LLVM 18.0.0git
WebAssemblyLowerEmscriptenEHSjLj.cpp
Go to the documentation of this file.
1//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file lowers exception-related instructions and setjmp/longjmp function
11/// calls to use Emscripten's library functions. The pass uses JavaScript's try
12/// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13/// case of Emscripten SjLJ.
14///
15/// * Emscripten exception handling
16/// This pass lowers invokes and landingpads into library functions in JS glue
17/// code. Invokes are lowered into function wrappers called invoke wrappers that
18/// exist in JS side, which wraps the original function call with JS try-catch.
19/// If an exception occurred, cxa_throw() function in JS side sets some
20/// variables (see below) so we can check whether an exception occurred from
21/// wasm code and handle it appropriately.
22///
23/// * Emscripten setjmp-longjmp handling
24/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25/// The idea is that each block with a setjmp is broken up into two parts: the
26/// part containing setjmp and the part right after the setjmp. The latter part
27/// is either reached from the setjmp, or later from a longjmp. To handle the
28/// longjmp, all calls that might longjmp are also called using invoke wrappers
29/// and thus JS / try-catch. JS longjmp() function also sets some variables so
30/// we can check / whether a longjmp occurred from wasm code. Each block with a
31/// function call that might longjmp is also split up after the longjmp call.
32/// After the longjmp call, we check whether a longjmp occurred, and if it did,
33/// which setjmp it corresponds to, and jump to the right post-setjmp block.
34/// We assume setjmp-longjmp handling always run after EH handling, which means
35/// we don't expect any exception-related instructions when SjLj runs.
36/// FIXME Currently this scheme does not support indirect call of setjmp,
37/// because of the limitation of the scheme itself. fastcomp does not support it
38/// either.
39///
40/// In detail, this pass does following things:
41///
42/// 1) Assumes the existence of global variables: __THREW__, __threwValue
43/// __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44/// These variables are used for both exceptions and setjmp/longjmps.
45/// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46/// means nothing occurred, 1 means an exception occurred, and other numbers
47/// mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48/// indicates the corresponding setjmp buffer the longjmp corresponds to.
49/// __threwValue is 0 for exceptions, and the argument to longjmp in case of
50/// longjmp.
51///
52/// * Emscripten exception handling
53///
54/// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55/// at link time. setThrew exists in Emscripten's compiler-rt:
56///
57/// void setThrew(uintptr_t threw, int value) {
58/// if (__THREW__ == 0) {
59/// __THREW__ = threw;
60/// __threwValue = value;
61/// }
62/// }
63//
64/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65/// In exception handling, getTempRet0 indicates the type of an exception
66/// caught, and in setjmp/longjmp, it means the second argument to longjmp
67/// function.
68///
69/// 3) Lower
70/// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71/// into
72/// __THREW__ = 0;
73/// call @__invoke_SIG(func, arg1, arg2)
74/// %__THREW__.val = __THREW__;
75/// __THREW__ = 0;
76/// if (%__THREW__.val == 1)
77/// goto %lpad
78/// else
79/// goto %invoke.cont
80/// SIG is a mangled string generated based on the LLVM IR-level function
81/// signature. After LLVM IR types are lowered to the target wasm types,
82/// the names for these wrappers will change based on wasm types as well,
83/// as in invoke_vi (function takes an int and returns void). The bodies of
84/// these wrappers will be generated in JS glue code, and inside those
85/// wrappers we use JS try-catch to generate actual exception effects. It
86/// also calls the original callee function. An example wrapper in JS code
87/// would look like this:
88/// function invoke_vi(index,a1) {
89/// try {
90/// Module["dynCall_vi"](index,a1); // This calls original callee
91/// } catch(e) {
92/// if (typeof e !== 'number' && e !== 'longjmp') throw e;
93/// _setThrew(1, 0); // setThrew is called here
94/// }
95/// }
96/// If an exception is thrown, __THREW__ will be set to true in a wrapper,
97/// so we can jump to the right BB based on this value.
98///
99/// 4) Lower
100/// %val = landingpad catch c1 catch c2 catch c3 ...
101/// ... use %val ...
102/// into
103/// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104/// %val = {%fmc, getTempRet0()}
105/// ... use %val ...
106/// Here N is a number calculated based on the number of clauses.
107/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108///
109/// 5) Lower
110/// resume {%a, %b}
111/// into
112/// call @__resumeException(%a)
113/// where __resumeException() is a function in JS glue code.
114///
115/// 6) Lower
116/// call @llvm.eh.typeid.for(type) (intrinsic)
117/// into
118/// call @llvm_eh_typeid_for(type)
119/// llvm_eh_typeid_for function will be generated in JS glue code.
120///
121/// * Emscripten setjmp / longjmp handling
122///
123/// If there are calls to longjmp()
124///
125/// 1) Lower
126/// longjmp(env, val)
127/// into
128/// emscripten_longjmp(env, val)
129///
130/// If there are calls to setjmp()
131///
132/// 2) In the function entry that calls setjmp, initialize setjmpTable and
133/// sejmpTableSize as follows:
134/// setjmpTableSize = 4;
135/// setjmpTable = (int *) malloc(40);
136/// setjmpTable[0] = 0;
137/// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138/// Emscripten compiler-rt.
139///
140/// 3) Lower
141/// setjmp(env)
142/// into
143/// setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144/// setjmpTableSize = getTempRet0();
145/// For each dynamic setjmp call, setjmpTable stores its ID (a number which
146/// is incrementally assigned from 0) and its label (a unique number that
147/// represents each callsite of setjmp). When we need more entries in
148/// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149/// compiler-rt and it will return the new table address, and assign the new
150/// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151/// the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152/// order to make the post-setjmp BB the possible destination of longjmp BB.
153///
154/// 4) Lower every call that might longjmp into
155/// __THREW__ = 0;
156/// call @__invoke_SIG(func, arg1, arg2)
157/// %__THREW__.val = __THREW__;
158/// __THREW__ = 0;
159/// %__threwValue.val = __threwValue;
160/// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161/// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162/// setjmpTableSize);
163/// if (%label == 0)
164/// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165/// setTempRet0(%__threwValue.val);
166/// } else {
167/// %label = -1;
168/// }
169/// longjmp_result = getTempRet0();
170/// switch %label {
171/// label 1: goto post-setjmp BB 1
172/// label 2: goto post-setjmp BB 2
173/// ...
174/// default: goto splitted next BB
175/// }
176/// testSetjmp examines setjmpTable to see if there is a matching setjmp
177/// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178/// will be the address of matching jmp_buf buffer and __threwValue be the
179/// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180/// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181/// each setjmp callsite. Label 0 means this longjmp buffer does not
182/// correspond to one of the setjmp callsites in this function, so in this
183/// case we just chain the longjmp to the caller. Label -1 means no longjmp
184/// occurred. Otherwise we jump to the right post-setjmp BB based on the
185/// label.
186///
187/// * Wasm setjmp / longjmp handling
188/// This mode still uses some Emscripten library functions but not JavaScript's
189/// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190/// which will be lowered to exception handling instructions.
191///
192/// If there are calls to longjmp()
193///
194/// 1) Lower
195/// longjmp(env, val)
196/// into
197/// __wasm_longjmp(env, val)
198///
199/// If there are calls to setjmp()
200///
201/// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202/// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203/// transformation)
204///
205/// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206/// thrown by __wasm_longjmp function. In Emscripten library, we have this
207/// struct:
208///
209/// struct __WasmLongjmpArgs {
210/// void *env;
211/// int val;
212/// };
213/// struct __WasmLongjmpArgs __wasm_longjmp_args;
214///
215/// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216/// use this struct to transfer two values by throwing a single value. Wasm
217/// throw and catch instructions are capable of throwing and catching multiple
218/// values, but it also requires multivalue support that is currently not very
219/// reliable.
220/// TODO Switch to throwing and catching two values without using the struct
221///
222/// All longjmpable function calls will be converted to an invoke that will
223/// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224/// test the thrown values using testSetjmp function as we do for Emscripten
225/// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226/// longjmpable callsite into a sequence of code including testSetjmp() call; in
227/// Wasm SjLj we do the testing in only one place, in this catchpad.
228///
229/// After testing calling testSetjmp(), if the longjmp does not correspond to
230/// one of the setjmps within the current function, it rethrows the longjmp
231/// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232/// function, we jump to the beginning of the function, which contains a switch
233/// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234/// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235/// the function. (after setjmpTable/setjmpTableSize initialization)
236///
237/// The below is the pseudocode for what we have described
238///
239/// entry:
240/// Initialize setjmpTable and setjmpTableSize
241///
242/// setjmp.dispatch:
243/// switch %label {
244/// label 1: goto post-setjmp BB 1
245/// label 2: goto post-setjmp BB 2
246/// ...
