53#define DEBUG_TYPE "loop-utils"
68 "Must start with an empty predecessors list!");
73 bool IsDedicatedExit =
true;
75 if (L->contains(PredBB)) {
82 IsDedicatedExit =
false;
85 assert(!InLoopPredecessors.
empty() &&
"Must have *some* loop predecessor!");
92 BB, InLoopPredecessors,
".loopexit", DT, LI, MSSAU, PreserveLCSSA);
96 dbgs() <<
"WARNING: Can't create a dedicated exit block for loop: "
99 LLVM_DEBUG(
dbgs() <<
"LoopSimplify: Creating dedicated exit block "
100 << NewExitBB->getName() <<
"\n");
107 for (
auto *BB : L->blocks())
110 if (L->contains(SuccBB))
114 if (!Visited.
insert(SuccBB).second)
117 Changed |= RewriteExit(SuccBB);
127 for (
auto *
Block : L->getBlocks())
130 for (
auto &Inst : *
Block) {
131 auto Users = Inst.users();
134 return !L->contains(
Use->getParent());
221 for (
unsigned i = 1, ie = LoopID->
getNumOperands(); i < ie; ++i) {
224 if (
Node->getNumOperands() == 2) {
250std::optional<ElementCount>
252 std::optional<int> Width =
257 TheLoop,
"llvm.loop.vectorize.scalable.enable");
266 const char *InheritOptionsExceptPrefix,
bool AlwaysNew) {
275 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
276 bool InheritSomeAttrs =
277 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] !=
'\0';
282 if (InheritAllAttrs || InheritSomeAttrs) {
286 auto InheritThisAttribute = [InheritSomeAttrs,
287 InheritOptionsExceptPrefix](
MDNode *
Op) {
288 if (!InheritSomeAttrs)
292 if (
Op->getNumOperands() == 0)
300 return !AttrName.
starts_with(InheritOptionsExceptPrefix);
303 if (InheritThisAttribute(
Op))
313 bool HasAnyFollowup =
false;
314 for (
StringRef OptionName : FollowupOptions) {
319 HasAnyFollowup =
true;
328 if (!AlwaysNew && !HasAnyFollowup)
342 return FollowupLoopID;
357 std::optional<int>
Count =
378 std::optional<int>
Count =
393 std::optional<bool>
Enable =
399 std::optional<ElementCount> VectorizeWidth =
401 std::optional<int> InterleaveCount =
406 if (
Enable ==
true && VectorizeWidth && VectorizeWidth->isScalar() &&
407 InterleaveCount == 1)
416 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
419 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
452 const Loop *CurLoop) {
461 AddRegionToWorklist(
N);
463 for (
size_t I = 0;
I < Worklist.
size();
I++) {
465 AddRegionToWorklist(Child);
473 assert(LatchIdx != -1 &&
"LatchBlock is not a case in this PHINode");
477 if (U !=
Cond && U != IncV)
return false;
480 if (U !=
Cond && U != PN)
return false;
487 assert((!DT || L->isLCSSAForm(*DT)) &&
"Expected LCSSA!");
488 auto *Preheader = L->getLoopPreheader();
489 assert(Preheader &&
"Preheader should exist!");
491 std::unique_ptr<MemorySSAUpdater> MSSAU;
493 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
511 "Preheader must end with a side-effect-free terminator");
513 "Preheader must have a single successor");
541 auto *ExitBlock = L->getUniqueExitBlock();
544 assert(ExitBlock &&
"Should have a unique exit block!");
545 assert(L->hasDedicatedExits() &&
"Loop should have dedicated exits!");
547 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
553 for (
PHINode &
P : ExitBlock->phis()) {
558 P.setIncomingBlock(PredIndex, Preheader);
562 P.removeIncomingValueIf([](
unsigned Idx) {
return Idx != 0; },
565 assert((
P.getNumIncomingValues() == 1 &&
566 P.getIncomingBlock(PredIndex) == Preheader) &&
567 "Should have exactly one value and that's from the preheader!");
581 Builder.SetInsertPoint(Preheader->getTerminator());
582 Builder.CreateBr(ExitBlock);
584 Preheader->getTerminator()->eraseFromParent();
586 assert(L->hasNoExitBlocks() &&
587 "Loop should have either zero or one exit blocks.");
