LLVM 18.0.0git
BasicBlockUtils.cpp
Go to the documentation of this file.
1//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions perform manipulations on basic blocks, and
10// instructions contained within basic blocks.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Analysis/CFG.h"
24#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DebugInfo.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/User.h"
39#include "llvm/IR/Value.h"
40#include "llvm/IR/ValueHandle.h"
43#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <cstdint>
48#include <string>
49#include <utility>
50#include <vector>
51
52using namespace llvm;
53
54#define DEBUG_TYPE "basicblock-utils"
55
57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58 cl::desc("Set the maximum path length when checking whether a basic block "
59 "is followed by a block that either has a terminating "
60 "deoptimizing call or is terminated with an unreachable"));
61
65 bool KeepOneInputPHIs) {
66 for (auto *BB : BBs) {
67 // Loop through all of our successors and make sure they know that one
68 // of their predecessors is going away.
69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70 for (BasicBlock *Succ : successors(BB)) {
71 Succ->removePredecessor(BB, KeepOneInputPHIs);
72 if (Updates && UniqueSuccessors.insert(Succ).second)
73 Updates->push_back({DominatorTree::Delete, BB, Succ});
74 }
75
76 // Zap all the instructions in the block.
77 while (!BB->empty()) {
78 Instruction &I = BB->back();
79 // If this instruction is used, replace uses with an arbitrary value.
80 // Because control flow can't get here, we don't care what we replace the
81 // value with. Note that since this block is unreachable, and all values
82 // contained within it must dominate their uses, that all uses will
83 // eventually be removed (they are themselves dead).
84 if (!I.use_empty())
85 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86 BB->back().eraseFromParent();
87 }
88 new UnreachableInst(BB->getContext(), BB);
89 assert(BB->size() == 1 &&
90 isa<UnreachableInst>(BB->getTerminator()) &&
91 "The successor list of BB isn't empty before "
92 "applying corresponding DTU updates.");
93 }
94}
95
97 bool KeepOneInputPHIs) {
98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99}
100
101void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102 bool KeepOneInputPHIs) {
103#ifndef NDEBUG
104 // Make sure that all predecessors of each dead block is also dead.
105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106 assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107 for (auto *BB : Dead)
108 for (BasicBlock *Pred : predecessors(BB))
109 assert(Dead.count(Pred) && "All predecessors must be dead!");
110#endif
111
113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114
115 if (DTU)
116 DTU->applyUpdates(Updates);
117
118 for (BasicBlock *BB : BBs)
119 if (DTU)
120 DTU->deleteBB(BB);
121 else
122 BB->eraseFromParent();
123}
124
126 bool KeepOneInputPHIs) {
128
129 // Mark all reachable blocks.
130 for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131 (void)BB/* Mark all reachable blocks */;
132
133 // Collect all dead blocks.
134 std::vector<BasicBlock*> DeadBlocks;
135 for (BasicBlock &BB : F)
136 if (!Reachable.count(&BB))
137 DeadBlocks.push_back(&BB);
138
139 // Delete the dead blocks.
140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141
142 return !DeadBlocks.empty();
143}
144
146 MemoryDependenceResults *MemDep) {
147 if (!isa<PHINode>(BB->begin()))
148 return false;
149
150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151 if (PN->getIncomingValue(0) != PN)
152 PN->replaceAllUsesWith(PN->getIncomingValue(0));
153 else
154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
155
156 if (MemDep)
157 MemDep->removeInstruction(PN); // Memdep updates AA itself.
158
159 PN->eraseFromParent();
160 }
161 return true;
162}
163
165 MemorySSAUpdater *MSSAU) {
166 // Recursively deleting a PHI may cause multiple PHIs to be deleted
167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
169 for (PHINode &PN : BB->phis())
170 PHIs.push_back(&PN);
171
172 bool Changed = false;
173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176
177 return Changed;
178}
179
181 LoopInfo *LI, MemorySSAUpdater *MSSAU,
183 bool PredecessorWithTwoSuccessors,
184 DominatorTree *DT) {
185 if (BB->hasAddressTaken())
186 return false;
187
188 // Can't merge if there are multiple predecessors, or no predecessors.
189 BasicBlock *PredBB = BB->getUniquePredecessor();
190 if (!PredBB) return false;
191
192 // Don't break self-loops.
193 if (PredBB == BB) return false;
194
195 // Don't break unwinding instructions or terminators with other side-effects.
196 Instruction *PTI = PredBB->getTerminator();
197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
198 return false;
199
200 // Can't merge if there are multiple distinct successors.
201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
202 return false;
203
204 // Currently only allow PredBB to have two predecessors, one being BB.
205 // Update BI to branch to BB's only successor instead of BB.
206 BranchInst *PredBB_BI;
207 BasicBlock *NewSucc = nullptr;
208 unsigned FallThruPath;
209 if (PredecessorWithTwoSuccessors) {
210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
211 return false;
212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
213 if (!BB_JmpI || !BB_JmpI->isUnconditional())
214 return false;
215 NewSucc = BB_JmpI->getSuccessor(0);
216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
217 }
218
219 // Can't merge if there is PHI loop.
220 for (PHINode &PN : BB->phis())
221 if (llvm::is_contained(PN.incoming_values(), &PN))
222 return false;
223
224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
225 << PredBB->getName() << "\n");
226
227 // Begin by getting rid of unneeded PHIs.
228 SmallVector<AssertingVH<Value>, 4> IncomingValues;
229 if (isa<PHINode>(BB->front())) {
230 for (PHINode &PN : BB->phis())
231 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233 IncomingValues.push_back(PN.getIncomingValue(0));
234 FoldSingleEntryPHINodes(BB, MemDep);
235 }
236
237 if (DT) {
238 assert(!DTU && "cannot use both DT and DTU for updates");
239 DomTreeNode *PredNode = DT->getNode(PredBB);
240 DomTreeNode *BBNode = DT->getNode(BB);
241 if (PredNode) {
242 assert(BBNode && "PredNode unreachable but BBNode reachable?");
243 for (DomTreeNode *C : to_vector(BBNode->children()))
244 C->setIDom(PredNode);
245 }
246 }
247 // DTU update: Collect all the edges that exit BB.
248 // These dominator edges will be redirected from Pred.
249 std::vector<DominatorTree::UpdateType> Updates;
250 if (DTU) {
251 assert(!DT && "cannot use both DT and DTU for updates");
252 // To avoid processing the same predecessor more than once.
254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255 succ_end(PredBB));
256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
257 // Add insert edges first. Experimentally, for the particular case of two
258 // blocks that can be merged, with a single successor and single predecessor
259 // respectively, it is beneficial to have all insert updates first. Deleting
260 // edges first may lead to unreachable blocks, followed by inserting edges
261 // making the blocks reachable again. Such DT updates lead to high compile
262 // times. We add inserts before deletes here to reduce compile time.
263 for (BasicBlock *SuccOfBB : successors(BB))
264 // This successor of BB may already be a PredBB's successor.
265 if (!SuccsOfPredBB.contains(SuccOfBB))
266 if (SeenSuccs.insert(SuccOfBB).second)
267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
268 SeenSuccs.clear();
269 for (BasicBlock *SuccOfBB : successors(BB))
270 if (SeenSuccs.insert(SuccOfBB).second)
271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272 Updates.push_back({DominatorTree::Delete, PredBB, BB});
273 }
274
275 Instruction *STI = BB->getTerminator();
276 Instruction *Start = &*BB->begin();
277 // If there's nothing to move, mark the starting instruction as the last
278 // instruction in the block. Terminator instruction is handled separately.
279 if (Start == STI)
280 Start = PTI;
281
282 // Move all definitions in the successor to the predecessor...
283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
284
285 if (MSSAU)
286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
287
288 // Make all PHI nodes that referred to BB now refer to Pred as their
289 // source...
290 BB->replaceAllUsesWith(PredBB);
291
292 if (PredecessorWithTwoSuccessors) {
293 // Delete the unconditional branch from BB.
294 BB->back().eraseFromParent();
295
296 // Update branch in the predecessor.
297 PredBB_BI->setSuccessor(FallThruPath, NewSucc);
298 } else {
299 // Delete the unconditional branch from the predecessor.
300 PredBB->back().eraseFromParent();
301
302 // Move terminator instruction.
303 BB->back().moveBeforePreserving(*PredBB, PredBB->end());
304
305 // Terminator may be a memory accessing instruction too.
306 if (MSSAU)
307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
310 }
311 // Add unreachable to now empty BB.
312 new UnreachableInst(BB->getContext(), BB);
313
314 // Inherit predecessors name if it exists.
315 if (!PredBB->hasName())
316 PredBB->takeName(BB);
317
318 if (LI)
319 LI->removeBlock(BB);
320
321 if (MemDep)
323
324 if (DTU)
325 DTU->applyUpdates(Updates);
326
327 if (DT) {
328 assert(succ_empty(BB) &&
329 "successors should have been transferred to PredBB");
330 DT->eraseNode(BB);
331 }
332
333 // Finally, erase the old block and update dominator info.
334 DeleteDeadBlock(BB, DTU);
335
336 return true;
337}
338
341 LoopInfo *LI) {
342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
343
344 bool BlocksHaveBeenMerged = false;
345 while (!MergeBlocks.empty()) {
346 BasicBlock *BB = *MergeBlocks.begin();
347 BasicBlock *Dest = BB->getSingleSuccessor();
348 if (Dest && (!L || L->contains(Dest))) {
349 BasicBlock *Fold = Dest->getUniquePredecessor();
350 (void)Fold;
351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
352 assert(Fold == BB &&
353 "Expecting BB to be unique predecessor of the Dest block");
354 MergeBlocks.erase(Dest);
355 BlocksHaveBeenMerged = true;
356 } else
357 MergeBlocks.erase(BB);
358 } else
359 MergeBlocks.erase(BB);
360 }
361 return BlocksHaveBeenMerged;
362}
363
364/// Remove redundant instructions within sequences of consecutive dbg.value
365/// instructions. This is done using a backward scan to keep the last dbg.value
366/// describing a specific variable/fragment.
