54#define DEBUG_TYPE "instsimplify"
102 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
103 if (CPred == Pred && CLHS ==
LHS && CRHS ==
RHS)
116 unsigned MaxRecurse,
Constant *TrueOrFalse) {
118 if (SimplifiedCmp ==
Cond) {
126 return SimplifiedCmp;
132 unsigned MaxRecurse) {
140 unsigned MaxRecurse) {
150 unsigned MaxRecurse) {
201 if (!
B ||
B->getOpcode() != OpcodeToExpand)
203 Value *B0 =
B->getOperand(0), *B1 =
B->getOperand(1);
214 if ((L == B0 && R == B1) ||
235 unsigned MaxRecurse) {
252 unsigned MaxRecurse) {
355 unsigned MaxRecurse) {
392 if (TV ==
SI->getTrueValue() && FV ==
SI->getFalseValue())
398 if ((FV && !TV) || (TV && !FV)) {
402 if (Simplified && Simplified->getOpcode() ==
unsigned(Opcode) &&
403 !Simplified->hasPoisonGeneratingFlags()) {
407 Value *UnsimplifiedBranch = FV ?
SI->getTrueValue() :
SI->getFalseValue();
408 Value *UnsimplifiedLHS =
SI ==
LHS ? UnsimplifiedBranch :
LHS;
409 Value *UnsimplifiedRHS =
SI ==
LHS ?
RHS : UnsimplifiedBranch;
410 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
411 Simplified->getOperand(1) == UnsimplifiedRHS)
413 if (Simplified->isCommutative() &&
414 Simplified->getOperand(1) == UnsimplifiedLHS &&
415 Simplified->getOperand(0) == UnsimplifiedRHS)
446 Value *TV =
SI->getTrueValue();
447 Value *FV =
SI->getFalseValue();
467 if (
Cond->getType()->isVectorTy() ==
RHS->getType()->isVectorTy())
479 unsigned MaxRecurse) {
499 Value *CommonValue =
nullptr;
512 if (!V || (CommonValue && V != CommonValue))
543 Value *CommonValue =
nullptr;
557 if (!V || (CommonValue && V != CommonValue))
573 case Instruction::FAdd:
574 case Instruction::FSub:
575 case Instruction::FMul:
576 case Instruction::FDiv:
577 case Instruction::FRem:
578 if (Q.
CxtI !=
nullptr)
662 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query,
RecursionLimit);
675 assert(V->getType()->isPtrOrPtrVectorTy());
678 V = V->stripAndAccumulateConstantOffsets(
DL,
Offset,
682 return Offset.sextOrTrunc(
DL.getIndexTypeSizeInBits(V->getType()));
701 Constant *Res = ConstantInt::get(
LHS->getContext(), LHSOffset - RHSOffset);
717 std::optional<bool> Imp =
722 case Instruction::Sub:
723 case Instruction::Xor:
724 case Instruction::URem:
725 case Instruction::SRem:
728 case Instruction::SDiv:
729 case Instruction::UDiv:
730 return ConstantInt::get(Ty, 1);
732 case Instruction::And:
733 case Instruction::Or:
788 Value *
X =
nullptr, *
Y =
nullptr, *Z = Op1;
846 if (
X->getType() ==
Y->getType())
893 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
943 Instruction::Add, Q, MaxRecurse))
965 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
975 return (
C &&
C->isAllOnesValue());
981 unsigned MaxRecurse,
bool IsSigned) {
998 Type *Ty =
X->getType();
1004 Constant *PosDividendC = ConstantInt::get(Ty,
C->abs());
1005 Constant *NegDividendC = ConstantInt::get(Ty, -
C->abs());
1014 if (
C->isMinSignedValue())
1020 Constant *PosDivisorC = ConstantInt::get(Ty,
C->abs());
1021 Constant *NegDivisorC = ConstantInt::get(Ty, -
C->abs());
1047 unsigned MaxRecurse) {
1048 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1049 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1117 if (
isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1141 unsigned MaxRecurse) {
1164 (Opcode == Instruction::UDiv
1184 if ((Opcode == Instruction::SRem &&
1186 (Opcode == Instruction::URem &&
1194 if (Opcode == Instruction::SRem
1197 return C.srem(*C0).isZero();
1201 return C.urem(*C0).isZero();
1217 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1229 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1240 unsigned MaxRecurse) {
1251 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1261 unsigned MaxRecurse) {
1262 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1281 const APInt *AmountC;
1288 for (
unsigned I = 0,
1303 unsigned MaxRecurse) {
1353 assert(Opcode == Instruction::Shl &&
"Expected shl for nsw instruction");
1372 Value *Op1,
bool IsExact,
1391 if (Op0Known.
