54#define DEBUG_TYPE "basicblock-utils"
58 cl::desc(
"Set the maximum path length when checking whether a basic block "
59 "is followed by a block that either has a terminating "
60 "deoptimizing call or is terminated with an unreachable"));
65 bool KeepOneInputPHIs) {
66 for (
auto *BB : BBs) {
71 Succ->removePredecessor(BB, KeepOneInputPHIs);
72 if (Updates && UniqueSuccessors.
insert(Succ).second)
73 Updates->
push_back({DominatorTree::Delete, BB, Succ});
77 while (!BB->empty()) {
86 BB->back().eraseFromParent();
90 isa<UnreachableInst>(BB->getTerminator()) &&
91 "The successor list of BB isn't empty before "
92 "applying corresponding DTU updates.");
97 bool KeepOneInputPHIs) {
102 bool KeepOneInputPHIs) {
106 assert(Dead.size() == BBs.
size() &&
"Duplicating blocks?");
107 for (
auto *BB : Dead)
109 assert(Dead.count(Pred) &&
"All predecessors must be dead!");
122 BB->eraseFromParent();
126 bool KeepOneInputPHIs) {
134 std::vector<BasicBlock*> DeadBlocks;
136 if (!Reachable.
count(&BB))
137 DeadBlocks.push_back(&BB);
142 return !DeadBlocks.empty();
147 if (!isa<PHINode>(BB->
begin()))
151 if (PN->getIncomingValue(0) != PN)
152 PN->replaceAllUsesWith(PN->getIncomingValue(0));
159 PN->eraseFromParent();
172 bool Changed =
false;
173 for (
unsigned i = 0, e = PHIs.
size(); i != e; ++i)
174 if (
PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].
operator Value*()))
183 bool PredecessorWithTwoSuccessors,
190 if (!PredBB)
return false;
193 if (PredBB == BB)
return false;
208 unsigned FallThruPath;
209 if (PredecessorWithTwoSuccessors) {
210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
216 FallThruPath = PredBB_BI->
getSuccessor(0) == BB ? 0 : 1;
229 if (isa<PHINode>(BB->
front())) {
231 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233 IncomingValues.
push_back(PN.getIncomingValue(0));
238 assert(!DTU &&
"cannot use both DT and DTU for updates");
242 assert(BBNode &&
"PredNode unreachable but BBNode reachable?");
244 C->setIDom(PredNode);
249 std::vector<DominatorTree::UpdateType> Updates;
251 assert(!DT &&
"cannot use both DT and DTU for updates");
256 Updates.reserve(Updates.size() + 2 *
succ_size(BB) + 1);
265 if (!SuccsOfPredBB.
contains(SuccOfBB))
266 if (SeenSuccs.
insert(SuccOfBB).second)
267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
270 if (SeenSuccs.
insert(SuccOfBB).second)
271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272 Updates.push_back({DominatorTree::Delete, PredBB, BB});
292 if (PredecessorWithTwoSuccessors) {
329 "successors should have been transferred to PredBB");
342 assert(!MergeBlocks.
empty() &&
"MergeBlocks should not be empty");
344 bool BlocksHaveBeenMerged =
false;
345 while (!MergeBlocks.
empty()) {
348 if (Dest && (!L || L->contains(Dest))) {
353 "Expecting BB to be unique predecessor of the Dest block");
354 MergeBlocks.
erase(Dest);
355 BlocksHaveBeenMerged =
true;
357 MergeBlocks.
erase(BB);
359 MergeBlocks.
erase(BB);
361 return BlocksHaveBeenMerged;
391 DPV.getDebugLoc()->getInlinedAt());
392 auto R = VariableSet.
insert(Key);
408 for (
auto &DPV : ToBeRemoved)
409 DPV->eraseFromParent();
411 return !ToBeRemoved.
empty();
423 DVI->getExpression(),
424 DVI->getDebugLoc()->getInlinedAt());
425 auto R = VariableSet.
insert(Key);
431 if (
auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
450 for (
auto &Instr : ToBeRemoved)
451 Instr->eraseFromParent();
453 return !ToBeRemoved.
empty();
479 for (
auto &
I : *BB) {
480 for (
DPValue &DPV :
I.getDbgValueRange()) {
482 DPV.getDebugLoc()->getInlinedAt());
483 auto VMI = VariableMap.
