LLVM 22.0.0git
LoopUtils.cpp
Go to the documentation of this file.
1//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines common loop utility functions.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/ScopeExit.h"
17#include "llvm/ADT/SetVector.h"
33#include "llvm/IR/DIBuilder.h"
34#include "llvm/IR/Dominators.h"
37#include "llvm/IR/MDBuilder.h"
38#include "llvm/IR/Module.h"
41#include "llvm/IR/ValueHandle.h"
43#include "llvm/Pass.h"
45#include "llvm/Support/Debug.h"
49
50using namespace llvm;
51using namespace llvm::PatternMatch;
52
53#define DEBUG_TYPE "loop-utils"
54
55static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
56static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
57
59 MemorySSAUpdater *MSSAU,
60 bool PreserveLCSSA) {
61 bool Changed = false;
62
63 // We re-use a vector for the in-loop predecesosrs.
64 SmallVector<BasicBlock *, 4> InLoopPredecessors;
65
66 auto RewriteExit = [&](BasicBlock *BB) {
67 assert(InLoopPredecessors.empty() &&
68 "Must start with an empty predecessors list!");
69 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
70
71 // See if there are any non-loop predecessors of this exit block and
72 // keep track of the in-loop predecessors.
73 bool IsDedicatedExit = true;
74 for (auto *PredBB : predecessors(BB))
75 if (L->contains(PredBB)) {
76 if (isa<IndirectBrInst>(PredBB->getTerminator()))
77 // We cannot rewrite exiting edges from an indirectbr.
78 return false;
79
80 InLoopPredecessors.push_back(PredBB);
81 } else {
82 IsDedicatedExit = false;
83 }
84
85 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
86
87 // Nothing to do if this is already a dedicated exit.
88 if (IsDedicatedExit)
89 return false;
90
91 auto *NewExitBB = SplitBlockPredecessors(
92 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
93
94 if (!NewExitBB)
96 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
97 << *L << "\n");
98 else
99 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
100 << NewExitBB->getName() << "\n");
101 return true;
102 };
103
104 // Walk the exit blocks directly rather than building up a data structure for
105 // them, but only visit each one once.
107 for (auto *BB : L->blocks())
108 for (auto *SuccBB : successors(BB)) {
109 // We're looking for exit blocks so skip in-loop successors.
110 if (L->contains(SuccBB))
111 continue;
112
113 // Visit each exit block exactly once.
114 if (!Visited.insert(SuccBB).second)
115 continue;
116
117 Changed |= RewriteExit(SuccBB);
118 }
119
120 return Changed;
121}
122
123/// Returns the instructions that use values defined in the loop.
126
127 for (auto *Block : L->getBlocks())
128 // FIXME: I believe that this could use copy_if if the Inst reference could
129 // be adapted into a pointer.
130 for (auto &Inst : *Block) {
131 auto Users = Inst.users();
132 if (any_of(Users, [&](User *U) {
133 auto *Use = cast<Instruction>(U);
134 return !L->contains(Use->getParent());
135 }))
136 UsedOutside.push_back(&Inst);
137 }
138
139 return UsedOutside;
140}
141
143 // By definition, all loop passes need the LoopInfo analysis and the
144 // Dominator tree it depends on. Because they all participate in the loop
145 // pass manager, they must also preserve these.
150
151 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
152 // here because users shouldn't directly get them from this header.
153 extern char &LoopSimplifyID;
154 extern char &LCSSAID;
159 // This is used in the LPPassManager to perform LCSSA verification on passes
160 // which preserve lcssa form
163
164 // Loop passes are designed to run inside of a loop pass manager which means
165 // that any function analyses they require must be required by the first loop
166 // pass in the manager (so that it is computed before the loop pass manager
167 // runs) and preserved by all loop pasess in the manager. To make this
168 // reasonably robust, the set needed for most loop passes is maintained here.
169 // If your loop pass requires an analysis not listed here, you will need to
170 // carefully audit the loop pass manager nesting structure that results.
178 // FIXME: When all loop passes preserve MemorySSA, it can be required and
179 // preserved here instead of the individual handling in each pass.
180}
181
182/// Manually defined generic "LoopPass" dependency initialization. This is used
183/// to initialize the exact set of passes from above in \c
184/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
185/// with:
186///
187/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
188///
189/// As-if "LoopPass" were a pass.
202
203/// Create MDNode for input string.
204static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
205 LLVMContext &Context = TheLoop->getHeader()->getContext();
206 Metadata *MDs[] = {
207 MDString::get(Context, Name),
208 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
209 return MDNode::get(Context, MDs);
210}
211
212/// Set input string into loop metadata by keeping other values intact.
213/// If the string is already in loop metadata update value if it is
214/// different.
215void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
216 unsigned V) {
218 // If the loop already has metadata, retain it.
219 MDNode *LoopID = TheLoop->getLoopID();
220 if (LoopID) {
221 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
222 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
223 // If it is of form key = value, try to parse it.
224 if (Node->getNumOperands() == 2) {
225 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
226 if (S && S->getString() == StringMD) {
227 ConstantInt *IntMD =
229 if (IntMD && IntMD->getSExtValue() == V)
230 // It is already in place. Do nothing.
231 return;
232 // We need to update the value, so just skip it here and it will
233 // be added after copying other existed nodes.
234 continue;
235 }
236 }
237 MDs.push_back(Node);
238 }
239 }
240 // Add new metadata.
241 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
242 // Replace current metadata node with new one.
243 LLVMContext &Context = TheLoop->getHeader()->getContext();
244 MDNode *NewLoopID = MDNode::get(Context, MDs);
245 // Set operand 0 to refer to the loop id itself.
246 NewLoopID->replaceOperandWith(0, NewLoopID);
247 TheLoop->setLoopID(NewLoopID);
248}
249
250std::optional<ElementCount>
252 std::optional<int> Width =
253 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
254
255 if (Width) {
256 std::optional<int> IsScalable = getOptionalIntLoopAttribute(
257 TheLoop, "llvm.loop.vectorize.scalable.enable");
258 return ElementCount::get(*Width, IsScalable.value_or(false));
259 }
260
261 return std::nullopt;
262}
263
264std::optional<MDNode *> llvm::makeFollowupLoopID(
265 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
266 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
267 if (!OrigLoopID) {
268 if (AlwaysNew)
269 return nullptr;
270 return std::nullopt;
271 }
272
273 assert(OrigLoopID->getOperand(0) == OrigLoopID);
274
275 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
276 bool InheritSomeAttrs =
277 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
279 MDs.push_back(nullptr);
280
281 bool Changed = false;
282 if (InheritAllAttrs || InheritSomeAttrs) {
283 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
284 MDNode *Op = cast<MDNode>(Existing.get());
285
286 auto InheritThisAttribute = [InheritSomeAttrs,
287 InheritOptionsExceptPrefix](MDNode *Op) {
288 if (!InheritSomeAttrs)
289 return false;
290
291 // Skip malformatted attribute metadata nodes.
292 if (Op->getNumOperands() == 0)
293 return true;
294 Metadata *NameMD = Op->getOperand(0).get();
295 if (!isa<MDString>(NameMD))
296 return true;
297 StringRef AttrName = cast<MDString>(NameMD)->getString();
298
299 // Do not inherit excluded attributes.
300 return !AttrName.starts_with(InheritOptionsExceptPrefix);
301 };
302
303 if (InheritThisAttribute(Op))
304 MDs.push_back(Op);
305 else
306 Changed = true;
307 }
308 } else {
309 // Modified if we dropped at least one attribute.
310 Changed = OrigLoopID->getNumOperands() > 1;
311 }
312
313 bool HasAnyFollowup = false;
314 for (StringRef OptionName : FollowupOptions) {
315 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
316 if (!FollowupNode)
317 continue;
318
319 HasAnyFollowup = true;
320 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
321 MDs.push_back(Option.get());
322 Changed = true;
323 }
324 }
325
326 // Attributes of the followup loop not specified explicity, so signal to the
327 // transformation pass to add suitable attributes.
328 if (!AlwaysNew && !HasAnyFollowup)
329 return std::nullopt;
330
331 // If no attributes were added or remove, the previous loop Id can be reused.
332 if (!AlwaysNew && !Changed)
333 return OrigLoopID;
334
335 // No attributes is equivalent to having no !llvm.loop metadata at all.
336 if (MDs.size() == 1)
337 return nullptr;
338
339 // Build the new loop ID.
340 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
341 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
342 return FollowupLoopID;
343}
344
348
352
354 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
355 return TM_SuppressedByUser;
356
357 std::optional<int> Count =
358 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
359 if (Count)
361
362 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
363 return TM_ForcedByUser;
364
365 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
366 return TM_ForcedByUser;
367
369 return TM_Disable;
370
371 return TM_Unspecified;
372}
373
375 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
376 return TM_SuppressedByUser;
377
378 std::optional<int> Count =
379 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
380 if (Count)
382
383 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
384 return TM_ForcedByUser;
385
387 return TM_Disable;
388
389 return TM_Unspecified;
390}
391
393 std::optional<bool> Enable =
394 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
395
396 if (Enable == false)
397 return TM_SuppressedByUser;
398
399 std::optional<ElementCount> VectorizeWidth =
401 std::optional<int> InterleaveCount =
402 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
403
404 // 'Forcing' vector width and interleave count to one effectively disables
405 // this tranformation.
406 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
407 InterleaveCount == 1)
408 return TM_SuppressedByUser;
409
410 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
411 return TM_Disable;
412
413 if (Enable == true)
414 return TM_ForcedByUser;
415
416 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
417 return TM_Disable;
418
419 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
420 return TM_Enable;
421
423 return TM_Disable;
424
425 return TM_Unspecified;
426}
427
429 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
430 return TM_ForcedByUser;
431
433 return TM_Disable;
434
435 return TM_Unspecified;
436}
437
439 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
440 return TM_SuppressedByUser;
441
443 return TM_Disable;
444
445 return TM_Unspecified;
446}
447
448/// Does a BFS from a given node to all of its children inside a given loop.
449/// The returned vector of basic blocks includes the starting point.
451 DomTreeNode *N,
452 const Loop *CurLoop) {
454 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
455 // Only include subregions in the top level loop.
456 BasicBlock *BB = DTN->getBlock();
457 if (CurLoop->contains(BB))
458 Worklist.push_back(DTN->getBlock());
459 };
460
461 AddRegionToWorklist(N);
462
463 for (size_t I = 0; I < Worklist.size(); I++) {
464 for (DomTreeNode *Child : DT->getNode(Worklist[I])->children())
465 AddRegionToWorklist(Child);
466 }
467
468 return Worklist;
469}
470
472 int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
473 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
474 Value *IncV = PN->getIncomingValue(LatchIdx);
475
476 for (User *U : PN->users())
477 if (U != Cond && U != IncV) return false;
478
479 for (User *U : IncV->users())
480 if (U != Cond && U != PN) return false;
481 return true;
482}
483
484
486 LoopInfo *LI, MemorySSA *MSSA) {
487 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
488 auto *Preheader = L->getLoopPreheader();
489 assert(Preheader && "Preheader should exist!");
490
491 std::unique_ptr<MemorySSAUpdater> MSSAU;
492 if (MSSA)
493 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
494
495 // Now that we know the removal is safe, remove the loop by changing the
496 // branch from the preheader to go to the single exit block.
