LLVM 20.0.0git
Namespaces | Classes | Enumerations | Functions | Variables
llvm::ISD Namespace Reference

ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types and value types. More...

Namespaces

namespace  GlobalISel
 

Classes

struct  ArgFlagsTy
 
struct  InputArg
 InputArg - This struct carries flags and type information about a single incoming (formal) argument or incoming (from the perspective of the caller) return value virtual register. More...
 
struct  OutputArg
 OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing (from the perspective of the caller) return value virtual register. More...
 

Enumerations

enum  NodeType {
  DELETED_NODE , EntryToken , TokenFactor , AssertSext ,
  AssertZext , AssertAlign , BasicBlock , VALUETYPE ,
  CONDCODE , Register , RegisterMask , Constant ,
  ConstantFP , GlobalAddress , GlobalTLSAddress , FrameIndex ,
  JumpTable , ConstantPool , ExternalSymbol , BlockAddress ,
  PtrAuthGlobalAddress , GLOBAL_OFFSET_TABLE , FRAMEADDR , RETURNADDR ,
  ADDROFRETURNADDR , SPONENTRY , LOCAL_RECOVER , READ_REGISTER ,
  WRITE_REGISTER , FRAME_TO_ARGS_OFFSET , EH_DWARF_CFA , EH_RETURN ,
  EH_SJLJ_SETJMP , EH_SJLJ_LONGJMP , EH_SJLJ_SETUP_DISPATCH , TargetConstant ,
  TargetConstantFP , TargetGlobalAddress , TargetGlobalTLSAddress , TargetFrameIndex ,
  TargetJumpTable , TargetConstantPool , TargetExternalSymbol , TargetBlockAddress ,
  MCSymbol , TargetIndex , INTRINSIC_WO_CHAIN , INTRINSIC_W_CHAIN ,
  INTRINSIC_VOID , CopyToReg , CopyFromReg , UNDEF ,
  FREEZE , EXTRACT_ELEMENT , BUILD_PAIR , MERGE_VALUES ,
  ADD , SUB , MUL , SDIV ,
  UDIV , SREM , UREM , SMUL_LOHI ,
  UMUL_LOHI , SDIVREM , UDIVREM , CARRY_FALSE ,
  ADDC , SUBC , ADDE , SUBE ,
  UADDO_CARRY , USUBO_CARRY , SADDO_CARRY , SSUBO_CARRY ,
  SADDO , UADDO , SSUBO , USUBO ,
  SMULO , UMULO , SADDSAT , UADDSAT ,
  SSUBSAT , USUBSAT , SSHLSAT , USHLSAT ,
  SMULFIX , UMULFIX , SMULFIXSAT , UMULFIXSAT ,
  SDIVFIX , UDIVFIX , SDIVFIXSAT , UDIVFIXSAT ,
  FADD , FSUB , FMUL , FDIV ,
  FREM , STRICT_FADD , STRICT_FSUB , STRICT_FMUL ,