589 Builder.SetInsertPoint(OldTerm);
590 Builder.CreateUnreachable();
591 Preheader->getTerminator()->eraseFromParent();
601 MSSAU->removeBlocks(DeadBlockSet);
620 for (
auto *
Block : L->blocks())
625 if (L->contains(Usr->getParent()))
631 "Unexpected user in reachable block");
641 DVR.getDebugLoc().get());
645 DVR.removeFromParent();
658 ExitBlock->getFirstInsertionPt();
659 assert(InsertDbgValueBefore != ExitBlock->end() &&
660 "There should be a non-PHI instruction in exit block, else these "
661 "instructions will have no parent.");
668 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
673 for (
auto *
Block : L->blocks())
674 Block->dropAllReferences();
685 BB->eraseFromParent();
698 if (
Loop *ParentLoop = L->getParentLoop()) {
700 assert(
I != ParentLoop->end() &&
"Couldn't find loop");
701 ParentLoop->removeChildLoop(
I);
704 assert(
I != LI->
end() &&
"Couldn't find loop");
713 auto *Latch = L->getLoopLatch();
714 assert(Latch &&
"multiple latches not yet supported");
715 auto *Header = L->getHeader();
716 Loop *OutermostLoop = L->getOutermostLoop();
721 std::unique_ptr<MemorySSAUpdater> MSSAU;
723 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
729 if (!BI->isConditional()) {
738 if (L->isLoopExiting(Latch)) {
743 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
744 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
747 Header->removePredecessor(Latch,
true);
750 auto *NewBI = Builder.CreateBr(ExitBB);
753 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
754 LLVMContext::MD_annotation});
756 BI->eraseFromParent();
767 auto *BackedgeBB =
SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
771 true, &DTU, MSSAU.get());
783 if (OutermostLoop != L)
797 if (!LatchBR || LatchBR->
getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
802 "At least one edge out of the latch must go to the header");
815 D.L->getHeader()->getParent()->printAsOperand(OS,
false);
816 return OS <<
" " << *
D.L;
826 if (!ExitingBranch) {
827 LLVM_DEBUG(
dbgs() <<
"estimateLoopTripCount: Failed to find exiting "
828 <<
"latch branch of required form in " <<
DbgLoop(L)
838 LLVM_DEBUG(
dbgs() <<
"estimateLoopTripCount: Failed to extract branch "
839 <<
"weights for " <<
DbgLoop(L) <<
"\n");
848 LLVM_DEBUG(
dbgs() <<
"estimateLoopTripCount: Failed because of zero exit "
849 <<
"probability for " <<
DbgLoop(L) <<
"\n");
858 if (ExitCount >= std::numeric_limits<unsigned>::max())
859 return std::numeric_limits<unsigned>::max();
863 LLVM_DEBUG(
dbgs() <<
"estimateLoopTripCount: Estimated trip count of " << TC
864 <<
" for " <<
DbgLoop(L) <<
"\n");
868std::optional<unsigned>
870 unsigned *EstimatedLoopInvocationWeight) {
903 if (EstimatedLoopInvocationWeight) {
904 uint64_t LoopWeight = 0, ExitWeight = 0;
911 *EstimatedLoopInvocationWeight = ExitWeight;
919 <<
"count of " << *TC <<
" for " <<
DbgLoop(L) <<
"\n");
928 Loop *L,
unsigned EstimatedTripCount,
929 std::optional<unsigned> EstimatedloopInvocationWeight) {
949 if (!EstimatedloopInvocationWeight)
953 unsigned LatchExitWeight = 0;
954 unsigned BackedgeTakenWeight = 0;
956 if (EstimatedTripCount != 0) {
957 LatchExitWeight = *EstimatedloopInvocationWeight;
958 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
963 std::swap(BackedgeTakenWeight, LatchExitWeight);
976 bool FirstTargetIsLoop = LatchBranch->
getSuccessor(0) == L->getHeader();
984 bool FirstTargetIsLoop = LatchBranch->
getSuccessor(0) == L->getHeader();
989 bool ForFirstTarget) {
990 if (
B->getNumSuccessors() != 2)
1001 bool ForFirstTarget) {
1002 if (
B->getNumSuccessors() != 2)
1006 if (!ForFirstTarget)
1021 const SCEV *InnerLoopBECountSC = SE.