497 //
498 // Because we're deleting a large chunk of code at once, the sequence in which
499 // we remove things is very important to avoid invalidation issues.
500
501 // Tell ScalarEvolution that the loop is deleted. Do this before
502 // deleting the loop so that ScalarEvolution can look at the loop
503 // to determine what it needs to clean up.
504 if (SE) {
505 SE->forgetLoop(L);
507 }
508
509 Instruction *OldTerm = Preheader->getTerminator();
510 assert(!OldTerm->mayHaveSideEffects() &&
511 "Preheader must end with a side-effect-free terminator");
512 assert(OldTerm->getNumSuccessors() == 1 &&
513 "Preheader must have a single successor");
514 // Connect the preheader to the exit block. Keep the old edge to the header
515 // around to perform the dominator tree update in two separate steps
516 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
517 // preheader -> header.
518 //
519 //
520 // 0. Preheader 1. Preheader 2. Preheader
521 // | | | |
522 // V | V |
523 // Header <--\ | Header <--\ | Header <--\
524 // | | | | | | | | | | |
525 // | V | | | V | | | V |
526 // | Body --/ | | Body --/ | | Body --/
527 // V V V V V
528 // Exit Exit Exit
529 //
530 // By doing this is two separate steps we can perform the dominator tree
531 // update without using the batch update API.
532 //
533 // Even when the loop is never executed, we cannot remove the edge from the
534 // source block to the exit block. Consider the case where the unexecuted loop
535 // branches back to an outer loop. If we deleted the loop and removed the edge
536 // coming to this inner loop, this will break the outer loop structure (by
537 // deleting the backedge of the outer loop). If the outer loop is indeed a
538 // non-loop, it will be deleted in a future iteration of loop deletion pass.
539 IRBuilder<> Builder(OldTerm);
540
541 auto *ExitBlock = L->getUniqueExitBlock();
542 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
543 if (ExitBlock) {
544 assert(ExitBlock && "Should have a unique exit block!");
545 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
546
547 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
548 // Remove the old branch. The conditional branch becomes a new terminator.
549 OldTerm->eraseFromParent();
550
551 // Rewrite phis in the exit block to get their inputs from the Preheader
552 // instead of the exiting block.
553 for (PHINode &P : ExitBlock->phis()) {
554 // Set the zero'th element of Phi to be from the preheader and remove all
555 // other incoming values. Given the loop has dedicated exits, all other
556 // incoming values must be from the exiting blocks.
557 int PredIndex = 0;
558 P.setIncomingBlock(PredIndex, Preheader);
559 // Removes all incoming values from all other exiting blocks (including
560 // duplicate values from an exiting block).
561 // Nuke all entries except the zero'th entry which is the preheader entry.
562 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
563 /* DeletePHIIfEmpty */ false);
564
565 assert((P.getNumIncomingValues() == 1 &&
566 P.getIncomingBlock(PredIndex) == Preheader) &&
567 "Should have exactly one value and that's from the preheader!");
568 }
569
570 if (DT) {
571 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
572 if (MSSA) {
573 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
574 *DT);
575 if (VerifyMemorySSA)
576 MSSA->verifyMemorySSA();
577 }
578 }
579
580 // Disconnect the loop body by branching directly to its exit.
581 Builder.SetInsertPoint(Preheader->getTerminator());
582 Builder.CreateBr(ExitBlock);
583 // Remove the old branch.
584 Preheader->getTerminator()->eraseFromParent();
585 } else {
586 assert(L->hasNoExitBlocks() &&
587 "Loop should have either zero or one exit blocks.");
588
589 Builder.SetInsertPoint(OldTerm);
590 Builder.CreateUnreachable();
591 Preheader->getTerminator()->eraseFromParent();
592 }
593
594 if (DT) {
595 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
596 if (MSSA) {
597 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
598 *DT);
599 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
600 L->block_end());
601 MSSAU->removeBlocks(DeadBlockSet);
602 if (VerifyMemorySSA)
603 MSSA->verifyMemorySSA();
604 }
605 }
606
607 // Use a map to unique and a vector to guarantee deterministic ordering.
609 llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords;
610
611 if (ExitBlock) {
612 // Given LCSSA form is satisfied, we should not have users of instructions
613 // within the dead loop outside of the loop. However, LCSSA doesn't take
614 // unreachable uses into account. We handle them here.
615 // We could do it after drop all references (in this case all users in the
616 // loop will be already eliminated and we have less work to do but according
617 // to API doc of User::dropAllReferences only valid operation after dropping
618 // references, is deletion. So let's substitute all usages of
619 // instruction from the loop with poison value of corresponding type first.
620 for (auto *Block : L->blocks())
621 for (Instruction &I : *Block) {
622 auto *Poison = PoisonValue::get(I.getType());
623 for (Use &U : llvm::make_early_inc_range(I.uses())) {
624 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
625 if (L->contains(Usr->getParent()))
626 continue;
627 // If we have a DT then we can check that uses outside a loop only in
628 // unreachable block.
629 if (DT)
631 "Unexpected user in reachable block");
632 U.set(Poison);
633 }
634
635 // For one of each variable encountered, preserve a debug record (set
636 // to Poison) and transfer it to the loop exit. This terminates any
637 // variable locations that were set during the loop.
638 for (DbgVariableRecord &DVR :
639 llvm::make_early_inc_range(filterDbgVars(I.getDbgRecordRange()))) {
640 DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
641 DVR.getDebugLoc().get());
642 if (!DeadDebugSet.insert(Key).second)
643 continue;
644 // Unlinks the DVR from it's container, for later insertion.
645 DVR.removeFromParent();
646 DeadDbgVariableRecords.push_back(&DVR);
647 }
648 }
649
650 // After the loop has been deleted all the values defined and modified
651 // inside the loop are going to be unavailable. Values computed in the
652 // loop will have been deleted, automatically causing their debug uses
653 // be be replaced with undef. Loop invariant values will still be available.
654 // Move dbg.values out the loop so that earlier location ranges are still
655 // terminated and loop invariant assignments are preserved.
656 DIBuilder DIB(*ExitBlock->getModule());
657 BasicBlock::iterator InsertDbgValueBefore =
658 ExitBlock->getFirstInsertionPt();
659 assert(InsertDbgValueBefore != ExitBlock->end() &&
660 "There should be a non-PHI instruction in exit block, else these "
661 "instructions will have no parent.");
662
663 // Due to the "head" bit in BasicBlock::iterator, we're going to insert
664 // each DbgVariableRecord right at the start of the block, wheras dbg.values
665 // would be repeatedly inserted before the first instruction. To replicate
666 // this behaviour, do it backwards.
667 for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords))
668 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
669 }
670
671 // Remove the block from the reference counting scheme, so that we can
672 // delete it freely later.
673 for (auto *Block : L->blocks())
674 Block->dropAllReferences();
675
676 if (MSSA && VerifyMemorySSA)
677 MSSA->verifyMemorySSA();
678
679 if (LI) {
680 // Erase the instructions and the blocks without having to worry
681 // about ordering because we already dropped the references.
682 // NOTE: This iteration is safe because erasing the block does not remove
683 // its entry from the loop's block list. We do that in the next section.
684 for (BasicBlock *BB : L->blocks())
685 BB->eraseFromParent();
686
687 // Finally, the blocks from loopinfo. This has to happen late because
688 // otherwise our loop iterators won't work.
689
691 for (BasicBlock *BB : blocks)
692 LI->removeBlock(BB);
693
694 // The last step is to update LoopInfo now that we've eliminated this loop.
695 // Note: LoopInfo::erase remove the given loop and relink its subloops with
696 // its parent. While removeLoop/removeChildLoop remove the given loop but
697 // not relink its subloops, which is what we want.
698 if (Loop *ParentLoop = L->getParentLoop()) {
699 Loop::iterator I = find(*ParentLoop, L);
700 assert(I != ParentLoop->end() && "Couldn't find loop");
701 ParentLoop->removeChildLoop(I);
702 } else {
703 Loop::iterator I = find(*LI, L);
704 assert(I != LI->end() && "Couldn't find loop");
705 LI->removeLoop(I);
706 }
707 LI->destroy(L);
708 }
709}
710
712 LoopInfo &LI, MemorySSA *MSSA) {
713 auto *Latch = L->getLoopLatch();
714 assert(Latch && "multiple latches not yet supported");
715 auto *Header = L->getHeader();
716 Loop *OutermostLoop = L->getOutermostLoop();
717
718 SE.forgetLoop(L);
720
721 std::unique_ptr<MemorySSAUpdater> MSSAU;
722 if (MSSA)
723 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
724
725 // Update the CFG and domtree. We chose to special case a couple of
726 // of common cases for code quality and test readability reasons.
727 [&]() -> void {
728 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
729 if (!BI->isConditional()) {
730 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
731 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
732 MSSAU.get());
733 return;
734 }
735
736 // Conditional latch/exit - note that latch can be shared by inner
737 // and outer loop so the other target doesn't need to an exit
738 if (L->isLoopExiting(Latch)) {
739 // TODO: Generalize ConstantFoldTerminator so that it can be used
740 // here without invalidating LCSSA or MemorySSA. (Tricky case for
741 // LCSSA: header is an exit block of a preceeding sibling loop w/o
742 // dedicated exits.)
743 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
744 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
745
746 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
747 Header->removePredecessor(Latch, true);
748
749 IRBuilder<> Builder(BI);
750 auto *NewBI = Builder.CreateBr(ExitBB);
751 // Transfer the metadata to the new branch instruction (minus the
752 // loop info since this is no longer a loop)
753 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
754 LLVMContext::MD_annotation});
755
756 BI->eraseFromParent();
757 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
758 if (MSSA)
759 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
760 return;
761 }
762 }
763
764 // General case. By splitting the backedge, and then explicitly making it
765 // unreachable we gracefully handle corner cases such as switch and invoke
766 // termiantors.
767 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
768
769 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
770 (void)changeToUnreachable(BackedgeBB->getTerminator(),
771 /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
772 }();
773
774 // Erase (and destroy) this loop instance. Handles relinking sub-loops
775 // and blocks within the loop as needed.
776 LI.erase(L);
777
778 // If the loop we broke had a parent, then changeToUnreachable might have
779 // caused a block to be removed from the parent loop (see loop_nest_lcssa
780 // test case in zero-btc.ll for an example), thus changing the parent's
781 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
782 // loop which might have a had a block removed.