  STRICT_FDIV , STRICT_FREM , STRICT_FMA , STRICT_FSQRT ,
  STRICT_FPOW , STRICT_FPOWI , STRICT_FLDEXP , STRICT_FSIN ,
  STRICT_FCOS , STRICT_FTAN , STRICT_FASIN , STRICT_FACOS ,
  STRICT_FATAN , STRICT_FSINH , STRICT_FCOSH , STRICT_FTANH ,
  STRICT_FEXP , STRICT_FEXP2 , STRICT_FLOG , STRICT_FLOG10 ,
  STRICT_FLOG2 , STRICT_FRINT , STRICT_FNEARBYINT , STRICT_FMAXNUM ,
  STRICT_FMINNUM , STRICT_FCEIL , STRICT_FFLOOR , STRICT_FROUND ,
  STRICT_FROUNDEVEN , STRICT_FTRUNC , STRICT_LROUND , STRICT_LLROUND ,
  STRICT_LRINT , STRICT_LLRINT , STRICT_FMAXIMUM , STRICT_FMINIMUM ,
  STRICT_FP_TO_SINT , STRICT_FP_TO_UINT , STRICT_SINT_TO_FP , STRICT_UINT_TO_FP ,
  STRICT_FP_ROUND , STRICT_FP_EXTEND , STRICT_FSETCC , STRICT_FSETCCS ,
  FPTRUNC_ROUND , FMA , FMAD , FCOPYSIGN ,
  FGETSIGN , FCANONICALIZE , IS_FPCLASS , BUILD_VECTOR ,
  INSERT_VECTOR_ELT , EXTRACT_VECTOR_ELT , CONCAT_VECTORS , INSERT_SUBVECTOR ,
  EXTRACT_SUBVECTOR , VECTOR_DEINTERLEAVE , VECTOR_INTERLEAVE , VECTOR_REVERSE ,
  VECTOR_SHUFFLE , VECTOR_SPLICE , SCALAR_TO_VECTOR , SPLAT_VECTOR ,
  SPLAT_VECTOR_PARTS , STEP_VECTOR , VECTOR_COMPRESS , MULHU ,
  MULHS , AVGFLOORS , AVGFLOORU , AVGCEILS ,
  AVGCEILU , ABDS , ABDU , SMIN ,
  SMAX , UMIN , UMAX , SCMP ,
  UCMP , AND , OR , XOR ,
  ABS , SHL , SRA , SRL ,
  ROTL , ROTR , FSHL , FSHR ,
  BSWAP , CTTZ , CTLZ , CTPOP ,
  BITREVERSE , PARITY , CTTZ_ZERO_UNDEF , CTLZ_ZERO_UNDEF ,
  SELECT , VSELECT , SELECT_CC , SETCC ,
  SETCCCARRY , SHL_PARTS , SRA_PARTS , SRL_PARTS ,
  SIGN_EXTEND , ZERO_EXTEND , ANY_EXTEND , TRUNCATE ,
  SINT_TO_FP , UINT_TO_FP , SIGN_EXTEND_INREG , ANY_EXTEND_VECTOR_INREG ,
  SIGN_EXTEND_VECTOR_INREG , ZERO_EXTEND_VECTOR_INREG , FP_TO_SINT , FP_TO_UINT ,
  FP_TO_SINT_SAT , FP_TO_UINT_SAT , FP_ROUND , GET_ROUNDING ,
  SET_ROUNDING , FP_EXTEND , BITCAST , ADDRSPACECAST ,
  FP16_TO_FP , FP_TO_FP16 , STRICT_FP16_TO_FP , STRICT_FP_TO_FP16 ,
  BF16_TO_FP , FP_TO_BF16 , STRICT_BF16_TO_FP , STRICT_FP_TO_BF16 ,
  FNEG , FABS , FSQRT , FCBRT ,
  FSIN , FCOS , FTAN , FASIN ,
  FACOS , FATAN , FSINH , FCOSH ,
  FTANH , FPOW , FPOWI , FLDEXP ,