One[0])
1403 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1427 if (IsNSW && IsNUW &&
1436 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
1458 const APInt *ShRAmt, *ShLAmt;
1461 *ShRAmt == *ShLAmt) {
1464 if (ShRAmt->
uge(EffWidthY))
1512 ICmpInst *UnsignedICmp,
bool IsAnd,
1526 if (
match(UnsignedICmp,
1544 return IsAnd ? UnsignedICmp : ZeroICmp;
1550 return IsAnd ? ZeroICmp : UnsignedICmp;
1556 if (
match(UnsignedICmp,
1560 return UnsignedICmp;
1563 return UnsignedICmp;
1570 else if (
match(UnsignedICmp,
1581 return IsAnd ? ZeroICmp : UnsignedICmp;
1587 return IsAnd ? UnsignedICmp : ZeroICmp;
1597 return IsAnd ? UnsignedICmp : ZeroICmp;
1602 return IsAnd ? ZeroICmp : UnsignedICmp;
1626 const APInt *C0, *C1;
1636 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1641 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1649 if (Range0.contains(Range1))
1650 return IsAnd ? Cmp1 : Cmp0;
1651 if (Range1.contains(Range0))
1652 return IsAnd ? Cmp0 : Cmp1;
1661 const APInt *C0, *C1;
1670 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1677 const APInt Delta = *C1 - *C0;
1752 const APInt *C0, *C1;
1761 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1768 const APInt Delta = *C1 - *C0;
1837 if (!Range0 || !Range1)
1842 if (Range0->intersectWith(*Range1).isEmptySet())
1850 if (Range0->contains(*Range1))
1852 if (Range1->contains(*Range0))
1860 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1861 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1874 if ((
match(RHS0, AbsOrSelfLHS0) ||
match(RHS1, AbsOrSelfLHS0)) &&
1889 if ((
match(LHS0, AbsOrSelfRHS0) ||
match(LHS1, AbsOrSelfRHS0)) &&
1903 Value *Op1,
bool IsAnd) {
1907 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1908 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1909 Op0 = Cast0->getOperand(0);
1910 Op1 = Cast1->getOperand(0);
1941 bool AllowRefinement,
1943 unsigned MaxRecurse);
1947 unsigned MaxRecurse) {
1948 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1964 if (Res == Absorber)
1974 if (Res == Absorber)
1984 nullptr, MaxRecurse))
1985 return Simplify(Res);
1988 nullptr, MaxRecurse))
1989 return Simplify(Res);
2021 unsigned MaxRecurse) {
2055 const APInt *Shift1, *Shift2;
2059 Shift1->
uge(*Shift2))
2072 unsigned MaxRecurse) {
2112 (~(*Mask)).lshr(*ShAmt).isZero())
2118 (~(*Mask)).shl(*ShAmt).isZero())
2123 const APInt *PowerC;
2145 Instruction::Or, Q, MaxRecurse))
2150 Instruction::Xor, Q, MaxRecurse))
2195 if (EffWidthY <= ShftCnt) {
2228 if (*Implied ==
true)
2231 if (*Implied ==
false)
2256 assert(
X->getType() ==
Y->getType() &&
"Expected same type for 'or' ops");
2257 Type *Ty =
X->getType();
2347 unsigned MaxRecurse) {
2386 C->ule(
X->getType()->getScalarSizeInBits())) {
2441 Instruction::And, Q, MaxRecurse))
2462 const APInt *C1, *C2;
2498 if (std::optional<bool> Implied =
2501 if (*Implied ==
false)
2504 if (*Implied ==
true)
2507 if (std::optional<bool> Implied =
2510 if (*Implied ==
false)
2513 if (*Implied ==
true)
2531 unsigned MaxRecurse) {
2573 if (
Value *R = foldAndOrNot(Op0, Op1))
2575 if (
Value *R = foldAndOrNot(Op1, Op0))
2628 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2629 if (Pred == Cmp->getPredicate() &&
LHS == CmpLHS &&
RHS == CmpRHS)
2632 LHS == CmpRHS &&
RHS == CmpLHS)
2646 return AI->isStaticAlloca();
2648 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2649 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2650 !GV->isThreadLocal();
2652 return A->hasByValAttr();
2685 auto isByValArg = [](
const Value *V) {
2687 return A &&
A->hasByValAttr();
2731 assert(
LHS->getType() ==
RHS->getType() &&
"Must have same types");
2754 unsigned IndexSize =
DL.getIndexTypeSizeInBits(
LHS->getType());
2755 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0);
2756 LHS =
LHS->stripAndAccumulateConstantOffsets(
DL, LHSOffset, AllowNonInbounds);
2757 RHS =
RHS->stripAndAccumulateConstantOffsets(
DL, RHSOffset, AllowNonInbounds);
2778 return I->getFunction();
2780 return A->getParent();
2786 APInt Dist = LHSOffset - RHSOffset;
2814 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2815 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2835 bool Captured =
false;
2843 unsigned OtherIdx = 1 - U->getOperandNo();
2853 CustomCaptureTracker Tracker;
2855 if (!Tracker.Captured)
2877 auto ExtractNotLHS = [](
Value *V) ->
Value * {
3069 *MulC != 0 &&
C->urem(*MulC) != 0) ||
3071 *MulC != 0 &&
C->srem(*MulC) != 0)))
3086 unsigned Depth = 0) {
3087 if (!Res.
insert(V).second)
3114 switch (
I->getOpcode()) {
3115 case Instruction::And:
3119 case Instruction::URem:
3120 case Instruction::UDiv:
3121 case Instruction::LShr:
3124 case Instruction::Call:
3146 for (
Value *GV : GreaterValues)
3155 unsigned MaxRecurse) {
3239 const APInt *C1, *C2;
3286 const APInt *C1, *C2;
3300 unsigned MaxRecurse) {
3303 if (MaxRecurse && (LBO || RBO)) {
3305 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
3307 bool NoLHSWrapProblem =
false, NoRHSWrapProblem =
false;
3308 if (LBO && LBO->
getOpcode() == Instruction::Add) {
3318 if (RBO && RBO->
getOpcode() == Instruction::Add) {
3330 if ((
A ==
RHS ||
B ==
RHS) && NoLHSWrapProblem)
3337 if ((
C ==
LHS ||
D ==
LHS) && NoRHSWrapProblem)
3340 C ==
LHS ?
D :
C, Q, MaxRecurse - 1))
3344 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3346 if (
A &&
C && (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D) && CanSimplify) {
3353 }
else if (
A ==
D) {
3357 }
else if (
B ==
C) {
3385 if (
C->isStrictlyPositive()) {
3391 if (
C->isNonNegative()) {
3441 case Instruction::Shl: {
3457 case Instruction::And:
3458 case Instruction::Or: {
3459 const APInt *C1, *C2;
3489 case Instruction::UDiv:
3490 case Instruction::LShr:
3498 case Instruction::SDiv:
3506 case Instruction::AShr:
3513 case Instruction::Shl: {
3534 unsigned MaxRecurse) {
3696 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3705 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3746 switch (
II->getIntrinsicID()) {
3747 case Intrinsic::uadd_sat:
3757 case Intrinsic::usub_sat:
3780 return A->getRange();
3782 return CB->getRange();
3784 return std::nullopt;
3835 if (LhsCr->icmp(Pred, *RhsCr))
3860 if (RI->getOperand(0)->getType() == SrcTy)
3872 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3876 RI->getOperand(0), Q, MaxRecurse - 1))
3881 if (
SrcOp == RI->getOperand(0)) {
3898 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3901 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3904 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
3911 SrcOp, Trunc, Q, MaxRecurse - 1))
3952 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3960 if (
SrcOp == RI->getOperand(0)) {
3976 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3979 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3982 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
4070 if (std::optional<bool> Res =
4076 if (
LHS->getType()->isPointerTy())
4081 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() &&
4085 CRHS->getPointerOperand(), Q))
4105 return ::simplifyICmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
4112 unsigned MaxRecurse) {
4169 if (std::optional<bool> Res =
4175 std::optional<KnownFPClass> FullKnownClassLHS;
4179 auto computeLHSClass = [=, &FullKnownClassLHS](
FPClassTest InterestedFlags =
4181 if (FullKnownClassLHS)
4182 return *FullKnownClassLHS;
4195 FullKnownClassLHS = computeLHSClass();
4196 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) ==
fcNone)
4198 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) ==
fcNone)
4213 if (
C->isNegative() && !
