicalizePRMTInput(DemandedOp0, DAG);
7161 DemandedOp1 = canonicalizePRMTInput(DemandedOp1, DAG);
7162 if ((DemandedOp0 && DemandedOp0 != Op0) ||
7163 (DemandedOp1 && DemandedOp1 != Op1)) {
7164 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
7165 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
7166 return getPRMT(Op0, Op1, Selector.getZExtValue(), SDLoc(PRMT), DAG);
7167 }
7168
7169 return SDValue();
7170}
7171
7173 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7174 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
7175 Known.resetAll();
7176
7177 switch (Op.getOpcode()) {
7178 case NVPTXISD::PRMT:
7180 *this, Depth)) {
7181 TLO.CombineTo(Op, Result);
7182 return true;
7183 }
7184 break;
7185 default:
7186 break;
7187 }
7188
7189 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
7190 return false;
7191}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
constexpr LLT F32
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombineWithOperands - Try DAG combinations for an ADD with operands N0 and N1.
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformBUILD_VECTORCombine - Target-specific dag combine xforms for ISD::BUILD_VECTOR.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file contains the declarations of entities that describe floating point environment and related ...
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
Register Reg
Register const TargetRegisterInfo * TRI
#define T
NVPTX address space definition.
static bool shouldConvertToIndirectCall(const CallBase *CB, const GlobalAddressSDNode *Func)
static SDValue combineADDRSPACECAST(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< bool > sched4reg("nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false))
static SDValue lowerTcgen05St(SDValue Op, SelectionDAG &DAG)
static SDValue PerformEXTRACTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< NVPTX::DivPrecisionLevel > UsePrecDivF32("nvptx-prec-divf32", cl::Hidden, cl::desc("NVPTX Specific: Override the precision of the lowering for f32 fdiv"), cl::values(clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"), clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754, "2", "Use IEEE Compliant F32 div.rnd if available (default)"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754_NoFTZ, "3", "Use IEEE Compliant F32 div.rnd if available, no FTZ")), cl::init(NVPTX::DivPrecisionLevel::IEEE754))
static bool isConstOne(const SDValue &Operand)
static cl::opt< unsigned > FMAContractLevelOpt("nvptx-fma-level", cl::Hidden, cl::desc("NVPTX Specific: FMA contraction (0: don't do it" " 1: do it 2: do it aggressively"), cl::init(2))
static bool IsPTXVectorType(MVT VT)
static SDValue lowerLOADi1(LoadSDNode *LD, SelectionDAG &DAG)
static SDValue lowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG)
static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG, const DataLayout &DL, const TargetLowering &TL)
static SDValue lowerROT(SDValue Op, SelectionDAG &DAG)
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, LLVMContext &Ctx, CallingConv::ID CallConv, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > &Offsets, uint64_t StartingOffset=0)
ComputePTXValueVTs - For the given Type Ty, returns the set of primitive legal-ish MVTs that compose ...
static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static void replaceAtomicSwap128(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI, SmallVectorImpl< SDValue > &Results)
static unsigned getMinMax3Opcode(unsigned MinMax2Opcode)
Get 3-input version of a 2-input min/max opcode.
static SDValue lowerSTOREVector(SDValue Op, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static SDValue lowerLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static void replaceProxyReg(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, SmallVectorImpl< SDValue > &Results)
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG)
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue combinePRMT(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue combinePackingMovIntoStore(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned Front, unsigned Back)
Fold packing movs into a store.
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl, SelectionDAG &DAG, T GetElement)
static SDValue getExtractVectorizedValue(SDValue V, unsigned I, EVT VT, const SDLoc &dl, SelectionDAG &DAG)
static unsigned canMergeParamLoadStoresStartingAt(unsigned Idx, uint32_t AccessSize, const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment)
static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C)
static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG)
static SDValue PerformFMinMaxCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned PTXVersion, unsigned SmVersion)
PerformFMinMaxCombine - Combine (fmaxnum (fmaxnum a, b), c) into (fmaxnum3 a, b, c).
static SDValue combineMulWide(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static std::optional< unsigned > getScalar3OpcodeForReduction(unsigned ReductionOpcode)
Get 3-input scalar reduction opcode.
static SDValue lowerIntrinsicWChain(SDValue Op, SelectionDAG &DAG)
static bool isConstZero(const SDValue &Operand)
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG)
static SDValue LowerTcgen05MMADisableOutputLane(SDValue Op, SelectionDAG &DAG)
static bool IsMulWideOperandDemotable(SDValue Op, unsigned OptSize, OperandSignedness &S)
IsMulWideOperandDemotable - Checks if the provided DAG node is an operand that can be demoted to OptS...