  FFREXP , FLOG , FLOG2 , FLOG10 ,
  FEXP , FEXP2 , FEXP10 , FCEIL ,
  FTRUNC , FRINT , FNEARBYINT , FROUND ,
  FROUNDEVEN , FFLOOR , LROUND , LLROUND ,
  LRINT , LLRINT , FMINNUM , FMAXNUM ,
  FMINNUM_IEEE , FMAXNUM_IEEE , FMINIMUM , FMAXIMUM ,
  FSINCOS , GET_FPENV , SET_FPENV , RESET_FPENV ,
  GET_FPENV_MEM , SET_FPENV_MEM , GET_FPMODE , SET_FPMODE ,
  RESET_FPMODE , LOAD , STORE , DYNAMIC_STACKALLOC ,
  BR , BRIND , BR_JT , JUMP_TABLE_DEBUG_INFO ,
  BRCOND , BR_CC , INLINEASM , INLINEASM_BR ,
  EH_LABEL , ANNOTATION_LABEL , CATCHRET , CLEANUPRET ,
  STACKSAVE , STACKRESTORE , CALLSEQ_START , CALLSEQ_END ,
  VAARG , VACOPY , VAEND , VASTART ,
  PREALLOCATED_SETUP , PREALLOCATED_ARG , SRCVALUE , MDNODE_SDNODE ,
  PCMARKER , READCYCLECOUNTER , READSTEADYCOUNTER , HANDLENODE ,
  INIT_TRAMPOLINE , ADJUST_TRAMPOLINE , TRAP , DEBUGTRAP ,
  UBSANTRAP , PREFETCH , ARITH_FENCE , MEMBARRIER ,
  ATOMIC_FENCE , ATOMIC_LOAD , ATOMIC_STORE , ATOMIC_CMP_SWAP ,
  ATOMIC_CMP_SWAP_WITH_SUCCESS , ATOMIC_SWAP , ATOMIC_LOAD_ADD , ATOMIC_LOAD_SUB ,
  ATOMIC_LOAD_AND , ATOMIC_LOAD_CLR , ATOMIC_LOAD_OR , ATOMIC_LOAD_XOR ,
  ATOMIC_LOAD_NAND , ATOMIC_LOAD_MIN , ATOMIC_LOAD_MAX , ATOMIC_LOAD_UMIN ,
  ATOMIC_LOAD_UMAX , ATOMIC_LOAD_FADD , ATOMIC_LOAD_FSUB , ATOMIC_LOAD_FMAX ,
  ATOMIC_LOAD_FMIN , ATOMIC_LOAD_UINC_WRAP , ATOMIC_LOAD_UDEC_WRAP , MLOAD ,
  MSTORE , MGATHER , MSCATTER , LIFETIME_START ,
  LIFETIME_END , GC_TRANSITION_START , GC_TRANSITION_END , GET_DYNAMIC_AREA_OFFSET ,
  PSEUDO_PROBE , VSCALE , VECREDUCE_SEQ_FADD , VECREDUCE_SEQ_FMUL ,
  VECREDUCE_FADD , VECREDUCE_FMUL , VECREDUCE_FMAX , VECREDUCE_FMIN ,
  VECREDUCE_FMAXIMUM , VECREDUCE_FMINIMUM , VECREDUCE_ADD , VECREDUCE_MUL ,
  VECREDUCE_AND , VECREDUCE_OR , VECREDUCE_XOR , VECREDUCE_SMAX ,
  VECREDUCE_SMIN , VECREDUCE_UMAX , VECREDUCE_UMIN , STACKMAP ,
  PATCHPOINT , CONVERGENCECTRL_ANCHOR , CONVERGENCECTRL_ENTRY , CONVERGENCECTRL_LOOP ,
  CONVERGENCECTRL_GLUE , EXPERIMENTAL_VECTOR_HISTOGRAM , CLEAR_CACHE , BUILTIN_OP_END
}
 ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG. More...
 