367///
368/// BackwardScan strategy:
369/// ----------------------
370/// Given a sequence of consecutive DbgValueInst like this
371///
372/// dbg.value ..., "x", FragmentX1 (*)
373/// dbg.value ..., "y", FragmentY1
374/// dbg.value ..., "x", FragmentX2
375/// dbg.value ..., "x", FragmentX1 (**)
376///
377/// then the instruction marked with (*) can be removed (it is guaranteed to be
378/// obsoleted by the instruction marked with (**) as the latter instruction is
379/// describing the same variable using the same fragment info).
380///
381/// Possible improvements:
382/// - Check fully overlapping fragments and not only identical fragments.
383/// - Support dbg.declare. dbg.label, and possibly other meta instructions being
384/// part of the sequence of consecutive instructions.
386 SmallVector<DPValue *, 8> ToBeRemoved;
388 for (auto &I : reverse(*BB)) {
389 for (DPValue &DPV : reverse(I.getDbgValueRange())) {
390 DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
391 DPV.getDebugLoc()->getInlinedAt());
392 auto R = VariableSet.insert(Key);
393 // If the same variable fragment is described more than once it is enough
394 // to keep the last one (i.e. the first found since we for reverse
395 // iteration).
396 // FIXME: add assignment tracking support (see parallel implementation
397 // below).
398 if (!R.second)
399 ToBeRemoved.push_back(&DPV);
400 continue;
401 }
402 // Sequence with consecutive dbg.value instrs ended. Clear the map to
403 // restart identifying redundant instructions if case we find another
404 // dbg.value sequence.
405 VariableSet.clear();
406 }
407
408 for (auto &DPV : ToBeRemoved)
409 DPV->eraseFromParent();
410
411 return !ToBeRemoved.empty();
412}
413
415 if (BB->IsNewDbgInfoFormat)
417
420 for (auto &I : reverse(*BB)) {
421 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
422 DebugVariable Key(DVI->getVariable(),
423 DVI->getExpression(),
424 DVI->getDebugLoc()->getInlinedAt());
425 auto R = VariableSet.insert(Key);
426 // If the variable fragment hasn't been seen before then we don't want
427 // to remove this dbg intrinsic.
428 if (R.second)
429 continue;
430
431 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
432 // Don't delete dbg.assign intrinsics that are linked to instructions.
433 if (!at::getAssignmentInsts(DAI).empty())
434 continue;
435 // Unlinked dbg.assign intrinsics can be treated like dbg.values.
436 }
437
438 // If the same variable fragment is described more than once it is enough
439 // to keep the last one (i.e. the first found since we for reverse
440 // iteration).
441 ToBeRemoved.push_back(DVI);
442 continue;
443 }
444 // Sequence with consecutive dbg.value instrs ended. Clear the map to
445 // restart identifying redundant instructions if case we find another
446 // dbg.value sequence.
447 VariableSet.clear();
448 }
449
450 for (auto &Instr : ToBeRemoved)
451 Instr->eraseFromParent();
452
453 return !ToBeRemoved.empty();
454}
455
456/// Remove redundant dbg.value instructions using a forward scan. This can
457/// remove a dbg.value instruction that is redundant due to indicating that a
458/// variable has the same value as already being indicated by an earlier
459/// dbg.value.
460///
461/// ForwardScan strategy:
462/// ---------------------
463/// Given two identical dbg.value instructions, separated by a block of
464/// instructions that isn't describing the same variable, like this
465///
466/// dbg.value X1, "x", FragmentX1 (**)
467/// <block of instructions, none being "dbg.value ..., "x", ...">
468/// dbg.value X1, "x", FragmentX1 (*)
469///
470/// then the instruction marked with (*) can be removed. Variable "x" is already
471/// described as being mapped to the SSA value X1.
472///
473/// Possible improvements:
474/// - Keep track of non-overlapping fragments.
476 SmallVector<DPValue *, 8> ToBeRemoved;
478 VariableMap;
479 for (auto &I : *BB) {
480 for (DPValue &DPV : I.getDbgValueRange()) {
481 DebugVariable Key(DPV.getVariable(), std::nullopt,
482 DPV.getDebugLoc()->getInlinedAt());
483 auto VMI = VariableMap.find(Key);
484 // Update the map if we found a new value/expression describing the
485 // variable, or if the variable wasn't mapped already.
486 SmallVector<Value *, 4> Values(DPV.location_ops());
487 if (VMI == VariableMap.end() || VMI->second.first != Values ||
488 VMI->second.second != DPV.getExpression()) {
489 VariableMap[Key] = {Values, DPV.getExpression()};
490 continue;
491 }
492 // Found an identical mapping. Remember the instruction for later removal.
493 ToBeRemoved.push_back(&DPV);
494 }
495 }
496
497 for (auto *DPV : ToBeRemoved)
498 DPV->eraseFromParent();
499
500 return !ToBeRemoved.empty();
501}
502
504 if (BB->IsNewDbgInfoFormat)
506
509 VariableMap;
510 for (auto &I : *BB) {
511 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
512 DebugVariable Key(DVI->getVariable(), std::nullopt,
513 DVI->getDebugLoc()->getInlinedAt());
514 auto VMI = VariableMap.find(Key);
515 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
516 // A dbg.assign with no linked instructions can be treated like a
517 // dbg.value (i.e. can be deleted).
518 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
519
520 // Update the map if we found a new value/expression describing the
521 // variable, or if the variable wasn't mapped already.
522 SmallVector<Value *, 4> Values(DVI->getValues());
523 if (VMI == VariableMap.end() || VMI->second.first != Values ||
524 VMI->second.second != DVI->getExpression()) {
525 // Use a sentinal value (nullptr) for the DIExpression when we see a
526 // linked dbg.assign so that the next debug intrinsic will never match
527 // it (i.e. always treat linked dbg.assigns as if they're unique).
528 if (IsDbgValueKind)
529 VariableMap[Key] = {Values, DVI->getExpression()};
530 else
531 VariableMap[Key] = {Values, nullptr};
532 continue;
533 }
534
535 // Don't delete dbg.assign intrinsics that are linked to instructions.
536 if (!IsDbgValueKind)
537 continue;
538 ToBeRemoved.push_back(DVI);
539 }
540 }
541
542 for (auto &Instr : ToBeRemoved)
543 Instr->eraseFromParent();
544
545 return !ToBeRemoved.empty();
546}
547
548/// Remove redundant undef dbg.assign intrinsic from an entry block using a
549/// forward scan.
550/// Strategy:
551/// ---------------------
552/// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
553/// linked to an intrinsic, and don't share an aggregate variable with a debug
554/// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
555/// that come before non-undef debug intrinsics for the variable are
556/// deleted. Given:
557///
558/// dbg.assign undef, "x", FragmentX1 (*)
559/// <block of instructions, none being "dbg.value ..., "x", ...">
560/// dbg.value %V, "x", FragmentX2
561/// <block of instructions, none being "dbg.value ..., "x", ...">
562/// dbg.assign undef, "x", FragmentX1
563///
564/// then (only) the instruction marked with (*) can be removed.
565/// Possible improvements:
566/// - Keep track of non-overlapping fragments.
568 assert(BB->isEntryBlock() && "expected entry block");
570 DenseSet<DebugVariable> SeenDefForAggregate;
571 // Returns the DebugVariable for DVI with no fragment info.
572 auto GetAggregateVariable = [](DbgValueInst *DVI) {
573 return DebugVariable(DVI->getVariable(), std::nullopt,
574 DVI->getDebugLoc()->getInlinedAt());
575 };
576
577 // Remove undef dbg.assign intrinsics that are encountered before
578 // any non-undef intrinsics from the entry block.
579 for (auto &I : *BB) {
580 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
581 if (!DVI)
582 continue;
583 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
584 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
585 DebugVariable Aggregate = GetAggregateVariable(DVI);
586 if (!SeenDefForAggregate.contains(Aggregate)) {
587 bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
588 if (!IsKill) {
589 SeenDefForAggregate.insert(Aggregate);
590 } else if (DAI) {
591 ToBeRemoved.push_back(DAI);
592 }
593 }
594 }
595
596 for (DbgAssignIntrinsic *DAI : ToBeRemoved)
597 DAI->eraseFromParent();
598
599 return !ToBeRemoved.empty();
600}
601
603 bool MadeChanges = false;
604 // By using the "backward scan" strategy before the "forward scan" strategy we
605 // can remove both dbg.value (2) and (3) in a situation like this:
606 //
607 // (1) dbg.value V1, "x", DIExpression()
608 // ...
609 // (2) dbg.value V2, "x", DIExpression()
610 // (3) dbg.value V1, "x", DIExpression()
611 //
612 // The backward scan will remove (2), it is made obsolete by (3). After
613 // getting (2) out of the way, the foward scan will remove (3) since "x"
614 // already is described as having the value V1 at (1).
616 if (BB->isEntryBlock() &&
618 MadeChanges |= remomveUndefDbgAssignsFromEntryBlock(BB);
620
621 if (MadeChanges)
622 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
623 << BB->getName() << "\n");
624 return MadeChanges;
625}
626
628 Instruction &I = *BI;
629 // Replaces all of the uses of the instruction with uses of the value
630 I.replaceAllUsesWith(V);
631
632 // Make sure to propagate a name if there is one already.
633 if (I.hasName() && !V->hasName())
634 V->takeName(&I);
635
636 // Delete the unnecessary instruction now...
637 BI = BI->eraseFromParent();
638}
639
641 Instruction *I) {
642 assert(I->getParent() == nullptr &&
643 "ReplaceInstWithInst: Instruction already inserted into basic block!");
644
645 // Copy debug location to newly added instruction, if it wasn't already set
646 // by the caller.
647 if (!I->getDebugLoc())
648 I->setDebugLoc(BI->getDebugLoc());
649
650 // Insert the new instruction into the basic block...
651 BasicBlock::iterator New = I->insertInto(BB, BI);
652
653 // Replace all uses of the old instruction, and delete it.