getExitCount(InnerLoop, InnerLoopLatch);
1042 return Intrinsic::vector_reduce_add;
1044 return Intrinsic::vector_reduce_mul;
1046 return Intrinsic::vector_reduce_and;
1048 return Intrinsic::vector_reduce_or;
1050 return Intrinsic::vector_reduce_xor;
1053 return Intrinsic::vector_reduce_fadd;
1055 return Intrinsic::vector_reduce_fmul;
1057 return Intrinsic::vector_reduce_smax;
1059 return Intrinsic::vector_reduce_smin;
1061 return Intrinsic::vector_reduce_umax;
1063 return Intrinsic::vector_reduce_umin;
1066 return Intrinsic::vector_reduce_fmax;
1069 return Intrinsic::vector_reduce_fmin;
1071 return Intrinsic::vector_reduce_fmaximum;
1073 return Intrinsic::vector_reduce_fminimum;
1075 return Intrinsic::vector_reduce_fmax;
1077 return Intrinsic::vector_reduce_fmin;
1085 case Intrinsic::umin:
1086 return Intrinsic::vector_reduce_umin;
1087 case Intrinsic::umax:
1088 return Intrinsic::vector_reduce_umax;
1089 case Intrinsic::smin:
1090 return Intrinsic::vector_reduce_smin;
1091 case Intrinsic::smax:
1092 return Intrinsic::vector_reduce_smax;
1099 case Intrinsic::vector_reduce_fadd:
1100 return Instruction::FAdd;
1101 case Intrinsic::vector_reduce_fmul:
1102 return Instruction::FMul;
1103 case Intrinsic::vector_reduce_add:
1104 return Instruction::Add;
1105 case Intrinsic::vector_reduce_mul:
1106 return Instruction::Mul;
1107 case Intrinsic::vector_reduce_and:
1108 return Instruction::And;
1109 case Intrinsic::vector_reduce_or:
1110 return Instruction::Or;
1111 case Intrinsic::vector_reduce_xor:
1112 return Instruction::Xor;
1113 case Intrinsic::vector_reduce_smax:
1114 case Intrinsic::vector_reduce_smin:
1115 case Intrinsic::vector_reduce_umax:
1116 case Intrinsic::vector_reduce_umin:
1117 return Instruction::ICmp;
1118 case Intrinsic::vector_reduce_fmax:
1119 case Intrinsic::vector_reduce_fmin:
1120 return Instruction::FCmp;
1131 case Instruction::Add:
1132 return Intrinsic::vector_reduce_add;
1133 case Instruction::Mul:
1134 return Intrinsic::vector_reduce_mul;
1135 case Instruction::And:
1136 return Intrinsic::vector_reduce_and;
1137 case Instruction::Or:
1138 return Intrinsic::vector_reduce_or;
1139 case Instruction::Xor:
1140 return Intrinsic::vector_reduce_xor;
1149 case Intrinsic::vector_reduce_umin:
1150 return Intrinsic::umin;
1151 case Intrinsic::vector_reduce_umax:
1152 return Intrinsic::umax;
1153 case Intrinsic::vector_reduce_smin:
1154 return Intrinsic::smin;
1155 case Intrinsic::vector_reduce_smax:
1156 return Intrinsic::smax;
1157 case Intrinsic::vector_reduce_fmin:
1158 return Intrinsic::minnum;
1159 case Intrinsic::vector_reduce_fmax:
1160 return Intrinsic::maxnum;
1161 case Intrinsic::vector_reduce_fminimum:
1162 return Intrinsic::minimum;
1163 case Intrinsic::vector_reduce_fmaximum:
1164 return Intrinsic::maximum;
1173 return Intrinsic::umin;
1175 return Intrinsic::umax;
1177 return Intrinsic::smin;
1179 return Intrinsic::smax;
1182 return Intrinsic::minnum;
1185 return Intrinsic::maxnum;
1187 return Intrinsic::minimum;
1189 return Intrinsic::maximum;
1191 return Intrinsic::minimumnum;
1193 return Intrinsic::maximumnum;
1199 case Intrinsic::vector_reduce_smax:
1201 case Intrinsic::vector_reduce_smin:
1203 case Intrinsic::vector_reduce_umax:
1205 case Intrinsic::vector_reduce_umin:
1207 case Intrinsic::vector_reduce_fmax:
1209 case Intrinsic::vector_reduce_fmin:
1241 if (Ty->isIntOrIntVectorTy() ||
1246 return Builder.CreateIntrinsic(Ty, Id, {
Left,
Right},
nullptr,
1250 Value *Cmp = Builder.CreateCmp(Pred,
Left,
Right,
"rdx.minmax.cmp");
1262 Value *Result = Acc;
1263 for (
unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1265 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1267 if (
Op != Instruction::ICmp &&
Op != Instruction::FCmp) {
1290 "Reduction emission only supported for pow2 vectors!");