find(Key);
487 if (VMI == VariableMap.
end() || VMI->second.first != Values ||
488 VMI->second.second != DPV.getExpression()) {
489 VariableMap[Key] = {Values, DPV.getExpression()};
497 for (
auto *DPV : ToBeRemoved)
498 DPV->eraseFromParent();
500 return !ToBeRemoved.
empty();
510 for (
auto &
I : *BB) {
513 DVI->getDebugLoc()->getInlinedAt());
514 auto VMI = VariableMap.
find(Key);
515 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
523 if (VMI == VariableMap.
end() || VMI->second.first != Values ||
524 VMI->second.second != DVI->getExpression()) {
529 VariableMap[Key] = {Values, DVI->getExpression()};
531 VariableMap[Key] = {Values,
nullptr};
542 for (
auto &Instr : ToBeRemoved)
543 Instr->eraseFromParent();
545 return !ToBeRemoved.
empty();
574 DVI->getDebugLoc()->getInlinedAt());
579 for (
auto &
I : *BB) {
583 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
586 if (!SeenDefForAggregate.
contains(Aggregate)) {
589 SeenDefForAggregate.
insert(Aggregate);
597 DAI->eraseFromParent();
599 return !ToBeRemoved.
empty();
603 bool MadeChanges =
false;
630 I.replaceAllUsesWith(V);
633 if (
I.hasName() && !V->hasName())
637 BI = BI->eraseFromParent();
642 assert(
I->getParent() ==
nullptr &&
643 "ReplaceInstWithInst: Instruction already inserted into basic block!");
647 if (!
I->getDebugLoc())
648 I->setDebugLoc(BI->getDebugLoc());
665 VisitedBlocks.
insert(BB).second) {
681 const Twine &BBName) {
704 assert(SP == BB &&
"CFG broken");
713 "Should have a single succ!");
718 if (
auto *II = dyn_cast<InvokeInst>(TI))
719 II->setUnwindDest(Succ);
720 else if (
auto *CS = dyn_cast<CatchSwitchInst>(TI))
721 CS->setUnwindDest(Succ);
722 else if (
auto *CR = dyn_cast<CleanupReturnInst>(TI))
723 CR->setUnwindDest(Succ);
742 if (PN.getIncomingBlock(BBIdx) != OldPred)
743 BBIdx = PN.getBasicBlockIndex(OldPred);
745 assert(BBIdx != -1 &&
"Invalid PHI Index!");
746 PN.setIncomingBlock(BBIdx, NewPred);
752 PHINode *LandingPadReplacement,
754 const Twine &BBName) {
757 if (!LandingPadReplacement && !PadInst->
isEHPad())
765 if (
Options.PreserveLoopSimplify && LI) {
766 if (
Loop *BBLoop = LI->getLoopFor(BB)) {
780 if (LI->getLoopFor(
P) != BBLoop) {
803 if (LandingPadReplacement) {
804 auto *NewLP = OriginalPad->
clone();
806 NewLP->insertBefore(Terminator);
809 Value *ParentPad =
nullptr;
810 if (
auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
811 ParentPad = FuncletPad->getParentPad();
812 else if (
auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
813 ParentPad = CatchSwitch->getParentPad();
814 else if (
auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
815 ParentPad = CleanupPad->getParentPad();
816 else if (
auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
817 ParentPad = LandingPad->getParent();
834 Updates.
push_back({DominatorTree::Insert, BB, NewBB});
835 Updates.
push_back({DominatorTree::Insert, NewBB, Succ});
836 Updates.
push_back({DominatorTree::Delete, BB, Succ});
842 MSSAU->applyUpdates(Updates, *DT);
844 MSSAU->getMemorySSA()->verifyMemorySSA();
849 if (
Loop *BBLoop = LI->getLoopFor(BB)) {
852 if (
Loop *SuccLoop = LI->getLoopFor(Succ)) {
853 if (BBLoop == SuccLoop) {
855 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
856 }
else if (BBLoop->contains(SuccLoop)) {
858 BBLoop->addBasicBlockToLoop(NewBB, *LI);
859 }
else if (SuccLoop->contains(BBLoop)) {
861 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
867 assert(SuccLoop->getHeader() == Succ &&
868 "Should not create irreducible loops!");
869 if (
Loop *
P = SuccLoop->getParentLoop())
870 P->addBasicBlockToLoop(NewBB, *LI);
876 if (!BBLoop->contains(Succ)) {
877 assert(!BBLoop->contains(NewBB) &&
878 "Split point for loop exit is contained in loop!");
885 if (!LoopPreds.