C->isNegZero()) {
4272 return ConstantInt::get(RetTy, IsMaxNum);
4281 return ConstantInt::get(RetTy, !IsMaxNum);
4297 Interested |=
fcNan;
4341 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q,
RecursionLimit);
4347 bool AllowRefinement,
4349 unsigned MaxRecurse) {
4351 "If AllowRefinement=false then CanUseUndef=false");
4352 for (
const auto &OpAndRepOp :
Ops) {
4358 if (V == OpAndRepOp.first)
4359 return OpAndRepOp.second;
4382 for (
const auto &OpAndRepOp :
Ops) {
4385 if (OpAndRepOp.first->getType()->isVectorTy() &&
4392 bool AnyReplaced =
false;
4393 for (
Value *InstOp :
I->operands()) {
4395 InstOp,
Ops, Q, AllowRefinement, DropFlags, MaxRecurse)) {
4397 AnyReplaced = InstOp != NewInstOp;
4411 if (!AllowRefinement) {
4417 unsigned Opcode = BO->getOpcode();
4420 if (!BO->getType()->isFPOrFPVectorTy()) {
4429 if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4430 NewOps[0] == NewOps[1]) {
4433 if (PDI->isDisjoint()) {
4445 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) &&
4446 NewOps[0] == NewOps[1] &&
4447 any_of(
Ops, [=](
const auto &Rep) {
return NewOps[0] == Rep.second; }))
4458 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) &&
4460 [=](
const auto &Rep) {
return impliesPoison(BO, Rep.first); }))
4480 auto PreventSelfSimplify = [V](
Value *Simplified) {
4481 return Simplified != V ? Simplified :
nullptr;
4484 return PreventSelfSimplify(
4491 for (
Value *NewOp : NewOps) {
4507 if (!AllowRefinement) {
4511 II &&
II->getIntrinsicID() == Intrinsic::abs) {
4512 if (!ConstOps[0]->isNotMinSignedValue())
4519 if (DropFlags && Res &&
I->hasPoisonGeneratingAnnotations())
4530 bool AllowRefinement,
4532 unsigned MaxRecurse) {
4534 DropFlags, MaxRecurse);
4539 bool AllowRefinement,
4543 if (!AllowRefinement)
4546 return ::simplifyWithOpReplaced(V,
Op, RepOp, Q, AllowRefinement, DropFlags,
4553 const APInt *
Y,
bool TrueWhenUnset) {
4560 return TrueWhenUnset ? FalseVal : TrueVal;
4566 return TrueWhenUnset ? FalseVal : TrueVal;
4568 if (
Y->isPowerOf2()) {
4576 return TrueWhenUnset ? TrueVal : FalseVal;
4586 return TrueWhenUnset ? TrueVal : FalseVal;
4597 if (CmpRHS == TVal || CmpRHS == FVal) {
4603 if (CmpLHS == FVal) {
4610 Value *
X = CmpLHS, *
Y = CmpRHS;
4611 bool PeekedThroughSelectShuffle =
false;
4613 if (Shuf && Shuf->isSelect()) {
4614 if (Shuf->getOperand(0) ==
Y)
4615 FVal = Shuf->getOperand(1);
4616 else if (Shuf->getOperand(1) ==
Y)
4617 FVal = Shuf->getOperand(0);
4620 PeekedThroughSelectShuffle =
true;
4625 if (!MMI || TVal !=
X ||
4643 if (PeekedThroughSelectShuffle)
4679 ArrayRef<std::pair<Value *, Value *>> Replacements,
Value *TrueVal,
4681 Value *SimplifiedFalseVal =
4684 nullptr, MaxRecurse);
4685 if (!SimplifiedFalseVal)
4686 SimplifiedFalseVal = FalseVal;
4688 Value *SimplifiedTrueVal =
4691 nullptr, MaxRecurse);
4692 if (!SimplifiedTrueVal)
4693 SimplifiedTrueVal = TrueVal;
4695 if (SimplifiedFalseVal == SimplifiedTrueVal)
4706 unsigned MaxRecurse) {
4708 Value *CmpLHS, *CmpRHS;
4724 if (TrueVal->getType()->isIntOrIntVectorTy()) {
4732 X->getType()->getScalarSizeInBits());
4752 if (
match(TrueVal, isFsh) && FalseVal ==
X && CmpLHS == ShAmt)
4765 if (
match(FalseVal, isRotate) && TrueVal ==
X && CmpLHS == ShAmt &&
4787 FalseVal, Q, MaxRecurse))
4792 FalseVal, Q, MaxRecurse))
4802 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4811 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4823 unsigned MaxRecurse) {
4825 Value *CmpLHS, *CmpRHS;
4830 bool IsEquiv =
I->isEquivalence();
4831 if (
I->isEquivalence(
true)) {
4849 if (CmpLHS ==
F && CmpRHS ==
T)
4852 if (CmpLHS !=
T || CmpRHS !=
F)
4905 unsigned DiffVals = 0;
4907 for (
unsigned i = 0; i < 2; i++) {
4923 if (!