1298 auto BuildShuffledOp = [&Builder, &
Op,
1300 Value *&TmpVec) ->
void {
1301 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask,
"rdx.shuf");
1302 if (
Op != Instruction::ICmp &&
Op != Instruction::FCmp) {
1312 Value *TmpVec = Src;
1315 for (
unsigned stride = 1; stride < VF; stride <<= 1) {
1318 for (
unsigned j = 0; j < VF; j += stride << 1) {
1319 ShuffleMask[j] = j + stride;
1321 BuildShuffledOp(ShuffleMask, TmpVec);
1325 for (
unsigned i = VF; i != 1; i >>= 1) {
1327 for (
unsigned j = 0; j != i / 2; ++j)
1328 ShuffleMask[j] = i / 2 + j;
1331 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1332 BuildShuffledOp(ShuffleMask, TmpVec);
1336 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1341 Value *NewVal =
nullptr;
1346 for (
auto *U : OrigPhi->
users()) {
1350 assert(
SI &&
"One user of the original phi should be a select");
1352 if (
SI->getTrueValue() == OrigPhi)
1353 NewVal =
SI->getFalseValue();
1355 assert(
SI->getFalseValue() == OrigPhi &&
1356 "At least one input to the select should be the original Phi");
1357 NewVal =
SI->getTrueValue();
1362 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
1366 return Builder.CreateSelect(
AnyOf, NewVal, InitVal,
"rdx.select");
1375 ? (IsMaxRdx ? Builder.CreateIntMaxReduce(Src, IsSigned)
1376 : Builder.CreateIntMinReduce(Src, IsSigned))
1382 return Builder.CreateSelect(Cmp, MaxRdx, Start,
"rdx.select");
1387 bool Negative =
false;
1391 case Intrinsic::vector_reduce_add:
1392 case Intrinsic::vector_reduce_mul:
1393 case Intrinsic::vector_reduce_or:
1394 case Intrinsic::vector_reduce_xor:
1395 case Intrinsic::vector_reduce_and:
1396 case Intrinsic::vector_reduce_fadd:
1397 case Intrinsic::vector_reduce_fmul: {
1400 Flags.noSignedZeros());
1402 case Intrinsic::vector_reduce_umax:
1403 case Intrinsic::vector_reduce_umin:
1404 case Intrinsic::vector_reduce_smin:
1405 case Intrinsic::vector_reduce_smax: {
1409 case Intrinsic::vector_reduce_fmax:
1410 case Intrinsic::vector_reduce_fmaximum:
1413 case Intrinsic::vector_reduce_fmin:
1414 case Intrinsic::vector_reduce_fminimum: {
1415 bool PropagatesNaN = RdxID == Intrinsic::vector_reduce_fminimum ||
1416 RdxID == Intrinsic::vector_reduce_fmaximum;
1418 return (!Flags.noNaNs() && !PropagatesNaN)
1430 "nnan, nsz is expected to be set for FP min/max reduction.");
1438 auto getIdentity = [&]() {
1440 Builder.getFastMathFlags());
1465 return Builder.CreateFAddReduce(getIdentity(), Src);
1467 return Builder.CreateFMulReduce(getIdentity(), Src);
1477 "AnyOf and FindIV reductions are not supported.");
1481 "No VPIntrinsic for this reduction");
1484 Value *
Ops[] = {Iden, Src, Mask, EVL};
1485 return Builder.CreateIntrinsic(EltTy, VPID,
Ops);
1491 "Unexpected reduction kind");
1492 assert(Src->getType()->isVectorTy() &&
"Expected a vector type");
1493 assert(!Start->getType()->isVectorTy() &&
"Expected a scalar type");
1495 return B.CreateFAddReduce(Start, Src);
1502 "Unexpected reduction kind");
1503 assert(Src->getType()->isVectorTy() &&
"Expected a vector type");
1504 assert(!Start->getType()->isVectorTy() &&
"Expected a scalar type");
1509 "No VPIntrinsic for this reduction");
1511 Value *
Ops[] = {Start, Src, Mask, EVL};
1512 return Builder.CreateIntrinsic(EltTy, VPID,
Ops);
1516 bool IncludeWrapFlags) {
1524 const unsigned Opcode = Intersection->getOpcode();
1525 VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1526 for (
auto *V : VL) {
1530 if (OpValue ==
nullptr || Opcode == Instr->getOpcode())
1531 VecOp->andIRFlags(V);
1595 while (!WorkList.
empty()) {
1598 if (!L->contains(Curr))
1604 for (
const auto *U : Curr->
users()) {
1606 if (Visited.
insert(UI).second)
1632 BasicBlock *Preheader = L->getLoopPreheader();
1642 L->getExitingBlocks(ExitingBlocks);
1644 L->getUniqueExitBlocks(ExitBlocks);
1645 if (ExitBlocks.