655
656 // Move BI back to point to the newly inserted instruction
657 BI = New;
658}
659
661 // Remember visited blocks to avoid infinite loop
663 unsigned Depth = 0;
665 VisitedBlocks.insert(BB).second) {
666 if (isa<UnreachableInst>(BB->getTerminator()) ||
668 return true;
669 BB = BB->getUniqueSuccessor();
670 }
671 return false;
672}
673
676 ReplaceInstWithInst(From->getParent(), BI, To);
677}
678
680 LoopInfo *LI, MemorySSAUpdater *MSSAU,
681 const Twine &BBName) {
682 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
683
684 Instruction *LatchTerm = BB->getTerminator();
685
688
689 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
690 // If it is a critical edge, and the succesor is an exception block, handle
691 // the split edge logic in this specific function
692 if (Succ->isEHPad())
693 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
694
695 // If this is a critical edge, let SplitKnownCriticalEdge do it.
696 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
697 }
698
699 // If the edge isn't critical, then BB has a single successor or Succ has a
700 // single pred. Split the block.
701 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
702 // If the successor only has a single pred, split the top of the successor
703 // block.
704 assert(SP == BB && "CFG broken");
705 SP = nullptr;
706 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
707 /*Before=*/true);
708 }
709
710 // Otherwise, if BB has a single successor, split it at the bottom of the
711 // block.
712 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
713 "Should have a single succ!");
714 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
715}
716
718 if (auto *II = dyn_cast<InvokeInst>(TI))
719 II->setUnwindDest(Succ);
720 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
721 CS->setUnwindDest(Succ);
722 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
723 CR->setUnwindDest(Succ);
724 else
725 llvm_unreachable("unexpected terminator instruction");
726}
727
729 BasicBlock *NewPred, PHINode *Until) {
730 int BBIdx = 0;
731 for (PHINode &PN : DestBB->phis()) {
732 // We manually update the LandingPadReplacement PHINode and it is the last
733 // PHI Node. So, if we find it, we are done.
734 if (Until == &PN)
735 break;
736
737 // Reuse the previous value of BBIdx if it lines up. In cases where we
738 // have multiple phi nodes with *lots* of predecessors, this is a speed
739 // win because we don't have to scan the PHI looking for TIBB. This
740 // happens because the BB list of PHI nodes are usually in the same
741 // order.
742 if (PN.getIncomingBlock(BBIdx) != OldPred)
743 BBIdx = PN.getBasicBlockIndex(OldPred);
744
745 assert(BBIdx != -1 && "Invalid PHI Index!");
746 PN.setIncomingBlock(BBIdx, NewPred);
747 }
748}
749
751 LandingPadInst *OriginalPad,
752 PHINode *LandingPadReplacement,
754 const Twine &BBName) {
755
756 auto *PadInst = Succ->getFirstNonPHI();
757 if (!LandingPadReplacement && !PadInst->isEHPad())
758 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
759
760 auto *LI = Options.LI;
762 // Check if extra modifications will be required to preserve loop-simplify
763 // form after splitting. If it would require splitting blocks with IndirectBr
764 // terminators, bail out if preserving loop-simplify form is requested.
765 if (Options.PreserveLoopSimplify && LI) {
766 if (Loop *BBLoop = LI->getLoopFor(BB)) {
767
768 // The only way that we can break LoopSimplify form by splitting a
769 // critical edge is when there exists some edge from BBLoop to Succ *and*
770 // the only edge into Succ from outside of BBLoop is that of NewBB after
771 // the split. If the first isn't true, then LoopSimplify still holds,
772 // NewBB is the new exit block and it has no non-loop predecessors. If the
773 // second isn't true, then Succ was not in LoopSimplify form prior to
774 // the split as it had a non-loop predecessor. In both of these cases,
775 // the predecessor must be directly in BBLoop, not in a subloop, or again
776 // LoopSimplify doesn't hold.
777 for (BasicBlock *P : predecessors(Succ)) {
778 if (P == BB)
779 continue; // The new block is known.
780 if (LI->getLoopFor(P) != BBLoop) {
781 // Loop is not in LoopSimplify form, no need to re simplify after
782 // splitting edge.
783 LoopPreds.clear();
784 break;
785 }
786 LoopPreds.push_back(P);
787 }
788 // Loop-simplify form can be preserved, if we can split all in-loop
789 // predecessors.
790 if (any_of(LoopPreds, [](BasicBlock *Pred) {
791 return isa<IndirectBrInst>(Pred->getTerminator());
792 })) {
793 return nullptr;
794 }
795 }
796 }
797
798 auto *NewBB =
799 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
800 setUnwindEdgeTo(BB->getTerminator(), NewBB);
801 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
802
803 if (LandingPadReplacement) {
804 auto *NewLP = OriginalPad->clone();
805 auto *Terminator = BranchInst::Create(Succ, NewBB);
806 NewLP->insertBefore(Terminator);
807 LandingPadReplacement->addIncoming(NewLP, NewBB);
808 } else {
809 Value *ParentPad = nullptr;
810 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
811 ParentPad = FuncletPad->getParentPad();
812 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
813 ParentPad = CatchSwitch->getParentPad();
814 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
815 ParentPad = CleanupPad->getParentPad();
816 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
817 ParentPad = LandingPad->getParent();
818 else
819 llvm_unreachable("handling for other EHPads not implemented yet");
820
821 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
822 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
823 }
824
825 auto *DT = Options.DT;
826 auto *MSSAU = Options.MSSAU;
827 if (!DT && !LI)
828 return NewBB;
829
830 if (DT) {
831 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
833
834 Updates.push_back({DominatorTree::Insert, BB, NewBB});
835 Updates.push_back({DominatorTree::Insert, NewBB, Succ});
836 Updates.push_back({DominatorTree::Delete, BB, Succ});
837
838 DTU.applyUpdates(Updates);
839 DTU.flush();
840
841 if (MSSAU) {
842 MSSAU->applyUpdates(Updates, *DT);
843 if (VerifyMemorySSA)
844 MSSAU->getMemorySSA()->verifyMemorySSA();
845 }
846 }
847
848 if (LI) {
849 if (Loop *BBLoop = LI->getLoopFor(BB)) {
850 // If one or the other blocks were not in a loop, the new block is not
851 // either, and thus LI doesn't need to be updated.
852 if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
853 if (BBLoop == SuccLoop) {
854 // Both in the same loop, the NewBB joins loop.
855 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
856 } else if (BBLoop->contains(SuccLoop)) {
857 // Edge from an outer loop to an inner loop. Add to the outer loop.
858 BBLoop->addBasicBlockToLoop(NewBB, *LI);
859 } else if (SuccLoop->contains(BBLoop)) {
860 // Edge from an inner loop to an outer loop. Add to the outer loop.
861 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
862 } else {
863 // Edge from two loops with no containment relation. Because these
864 // are natural loops, we know that the destination block must be the
865 // header of its loop (adding a branch into a loop elsewhere would
866 // create an irreducible loop).
867 assert(SuccLoop->getHeader() == Succ &&
868 "Should not create irreducible loops!");
869 if (Loop *P = SuccLoop->getParentLoop())
870 P->addBasicBlockToLoop(NewBB, *LI);
871 }
872 }
873
874 // If BB is in a loop and Succ is outside of that loop, we may need to
875 // update LoopSimplify form and LCSSA form.
876 if (!BBLoop->contains(Succ)) {
877 assert(!BBLoop->contains(NewBB) &&
878 "Split point for loop exit is contained in loop!");
879
880 // Update LCSSA form in the newly created exit block.
881 if (Options.PreserveLCSSA) {
882 createPHIsForSplitLoopExit(BB, NewBB, Succ);
883 }
884
885 if (!LoopPreds.empty()) {
887 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
888 if (Options.PreserveLCSSA)
889 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
890 }
891 }
892 }
893 }
894
895 return NewBB;
896}
897
899 BasicBlock *SplitBB, BasicBlock *DestBB) {
900 // SplitBB shouldn't have anything non-trivial in it yet.
901 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
902 SplitBB->isLandingPad()) &&
903 "SplitBB has non-PHI nodes!");
904
905 // For each PHI in the destination block.
906 for (PHINode &PN : DestBB->phis()) {
907 int Idx = PN.getBasicBlockIndex(SplitBB);
908 assert(Idx >= 0 && "Invalid Block Index");
909 Value *V = PN.getIncomingValue(Idx);
910
911 // If the input is a PHI which already satisfies LCSSA, don't create
912 // a new one.
913 if (const PHINode *VP = dyn_cast<PHINode>(V))
914 if (VP->getParent() == SplitBB)
915 continue;
916
917 // Otherwise a new PHI is needed. Create one and populate it.
918 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
919 BasicBlock::iterator InsertPos =
920 SplitBB->isLandingPad() ? SplitBB->begin()
921 : SplitBB->getTerminator()->getIterator();
922 NewPN->insertBefore(InsertPos);
923 for (BasicBlock *BB : Preds)
924 NewPN->addIncoming(V, BB);
925
926 // Update the original PHI.
927 PN.setIncomingValue(Idx, NewPN);
928 }
929}
930
931unsigned
934 unsigned NumBroken = 0;
935 for (BasicBlock &BB : F) {
936 Instruction *TI = BB.getTerminator();
937 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
938 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
939 if (SplitCriticalEdge(TI, i, Options))
940 ++NumBroken;
941 }
942 return NumBroken;
943}
944
947 LoopInfo *LI, MemorySSAUpdater *MSSAU,
948 const Twine &BBName, bool Before) {
949 if (Before) {
950 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
951 return splitBlockBefore(Old, SplitPt,
952 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
953 BBName);
954 }
955 BasicBlock::iterator SplitIt = SplitPt;
956 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
957 ++SplitIt;
958 assert(SplitIt != SplitPt->getParent()->end());
959 }
960 std::string Name = BBName.str();
961 BasicBlock *New = Old->splitBasicBlock(
962 SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
963
964 // The new block lives in whichever loop the old one did. This preserves
965 // LCSSA as well, because we force the split point to be after any PHI nodes.
966 if (LI)
967 if (Loop *L = LI->getLoopFor(Old))
968 L->addBasicBlockToLoop(New, *LI);
969
970 if (DTU) {
972 // Old dominates New. New node dominates all other nodes dominated by Old.
973 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
974 Updates.push_back({DominatorTree::Insert, Old, New});
975 Updates.reserve(Updates.size() + 2 * succ_size(New));
976 for (BasicBlock *SuccessorOfOld : successors(New))
977 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
978 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
979 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
980 }
981
982 DTU->applyUpdates(Updates);
983 } else if (DT)
984 // Old dominates New. New node dominates all other nodes dominated by Old.