empty()) {
887 Succ, LoopPreds,
"split", DT, LI, MSSAU,
Options.PreserveLCSSA);
903 "SplitBB has non-PHI nodes!");
907 int Idx = PN.getBasicBlockIndex(SplitBB);
908 assert(
Idx >= 0 &&
"Invalid Block Index");
909 Value *V = PN.getIncomingValue(
Idx);
913 if (
const PHINode *VP = dyn_cast<PHINode>(V))
914 if (VP->getParent() == SplitBB)
927 PN.setIncomingValue(
Idx, NewPN);
934 unsigned NumBroken = 0;
950 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
952 DTU ? DTU : (DT ? &LocalDTU :
nullptr), LI, MSSAU,
956 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
958 assert(SplitIt != SplitPt->getParent()->end());
960 std::string
Name = BBName.
str();
968 L->addBasicBlockToLoop(New, *LI);
974 Updates.
push_back({DominatorTree::Insert, Old, New});
977 if (UniqueSuccessorsOfOld.
insert(SuccessorOfOld).second) {
978 Updates.
push_back({DominatorTree::Insert, New, SuccessorOfOld});
979 Updates.
push_back({DominatorTree::Delete, Old, SuccessorOfOld});
986 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1005 return SplitBlockImpl(Old, SplitPt,
nullptr, DT, LI, MSSAU, BBName,
1012 return SplitBlockImpl(Old, SplitPt, DTU,
nullptr, LI, MSSAU, BBName,
1019 const Twine &BBName) {
1022 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1024 std::string
Name = BBName.
str();
1033 L->addBasicBlockToLoop(New, *LI);
1040 DTUpdates.
push_back({DominatorTree::Insert, New, Old});
1043 if (UniquePredecessorsOfOld.
insert(PredecessorOfOld).second) {
1044 DTUpdates.
push_back({DominatorTree::Insert, PredecessorOfOld, New});
1045 DTUpdates.
push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1066 bool PreserveLCSSA,
bool &HasLoopExit) {
1080 Updates.
push_back({DominatorTree::Insert, NewBB, OldBB});
1082 for (
auto *Pred : Preds)
1083 if (UniquePreds.
insert(Pred).second) {
1084 Updates.
push_back({DominatorTree::Insert, Pred, NewBB});
1085 Updates.
push_back({DominatorTree::Delete, Pred, OldBB});
1109 assert(DT &&
"DT should be available to update LoopInfo!");
1114 bool IsLoopEntry = !!L;
1115 bool SplitMakesNewLoopHeader =
false;
1127 if (!PL->contains(OldBB))
1134 if (L->contains(Pred))
1135 IsLoopEntry =
false;
1137 SplitMakesNewLoopHeader =
true;
1149 Loop *InnermostPredLoop =
nullptr;
1154 while (PredLoop && !PredLoop->contains(OldBB))
1158 if (PredLoop && PredLoop->contains(OldBB) &&
1159 (!InnermostPredLoop ||
1160 InnermostPredLoop->
getLoopDepth() < PredLoop->getLoopDepth()))
1161 InnermostPredLoop = PredLoop;
1165 if (InnermostPredLoop)
1168 L->addBasicBlockToLoop(NewBB, *LI);
1169 if (SplitMakesNewLoopHeader)
1170 L->moveToHeader(NewBB);
1186 Value *InVal =
nullptr;
1229 if (PredSet.
count(IncomingBB)) {
1258 std::string NewName = std::string(Suffix) +
".split-lp";
1261 DTU, DT, LI, MSSAU, PreserveLCSSA);
1285 OldLatch = L->getLoopLatch();
1294 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1295 "Cannot split an edge from an IndirectBrInst");
1296 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1303 if (Preds.
empty()) {
1310 bool HasLoopExit =
false;
1314 if (!Preds.