SI || !IdenticalSI)
4925 if (
SI->getCondition() != IdenticalSI->getCondition())
4929 Value *IdenticalSIOtherVal =
nullptr;
4930 if (
SI->getTrueValue() == IdenticalSI->getTrueValue()) {
4932 IdenticalSIOtherVal = IdenticalSI->getFalseValue();
4933 }
else if (
SI->getFalseValue() == IdenticalSI->getFalseValue()) {
4935 IdenticalSIOtherVal = IdenticalSI->getTrueValue();
4942 if (!SIOtherVal || IdenticalSIOtherVal != &IdenticalPN)
4980 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
4981 "Select must have bool or bool vector condition");
4982 assert(TrueVal->getType() == FalseVal->getType() &&
4983 "Select must have same types for true/false ops");
4985 if (
Cond->getType() == TrueVal->getType()) {
5048 if (TrueVal == FalseVal)
5051 if (
Cond == TrueVal) {
5059 if (
Cond == FalseVal) {
5090 for (
unsigned i = 0; i != NumElts; ++i) {
5094 if (!TEltC || !FEltC)
5110 if (NewC.
size() == NumElts)
5126 return *Imp ? TrueVal : FalseVal;
5153 if (Indices.
empty())
5183 bool IsScalableVec =
5184 SrcTy->isScalableTy() ||
any_of(Indices, [](
const Value *V) {
5188 if (Indices.
size() == 1) {
5190 if (!IsScalableVec && Ty->isSized()) {
5195 if (TyAllocSize == 0 &&
Ptr->getType() == GEPTy)
5203 auto CanSimplify = [GEPTy, &
P,
Ptr]() ->
bool {
5204 return P->getType() == GEPTy &&
5208 if (TyAllocSize == 1 &&
5219 TyAllocSize == 1ULL <<
C && CanSimplify())
5238 APInt BasePtrOffset(IdxWidth, 0);
5239 Value *StrippedBasePtr =
5240 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, BasePtrOffset);
5249 !BasePtrOffset.
isZero()) {
5250 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset);
5256 !BasePtrOffset.
isOne()) {
5257 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset - 1);
5298 if (EV->getAggregateOperand()->getType() == Agg->
getType() &&
5299 EV->getIndices() == Idxs) {
5305 return EV->getAggregateOperand();
5308 if (Agg == EV->getAggregateOperand())
5318 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q,
RecursionLimit);
5327 if (VecC && ValC && IdxC)
5348 if (VecC && ValC && VecC->getSplatValue() == ValC)
5368 unsigned NumIdxs = Idxs.
size();
5372 unsigned NumInsertValueIdxs = InsertValueIdxs.
size();
5373 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
5374 if (InsertValueIdxs.
slice(0, NumCommonIdxs) ==
5375 Idxs.
slice(0, NumCommonIdxs)) {
5376 if (NumIdxs == NumInsertValueIdxs)
5377 return IVI->getInsertedValueOperand();
5384 if (Idxs.
size() == 1 &&
5391 assert(Idxs[0] == 1 &&
"invalid index");
5425 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
5429 if (IdxC->getValue().ult(MinNumElts))
5440 if (IE && IE->getOperand(2) == Idx)
5441 return IE->getOperand(1);
5452 return ::simplifyExtractElementInst(Vec, Idx, Q,
RecursionLimit);
5464 Value *CommonValue =
nullptr;
5465 bool HasPoisonInput =
false;
5466 bool HasUndefInput =
false;
5472 HasPoisonInput =
true;
5477 HasUndefInput =
true;
5480 if (CommonValue &&
Incoming != CommonValue)
5491 if (HasPoisonInput || HasUndefInput) {
5499 if (HasUndefInput &&
5514 auto *Src = CI->getOperand(0);
5515 Type *SrcTy = Src->getType();
5516 Type *MidTy = CI->getType();
5518 if (Src->getType() == Ty) {
5519 auto FirstOp = CI->getOpcode();
5522 &Q.
DL) == Instruction::BitCast)
5528 if (CastOpc == Instruction::BitCast)
5529 if (
Op->getType() == Ty)
5534 if ((CastOpc == Instruction::PtrToInt || CastOpc == Instruction::PtrToAddr) &&
5553 int MaskVal,
Value *RootVec,
5554 unsigned MaxRecurse) {
5565 int RootElt = MaskVal;
5566 Value *SourceOp = Op0;
5567 if (MaskVal >= InVecNumElts) {
5568 RootElt = MaskVal - InVecNumElts;
5576 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5577 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5586 if (RootVec != SourceOp)
5591 if (RootElt != DestElt)
5600 unsigned MaxRecurse) {
5605 unsigned MaskNumElts = Mask.size();
5606 ElementCount InVecEltCount = InVecTy->getElementCount();
5611 Indices.
assign(Mask.begin(), Mask.end());
5616 bool MaskSelects0 =
false, MaskSelects1 =
false;
5618 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5619 if (Indices[i] == -1)
5621 if ((
unsigned)Indices[i] < InVecNumElts)
5622 MaskSelects0 =
true;
5624 MaskSelects1 =
true;
5638 if (Op0Const && Op1Const)
5644 if (!Scalable && Op0Const && !Op1Const) {
5662 if (
all_of(Indices, [InsertIndex](
int MaskElt) {
5663 return MaskElt == InsertIndex || MaskElt == -1;
5669 for (
unsigned i = 0; i != MaskNumElts; ++i)
5670 if (Indices[i] == -1)
5698 Value *RootVec =
nullptr;
5699 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5706 if (!RootVec || RootVec->
getType() != RetTy)
5716 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q,
RecursionLimit);
5749 Type *Ty = In->getType();
5751 unsigned NumElts = VecTy->getNumElements();
5753 for (
unsigned i = 0; i != NumElts; ++i) {
5754 Constant *EltC = In->getAggregateElement(i);
5759 else if (EltC && EltC->
isNaN())
5760 NewC[i] = ConstantFP::get(
5776 auto *
Splat = In->getSplatValue();
5778 "Found a scalable-vector NaN but not a splat");
5807 if (FMF.
noNaNs() && (IsNan || IsUndef))
5809 if (FMF.