size() != 1 || ExitingBlocks.
size() != 1)
1657 for (
const RewritePhi &Phi : RewritePhiSet) {
1658 unsigned i = Phi.Ith;
1659 if (Phi.PN ==
P && (Phi.PN)->getIncomingValue(i) ==
Incoming) {
1667 if (!L->hasLoopInvariantOperands(
I))
1673 for (
auto *BB : L->blocks())
1675 return I.mayHaveSideEffects();
1689 if (!L->getLoopPreheader())
1691 if (Phi->getParent() != L->getHeader())
1703 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1704 "Indvars did not preserve LCSSA!");
1707 L->getUniqueExitBlocks(ExitBlocks);
1731 for (
unsigned i = 0; i != NumPreds; ++i) {
1744 if (!L->contains(Inst))
1761 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1763 BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1764 if (B && B != ID.getInductionBinOp())
1776 PHINode *Phi = dyn_cast<PHINode>(U);
1777 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1782 if (
B !=
ID.getInductionBinOp())
1796 !Rewriter.isSafeToExpand(ExitValue)) {
1805 if (AddRec->getLoop() == L)
1806 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1809 !Rewriter.isSafeToExpand(ExitValue))
1823 bool HighCost = Rewriter.isHighCostExpansion(
1835 &*Inst->
getParent()->getFirstInsertionPt() : Inst;
1836 RewritePhiSet.
emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1847 int NumReplaced = 0;
1850 for (
const RewritePhi &Phi : RewritePhiSet) {
1857 !LoopCanBeDel && Phi.HighCost)
1860 Value *ExitVal = Rewriter.expandCodeFor(
1861 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1863 LLVM_DEBUG(
dbgs() <<
"rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1865 <<
" LoopVal = " << *(Phi.ExpansionPoint) <<
"\n");
1872 if (
auto *EVL = LI->
getLoopFor(ExitInsn->getParent()))
1874 assert(EVL->contains(L) &&
"LCSSA breach detected!");
1902 Rewriter.clearInsertPoint();
1909template <
typename RangeT>
1919 assert(PreOrderLoops.
empty() &&
"Must start with an empty preorder walk.");
1921 "Must start with an empty preorder walk worklist.");
1925 PreOrderWorklist.
append(L->begin(), L->end());
1927 }
while (!PreOrderWorklist.
empty());
1929 Worklist.
insert(std::move(PreOrderLoops));
1930 PreOrderLoops.
clear();
1934template <
typename RangeT>
1957 PL->addChildLoop(&New);
1994 Value *Start =
nullptr, *End =
nullptr;
2014 const SCEV *Recur = LowAR->getStepRecurrence(SE);
2015 if (Recur == HighAR->getStepRecurrence(SE) &&
2016 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
2021 const SCEV *NewHigh =
2024 LLVM_DEBUG(
dbgs() <<
"LAA: Expanded RT check for range to include "
2025 "outer loop in order to permit hoisting\n");
2035 << *Stride <<
'\n');
2042 Start = Exp.expandCodeFor(
Low, PtrArithTy,
Loc);
2043 End = Exp.expandCodeFor(
High, PtrArithTy,
Loc);
2046 Start = Builder.CreateFreeze(Start, Start->getName() +
".fr");
2047 End = Builder.CreateFreeze(End, End->getName() +
".fr");
2050 Stride ? Exp.expandCodeFor(Stride, Stride->getType(),
Loc) :
nullptr;
2052 return {Start, End, StrideVal};
2064 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
2070 return std::make_pair(
First, Second);
2073 return ChecksWithBounds;
2082 auto ExpandedChecks =
2089 Value *MemoryRuntimeCheck =
nullptr;
2091 for (
const auto &[
A,
B] : ExpandedChecks) {
2095 assert((
A.Start->getType()->getPointerAddressSpace() ==
2096 B.End->getType()->getPointerAddressSpace()) &&
2097 (
B.Start->getType()->getPointerAddressSpace() ==
2098 A.End->getType()->getPointerAddressSpace()) &&
2099 "Trying to bounds check pointers with different address spaces");
2111 Value *IsConflict = ChkBuilder.
CreateAnd(Cmp0, Cmp1,
"found.conflict");
2112 if (
A.StrideToCheck) {
2114 A.StrideToCheck, ConstantInt::get(
A.StrideToCheck->getType(), 0),
2116 IsConflict = ChkBuilder.
CreateOr(IsConflict, IsNegativeStride);
2118 if (
B.StrideToCheck) {
2120 B.StrideToCheck, ConstantInt::get(
B.StrideToCheck->getType(), 0),
2122 IsConflict = ChkBuilder.
CreateOr(IsConflict, IsNegativeStride);
2124 if (MemoryRuntimeCheck) {
2126 ChkBuilder.
CreateOr(MemoryRuntimeCheck, IsConflict,
"conflict.rdx");
2128 MemoryRuntimeCheck = IsConflict;
2131 Exp.eraseDeadInstructions(MemoryRuntimeCheck);
2132 return MemoryRuntimeCheck;
2143 Value *MemoryRuntimeCheck =
nullptr;
2145 auto &SE = *Expander.