empty()) {
1321 if (NewLatch != OldLatch) {
1339 bool PreserveLCSSA) {
1341 MSSAU, PreserveLCSSA);
1348 bool PreserveLCSSA) {
1350 nullptr, LI, MSSAU, PreserveLCSSA);
1376 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1377 "Cannot split an edge from an IndirectBrInst");
1378 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1381 bool HasLoopExit =
false;
1383 PreserveLCSSA, HasLoopExit);
1393 if (Pred == NewBB1)
continue;
1395 "Cannot split an edge from an IndirectBrInst");
1401 if (!NewBB2Preds.
empty()) {
1414 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1417 HasLoopExit =
false;
1419 PreserveLCSSA, HasLoopExit);
1439 "Split cannot be applied if LPad is token type. Otherwise an "
1440 "invalid PHINode of token type would be created.");
1457 const char *Suffix1,
const char *Suffix2,
1461 bool PreserveLCSSA) {
1463 NewBBs, DTU,
nullptr, LI, MSSAU,
1480 if (
BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1483 V = BCI->getOperand(0);
1484 NewBC = BCI->
clone();
1491 V = EVI->getOperand(0);
1492 NewEV = EVI->
clone();
1502 if (
PHINode *PN = dyn_cast<PHINode>(V)) {
1503 if (PN->getParent() == BB) {
1505 NewEV->
setOperand(0, PN->getIncomingValueForBlock(Pred));
1507 NewBC->
setOperand(0, PN->getIncomingValueForBlock(Pred));
1509 Op = PN->getIncomingValueForBlock(Pred);
1520 DTU->
applyUpdates({{DominatorTree::Delete, Pred, BB}});
1522 return cast<ReturnInst>(NewRet);
1532 Cond, SplitBefore, &ThenBlock,
nullptr,
1534 false, BranchWeights, DTU, LI);
1545 Cond, SplitBefore,
nullptr, &ElseBlock,
1547 Unreachable, BranchWeights, DTU, LI);
1559 Cond, SplitBefore, &ThenBlock, &ElseBlock,
false,
1560 false, BranchWeights, DTU, LI);
1568 BasicBlock **ElseBlock,
bool UnreachableThen,
bool UnreachableElse,
1570 assert((ThenBlock || ElseBlock) &&
1571 "At least one branch block must be created");
1572 assert((!UnreachableThen || !UnreachableElse) &&
1573 "Split block tail must be reachable");
1580 Updates.
reserve(4 + 2 * UniqueOrigSuccessors.
size());
1587 bool ThenToTailEdge =
false;
1588 bool ElseToTailEdge =
false;
1607 BB->getTerminator()->
setDebugLoc(SplitBefore->getDebugLoc());
1613 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1614 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1619 HeadNewTerm->
setMetadata(LLVMContext::MD_prof, BranchWeights);
1623 Updates.
emplace_back(DominatorTree::Insert, Head, TrueBlock);
1624 Updates.
emplace_back(DominatorTree::Insert, Head, FalseBlock);
1629 for (
BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1631 for (
BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1632 Updates.
emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1639 L->addBasicBlockToLoop(TrueBlock, *LI);
1641 L->addBasicBlockToLoop(FalseBlock, *LI);
1642 L->addBasicBlockToLoop(
Tail, *LI);
1647std::pair<Instruction*, Value*>
1653 auto *Ty =
End->getType();
1655 const unsigned Bitwidth =
DL.getTypeSizeInBits(Ty);
1661 true, Bitwidth != 2);
1663 IV->getName() +
".check");
1669 IV->addIncoming(IVNext, LoopBody);
1680 if (EC.isScalable()) {
1683 auto [BodyIP,
Index] =
1691 unsigned Num = EC.getFixedValue();
1692 for (
unsigned Idx = 0;
Idx < Num; ++
Idx) {
1705 if (!isa<ConstantInt>(EVL)) {
1712 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1713 for (
unsigned Idx = 0;
Idx < Num; ++
Idx) {
1746 if (!Pred1Br || !Pred2Br)
1798 if (!BI)
return nullptr;
1824 while (
I != Out->
end() && isa<PHINode>(
I)) {
1825 auto Phi = cast<PHINode>(
I);
1828 Phi->getName() +
".moved", &FirstGuardBlock->
front());
1829 for (
auto *In : Incoming) {
1833 }
else if (Phi->getBasicBlockIndex(In) != -1) {
1834 V = Phi->removeIncomingValue(In,
false);
1836 NewPhi->addIncoming(V, In);
1838 assert(NewPhi->getNumIncomingValues() == Incoming.size());
1839 if (Phi->getNumOperands() == 0) {
1840 Phi->replaceAllUsesWith(NewPhi);
1841 I = Phi->eraseFromParent();
1844 Phi->addIncoming(NewPhi, GuardBlock);
1862static std::tuple<Value *, BasicBlock *, BasicBlock *>
1866 "Only support branch terminator.");
1868 auto Condition = Branch->isConditional() ? Branch->getCondition() :
nullptr;