noInfs() && (IsInf || IsUndef))
6024 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
6031 return ::simplifyFAddInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6039 return ::simplifyFSubInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6047 return ::simplifyFMulInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6055 return ::simplifyFMAFMul(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6088 return ConstantFP::get(Op0->
getType(), 1.0);
6100 return ConstantFP::get(Op0->
getType(), -1.0);
6114 return ::simplifyFDivInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6152 return ::simplifyFRemInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6161 unsigned MaxRecurse) {
6163 case Instruction::FNeg:
6175 unsigned MaxRecurse) {
6177 case Instruction::FNeg:
6198 case Instruction::Add:
6201 case Instruction::Sub:
6204 case Instruction::Mul:
6207 case Instruction::SDiv:
6209 case Instruction::UDiv:
6211 case Instruction::SRem:
6213 case Instruction::URem:
6215 case Instruction::Shl:
6218 case Instruction::LShr:
6220 case Instruction::AShr:
6222 case Instruction::And:
6224 case Instruction::Or:
6226 case Instruction::Xor:
6228 case Instruction::FAdd:
6230 case Instruction::FSub:
6232 case Instruction::FMul:
6234 case Instruction::FDiv:
6236 case Instruction::FRem:
6248 unsigned MaxRecurse) {
6250 case Instruction::FAdd:
6252 case Instruction::FSub:
6254 case Instruction::FMul:
6256 case Instruction::FDiv:
6270 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q,
RecursionLimit);
6283 return ::simplifyCmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
6292 case Intrinsic::fabs:
6293 case Intrinsic::floor:
6294 case Intrinsic::ceil:
6295 case Intrinsic::trunc:
6296 case Intrinsic::rint:
6297 case Intrinsic::nearbyint:
6298 case Intrinsic::round:
6299 case Intrinsic::roundeven:
6300 case Intrinsic::canonicalize:
6301 case Intrinsic::arithmetic_fence:
6313 case Intrinsic::floor:
6314 case Intrinsic::ceil:
6315 case Intrinsic::trunc:
6316 case Intrinsic::rint:
6317 case Intrinsic::nearbyint:
6318 case Intrinsic::round:
6319 case Intrinsic::roundeven:
6334 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64)
6338 DL.getIndexTypeSizeInBits(
Ptr->getType()));
6339 if (OffsetInt.
srem(4) != 0)
6351 if (LoadedCE->getOpcode() == Instruction::Trunc) {
6357 if (LoadedCE->getOpcode() != Instruction::Sub)
6361 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
6363 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
6367 APInt LoadedRHSOffset;
6370 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
6373 return LoadedLHSPtr;
6404 if (
C && (
C->isZero() ||
C->isInfinity()))
6413 if (
C &&
C->isNaN())
6414 return ConstantFP::get(Op0->
getType(),
C->makeQuiet());
6433 if (
II->getIntrinsicID() == IID)
6450 case Intrinsic::fabs:
6454 case Intrinsic::bswap:
6459 case Intrinsic::bitreverse:
6464 case Intrinsic::ctpop: {
6467 return ConstantInt::get(Op0->
getType(), 1);
6476 case Intrinsic::exp:
6478 if (
Call->hasAllowReassoc() &&
6482 case Intrinsic::exp2:
6484 if (
Call->hasAllowReassoc() &&
6488 case Intrinsic::exp10:
6490 if (
Call->hasAllowReassoc() &&
6494 case Intrinsic::log:
6496 if (
Call->hasAllowReassoc() &&
6500 case Intrinsic::log2:
6502 if (
Call->hasAllowReassoc() &&
6508 case Intrinsic::log10:
6511 if (
Call->hasAllowReassoc() &&
6517 case Intrinsic::vector_reverse:
6545 if (Op1 ==
X || Op1 ==
Y ||
6562 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum ||
6563 IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
6564 IID == Intrinsic::maximumnum || IID == Intrinsic::minimumnum) &&
6565 "Unsupported intrinsic");
6571 if (!
M0 ||
M0->getIntrinsicID() != IID)
6573 Value *X0 =
M0->getOperand(0);
6574 Value *Y0 =
M0->getOperand(1);
6581 if (X0 == Op1 || Y0 == Op1)
6587 Value *X1 =
M1->getOperand(0);
6588 Value *Y1 =
M1->getOperand(1);
6596 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1))
6619 assert(OutNewConstVal !=
nullptr);
6621 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6622 bool PropagateSNaN = IID == Intrinsic::minnum || IID == Intrinsic::maxnum;
6623 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum ||
6624 IID == Intrinsic::minimumnum;
6628 *OutNewConstVal =
const_cast<Constant *
>(RHSConst);
6646 if (PropagateNaN || (PropagateSNaN && CAPF.
isSignaling())) {
6661 (!PropagateNaN || (
Call &&
Call->hasNoNaNs()))) {
6662 *OutNewConstVal =
const_cast<Constant *
>(RHSConst);
6673 (PropagateNaN || (
Call &&
Call->hasNoNaNs())))
6683 unsigned BitWidth = ReturnType->getScalarSizeInBits();
6685 case Intrinsic::get_active_lane_mask: {
6691 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
6692 if (ScalableTy && Attr.
isValid()) {
6697 (
uint64_t)ScalableTy->getMinNumElements() * (*VScaleMax);
6699 const APInt *Op1Val;
6701 Op1Val->
uge(MaxPossibleMaskElements))
6706 case Intrinsic::abs:
6714 case Intrinsic::cttz: {
6720 case Intrinsic::ctlz: {
6728 case Intrinsic::ptrmask: {
6736 "Invalid mask width");
6753 APInt IrrelevantPtrBits =
6756 Instruction::Or,
C, ConstantInt::get(
C->getType(), IrrelevantPtrBits),
6758 if (
C !=
nullptr &&
C->isAllOnesValue())
6763 case Intrinsic::smax:
6764 case Intrinsic::smin:
6765 case Intrinsic::umax:
6766 case Intrinsic::umin: {
6777 return ConstantInt::get(
6785 return ConstantInt::get(ReturnType, *
C);
6797 if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6799 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6800 const APInt *InnerC;
6823 case Intrinsic::scmp:
6824 case Intrinsic::ucmp: {
6833 return ConstantInt::get(ReturnType, 1);
6842 case Intrinsic::usub_with_overflow:
6843 case Intrinsic::ssub_with_overflow:
6850 case Intrinsic::uadd_with_overflow:
6851 case Intrinsic::sadd_with_overflow:
6861 case Intrinsic::umul_with_overflow:
6862 case Intrinsic::smul_with_overflow:
6872 case Intrinsic::uadd_sat:
6878 case Intrinsic::sadd_sat:
6893 case Intrinsic::usub_sat:
6898 case Intrinsic::ssub_sat:
6906 case Intrinsic::load_relative:
6911 case Intrinsic::powi:
6914 if (Power->isZero())
6915 return ConstantFP::get(Op0->
getType(), 1.0);
6921 case Intrinsic::ldexp:
6923 case Intrinsic::copysign:
6933 case Intrinsic::is_fpclass: {
6937 return ConstantInt::get(ReturnType,
true);
6939 return ConstantInt::get(ReturnType,
false);
6944 case Intrinsic::maxnum:
6945 case Intrinsic::minnum:
6946 case Intrinsic::maximum:
6947 case Intrinsic::minimum:
6948 case Intrinsic::maximumnum:
6949 case Intrinsic::minimumnum: {
6972 if (
Constant *SplatVal =
C->getSplatValue()) {
6978 }
else if (ElemCount.