getSE();
2149 for (
const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) {
2150 Type *Ty = SinkStart->getType();
2152 auto *VFTimesICTimesSize =
2153 ChkBuilder.
CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
2154 ConstantInt::get(Ty, IC * AccessSize));
2160 Value *IsConflict = SeenCompares.
lookup({Diff, VFTimesICTimesSize});
2165 ChkBuilder.
CreateICmpULT(Diff, VFTimesICTimesSize,
"diff.check");
2166 SeenCompares.
insert({{Diff, VFTimesICTimesSize}, IsConflict});
2170 if (MemoryRuntimeCheck) {
2172 ChkBuilder.
CreateOr(MemoryRuntimeCheck, IsConflict,
"conflict.rdx");
2174 MemoryRuntimeCheck = IsConflict;
2178 return MemoryRuntimeCheck;
2181std::optional<IVConditionInfo>
2185 if (!TI || !TI->isConditional())
2200 WorkList.
append(CondI->op_begin(), CondI->op_end());
2204 while (!WorkList.
empty()) {
2206 if (!
I || !L.contains(
I))
2215 if (LI->isVolatile() || LI->isAtomic())
2222 AccessesToCheck.
push_back(MemUse->getDefiningAccess());
2230 WorkList.
append(
I->op_begin(),
I->op_end());
2233 if (InstToDuplicate.
empty())
2237 L.getExitingBlocks(ExitingBlocks);
2238 auto HasNoClobbersOnPath =
2239 [&L, &
AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
2242 -> std::optional<IVConditionInfo> {
2254 while (!WorkList.
empty()) {
2256 if (!L.contains(Current))
2258 const auto &SeenIns = Seen.
insert(Current);
2259 if (!SeenIns.second)
2262 Info.PathIsNoop &=
all_of(
2263 *Current, [](
Instruction &
I) {
return !
I.mayHaveSideEffects(); });
2269 if (Seen.
size() < 2)
2277 while (!AccessesToCheck.
empty()) {
2279 auto SeenI = SeenAccesses.
insert(Current);
2296 AA.getModRefInfo(CurrentDef->getMemoryInst(),
Loc));
2301 for (
Use &U : Current->
uses())
2312 if (Info.PathIsNoop) {
2313 for (
auto *Exiting : ExitingBlocks) {
2317 if (L.contains(Succ))
2320 Info.PathIsNoop &= Succ->phis().empty() &&
2321 (!Info.ExitForPath || Info.ExitForPath == Succ);
2322 if (!Info.PathIsNoop)
2324 assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2325 "cannot have multiple exit blocks");
2326 Info.ExitForPath = Succ;
2330 if (!Info.ExitForPath)
2331 Info.PathIsNoop =
false;
2333 Info.InstToDuplicate = InstToDuplicate;
2339 if (TI->getSuccessor(0) == TI->getSuccessor(1))
2342 if (
auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2347 if (
auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This is the interface for LLVM's primary stateless and local alias analysis.
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_EXPORT_TEMPLATE
This file defines the DenseSet and SmallDenseSet classes.
This is the interface for a simple mod/ref and alias analysis over globals.
static const HTTPClientCleanup Cleanup
Module.h This file contains the declarations for the Module class.
iv Induction Variable Users
static cl::opt< ReplaceExitVal > ReplaceExitValue("replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I)
static const char * LLVMLoopDisableLICM
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, Loop *TheLoop, Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks)
Expand code for the lower and upper bound of the pointer group CG in TheLoop.
static bool canLoopBeDeleted(Loop *L, SmallVector< RewritePhi, 8 > &RewritePhiSet)
static const char * LLVMLoopDisableNonforced
static MDNode * createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V)
Create MDNode for input string.
static BranchInst * getExpectedExitLoopLatchBranch(Loop *L)
Checks if L has an exiting latch branch.
static std::optional< unsigned > estimateLoopTripCount(Loop *L)
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, InductionDescriptor &ID)
Checks if it is safe to call InductionDescriptor::isInductionPHI for Phi, and returns true if this Ph...