enum  MemIndexedMode {
  UNINDEXED = 0 , PRE_INC , PRE_DEC , POST_INC ,
  POST_DEC
}
 MemIndexedMode enum - This enum defines the load / store indexed addressing modes. More...
 
enum  MemIndexType { SIGNED_SCALED = 0 , UNSIGNED_SCALED }
 MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calculating addresses. More...
 
enum  LoadExtType { NON_EXTLOAD = 0 , EXTLOAD , SEXTLOAD , ZEXTLOAD }
 LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension). More...
 
enum  CondCode {
  SETFALSE , SETOEQ , SETOGT , SETOGE ,
  SETOLT , SETOLE , SETONE , SETO ,
  SETUO , SETUEQ , SETUGT , SETUGE ,
  SETULT , SETULE , SETUNE , SETTRUE ,
  SETFALSE2 , SETEQ , SETGT , SETGE ,
  SETLT , SETLE , SETNE , SETTRUE2 ,
  SETCC_INVALID
}
 ISD::CondCode enum - These are ordered carefully to make the bitfields below work out, when considering SETFALSE (something that never exists dynamically) as 0. More...
 

Functions

bool isBitwiseLogicOp (unsigned Opcode)
 Whether this is bitwise logic opcode.
 
NodeType getVecReduceBaseOpcode (unsigned VecReduceOpcode)
 Get underlying scalar opcode for VECREDUCE opcode.
 
bool isVPOpcode (unsigned Opcode)
 Whether this is a vector-predicated Opcode.
 
bool isVPBinaryOp (unsigned Opcode)
 Whether this is a vector-predicated binary operation opcode.
 
bool isVPReduction (unsigned Opcode)
 Whether this is a vector-predicated reduction opcode.
 
std::optional< unsignedgetVPMaskIdx (unsigned Opcode)
 The operand position of the vector mask.
 
std::optional< unsignedgetVPExplicitVectorLengthIdx (unsigned Opcode)
 The operand position of the explicit vector length parameter.
 
std::optional< unsignedgetBaseOpcodeForVP (unsigned Opcode, bool hasFPExcept)
 Translate this VP Opcode to its corresponding non-VP Opcode.
 
unsigned getVPForBaseOpcode (unsigned Opcode)
 Translate this non-VP Opcode to its corresponding VP Opcode.
 
bool isIndexTypeSigned (MemIndexType IndexType)
 
NodeType getExtForLoadExtType (bool IsFP, LoadExtType)
 
bool isSignedIntSetCC (CondCode Code)
 Return true if this is a setcc instruction that performs a signed comparison when used with integer operands.
 
bool isUnsignedIntSetCC (CondCode Code)
 Return true if this is a setcc instruction that performs an unsigned comparison when used with integer operands.
 
bool isIntEqualitySetCC (CondCode Code)
 Return true if this is a setcc instruction that performs an equality comparison when used with integer operands.
 
bool isFPEqualitySetCC (CondCode Code)
 Return true if this is a setcc instruction that performs an equality comparison when used with floating point operands.
 
bool isTrueWhenEqual (CondCode Cond)
 Return true if the specified condition returns true if the two operands to the condition are equal.
 
unsigned getUnorderedFlavor (CondCode Cond)
 This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if the condition is undefined if the operand is a NaN.
 
CondCode getSetCCInverse (CondCode Operation, EVT Type)
 Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
 
bool isExtOpcode (unsigned Opcode)
 
bool isExtVecInRegOpcode (unsigned Opcode)
 
CondCode getSetCCSwappedOperands (CondCode Operation)
 Return the operation corresponding to (Y op X) when given the operation for (X op Y).
 
CondCode getSetCCOrOperation (CondCode Op1, CondCode Op2, EVT Type)
 Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X op2 Y)).
 
CondCode getSetCCAndOperation (CondCode Op1, CondCode Op2, EVT Type)
 Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X op2 Y)).
 
bool isConstantSplatVector (const SDNode *N, APInt &SplatValue)
 Node predicates.
 
bool isConstantSplatVectorAllOnes (const SDNode *N, bool BuildVectorOnly=false)
 Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 or undef.
 
bool isConstantSplatVectorAllZeros (const SDNode *N, bool BuildVectorOnly=false)
 Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 or undef.
 
bool isBuildVectorAllOnes (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
 
bool isBuildVectorAllZeros (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
 
bool isBuildVectorOfConstantSDNodes (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
 
bool isBuildVectorOfConstantFPSDNodes (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
 
bool isVectorShrinkable (const SDNode *N, unsigned NewEltSize, bool Signed)
 Returns true if the specified node is a vector where all elements can be truncated to the specified element size without a loss in meaning.
 
bool allOperandsUndef (const SDNode *N)
 Return true if the node has at least one operand and all operands of the specified node are ISD::UNDEF.
 
bool isFreezeUndef (const SDNode *N)
 Return true if the specified node is FREEZE(UNDEF).
 
bool isNormalLoad (const SDNode *N)
 Returns true if the specified node is a non-extending and unindexed load.
 
bool isNON_EXTLoad (const SDNode *N)
 Returns true if the specified node is a non-extending load.
 
bool isEXTLoad (const SDNode *N)
 Returns true if the specified node is a EXTLOAD.
 
bool isSEXTLoad (const SDNode *N)
 Returns true if the specified node is a SEXTLOAD.
 
bool isZEXTLoad (const SDNode *N)
 Returns true if the specified node is a ZEXTLOAD.
 
bool isUNINDEXEDLoad (const SDNode *N)
 Returns true if the specified node is an unindexed load.
 
bool isNormalStore (const SDNode *N)
 Returns true if the specified node is a non-truncating and unindexed store.
 
bool isUNINDEXEDStore (const SDNode *N)
 Returns true if the specified node is an unindexed store.
 
template<typename ConstNodeType >
bool matchUnaryPredicateImpl (SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false)
 Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUILD_VECTOR.
 
bool matchUnaryPredicate (SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false)
 Hook for matching ConstantSDNode predicate.
 
bool matchUnaryFpPredicate (SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
 Hook for matching ConstantFPSDNode predicate.
 
bool matchBinaryPredicate (SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
 Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pair of constant BUILD_VECTORs.
 
bool isOverflowIntrOpRes (SDValue Op)
 Returns true if the specified value is the overflow result from one of the overflow intrinsic nodes.
 