783 if (OutermostLoop != L)
784 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
785}
786
787
788/// Checks if \p L has an exiting latch branch. There may also be other
789/// exiting blocks. Returns branch instruction terminating the loop
790/// latch if above check is successful, nullptr otherwise.
792 BasicBlock *Latch = L->getLoopLatch();
793 if (!Latch)
794 return nullptr;
795
796 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
797 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
798 return nullptr;
799
800 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
801 LatchBR->getSuccessor(1) == L->getHeader()) &&
802 "At least one edge out of the latch must go to the header");
803
804 return LatchBR;
805}
806
807struct DbgLoop {
808 const Loop *L;
809 explicit DbgLoop(const Loop *L) : L(L) {}
810};
811
812#ifndef NDEBUG
814 OS << "function ";
815 D.L->getHeader()->getParent()->printAsOperand(OS, /*PrintType=*/false);
816 return OS << " " << *D.L;
817}
818#endif // NDEBUG
819
820static std::optional<unsigned> estimateLoopTripCount(Loop *L) {
821 // Currently we take the estimate exit count only from the loop latch,
822 // ignoring other exiting blocks. This can overestimate the trip count
823 // if we exit through another exit, but can never underestimate it.
824 // TODO: incorporate information from other exits
825 BranchInst *ExitingBranch = getExpectedExitLoopLatchBranch(L);
826 if (!ExitingBranch) {
827 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to find exiting "
828 << "latch branch of required form in " << DbgLoop(L)
829 << "\n");
830 return std::nullopt;
831 }
832
833 // To estimate the number of times the loop body was executed, we want to
834 // know the number of times the backedge was taken, vs. the number of times
835 // we exited the loop.
836 uint64_t LoopWeight, ExitWeight;
837 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) {
838 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to extract branch "
839 << "weights for " << DbgLoop(L) << "\n");
840 return std::nullopt;
841 }
842
843 if (L->contains(ExitingBranch->getSuccessor(1)))
844 std::swap(LoopWeight, ExitWeight);
845
846 if (!ExitWeight) {
847 // Don't have a way to return predicated infinite
848 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed because of zero exit "
849 << "probability for " << DbgLoop(L) << "\n");
850 return std::nullopt;
851 }
852
853 // Estimated exit count is a ratio of the loop weight by the weight of the
854 // edge exiting the loop, rounded to nearest.
855 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
856
857 // When ExitCount + 1 would wrap in unsigned, saturate at UINT_MAX.
858 if (ExitCount >= std::numeric_limits<unsigned>::max())
859 return std::numeric_limits<unsigned>::max();
860
861 // Estimated trip count is one plus estimated exit count.
862 uint64_t TC = ExitCount + 1;
863 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Estimated trip count of " << TC
864 << " for " << DbgLoop(L) << "\n");
865 return TC;
866}
867
868std::optional<unsigned>
870 unsigned *EstimatedLoopInvocationWeight) {
871 // If EstimatedLoopInvocationWeight, we do not support this loop if
872 // getExpectedExitLoopLatchBranch returns nullptr.
873 //
874 // FIXME: Also, this is a stop-gap solution for nested loops. It avoids
875 // mistaking LLVMLoopEstimatedTripCount metadata to be for an outer loop when
876 // it was created for an inner loop. The problem is that loop metadata is
877 // attached to the branch instruction in the loop latch block, but that can be
878 // shared by the loops. A solution is to attach loop metadata to loop headers
879 // instead, but that would be a large change to LLVM.
880 //
881 // Until that happens, we work around the problem as follows.
882 // getExpectedExitLoopLatchBranch (which also guards
883 // setLoopEstimatedTripCount) returns nullptr for a loop unless the loop has
884 // one latch and that latch has exactly two successors one of which is an exit
885 // from the loop. If the latch is shared by nested loops, then that condition
886 // might hold for the inner loop but cannot hold for the outer loop:
887 // - Because the latch is shared, it must have at least two successors: the
888 // inner loop header and the outer loop header, which is also an exit for
889 // the inner loop. That satisifies the condition for the inner loop.
890 // - To satsify the condition for the outer loop, the latch must have a third
891 // successor that is an exit for the outer loop. But that violates the
892 // condition for both loops.
893 BranchInst *ExitingBranch = getExpectedExitLoopLatchBranch(L);
894 if (!ExitingBranch)
895 return std::nullopt;
896
897 // If requested, either compute *EstimatedLoopInvocationWeight or return
898 // nullopt if cannot.
899 //
900 // TODO: Eventually, once all passes have migrated away from setting branch
901 // weights to indicate estimated trip counts, this function will drop the
902 // EstimatedLoopInvocationWeight parameter.
903 if (EstimatedLoopInvocationWeight) {
904 uint64_t LoopWeight = 0, ExitWeight = 0; // Inits expected to be unused.
905 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
906 return std::nullopt;
907 if (L->contains(ExitingBranch->getSuccessor(1)))
908 std::swap(LoopWeight, ExitWeight);
909 if (!ExitWeight)
910 return std::nullopt;
911 *EstimatedLoopInvocationWeight = ExitWeight;
912 }
913
914 // Return the estimated trip count from metadata unless the metadata is
915 // missing or has no value.
917 LLVM_DEBUG(dbgs() << "getLoopEstimatedTripCount: "
918 << LLVMLoopEstimatedTripCount << " metadata has trip "
919 << "count of " << *TC << " for " << DbgLoop(L) << "\n");
920 return TC;
921 }
922
923 // Estimate the trip count from latch branch weights.
924 return estimateLoopTripCount(L);
925}
926
928 Loop *L, unsigned EstimatedTripCount,
929 std::optional<unsigned> EstimatedloopInvocationWeight) {
930 // If EstimatedLoopInvocationWeight, we do not support this loop if
931 // getExpectedExitLoopLatchBranch returns nullptr.
932 //
933 // FIXME: See comments in getLoopEstimatedTripCount for why this is required
934 // here regardless of EstimatedLoopInvocationWeight.
936 if (!LatchBranch)
937 return false;
938
939 // Set the metadata.
941
942 // At the moment, we currently support changing the estimated trip count in
943 // the latch branch's branch weights only. We could extend this API to
944 // manipulate estimated trip counts for any exit.
945 //
946 // TODO: Eventually, once all passes have migrated away from setting branch
947 // weights to indicate estimated trip counts, we will not set branch weights
948 // here at all.
949 if (!EstimatedloopInvocationWeight)
950 return true;
951
952 // Calculate taken and exit weights.
953 unsigned LatchExitWeight = 0;
954 unsigned BackedgeTakenWeight = 0;
955
956 if (EstimatedTripCount != 0) {
957 LatchExitWeight = *EstimatedloopInvocationWeight;
958 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
959 }
960
961 // Make a swap if back edge is taken when condition is "false".
962 if (LatchBranch->getSuccessor(0) != L->getHeader())
963 std::swap(BackedgeTakenWeight, LatchExitWeight);
964
965 // Set/Update profile metadata.
966 setBranchWeights(*LatchBranch, {BackedgeTakenWeight, LatchExitWeight},
967 /*IsExpected=*/false);
968
969 return true;
970}
971
974 if (!LatchBranch)
976 bool FirstTargetIsLoop = LatchBranch->getSuccessor(0) == L->getHeader();
977 return getBranchProbability(LatchBranch, FirstTargetIsLoop);
978}
979
982 if (!LatchBranch)
983 return false;
984 bool FirstTargetIsLoop = LatchBranch->getSuccessor(0) == L->getHeader();
985 return setBranchProbability(LatchBranch, P, FirstTargetIsLoop);
986}
987
989 bool ForFirstTarget) {
990 if (B->getNumSuccessors() != 2)
992 uint64_t Weight0, Weight1;
993 if (!extractBranchWeights(*B, Weight0, Weight1))
995 if (!ForFirstTarget)
996 std::swap(Weight0, Weight1);
997 return BranchProbability::getBranchProbability(Weight0, Weight0 + Weight1);
998}
999
1001 bool ForFirstTarget) {
1002 if (B->getNumSuccessors() != 2)
1003 return false;
1004 BranchProbability Prob0 = P;
1005 BranchProbability Prob1 = P.getCompl();
1006 if (!ForFirstTarget)
1007 std::swap(Prob0, Prob1);
1008 setBranchWeights(*B, {Prob0.getNumerator(), Prob1.getNumerator()},
1009 /*IsExpected=*/false);
1010 return true;
1011}
1012
1014 ScalarEvolution &SE) {
1015 Loop *OuterL = InnerLoop->getParentLoop();
1016 if (!OuterL)
1017 return true;
1018
1019 // Get the backedge taken count for the inner loop
1020 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1021 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
1022 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
1023 !InnerLoopBECountSC->getType()->isIntegerTy())
1024 return false;
1025
1026 // Get whether count is invariant to the outer loop
1028 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
1030 return false;
1031
1032 return true;
1033}
1034
1036 switch (RK) {
1037 default:
1038 llvm_unreachable("Unexpected recurrence kind");
1040 case RecurKind::Sub:
1041 case RecurKind::Add:
1042 return Intrinsic::vector_reduce_add;
1043 case RecurKind::Mul:
1044 return Intrinsic::vector_reduce_mul;
1045 case RecurKind::And:
1046 return Intrinsic::vector_reduce_and;
1047 case RecurKind::Or:
1048 return Intrinsic::vector_reduce_or;
1049 case RecurKind::Xor:
1050 return Intrinsic::vector_reduce_xor;
1051 case RecurKind::FMulAdd:
1052 case RecurKind::FAdd:
1053 return Intrinsic::vector_reduce_fadd;
1054 case RecurKind::FMul:
1055 return Intrinsic::vector_reduce_fmul;
1056 case RecurKind::SMax:
1057 return Intrinsic::vector_reduce_smax;
1058 case RecurKind::SMin:
1059 return Intrinsic::vector_reduce_smin;
1060 case RecurKind::UMax:
1061 return Intrinsic::vector_reduce_umax;
1062 case RecurKind::UMin:
1063 return Intrinsic::vector_reduce_umin;
1064 case RecurKind::FMax:
1065 case RecurKind::FMaxNum:
1066 return Intrinsic::vector_reduce_fmax;
1067 case RecurKind::FMin:
1068 case RecurKind::FMinNum:
1069 return Intrinsic::vector_reduce_fmin;
1071 return Intrinsic::vector_reduce_fmaximum;
1073 return Intrinsic::vector_reduce_fminimum;
1075 return Intrinsic::vector_reduce_fmax;
1077 return Intrinsic::vector_reduce_fmin;
1078 }
1079}
1080
1082 switch (IID) {
1083 default:
1084 llvm_unreachable("Unexpected intrinsic id");
1085 case Intrinsic::umin:
1086 return Intrinsic::vector_reduce_umin;
1087 case Intrinsic::umax:
1088 return Intrinsic::vector_reduce_umax;
1089 case Intrinsic::smin:
1090 return Intrinsic::vector_reduce_smin;
1091 case Intrinsic::smax:
1092 return Intrinsic::vector_reduce_smax;
1093 }
1094}
1095
1096// This is the inverse to getReductionForBinop
1098 switch (RdxID) {
1099 case Intrinsic::vector_reduce_fadd:
1100 return Instruction::FAdd;
1101 case Intrinsic::vector_reduce_fmul:
1102 return Instruction::FMul;
1103 case Intrinsic::vector_reduce_add:
1104 return Instruction::Add;
1105 case Intrinsic::vector_reduce_mul:
1106 return Instruction::Mul;
1107 case Intrinsic::vector_reduce_and:
1108 return Instruction::And;
1109 case Intrinsic::vector_reduce_or:
1110 return Instruction::Or;
1111 case Intrinsic::vector_reduce_xor:
1112 return Instruction::Xor;
1113 case Intrinsic::vector_reduce_smax:
1114 case Intrinsic::vector_reduce_smin:
1115 case Intrinsic::vector_reduce_umax:
1116 case Intrinsic::vector_reduce_umin:
1117 return Instruction::ICmp;
1118 case Intrinsic::vector_reduce_fmax:
1119 case Intrinsic::vector_reduce_fmin:
1120 return Instruction::FCmp;
1121 default:
1122 llvm_unreachable("Unexpected ID");
1123 }
1124}
1125
1126// This is the inverse to getArithmeticReductionInstruction
1128 switch (Opc) {
1129 default:
1130 break;
1131 case Instruction::Add:
1132 return Intrinsic::vector_reduce_add;
1133 case Instruction::Mul:
1134 return Intrinsic::vector_reduce_mul;
1135 case Instruction::And:
1136 return Intrinsic::vector_reduce_and;
1137 case Instruction::Or:
1138 return Intrinsic::vector_reduce_or;
1139 case Instruction::Xor:
1140 return Intrinsic::vector_reduce_xor;
1141 }
1143}
1144
1146 switch (RdxID) {
1147 default:
1148 llvm_unreachable("Unknown min/max recurrence kind");
1149 case Intrinsic::vector_reduce_umin:
1150 return Intrinsic::umin;
1151 case Intrinsic::vector_reduce_umax:
1152 return Intrinsic::umax;
1153 case Intrinsic::vector_reduce_smin:
1154 return Intrinsic::smin;
1155 case Intrinsic::vector_reduce_smax:
1156 return Intrinsic::smax;
1157 case Intrinsic::vector_reduce_fmin:
1158 return Intrinsic::minnum;
1159 case Intrinsic::vector_reduce_fmax:
1160 return Intrinsic::maxnum;
1161 case Intrinsic::vector_reduce_fminimum:
1162 return Intrinsic::minimum;
1163 case Intrinsic::vector_reduce_fmaximum:
1164 return Intrinsic::maximum;
1165 }
1166}
1167
1169 switch (RK) {
1170 default:
1171 llvm_unreachable("Unknown min/max recurrence kind");
1172 case RecurKind::UMin:
1173 return Intrinsic::umin;
1174 case RecurKind::UMax:
1175 return Intrinsic::umax;
1176 case RecurKind::SMin:
1177 return Intrinsic::smin;
1178 case RecurKind::SMax:
1179 return Intrinsic::smax;
1180 case RecurKind::FMin:
1181 case RecurKind::FMinNum:
1182 return Intrinsic::minnum;
1183 case RecurKind::FMax:
1184 case RecurKind::FMaxNum:
1185 return Intrinsic::maxnum;
1187 return Intrinsic::minimum;
1189 return Intrinsic::maximum;
1191 return Intrinsic::minimumnum;
1193 return Intrinsic::maximumnum;
1194 }
1195}
1196
1198 switch (RdxID) {
1199 case Intrinsic::vector_reduce_smax:
1200 return RecurKind::SMax;
1201 case Intrinsic::vector_reduce_smin:
1202 return RecurKind::SMin;
1203 case Intrinsic::vector_reduce_umax:
1204 return RecurKind::UMax;
1205 case Intrinsic::vector_reduce_umin:
1206 return RecurKind::UMin;
1207 case Intrinsic::vector_reduce_fmax:
1208 return RecurKind::FMax;
1209 case Intrinsic::vector_reduce_fmin:
1210 return RecurKind::FMin;
1211 default:
1212 return RecurKind::None;
1213 }
1214}
1215
1217 switch (RK) {
1218 default:
1219 llvm_unreachable("Unknown min/max recurrence kind");
1220 case RecurKind::UMin:
1221 return CmpInst::ICMP_ULT;
1222 case RecurKind::UMax:
1223 return CmpInst::ICMP_UGT;
1224 case RecurKind::SMin:
1225 return CmpInst::ICMP_SLT;
1226 case RecurKind::SMax:
1227 return CmpInst::ICMP_SGT;
1228 case RecurKind::FMin:
1229 return CmpInst::FCMP_OLT;
1230 case RecurKind::FMax:
1231 return CmpInst::FCMP_OGT;
1232 // We do not add FMinimum/FMaximum recurrence kind here since there is no
1233 // equivalent predicate which compares signed zeroes according to the
1234 // semantics of the intrinsics (llvm.minimum/maximum).
1235 }
1236}
1237
1239 Value *Right) {
1240 Type *Ty = Left->getType();
1241 if (Ty->isIntOrIntVectorTy() ||
1242 (RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum ||
1246 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
1247 "rdx.minmax");
1248 }
1250 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
1251 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1252 return Select;
1253}
1254
1255// Helper to generate an ordered reduction.
1257 unsigned Op, RecurKind RdxKind) {
1258 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1259
1260 // Extract and apply reduction ops in ascending order:
1261 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1262 Value *Result = Acc;
1263 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1264 Value *Ext =
1265 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1266
1267 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1268 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1269 "bin.rdx");
1270 } else {
1272 "Invalid min/max");
1273 Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1274 }
1275 }
1276
1277 return Result;
1278}
1279
1280// Helper to generate a log2 shuffle reduction.
1282 unsigned Op,
1284 RecurKind RdxKind) {
1285 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1286 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1287 // and vector ops, reducing the set of values being computed by half each
1288 // round.
1289 assert(isPowerOf2_32(VF) &&
1290 "Reduction emission only supported for pow2 vectors!");
1291 // Note: fast-math-flags flags are controlled by the builder configuration
1292 // and are assumed to apply to all generated arithmetic instructions. Other
1293 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1294 // of the builder configuration, and since they're not passed explicitly,
1295 // will never be relevant here. Note that it would be generally unsound to
1296 // propagate these from an intrinsic call to the expansion anyways as we/
1297 // change the order of operations.
1298 auto BuildShuffledOp = [&Builder, &Op,
1299 &RdxKind](SmallVectorImpl<int> &ShuffleMask,
1300 Value *&TmpVec) -> void {
1301 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1302 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1303 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1304 "bin.rdx");
1305 } else {
1307 "Invalid min/max");
1308 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1309 }
1310 };
1311
1312 Value *TmpVec = Src;
1314 SmallVector<int, 32> ShuffleMask(VF);
1315 for (unsigned stride = 1; stride < VF; stride <<= 1) {
1316 // Initialise the mask with undef.
1317 llvm::fill(ShuffleMask, -1);
1318 for (unsigned j = 0; j < VF; j += stride << 1) {
1319 ShuffleMask[j] = j + stride;
1320 }
1321 BuildShuffledOp(ShuffleMask, TmpVec);
1322 }
1323 } else {
1324 SmallVector<int, 32> ShuffleMask(VF);
1325 for (unsigned i = VF; i != 1; i >>= 1) {
1326 // Move the upper half of the vector to the lower half.
1327 for (unsigned j = 0; j != i / 2; ++j)
1328 ShuffleMask[j] = i / 2 + j;
1329
1330 // Fill the rest of the mask with undef.
1331 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1332 BuildShuffledOp(ShuffleMask, TmpVec);
1333 }
1334 }
1335 // The result is in the first element of the vector.
1336 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1337}
1338
1340 Value *InitVal, PHINode *OrigPhi) {
1341 Value *NewVal = nullptr;
1342
1343 // First use the original phi to determine the new value we're trying to
1344 // select from in the loop.
1345 SelectInst *SI = nullptr;
1346 for (auto *U : OrigPhi->users()) {
1347 if ((SI = dyn_cast<SelectInst>(U)))
1348 break;
1349 }
1350 assert(SI && "One user of the original phi should be a select");
1351
1352 if (SI->getTrueValue() == OrigPhi)
1353 NewVal = SI->getFalseValue();
1354 else {
1355 assert(SI->getFalseValue() == OrigPhi &&
1356 "At least one input to the select should be the original Phi");
1357 NewVal = SI->getTrueValue();
1358 }
1359
1360 // If any predicate is true it means that we want to select the new value.
1361 Value *AnyOf =
1362 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
1363 // The compares in the loop may yield poison, which propagates through the
1364 // bitwise ORs. Freeze it here before the condition is used.
1365 AnyOf = Builder.CreateFreeze(AnyOf);
1366 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select");
1367}
1368
1370 RecurKind RdxKind, Value *Start,
1371 Value *Sentinel) {
1372 bool IsSigned = RecurrenceDescriptor::isSignedRecurrenceKind(RdxKind);
1373 bool IsMaxRdx = RecurrenceDescriptor::isFindLastIVRecurrenceKind(RdxKind);
1374 Value *MaxRdx = Src->getType()->isVectorTy()
1375 ? (IsMaxRdx ? Builder.CreateIntMaxReduce(Src, IsSigned)
1376 : Builder.CreateIntMinReduce(Src, IsSigned))
1377 : Src;
1378 // Correct the final reduction result back to the start value if the maximum
1379 // reduction is sentinel value.