247/// default: goto splitted next BB
248/// }
249/// ...
250///
251/// bb:
252/// invoke void @foo() ;; foo is a longjmpable function
253/// to label %next unwind label %catch.dispatch.longjmp
254/// ...
255///
256/// catch.dispatch.longjmp:
257/// %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258///
259/// catch.longjmp:
260/// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261/// %env = load 'env' field from __WasmLongjmpArgs
262/// %val = load 'val' field from __WasmLongjmpArgs
263/// %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264/// if (%label == 0)
265/// __wasm_longjmp(%env, %val)
266/// catchret to %setjmp.dispatch
267///
268///===----------------------------------------------------------------------===//
269
271#include "WebAssembly.h"
277#include "llvm/IR/Dominators.h"
278#include "llvm/IR/IRBuilder.h"
279#include "llvm/IR/IntrinsicsWebAssembly.h"
285#include <set>
286
287using namespace llvm;
288
289#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
290
292 EHAllowlist("emscripten-cxx-exceptions-allowed",
293 cl::desc("The list of function names in which Emscripten-style "
294 "exception handling is enabled (see emscripten "
295 "EMSCRIPTEN_CATCHING_ALLOWED options)"),
297
298namespace {
299class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
300 bool EnableEmEH; // Enable Emscripten exception handling
301 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling
302 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
303 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling
304
305 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten)
306 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
307 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten)
308 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten)
309 Function *ResumeF = nullptr; // __resumeException() (Emscripten)
310 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic)
311 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten)
312 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten)
313 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten)
314 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten)
315 Function *CatchF = nullptr; // wasm.catch() (intrinsic)
316
317 // type of 'struct __WasmLongjmpArgs' defined in emscripten
318 Type *LongjmpArgsTy = nullptr;
319
320 // __cxa_find_matching_catch_N functions.
321 // Indexed by the number of clauses in an original landingpad instruction.
322 DenseMap<int, Function *> FindMatchingCatches;
323 // Map of <function signature string, invoke_ wrappers>
324 StringMap<Function *> InvokeWrappers;
325 // Set of allowed function names for exception handling
326 std::set<std::string> EHAllowlistSet;
327 // Functions that contains calls to setjmp
328 SmallPtrSet<Function *, 8> SetjmpUsers;
329
330 StringRef getPassName() const override {
331 return "WebAssembly Lower Emscripten Exceptions";
332 }
333
334 using InstVector = SmallVectorImpl<Instruction *>;
335 bool runEHOnFunction(Function &F);
336 bool runSjLjOnFunction(Function &F);
337 void handleLongjmpableCallsForEmscriptenSjLj(
338 Function &F, InstVector &SetjmpTableInsts,
339 InstVector &SetjmpTableSizeInsts,
340 SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
341 void
342 handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
343 InstVector &SetjmpTableSizeInsts,
344 SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
345 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
346
347 Value *wrapInvoke(CallBase *CI);
348 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
349 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
350 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
351 PHINode *&CallEmLongjmpBBThrewPHI,
352 PHINode *&CallEmLongjmpBBThrewValuePHI,
353 BasicBlock *&EndBB);
354 Function *getInvokeWrapper(CallBase *CI);
355
356 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
357 bool supportsException(const Function *F) const {
358 return EnableEmEH && (areAllExceptionsAllowed() ||
359 EHAllowlistSet.count(std::string(F->getName())));
360 }
361 void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
362
363 void rebuildSSA(Function &F);
364
365public:
366 static char ID;
367
368 WebAssemblyLowerEmscriptenEHSjLj()
369 : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
370 EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
371 EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
372 assert(!(EnableEmSjLj && EnableWasmSjLj) &&
373 "Two SjLj modes cannot be turned on at the same time");
374 assert(!(EnableEmEH && EnableWasmSjLj) &&
375 "Wasm SjLj should be only used with Wasm EH");
376 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
377 }
378 bool runOnModule(Module &M) override;
379
380 void getAnalysisUsage(AnalysisUsage &AU) const override {
382 }
383};
384} // End anonymous namespace
385
386char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
387INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
388 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
389 false, false)
390
392 return new WebAssemblyLowerEmscriptenEHSjLj();
393}
394
395static bool canThrow(const Value *V) {
396 if (const auto *F = dyn_cast<const Function>(V)) {
397 // Intrinsics cannot throw
398 if (F->isIntrinsic())
399 return false;
400 StringRef Name = F->getName();
401 // leave setjmp and longjmp (mostly) alone, we process them properly later
402 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
403 return false;
404 return !F->doesNotThrow();
405 }
406 // not a function, so an indirect call - can throw, we can't tell
407 return true;
408}
409
410// Get a thread-local global variable with the given name. If it doesn't exist
411// declare it, which will generate an import and assume that it will exist at
412// link time.
415 const char *Name) {
416 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
417 if (!GV)
418 report_fatal_error(Twine("unable to create global: ") + Name);
419
420 // Variables created by this function are thread local. If the target does not
421 // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it
422 // to non-thread-local ones, in which case we don't allow this object to be
423 // linked with other objects using shared memory.
424 GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel);
425 return GV;
426}
427
428// Simple function name mangler.
429// This function simply takes LLVM's string representation of parameter types
430// and concatenate them with '_'. There are non-alphanumeric characters but llc
431// is ok with it, and we need to postprocess these names after the lowering
432// phase anyway.
433static std::string getSignature(FunctionType *FTy) {
434 std::string Sig;
436 OS << *FTy->getReturnType();
437 for (Type *ParamTy : FTy->params())
438 OS << "_" << *ParamTy;
439 if (FTy->isVarArg())
440 OS << "_...";
441 Sig = OS.str();
442 erase_if(Sig, isSpace);
443 // When s2wasm parses .s file, a comma means the end of an argument. So a
444 // mangled function name can contain any character but a comma.
445 std::replace(Sig.begin(), Sig.end(), ',', '.');
446 return Sig;
447}
448
450 Module *M) {
452 // Tell the linker that this function is expected to be imported from the
453 // 'env' module.
454 if (!F->hasFnAttribute("wasm-import-module")) {
455 llvm::AttrBuilder B(M->getContext());
456 B.addAttribute("wasm-import-module", "env");
457 F->addFnAttrs(B);
458 }
459 if (!F->hasFnAttribute("wasm-import-name")) {
460 llvm::AttrBuilder B(M->getContext());
461 B.addAttribute("wasm-import-name", F->getName());
462 F->addFnAttrs(B);
463 }
464 return F;
465}
466
467// Returns an integer type for the target architecture's address space.
468// i32 for wasm32 and i64 for wasm64.
470 IRBuilder<> IRB(M->getContext());
471 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
472}
473
474// Returns an integer pointer type for the target architecture's address space.
475// i32* for wasm32 and i64* for wasm64. With opaque pointers this is just a ptr
476// in address space zero.
478 return PointerType::getUnqual(M->getContext());
479}
480
481// Returns an integer whose type is the integer type for the target's address
482// space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
483// integer.
485 IRBuilder<> IRB(M->getContext());
486 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
487}
488
489// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
490// This is because a landingpad instruction contains two more arguments, a
491// personality function and a cleanup bit, and __cxa_find_matching_catch_N
492// functions are named after the number of arguments in the original landingpad
493// instruction.
494Function *
495WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
496 unsigned NumClauses) {
497 if (FindMatchingCatches.count(NumClauses))
498 return FindMatchingCatches[NumClauses];
499 PointerType *Int8PtrTy = PointerType::getUnqual(M.getContext());
500 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
501 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
503 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
504 FindMatchingCatches[NumClauses] = F;
505 return F;
506}
507
508// Generate invoke wrapper seqence with preamble and postamble
509// Preamble:
510// __THREW__ = 0;
511// Postamble:
512// %__THREW__.val = __THREW__; __THREW__ = 0;
513// Returns %__THREW__.val, which indicates whether an exception is thrown (or
514// whether longjmp occurred), for future use.
515Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
516 Module *M = CI->getModule();
517 LLVMContext &C = M->getContext();
518
519 IRBuilder<> IRB(C);
520 IRB.SetInsertPoint(CI);
521
522 // Pre-invoke
523 // __THREW__ = 0;
524 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
525
526 // Invoke function wrapper in JavaScript
528 // Put the pointer to the callee as first argument, so it can be called
529 // within the invoke wrapper later
530 Args.push_back(CI->getCalledOperand());
531 Args.append(CI->arg_begin(), CI->arg_end());
532 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
533 NewCall->takeName(CI);
535 NewCall->setDebugLoc(CI->getDebugLoc());
536
537 // Because we added the pointer to the callee as first argument, all
538 // argument attribute indices have to be incremented by one.