static unsigned getTcgen05MMADisableOutputLane(unsigned IID)
static std::pair< APInt, APInt > getPRMTDemandedBits(const APInt &SelectorVal, const APInt &DemandedBits)
static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode)
static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode)
static SDValue PerformREMCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue lowerBSWAP(SDValue Op, SelectionDAG &DAG)
static SDValue lowerMSTORE(SDValue Op, SelectionDAG &DAG)
static SDValue PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI)
static void computeKnownBitsForPRMT(const SDValue Op, KnownBits &Known, const SelectionDAG &DAG, unsigned Depth)
static SDValue combineUnpackingMovIntoLoad(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Fold unpacking movs into a load by increasing the number of return values.
static SDValue LowerClusterLaunchControlQueryCancel(SDValue Op, SelectionDAG &DAG)
static std::optional< std::pair< SDValue, SDValue > > lowerTcgen05Ld(SDNode *N, SelectionDAG &DAG, bool HasOffset=false)
static SDValue lowerCvtRSIntrinsics(SDValue Op, SelectionDAG &DAG)
static std::optional< std::pair< SDValue, SDValue > > replaceLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
replaceLoadVector - Convert vector loads into multi-output scalar loads.
static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL, unsigned Opcode, SelectionDAG &DAG)
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, unsigned OptSize, bool &IsSigned)
AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can be demoted to OptSize bits...
static std::pair< MemSDNode *, uint32_t > convertMLOADToLoadWithUsedBytesMask(MemSDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static SDValue TryMULWIDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply of M/2 bits that produces...
static SDValue lowerPrmtIntrinsic(SDValue Op, SelectionDAG &DAG)
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue buildTreeReduction(const SmallVector< SDValue > &Elements, EVT EltTy, ArrayRef< std::pair< unsigned, unsigned > > Ops, const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG)
Reduces the elements using the scalar operations provided.
static SDValue combineProxyReg(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SmallVector< unsigned, 16 > VectorizePTXValueVTs(const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment, bool IsVAArg=false)
static SDValue getPRMT(SDValue A, SDValue B, SDValue Selector, SDLoc DL, SelectionDAG &DAG, unsigned Mode=NVPTX::PTXPrmtMode::NONE)
static SDValue matchMADConstOnePattern(SDValue Add)
static SDValue correctParamType(SDValue V, EVT ExpectedVT, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl)
static ISD::NodeType getExtOpcode(const ISD::ArgFlagsTy &Flags)
static cl::opt< bool > UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden, cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), cl::init(true))
static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known)
static APInt getPRMTSelector(const APInt &Selector, unsigned Mode)
static EVT promoteScalarIntegerPTX(const EVT VT)
PromoteScalarIntegerPTX Used to make sure the arguments/returns are suitable for passing and promote ...
static SDValue simplifyDemandedBitsForPRMT(SDValue PRMT, const APInt &DemandedBits, SelectionDAG &DAG, const TargetLowering &TLI, unsigned Depth)
static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG)
static SDValue canonicalizePRMTInput(SDValue Op, SelectionDAG &DAG)
static SDValue sinkProxyReg(SDValue R, SDValue Chain, TargetLowering::DAGCombinerInfo &DCI)
static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG)
static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG)
static SDValue PerformSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned int SmVersion)
static std::optional< std::pair< unsigned int, MVT > > getVectorLoweringShape(EVT VectorEVT, const NVPTXSubtarget &STI, unsigned AddressSpace)
static cl::opt< bool > ForceMinByValParamAlign("nvptx-force-min-byval-param-align", cl::Hidden, cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" " params of device functions."), cl::init(false))
static cl::opt< bool > UseApproxLog2F32("nvptx-approx-log2f32", cl::desc("NVPTX Specific: whether to use lg2.approx for log2"), cl::init(false))
Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it does NOT use lg2....
static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG)
static SDValue combineLOAD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue combineSTORE(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue PerformSHLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
MachineInstr unsigned OpIdx
uint64_t High
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
Value * RHS
Value * LHS
BinaryOperator * Mul
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1080
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition APInt.cpp:644
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1392
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1331
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition APInt.h:436
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition APInt.h:433
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1238
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition ArrayRef.h:186
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
bool isFloatingPointOperation() const
BinOp getOperation() const
This is an SDNode representing atomic operations.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
FunctionType * getFunctionType() const
const APInt & getAPIntValue() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
LLVM_ABI TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Diagnostic information for unsupported feature in backend.