1872 Succ0 = Outgoing.
count(Succ0) ? Succ0 :
nullptr;
1874 if (Branch->isUnconditional()) {
1875 Branch->setSuccessor(0, FirstGuardBlock);
1878 Succ1 = Branch->getSuccessor(1);
1879 Succ1 = Outgoing.
count(Succ1) ? Succ1 :
nullptr;
1881 if (Succ0 && !Succ1) {
1882 Branch->setSuccessor(0, FirstGuardBlock);
1883 }
else if (Succ1 && !Succ0) {
1884 Branch->setSuccessor(1, FirstGuardBlock);
1886 Branch->eraseFromParent();
1892 return std::make_tuple(Condition, Succ0, Succ1);
1909 for (
int i = 0, e = GuardBlocks.
size() - 1; i != e; ++i) {
1910 auto Out = Outgoing[i];
1926 auto FirstGuardBlock = GuardBlocks.
front();
1929 "merged.bb.idx", FirstGuardBlock);
1931 for (
auto In : Incoming) {
1935 std::tie(Condition, Succ0, Succ1) =
1937 Value *IncomingId =
nullptr;
1938 if (Succ0 && Succ1) {
1940 auto Succ0Iter =
find(Outgoing, Succ0);
1941 auto Succ1Iter =
find(Outgoing, Succ1);
1943 std::distance(Outgoing.
begin(), Succ0Iter));
1945 std::distance(Outgoing.
begin(), Succ1Iter));
1947 In->getTerminator());
1950 auto SuccIter = Succ0 ?
find(Outgoing, Succ0) :
find(Outgoing, Succ1);
1952 std::distance(Outgoing.
begin(), SuccIter));
1954 Phi->addIncoming(IncomingId, In);
1957 for (
int i = 0, e = Outgoing.
size() - 1; i != e; ++i) {
1958 auto Out = Outgoing[i];
1959 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
1961 Out->
getName() +
".predicate", GuardBlocks[i]);
1962 GuardPredicates[Out] = Cmp;
1974 auto FirstGuardBlock = GuardBlocks.
front();
1978 for (
int i = 0, e = Outgoing.
size() - 1; i != e; ++i) {
1979 auto Out = Outgoing[i];
1980 LLVM_DEBUG(
dbgs() <<
"Creating guard for " << Out->getName() <<
"\n");
1984 StringRef(
"Guard.") + Out->getName(), FirstGuardBlock);
1985 GuardPredicates[Out] = Phi;
1988 for (
auto *In : Incoming) {
1992 std::tie(Condition, Succ0, Succ1) =
2002 bool OneSuccessorDone =
false;
2003 for (
int i = 0, e = Outgoing.
size() - 1; i != e; ++i) {
2004 auto Out = Outgoing[i];
2005 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
2006 if (Out != Succ0 && Out != Succ1) {
2007 Phi->addIncoming(BoolFalse, In);
2008 }
else if (!Succ0 || !Succ1 || OneSuccessorDone) {
2011 Phi->addIncoming(BoolTrue, In);
2015 Phi->addIncoming(Condition, In);
2018 DeletionCandidates.
push_back(Condition);
2019 Phi->addIncoming(Inverted, In);
2021 OneSuccessorDone =
true;
2041 std::optional<unsigned> MaxControlFlowBooleans) {
2043 auto F = Incoming.
front()->getParent();
2045 for (
int i = 0, e = Outgoing.
size() - 1; i != e; ++i)
2054 if (!MaxControlFlowBooleans || Outgoing.
size() <= *MaxControlFlowBooleans)
2056 DeletionCandidates);
2066 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2067 if (Outgoing.
size() < 2)
2068 return Outgoing.
front();
2072 for (
auto *In : Incoming) {
2074 if (Outgoing.