539 SmallVector<AttributeSet, 8> ArgAttributes;
540 const AttributeList &InvokeAL = CI->getAttributes();
541
542 // No attributes for the callee pointer.
543 ArgAttributes.push_back(AttributeSet());
544 // Copy the argument attributes from the original
545 for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
546 ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
547
548 AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
549 if (auto Args = FnAttrs.getAllocSizeArgs()) {
550 // The allocsize attribute (if any) referes to parameters by index and needs
551 // to be adjusted.
552 auto [SizeArg, NEltArg] = *Args;
553 SizeArg += 1;
554 if (NEltArg)
555 NEltArg = *NEltArg + 1;
556 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
557 }
558 // In case the callee has 'noreturn' attribute, We need to remove it, because
559 // we expect invoke wrappers to return.
560 FnAttrs.removeAttribute(Attribute::NoReturn);
561
562 // Reconstruct the AttributesList based on the vector we constructed.
564 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
565 NewCall->setAttributes(NewCallAL);
566
567 CI->replaceAllUsesWith(NewCall);
568
569 // Post-invoke
570 // %__THREW__.val = __THREW__; __THREW__ = 0;
571 Value *Threw =
572 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
573 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
574 return Threw;
575}
576
577// Get matching invoke wrapper based on callee signature
578Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
579 Module *M = CI->getModule();
581 FunctionType *CalleeFTy = CI->getFunctionType();
582
583 std::string Sig = getSignature(CalleeFTy);
584 if (InvokeWrappers.contains(Sig))
585 return InvokeWrappers[Sig];
586
587 // Put the pointer to the callee as first argument
588 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
589 // Add argument types
590 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
591
592 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
593 CalleeFTy->isVarArg());
594 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
595 InvokeWrappers[Sig] = F;
596 return F;
597}
598
599static bool canLongjmp(const Value *Callee) {
600 if (auto *CalleeF = dyn_cast<Function>(Callee))
601 if (CalleeF->isIntrinsic())
602 return false;
603
604 // Attempting to transform inline assembly will result in something like:
605 // call void @__invoke_void(void ()* asm ...)
606 // which is invalid because inline assembly blocks do not have addresses
607 // and can't be passed by pointer. The result is a crash with illegal IR.
608 if (isa<InlineAsm>(Callee))
609 return false;
610 StringRef CalleeName = Callee->getName();
611
612 // TODO Include more functions or consider checking with mangled prefixes
613
614 // The reason we include malloc/free here is to exclude the malloc/free
615 // calls generated in setjmp prep / cleanup routines.
616 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
617 return false;
618
619 // There are functions in Emscripten's JS glue code or compiler-rt
620 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
621 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
622 CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
623 return false;
624
625 // __cxa_find_matching_catch_N functions cannot longjmp
626 if (Callee->getName().startswith("__cxa_find_matching_catch_"))
627 return false;
628
629 // Exception-catching related functions
630 //
631 // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
632 // it surely cannot longjmp, in order to maintain the unwind relationship from
633 // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
634 //
635 // In Wasm EH + Wasm SjLj, we
636 // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
637 // catch.dispatch.longjmp instead
638 // 2. Convert all longjmpable calls to invokes that unwind to
639 // catch.dispatch.longjmp
640 // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
641 // from an exception)'s catchpad does not contain any calls that are converted
642 // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
643 // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
644 // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
645 // CFGSort.
646 // int ret = setjmp(buf);
647 // try {
648 // foo(); // longjmps
649 // } catch (...) {
650 // }
651 // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
652 // catchswitch, and is not caught by that catchswitch because it is a longjmp,
653 // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
654 // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
655 // it will not unwind to catch.dispatch.longjmp, producing an incorrect
656 // result.
657 //
658 // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
659 // intentionally treat it as longjmpable to work around this problem. This is
660 // a hacky fix but an easy one.
661 //
662 // The comment block in findWasmUnwindDestinations() in
663 // SelectionDAGBuilder.cpp is addressing a similar problem.
664 if (CalleeName == "__cxa_end_catch")
666 if (CalleeName == "__cxa_begin_catch" ||
667 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
668 CalleeName == "__clang_call_terminate")
669 return false;
670
671 // std::terminate, which is generated when another exception occurs while
672 // handling an exception, cannot longjmp.
673 if (CalleeName == "_ZSt9terminatev")
674 return false;
675
676 // Otherwise we don't know
677 return true;
678}
679
680static bool isEmAsmCall(const Value *Callee) {
681 StringRef CalleeName = Callee->getName();
682 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
683 return CalleeName == "emscripten_asm_const_int" ||
684 CalleeName == "emscripten_asm_const_double" ||
685 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
686 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
687 CalleeName == "emscripten_asm_const_async_on_main_thread";
688}
689
690// Generate testSetjmp function call seqence with preamble and postamble.
691// The code this generates is equivalent to the following JavaScript code:
692// %__threwValue.val = __threwValue;
693// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
694// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
695// if (%label == 0)
696// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
697// setTempRet0(%__threwValue.val);
698// } else {
699// %label = -1;
700// }
701// %longjmp_result = getTempRet0();
702//
703// As output parameters. returns %label, %longjmp_result, and the BB the last
704// instruction (%longjmp_result = ...) is in.
705void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
706 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
707 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
708 BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
709 PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
710 Function *F = BB->getParent();
711 Module *M = F->getParent();
712 LLVMContext &C = M->getContext();
713 IRBuilder<> IRB(C);
714 IRB.SetCurrentDebugLocation(DL);
715
716 // if (%__THREW__.val != 0 & %__threwValue.val != 0)
717 IRB.SetInsertPoint(BB);
718 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
719 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
720 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
721 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
722 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
723 ThrewValueGV->getName() + ".val");
724 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
725 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
726 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
727
728 // Generate call.em.longjmp BB once and share it within the function
729 if (!CallEmLongjmpBB) {
730 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
731 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
732 IRB.SetInsertPoint(CallEmLongjmpBB);
733 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
734 CallEmLongjmpBBThrewValuePHI =
735 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
736 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
737 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
738 IRB.CreateCall(EmLongjmpF,
739 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
740 IRB.CreateUnreachable();
741 } else {
742 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
743 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
744 }
745
746 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
747 // if (%label == 0)
748 IRB.SetInsertPoint(ThenBB1);
749 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
750 Value *ThrewPtr =
751 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
752 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
753 ThrewPtr->getName() + ".loaded");
754 Value *ThenLabel = IRB.CreateCall(
755 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
756 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
757 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
758
759 // setTempRet0(%__threwValue.val);
760 IRB.SetInsertPoint(EndBB2);
761 IRB.CreateCall(SetTempRet0F, ThrewValue);
762 IRB.CreateBr(EndBB1);
763
764 IRB.SetInsertPoint(ElseBB1);
765 IRB.CreateBr(EndBB1);
766
767 // longjmp_result = getTempRet0();
768 IRB.SetInsertPoint(EndBB1);
769 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
770 LabelPHI->addIncoming(ThenLabel, EndBB2);
771
772 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
773
774 // Output parameter assignment
775 Label = LabelPHI;
776 EndBB = EndBB1;
777 LongjmpResult = IRB.CreateCall(GetTempRet0F, std::nullopt, "longjmp_result");
778}
779
780void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
781 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
782 DT.recalculate(F); // CFG has been changed
783
785 for (BasicBlock &BB : F) {
786 for (Instruction &I : BB) {
787 unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
788 // If a value is defined by an invoke instruction, it is only available in
789 // its normal destination and not in its unwind destination.
790 if (auto *II = dyn_cast<InvokeInst>(&I))
791 SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
792 else
793 SSA.AddAvailableValue(VarID, &BB, &I);
794 for (auto &U : I.uses()) {
795 auto *User = cast<Instruction>(U.getUser());
796 if (auto *UserPN = dyn_cast<PHINode>(User))
797 if (UserPN->getIncomingBlock(U) == &BB)
798 continue;
799 if (DT.dominates(&I, User))
800 continue;
801 SSA.AddUse(VarID, &U);
802 }
803 }
804 }
805 SSA.RewriteAllUses(&DT);
806}
807
808// Replace uses of longjmp with a new longjmp function in Emscripten library.