Variables

static const int FIRST_TARGET_STRICTFP_OPCODE = BUILTIN_OP_END + 400
 FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions should be less than this value.
 
static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END + 500
 FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific memory location should be less than this value.
 
static const int LAST_INDEXED_MODE = POST_DEC + 1
 
static const int LAST_MEM_INDEX_TYPE = UNSIGNED_SCALED + 1
 
static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1
 

Detailed Description

ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types and value types.

Enumeration Type Documentation

◆ CondCode

ISD::CondCode enum - These are ordered carefully to make the bitfields below work out, when considering SETFALSE (something that never exists dynamically) as 0.

"U" -> Unsigned (for integer operands) or Unordered (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal to. If the "N" column is 1, the result of the comparison is undefined if the input is a NAN.

All of these (except for the 'always folded ops') should be handled for floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT, SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.

Note that these are laid out in a specific order to allow bit-twiddling to transform conditions.

Enumerator
SETFALSE 
SETOEQ 
SETOGT 
SETOGE 
SETOLT 
SETOLE 
SETONE 
SETO 
SETUO 
SETUEQ 
SETUGT 
SETUGE 
SETULT 
SETULE 
SETUNE 
SETTRUE 
SETFALSE2 
SETEQ 
SETGT 
SETGE 
SETLT 
SETLE 
SETNE 
SETTRUE2 
SETCC_INVALID 

Definition at line 1578 of file ISDOpcodes.h.

◆ LoadExtType

LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).

SEXTLOAD loads the integer operand and sign extends it to a larger integer result type. ZEXTLOAD loads the integer operand and zero extends it to a larger integer result type. EXTLOAD is used for two things: floating point extending loads and integer extending loads [the top bits are undefined].

Enumerator
NON_EXTLOAD 
EXTLOAD 
SEXTLOAD 
ZEXTLOAD 

Definition at line 1558 of file ISDOpcodes.h.

◆ MemIndexedMode

MemIndexedMode enum - This enum defines the load / store indexed addressing modes.

UNINDEXED "Normal" load / store. The effective address is already computed and is available in the base pointer. The offset operand is always undefined. In addition to producing a chain, an unindexed load produces one value (result of the load); an unindexed store does not produce a value.

PRE_INC Similar to the unindexed mode where the effective address is PRE_DEC the value of the base pointer add / subtract the offset. It considers the computation as being folded into the load / store operation (i.e. the load / store does the address computation as well as performing the memory transaction). The base operand is always undefined. In addition to producing a chain, pre-indexed load produces two values (result of the load and the result of the address computation); a pre-indexed store produces one value (result of the address computation).

POST_INC The effective address is the value of the base pointer. The POST_DEC value of the offset operand is then added to / subtracted from the base after memory transaction. In addition to producing a chain, post-indexed load produces two values (the result of the load and the result of the base +/- offset computation); a post-indexed store produces one value (the the result of the base +/- offset computation).

Enumerator
UNINDEXED 
PRE_INC 
PRE_DEC 
POST_INC 
POST_DEC 

Definition at line 1527 of file ISDOpcodes.h.

◆ MemIndexType

MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calculating addresses.

SIGNED_SCALED Addr = Base + ((signed)Index * Scale) UNSIGNED_SCALED Addr = Base + ((unsigned)Index * Scale)

NOTE: The value of Scale is typically only known to the node owning the IndexType, with a value of 1 the equivalent of being unscaled.

Enumerator
SIGNED_SCALED 
UNSIGNED_SCALED 

Definition at line 1540 of file ISDOpcodes.h.

◆ NodeType

ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.