count(Succ))
2075 Updates.
push_back({DominatorTree::Delete,
In, Succ});
2081 Prefix, MaxControlFlowBooleans);
2082 auto FirstGuardBlock = GuardBlocks.
front();
2085 for (
int i = 0, e = GuardBlocks.
size(); i != e; ++i)
2086 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2091 int NumGuards = GuardBlocks.
size();
2092 assert((
int)Outgoing.
size() == NumGuards + 1);
2094 for (
auto In : Incoming)
2095 Updates.
push_back({DominatorTree::Insert,
In, FirstGuardBlock});
2097 for (
int i = 0; i != NumGuards - 1; ++i) {
2098 Updates.
push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
2100 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
2102 Updates.
push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2103 Outgoing[NumGuards - 1]});
2104 Updates.
push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2105 Outgoing[NumGuards]});
2109 for (
auto I : DeletionCandidates) {
2111 if (
auto Inst = dyn_cast_or_null<Instruction>(
I))
2112 Inst->eraseFromParent();
2115 return FirstGuardBlock;
2122 if (NewCond->
hasOneUse() && isa<CmpInst>(NewCond)) {
2123 CmpInst *CI = cast<CmpInst>(NewCond);
2133 for (
auto &BB :
F) {
2134 auto *Term = BB.getTerminator();
2135 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
2136 isa<BranchInst>(Term)))
2145 if (!Src.getParent()->isPresplitCoroutine())
2147 if (
auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
2148 if (
auto *
Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
2149 return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
2150 SW->getDefaultDest() == &Dest;
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static BasicBlock * SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB)
Remove redundant dbg.value instructions using a forward scan.
static void convertToGuardPredicates(SmallVectorImpl< BasicBlock * > &GuardBlocks, SmallVectorImpl< WeakVH > &DeletionCandidates, const BBSetVector &Incoming, const BBSetVector &Outgoing, const StringRef Prefix, std::optional< unsigned > MaxControlFlowBooleans)
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB)
static BasicBlock * SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, const Twine &BBName, bool Before)
static void calcPredicateUsingBooleans(const BBSetVector &Incoming, const BBSetVector &Outgoing, SmallVectorImpl< BasicBlock * > &GuardBlocks, BBPredicates &GuardPredicates, SmallVectorImpl< WeakVH > &DeletionCandidates)
We record the predicate of each outgoing block using a phi of boolean.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, ArrayRef< BasicBlock * > Preds, BranchInst *BI, bool HasLoopExit)
Update the PHI nodes in OrigBB to include the values coming from NewBB.
static std::tuple< Value *, BasicBlock *, BasicBlock * > redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, const BBSetVector &Outgoing)
static bool remomveUndefDbgAssignsFromEntryBlock(BasicBlock *BB)
Remove redundant undef dbg.assign intrinsic from an entry block using a forward scan.
static void setupBranchForGuard(SmallVectorImpl< BasicBlock * > &GuardBlocks, const BBSetVector &Outgoing, BBPredicates &GuardPredicates)
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, ArrayRef< BasicBlock * > Preds, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA, bool &HasLoopExit)
Update DominatorTree, LoopInfo, and LCCSA analysis information.
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, const SetVector< BasicBlock * > &Incoming, BasicBlock *FirstGuardBlock)
static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB)
Remove redundant instructions within sequences of consecutive dbg.value instructions.
static void calcPredicateUsingInteger(const BBSetVector &Incoming, const BBSetVector &Outgoing, SmallVectorImpl< BasicBlock * > &GuardBlocks, BBPredicates &GuardPredicates)
We are using one integer to represent the block we are branching to.
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB)
static void SplitLandingPadPredecessorsImpl(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix1, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
static cl::opt< unsigned > MaxDeoptOrUnreachableSuccessorCheckDepth("max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, cl::desc("Set the maximum path length when checking whether a basic block " "is followed by a block that either has a terminating " "deoptimizing call or is terminated with an unreachable"))
BlockVerifier::State From
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static const uint32_t IV[8]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const LandingPadInst * getLandingPadInst() const
Return the landingpad instruction associated with the landing pad.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const Instruction & front() const
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
const BasicBlock * getUniqueSuccessor() const
Return the successor of this block if it has a unique successor.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const CallInst * getTerminatingDeoptimizeCall() const
Returns the call instruction calling @llvm.experimental.deoptimize prior to the terminating return in...