809// In Emscripten SjLj, the new function is
810// void emscripten_longjmp(uintptr_t, i32)
811// In Wasm SjLj, the new function is
812// void __wasm_longjmp(i8*, i32)
813// Because the original libc longjmp function takes (jmp_buf*, i32), we need a
814// ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
815// eventually be lowered to i32/i64 in the wasm backend.
816void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
817 Function *NewF) {
818 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
819 Module *M = LongjmpF->getParent();
821 LLVMContext &C = LongjmpF->getParent()->getContext();
822 IRBuilder<> IRB(C);
823
824 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
825 // cast its first argument (jmp_buf*) appropriately
826 for (User *U : LongjmpF->users()) {
827 auto *CI = dyn_cast<CallInst>(U);
828 if (CI && CI->getCalledFunction() == LongjmpF) {
829 IRB.SetInsertPoint(CI);
830 Value *Env = nullptr;
831 if (NewF == EmLongjmpF)
832 Env =
833 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
834 else // WasmLongjmpF
835 Env = IRB.CreateBitCast(CI->getArgOperand(0), IRB.getPtrTy(), "env");
836 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
837 ToErase.push_back(CI);
838 }
839 }
840 for (auto *I : ToErase)
841 I->eraseFromParent();
842
843 // If we have any remaining uses of longjmp's function pointer, replace it
844 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
845 if (!LongjmpF->uses().empty()) {
846 Value *NewLongjmp =
847 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
848 LongjmpF->replaceAllUsesWith(NewLongjmp);
849 }
850}
851
853 for (const auto &BB : *F)
854 for (const auto &I : BB)
855 if (const auto *CB = dyn_cast<CallBase>(&I))
856 if (canLongjmp(CB->getCalledOperand()))
857 return true;
858 return false;
859}
860
861// When a function contains a setjmp call but not other calls that can longjmp,
862// we don't do setjmp transformation for that setjmp. But we need to convert the
863// setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
864// returns 0 when called directly.
865static void nullifySetjmp(Function *F) {
866 Module &M = *F->getParent();
867 IRBuilder<> IRB(M.getContext());
868 Function *SetjmpF = M.getFunction("setjmp");
870
871 for (User *U : make_early_inc_range(SetjmpF->users())) {
872 auto *CB = cast<CallBase>(U);
873 BasicBlock *BB = CB->getParent();
874 if (BB->getParent() != F) // in other function
875 continue;
876 CallInst *CI = nullptr;
877 // setjmp cannot throw. So if it is an invoke, lower it to a call
878 if (auto *II = dyn_cast<InvokeInst>(CB))
879 CI = llvm::changeToCall(II);
880 else
881 CI = cast<CallInst>(CB);
882 ToErase.push_back(CI);
883 CI->replaceAllUsesWith(IRB.getInt32(0));
884 }
885 for (auto *I : ToErase)
886 I->eraseFromParent();
887}
888
889bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
890 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
891
892 LLVMContext &C = M.getContext();
893 IRBuilder<> IRB(C);
894
895 Function *SetjmpF = M.getFunction("setjmp");
896 Function *LongjmpF = M.getFunction("longjmp");
897
898 // In some platforms _setjmp and _longjmp are used instead. Change these to
899 // use setjmp/longjmp instead, because we later detect these functions by
900 // their names.
901 Function *SetjmpF2 = M.getFunction("_setjmp");
902 Function *LongjmpF2 = M.getFunction("_longjmp");
903 if (SetjmpF2) {
904 if (SetjmpF) {
905 if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
906 report_fatal_error("setjmp and _setjmp have different function types");
907 } else {
908 SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
909 GlobalValue::ExternalLinkage, "setjmp", M);
910 }
911 SetjmpF2->replaceAllUsesWith(SetjmpF);
912 }
913 if (LongjmpF2) {
914 if (LongjmpF) {
915 if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
917 "longjmp and _longjmp have different function types");
918 } else {
919 LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
920 GlobalValue::ExternalLinkage, "setjmp", M);
921 }
922 LongjmpF2->replaceAllUsesWith(LongjmpF);
923 }
924
925 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
926 assert(TPC && "Expected a TargetPassConfig");
927 auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
928
929 // Declare (or get) global variables __THREW__, __threwValue, and
930 // getTempRet0/setTempRet0 function which are used in common for both
931 // exception handling and setjmp/longjmp handling
932 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
933 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
934 GetTempRet0F = getEmscriptenFunction(
935 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
936 SetTempRet0F = getEmscriptenFunction(
937 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
938 "setTempRet0", &M);
939 GetTempRet0F->setDoesNotThrow();
940 SetTempRet0F->setDoesNotThrow();
941
942 bool Changed = false;
943
944 // Function registration for exception handling
945 if (EnableEmEH) {
946 // Register __resumeException function
947 FunctionType *ResumeFTy =
948 FunctionType::get(IRB.getVoidTy(), IRB.getPtrTy(), false);
949 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
950 ResumeF->addFnAttr(Attribute::NoReturn);
951
952 // Register llvm_eh_typeid_for function
953 FunctionType *EHTypeIDTy =
954 FunctionType::get(IRB.getInt32Ty(), IRB.getPtrTy(), false);
955 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
956 }
957
958 // Functions that contains calls to setjmp but don't have other longjmpable
959 // calls within them.
960 SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
961
962 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
963 // Precompute setjmp users
964 for (User *U : SetjmpF->users()) {
965 if (auto *CB = dyn_cast<CallBase>(U)) {
966 auto *UserF = CB->getFunction();
967 // If a function that calls setjmp does not contain any other calls that
968 // can longjmp, we don't need to do any transformation on that function,
969 // so can ignore it
970 if (containsLongjmpableCalls(UserF))
971 SetjmpUsers.insert(UserF);
972 else
973 SetjmpUsersToNullify.insert(UserF);
974 } else {
975 std::string S;
977 SS << *U;
978 report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
979 SS.str());
980 }
981 }
982 }
983
984 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
985 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
986 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
987
988 // Function registration and data pre-gathering for setjmp/longjmp handling
989 if (DoSjLj) {
990 assert(EnableEmSjLj || EnableWasmSjLj);
991 if (EnableEmSjLj) {
992 // Register emscripten_longjmp function
993 FunctionType *FTy = FunctionType::get(
994 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
995 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
996 EmLongjmpF->addFnAttr(Attribute::NoReturn);
997 } else { // EnableWasmSjLj
998 Type *Int8PtrTy = IRB.getPtrTy();
999 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
1000 FunctionType *FTy = FunctionType::get(
1001 IRB.getVoidTy(), {Int8PtrTy, IRB.getInt32Ty()}, false);
1002 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
1003 WasmLongjmpF->addFnAttr(Attribute::NoReturn);
1004 }
1005
1006 if (SetjmpF) {
1007 Type *Int8PtrTy = IRB.getPtrTy();
1008 Type *Int32PtrTy = IRB.getPtrTy();
1009 Type *Int32Ty = IRB.getInt32Ty();
1010 // Register saveSetjmp function
1011 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1012 FunctionType *FTy = FunctionType::get(
1013 Int32PtrTy,
1014 {SetjmpFTy->getParamType(0), Int32Ty, Int32PtrTy, Int32Ty}, false);
1015 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
1016
1017 // Register testSetjmp function
1018 FTy = FunctionType::get(Int32Ty,
1019 {getAddrIntType(&M), Int32PtrTy, Int32Ty}, false);
1020 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
1021
1022 // wasm.catch() will be lowered down to wasm 'catch' instruction in
1023 // instruction selection.
1024 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1025 // Type for struct __WasmLongjmpArgs
1026 LongjmpArgsTy = StructType::get(Int8PtrTy, // env
1027 Int32Ty // val
1028 );
1029 }
1030 }
1031
1032 // Exception handling transformation
1033 if (EnableEmEH) {
1034 for (Function &F : M) {
1035 if (F.isDeclaration())
1036 continue;
1037 Changed |= runEHOnFunction(F);
1038 }
1039 }
1040
1041 // Setjmp/longjmp handling transformation
1042 if (DoSjLj) {
1043 Changed = true; // We have setjmp or longjmp somewhere
1044 if (LongjmpF)
1045 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1046 // Only traverse functions that uses setjmp in order not to insert
1047 // unnecessary prep / cleanup code in every function
1048 if (SetjmpF)
1049 for (Function *F : SetjmpUsers)
1050 runSjLjOnFunction(*F);
1051 }
1052
1053 // Replace unnecessary setjmp calls with 0
1054 if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1055 Changed = true;
1056 assert(SetjmpF);
1057 for (Function *F : SetjmpUsersToNullify)
1059 }
1060
1061 // Delete unused global variables and functions
1062 for (auto *V : {ThrewGV, ThrewValueGV})
1063 if (V && V->use_empty())
1064 V->eraseFromParent();
1065 for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF,
1066 SaveSetjmpF, TestSetjmpF, WasmLongjmpF, CatchF})
1067 if (V && V->use_empty())
1068 V->eraseFromParent();
1069
1070 return Changed;
1071}
1072
1073bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1074 Module &M = *F.getParent();
1075 LLVMContext &C = F.getContext();
1076 IRBuilder<> IRB(C);
1077 bool Changed = false;
1080
1081 // rethrow.longjmp BB that will be shared within the function.