Targets may also define target-dependent operator codes for SDNodes. For example, on x86, these are the enum values in the X86ISD namespace. Targets should aim to use target-independent operators to model their instruction sets as much as possible, and only use target-dependent operators when they have special requirements.

Finally, during and after selection proper, SNodes may use special operator codes that correspond directly with MachineInstr opcodes. These are used to represent selected instructions. See the isMachineOpcode() and getMachineOpcode() member functions of SDNode.

Enumerator
DELETED_NODE 

DELETED_NODE - This is an illegal value that is used to catch errors.

This opcode is not a legal opcode for any node.

EntryToken 

EntryToken - This is the marker used to indicate the start of a region.

TokenFactor 

TokenFactor - This node takes multiple tokens as input and produces a single token result.

This is used to represent the fact that the operand operators are independent of each other.

AssertSext 

AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero or sign extended from a narrower type.

These nodes take two operands. The first is the node that has already been extended, and the second is a value type node indicating the width of the extension. NOTE: In case of the source value (or any vector element value) is poisoned the assertion will not be true for that value.

AssertZext 
AssertAlign 

AssertAlign - These nodes record if a register contains a value that has a known alignment and the trailing bits are known to be zero.

NOTE: In case of the source value (or any vector element value) is poisoned the assertion will not be true for that value.

BasicBlock 

Various leaf nodes.

VALUETYPE 
CONDCODE 
Register 
RegisterMask 
Constant 
ConstantFP 
GlobalAddress 
GlobalTLSAddress 
FrameIndex 
JumpTable 
ConstantPool 
ExternalSymbol 
BlockAddress 
PtrAuthGlobalAddress 

A ptrauth constant.

ptr, key, addr-disc, disc Note that the addr-disc can be a non-constant value, to allow representing a constant global address signed using address-diversification, in code.

GLOBAL_OFFSET_TABLE 

The address of the GOT.

FRAMEADDR 

FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.

These nodes take one operand, the index of the frame or return address to return. An index of zero corresponds to the current function's frame or return address, an index of one to the parent's frame or return address, and so on.

RETURNADDR 
ADDROFRETURNADDR 

ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.

This node takes no operand, returns a target-specific pointer to the place in the stack frame where the return address of the current function is stored.

SPONENTRY 

SPONENTRY - Represents the llvm.sponentry intrinsic.

Takes no argument and returns the stack pointer value at the entry of the current function calling this intrinsic.

LOCAL_RECOVER 

LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.

Materializes the offset from the local object pointer of another function to a particular local object passed to llvm.localescape. The operand is the MCSymbol label used to represent this offset, since typically the offset is not known until after code generation of the parent.

READ_REGISTER 

READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the named register global variables extension.

WRITE_REGISTER 
FRAME_TO_ARGS_OFFSET 

FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to first (possible) on-stack argument.

This is needed for correct stack adjustment during unwind.

EH_DWARF_CFA 

EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA), generally the value of the stack pointer at the call site in the previous frame.

EH_RETURN 

OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin, which is used to return from exception.

The general meaning is: adjust stack by OFFSET and pass execution to HANDLER. Many platform-related details also :)

EH_SJLJ_SETJMP 

RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.setjmp intrinsic.

It takes an input chain and a pointer to the jump buffer as inputs and returns an outchain.

EH_SJLJ_LONGJMP 

OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.

It takes an input chain and a pointer to the jump buffer as inputs and returns an outchain.

EH_SJLJ_SETUP_DISPATCH 

OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.

TargetConstant 

TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification, or lowering of the constant.

They are used for constants which are known to fit in the immediate fields of their users, or for carrying magic numbers which are not values which need to be materialized in registers.

TargetConstantFP 
TargetGlobalAddress 

TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node, and this is valid in the target-specific dag, turning into a GlobalAddress operand.

TargetGlobalTLSAddress 
TargetFrameIndex 
TargetJumpTable 
TargetConstantPool 
TargetExternalSymbol 
TargetBlockAddress 
MCSymbol 
TargetIndex 

TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.

Holds target flags, a 32-bit index, and a 64-bit index. Targets can use this however they like.

INTRINSIC_WO_CHAIN 

RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic function with no side effects.

The first operand is the ID number of the intrinsic from the llvm::Intrinsic namespace. The operands to the intrinsic follow. The node returns the result of the intrinsic.