985 if (DomTreeNode *OldNode = DT->getNode(Old)) {
986 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
987
988 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
989 for (DomTreeNode *I : Children)
990 DT->changeImmediateDominator(I, NewNode);
991 }
992
993 // Move MemoryAccesses still tracked in Old, but part of New now.
994 // Update accesses in successor blocks accordingly.
995 if (MSSAU)
996 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
997
998 return New;
999}
1000
1002 DominatorTree *DT, LoopInfo *LI,
1003 MemorySSAUpdater *MSSAU, const Twine &BBName,
1004 bool Before) {
1005 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1006 Before);
1007}
1009 DomTreeUpdater *DTU, LoopInfo *LI,
1010 MemorySSAUpdater *MSSAU, const Twine &BBName,
1011 bool Before) {
1012 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1013 Before);
1014}
1015
1017 DomTreeUpdater *DTU, LoopInfo *LI,
1018 MemorySSAUpdater *MSSAU,
1019 const Twine &BBName) {
1020
1021 BasicBlock::iterator SplitIt = SplitPt;
1022 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1023 ++SplitIt;
1024 std::string Name = BBName.str();
1025 BasicBlock *New = Old->splitBasicBlock(
1026 SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1027 /* Before=*/true);
1028
1029 // The new block lives in whichever loop the old one did. This preserves
1030 // LCSSA as well, because we force the split point to be after any PHI nodes.
1031 if (LI)
1032 if (Loop *L = LI->getLoopFor(Old))
1033 L->addBasicBlockToLoop(New, *LI);
1034
1035 if (DTU) {
1037 // New dominates Old. The predecessor nodes of the Old node dominate
1038 // New node.
1039 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1040 DTUpdates.push_back({DominatorTree::Insert, New, Old});
1041 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
1042 for (BasicBlock *PredecessorOfOld : predecessors(New))
1043 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
1044 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
1045 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1046 }
1047
1048 DTU->applyUpdates(DTUpdates);
1049
1050 // Move MemoryAccesses still tracked in Old, but part of New now.
1051 // Update accesses in successor blocks accordingly.
1052 if (MSSAU) {
1053 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1054 if (VerifyMemorySSA)
1055 MSSAU->getMemorySSA()->verifyMemorySSA();
1056 }
1057 }
1058 return New;
1059}
1060
1061/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1064 DomTreeUpdater *DTU, DominatorTree *DT,
1065 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1066 bool PreserveLCSSA, bool &HasLoopExit) {
1067 // Update dominator tree if available.
1068 if (DTU) {
1069 // Recalculation of DomTree is needed when updating a forward DomTree and
1070 // the Entry BB is replaced.
1071 if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1072 // The entry block was removed and there is no external interface for
1073 // the dominator tree to be notified of this change. In this corner-case
1074 // we recalculate the entire tree.
1075 DTU->recalculate(*NewBB->getParent());
1076 } else {
1077 // Split block expects NewBB to have a non-empty set of predecessors.
1079 SmallPtrSet<BasicBlock *, 8> UniquePreds;
1080 Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1081 Updates.reserve(Updates.size() + 2 * Preds.size());
1082 for (auto *Pred : Preds)
1083 if (UniquePreds.insert(Pred).second) {
1084 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1085 Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1086 }
1087 DTU->applyUpdates(Updates);
1088 }
1089 } else if (DT) {
1090 if (OldBB == DT->getRootNode()->getBlock()) {
1091 assert(NewBB->isEntryBlock());
1092 DT->setNewRoot(NewBB);
1093 } else {
1094 // Split block expects NewBB to have a non-empty set of predecessors.
1095 DT->splitBlock(NewBB);
1096 }
1097 }
1098
1099 // Update MemoryPhis after split if MemorySSA is available
1100 if (MSSAU)
1101 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1102
1103 // The rest of the logic is only relevant for updating the loop structures.
1104 if (!LI)
1105 return;
1106
1107 if (DTU && DTU->hasDomTree())
1108 DT = &DTU->getDomTree();
1109 assert(DT && "DT should be available to update LoopInfo!");
1110 Loop *L = LI->getLoopFor(OldBB);
1111
1112 // If we need to preserve loop analyses, collect some information about how
1113 // this split will affect loops.
1114 bool IsLoopEntry = !!L;
1115 bool SplitMakesNewLoopHeader = false;
1116 for (BasicBlock *Pred : Preds) {
1117 // Preds that are not reachable from entry should not be used to identify if
1118 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1119 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1120 // as true and make the NewBB the header of some loop. This breaks LI.
1121 if (!DT->isReachableFromEntry(Pred))
1122 continue;
1123 // If we need to preserve LCSSA, determine if any of the preds is a loop
1124 // exit.
1125 if (PreserveLCSSA)
1126 if (Loop *PL = LI->getLoopFor(Pred))
1127 if (!PL->contains(OldBB))
1128 HasLoopExit = true;
1129
1130 // If we need to preserve LoopInfo, note whether any of the preds crosses
1131 // an interesting loop boundary.
1132 if (!L)
1133 continue;
1134 if (L->contains(Pred))
1135 IsLoopEntry = false;
1136 else
1137 SplitMakesNewLoopHeader = true;
1138 }
1139
1140 // Unless we have a loop for OldBB, nothing else to do here.
1141 if (!L)
1142 return;
1143
1144 if (IsLoopEntry) {
1145 // Add the new block to the nearest enclosing loop (and not an adjacent
1146 // loop). To find this, examine each of the predecessors and determine which
1147 // loops enclose them, and select the most-nested loop which contains the
1148 // loop containing the block being split.
1149 Loop *InnermostPredLoop = nullptr;
1150 for (BasicBlock *Pred : Preds) {
1151 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1152 // Seek a loop which actually contains the block being split (to avoid
1153 // adjacent loops).
1154 while (PredLoop && !PredLoop->contains(OldBB))
1155 PredLoop = PredLoop->getParentLoop();
1156
1157 // Select the most-nested of these loops which contains the block.
1158 if (PredLoop && PredLoop->contains(OldBB) &&
1159 (!InnermostPredLoop ||
1160 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1161 InnermostPredLoop = PredLoop;
1162 }
1163 }
1164
1165 if (InnermostPredLoop)
1166 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1167 } else {
1168 L->addBasicBlockToLoop(NewBB, *LI);
1169 if (SplitMakesNewLoopHeader)
1170 L->moveToHeader(NewBB);
1171 }
1172}
1173
1174/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1175/// This also updates AliasAnalysis, if available.
1176static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1178 bool HasLoopExit) {
1179 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1180 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1181 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1182 PHINode *PN = cast<PHINode>(I++);
1183
1184 // Check to see if all of the values coming in are the same. If so, we
1185 // don't need to create a new PHI node, unless it's needed for LCSSA.
1186 Value *InVal = nullptr;
1187 if (!HasLoopExit) {
1188 InVal = PN->getIncomingValueForBlock(Preds[0]);
1189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1190 if (!PredSet.count(PN->getIncomingBlock(i)))
1191 continue;
1192 if (!InVal)
1193 InVal = PN->getIncomingValue(i);
1194 else if (InVal != PN->getIncomingValue(i)) {
1195 InVal = nullptr;
1196 break;
1197 }
1198 }
1199 }
1200
1201 if (InVal) {
1202 // If all incoming values for the new PHI would be the same, just don't
1203 // make a new PHI. Instead, just remove the incoming values from the old
1204 // PHI.
1206 [&](unsigned Idx) {
1207 return PredSet.contains(PN->getIncomingBlock(Idx));
1208 },
1209 /* DeletePHIIfEmpty */ false);
1210
1211 // Add an incoming value to the PHI node in the loop for the preheader
1212 // edge.
1213 PN->addIncoming(InVal, NewBB);
1214 continue;
1215 }
1216
1217 // If the values coming into the block are not the same, we need a new
1218 // PHI.
1219 // Create the new PHI node, insert it into NewBB at the end of the block
1220 PHINode *NewPHI =
1221 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1222
1223 // NOTE! This loop walks backwards for a reason! First off, this minimizes
1224 // the cost of removal if we end up removing a large number of values, and
1225 // second off, this ensures that the indices for the incoming values aren't
1226 // invalidated when we remove one.
1227 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1228 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1229 if (PredSet.count(IncomingBB)) {
1230 Value *V = PN->removeIncomingValue(i, false);
1231 NewPHI->addIncoming(V, IncomingBB);
1232 }
1233 }
1234
1235 PN->addIncoming(NewPHI, NewBB);
1236 }
1237}
1238
1240 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1241 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1242 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1243 MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1244
1245static BasicBlock *
1247 const char *Suffix, DomTreeUpdater *DTU,
1248 DominatorTree *DT, LoopInfo *LI,
1249 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1250 // Do not attempt to split that which cannot be split.
1251 if (!BB->canSplitPredecessors())
1252 return nullptr;
1253
1254 // For the landingpads we need to act a bit differently.
1255 // Delegate this work to the SplitLandingPadPredecessors.
1256 if (BB->isLandingPad()) {
1258 std::string NewName = std::string(Suffix) + ".split-lp";
1259
1260 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1261 DTU, DT, LI, MSSAU, PreserveLCSSA);
1262 return NewBBs[0];
1263 }
1264
1265 // Create new basic block, insert right before the original block.
1267 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1268
1269 // The new block unconditionally branches to the old block.
1270 BranchInst *BI = BranchInst::Create(BB, NewBB);
1271
1272 Loop *L = nullptr;
1273 BasicBlock *OldLatch = nullptr;
1274 // Splitting the predecessors of a loop header creates a preheader block.
1275 if (LI && LI->isLoopHeader(BB)) {
1276 L = LI->getLoopFor(BB);
1277 // Using the loop start line number prevents debuggers stepping into the
1278 // loop body for this instruction.
1279 BI->setDebugLoc(L->getStartLoc());
1280
1281 // If BB is the header of the Loop, it is possible that the loop is
1282 // modified, such that the current latch does not remain the latch of the
1283 // loop. If that is the case, the loop metadata from the current latch needs
1284 // to be applied to the new latch.