1082 BasicBlock *RethrowLongjmpBB = nullptr;
1083 // PHI node for the loaded value of __THREW__ global variable in
1084 // rethrow.longjmp BB
1085 PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1086
1087 for (BasicBlock &BB : F) {
1088 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1089 if (!II)
1090 continue;
1091 Changed = true;
1092 LandingPads.insert(II->getLandingPadInst());
1093 IRB.SetInsertPoint(II);
1094
1095 const Value *Callee = II->getCalledOperand();
1096 bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1097 if (NeedInvoke) {
1098 // Wrap invoke with invoke wrapper and generate preamble/postamble
1099 Value *Threw = wrapInvoke(II);
1100 ToErase.push_back(II);
1101
1102 // If setjmp/longjmp handling is enabled, the thrown value can be not an
1103 // exception but a longjmp. If the current function contains calls to
1104 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1105 // if the function does not contain setjmp calls, we shouldn't silently
1106 // ignore longjmps; we should rethrow them so they can be correctly
1107 // handled in somewhere up the call chain where setjmp is. __THREW__'s
1108 // value is 0 when nothing happened, 1 when an exception is thrown, and
1109 // other values when longjmp is thrown.
1110 //
1111 // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1112 // goto %tail
1113 // else
1114 // goto %longjmp.rethrow
1115 //
1116 // rethrow.longjmp: ;; This is longjmp. Rethrow it
1117 // %__threwValue.val = __threwValue
1118 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1119 //
1120 // tail: ;; Nothing happened or an exception is thrown
1121 // ... Continue exception handling ...
1122 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1123 canLongjmp(Callee)) {
1124 // Create longjmp.rethrow BB once and share it within the function
1125 if (!RethrowLongjmpBB) {
1126 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1127 IRB.SetInsertPoint(RethrowLongjmpBB);
1128 RethrowLongjmpBBThrewPHI =
1129 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1130 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1131 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1132 ThrewValueGV->getName() + ".val");
1133 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1134 IRB.CreateUnreachable();
1135 } else {
1136 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1137 }
1138
1139 IRB.SetInsertPoint(II); // Restore the insert point back
1140 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1141 Value *CmpEqOne =
1142 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1143 Value *CmpEqZero =
1144 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1145 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1146 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1147 IRB.SetInsertPoint(Tail);
1148 BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1149 }
1150
1151 // Insert a branch based on __THREW__ variable
1152 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1153 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1154
1155 } else {
1156 // This can't throw, and we don't need this invoke, just replace it with a
1157 // call+branch
1158 changeToCall(II);
1159 }
1160 }
1161
1162 // Process resume instructions
1163 for (BasicBlock &BB : F) {
1164 // Scan the body of the basic block for resumes
1165 for (Instruction &I : BB) {
1166 auto *RI = dyn_cast<ResumeInst>(&I);
1167 if (!RI)
1168 continue;
1169 Changed = true;
1170
1171 // Split the input into legal values
1172 Value *Input = RI->getValue();
1173 IRB.SetInsertPoint(RI);
1174 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1175 // Create a call to __resumeException function
1176 IRB.CreateCall(ResumeF, {Low});
1177 // Add a terminator to the block
1178 IRB.CreateUnreachable();
1179 ToErase.push_back(RI);
1180 }
1181 }
1182
1183 // Process llvm.eh.typeid.for intrinsics
1184 for (BasicBlock &BB : F) {
1185 for (Instruction &I : BB) {
1186 auto *CI = dyn_cast<CallInst>(&I);
1187 if (!CI)
1188 continue;
1189 const Function *Callee = CI->getCalledFunction();
1190 if (!Callee)
1191 continue;
1192 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1193 continue;
1194 Changed = true;
1195
1196 IRB.SetInsertPoint(CI);
1197 CallInst *NewCI =
1198 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1199 CI->replaceAllUsesWith(NewCI);
1200 ToErase.push_back(CI);
1201 }
1202 }
1203
1204 // Look for orphan landingpads, can occur in blocks with no predecessors
1205 for (BasicBlock &BB : F) {
1206 Instruction *I = BB.getFirstNonPHI();
1207 if (auto *LPI = dyn_cast<LandingPadInst>(I))
1208 LandingPads.insert(LPI);
1209 }
1210 Changed |= !LandingPads.empty();
1211
1212 // Handle all the landingpad for this function together, as multiple invokes
1213 // may share a single lp
1214 for (LandingPadInst *LPI : LandingPads) {
1215 IRB.SetInsertPoint(LPI);
1217 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1218 Constant *Clause = LPI->getClause(I);
1219 // TODO Handle filters (= exception specifications).
1220 // https://github.com/llvm/llvm-project/issues/49740
1221 if (LPI->isCatch(I))
1222 FMCArgs.push_back(Clause);
1223 }
1224
1225 // Create a call to __cxa_find_matching_catch_N function
1226 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1227 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1228 Value *Poison = PoisonValue::get(LPI->getType());
1229 Value *Pair0 = IRB.CreateInsertValue(Poison, FMCI, 0, "pair0");
1230 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, std::nullopt, "tempret0");
1231 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1232
1233 LPI->replaceAllUsesWith(Pair1);
1234 ToErase.push_back(LPI);
1235 }
1236
1237 // Erase everything we no longer need in this function
1238 for (Instruction *I : ToErase)
1239 I->eraseFromParent();
1240
1241 return Changed;
1242}
1243
1244// This tries to get debug info from the instruction before which a new
1245// instruction will be inserted, and if there's no debug info in that
1246// instruction, tries to get the info instead from the previous instruction (if
1247// any). If none of these has debug info and a DISubprogram is provided, it
1248// creates a dummy debug info with the first line of the function, because IR
1249// verifier requires all inlinable callsites should have debug info when both a
1250// caller and callee have DISubprogram. If none of these conditions are met,
1251// returns empty info.
1252static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1253 DISubprogram *SP) {
1254 assert(InsertBefore);
1255 if (InsertBefore->getDebugLoc())
1256 return InsertBefore->getDebugLoc();
1257 const Instruction *Prev = InsertBefore->getPrevNode();
1258 if (Prev && Prev->getDebugLoc())
1259 return Prev->getDebugLoc();
1260 if (SP)
1261 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1262 return DebugLoc();
1263}
1264
1265bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1266 assert(EnableEmSjLj || EnableWasmSjLj);
1267 Module &M = *F.getParent();
1268 LLVMContext &C = F.getContext();
1269 IRBuilder<> IRB(C);
1271 // Vector of %setjmpTable values
1272 SmallVector<Instruction *, 4> SetjmpTableInsts;
1273 // Vector of %setjmpTableSize values
1274 SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1275
1276 // Setjmp preparation
1277
1278 // This instruction effectively means %setjmpTableSize = 4.
1279 // We create this as an instruction intentionally, and we don't want to fold
1280 // this instruction to a constant 4, because this value will be used in
1281 // SSAUpdater.AddAvailableValue(...) later.
1282 BasicBlock *Entry = &F.getEntryBlock();
1283 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1284 SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1285
1286 BinaryOperator *SetjmpTableSize =
1287 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1288 "setjmpTableSize", Entry->getTerminator());
1289 SetjmpTableSize->setDebugLoc(FirstDL);
1290 // setjmpTable = (int *) malloc(40);
1291 Type *IntPtrTy = getAddrIntType(&M);
1292 Constant *size = ConstantInt::get(IntPtrTy, 40);
1293 IRB.SetInsertPoint(SetjmpTableSize);
1294 auto *SetjmpTable = IRB.CreateMalloc(IntPtrTy, IRB.getInt32Ty(), size,
1295 nullptr, nullptr, "setjmpTable");
1296 SetjmpTable->setDebugLoc(FirstDL);
1297 // CallInst::CreateMalloc may return a bitcast instruction if the result types
1298 // mismatch. We need to set the debug loc for the original call too.