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
#define INITIALIZE_PASS_DEPENDENCY(depName)
This file provides a priority worklist.
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This is the interface for a SCEV-based alias analysis.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Class for arbitrary precision integers.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Represent the analysis usage information of a pass.
LLVM_ABI AnalysisUsage & addRequiredID(const void *ID)
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
unsigned getNumSuccessors() const
BasicBlock * getSuccessor(unsigned i) const
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
static BranchProbability getUnknown()
uint32_t getNumerator() const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
static LLVM_ABI Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Record of a variable value-assignment, aka a non instruction representation of the dbg....
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
iterator_range< iterator > children()
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Legacy wrapper pass to provide the GlobalsAAResult object.
Common base class shared among various IRBuilders.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
This is an important class for using LLVM in a threaded context.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getHeader() const
std::vector< Loop * >::const_iterator iterator
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * removeLoop(iterator I)
This removes the specified top-level loop from this loop info object.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void destroy(LoopT *L)
Destroy a loop that has been removed from the LoopInfo nest.
The legacy pass manager's analysis pass to compute loop information.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
LLVM_ABI void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Represents a single loop in the control flow graph.
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
ArrayRef< MDOperand > operands() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
LLVMContext & getContext() const
Tracking metadata reference owned by Metadata.
LLVM_ABI StringRef getString() const
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
BasicBlock * getBlock() const
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
Legacy analysis pass which computes MemorySSA.
Encapsulates MemorySSA, including all data associated with memory accesses.
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
void setIncomingValue(unsigned i, Value *V)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
bool insert(const T &X)
Insert a new element into the PriorityWorklist.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Legacy wrapper pass to provide the SCEVAAResult object.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopInvariant
The SCEV is loop-invariant.
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
This class represents the LLVM 'select' instruction.
Implements a dense probed hash-table based set with some number of buckets stored inline.
A version of PriorityWorklist that selects small size optimized data structures for the vector and ma...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Provides information about what library functions are available for the current target.
Value handle that tracks a Value across RAUW.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
static LLVM_ABI Intrinsic::ID getForIntrinsic(Intrinsic::ID Id)
The llvm.vp.
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
std::pair< iterator, bool > insert(const ValueT &V)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
LLVM_ABI std::optional< ElementCount > getOptionalElementCountLoopAttribute(const Loop *TheLoop)
Find a combination of metadata ("llvm.loop.vectorize.width" and "llvm.loop.vectorize....
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
LLVM_ABI bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
std::pair< const RuntimeCheckingPtrGroup *, const RuntimeCheckingPtrGroup * > RuntimePointerCheck
A memcheck which made up of a pair of grouped pointers.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-positive in loop L.
LLVM_ABI std::optional< bool > getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
void appendReversedLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
auto successors(const MachineBasicBlock *BB)
BranchProbability getBranchProbability(BranchInst *B, bool ForFirstTarget)
Based on branch weight metadata, return either:
LLVM_ABI void initializeLoopPassPass(PassRegistry &)
Manually defined generic "LoopPass" dependency initialization.
constexpr from_range_t from_range
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
LLVM_ABI Value * getReductionIdentity(Intrinsic::ID RdxID, Type *Ty, FastMathFlags FMF)
Given information about an @llvm.vector.reduce.
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI char & LoopSimplifyID
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
LLVM_ABI SmallVector< BasicBlock *, 16 > collectChildrenInLoop(DominatorTree *DT, DomTreeNode *N, const Loop *CurLoop)
Does a BFS from a given node to all of its children inside a given loop.
LLVM_ABI void addStringMetadataToLoop(Loop *TheLoop, const char *MDString, unsigned V=0)
Set input string into loop metadata by keeping other values intact.
LLVM_ABI bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned max.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
DomTreeNodeBase< BasicBlock > DomTreeNode
constexpr T divideNearest(U Numerator, V Denominator)
Returns (Numerator / Denominator) rounded by round-half-up.
LLVM_ABI TransformationMode hasVectorizeTransformation(const Loop *L)
bool setBranchProbability(BranchInst *B, BranchProbability P, bool ForFirstTarget)
Set branch weight metadata for B to indicate that P and 1 - P are the probabilities of control flowin...
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI SmallVector< Instruction *, 8 > findDefsUsedOutsideOfLoop(Loop *L)
Returns the instructions that use values defined in the loop.
auto reverse(ContainerTy &&C)
LLVM_ABI constexpr Intrinsic::ID getReductionIntrinsicID(RecurKind RK)
Returns the llvm.vector.reduce intrinsic that corresponds to the recurrence kind.