isFixed()) {
6989 IID,
Call, &NewConst);
6991 (ElemResult != OptResult &&
6999 OptResult = ElemResult;
7025 case Intrinsic::vector_extract: {
7031 IdxN == 0 &&
X->getType() == ReturnType)
7048 unsigned NumOperands = Args.size();
7059 case Intrinsic::vscale: {
7060 Type *RetTy =
F->getReturnType();
7063 return ConstantInt::get(RetTy,
C->getZExtValue());
7071 if (NumOperands == 1)
7074 if (NumOperands == 2)
7080 case Intrinsic::masked_load:
7081 case Intrinsic::masked_gather: {
7082 Value *MaskArg = Args[1];
7083 Value *PassthruArg = Args[2];
7089 case Intrinsic::fshl:
7090 case Intrinsic::fshr: {
7091 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2];
7099 return Args[IID == Intrinsic::fshl ? 0 : 1];
7101 const APInt *ShAmtC;
7106 return Args[IID == Intrinsic::fshl ? 0 : 1];
7119 case Intrinsic::experimental_constrained_fma: {
7122 *FPI->getRoundingMode()))
7126 case Intrinsic::fma:
7127 case Intrinsic::fmuladd: {
7133 case Intrinsic::smul_fix:
7134 case Intrinsic::smul_fix_sat: {
7135 Value *Op0 = Args[0];
7136 Value *Op1 = Args[1];
7137 Value *Op2 = Args[2];
7138 Type *ReturnType =
F->getReturnType();
7163 case Intrinsic::vector_insert: {
7164 Value *Vec = Args[0];
7165 Value *SubVec = Args[1];
7166 Value *Idx = Args[2];
7167 Type *ReturnType =
F->getReturnType();
7176 X->getType() == ReturnType)
7181 case Intrinsic::experimental_constrained_fadd: {
7184 *FPI->getExceptionBehavior(),
7185 *FPI->getRoundingMode());
7187 case Intrinsic::experimental_constrained_fsub: {
7190 *FPI->getExceptionBehavior(),
7191 *FPI->getRoundingMode());
7193 case Intrinsic::experimental_constrained_fmul: {
7196 *FPI->getExceptionBehavior(),
7197 *FPI->getRoundingMode());
7199 case Intrinsic::experimental_constrained_fdiv: {
7202 *FPI->getExceptionBehavior(),
7203 *FPI->getRoundingMode());
7205 case Intrinsic::experimental_constrained_frem: {
7208 *FPI->getExceptionBehavior(),
7209 *FPI->getRoundingMode());
7211 case Intrinsic::experimental_constrained_ldexp:
7213 case Intrinsic::experimental_gc_relocate: {
7234 case Intrinsic::experimental_vp_reverse: {
7264 ConstantArgs.
reserve(Args.size());
7265 for (
Value *Arg : Args) {
7285 if (
Call->isMustTailCall())
7297 if (
F &&
F->isIntrinsic())
7324 return ::simplifyFreezeInst(Op0, Q);
7338 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
7369 unsigned MaxRecurse) {
7370 assert(
I->getFunction() &&
"instruction should be inserted in a function");
7372 "context instruction should be in the same function");
7376 switch (
I->getOpcode()) {
7381 [](
Value *V) { return cast<Constant>(V); });
7385 case Instruction::FNeg:
7387 case Instruction::FAdd:
7390 case Instruction::Add:
7394 case Instruction::FSub:
7397 case Instruction::Sub:
7401 case Instruction::FMul:
7404 case Instruction::Mul:
7408 case Instruction::SDiv:
7412 case Instruction::UDiv:
7416 case Instruction::FDiv:
7419 case Instruction::SRem:
7421 case Instruction::URem:
7423 case Instruction::FRem:
7426 case Instruction::Shl:
7430 case Instruction::LShr:
7434 case Instruction::AShr:
7438 case Instruction::And:
7440 case Instruction::Or:
7442 case Instruction::Xor:
7444 case Instruction::ICmp:
7446 NewOps[1], Q, MaxRecurse);
7447 case Instruction::FCmp:
7449 NewOps[1],
I->getFastMathFlags(), Q, MaxRecurse);
7450 case Instruction::Select:
7452 case Instruction::GetElementPtr: {
7455 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q,
7458 case Instruction::InsertValue: {
7463 case Instruction::InsertElement:
7465 case Instruction::ExtractValue: {
7470 case Instruction::ExtractElement:
7472 case Instruction::ShuffleVector: {
7475 SVI->getShuffleMask(), SVI->getType(), Q,
7478 case Instruction::PHI:
7480 case Instruction::Call:
7484 case Instruction::Freeze:
7486#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7487#include "llvm/IR/Instruction.def"
7488#undef HANDLE_CAST_INST
7491 case Instruction::Alloca:
7494 case Instruction::Load:
7503 "Number of operands should match the instruction!");
7504 return ::simplifyInstructionWithOperands(
I, NewOps, SQ,
RecursionLimit);
7534 bool Simplified =
false;
7541 for (
User *U :
I->users())
7546 I->replaceAllUsesWith(SimpleV);
7548 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7549 I->eraseFromParent();
7555 for (
unsigned Idx = 0; Idx != Worklist.