1380 Value *Cmp =
1381 Builder.CreateCmp(CmpInst::ICMP_NE, MaxRdx, Sentinel, "rdx.select.cmp");
1382 return Builder.CreateSelect(Cmp, MaxRdx, Start, "rdx.select");
1383}
1384
1386 FastMathFlags Flags) {
1387 bool Negative = false;
1388 switch (RdxID) {
1389 default:
1390 llvm_unreachable("Expecting a reduction intrinsic");
1391 case Intrinsic::vector_reduce_add:
1392 case Intrinsic::vector_reduce_mul:
1393 case Intrinsic::vector_reduce_or:
1394 case Intrinsic::vector_reduce_xor:
1395 case Intrinsic::vector_reduce_and:
1396 case Intrinsic::vector_reduce_fadd:
1397 case Intrinsic::vector_reduce_fmul: {
1398 unsigned Opc = getArithmeticReductionInstruction(RdxID);
1399 return ConstantExpr::getBinOpIdentity(Opc, Ty, false,
1400 Flags.noSignedZeros());
1401 }
1402 case Intrinsic::vector_reduce_umax:
1403 case Intrinsic::vector_reduce_umin:
1404 case Intrinsic::vector_reduce_smin:
1405 case Intrinsic::vector_reduce_smax: {
1407 return ConstantExpr::getIntrinsicIdentity(ScalarID, Ty);
1408 }
1409 case Intrinsic::vector_reduce_fmax:
1410 case Intrinsic::vector_reduce_fmaximum:
1411 Negative = true;
1412 [[fallthrough]];
1413 case Intrinsic::vector_reduce_fmin:
1414 case Intrinsic::vector_reduce_fminimum: {
1415 bool PropagatesNaN = RdxID == Intrinsic::vector_reduce_fminimum ||
1416 RdxID == Intrinsic::vector_reduce_fmaximum;
1417 const fltSemantics &Semantics = Ty->getFltSemantics();
1418 return (!Flags.noNaNs() && !PropagatesNaN)
1419 ? ConstantFP::getQNaN(Ty, Negative)
1420 : !Flags.noInfs()
1421 ? ConstantFP::getInfinity(Ty, Negative)
1422 : ConstantFP::get(Ty, APFloat::getLargest(Semantics, Negative));
1423 }
1424 }
1425}
1426
1428 assert((!(K == RecurKind::FMin || K == RecurKind::FMax) ||
1429 (FMF.noNaNs() && FMF.noSignedZeros())) &&
1430 "nnan, nsz is expected to be set for FP min/max reduction.");
1432 return getReductionIdentity(RdxID, Tp, FMF);
1433}
1434
1436 RecurKind RdxKind) {
1437 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1438 auto getIdentity = [&]() {
1439 return getRecurrenceIdentity(RdxKind, SrcVecEltTy,
1440 Builder.getFastMathFlags());
1441 };
1442 switch (RdxKind) {
1444 case RecurKind::Sub:
1445 case RecurKind::Add:
1446 case RecurKind::Mul:
1447 case RecurKind::And:
1448 case RecurKind::Or:
1449 case RecurKind::Xor:
1450 case RecurKind::SMax:
1451 case RecurKind::SMin:
1452 case RecurKind::UMax:
1453 case RecurKind::UMin:
1454 case RecurKind::FMax:
1455 case RecurKind::FMin:
1456 case RecurKind::FMinNum:
1457 case RecurKind::FMaxNum:
1462 return Builder.CreateUnaryIntrinsic(getReductionIntrinsicID(RdxKind), Src);
1463 case RecurKind::FMulAdd:
1464 case RecurKind::FAdd:
1465 return Builder.CreateFAddReduce(getIdentity(), Src);
1466 case RecurKind::FMul:
1467 return Builder.CreateFMulReduce(getIdentity(), Src);
1468 default:
1469 llvm_unreachable("Unhandled opcode");
1470 }
1471}
1472
1474 RecurKind Kind, Value *Mask, Value *EVL) {
1477 "AnyOf and FindIV reductions are not supported.");
1479 auto VPID = VPIntrinsic::getForIntrinsic(Id);
1481 "No VPIntrinsic for this reduction");
1482 auto *EltTy = cast<VectorType>(Src->getType())->getElementType();
1483 Value *Iden = getRecurrenceIdentity(Kind, EltTy, Builder.getFastMathFlags());
1484 Value *Ops[] = {Iden, Src, Mask, EVL};
1485 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1486}
1487
1489 Value *Src, Value *Start) {
1490 assert((Kind == RecurKind::FAdd || Kind == RecurKind::FMulAdd) &&
1491 "Unexpected reduction kind");
1492 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1493 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1494
1495 return B.CreateFAddReduce(Start, Src);
1496}
1497
1499 Value *Src, Value *Start, Value *Mask,
1500 Value *EVL) {
1501 assert((Kind == RecurKind::FAdd || Kind == RecurKind::FMulAdd) &&
1502 "Unexpected reduction kind");
1503 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1504 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1505
1507 auto VPID = VPIntrinsic::getForIntrinsic(Id);
1509 "No VPIntrinsic for this reduction");
1510 auto *EltTy = cast<VectorType>(Src->getType())->getElementType();
1511 Value *Ops[] = {Start, Src, Mask, EVL};
1512 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1513}
1514
1516 bool IncludeWrapFlags) {
1517 auto *VecOp = dyn_cast<Instruction>(I);
1518 if (!VecOp)
1519 return;
1520 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1521 : dyn_cast<Instruction>(OpValue);
1522 if (!Intersection)
1523 return;
1524 const unsigned Opcode = Intersection->getOpcode();
1525 VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1526 for (auto *V : VL) {
1527 auto *Instr = dyn_cast<Instruction>(V);
1528 if (!Instr)
1529 continue;
1530 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1531 VecOp->andIRFlags(V);
1532 }
1533}
1534
1535bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1536 ScalarEvolution &SE) {
1537 const SCEV *Zero = SE.getZero(S->getType());
1538 return SE.isAvailableAtLoopEntry(S, L) &&
1540}
1541
1543 ScalarEvolution &SE) {
1544 const SCEV *Zero = SE.getZero(S->getType());
1545 return SE.isAvailableAtLoopEntry(S, L) &&
1547}
1548
1549bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1550 ScalarEvolution &SE) {
1551 const SCEV *Zero = SE.getZero(S->getType());
1552 return SE.isAvailableAtLoopEntry(S, L) &&
1554}
1555
1557 ScalarEvolution &SE) {
1558 const SCEV *Zero = SE.getZero(S->getType());
1559 return SE.isAvailableAtLoopEntry(S, L) &&
1561}
1562
1564 bool Signed) {
1565 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1568 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1569 return SE.isAvailableAtLoopEntry(S, L) &&
1570 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1571 SE.getConstant(Min));
1572}
1573
1575 bool Signed) {
1576 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1579 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1580 return SE.isAvailableAtLoopEntry(S, L) &&
1581 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1582 SE.getConstant(Max));
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// rewriteLoopExitValues - Optimize IV users outside the loop.
1587// As a side effect, reduces the amount of IV processing within the loop.
1588//===----------------------------------------------------------------------===//
1589
1590static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1593 Visited.insert(I);
1594 WorkList.push_back(I);
1595 while (!WorkList.empty()) {
1596 const Instruction *Curr = WorkList.pop_back_val();
1597 // This use is outside the loop, nothing to do.
1598 if (!L->contains(Curr))
1599 continue;
1600 // Do we assume it is a "hard" use which will not be eliminated easily?
1601 if (Curr->mayHaveSideEffects())
1602 return true;
1603 // Otherwise, add all its users to worklist.
1604 for (const auto *U : Curr->users()) {
1605 auto *UI = cast<Instruction>(U);
1606 if (Visited.insert(UI).second)
1607 WorkList.push_back(UI);
1608 }
1609 }
1610 return false;
1611}
1612
1613// Collect information about PHI nodes which can be transformed in
1614// rewriteLoopExitValues.
1616 PHINode *PN; // For which PHI node is this replacement?
1617 unsigned Ith; // For which incoming value?
1618 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1619 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1620 bool HighCost; // Is this expansion a high-cost?
1621
1622 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1623 bool H)
1624 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1625 HighCost(H) {}
1626};
1627
1628// Check whether it is possible to delete the loop after rewriting exit
1629// value. If it is possible, ignore ReplaceExitValue and do rewriting
1630// aggressively.
1631static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1632 BasicBlock *Preheader = L->getLoopPreheader();
1633 // If there is no preheader, the loop will not be deleted.
1634 if (!Preheader)
1635 return false;
1636
1637 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1638 // We obviate multiple ExitingBlocks case for simplicity.
1639 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1640 // after exit value rewriting, we can enhance the logic here.
1641 SmallVector<BasicBlock *, 4> ExitingBlocks;
1642 L->getExitingBlocks(ExitingBlocks);
1644 L->getUniqueExitBlocks(ExitBlocks);
1645 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1646 return false;
1647
1648 BasicBlock *ExitBlock = ExitBlocks[0];
1649 BasicBlock::iterator BI = ExitBlock->begin();
1650 while (PHINode *P = dyn_cast<PHINode>(BI)) {
1651 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1652
1653 // If the Incoming value of P is found in RewritePhiSet, we know it
1654 // could be rewritten to use a loop invariant value in transformation
1655 // phase later. Skip it in the loop invariant check below.
1656 bool found = false;
1657 for (const RewritePhi &Phi : RewritePhiSet) {
1658 unsigned i = Phi.Ith;
1659 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1660 found = true;
1661 break;
1662 }
1663 }
1664
1665 Instruction *I;
1666 if (!found && (I = dyn_cast<Instruction>(Incoming)))
1667 if (!L->hasLoopInvariantOperands(I))
1668 return false;
1669
1670 ++BI;
1671 }
1672
1673 for (auto *BB : L->blocks())
1674 if (llvm::any_of(*BB, [](Instruction &I) {
1675 return I.mayHaveSideEffects();
1676 }))
1677 return false;
1678
1679 return true;
1680}
1681
1682/// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1683/// and returns true if this Phi is an induction phi in the loop. When
1684/// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1685static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1687 if (!Phi)
1688 return false;
1689 if (!L->getLoopPreheader())
1690 return false;
1691 if (Phi->getParent() != L->getHeader())
1692 return false;
1693 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1694}
1695
1697 ScalarEvolution *SE,
1698 const TargetTransformInfo *TTI,
1699 SCEVExpander &Rewriter, DominatorTree *DT,
1702 // Check a pre-condition.
1703 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1704 "Indvars did not preserve LCSSA!");
1705
1706 SmallVector<BasicBlock*, 8> ExitBlocks;
1707 L->getUniqueExitBlocks(ExitBlocks);
1708
1709 SmallVector<RewritePhi, 8> RewritePhiSet;
1710 // Find all values that are computed inside the loop, but used outside of it.
1711 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1712 // the exit blocks of the loop to find them.
1713 for (BasicBlock *ExitBB : ExitBlocks) {
1714 // If there are no PHI nodes in this exit block, then no values defined
1715 // inside the loop are used on this path, skip it.
1716 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1717 if (!PN) continue;
1718
1719 unsigned NumPreds = PN->getNumIncomingValues();
1720
1721 // Iterate over all of the PHI nodes.
1722 BasicBlock::iterator BBI = ExitBB->begin();
1723 while ((PN = dyn_cast<PHINode>(BBI++))) {
1724 if (PN->use_empty())
1725 continue; // dead use, don't replace it
1726
1727 if (!SE->isSCEVable(PN->getType()))
1728 continue;
1729
1730 // Iterate over all of the values in all the PHI nodes.
1731 for (unsigned i = 0; i != NumPreds; ++i) {
1732 // If the value being merged in is not integer or is not defined
1733 // in the loop, skip it.
