47#define DEBUG_TYPE "loop-unroll"
50 "Number of loops unrolled with run-time trip counts");
53 cl::desc(
"Allow runtime unrolling for loops with multiple exits, when "
54 "epilog is generated"));
57 cl::desc(
"Assume the non latch exit block to be predictable"));
102 assert(Latch &&
"Loop must have a latch");
111 for (
PHINode &PN : Succ->phis()) {
123 if (L->contains(&PN)) {
125 NewPN->
addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
132 Value *V = PN.getIncomingValueForBlock(Latch);
134 if (L->contains(
I)) {
145 if (L->contains(&PN))
146 PN.setIncomingValueForBlock(NewPreHeader, NewPN);
148 PN.addIncoming(NewPN, PrologExit);
162 nullptr, PreserveLCSSA);
177 B.CreateICmpULT(BECount, ConstantInt::get(BECount->
getType(),
Count - 1));
181 nullptr, PreserveLCSSA);
183 MDNode *BranchWeights =
nullptr;
189 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader,
232 return ProbOneNotTooMany / ProbNotTooMany;
264 assert(Latch &&
"Loop must have a latch");
297 assert(PN.hasOneUse() &&
"The phi should have 1 use");
299 assert(EpilogPN->
getParent() == Exit &&
"EpilogPN should be in Exit block");
301 Value *V = PN.getIncomingValueForBlock(Latch);
303 if (
I && L->contains(
I))
311 "EpilogPN should have EpilogPreHeader incoming block");
328 if (!L->contains(Succ))
335 assert(Succ == L->getHeader() &&
336 "Expect the only in-loop successor of latch to be the loop header");
338 for (
PHINode &PN : Succ->phis()) {
341 PN.getName() +
".unr");
344 NewPN0->
addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
348 PN.getName() +
".epil.init");
351 NewPN1->
addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
365 Value *BrLoopExit =
B.CreateIsNotNull(ModVal,
"lcmp.mod");
366 assert(Exit &&
"Loop must have a single exit block only");
372 MDNode *BranchWeights =
nullptr;
380 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit, BranchWeights);
406 const bool UseEpilogRemainder,
407 const bool UnrollRemainder,
BasicBlock *InsertTop,
409 std::vector<BasicBlock *> &NewBlocks,
412 std::optional<unsigned> OriginalTripCount,
414 StringRef suffix = UseEpilogRemainder ?
"epil" :
"prol";
420 Loop *ParentLoop = L->getParentLoop();
422 NewLoops[ParentLoop] = ParentLoop;
428 NewBlocks.push_back(NewBB);
452 VMap.
erase((*BB)->getTerminator());
462 auto *Zero = ConstantInt::get(NewIdx->
getType(), 0);
463 auto *One = ConstantInt::get(NewIdx->
getType(), 1);
465 Builder.CreateAdd(NewIdx, One, NewIdx->
getName() +
".next");
466 Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->
getName() +
".cmp");
467 MDNode *BranchWeights =
nullptr;
468 if ((OriginalLoopProb.
isUnknown() || !UseEpilogRemainder) &&
477 BackEdgeWeight = (
Count - 2) / 2;
488 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot, BranchWeights);
489 if (!OriginalLoopProb.
isUnknown() && UseEpilogRemainder) {
493 double FreqRemIters = 1;
496 for (
unsigned N =
Count - 2;
N >= 1; --
N) {
498 FreqRemIters += ProbReaching.
toDouble();
527 Loop *NewLoop = NewLoops[L];
528 assert(NewLoop &&
"L should have been cloned");
530 if (OriginalTripCount && UseEpilogRemainder)
534 if (!UnrollRemainder)
543 bool UseEpilogRemainder) {
561 L->getExitingBlocks(ExitingBlocks);
562 if (ExitingBlocks.
size() > 2)
566 if (OtherExits.
size() == 0)
575 return (OtherExits.
size() == 1 &&
577 OtherExits[0]->getPostdominatingDeoptimizeCall()));
602 return B.CreateAnd(TripCount,
Count - 1,
"xtraiter");
607 Value *ModValTmp =
B.CreateURem(BECount, CountC);
608 Value *ModValAdd =
B.CreateAdd(ModValTmp,
609 ConstantInt::get(ModValTmp->
getType(), 1));
612 return B.CreateURem(ModValAdd, CountC,
"xtraiter");
655 Loop *L,
unsigned Count,
bool AllowExpensiveTripCount,
656 bool UseEpilogRemainder,
bool UnrollRemainder,
bool ForgetAllSCEV,
659 unsigned SCEVExpansionBudget,
bool RuntimeUnrollMultiExit,
660 Loop **ResultLoop, std::optional<unsigned> OriginalTripCount,
664 LLVM_DEBUG(UseEpilogRemainder ?
dbgs() <<
"Using epilog remainder.\n"
665 :
dbgs() <<
"Using prolog remainder.\n");
668 if (!L->isLoopSimplifyForm()) {
683 <<
"Loop latch not terminated by a conditional branch.\n");
687 unsigned ExitIndex = LatchBR->
getSuccessor(0) == Header ? 1 : 0;
690 if (L->contains(LatchExit)) {
695 <<
"One of the loop latch successors must be the exit block.\n");
701 L->getUniqueNonLatchExitBlocks(OtherExits);
704 if (!L->getExitingBlock() || OtherExits.