size(); ++Idx) {
7561 if (UnsimplifiedUsers)
7562 UnsimplifiedUsers->insert(
I);
7571 for (
User *U :
I->users())
7575 I->replaceAllUsesWith(SimpleV);
7577 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7578 I->eraseFromParent();
7587 assert(
I != SimpleV &&
"replaceAndRecursivelySimplify(X,X) is not valid!");
7588 assert(SimpleV &&
"Must provide a simplified value.");
7596 auto *DT = DTWP ? &DTWP->
getDomTree() :
nullptr;
7598 auto *TLI = TLIWP ? &TLIWP->
getTLI(
F) :
nullptr;
7601 return {
F.getDataLayout(), TLI, DT, AC};
7609template <
class T,
class... TArgs>
7612 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(
F);
7613 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(
F);
7614 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(
F);
7615 return {
F.getDataLayout(), TLI, DT, AC};
7629void InstSimplifyFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Value * simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with false branch of select.
static Value * simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse, Constant *TrueOrFalse)
Simplify comparison with true or false branch of select: sel = select i1 cond, i32 tv,...
static Value * foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, Value *R, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify binops of form "A op (B op' C)" or the commuted variant by distributing op over op'.
static Constant * foldOrCommuteConstant(Instruction::BinaryOps Opcode, Value *&Op0, Value *&Op1, const SimplifyQuery &Q)
static bool haveNonOverlappingStorage(const Value *V1, const Value *V2)
Return true if V1 and V2 are each the base of some distict storage region [V, object_size(V)] which d...
static Constant * foldConstant(Instruction::UnaryOps Opcode, Value *&Op, const SimplifyQuery &Q)
static Value * handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
We know comparison with both branches of select can be simplified, but they are not equal.
static Value * threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a PHI instruction, try to simplify the comparison by seeing whether ...
static Constant * propagateNaN(Constant *In)
Try to propagate existing NaN values when possible.
static Value * simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Fold an icmp when its operands have i1 scalar type.
static Value * simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
static void getUnsignedMonotonicValues(SmallPtrSetImpl< Value * > &Res, Value *V, MonotonicType Type, const SimplifyQuery &Q, unsigned Depth=0)
Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq).
static Value * simplifyRelativeLoad(Constant *Ptr, Constant *Offset, const DataLayout &DL)
static Value * simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SDiv and UDiv.
static Value * simplifyPHINode(PHINode *PN, ArrayRef< Value * > IncomingValues, const SimplifyQuery &Q)
See if we can fold the given phi. If not, returns null.
static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
static Value * simplifyAndCommutative(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static bool isIdempotent(Intrinsic::ID ID)
static std::optional< ConstantRange > getRange(Value *V, const InstrInfoQuery &IIQ)
Helper method to get range from metadata or attribute.
static Value * simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Try to simplify and/or of icmp with ctpop intrinsic.
static Value * simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Value * tryConstantFoldCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyWithOpsReplaced(Value *V, ArrayRef< std::pair< Value *, Value * > > Ops, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags, unsigned MaxRecurse)
static Value * simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifyAndOrOfFCmpsWithConstants(FCmpInst *Cmp0, FCmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
simplify integer comparisons where at least one operand of the compare matches an integer min/max idi...
static Value * simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with true branch of select.
static Value * simplifyIntrinsic(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q)
Returns true if a shift by Amount always yields poison.
static Value * simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an LShr or AShr, see if we can fold the result.
static Value * simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS, Value *RHS)
static Value * simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Test if there is a dominating equivalence condition for the two operands.
static Value * simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, const SimplifyQuery &, unsigned)
Given the operand for a UnaryOperator, see if we can fold the result.
static Value * simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
TODO: A large part of this logic is duplicated in InstCombine's foldICmpBinOp().
static Value * simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static Value * expandBinOp(Instruction::BinaryOps Opcode, Value *V, Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a binary operator of form "V op OtherOp" where V is "(B0 opex B1)" by distributing 'o...
static Value * simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Try hard to fold icmp with zero RHS because this is a common case.
static Value * simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is a floating-point comparison.
static Constant * getFalse(Type *Ty)
For a boolean type or a vector of boolean type, return false or a vector with every element false.
static Value * simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Check for common or similar folds of integer division or integer remainder.
static bool removesFPFraction(Intrinsic::ID ID)
Return true if the intrinsic rounds a floating-point value to an integral floating-point value (not a...
static Value * simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifySelectWithEquivalence(ArrayRef< std::pair< Value *, Value * > > Replacements, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer equality or floating-po...
static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS, const InstrInfoQuery &IIQ)
static Value * simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, const APInt *Y, bool TrueWhenUnset)
Try to simplify a select instruction when its condition operand is an integer comparison where one op...
static Value * simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Generic simplifications for associative binary operations.
static Value * threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with an operand that is a PHI instruction, try to simplify the bino...
static Value * simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, CmpPredicate Pred, Value *TVal, Value *FVal)
static Constant * simplifyFPOp(ArrayRef< Value * > Ops, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior, RoundingMode Rounding)
Perform folds that are common to any floating-point operation.
static Value * threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a select instruction, try to simplify the comparison by seeing wheth...