1285 OldLatch = L->getLoopLatch();
1286 } else
1288
1289 // Move the edges from Preds to point to NewBB instead of BB.
1290 for (BasicBlock *Pred : Preds) {
1291 // This is slightly more strict than necessary; the minimum requirement
1292 // is that there be no more than one indirectbr branching to BB. And
1293 // all BlockAddress uses would need to be updated.
1294 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1295 "Cannot split an edge from an IndirectBrInst");
1296 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1297 }
1298
1299 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1300 // node becomes an incoming value for BB's phi node. However, if the Preds
1301 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1302 // account for the newly created predecessor.
1303 if (Preds.empty()) {
1304 // Insert dummy values as the incoming value.
1305 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1306 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1307 }
1308
1309 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1310 bool HasLoopExit = false;
1311 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1312 HasLoopExit);
1313
1314 if (!Preds.empty()) {
1315 // Update the PHI nodes in BB with the values coming from NewBB.
1316 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1317 }
1318
1319 if (OldLatch) {
1320 BasicBlock *NewLatch = L->getLoopLatch();
1321 if (NewLatch != OldLatch) {
1322 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1323 NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1324 // It's still possible that OldLatch is the latch of another inner loop,
1325 // in which case we do not remove the metadata.
1326 Loop *IL = LI->getLoopFor(OldLatch);
1327 if (IL && IL->getLoopLatch() != OldLatch)
1328 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1329 }
1330 }
1331
1332 return NewBB;
1333}
1334
1337 const char *Suffix, DominatorTree *DT,
1338 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1339 bool PreserveLCSSA) {
1340 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1341 MSSAU, PreserveLCSSA);
1342}
1345 const char *Suffix,
1346 DomTreeUpdater *DTU, LoopInfo *LI,
1347 MemorySSAUpdater *MSSAU,
1348 bool PreserveLCSSA) {
1349 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1350 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1351}
1352
1354 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1355 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1356 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1357 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1358 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1359
1360 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1361 // it right before the original block.
1362 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1363 OrigBB->getName() + Suffix1,
1364 OrigBB->getParent(), OrigBB);
1365 NewBBs.push_back(NewBB1);
1366
1367 // The new block unconditionally branches to the old block.
1368 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1369 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1370
1371 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1372 for (BasicBlock *Pred : Preds) {
1373 // This is slightly more strict than necessary; the minimum requirement
1374 // is that there be no more than one indirectbr branching to BB. And
1375 // all BlockAddress uses would need to be updated.
1376 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1377 "Cannot split an edge from an IndirectBrInst");
1378 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1379 }
1380
1381 bool HasLoopExit = false;
1382 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1383 PreserveLCSSA, HasLoopExit);
1384
1385 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1386 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1387
1388 // Move the remaining edges from OrigBB to point to NewBB2.
1389 SmallVector<BasicBlock*, 8> NewBB2Preds;
1390 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1391 i != e; ) {
1392 BasicBlock *Pred = *i++;
1393 if (Pred == NewBB1) continue;
1394 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1395 "Cannot split an edge from an IndirectBrInst");
1396 NewBB2Preds.push_back(Pred);
1397 e = pred_end(OrigBB);
1398 }
1399
1400 BasicBlock *NewBB2 = nullptr;
1401 if (!NewBB2Preds.empty()) {
1402 // Create another basic block for the rest of OrigBB's predecessors.
1403 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1404 OrigBB->getName() + Suffix2,
1405 OrigBB->getParent(), OrigBB);
1406 NewBBs.push_back(NewBB2);
1407
1408 // The new block unconditionally branches to the old block.
1409 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1410 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1411
1412 // Move the remaining edges from OrigBB to point to NewBB2.
1413 for (BasicBlock *NewBB2Pred : NewBB2Preds)
1414 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1415
1416 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1417 HasLoopExit = false;
1418 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1419 PreserveLCSSA, HasLoopExit);
1420
1421 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1422 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1423 }
1424
1425 LandingPadInst *LPad = OrigBB->getLandingPadInst();
1426 Instruction *Clone1 = LPad->clone();
1427 Clone1->setName(Twine("lpad") + Suffix1);
1428 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1429
1430 if (NewBB2) {
1431 Instruction *Clone2 = LPad->clone();
1432 Clone2->setName(Twine("lpad") + Suffix2);
1433 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1434
1435 // Create a PHI node for the two cloned landingpad instructions only
1436 // if the original landingpad instruction has some uses.
1437 if (!LPad->use_empty()) {
1438 assert(!LPad->getType()->isTokenTy() &&
1439 "Split cannot be applied if LPad is token type. Otherwise an "
1440 "invalid PHINode of token type would be created.");
1441 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1442 PN->addIncoming(Clone1, NewBB1);
1443 PN->addIncoming(Clone2, NewBB2);
1444 LPad->replaceAllUsesWith(PN);
1445 }
1446 LPad->eraseFromParent();
1447 } else {
1448 // There is no second clone. Just replace the landing pad with the first
1449 // clone.
1450 LPad->replaceAllUsesWith(Clone1);
1451 LPad->eraseFromParent();
1452 }
1453}
1454
1457 const char *Suffix1, const char *Suffix2,
1459 DomTreeUpdater *DTU, LoopInfo *LI,
1460 MemorySSAUpdater *MSSAU,
1461 bool PreserveLCSSA) {
1462 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1463 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1464 PreserveLCSSA);
1465}
1466
1468 BasicBlock *Pred,
1469 DomTreeUpdater *DTU) {
1470 Instruction *UncondBranch = Pred->getTerminator();
1471 // Clone the return and add it to the end of the predecessor.
1472 Instruction *NewRet = RI->clone();
1473 NewRet->insertInto(Pred, Pred->end());
1474
1475 // If the return instruction returns a value, and if the value was a
1476 // PHI node in "BB", propagate the right value into the return.
1477 for (Use &Op : NewRet->operands()) {
1478 Value *V = Op;
1479 Instruction *NewBC = nullptr;
1480 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1481 // Return value might be bitcasted. Clone and insert it before the
1482 // return instruction.
1483 V = BCI->getOperand(0);
1484 NewBC = BCI->clone();
1485 NewBC->insertInto(Pred, NewRet->getIterator());
1486 Op = NewBC;
1487 }
1488
1489 Instruction *NewEV = nullptr;
1490 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1491 V = EVI->getOperand(0);
1492 NewEV = EVI->clone();
1493 if (NewBC) {
1494 NewBC->setOperand(0, NewEV);
1495 NewEV->insertInto(Pred, NewBC->getIterator());
1496 } else {
1497 NewEV->insertInto(Pred, NewRet->getIterator());
1498 Op = NewEV;
1499 }
1500 }
1501
1502 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1503 if (PN->getParent() == BB) {
1504 if (NewEV) {
1505 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1506 } else if (NewBC)
1507 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1508 else
1509 Op = PN->getIncomingValueForBlock(Pred);
1510 }
1511 }
1512 }
1513
1514 // Update any PHI nodes in the returning block to realize that we no
1515 // longer branch to them.
1516 BB->removePredecessor(Pred);
1517 UncondBranch->eraseFromParent();
1518
1519 if (DTU)
1520 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1521
1522 return cast<ReturnInst>(NewRet);
1523}
1524
1526 BasicBlock::iterator SplitBefore,
1527 bool Unreachable,
1528 MDNode *BranchWeights,
1529 DomTreeUpdater *DTU, LoopInfo *LI,
1530 BasicBlock *ThenBlock) {
1532 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1533 /* UnreachableThen */ Unreachable,
1534 /* UnreachableElse */ false, BranchWeights, DTU, LI);
1535 return ThenBlock->getTerminator();
1536}
1537
1539 BasicBlock::iterator SplitBefore,
1540 bool Unreachable,
1541 MDNode *BranchWeights,
1542 DomTreeUpdater *DTU, LoopInfo *LI,
1543 BasicBlock *ElseBlock) {
1545 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1546 /* UnreachableThen */ false,
1547 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1548 return ElseBlock->getTerminator();
1549}
1550
1552 Instruction **ThenTerm,
1553 Instruction **ElseTerm,
1554 MDNode *BranchWeights,
1555 DomTreeUpdater *DTU, LoopInfo *LI) {
1556 BasicBlock *ThenBlock = nullptr;
1557 BasicBlock *ElseBlock = nullptr;
1559 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1560 /* UnreachableElse */ false, BranchWeights, DTU, LI);
1561
1562 *ThenTerm = ThenBlock->getTerminator();
1563 *ElseTerm = ElseBlock->getTerminator();
1564}
1565
1567 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
1568 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1569 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1570 assert((ThenBlock || ElseBlock) &&
1571 "At least one branch block must be created");
1572 assert((!UnreachableThen || !UnreachableElse) &&
1573 "Split block tail must be reachable");
1574
1576 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1577 BasicBlock *Head = SplitBefore->getParent();
1578 if (DTU) {
1579 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1580 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1581 }
1582
1583 LLVMContext &C = Head->getContext();
1584 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
1585 BasicBlock *TrueBlock = Tail;
1586 BasicBlock *FalseBlock = Tail;
1587 bool ThenToTailEdge = false;
1588 bool ElseToTailEdge = false;
1589
1590 // Encapsulate the logic around creation/insertion/etc of a new block.
1591 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1592 bool &ToTailEdge) {
1593 if (PBB == nullptr)
1594 return; // Do not create/insert a block.
1595
1596 if (*PBB)
1597 BB = *PBB; // Caller supplied block, use it.
1598 else {
1599 // Create a new block.
1600 BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1601 if (Unreachable)
1602 (void)new UnreachableInst(C, BB);
1603 else {
1604 (void)BranchInst::Create(Tail, BB);
1605 ToTailEdge = true;
1606 }
1607 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1608 // Pass the new block back to the caller.