1734 Value *InVal = PN->getIncomingValue(i);
1735 if (!isa<Instruction>(InVal))
1736 continue;
1737
1738 // If this pred is for a subloop, not L itself, skip it.
1739 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1740 continue; // The Block is in a subloop, skip it.
1741
1742 // Check that InVal is defined in the loop.
1743 Instruction *Inst = cast<Instruction>(InVal);
1744 if (!L->contains(Inst))
1745 continue;
1746
1747 // Find exit values which are induction variables in the loop, and are
1748 // unused in the loop, with the only use being the exit block PhiNode,
1749 // and the induction variable update binary operator.
1750 // The exit value can be replaced with the final value when it is cheap
1751 // to do so.
1754 PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1755 if (IndPhi) {
1756 if (!checkIsIndPhi(IndPhi, L, SE, ID))
1757 continue;
1758 // This is an induction PHI. Check that the only users are PHI
1759 // nodes, and induction variable update binary operators.
1760 if (llvm::any_of(Inst->users(), [&](User *U) {
1761 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1762 return true;
1763 BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1764 if (B && B != ID.getInductionBinOp())
1765 return true;
1766 return false;
1767 }))
1768 continue;
1769 } else {
1770 // If it is not an induction phi, it must be an induction update
1771 // binary operator with an induction phi user.
1773 if (!B)
1774 continue;
1775 if (llvm::any_of(Inst->users(), [&](User *U) {
1776 PHINode *Phi = dyn_cast<PHINode>(U);
1777 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1778 return true;
1779 return false;
1780 }))
1781 continue;
1782 if (B != ID.getInductionBinOp())
1783 continue;
1784 }
1785 }
1786
1787 // Okay, this instruction has a user outside of the current loop
1788 // and varies predictably *inside* the loop. Evaluate the value it
1789 // contains when the loop exits, if possible. We prefer to start with
1790 // expressions which are true for all exits (so as to maximize
1791 // expression reuse by the SCEVExpander), but resort to per-exit
1792 // evaluation if that fails.
1793 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1794 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1795 !SE->isLoopInvariant(ExitValue, L) ||
1796 !Rewriter.isSafeToExpand(ExitValue)) {
1797 // TODO: This should probably be sunk into SCEV in some way; maybe a
1798 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1799 // most SCEV expressions and other recurrence types (e.g. shift
1800 // recurrences). Is there existing code we can reuse?
1801 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1802 if (isa<SCEVCouldNotCompute>(ExitCount))
1803 continue;
1804 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1805 if (AddRec->getLoop() == L)
1806 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1807 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1808 !SE->isLoopInvariant(ExitValue, L) ||
1809 !Rewriter.isSafeToExpand(ExitValue))
1810 continue;
1811 }
1812
1813 // Computing the value outside of the loop brings no benefit if it is
1814 // definitely used inside the loop in a way which can not be optimized
1815 // away. Avoid doing so unless we know we have a value which computes
1816 // the ExitValue already. TODO: This should be merged into SCEV
1817 // expander to leverage its knowledge of existing expressions.
1818 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1819 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1820 continue;
1821
1822 // Check if expansions of this SCEV would count as being high cost.
1823 bool HighCost = Rewriter.isHighCostExpansion(
1824 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1825
1826 // Note that we must not perform expansions until after
1827 // we query *all* the costs, because if we perform temporary expansion
1828 // inbetween, one that we might not intend to keep, said expansion
1829 // *may* affect cost calculation of the next SCEV's we'll query,
1830 // and next SCEV may errneously get smaller cost.
1831
1832 // Collect all the candidate PHINodes to be rewritten.
1833 Instruction *InsertPt =
1834 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1835 &*Inst->getParent()->getFirstInsertionPt() : Inst;
1836 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1837 }
1838 }
1839 }
1840
1841 // TODO: evaluate whether it is beneficial to change how we calculate
1842 // high-cost: if we have SCEV 'A' which we know we will expand, should we
1843 // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1844 // potentially giving cost bonus to those other SCEV's?
1845
1846 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1847 int NumReplaced = 0;
1848
1849 // Transformation.
1850 for (const RewritePhi &Phi : RewritePhiSet) {
1851 PHINode *PN = Phi.PN;
1852
1853 // Only do the rewrite when the ExitValue can be expanded cheaply.
1854 // If LoopCanBeDel is true, rewrite exit value aggressively.
1857 !LoopCanBeDel && Phi.HighCost)
1858 continue;
1859
1860 Value *ExitVal = Rewriter.expandCodeFor(
1861 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1862
1863 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1864 << '\n'
1865 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1866
1867#ifndef NDEBUG
1868 // If we reuse an instruction from a loop which is neither L nor one of
1869 // its containing loops, we end up breaking LCSSA form for this loop by
1870 // creating a new use of its instruction.
1871 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1872 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1873 if (EVL != L)
1874 assert(EVL->contains(L) && "LCSSA breach detected!");
1875#endif
1876
1877 NumReplaced++;
1878 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1879 PN->setIncomingValue(Phi.Ith, ExitVal);
1880 // It's necessary to tell ScalarEvolution about this explicitly so that
1881 // it can walk the def-use list and forget all SCEVs, as it may not be
1882 // watching the PHI itself. Once the new exit value is in place, there
1883 // may not be a def-use connection between the loop and every instruction
1884 // which got a SCEVAddRecExpr for that loop.
1885 SE->forgetValue(PN);
1886
1887 // If this instruction is dead now, delete it. Don't do it now to avoid
1888 // invalidating iterators.
1889 if (isInstructionTriviallyDead(Inst, TLI))
1890 DeadInsts.push_back(Inst);
1891
1892 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1893 if (PN->getNumIncomingValues() == 1 &&
1894 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1895 PN->replaceAllUsesWith(ExitVal);
1896 PN->eraseFromParent();
1897 }
1898 }
1899
1900 // The insertion point instruction may have been deleted; clear it out
1901 // so that the rewriter doesn't trip over it later.
1902 Rewriter.clearInsertPoint();
1903 return NumReplaced;
1904}
1905
1906/// Utility that implements appending of loops onto a worklist.
1907/// Loops are added in preorder (analogous for reverse postorder for trees),
1908/// and the worklist is processed LIFO.
1909template <typename RangeT>
1911 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1912 // We use an internal worklist to build up the preorder traversal without
1913 // recursion.
1914 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1915
1916 // We walk the initial sequence of loops in reverse because we generally want
1917 // to visit defs before uses and the worklist is LIFO.
1918 for (Loop *RootL : Loops) {
1919 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1920 assert(PreOrderWorklist.empty() &&
1921 "Must start with an empty preorder walk worklist.");
1922 PreOrderWorklist.push_back(RootL);
1923 do {
1924 Loop *L = PreOrderWorklist.pop_back_val();
1925 PreOrderWorklist.append(L->begin(), L->end());
1926 PreOrderLoops.push_back(L);
1927 } while (!PreOrderWorklist.empty());
1928
1929 Worklist.insert(std::move(PreOrderLoops));
1930 PreOrderLoops.clear();
1931 }
1932}
1933
1934template <typename RangeT>
1938}
1939
1940template LLVM_EXPORT_TEMPLATE void
1943
1944template LLVM_EXPORT_TEMPLATE void
1947
1952
1954 LoopInfo *LI, LPPassManager *LPM) {
1955 Loop &New = *LI->AllocateLoop();
1956 if (PL)
1957 PL->addChildLoop(&New);
1958 else
1959 LI->addTopLevelLoop(&New);
1960
1961 if (LPM)
1962 LPM->addLoop(New);
1963
1964 // Add all of the blocks in L to the new loop.
1965 for (BasicBlock *BB : L->blocks())
1966 if (LI->getLoopFor(BB) == L)
1967 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1968
1969 // Add all of the subloops to the new loop.
1970 for (Loop *I : *L)
1971 cloneLoop(I, &New, VM, LI, LPM);
1972
1973 return &New;
1974}
1975
1976/// IR Values for the lower and upper bounds of a pointer evolution. We
1977/// need to use value-handles because SCEV expansion can invalidate previously
1978/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1979/// a previous one.
1985
1986/// Expand code for the lower and upper bound of the pointer group \p CG
1987/// in \p TheLoop. \return the values for the bounds.
1989 Loop *TheLoop, Instruction *Loc,
1990 SCEVExpander &Exp, bool HoistRuntimeChecks) {
1991 LLVMContext &Ctx = Loc->getContext();
1992 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1993
1994 Value *Start = nullptr, *End = nullptr;
1995 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1996 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1997
1998 // If the Low and High values are themselves loop-variant, then we may want
1999 // to expand the range to include those covered by the outer loop as well.
2000 // There is a trade-off here with the advantage being that creating checks
2001 // using the expanded range permits the runtime memory checks to be hoisted
2002 // out of the outer loop. This reduces the cost of entering the inner loop,
2003 // which can be significant for low trip counts. The disadvantage is that
2004 // there is a chance we may now never enter the vectorized inner loop,
2005 // whereas using a restricted range check could have allowed us to enter at
2006 // least once. This is why the behaviour is not currently the default and is
2007 // controlled by the parameter 'HoistRuntimeChecks'.
2008 if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
2010 auto *HighAR = cast<SCEVAddRecExpr>(High);
2011 auto *LowAR = cast<SCEVAddRecExpr>(Low);
2012 const Loop *OuterLoop = TheLoop->getParentLoop();
2013 ScalarEvolution &SE = *Exp.getSE();
2014 const SCEV *Recur = LowAR->getStepRecurrence(SE);
2015 if (Recur == HighAR->getStepRecurrence(SE) &&
2016 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
2017 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
2018 const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch);
2019 if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
2020 OuterExitCount->getType()->isIntegerTy()) {
2021 const SCEV *NewHigh =
2022 cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE);
2023 if (!isa<SCEVCouldNotCompute>(NewHigh)) {
2024 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
2025 "outer loop in order to permit hoisting\n");
2026 High = NewHigh;
2027 Low = cast<SCEVAddRecExpr>(Low)->getStart();
2028 // If there is a possibility that the stride is negative then we have
2029 // to generate extra checks to ensure the stride is positive.
2030 if (!SE.isKnownNonNegative(
2031 SE.applyLoopGuards(Recur, HighAR->getLoop()))) {
2032 Stride = Recur;
2033 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
2034 "positive: "
2035 << *Stride << '\n');
2036 }
2037 }
2038 }
2039 }
2040 }
2041
2042 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
2043 End = Exp.expandCodeFor(High, PtrArithTy, Loc);
2044 if (CG->NeedsFreeze) {
2045 IRBuilder<> Builder(Loc);
2046 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
2047 End = Builder.CreateFreeze(End, End->getName() + ".fr");
2048 }
2049 Value *StrideVal =
2050 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
2051 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
2052 return {Start, End, StrideVal};
2053}
2054
2055/// Turns a collection of checks into a collection of expanded upper and
2056/// lower bounds for both pointers in the check.