1299 auto *MallocCall = SetjmpTable->stripPointerCasts();
1300 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1301 MallocCallI->setDebugLoc(FirstDL);
1302 }
1303 // setjmpTable[0] = 0;
1304 IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1305 SetjmpTableInsts.push_back(SetjmpTable);
1306 SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1307
1308 // Setjmp transformation
1309 SmallVector<PHINode *, 4> SetjmpRetPHIs;
1310 Function *SetjmpF = M.getFunction("setjmp");
1311 for (auto *U : make_early_inc_range(SetjmpF->users())) {
1312 auto *CB = cast<CallBase>(U);
1313 BasicBlock *BB = CB->getParent();
1314 if (BB->getParent() != &F) // in other function
1315 continue;
1316 if (CB->getOperandBundle(LLVMContext::OB_funclet)) {
1317 std::string S;
1319 SS << "In function " + F.getName() +
1320 ": setjmp within a catch clause is not supported in Wasm EH:\n";
1321 SS << *CB;
1323 }
1324
1325 CallInst *CI = nullptr;
1326 // setjmp cannot throw. So if it is an invoke, lower it to a call
1327 if (auto *II = dyn_cast<InvokeInst>(CB))
1328 CI = llvm::changeToCall(II);
1329 else
1330 CI = cast<CallInst>(CB);
1331
1332 // The tail is everything right after the call, and will be reached once
1333 // when setjmp is called, and later when longjmp returns to the setjmp
1334 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1335 // Add a phi to the tail, which will be the output of setjmp, which
1336 // indicates if this is the first call or a longjmp back. The phi directly
1337 // uses the right value based on where we arrive from
1338 IRB.SetInsertPoint(Tail, Tail->getFirstNonPHIIt());
1339 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1340
1341 // setjmp initial call returns 0
1342 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1343 // The proper output is now this, not the setjmp call itself
1344 CI->replaceAllUsesWith(SetjmpRet);
1345 // longjmp returns to the setjmp will add themselves to this phi
1346 SetjmpRetPHIs.push_back(SetjmpRet);
1347
1348 // Fix call target
1349 // Our index in the function is our place in the array + 1 to avoid index
1350 // 0, because index 0 means the longjmp is not ours to handle.
1351 IRB.SetInsertPoint(CI);
1352 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1353 SetjmpTable, SetjmpTableSize};
1354 Instruction *NewSetjmpTable =
1355 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1356 Instruction *NewSetjmpTableSize =
1357 IRB.CreateCall(GetTempRet0F, std::nullopt, "setjmpTableSize");
1358 SetjmpTableInsts.push_back(NewSetjmpTable);
1359 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1360 ToErase.push_back(CI);
1361 }
1362
1363 // Handle longjmpable calls.
1364 if (EnableEmSjLj)
1365 handleLongjmpableCallsForEmscriptenSjLj(
1366 F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1367 else // EnableWasmSjLj
1368 handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1369 SetjmpRetPHIs);
1370
1371 // Erase everything we no longer need in this function
1372 for (Instruction *I : ToErase)
1373 I->eraseFromParent();
1374
1375 // Free setjmpTable buffer before each return instruction + function-exiting
1376 // call
1377 SmallVector<Instruction *, 16> ExitingInsts;
1378 for (BasicBlock &BB : F) {
1379 Instruction *TI = BB.getTerminator();
1380 if (isa<ReturnInst>(TI))
1381 ExitingInsts.push_back(TI);
1382 // Any 'call' instruction with 'noreturn' attribute exits the function at
1383 // this point. If this throws but unwinds to another EH pad within this
1384 // function instead of exiting, this would have been an 'invoke', which
1385 // happens if we use Wasm EH or Wasm SjLJ.
1386 for (auto &I : BB) {
1387 if (auto *CI = dyn_cast<CallInst>(&I)) {
1388 bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1389 if (Function *CalleeF = CI->getCalledFunction())
1390 IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1391 if (IsNoReturn)
1392 ExitingInsts.push_back(&I);
1393 }
1394 }
1395 }
1396 for (auto *I : ExitingInsts) {
1397 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1398 // If this existing instruction is a call within a catchpad, we should add
1399 // it as "funclet" to the operand bundle of 'free' call
1401 if (auto *CB = dyn_cast<CallBase>(I))
1402 if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1403 Bundles.push_back(OperandBundleDef(*Bundle));
1404 IRB.SetInsertPoint(I);
1405 auto *Free = IRB.CreateFree(SetjmpTable, Bundles);
1406 Free->setDebugLoc(DL);
1407 }
1408
1409 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1410 // (when buffer reallocation occurs)
1411 // entry:
1412 // setjmpTableSize = 4;
1413 // setjmpTable = (int *) malloc(40);
1414 // setjmpTable[0] = 0;
1415 // ...
1416 // somebb:
1417 // setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1418 // setjmpTableSize = getTempRet0();
1419 // So we need to make sure the SSA for these variables is valid so that every
1420 // saveSetjmp and testSetjmp calls have the correct arguments.
1421 SSAUpdater SetjmpTableSSA;
1422 SSAUpdater SetjmpTableSizeSSA;
1423 SetjmpTableSSA.Initialize(PointerType::get(C, 0), "setjmpTable");
1424 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1425 for (Instruction *I : SetjmpTableInsts)
1426 SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1427 for (Instruction *I : SetjmpTableSizeInsts)
1428 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1429
1430 for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1431 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1432 if (I->getParent() != Entry)
1433 SetjmpTableSSA.RewriteUse(U);
1434 for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1435 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1436 if (I->getParent() != Entry)
1437 SetjmpTableSizeSSA.RewriteUse(U);
1438
1439 // Finally, our modifications to the cfg can break dominance of SSA variables.
1440 // For example, in this code,
1441 // if (x()) { .. setjmp() .. }
1442 // if (y()) { .. longjmp() .. }
1443 // We must split the longjmp block, and it can jump into the block splitted
1444 // from setjmp one. But that means that when we split the setjmp block, it's
1445 // first part no longer dominates its second part - there is a theoretically
1446 // possible control flow path where x() is false, then y() is true and we
1447 // reach the second part of the setjmp block, without ever reaching the first
1448 // part. So, we rebuild SSA form here.
1449 rebuildSSA(F);
1450 return true;
1451}
1452
1453// Update each call that can longjmp so it can return to the corresponding
1454// setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1455// comments at top of the file for details.
1456void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1457 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1458 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1459 Module &M = *F.getParent();
1460 LLVMContext &C = F.getContext();
1461 IRBuilder<> IRB(C);
1463
1464 // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1465 // These values are defined in the beginning of the function and also in each
1466 // setjmp callsite, but we don't know which values we should use at this
1467 // point. So here we arbitraily use the ones defined in the beginning of the
1468 // function, and SSAUpdater will later update them to the correct values.
1469 Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1470 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1471
1472 // call.em.longjmp BB that will be shared within the function.
1473 BasicBlock *CallEmLongjmpBB = nullptr;
1474 // PHI node for the loaded value of __THREW__ global variable in
1475 // call.em.longjmp BB
1476 PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1477 // PHI node for the loaded value of __threwValue global variable in
1478 // call.em.longjmp BB
1479 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1480 // rethrow.exn BB that will be shared within the function.
1481 BasicBlock *RethrowExnBB = nullptr;
1482
1483 // Because we are creating new BBs while processing and don't want to make
1484 // all these newly created BBs candidates again for longjmp processing, we
1485 // first make the vector of candidate BBs.