1609 *PBB = BB;
1610 }
1611 };
1612
1613 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1614 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1615
1616 Instruction *HeadOldTerm = Head->getTerminator();
1617 BranchInst *HeadNewTerm =
1618 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1619 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1620 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1621
1622 if (DTU) {
1623 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1624 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1625 if (ThenToTailEdge)
1626 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1627 if (ElseToTailEdge)
1628 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1629 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1630 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1631 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1632 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1633 DTU->applyUpdates(Updates);
1634 }
1635
1636 if (LI) {
1637 if (Loop *L = LI->getLoopFor(Head); L) {
1638 if (ThenToTailEdge)
1639 L->addBasicBlockToLoop(TrueBlock, *LI);
1640 if (ElseToTailEdge)
1641 L->addBasicBlockToLoop(FalseBlock, *LI);
1642 L->addBasicBlockToLoop(Tail, *LI);
1643 }
1644 }
1645}
1646
1647std::pair<Instruction*, Value*>
1649 BasicBlock *LoopPred = SplitBefore->getParent();
1650 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1651 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1652
1653 auto *Ty = End->getType();
1654 auto &DL = SplitBefore->getModule()->getDataLayout();
1655 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1656
1657 IRBuilder<> Builder(LoopBody->getTerminator());
1658 auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1659 auto *IVNext =
1660 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1661 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1662 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1663 IV->getName() + ".check");
1664 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1665 LoopBody->getTerminator()->eraseFromParent();
1666
1667 // Populate the IV PHI.
1668 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1669 IV->addIncoming(IVNext, LoopBody);
1670
1671 return std::make_pair(LoopBody->getFirstNonPHI(), IV);
1672}
1673
1675 Type *IndexTy, Instruction *InsertBefore,
1676 std::function<void(IRBuilderBase&, Value*)> Func) {
1677
1678 IRBuilder<> IRB(InsertBefore);
1679
1680 if (EC.isScalable()) {
1681 Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1682
1683 auto [BodyIP, Index] =
1684 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1685
1686 IRB.SetInsertPoint(BodyIP);
1687 Func(IRB, Index);
1688 return;
1689 }
1690
1691 unsigned Num = EC.getFixedValue();
1692 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1693 IRB.SetInsertPoint(InsertBefore);
1694 Func(IRB, ConstantInt::get(IndexTy, Idx));
1695 }
1696}
1697
1699 Value *EVL, Instruction *InsertBefore,
1700 std::function<void(IRBuilderBase &, Value *)> Func) {
1701
1702 IRBuilder<> IRB(InsertBefore);
1703 Type *Ty = EVL->getType();
1704
1705 if (!isa<ConstantInt>(EVL)) {
1706 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1707 IRB.SetInsertPoint(BodyIP);
1708 Func(IRB, Index);
1709 return;
1710 }
1711
1712 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1713 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1714 IRB.SetInsertPoint(InsertBefore);
1715 Func(IRB, ConstantInt::get(Ty, Idx));
1716 }
1717}
1718
1720 BasicBlock *&IfFalse) {
1721 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1722 BasicBlock *Pred1 = nullptr;
1723 BasicBlock *Pred2 = nullptr;
1724
1725 if (SomePHI) {
1726 if (SomePHI->getNumIncomingValues() != 2)
1727 return nullptr;
1728 Pred1 = SomePHI->getIncomingBlock(0);
1729 Pred2 = SomePHI->getIncomingBlock(1);
1730 } else {
1731 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1732 if (PI == PE) // No predecessor
1733 return nullptr;
1734 Pred1 = *PI++;
1735 if (PI == PE) // Only one predecessor
1736 return nullptr;
1737 Pred2 = *PI++;
1738 if (PI != PE) // More than two predecessors
1739 return nullptr;
1740 }
1741
1742 // We can only handle branches. Other control flow will be lowered to
1743 // branches if possible anyway.
1744 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1745 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1746 if (!Pred1Br || !Pred2Br)
1747 return nullptr;
1748
1749 // Eliminate code duplication by ensuring that Pred1Br is conditional if
1750 // either are.
1751 if (Pred2Br->isConditional()) {
1752 // If both branches are conditional, we don't have an "if statement". In
1753 // reality, we could transform this case, but since the condition will be
1754 // required anyway, we stand no chance of eliminating it, so the xform is
1755 // probably not profitable.
1756 if (Pred1Br->isConditional())
1757 return nullptr;
1758
1759 std::swap(Pred1, Pred2);
1760 std::swap(Pred1Br, Pred2Br);
1761 }
1762
1763 if (Pred1Br->isConditional()) {
1764 // The only thing we have to watch out for here is to make sure that Pred2
1765 // doesn't have incoming edges from other blocks. If it does, the condition
1766 // doesn't dominate BB.
1767 if (!Pred2->getSinglePredecessor())
1768 return nullptr;
1769
1770 // If we found a conditional branch predecessor, make sure that it branches
1771 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
1772 if (Pred1Br->getSuccessor(0) == BB &&
1773 Pred1Br->getSuccessor(1) == Pred2) {
1774 IfTrue = Pred1;
1775 IfFalse = Pred2;
1776 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1777 Pred1Br->getSuccessor(1) == BB) {
1778 IfTrue = Pred2;
1779 IfFalse = Pred1;
1780 } else {
1781 // We know that one arm of the conditional goes to BB, so the other must
1782 // go somewhere unrelated, and this must not be an "if statement".
1783 return nullptr;
1784 }
1785
1786 return Pred1Br;
1787 }
1788
1789 // Ok, if we got here, both predecessors end with an unconditional branch to
1790 // BB. Don't panic! If both blocks only have a single (identical)
1791 // predecessor, and THAT is a conditional branch, then we're all ok!
1792 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1793 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1794 return nullptr;
1795
1796 // Otherwise, if this is a conditional branch, then we can use it!
1797 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1798 if (!BI) return nullptr;
1799
1800 assert(BI->isConditional() && "Two successors but not conditional?");
1801 if (BI->getSuccessor(0) == Pred1) {
1802 IfTrue = Pred1;
1803 IfFalse = Pred2;
1804 } else {
1805 IfTrue = Pred2;
1806 IfFalse = Pred1;
1807 }
1808 return BI;
1809}
1810
1811// After creating a control flow hub, the operands of PHINodes in an outgoing
1812// block Out no longer match the predecessors of that block. Predecessors of Out
1813// that are incoming blocks to the hub are now replaced by just one edge from
1814// the hub. To match this new control flow, the corresponding values from each
1815// PHINode must now be moved a new PHINode in the first guard block of the hub.
1816//
1817// This operation cannot be performed with SSAUpdater, because it involves one
1818// new use: If the block Out is in the list of Incoming blocks, then the newly
1819// created PHI in the Hub will use itself along that edge from Out to Hub.
1820static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1821 const SetVector<BasicBlock *> &Incoming,
1822 BasicBlock *FirstGuardBlock) {
1823 auto I = Out->begin();
1824 while (I != Out->end() && isa<PHINode>(I)) {
1825 auto Phi = cast<PHINode>(I);
1826 auto NewPhi =
1827 PHINode::Create(Phi->getType(), Incoming.size(),
1828 Phi->getName() + ".moved", &FirstGuardBlock->front());
1829 for (auto *In : Incoming) {
1830 Value *V = UndefValue::get(Phi->getType());
1831 if (In == Out) {
1832 V = NewPhi;
1833 } else if (Phi->getBasicBlockIndex(In) != -1) {
1834 V = Phi->removeIncomingValue(In, false);
1835 }
1836 NewPhi->addIncoming(V, In);
1837 }
1838 assert(NewPhi->getNumIncomingValues() == Incoming.size());
1839 if (Phi->getNumOperands() == 0) {
1840 Phi->replaceAllUsesWith(NewPhi);
1841 I = Phi->eraseFromParent();
1842 continue;
1843 }
1844 Phi->addIncoming(NewPhi, GuardBlock);
1845 ++I;
1846 }
1847}
1848
1851
1852// Redirects the terminator of the incoming block to the first guard
1853// block in the hub. The condition of the original terminator (if it
1854// was conditional) and its original successors are returned as a
1855// tuple <condition, succ0, succ1>. The function additionally filters
1856// out successors that are not in the set of outgoing blocks.
1857//
1858// - condition is non-null iff the branch is conditional.
1859// - Succ1 is non-null iff the sole/taken target is an outgoing block.
1860// - Succ2 is non-null iff condition is non-null and the fallthrough
1861// target is an outgoing block.
1862static std::tuple<Value *, BasicBlock *, BasicBlock *>
1864 const BBSetVector &Outgoing) {
1865 assert(isa<BranchInst>(BB->getTerminator()) &&
1866 "Only support branch terminator.");
1867 auto Branch = cast<BranchInst>(BB->getTerminator());
1868 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1869
1870 BasicBlock *Succ0 = Branch->getSuccessor(0);
1871 BasicBlock *Succ1 = nullptr;
1872 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1873
1874 if (Branch->isUnconditional()) {
1875 Branch->setSuccessor(0, FirstGuardBlock);
1876 assert(Succ0);
1877 } else {
1878 Succ1 = Branch->getSuccessor(1);
1879 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1880 assert(Succ0 || Succ1);
1881 if (Succ0 && !Succ1) {
1882 Branch->setSuccessor(0, FirstGuardBlock);
1883 } else if (Succ1 && !Succ0) {
1884 Branch->setSuccessor(1, FirstGuardBlock);
1885 } else {
1886 Branch->eraseFromParent();
1887 BranchInst::Create(FirstGuardBlock, BB);
1888 }
1889 }
1890
1891 assert(Succ0 || Succ1);
1892 return std::make_tuple(Condition, Succ0, Succ1);
1893}
1894// Setup the branch instructions for guard blocks.
1895//
1896// Each guard block terminates in a conditional branch that transfers
1897// control to the corresponding outgoing block or the next guard
1898// block. The last guard block has two outgoing blocks as successors
1899// since the condition for the final outgoing block is trivially
1900// true. So we create one less block (including the first guard block)
1901// than the number of outgoing blocks.
1903 const BBSetVector &Outgoing,
1904 BBPredicates &GuardPredicates) {
1905 // To help keep the loop simple, temporarily append the last
1906 // outgoing block to the list of guard blocks.
1907 GuardBlocks.push_back(Outgoing.back());
1908
1909 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1910 auto Out = Outgoing[i];
1911 assert(GuardPredicates.count(Out));
1912 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1913 GuardBlocks[i]);
1914 }
1915
1916 // Remove the last block from the guard list.
1917 GuardBlocks.pop_back();
1918}
1919
1920/// We are using one integer to represent the block we are branching to. Then at
1921/// each guard block, the predicate was calcuated using a simple `icmp eq`.