2061
2062 // Here we're relying on the SCEV Expander's cache to only emit code for the
2063 // same bounds once.
2064 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
2065 [&](const RuntimePointerCheck &Check) {
2066 PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
2068 Second = expandBounds(Check.second, L, Loc, Exp,
2070 return std::make_pair(First, Second);
2071 });
2072
2073 return ChecksWithBounds;
2074}
2075
2077 Instruction *Loc, Loop *TheLoop,
2078 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
2079 SCEVExpander &Exp, bool HoistRuntimeChecks) {
2080 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
2081 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
2082 auto ExpandedChecks =
2083 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
2084
2085 LLVMContext &Ctx = Loc->getContext();
2086 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
2087 ChkBuilder.SetInsertPoint(Loc);
2088 // Our instructions might fold to a constant.
2089 Value *MemoryRuntimeCheck = nullptr;
2090
2091 for (const auto &[A, B] : ExpandedChecks) {
2092 // Check if two pointers (A and B) conflict where conflict is computed as:
2093 // start(A) <= end(B) && start(B) <= end(A)
2094
2095 assert((A.Start->getType()->getPointerAddressSpace() ==
2096 B.End->getType()->getPointerAddressSpace()) &&
2097 (B.Start->getType()->getPointerAddressSpace() ==
2098 A.End->getType()->getPointerAddressSpace()) &&
2099 "Trying to bounds check pointers with different address spaces");
2100
2101 // [A|B].Start points to the first accessed byte under base [A|B].
2102 // [A|B].End points to the last accessed byte, plus one.
2103 // There is no conflict when the intervals are disjoint:
2104 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2105 //
2106 // bound0 = (B.Start < A.End)
2107 // bound1 = (A.Start < B.End)
2108 // IsConflict = bound0 & bound1
2109 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
2110 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
2111 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2112 if (A.StrideToCheck) {
2113 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
2114 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
2115 "stride.check");
2116 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2117 }
2118 if (B.StrideToCheck) {
2119 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
2120 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
2121 "stride.check");
2122 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2123 }
2124 if (MemoryRuntimeCheck) {
2125 IsConflict =
2126 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2127 }
2128 MemoryRuntimeCheck = IsConflict;
2129 }
2130
2131 Exp.eraseDeadInstructions(MemoryRuntimeCheck);
2132 return MemoryRuntimeCheck;
2133}
2134
2137 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
2138
2139 LLVMContext &Ctx = Loc->getContext();
2140 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
2141 ChkBuilder.SetInsertPoint(Loc);
2142 // Our instructions might fold to a constant.
2143 Value *MemoryRuntimeCheck = nullptr;
2144
2145 auto &SE = *Expander.getSE();
2146 // Map to keep track of created compares, The key is the pair of operands for
2147 // the compare, to allow detecting and re-using redundant compares.
2149 for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) {
2150 Type *Ty = SinkStart->getType();
2151 // Compute VF * IC * AccessSize.
2152 auto *VFTimesICTimesSize =
2153 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
2154 ConstantInt::get(Ty, IC * AccessSize));
2155 Value *Diff =
2156 Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc);
2157
2158 // Check if the same compare has already been created earlier. In that case,
2159 // there is no need to check it again.
2160 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesICTimesSize});
2161 if (IsConflict)
2162 continue;
2163
2164 IsConflict =
2165 ChkBuilder.CreateICmpULT(Diff, VFTimesICTimesSize, "diff.check");
2166 SeenCompares.insert({{Diff, VFTimesICTimesSize}, IsConflict});
2167 if (NeedsFreeze)
2168 IsConflict =
2169 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
2170 if (MemoryRuntimeCheck) {
2171 IsConflict =
2172 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2173 }
2174 MemoryRuntimeCheck = IsConflict;
2175 }
2176
2177 Expander.eraseDeadInstructions(MemoryRuntimeCheck);
2178 return MemoryRuntimeCheck;
2179}
2180
2181std::optional<IVConditionInfo>
2183 const MemorySSA &MSSA, AAResults &AA) {
2184 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
2185 if (!TI || !TI->isConditional())
2186 return {};
2187
2188 auto *CondI = dyn_cast<Instruction>(TI->getCondition());
2189 // The case with the condition outside the loop should already be handled
2190 // earlier.
2191 // Allow CmpInst and TruncInsts as they may be users of load instructions
2192 // and have potential for partial unswitching
2193 if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI))
2194 return {};
2195
2196 SmallVector<Instruction *> InstToDuplicate;
2197 InstToDuplicate.push_back(CondI);
2198
2199 SmallVector<Value *, 4> WorkList;
2200 WorkList.append(CondI->op_begin(), CondI->op_end());
2201
2202 SmallVector<MemoryAccess *, 4> AccessesToCheck;
2203 SmallVector<MemoryLocation, 4> AccessedLocs;
2204 while (!WorkList.empty()) {
2206 if (!I || !L.contains(I))
2207 continue;
2208
2209 // TODO: support additional instructions.
2211 return {};
2212
2213 // Do not duplicate volatile and atomic loads.
2214 if (auto *LI = dyn_cast<LoadInst>(I))
2215 if (LI->isVolatile() || LI->isAtomic())
2216 return {};
2217
2218 InstToDuplicate.push_back(I);
2219 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
2220 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
2221 // Queue the defining access to check for alias checks.
2222 AccessesToCheck.push_back(MemUse->getDefiningAccess());
2223 AccessedLocs.push_back(MemoryLocation::get(I));
2224 } else {
2225 // MemoryDefs may clobber the location or may be atomic memory
2226 // operations. Bail out.
2227 return {};
2228 }
2229 }
2230 WorkList.append(I->op_begin(), I->op_end());
2231 }
2232
2233 if (InstToDuplicate.empty())
2234 return {};
2235
2236 SmallVector<BasicBlock *, 4> ExitingBlocks;
2237 L.getExitingBlocks(ExitingBlocks);
2238 auto HasNoClobbersOnPath =
2239 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
2240 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
2241 SmallVector<MemoryAccess *, 4> AccessesToCheck)
2242 -> std::optional<IVConditionInfo> {
2243 IVConditionInfo Info;
2244 // First, collect all blocks in the loop that are on a patch from Succ
2245 // to the header.
2247 WorkList.push_back(Succ);
2248 WorkList.push_back(Header);
2250 Seen.insert(Header);
2251 Info.PathIsNoop &=
2252 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2253
2254 while (!WorkList.empty()) {
2255 BasicBlock *Current = WorkList.pop_back_val();
2256 if (!L.contains(Current))
2257 continue;
2258 const auto &SeenIns = Seen.insert(Current);
2259 if (!SeenIns.second)
2260 continue;
2261
2262 Info.PathIsNoop &= all_of(
2263 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2264 WorkList.append(succ_begin(Current), succ_end(Current));
2265 }
2266
2267 // Require at least 2 blocks on a path through the loop. This skips
2268 // paths that directly exit the loop.
2269 if (Seen.size() < 2)
2270 return {};
2271
2272 // Next, check if there are any MemoryDefs that are on the path through
2273 // the loop (in the Seen set) and they may-alias any of the locations in
2274 // AccessedLocs. If that is the case, they may modify the condition and
2275 // partial unswitching is not possible.
2276 SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
2277 while (!AccessesToCheck.empty()) {
2278 MemoryAccess *Current = AccessesToCheck.pop_back_val();
2279 auto SeenI = SeenAccesses.insert(Current);
2280 if (!SeenI.second || !Seen.contains(Current->getBlock()))
2281 continue;
2282
2283 // Bail out if exceeded the threshold.
2284 if (SeenAccesses.size() >= MSSAThreshold)
2285 return {};
2286
2287 // MemoryUse are read-only accesses.
2288 if (isa<MemoryUse>(Current))
2289 continue;
2290
2291 // For a MemoryDef, check if is aliases any of the location feeding
2292 // the original condition.
2293 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
2294 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
2295 return isModSet(
2296 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
2297 }))
2298 return {};
2299 }
2300
2301 for (Use &U : Current->uses())
2302 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
2303 }
2304
2305 // We could also allow loops with known trip counts without mustprogress,
2306 // but ScalarEvolution may not be available.
2307 Info.PathIsNoop &= isMustProgress(&L);
2308
2309 // If the path is considered a no-op so far, check if it reaches a
2310 // single exit block without any phis. This ensures no values from the
2311 // loop are used outside of the loop.
2312 if (Info.PathIsNoop) {
2313 for (auto *Exiting : ExitingBlocks) {
2314 if (!Seen.contains(Exiting))
2315 continue;
2316 for (auto *Succ : successors(Exiting)) {
2317 if (L.contains(Succ))
2318 continue;
2319
2320 Info.PathIsNoop &= Succ->phis().empty() &&
2321 (!Info.ExitForPath || Info.ExitForPath == Succ);
2322 if (!Info.PathIsNoop)
2323 break;
2324 assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2325 "cannot have multiple exit blocks");
2326 Info.ExitForPath = Succ;
2327 }
2328 }
2329 }
2330 if (!Info.ExitForPath)
2331 Info.PathIsNoop = false;
2332
2333 Info.InstToDuplicate = InstToDuplicate;
2334 return Info;
2335 };
2336
2337 // If we branch to the same successor, partial unswitching will not be
2338 // beneficial.
2339 if (TI->getSuccessor(0) == TI->getSuccessor(1))
2340 return {};
2341
2342 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2343 AccessesToCheck)) {
2344 Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2345 return Info;
2346 }
2347 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2348 AccessesToCheck)) {
2349 Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2350 return Info;
2351 }
2352
2353 return {};
2354}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This is the interface for LLVM's primary stateless and local alias analysis.
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_EXPORT_TEMPLATE
Definition Compiler.h:215
This file defines the DenseSet and SmallDenseSet classes.
#define Check(C,...)
This is the interface for a simple mod/ref and alias analysis over globals.
static const HTTPClientCleanup Cleanup
Hexagon Hardware Loops
Module.h This file contains the declarations for the Module class.
iv Induction Variable Users
Definition IVUsers.cpp:48
static cl::opt< ReplaceExitVal > ReplaceExitValue("replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I)
static const char * LLVMLoopDisableLICM
Definition LoopUtils.cpp:56
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, Loop *TheLoop, Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks)
Expand code for the lower and upper bound of the pointer group CG in TheLoop.
static bool canLoopBeDeleted(Loop *L, SmallVector< RewritePhi, 8 > &RewritePhiSet)
static const char * LLVMLoopDisableNonforced
Definition LoopUtils.cpp:55
static MDNode * createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V)
Create MDNode for input string.
static BranchInst * getExpectedExitLoopLatchBranch(Loop *L)
Checks if L has an exiting latch branch.
static std::optional< unsigned > estimateLoopTripCount(Loop *L)
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, InductionDescriptor &ID)
Checks if it is safe to call InductionDescriptor::isInductionPHI for Phi, and returns true if this Ph...