size()) {
717 if (!RuntimeUnrollMultiExit &&
719 UseEpilogRemainder)) {
721 "multi-exit unrolling not enabled!\n");
746 const SCEV *TripCountSC =
753 BasicBlock *PreHeader = L->getLoopPreheader();
757 if (!AllowExpensiveTripCount &&
760 LLVM_DEBUG(
dbgs() <<
"High cost for expanding trip count scev!\n");
769 <<
"Count failed constraint on overflow trip count calculation.\n");
787 if (UseEpilogRemainder) {
794 nullptr, PreserveLCSSA);
799 NewExitTerminator->
setDebugLoc(Header->getTerminator()->getDebugLoc());
801 EpilogPreHeader =
SplitBlock(NewExit, NewExitTerminator, DT, LI);
802 EpilogPreHeader->
setName(Header->getName() +
".epil.preheader");
810 if (
auto *ParentL = L->getParentLoop())
811 if (LI->getLoopFor(LatchExit) != ParentL) {
812 LI->removeBlock(NewExit);
813 ParentL->addBasicBlockToLoop(NewExit, *LI);
814 LI->removeBlock(EpilogPreHeader);
815 ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
821 PrologPreHeader =
SplitEdge(PreHeader, Header, DT, LI);
822 PrologPreHeader->
setName(Header->getName() +
".prol.preheader");
825 PrologExit->
setName(Header->getName() +
".prol.loopexit");
859 TripCount =
B.CreateFreeze(TripCount);
872 UseEpilogRemainder ?
B.CreateICmpULT(BECount,
873 ConstantInt::get(BECount->
getType(),
875 B.CreateIsNotNull(ModVal,
"lcmp.mod");
877 UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
878 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
880 MDNode *BranchWeights =
nullptr;
881 if ((OriginalLoopProb.
isUnknown() || !UseEpilogRemainder) &&
888 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop, BranchWeights);
889 if (!OriginalLoopProb.
isUnknown() && UseEpilogRemainder) {
900 if (UseEpilogRemainder)
909 LoopBlocks.perform(LI);
916 std::vector<BasicBlock *> NewBlocks;
922 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
923 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
924 Loop *remainderLoop =
925 CloneLoopBlocks(L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop,
926 InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, DT,
927 LI,
Count, OriginalTripCount, OriginalLoopProb);
930 F->splice(InsertBot->
getIterator(),
F, NewBlocks[0]->getIterator(),
F->end());
936 for (
auto *BB : OtherExits) {
940 for (
PHINode &PN : BB->phis()) {
941 unsigned oldNumOperands = PN.getNumIncomingValues();
944 for (
unsigned i = 0; i < oldNumOperands; i++){
945 auto *PredBB =PN.getIncomingBlock(i);
949 if (!L->contains(PredBB))
954 auto *V = PN.getIncomingValue(i);
961#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
964 "Breaks the definition of dedicated exits!");
976 if (DT && !L->getExitingBlock()) {
982 for (
auto *BB : L->blocks()) {
983 auto *DomNodeBB = DT->
getNode(BB);
984 for (
auto *DomChild : DomNodeBB->children()) {
985 auto *DomChildBB = DomChild->getBlock();
986 if (!L->contains(LI->
getLoopFor(DomChildBB)) &&
987 DomChildBB->getUniquePredecessor() != BB)
991 for (
auto *BB : ChildrenToUpdate)
1013 Module *M = BB->getModule();
1022 if (UseEpilogRemainder) {
1025 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
1026 NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE,
Count, *AC,
1039 auto *Zero = ConstantInt::get(NewIdx->
getType(), 0);
1040 auto *One = ConstantInt::get(NewIdx->
getType(), 1);
1051 NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
1059#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
1061 assert(DT->
verify(DominatorTree::VerificationLevel::Full));
1067 if (
Count == 2 && DT && LI && SE) {
1074 remainderLoop =
nullptr;
1077 const DataLayout &
DL = L->getHeader()->getDataLayout();
1083 Inst.replaceAllUsesWith(V);
1095 assert(ExitBB &&
"required after breaking cond br backedge");
1103 if (OtherExits.
size() > 0) {
1114 if (remainderLoop && UnrollRemainder) {
1124 "A loop with a convergence heart does not allow runtime unrolling.");
1125 UnrollResult =
UnrollLoop(remainderLoop, ULO, LI, SE, DT, AC,
TTI,
1126 nullptr, PreserveLCSSA);
1130 *ResultLoop = remainderLoop;
1131 NumRuntimeUnrolled++;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Module.h This file contains the declarations for the Module class.
static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, BasicBlock *Exit, BasicBlock *PreHeader, BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE, unsigned Count, AssumptionCache &AC, BranchProbability OriginalLoopProb)
Connect the unrolling epilog code to the original loop.