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
const Instruction * getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
InstListType::iterator iterator
Instruction iterators...
LLVMContext & getContext() const
Get the context in which this basic block lives.
bool IsNewDbgInfoFormat
Flag recording whether or not this block stores debug-info in the form of intrinsic instructions (fal...
bool isLandingPad() const
Return true if this basic block is a landing pad.
bool isEHPad() const
Return true if this basic block is an exception handling block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
bool canSplitPredecessors() const
void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB)
Transfer all instructions from FromBB to this basic block at ToIt.
const Instruction & back() const
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
This class represents a no-op cast from one type to another.
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
static CleanupPadInst * Create(Value *ParentPad, ArrayRef< Value * > Args=std::nullopt, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, Instruction *InsertBefore=nullptr)
This class is the base class for the comparison instructions.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
static ConstantInt * getTrue(LLVMContext &Context)
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
static ConstantInt * getFalse(LLVMContext &Context)
Record of a variable value-assignment, aka a non instruction representation of the dbg....
This class represents an Operation in the Expression.
This represents the llvm.dbg.assign instruction.
This represents the llvm.dbg.value instruction.
bool isKillLocation() const
Identifies a unique instance of a variable.
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Implements a dense probed hash-table based set.
iterator_range< iterator > children()
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
void recalculate(Function &F)
Notify DTU that the entry block was replaced.
bool hasDomTree() const
Returns true if it holds a DominatorTree.
void applyUpdates(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
void deleteBB(BasicBlock *DelBB)
Delete DelBB.
DominatorTree & getDomTree()
Flush DomTree updates and return DomTree.
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void splitBlock(NodeT *NewBB)
splitBlock - BB is split and now it has one successor.
DomTreeNodeBase< NodeT > * setNewRoot(NodeT *BB)
Add a new node to the forward dominator tree and make it a new root.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Module * getParent()
Get the module that this global value is contained inside of...
Common base class shared among various IRBuilders.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateElementCount(Type *DstType, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
void moveBeforePreserving(Instruction *MovePos)
Perform a moveBefore operation, while signalling that the caller intends to preserve the original ord...
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
const BasicBlock * getParent() const
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
bool isSpecialTerminator() const
InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
This is an important class for using LLVM in a threaded context.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Provides a lazy, caching interface for making common memory aliasing information queries,...
void invalidateCachedPredecessors()
Clears the PredIteratorCache info.
void removeInstruction(Instruction *InstToRemove)
Removes an instruction from the dependence analysis, updating the dependence of instructions that pre...
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was spliced into From and To.
void applyUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT, bool UpdateDTFirst=false)
Apply CFG updates, analogous with the DT edge updates.
void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was merged into To.
void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where)
void wireOldPredecessorsToNewImmediatePredecessor(BasicBlock *Old, BasicBlock *New, ArrayRef< BasicBlock * > Preds, bool IdenticalEdgesWereMerged=true)
A new empty BasicBlock (New) now branches directly to Old.
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Class that has the common methods + fields of memory uses/defs.
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Return a value (possibly void), from a function.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
const value_type & front() const
Return the first element of the SetVector.
const value_type & back() const
Return the last element of the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
iterator begin()
Get an iterator to the beginning of the SetVector.
Implements a dense probed hash-table based set with some number of buckets stored inline.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
erase - If the set contains the specified pointer, remove it and return true, otherwise return false.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
std::string str() const
Return the twine contents as a std::string.
The instances of the Type class are immutable: once they are created, they are never changed.
static IntegerType * getInt1Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
bool isTokenTy() const
Return true if this is 'token'.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
AssignmentInstRange getAssignmentInsts(DIAssignID *ID)
Return a range of instructions (typically just one) that have ID as an attachment.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
iterator_range< df_ext_iterator< T, SetTy > > depth_first_ext(const T &G, SetTy &S)
Interval::succ_iterator succ_end(Interval *I)
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
bool succ_empty(const Instruction *I)
bool IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB)
Check if we can prove that all paths starting from this block converge to a block that either has a @...