#define I(x, y, z)
Definition MD5.cpp:58
#define H(x, y, z)
Definition MD5.cpp:57
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
uint64_t High
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
This file provides a priority worklist.
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This is the interface for a SCEV-based alias analysis.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1120
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:206
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition APInt.h:216
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
Represent the analysis usage information of a pass.
LLVM_ABI AnalysisUsage & addRequiredID(const void *ID)
Definition Pass.cpp:284
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
unsigned getNumSuccessors() const
BasicBlock * getSuccessor(unsigned i) const
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
static BranchProbability getUnknown()
uint32_t getNumerator() const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:536
static LLVM_ABI Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
Record of a variable value-assignment, aka a non instruction representation of the dbg....
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
iterator_range< iterator > children()
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:322
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:316
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
bool noSignedZeros() const
Definition FMF.h:67
bool noNaNs() const
Definition FMF.h:65
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Legacy wrapper pass to provide the GlobalsAAResult object.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2348
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2645
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:1551
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2364
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
A struct for saving information about induction variables.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
void addLoop(Loop &L)
Definition LoopPass.cpp:77
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getHeader() const
std::vector< Loop * >::const_iterator iterator
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
iterator end() const
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * removeLoop(iterator I)
This removes the specified top-level loop from this loop info object.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void destroy(LoopT *L)
Destroy a loop that has been removed from the LoopInfo nest.
The legacy pass manager's analysis pass to compute loop information.
Definition LoopInfo.h:596
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Definition LoopInfo.h:441
LLVM_ABI void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Definition LoopInfo.cpp:887
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
Definition LoopInfo.cpp:526
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
Definition LoopInfo.cpp:502
Metadata node.
Definition Metadata.h:1078
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
LLVMContext & getContext() const
Definition Metadata.h:1242
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
A single uniqued string.
Definition Metadata.h:721
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
Tuple of metadata.
Definition Metadata.h:1497
BasicBlock * getBlock() const
Definition MemorySSA.h:162
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
Legacy analysis pass which computes MemorySSA.
Definition MemorySSA.h:993
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition MemorySSA.h:702
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition MemorySSA.h:720
Root of the metadata hierarchy.
Definition Metadata.h:64
void setIncomingValue(unsigned i, Value *V)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
bool insert(const T &X)
Insert a new element into the PriorityWorklist.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition Registry.h:44
Legacy wrapper pass to provide the SCEVAAResult object.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopInvariant
The SCEV is loop-invariant.
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
This class represents the LLVM 'select' instruction.
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:291
A version of PriorityWorklist that selects small size optimized data structures for the vector and ma...
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Value handle that tracks a Value across RAUW.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
static LLVM_ABI Intrinsic::ID getForIntrinsic(Intrinsic::ID Id)
The llvm.vp.
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
bool use_empty() const
Definition Value.h:346
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:682
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
LLVM_ABI std::optional< ElementCount > getOptionalElementCountLoopAttribute(const Loop *TheLoop)
Find a combination of metadata ("llvm.loop.vectorize.width" and "llvm.loop.vectorize....
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
LLVM_ABI bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
std::pair< const RuntimeCheckingPtrGroup *, const RuntimeCheckingPtrGroup * > RuntimePointerCheck
A memcheck which made up of a pair of grouped pointers.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
LLVM_ABI bool isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-positive in loop L.
LLVM_ABI std::optional< bool > getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
void appendReversedLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
auto successors(const MachineBasicBlock *BB)
BranchProbability getBranchProbability(BranchInst *B, bool ForFirstTarget)
Based on branch weight metadata, return either:
LLVM_ABI void initializeLoopPassPass(PassRegistry &)
Manually defined generic "LoopPass" dependency initialization.
constexpr from_range_t from_range
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
LLVM_ABI Value * getReductionIdentity(Intrinsic::ID RdxID, Type *Ty, FastMathFlags FMF)
Given information about an @llvm.vector.reduce.
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
LLVM_ABI char & LCSSAID
Definition LCSSA.cpp:526
LLVM_ABI char & LoopSimplifyID
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
LLVM_ABI SmallVector< BasicBlock *, 16 > collectChildrenInLoop(DominatorTree *DT, DomTreeNode *N, const Loop *CurLoop)
Does a BFS from a given node to all of its children inside a given loop.
LLVM_ABI void addStringMetadataToLoop(Loop *TheLoop, const char *MDString, unsigned V=0)
Set input string into loop metadata by keeping other values intact.
LLVM_ABI bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned max.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
DomTreeNodeBase< BasicBlock > DomTreeNode
Definition Dominators.h:95
constexpr T divideNearest(U Numerator, V Denominator)
Returns (Numerator / Denominator) rounded by round-half-up.
Definition MathExtras.h:458
LLVM_ABI TransformationMode hasVectorizeTransformation(const Loop *L)
bool setBranchProbability(BranchInst *B, BranchProbability P, bool ForFirstTarget)
Set branch weight metadata for B to indicate that P and 1 - P are the probabilities of control flowin...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1968
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
LLVM_ABI SmallVector< Instruction *, 8 > findDefsUsedOutsideOfLoop(Loop *L)
Returns the instructions that use values defined in the loop.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI constexpr Intrinsic::ID getReductionIntrinsicID(RecurKind RK)
Returns the llvm.vector.reduce intrinsic that corresponds to the recurrence kind.
LLVM_ABI bool isMustProgress(const Loop *L)
Return true if this loop can be assumed to make progress.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
LLVM_ABI TransformationMode hasUnrollAndJamTransformation(const Loop *L)
LLVM_ABI void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI, MemorySSA *MSSA=nullptr)
This function deletes dead loops.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI bool hasDisableAllTransformsHint(const Loop *L)
Look for the loop attribute that disables all transformation heuristic.
LLVM_TEMPLATE_ABI void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
LLVM_ABI cl::opt< unsigned > SCEVCheapExpansionBudget
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI Value * getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, TargetTransformInfo::ReductionShuffle RS, RecurKind MinMaxKind=RecurKind::None)
Generates a vector reduction using shufflevectors to reduce the value.
LLVM_ABI TransformationMode hasUnrollTransformation(const Loop *L)
BranchProbability getLoopProbability(Loop *L)
Based on branch weight metadata, return either:
LLVM_ABI TransformationMode hasDistributeTransformation(const Loop *L)
LLVM_ABI void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, MemorySSA *MSSA)
Remove the backedge of the specified loop.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always positive in loop L.
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
Definition Local.cpp:2513
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
LLVM_ABI std::optional< int > getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name)
Find named metadata for a loop with an integer value.
bool setLoopProbability(Loop *L, BranchProbability P)
Set branch weight metadata for the latch of L to indicate that, at the end of any iteration,...
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
TargetTransformInfo TTI
LLVM_ABI CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK)
Returns the comparison predicate used when expanding a min/max reduction.
LLVM_ABI TransformationMode hasLICMVersioningTransformation(const Loop *L)
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition MemorySSA.cpp:84
TransformationMode
The mode sets how eager a transformation should be applied.
Definition LoopUtils.h:284
@ TM_Unspecified
The pass can use heuristics to determine whether a transformation should be applied.
Definition LoopUtils.h:287
@ TM_SuppressedByUser
The transformation must not be applied.
Definition LoopUtils.h:307
@ TM_ForcedByUser
The transformation was directed by the user, e.g.
Definition LoopUtils.h:301
@ TM_Disable
The transformation should not be applied.
Definition LoopUtils.h:293
@ TM_Enable
The transformation should be applied without considering a cost model.
Definition LoopUtils.h:290
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
LLVM_ABI bool hasDisableLICMTransformsHint(const Loop *L)
Look for the loop attribute that disables the LICM transformation heuristics.
template LLVM_TEMPLATE_ABI void appendLoopsToWorklist< Loop & >(Loop &L, SmallPriorityWorklist< Loop *, 4 > &Worklist)
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ Or
Bitwise or logical OR of integers.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ None
Not a recurrence.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMaximum
FP max with llvm.maximum semantics.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ FMul
Product of floats.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FAdd
Sum of floats.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
LLVM_ABI bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
Definition LoopUtils.cpp:58
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LLVM_ABI bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always negative in loop L.
constexpr unsigned BitWidth
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, std::optional< unsigned > EstimatedLoopInvocationWeight=std::nullopt)
Set llvm.loop.estimated_trip_count with the value EstimatedTripCount in the loop metadata of L.
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
LLVM_ABI bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE)
Check inner loop (L) backedge count is known to be invariant on all iterations of its outer loop.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
static cl::opt< unsigned > MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", cl::desc("Max number of memory uses to explore during " "partial unswitching analysis"), cl::init(100), cl::Hidden)
LLVM_ABI bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, ScalarEvolution *SE, const TargetTransformInfo *TTI, SCEVExpander &Rewriter, DominatorTree *DT, ReplaceExitVal ReplaceExitValue, SmallVector< WeakTrackingVH, 16 > &DeadInsts)
If the final value of any expressions that are recurrent in the loop can be computed,...
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
LLVM_ABI RecurKind getMinMaxReductionRecurKind(Intrinsic::ID RdxID)
Returns the recurence kind used when expanding a min/max reduction.
ReplaceExitVal
Definition LoopUtils.h:550
@ UnusedIndVarInLoop
Definition LoopUtils.h:554
@ OnlyCheapRepl
Definition LoopUtils.h:552
@ AlwaysRepl
Definition LoopUtils.h:555
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI std::optional< IVConditionInfo > hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, const MemorySSA &MSSA, AAResults &AA)
Check if the loop header has a conditional branch that is not loop-invariant, because it involves loa...
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned min.
LLVM_ABI bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-negative in loop L.
LLVM_ABI Value * getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, unsigned Op, RecurKind MinMaxKind=RecurKind::None)
Generates an ordered vector reduction using extracts to reduce the value.
LLVM_ABI MDNode * findOptionMDForLoopID(MDNode *LoopID, StringRef Name)
Find and return the loop attribute node for the attribute Name in LoopID.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
@ Enable
Enable colors.
Definition WithColor.h:47
LLVM_ABI Loop * cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, LoopInfo *LI, LPPassManager *LPM)
Recursively clone the specified loop and all of its children, mapping the blocks with the specified m...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
DbgLoop(const Loop *L)
const Loop * L
IR Values for the lower and upper bounds of a pointer evolution.
TrackingVH< Value > Start
TrackingVH< Value > End
Value * StrideToCheck
unsigned Ith
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, bool H)
const SCEV * ExpansionSCEV
PHINode * PN
Instruction * ExpansionPoint
Struct to hold information about a partially invariant condition.
Definition LoopUtils.h:622
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
unsigned AddressSpace
Address space of the involved pointers.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.