1486 std::vector<BasicBlock *> BBs;
1487 for (BasicBlock &BB : F)
1488 BBs.push_back(&BB);
1489
1490 // BBs.size() will change within the loop, so we query it every time
1491 for (unsigned I = 0; I < BBs.size(); I++) {
1492 BasicBlock *BB = BBs[I];
1493 for (Instruction &I : *BB) {
1494 if (isa<InvokeInst>(&I)) {
1495 std::string S;
1497 SS << "In function " << F.getName()
1498 << ": When using Wasm EH with Emscripten SjLj, there is a "
1499 "restriction that `setjmp` function call and exception cannot be "
1500 "used within the same function:\n";
1501 SS << I;
1503 }
1504 auto *CI = dyn_cast<CallInst>(&I);
1505 if (!CI)
1506 continue;
1507
1508 const Value *Callee = CI->getCalledOperand();
1509 if (!canLongjmp(Callee))
1510 continue;
1511 if (isEmAsmCall(Callee))
1512 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1513 F.getName() +
1514 ". Please consider using EM_JS, or move the "
1515 "EM_ASM into another function.",
1516 false);
1517
1518 Value *Threw = nullptr;
1520 if (Callee->getName().startswith("__invoke_")) {
1521 // If invoke wrapper has already been generated for this call in
1522 // previous EH phase, search for the load instruction
1523 // %__THREW__.val = __THREW__;
1524 // in postamble after the invoke wrapper call
1525 LoadInst *ThrewLI = nullptr;
1526 StoreInst *ThrewResetSI = nullptr;
1527 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1528 I != IE; ++I) {
1529 if (auto *LI = dyn_cast<LoadInst>(I))
1530 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1531 if (GV == ThrewGV) {
1532 Threw = ThrewLI = LI;
1533 break;
1534 }
1535 }
1536 // Search for the store instruction after the load above
1537 // __THREW__ = 0;
1538 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1539 I != IE; ++I) {
1540 if (auto *SI = dyn_cast<StoreInst>(I)) {
1541 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1542 if (GV == ThrewGV &&
1543 SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1544 ThrewResetSI = SI;
1545 break;
1546 }
1547 }
1548 }
1549 }
1550 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1551 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1552 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1553
1554 } else {
1555 // Wrap call with invoke wrapper and generate preamble/postamble
1556 Threw = wrapInvoke(CI);
1557 ToErase.push_back(CI);
1558 Tail = SplitBlock(BB, CI->getNextNode());
1559
1560 // If exception handling is enabled, the thrown value can be not a
1561 // longjmp but an exception, in which case we shouldn't silently ignore
1562 // exceptions; we should rethrow them.
1563 // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1564 // thrown, other values when longjmp is thrown.
1565 //
1566 // if (%__THREW__.val == 1)
1567 // goto %eh.rethrow
1568 // else
1569 // goto %normal
1570 //
1571 // eh.rethrow: ;; Rethrow exception
1572 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1573 // __resumeException(%exn)
1574 //
1575 // normal:
1576 // <-- Insertion point. Will insert sjlj handling code from here
1577 // goto %tail
1578 //
1579 // tail:
1580 // ...
1581 if (supportsException(&F) && canThrow(Callee)) {
1582 // We will add a new conditional branch. So remove the branch created
1583 // when we split the BB
1584 ToErase.push_back(BB->getTerminator());
1585
1586 // Generate rethrow.exn BB once and share it within the function
1587 if (!RethrowExnBB) {
1588 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1589 IRB.SetInsertPoint(RethrowExnBB);
1590 CallInst *Exn =
1591 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1592 IRB.CreateCall(ResumeF, {Exn});
1593 IRB.CreateUnreachable();
1594 }
1595
1596 IRB.SetInsertPoint(CI);
1597 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1598 Value *CmpEqOne =
1599 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1600 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1601
1602 IRB.SetInsertPoint(NormalBB);
1603 IRB.CreateBr(Tail);
1604 BB = NormalBB; // New insertion point to insert testSetjmp()
1605 }
1606 }
1607
1608 // We need to replace the terminator in Tail - SplitBlock makes BB go
1609 // straight to Tail, we need to check if a longjmp occurred, and go to the
1610 // right setjmp-tail if so
1611 ToErase.push_back(BB->getTerminator());
1612
1613 // Generate a function call to testSetjmp function and preamble/postamble
1614 // code to figure out (1) whether longjmp occurred (2) if longjmp
1615 // occurred, which setjmp it corresponds to
1616 Value *Label = nullptr;
1617 Value *LongjmpResult = nullptr;
1618 BasicBlock *EndBB = nullptr;
1619 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1620 Label, LongjmpResult, CallEmLongjmpBB,
1621 CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1622 EndBB);
1623 assert(Label && LongjmpResult && EndBB);
1624
1625 // Create switch instruction
1626 IRB.SetInsertPoint(EndBB);
1627 IRB.SetCurrentDebugLocation(EndBB->back().getDebugLoc());
1628 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1629 // -1 means no longjmp happened, continue normally (will hit the default
1630 // switch case). 0 means a longjmp that is not ours to handle, needs a
1631 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1632 // 0).
1633 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1634 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1635 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1636 }
1637
1638 // We are splitting the block here, and must continue to find other calls
1639 // in the block - which is now split. so continue to traverse in the Tail
1640 BBs.push_back(Tail);
1641 }
1642 }
1643
1644 for (Instruction *I : ToErase)
1645 I->eraseFromParent();
1646}
1647
1649 for (const User *U : CPI->users())
1650 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1651 return CRI->getUnwindDest();
1652 return nullptr;
1653}
1654
1655// Create a catchpad in which we catch a longjmp's env and val arguments, test
1656// if the longjmp corresponds to one of setjmps in the current function, and if
1657// so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1658// BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1659// top of the file for details.
1660void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1661 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1662 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1663 Module &M = *F.getParent();
1664 LLVMContext &C = F.getContext();
1665 IRBuilder<> IRB(C);
1666
1667 // A function with catchswitch/catchpad instruction should have a personality
1668 // function attached to it. Search for the wasm personality function, and if
1669 // it exists, use it, and if it doesn't, create a dummy personality function.
1670 // (SjLj is not going to call it anyway.)
1671 if (!F.hasPersonalityFn()) {
1672 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1673 FunctionType *PersType =
1674 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1675 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1676 F.setPersonalityFn(
1677 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getPtrTy())));
1678 }
1679
1680 // Use the entry BB's debugloc as a fallback
1681 BasicBlock *Entry = &F.getEntryBlock();
1682 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1683 IRB.SetCurrentDebugLocation(FirstDL);
1684
1685 // Arbitrarily use the ones defined in the beginning of the function.
1686 // SSAUpdater will later update them to the correct values.
1687 Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1688 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1689
1690 // Add setjmp.dispatch BB right after the entry block. Because we have
1691 // initialized setjmpTable/setjmpTableSize in the entry block and split the
1692 // rest into another BB, here 'OrigEntry' is the function's original entry
1693 // block before the transformation.
1694 //
1695 // entry:
1696 // setjmpTable / setjmpTableSize initialization
1697 // setjmp.dispatch:
1698 // switch will be inserted here later
1699 // entry.split: (OrigEntry)
1700 // the original function starts here
1701 BasicBlock *OrigEntry = Entry->getNextNode();
1702 BasicBlock *SetjmpDispatchBB =
1703 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1704 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1705
1706 // Create catch.dispatch.longjmp BB and a catchswitch instruction
1707 BasicBlock *CatchDispatchLongjmpBB =
1708 BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1709 IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1710 CatchSwitchInst *CatchSwitchLongjmp =
1711 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1712
1713 // Create catch.longjmp BB and a catchpad instruction
1714 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1715 CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1716 IRB.SetInsertPoint(CatchLongjmpBB);
1717 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1718
1719 // Wasm throw and catch instructions can throw and catch multiple values, but
1720 // that requires multivalue support in the toolchain, which is currently not
1721 // very reliable. We instead throw and catch a pointer to a struct value of
1722 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1723 Instruction *LongjmpArgs =
1724 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1725 Value *EnvField =
1726 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1727 Value *ValField =
1728 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1729 // void *env = __wasm_longjmp_args.env;
1730 Instruction *Env = IRB.CreateLoad(IRB.getPtrTy(), EnvField, "env");
1731 // int val = __wasm_longjmp_args.val;
1732 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1733
1734 // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1735 // if (%label == 0)
1736 // __wasm_longjmp(%env, %val)
1737 // catchret to %setjmp.dispatch
1738 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1739 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1740 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1741 Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1742 Value *Label =
1743 IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1744 OperandBundleDef("funclet", CatchPad), "label");
1745 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1746 IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1747
1748 IRB.SetInsertPoint(ThenBB);
1749 CallInst *WasmLongjmpCI = IRB.CreateCall(
1750 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1751 IRB.CreateUnreachable();
1752
1753 IRB.SetInsertPoint(EndBB);
1754 // Jump to setjmp.dispatch block
1755 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1756
1757 // Go back to setjmp.dispatch BB
1758 // setjmp.dispatch:
1759 // switch %label {
1760 // label 1: goto post-setjmp BB 1
1761 // label 2: goto post-setjmp BB 2
1762 // ...
1763 // default: goto splitted next BB
1764 // }
1765 IRB.SetInsertPoint(SetjmpDispatchBB);
1766 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1767 LabelPHI->addIncoming(Label, EndBB);
1768 LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1769 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1770 // -1 means no longjmp happened, continue normally (will hit the default
1771 // switch case). 0 means a longjmp that is not ours to handle, needs a
1772 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1773 // 0).