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Definition Function.cpp:640
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
MCSection * getDataSection() const
static constexpr unsigned NoRegister
Definition MCRegister.h:60
Instances of this class represent a uniqued identifier for a section in the current translation unit.
Definition MCSection.h:517
StringRef getName() const
getName - Get the symbol name.
Definition MCSymbol.h:188
Machine Value Type.
static auto integer_fixedlen_vector_valuetypes()
SimpleValueType SimpleTy
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
static auto fp_fixedlen_vector_valuetypes()
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
Align getAlign() const
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
EVT getMemoryVT() const
Return the type of the in-memory value.
static unsigned getFromTypeWidthForLoad(const MemSDNode *Mem)
bool hasUsedBytesMaskPragma() const
bool hasAtomSwap128() const
bool hasF32x2Instructions() const
bool has256BitVectorLoadStore(unsigned AS) const
AtomicOrdering atomicOperationOrderAfterFenceSplit(const Instruction *I) const override
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
const NVPTXTargetMachine * nvTM
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallBase &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
NVPTXTargetLowering(const NVPTXTargetMachine &TM, const NVPTXSubtarget &STI)
std::string getPrototype(const DataLayout &DL, Type *, const ArgListTy &, const SmallVectorImpl< ISD::OutputArg > &, std::optional< unsigned > FirstVAArg, const CallBase &CB, unsigned UniqueCallSite) const
unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, EVT ToVT) const override
bool useF32FTZ(const MachineFunction &MF) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
Align getFunctionArgumentAlignment(const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
std::string getParamName(const Function *F, int Idx) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
NVPTX::DivPrecisionLevel getDivF32Level(const MachineFunction &MF, const SDNode &N) const
bool shouldInsertFencesForAtomic(const Instruction *) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
Align getFunctionParamOptimizedAlign(const Function *F, Type *ArgTy, const DataLayout &DL) const
getFunctionParamOptimizedAlign - since function arguments are passed via .param space,...
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getFunctionByValParamAlign(const Function *F, Type *ArgTy, Align InitialAlign, const DataLayout &DL) const
Helper for computing alignment of a device function byval parameter.
bool allowFMA(MachineFunction &MF, CodeGenOptLevel OptLevel) const
bool usePrecSqrtF32(const SDNode *N=nullptr) const
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
MCSection * SelectSectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const override
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
unsigned getIROrder() const
Return the node ordering.
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
iterator_range< user_iterator > users()
void setFlags(SDNodeFlags NewFlags)
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition SectionKind.h:22
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
std::vector< ArgListEntry > ArgListTy
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
TargetOptions Options
MCSymbol * getSymbol(const GlobalValue *GV) const
FPOpFusion::FPOpFusionMode AllowFPOpFusion
AllowFPOpFusion - This flag is set by the -fp-contract=xxx option.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt pow(const APInt &X, int64_t N)
Compute X^N for N>=0.
Definition APInt.cpp:3155
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ MLOAD
Masked load and store - consecutive vector load and store operations with additional mask operand tha...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:981
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:701
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:607
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:799
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:966
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ STRICT_FP_TO_UINT
Definition ISDOpcodes.h:471
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:470
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
Definition ISDOpcodes.h:985
@ VECREDUCE_FMINIMUM
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:821
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
@ ATOMIC_CMP_SWAP_B128
These nodes are used to lower atomic instructions with i128 type.
bool isPackedVectorTy(EVT VT)
DivPrecisionLevel
Definition NVPTX.h:257
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
MaybeAlign getAlign(const CallInst &I, unsigned Index)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2494
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:385
bool isReleaseOrStronger(AtomicOrdering AO)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1980
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
unsigned promoteScalarArgumentSize(unsigned size)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool shouldPassAsArray(Type *Ty)
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
@ Default
-O2, -Os, -Oz
Definition CodeGen.h:85
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAcquireOrStronger(AtomicOrdering AO)
constexpr unsigned BitWidth
bool isKernelFunction(const Function &F)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Function * getMaybeBitcastedCallee(const CallBase *CB)
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
bool is32BitVector() const
Return true if this is a 32-bit vector type.
Definition ValueTypes.h:197
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasAllowContract() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...