static const uint32_t UnrolledLoopHeaderWeights[]
static Value * CreateTripRemainder(IRBuilder<> &B, Value *BECount, Value *TripCount, unsigned Count)
Calculate ModVal = (BECount + 1) % Count on the abstract integer domain accounting for the possibilit...
static Loop * CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, const bool UnrollRemainder, BasicBlock *InsertTop, BasicBlock *InsertBot, BasicBlock *Preheader, std::vector< BasicBlock * > &NewBlocks, LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, unsigned Count, std::optional< unsigned > OriginalTripCount, BranchProbability OriginalLoopProb)
Create a clone of the blocks in a loop and connect them together.
static cl::opt< bool > UnrollRuntimeOtherExitPredictable("unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, cl::desc("Assume the non latch exit block to be predictable"))
static bool canProfitablyRuntimeUnrollMultiExitLoop(Loop *L, SmallVectorImpl< BasicBlock * > &OtherExits, BasicBlock *LatchExit, bool UseEpilogRemainder)
Returns true if we can profitably unroll the multi-exit loop L.
static const uint32_t EpilogHeaderWeights[]
static cl::opt< bool > UnrollRuntimeMultiExit("unroll-runtime-multi-exit", cl::init(false), cl::Hidden, cl::desc("Allow runtime unrolling for loops with multiple exits, when " "epilog is generated"))
static BranchProbability probOfNextInRemainder(BranchProbability OriginalLoopProb, unsigned N)
Assume, due to our position in the remainder loop or its guard, anywhere from 0 to N more iterations ...
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, BasicBlock *PrologExit, BasicBlock *OriginalLoopLatchExit, BasicBlock *PreHeader, BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE)
Connect the unrolling prolog code to the original loop.
This file contains the declarations for profiling metadata utility functions.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
BranchProbability pow(unsigned N) const
Compute pow(Probability, N).
static BranchProbability getOne()
BranchProbability getCompl() const
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
A parsed version of the target data layout string in and methods for querying it.
DomTreeNodeBase * getIDom() const
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
LLVM_ABI CallInst * CreateAssumption(Value *Cond, ArrayRef< OperandBundleDef > OpBundles={})
Create an assume intrinsic call that allows the optimizer to assume that the provided condition will ...
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
std::vector< BasicBlock * >::const_reverse_iterator RPOIterator
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Represents a single loop in the control flow graph.
void setLoopAlreadyUnrolled()
Add llvm.loop.unroll.disable to this loop's loop id metadata.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
void setIncomingBlock(unsigned i, BasicBlock *BB)
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class uses information about analyze scalars to rewrite expressions in canonical form.
bool isHighCostExpansion(ArrayRef< const SCEV * > Exprs, Loop *L, unsigned Budget, const TargetTransformInfo *TTI, const Instruction *At)
Return true for expressions that can't be evaluated at runtime within given Budget.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
LLVM_ABI void forgetTopmostLoop(const Loop *L)
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
bool erase(const KeyT &Val)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
const ParentTy * getParent() const
self_iterator getIterator()
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
LLVM_ABI BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, bool MapAtoms=true)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto successors(const MachineBasicBlock *BB)
SmallDenseMap< const Loop *, Loop *, 4 > NewLoopsMap
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
bool setBranchProbability(BranchInst *B, BranchProbability P, bool ForFirstTarget)
Set branch weight metadata for B to indicate that P and 1 - P are the probabilities of control flowin...
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
void RemapDbgRecordRange(Module *M, iterator_range< DbgRecordIterator > Range, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Remap the Values used in the DbgRecords Range using the value map VM.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI CallBase * getLoopConvergenceHeart(const Loop *TheLoop)
Find the convergence heart of the loop.
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
@ Unmodified
The loop was not modified.
@ FullyUnrolled
The loop was fully unrolled into straight-line code.
LLVM_ABI void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, MemorySSA *MSSA)
Remove the backedge of the specified loop.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
LLVM_ABI bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
LLVM_ABI bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, std::optional< unsigned > EstimatedLoopInvocationWeight=std::nullopt)
Set llvm.loop.estimated_trip_count with the value EstimatedTripCount in the loop metadata of L.
LLVM_ABI const Loop * addClonedBlockToLoopInfo(BasicBlock *OriginalBB, BasicBlock *ClonedBB, LoopInfo *LI, NewLoopsMap &NewLoops)
Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary and adds a mapping from the o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI bool UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, bool AllowExpensiveTripCount, bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, bool PreserveLCSSA, unsigned SCEVExpansionBudget, bool RuntimeUnrollMultiExit, Loop **ResultLoop=nullptr, std::optional< unsigned > OriginalTripCount=std::nullopt, BranchProbability OriginalLoopProb=BranchProbability::getUnknown())
Insert code in the prolog/epilog code when unrolling a loop with a run-time trip-count.
LLVM_ABI LoopUnrollResult UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const llvm::TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, bool PreserveLCSSA, Loop **RemainderLoop=nullptr, AAResults *AA=nullptr)
Unroll the given loop by Count.
bool AllowExpensiveTripCount