1774 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1775 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1776 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1777 }
1778
1779 // Convert all longjmpable call instructions to invokes that unwind to the
1780 // newly created catch.dispatch.longjmp BB.
1781 SmallVector<CallInst *, 64> LongjmpableCalls;
1782 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1783 for (auto &I : *BB) {
1784 auto *CI = dyn_cast<CallInst>(&I);
1785 if (!CI)
1786 continue;
1787 const Value *Callee = CI->getCalledOperand();
1788 if (!canLongjmp(Callee))
1789 continue;
1790 if (isEmAsmCall(Callee))
1791 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1792 F.getName() +
1793 ". Please consider using EM_JS, or move the "
1794 "EM_ASM into another function.",
1795 false);
1796 // This is __wasm_longjmp() call we inserted in this function, which
1797 // rethrows the longjmp when the longjmp does not correspond to one of
1798 // setjmps in this function. We should not convert this call to an invoke.
1799 if (CI == WasmLongjmpCI)
1800 continue;
1801 LongjmpableCalls.push_back(CI);
1802 }
1803 }
1804
1805 for (auto *CI : LongjmpableCalls) {
1806 // Even if the callee function has attribute 'nounwind', which is true for
1807 // all C functions, it can longjmp, which means it can throw a Wasm
1808 // exception now.
1809 CI->removeFnAttr(Attribute::NoUnwind);
1810 if (Function *CalleeF = CI->getCalledFunction())
1811 CalleeF->removeFnAttr(Attribute::NoUnwind);
1812
1813 // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1814 // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1815 // to its parent pad's unwind destination instead to preserve the scope
1816 // structure. It will eventually unwind to the catch.dispatch.longjmp.
1818 BasicBlock *UnwindDest = nullptr;
1819 if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1820 Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1821 while (!UnwindDest) {
1822 if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1823 UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1824 break;
1825 }
1826 if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1827 // getCleanupRetUnwindDest() can return nullptr when
1828 // 1. This cleanuppad's matching cleanupret uwninds to caller
1829 // 2. There is no matching cleanupret because it ends with
1830 // unreachable.
1831 // In case of 2, we need to traverse the parent pad chain.
1832 UnwindDest = getCleanupRetUnwindDest(CPI);
1833 Value *ParentPad = CPI->getParentPad();
1834 if (isa<ConstantTokenNone>(ParentPad))
1835 break;
1836 FromPad = cast<Instruction>(ParentPad);
1837 }
1838 }
1839 }
1840 if (!UnwindDest)
1841 UnwindDest = CatchDispatchLongjmpBB;
1842 changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1843 }
1844
1846 for (auto &BB : F) {
1847 if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1848 if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1849 IRB.SetInsertPoint(CSI);
1850 ToErase.push_back(CSI);
1851 auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1852 CatchDispatchLongjmpBB, 1);
1853 NewCSI->addHandler(*CSI->handler_begin());
1854 NewCSI->takeName(CSI);
1855 CSI->replaceAllUsesWith(NewCSI);
1856 }
1857 }
1858
1859 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1860 if (CRI->unwindsToCaller()) {
1861 IRB.SetInsertPoint(CRI);
1862 ToErase.push_back(CRI);
1863 IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1864 }
1865 }
1866 }
1867
1868 for (Instruction *I : ToErase)
1869 I->eraseFromParent();
1870}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::string Name
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Memory SSA
Definition: MemorySSA.cpp:71
IntegerType * Int32Ty
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file contains some functions that are useful when dealing with strings.
Target-Independent Code Generator Pass Configuration Options pass.
static void nullifySetjmp(Function *F)
static bool canLongjmp(const Value *Callee)
static cl::list< std::string > EHAllowlist("emscripten-cxx-exceptions-allowed", cl::desc("The list of function names in which Emscripten-style " "exception handling is enabled (see emscripten " "EMSCRIPTEN_CATCHING_ALLOWED options)"), cl::CommaSeparated)
static Type * getAddrPtrType(Module *M)
static std::string getSignature(FunctionType *FTy)
static Type * getAddrIntType(Module *M)
static bool canThrow(const Value *V)
static BasicBlock * getCleanupRetUnwindDest(const CleanupPadInst *CPI)
static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, DISubprogram *SP)
static bool containsLongjmpableCalls(const Function *F)
static Value * getAddrSizeInt(Module *M, uint64_t C)
static Function * getEmscriptenFunction(FunctionType *Ty, const Twine &Name, Module *M)
static GlobalVariable * getGlobalVariable(Module &M, Type *Ty, WebAssemblyTargetMachine &TM, const char *Name)
static bool isEmAsmCall(const Value *Callee)
This file provides WebAssembly-specific target descriptions.
This file declares the WebAssembly-specific subclass of TargetMachine.
This file contains the entry points for global functions defined in the LLVM WebAssembly back-end.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AttributeSet getFnAttrs() const
The function attributes are returned.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
AttributeSet getRetAttrs() const
The attributes for the ret value are returned.
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
static AttributeSet get(LLVMContext &C, const AttrBuilder &B)
Definition: Attributes.cpp:712
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:105
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:112
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:87
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:127
const Instruction & back() const
Definition: BasicBlock.h:349
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1190
void setCallingConv(CallingConv::ID CC)
Definition: InstrTypes.h:1474
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Definition: InstrTypes.h:2054
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1412
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
Definition: InstrTypes.h:1498
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1332
Value * getCalledOperand() const
Definition: InstrTypes.h:1405
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1493
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1357
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
Definition: InstrTypes.h:1338
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1270
void removeFnAttr(Attribute::AttrKind Kind)
Removes the attribute from the function.
Definition: InstrTypes.h:1568
unsigned arg_size() const
Definition: InstrTypes.h:1355
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1489
This class represents a function call, abstracting a target machine's calling convention.
void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:888
static ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
Definition: Constants.cpp:1415
This is an important base class in LLVM.
Definition: Constant.h:41
Subprogram description.
A debug info location.
Definition: DebugLoc.h:33
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:314
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Definition: Function.cpp:555
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:138
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:176
void setDoesNotThrow()
Definition: Function.h:541
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:652
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:290
@ ExternalLinkage
Externally visible function.
Definition: GlobalValue.h:48
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Definition: IRBuilder.h:525
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:472
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Definition: IRBuilder.h:483
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2625
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:392
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:71
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:389
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
The landingpad instruction holds all of the information necessary to generate correct exception handl...
An instruction for reading from memory.
Definition: Instructions.h:177
LLVMContext & getContext() const
Definition: Metadata.h:1114
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:251
virtual bool runOnModule(Module &M)=0
runOnModule - Virtual method overriden by subclasses to process the module being operated on.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:262
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1743
Helper class for SSA formation on a set of values defined in multiple blocks.
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:39
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
Definition: SSAUpdater.cpp:188
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:53
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
Definition: SSAUpdater.cpp:70
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:384
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:451
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:687
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
An instruction for storing to memory.
Definition: Instructions.h:301
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition: StringMap.h:112
bool contains(StringRef Key) const
contains - Return true if the element is in the map, false otherwise.
Definition: StringMap.h:254
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:374
Multiway switch.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt32Ty(LLVMContext &C)
LLVM Value Representation.
Definition: Value.h:74
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:535
iterator_range< user_iterator > users()
Definition: Value.h:421
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:688
bool use_empty() const
Definition: Value.h:344
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1069
iterator_range< use_iterator > uses()
Definition: Value.h:376
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:384
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:642
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ WASM_EmscriptenInvoke
For emscripten __invoke_* functions.
Definition: CallingConv.h:226
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1422
cl::opt< bool > WasmEnableSjLj
cl::opt< bool > WasmEnableEmEH
cl::opt< bool > WasmEnableEmSjLj
@ SS
Definition: X86.h:208
@ CommaSeparated
Definition: CommandLine.h:164
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1685
StringRef getEHPersonalityName(EHPersonality Pers)
BasicBlock * changeToInvokeAndSplitBasicBlock(CallInst *CI, BasicBlock *UnwindEdge, DomTreeUpdater *DTU=nullptr)
Convert the CallInst to InvokeInst with the specified unwind edge basic block.
Definition: Local.cpp:2391
CallInst * changeToCall(InvokeInst *II, DomTreeUpdater *DTU=nullptr)
This function converts the specified invoke into a normal call.
Definition: Local.cpp:2371
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:666
OperandBundleDefT< Value * > OperandBundleDef
Definition: AutoUpgrade.h:33
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
ModulePass * createWebAssemblyLowerEmscriptenEHSjLj()
@ Or
Bitwise or logical OR of integers.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2021