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Implementation of recursive simplification through an instruction's uses.
static bool isAllocDisjoint(const Value *V)
Return true if the underlying object (storage) must be disjoint from storage returned by any noalias ...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, unsigned MaxRecurse, bool IsSigned)
Return true if we can simplify X / Y to 0.
static Value * simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, bool IsStrict)
static Value * simplifyLogicOfAddSub(Value *Op0, Value *Op1, Instruction::BinaryOps Opcode)
Given a bitwise logic op, check if the operands are add/sub with a common source value and inverted c...
static Value * simplifySelectWithBitTest(Value *CondVal, Value *TrueVal, Value *FalseVal)
An alternative way to test if a bit is set or not.
static Value * simplifyOrLogic(Value *X, Value *Y)
static Type * getCompareTy(Value *Op)
static Value * simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Given a predicate and two operands, return true if the comparison is true.
bool isSelectWithIdenticalPHI(PHINode &PN, PHINode &IdenticalPN)
Look for the following pattern and simplify to_fold to identicalPhi.
static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V)
Compute the base pointer and cumulative constant offsets for V.
static Value * foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, int MaskVal, Value *RootVec, unsigned MaxRecurse)
For the given destination element of a shuffle, peek through shuffles to match a root vector source o...
static Value * simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, FCmpInst *RHS, bool IsAnd)
static MinMaxOptResult OptimizeConstMinMax(const Constant *RHSConst, const Intrinsic::ID IID, const CallBase *Call, Constant **OutNewConstVal)
static Value * simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * extractEquivalentCondition(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
Rummage around inside V looking for something equivalent to the comparison "LHS Pred RHS".
static Value * simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, Value *Op1, bool IsAnd)
static Value * threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with a select instruction as an operand, try to simplify the binop ...
static Constant * computePointerDifference(const DataLayout &DL, Value *LHS, Value *RHS)
Compute the constant difference between two pointer values.
static Value * simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * simplifyICmpWithDominatingAssume(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsNSW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an Shl, LShr or AShr, see if we can fold the result.
static Constant * computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SRem and URem.
static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT)
Does the given value dominate the specified phi node?
static Value * simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer comparison.
static Value * foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * simplifyUnaryIntrinsic(Function *F, Value *Op0, const SimplifyQuery &Q, const CallBase *Call)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This header provides classes for managing per-loop analyses.
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const uint32_t IV[8]
APFloat makeQuiet() const
Assuming this is an IEEE-754 NaN value, quiet its signaling bit.
Class for arbitrary precision integers.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
bool getBoolValue() const
Convert APInt to a boolean value.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
an instruction to allocate memory on the stack
A container for analyses that lazily runs them and caches their results.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
size_t size() const
size - Get the array size.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
An immutable pass that tracks lazily created AssumptionCache objects.
AssumptionCache & getAssumptionCache(Function &F)
Get the cached assumptions for a function.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
static Constant * getNegativeZero(Type *Ty)
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool isEmptySet() const
Return true if this set contains no members.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
unsigned getAddressSizeInBits(unsigned AS) const
The size in bits of an address in for the given AS.
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
unsigned getIndexSizeInBits(unsigned AS) const
The size in bits of indices used for address calculation in getelementptr and for addresses in the gi...
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Legacy analysis pass which computes a DominatorTree.
DominatorTree & getDomTree()
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
bool allowReassoc() const
Flag queries.
Represents calls to the gc.relocate intrinsic.
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Represents flags for the getelementptr instruction/expression.
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
An instruction for reading from memory.
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
op_range incoming_values()
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Pass interface - Implemented by all 'passes'.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an integer.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getTrueValue() const
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
TargetLibraryInfo & getTLI(const Function &F)
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
Base class of all SIMD vector types.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match 'fneg X' as 'fsub +-0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
ap_match< APFloat > m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
bool isDefaultFPEnvironment(fp::ExceptionBehavior EB, RoundingMode RM)
Returns true if the exception handling behavior and rounding mode match what is used in the default f...
LLVM_ABI Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
bool canRoundingModeBe(RoundingMode RM, RoundingMode QRM)
Returns true if the rounding mode RM may be QRM at compile time or at run time.
LLVM_ABI bool isNoAliasCall(const Value *V)
Return true if this pointer is returned by a noalias function.
LLVM_ABI Value * simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FCmpInst, fold the result or return null.
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
LLVM_ABI Value * simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q)
Given operands for a CastInst, fold the result or return null.
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
unsigned M1(unsigned Val)
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts={})
Compute the size of the object pointed by Ptr.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
LLVM_ABI bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI=nullptr, const DominatorTree *DT=nullptr, AssumptionCache *AC=nullptr, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Replace all uses of 'I' with 'SimpleV' and simplify the uses recursively.
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
SelectPatternFlavor
Specific patterns of select instructions we can match.
LLVM_ABI Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
LLVM_ABI Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
LLVM_ABI Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
LLVM_ABI bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
LLVM_ABI Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Value * simplifyLoadInst(LoadInst *LI, Value *PtrOp, const SimplifyQuery &Q)
Given a load instruction and its pointer operand, fold the result or return null.
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
LLVM_ABI Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
LLVM_ABI bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, unsigned MaxUsesToExplore=0)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
LLVM_ABI Value * simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, Value *Op0, Value *Op1, const SimplifyQuery &Q, const CallBase *Call)
Given operands for a BinaryIntrinsic, fold the result or return null.
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ TowardNegative
roundTowardNegative.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
unsigned M0(unsigned Val)
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF)
Returns true if the possibility of a signaling NaN can be safely ignored.
LLVM_ABI Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
LLVM_ABI Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This callback is used in conjunction with PointerMayBeCaptured.
virtual Action captured(const Use *U, UseCaptureInfo CI)=0
Use U directly captures CI.UseCC and additionally CI.ResultCC through the return value of the user of...
virtual void tooManyUses()=0
tooManyUses - The depth of traversal has breached a limit.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
bool hasConflict() const
Returns true if there is conflicting information.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
bool isKnownAlwaysNaN() const
Return true if it's known this must always be a nan.
static constexpr FPClassTest OrderedLessThanZeroMask
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
Various options to control the behavior of getObjectSize.
bool NullIsUnknownSize
If this is true, null pointers in address space 0 will be treated as though they can't be evaluated.
Mode EvalMode
How we want to evaluate this object's size.
@ Min
Evaluate all branches of an unknown condition.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
bool CanUseUndef
Controls whether simplifications are allowed to constrain the range of possible values for uses of un...
SimplifyQuery getWithInstruction(const Instruction *I) const
LLVM_ABI bool isUndefValue(Value *V) const
If CanUseUndef is true, returns whether V is undef.
const TargetLibraryInfo * TLI
SimplifyQuery getWithoutUndef() const
Capture information for a specific Use.