1923 const BBSetVector &Incoming, const BBSetVector &Outgoing,
1924 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
1925 auto &Context = Incoming.front()->getContext();
1926 auto FirstGuardBlock = GuardBlocks.front();
1927
1928 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
1929 "merged.bb.idx", FirstGuardBlock);
1930
1931 for (auto In : Incoming) {
1932 Value *Condition;
1933 BasicBlock *Succ0;
1934 BasicBlock *Succ1;
1935 std::tie(Condition, Succ0, Succ1) =
1936 redirectToHub(In, FirstGuardBlock, Outgoing);
1937 Value *IncomingId = nullptr;
1938 if (Succ0 && Succ1) {
1939 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
1940 auto Succ0Iter = find(Outgoing, Succ0);
1941 auto Succ1Iter = find(Outgoing, Succ1);
1943 std::distance(Outgoing.begin(), Succ0Iter));
1945 std::distance(Outgoing.begin(), Succ1Iter));
1946 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
1947 In->getTerminator());
1948 } else {
1949 // Get the index of the non-null successor.
1950 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
1952 std::distance(Outgoing.begin(), SuccIter));
1953 }
1954 Phi->addIncoming(IncomingId, In);
1955 }
1956
1957 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1958 auto Out = Outgoing[i];
1959 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
1961 Out->getName() + ".predicate", GuardBlocks[i]);
1962 GuardPredicates[Out] = Cmp;
1963 }
1964}
1965
1966/// We record the predicate of each outgoing block using a phi of boolean.
1968 const BBSetVector &Incoming, const BBSetVector &Outgoing,
1969 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
1970 SmallVectorImpl<WeakVH> &DeletionCandidates) {
1971 auto &Context = Incoming.front()->getContext();
1972 auto BoolTrue = ConstantInt::getTrue(Context);
1973 auto BoolFalse = ConstantInt::getFalse(Context);
1974 auto FirstGuardBlock = GuardBlocks.front();
1975
1976 // The predicate for the last outgoing is trivially true, and so we
1977 // process only the first N-1 successors.
1978 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1979 auto Out = Outgoing[i];
1980 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1981
1982 auto Phi =
1984 StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1985 GuardPredicates[Out] = Phi;
1986 }
1987
1988 for (auto *In : Incoming) {
1989 Value *Condition;
1990 BasicBlock *Succ0;
1991 BasicBlock *Succ1;
1992 std::tie(Condition, Succ0, Succ1) =
1993 redirectToHub(In, FirstGuardBlock, Outgoing);
1994
1995 // Optimization: Consider an incoming block A with both successors
1996 // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1997 // for Succ0 and Succ1 complement each other. If Succ0 is visited
1998 // first in the loop below, control will branch to Succ0 using the
1999 // corresponding predicate. But if that branch is not taken, then
2000 // control must reach Succ1, which means that the incoming value of
2001 // the predicate from `In` is true for Succ1.
2002 bool OneSuccessorDone = false;
2003 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2004 auto Out = Outgoing[i];
2005 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
2006 if (Out != Succ0 && Out != Succ1) {
2007 Phi->addIncoming(BoolFalse, In);
2008 } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
2009 // Optimization: When only one successor is an outgoing block,
2010 // the incoming predicate from `In` is always true.
2011 Phi->addIncoming(BoolTrue, In);
2012 } else {
2013 assert(Succ0 && Succ1);
2014 if (Out == Succ0) {
2015 Phi->addIncoming(Condition, In);
2016 } else {
2017 auto Inverted = invertCondition(Condition);
2018 DeletionCandidates.push_back(Condition);
2019 Phi->addIncoming(Inverted, In);
2020 }
2021 OneSuccessorDone = true;
2022 }
2023 }
2024 }
2025}
2026
2027// Capture the existing control flow as guard predicates, and redirect
2028// control flow from \p Incoming block through the \p GuardBlocks to the
2029// \p Outgoing blocks.
2030//
2031// There is one guard predicate for each outgoing block OutBB. The
2032// predicate represents whether the hub should transfer control flow
2033// to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
2034// them in the same order as the Outgoing set-vector, and control
2035// branches to the first outgoing block whose predicate evaluates to true.
2036static void
2038 SmallVectorImpl<WeakVH> &DeletionCandidates,
2039 const BBSetVector &Incoming,
2040 const BBSetVector &Outgoing, const StringRef Prefix,
2041 std::optional<unsigned> MaxControlFlowBooleans) {
2042 BBPredicates GuardPredicates;
2043 auto F = Incoming.front()->getParent();
2044
2045 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
2046 GuardBlocks.push_back(
2047 BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
2048
2049 // When we are using an integer to record which target block to jump to, we
2050 // are creating less live values, actually we are using one single integer to
2051 // store the index of the target block. When we are using booleans to store
2052 // the branching information, we need (N-1) boolean values, where N is the
2053 // number of outgoing block.
2054 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
2055 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
2056 DeletionCandidates);
2057 else
2058 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
2059
2060 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
2061}
2062
2065 const BBSetVector &Incoming, const BBSetVector &Outgoing,
2066 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2067 if (Outgoing.size() < 2)
2068 return Outgoing.front();
2069
2071 if (DTU) {
2072 for (auto *In : Incoming) {
2073 for (auto Succ : successors(In))
2074 if (Outgoing.count(Succ))
2075 Updates.push_back({DominatorTree::Delete, In, Succ});
2076 }
2077 }
2078
2079 SmallVector<WeakVH, 8> DeletionCandidates;
2080 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
2081 Prefix, MaxControlFlowBooleans);
2082 auto FirstGuardBlock = GuardBlocks.front();
2083
2084 // Update the PHINodes in each outgoing block to match the new control flow.
2085 for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
2086 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2087
2088 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
2089
2090 if (DTU) {
2091 int NumGuards = GuardBlocks.size();
2092 assert((int)Outgoing.size() == NumGuards + 1);
2093
2094 for (auto In : Incoming)
2095 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
2096
2097 for (int i = 0; i != NumGuards - 1; ++i) {
2098 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
2099 Updates.push_back(
2100 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
2101 }
2102 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2103 Outgoing[NumGuards - 1]});
2104 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2105 Outgoing[NumGuards]});
2106 DTU->applyUpdates(Updates);
2107 }
2108
2109 for (auto I : DeletionCandidates) {
2110 if (I->use_empty())
2111 if (auto Inst = dyn_cast_or_null<Instruction>(I))
2112 Inst->eraseFromParent();
2113 }
2114
2115 return FirstGuardBlock;
2116}
2117
2119 Value *NewCond = PBI->getCondition();
2120 // If this is a "cmp" instruction, only used for branching (and nowhere
2121 // else), then we can simply invert the predicate.
2122 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2123 CmpInst *CI = cast<CmpInst>(NewCond);
2125 } else
2126 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
2127
2128 PBI->setCondition(NewCond);
2129 PBI->swapSuccessors();
2130}
2131
2133 for (auto &BB : F) {
2134 auto *Term = BB.getTerminator();
2135 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
2136 isa<BranchInst>(Term)))
2137 return false;
2138 }
2139 return true;
2140}
2141
2143 const BasicBlock &Dest) {
2144 assert(Src.getParent() == Dest.getParent());
2145 if (!Src.getParent()->isPresplitCoroutine())
2146 return false;
2147 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
2148 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
2149 return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
2150 SW->getDefaultDest() == &Dest;
2151 return false;
2152}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
unsigned Intr
static BasicBlock * SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB)
Remove redundant dbg.value instructions using a forward scan.
static void convertToGuardPredicates(SmallVectorImpl< BasicBlock * > &GuardBlocks, SmallVectorImpl< WeakVH > &DeletionCandidates, const BBSetVector &Incoming, const BBSetVector &Outgoing, const StringRef Prefix, std::optional< unsigned > MaxControlFlowBooleans)
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB)
static BasicBlock * SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, const Twine &BBName, bool Before)
static void calcPredicateUsingBooleans(const BBSetVector &Incoming, const BBSetVector &Outgoing, SmallVectorImpl< BasicBlock * > &GuardBlocks, BBPredicates &GuardPredicates, SmallVectorImpl< WeakVH > &DeletionCandidates)
We record the predicate of each outgoing block using a phi of boolean.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, ArrayRef< BasicBlock * > Preds, BranchInst *BI, bool HasLoopExit)
Update the PHI nodes in OrigBB to include the values coming from NewBB.
static std::tuple< Value *, BasicBlock *, BasicBlock * > redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, const BBSetVector &Outgoing)
static bool remomveUndefDbgAssignsFromEntryBlock(BasicBlock *BB)
Remove redundant undef dbg.assign intrinsic from an entry block using a forward scan.
static void setupBranchForGuard(SmallVectorImpl< BasicBlock * > &GuardBlocks, const BBSetVector &Outgoing, BBPredicates &GuardPredicates)
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, ArrayRef< BasicBlock * > Preds, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA, bool &HasLoopExit)
Update DominatorTree, LoopInfo, and LCCSA analysis information.
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, const SetVector< BasicBlock * > &Incoming, BasicBlock *FirstGuardBlock)
static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB)
Remove redundant instructions within sequences of consecutive dbg.value instructions.
static void calcPredicateUsingInteger(const BBSetVector &Incoming, const BBSetVector &Outgoing, SmallVectorImpl< BasicBlock * > &GuardBlocks, BBPredicates &GuardPredicates)
We are using one integer to represent the block we are branching to.
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB)
static void SplitLandingPadPredecessorsImpl(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix1, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
static cl::opt< unsigned > MaxDeoptOrUnreachableSuccessorCheckDepth("max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, cl::desc("Set the maximum path length when checking whether a basic block " "is followed by a block that either has a terminating " "deoptimizing call or is terminated with an unreachable"))
BlockVerifier::State From
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::string Name
bool End
Definition: ELF_riscv.cpp:478
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
static LVOptions Options
Definition: LVOptions.cpp:25
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
LLVMContext & Context
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static const uint32_t IV[8]
Definition: blake3_impl.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:154
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
iterator begin() const
Definition: ArrayRef.h:153
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator end()
Definition: BasicBlock.h:450
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:437
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:506
const LandingPadInst * getLandingPadInst() const
Return the landingpad instruction associated with the landing pad.