BranchInst * GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, BasicBlock *&IfFalse)
Check whether BB is the merge point of a if-region.
unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ)
Search for the specified successor of basic block BB and return its position in the terminator instru...
void detachDeadBlocks(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< DominatorTree::UpdateType > *Updates, bool KeepOneInputPHIs=false)
Replace contents of every block in BBs with single unreachable instruction.
bool hasOnlySimpleTerminator(const Function &F)
auto successors(const MachineBasicBlock *BB)
ReturnInst * FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, BasicBlock *Pred, DomTreeUpdater *DTU=nullptr)
This method duplicates the specified return instruction into a predecessor which ends in an unconditi...
BasicBlock * splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, DomTreeUpdater *DTU, LoopInfo *LI, MemorySSAUpdater *MSSAU, const Twine &BBName="")
Split the specified block at the specified instruction SplitPt.
Instruction * SplitBlockAndInsertIfElse(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ElseBlock=nullptr)
Similar to SplitBlockAndInsertIfThen, but the inserted block is on the false path of the branch.
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
void ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V)
Replace all uses of an instruction (specified by BI) with a value, then remove and delete the origina...
BasicBlock * SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If it is known that an edge is critical, SplitKnownCriticalEdge can be called directly,...
Interval::pred_iterator pred_end(Interval *I)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
auto reverse(ContainerTy &&C)
void InvertBranch(BranchInst *PBI, IRBuilderBase &Builder)
bool EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete all basic blocks from F that are not reachable from its entry node.
bool MergeBlockSuccessorsIntoGivenBlocks(SmallPtrSetImpl< BasicBlock * > &MergeBlocks, Loop *L=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
Merge block(s) sucessors, if possible.
void SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, Instruction **ThenTerm, Instruction **ElseTerm, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, but also creates the ElseBlock...
void SplitBlockAndInsertForEachLane(ElementCount EC, Type *IndexTy, Instruction *InsertBefore, std::function< void(IRBuilderBase &, Value *)> Func)
Utility function for performing a given action on each lane of a vector with EC elements.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
BasicBlock * ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad=nullptr, PHINode *LandingPadReplacement=nullptr, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
Split the edge connect the specficed blocks in the case that Succ is an Exception Handling Block.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method transforms the landing pad, OrigBB, by introducing two new basic blocks into the function...
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
bool VerifyMemorySSA
Enables verification of MemorySSA.
void createPHIsForSplitLoopExit(ArrayRef< BasicBlock * > Preds, BasicBlock *SplitBB, BasicBlock *DestBB)
When a loop exit edge is split, LCSSA form may require new PHIs in the new exit block.
bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
BasicBlock * CreateControlFlowHub(DomTreeUpdater *DTU, SmallVectorImpl< BasicBlock * > &GuardBlocks, const SetVector< BasicBlock * > &Predecessors, const SetVector< BasicBlock * > &Successors, const StringRef Prefix, std::optional< unsigned > MaxControlFlowBooleans=std::nullopt)
Given a set of incoming and outgoing blocks, create a "hub" such that every edge from an incoming blo...
std::pair< Instruction *, Value * > SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore)
Insert a for (int i = 0; i < End; i++) loop structure (with the exception that End is assumed > 0,...
DWARFExpression::Operation Op
BasicBlock * SplitCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If this edge is a critical edge, insert a new node to split the critical edge.
bool FoldSingleEntryPHINodes(BasicBlock *BB, MemoryDependenceResults *MemDep=nullptr)
We know that BB has one predecessor.
bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Return true if the specified edge is a critical edge.
unsigned SplitAllCriticalEdges(Function &F, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions())
Loop over all of the edges in the CFG, breaking critical edges as they are found.
void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *Until=nullptr)
Replaces all uses of OldPred with the NewPred block in all PHINodes in a block.
bool isPresplitCoroSuspendExitEdge(const BasicBlock &Src, const BasicBlock &Dest)
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is an effectively dead PHI node, due to being a def-use chain of single-use no...
Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
unsigned succ_size(const MachineBasicBlock *BB)
Value * invertCondition(Value *Condition)
Invert the given true/false value, possibly reusing an existing copy.
void DeleteDeadBlocks(ArrayRef< BasicBlock * > BBs, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified blocks from BB.
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ)
Sets the unwind edge of an instruction to a particular successor.
unsigned pred_size(const MachineBasicBlock *BB)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Option class for critical edge splitting.
CriticalEdgeSplittingOptions & setPreserveLCSSA()