LLVM_ABI bool isMustProgress(const Loop *L)
Return true if this loop can be assumed to make progress.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
LLVM_ABI TransformationMode hasUnrollAndJamTransformation(const Loop *L)
LLVM_ABI void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI, MemorySSA *MSSA=nullptr)
This function deletes dead loops.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI bool hasDisableAllTransformsHint(const Loop *L)
Look for the loop attribute that disables all transformation heuristic.
LLVM_TEMPLATE_ABI void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
LLVM_ABI cl::opt< unsigned > SCEVCheapExpansionBudget
FunctionAddr VTableAddr Count
LLVM_ABI Value * getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, TargetTransformInfo::ReductionShuffle RS, RecurKind MinMaxKind=RecurKind::None)
Generates a vector reduction using shufflevectors to reduce the value.
LLVM_ABI TransformationMode hasUnrollTransformation(const Loop *L)
BranchProbability getLoopProbability(Loop *L)
Based on branch weight metadata, return either:
LLVM_ABI TransformationMode hasDistributeTransformation(const Loop *L)
LLVM_ABI void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, MemorySSA *MSSA)
Remove the backedge of the specified loop.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always positive in loop L.
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
LLVM_ABI std::optional< int > getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name)
Find named metadata for a loop with an integer value.
bool setLoopProbability(Loop *L, BranchProbability P)
Set branch weight metadata for the latch of L to indicate that, at the end of any iteration,...
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK)
Returns the comparison predicate used when expanding a min/max reduction.
LLVM_ABI TransformationMode hasLICMVersioningTransformation(const Loop *L)
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
TransformationMode
The mode sets how eager a transformation should be applied.
@ TM_Unspecified
The pass can use heuristics to determine whether a transformation should be applied.
@ TM_SuppressedByUser
The transformation must not be applied.
@ TM_ForcedByUser
The transformation was directed by the user, e.g.
@ TM_Disable
The transformation should not be applied.
@ TM_Enable
The transformation should be applied without considering a cost model.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
LLVM_ABI bool hasDisableLICMTransformsHint(const Loop *L)
Look for the loop attribute that disables the LICM transformation heuristics.
template LLVM_TEMPLATE_ABI void appendLoopsToWorklist< Loop & >(Loop &L, SmallPriorityWorklist< Loop *, 4 > &Worklist)
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ Or
Bitwise or logical OR of integers.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMaximum
FP max with llvm.maximum semantics.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
LLVM_ABI bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LLVM_ABI bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always negative in loop L.
constexpr unsigned BitWidth
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, std::optional< unsigned > EstimatedLoopInvocationWeight=std::nullopt)
Set llvm.loop.estimated_trip_count with the value EstimatedTripCount in the loop metadata of L.
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
LLVM_ABI bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE)
Check inner loop (L) backedge count is known to be invariant on all iterations of its outer loop.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
static cl::opt< unsigned > MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", cl::desc("Max number of memory uses to explore during " "partial unswitching analysis"), cl::init(100), cl::Hidden)
LLVM_ABI bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, ScalarEvolution *SE, const TargetTransformInfo *TTI, SCEVExpander &Rewriter, DominatorTree *DT, ReplaceExitVal ReplaceExitValue, SmallVector< WeakTrackingVH, 16 > &DeadInsts)
If the final value of any expressions that are recurrent in the loop can be computed,...
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
LLVM_ABI RecurKind getMinMaxReductionRecurKind(Intrinsic::ID RdxID)
Returns the recurence kind used when expanding a min/max reduction.
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI std::optional< IVConditionInfo > hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, const MemorySSA &MSSA, AAResults &AA)
Check if the loop header has a conditional branch that is not loop-invariant, because it involves loa...
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned min.
LLVM_ABI bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-negative in loop L.
LLVM_ABI Value * getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, unsigned Op, RecurKind MinMaxKind=RecurKind::None)
Generates an ordered vector reduction using extracts to reduce the value.
LLVM_ABI MDNode * findOptionMDForLoopID(MDNode *LoopID, StringRef Name)
Find and return the loop attribute node for the attribute Name in LoopID.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
LLVM_ABI Loop * cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, LoopInfo *LI, LPPassManager *LPM)
Recursively clone the specified loop and all of its children, mapping the blocks with the specified m...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
IR Values for the lower and upper bounds of a pointer evolution.
TrackingVH< Value > Start
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, bool H)
const SCEV * ExpansionSCEV
Instruction * ExpansionPoint
Struct to hold information about a partially invariant condition.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
unsigned AddressSpace
Address space of the involved pointers.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.