Definition: BasicBlock.cpp:711
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:446
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition: BasicBlock.h:647
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:399
const Instruction & front() const
Definition: BasicBlock.h:460
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:206
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
Definition: BasicBlock.cpp:601
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:607
const BasicBlock * getUniqueSuccessor() const
Return the successor of this block if it has a unique successor.
Definition: BasicBlock.cpp:527
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:489
const CallInst * getTerminatingDeoptimizeCall() const
Returns the call instruction calling @llvm.experimental.deoptimize prior to the terminating return in...
Definition: BasicBlock.cpp:363
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
Definition: BasicBlock.cpp:497
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:519
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:213
const Instruction * getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
Definition: BasicBlock.cpp:416
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:173
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:207
bool IsNewDbgInfoFormat
Flag recording whether or not this block stores debug-info in the form of intrinsic instructions (fal...
Definition: BasicBlock.h:65
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:707
bool isEHPad() const
Return true if this basic block is an exception handling block.
Definition: BasicBlock.h:664
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:228
bool canSplitPredecessors() const
Definition: BasicBlock.cpp:575
void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB)
Transfer all instructions from FromBB to this basic block at ToIt.
Definition: BasicBlock.h:620
const Instruction & back() const
Definition: BasicBlock.h:462
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:546
This class represents a no-op cast from one type to another.
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
static CleanupPadInst * Create(Value *ParentPad, ArrayRef< Value * > Args=std::nullopt, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, Instruction *InsertBefore=nullptr)
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:738
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:841
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:862
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:833
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:888
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:840
DWARF expression.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
This class represents an Operation in the Expression.
This represents the llvm.dbg.assign instruction.
This represents the llvm.dbg.value instruction.
Identifies a unique instance of a variable.
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
iterator end()
Definition: DenseMap.h:84
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
iterator_range< iterator > children()
NodeT * getBlock() const
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
void recalculate(Function &F)
Notify DTU that the entry block was replaced.
bool hasDomTree() const
Returns true if it holds a DominatorTree.
void applyUpdates(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
void deleteBB(BasicBlock *DelBB)
Delete DelBB.
DominatorTree & getDomTree()
Flush DomTree updates and return DomTree.
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void splitBlock(NodeT *NewBB)
splitBlock - BB is split and now it has one successor.
DomTreeNodeBase< NodeT > * setNewRoot(NodeT *BB)
Add a new node to the forward dominator tree and make it a new root.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:164
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:322
This instruction extracts a struct member or array element value from an aggregate value.
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:652
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:94
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:2370
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1748
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2214
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Definition: IRBuilder.h:1114
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1321
Value * CreateElementCount(Type *DstType, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
Definition: IRBuilder.cpp:99
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:180
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2639
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
void moveBeforePreserving(Instruction *MovePos)
Perform a moveBefore operation, while signalling that the caller intends to preserve the original ord...
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
Definition: Instruction.cpp:98
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:438
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:71
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
Definition: Instruction.h:786
const BasicBlock * getParent() const
Definition: Instruction.h:139
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:93
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:346
bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1586
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:435
bool isSpecialTerminator() const
Definition: Instruction.h:249
InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
The landingpad instruction holds all of the information necessary to generate correct exception handl...
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
Metadata node.
Definition: Metadata.h:1037
Provides a lazy, caching interface for making common memory aliasing information queries,...
void invalidateCachedPredecessors()
Clears the PredIteratorCache info.
void removeInstruction(Instruction *InstToRemove)
Removes an instruction from the dependence analysis, updating the dependence of instructions that pre...
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was spliced into From and To.
void applyUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT, bool UpdateDTFirst=false)
Apply CFG updates, analogous with the DT edge updates.
void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was merged into To.
void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where)
void wireOldPredecessorsToNewImmediatePredecessor(BasicBlock *Old, BasicBlock *New, ArrayRef< BasicBlock * > Preds, bool IdenticalEdgesWereMerged=true)
A new empty BasicBlock (New) now branches directly to Old.
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Definition: MemorySSA.cpp:1857
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition: MemorySSA.h:717
Class that has the common methods + fields of memory uses/defs.
Definition: MemorySSA.h:252
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition: Module.h:275
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1743
Return a value (possibly void), from a function.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
A vector that has set insertion semantics.
Definition: SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
const value_type & front() const
Return the first element of the SetVector.
Definition: SetVector.h:143
const value_type & back() const
Return the last element of the SetVector.
Definition: SetVector.h:149
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:264
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:103
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition: DenseSet.h:290
size_type size() const
Definition: SmallPtrSet.h:93
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:345
bool erase(PtrType Ptr)
erase - If the set contains the specified pointer, remove it and return true, otherwise return false.
Definition: SmallPtrSet.h:380
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:384
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:366
iterator begin() const
Definition: SmallPtrSet.h:404
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:390
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:451
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:941
void reserve(size_type N)
Definition: SmallVector.h:667
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:17
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt1Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
bool isTokenTy() const
Return true if this is 'token'.
Definition: Type.h:225
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1724
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
op_range operands()
Definition: User.h:242
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:377
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
bool use_empty() const
Definition: Value.h:344
bool hasName() const
Definition: Value.h:261
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition: DenseSet.h:185
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
AssignmentInstRange getAssignmentInsts(DIAssignID *ID)
Return a range of instructions (typically just one) that have ID as an attachment.
Definition: DebugInfo.cpp:1736
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
iterator_range< df_ext_iterator< T, SetTy > > depth_first_ext(const T &G, SetTy &S)
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:102
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
bool succ_empty(const Instruction *I)
Definition: CFG.h:255
bool IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB)
Check if we can prove that all paths starting from this block converge to a block that either has a @...
BranchInst * GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, BasicBlock *&IfFalse)
Check whether BB is the merge point of a if-region.
unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ)
Search for the specified successor of basic block BB and return its position in the terminator instru...
Definition: CFG.cpp:79
void detachDeadBlocks(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< DominatorTree::UpdateType > *Updates, bool KeepOneInputPHIs=false)
Replace contents of every block in BBs with single unreachable instruction.
bool hasOnlySimpleTerminator(const Function &F)
auto successors(const MachineBasicBlock *BB)
ReturnInst * FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, BasicBlock *Pred, DomTreeUpdater *DTU=nullptr)
This method duplicates the specified return instruction into a predecessor which ends in an unconditi...
BasicBlock * splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, DomTreeUpdater *DTU, LoopInfo *LI, MemorySSAUpdater *MSSAU, const Twine &BBName="")
Split the specified block at the specified instruction SplitPt.
Instruction * SplitBlockAndInsertIfElse(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ElseBlock=nullptr)
Similar to SplitBlockAndInsertIfThen, but the inserted block is on the false path of the branch.
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:99
void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
void ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V)
Replace all uses of an instruction (specified by BI) with a value, then remove and delete the origina...
BasicBlock * SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If it is known that an edge is critical, SplitKnownCriticalEdge can be called directly,...
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:112
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1733
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
void InvertBranch(BranchInst *PBI, IRBuilderBase &Builder)
bool EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete all basic blocks from F that are not reachable from its entry node.
bool MergeBlockSuccessorsIntoGivenBlocks(SmallPtrSetImpl< BasicBlock * > &MergeBlocks, Loop *L=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
Merge block(s) sucessors, if possible.
void SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, Instruction **ThenTerm, Instruction **ElseTerm, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, but also creates the ElseBlock...
void SplitBlockAndInsertForEachLane(ElementCount EC, Type *IndexTy, Instruction *InsertBefore, std::function< void(IRBuilderBase &, Value *)> Func)
Utility function for performing a given action on each lane of a vector with EC elements.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:109
BasicBlock * ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad=nullptr, PHINode *LandingPadReplacement=nullptr, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
Split the edge connect the specficed blocks in the case that Succ is an Exception Handling Block.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: SmallVector.h:1303
void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method transforms the landing pad, OrigBB, by introducing two new basic blocks into the function...
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition: MemorySSA.cpp:83
void createPHIsForSplitLoopExit(ArrayRef< BasicBlock * > Preds, BasicBlock *SplitBB, BasicBlock *DestBB)
When a loop exit edge is split, LCSSA form may require new PHIs in the new exit block.
bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
Definition: DebugInfo.cpp:2215
BasicBlock * CreateControlFlowHub(DomTreeUpdater *DTU, SmallVectorImpl< BasicBlock * > &GuardBlocks, const SetVector< BasicBlock * > &Predecessors, const SetVector< BasicBlock * > &Successors, const StringRef Prefix, std::optional< unsigned > MaxControlFlowBooleans=std::nullopt)
Given a set of incoming and outgoing blocks, create a "hub" such that every edge from an incoming blo...
std::pair< Instruction *, Value * > SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore)
Insert a for (int i = 0; i < End; i++) loop structure (with the exception that End is assumed > 0,...
DWARFExpression::Operation Op
BasicBlock * SplitCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If this edge is a critical edge, insert a new node to split the critical edge.
bool FoldSingleEntryPHINodes(BasicBlock *BB, MemoryDependenceResults *MemDep=nullptr)
We know that BB has one predecessor.
bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Return true if the specified edge is a critical edge.
Definition: CFG.cpp:95
unsigned SplitAllCriticalEdges(Function &F, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions())
Loop over all of the edges in the CFG, breaking critical edges as they are found.
void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *Until=nullptr)
Replaces all uses of OldPred with the NewPred block in all PHINodes in a block.
bool isPresplitCoroSuspendExitEdge(const BasicBlock &Src, const BasicBlock &Dest)
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1883
bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is an effectively dead PHI node, due to being a def-use chain of single-use no...
Definition: Local.cpp:644
Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
unsigned succ_size(const MachineBasicBlock *BB)
Value * invertCondition(Value *Condition)
Invert the given true/false value, possibly reusing an existing copy.
Definition: Local.cpp:4056
void DeleteDeadBlocks(ArrayRef< BasicBlock * > BBs, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified blocks from BB.
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ)
Sets the unwind edge of an instruction to a particular successor.
unsigned pred_size(const MachineBasicBlock *BB)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
Option class for critical edge splitting.
CriticalEdgeSplittingOptions & setPreserveLCSSA()