INTRINSIC_W_CHAIN 

RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target intrinsic function with side effects that returns a result.

The first operand is a chain pointer. The second is the ID number of the intrinsic from the llvm::Intrinsic namespace. The operands to the intrinsic follow. The node has two results, the result of the intrinsic and an output chain.

INTRINSIC_VOID 

OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic function with side effects that does not return a result.

The first operand is a chain pointer. The second is the ID number of the intrinsic from the llvm::Intrinsic namespace. The operands to the intrinsic follow.

CopyToReg 

CopyToReg - This node has three operands: a chain, a register number to set to this value, and a value.

CopyFromReg 

CopyFromReg - This node indicates that the input value is a virtual or physical register that is defined outside of the scope of this SelectionDAG.

The register is available from the RegisterSDNode object. Note that CopyFromReg is considered as also freezing the value.

UNDEF 

UNDEF - An undefined node.

FREEZE 

FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF), or returns VAL otherwise.

Note that each read of UNDEF can yield different value, but FREEZE(UNDEF) cannot.

EXTRACT_ELEMENT 

EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant, which is required to be operand #1) half of the integer or float value specified as operand #0.

This is only for use before legalization, for values that will be broken into multiple registers.

BUILD_PAIR 

BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.

Given two values of the same integer value type, this produces a value twice as big. Like EXTRACT_ELEMENT, this can only be used before legalization. The lower part of the composite value should be in element 0 and the upper part should be in element 1.

MERGE_VALUES 

MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual results.

This nodes has exactly the same number of inputs and outputs. This node is useful for some pieces of the code generator that want to think about a single node with multiple results, not multiple nodes.

ADD 

Simple integer binary arithmetic operators.

SUB 
MUL 
SDIV 
UDIV 
SREM 
UREM 
SMUL_LOHI 

SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2*N], and return the full value as two results, each of type iN.

UMUL_LOHI 
SDIVREM 

SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.

UDIVREM 
CARRY_FALSE 

CARRY_FALSE - This node is used when folding other nodes, like ADDC/SUBC, which indicate the carry result is always false.

ADDC 

Carry-setting nodes for multiple precision addition and subtraction.

These nodes take two operands of the same value type, and produce two results. The first result is the normal add or sub result, the second result is the carry flag result. FIXME: These nodes are deprecated in favor of UADDO_CARRY and USUBO_CARRY. They are kept around for now to provide a smooth transition path toward the use of UADDO_CARRY/USUBO_CARRY and will eventually be removed.

SUBC 
ADDE 

Carry-using nodes for multiple precision addition and subtraction.

These nodes take three operands: The first two are the normal lhs and rhs to the add or sub, and the third is the input carry flag. These nodes produce two results; the normal result of the add or sub, and the output carry flag. These nodes both read and write a carry flag to allow them to them to be chained together for add and sub of arbitrarily large values.

SUBE 
UADDO_CARRY 

Carry-using nodes for multiple precision addition and subtraction.

These nodes take three operands: The first two are the normal lhs and rhs to the add or sub, and the third is a boolean value that is 1 if and only if there is an incoming carry/borrow. These nodes produce two results: the normal result of the add or sub, and a boolean value that is 1 if and only if there is an outgoing carry/borrow.

Care must be taken if these opcodes are lowered to hardware instructions that use the inverse logic – 0 if and only if there is an incoming/outgoing carry/borrow. In such cases, you must preserve the semantics of these opcodes by inverting the incoming carry/borrow, feeding it to the add/sub hardware instruction, and then inverting the outgoing carry/borrow.

The use of these opcodes is preferable to ADDE/SUBE if the target supports it, as the carry is a regular value rather than a glue, which allows further optimisation.

These opcodes are different from [US]{ADD,SUB}O in that U{ADD,SUB}O_CARRY consume and produce a carry/borrow, whereas [US]{ADD,SUB}O produce an overflow.

USUBO_CARRY 
SADDO_CARRY 

Carry-using overflow-aware nodes for multiple precision addition and subtraction.

These nodes take three operands: The first two are normal lhs and rhs to the add or sub, and the third is a boolean indicating if there is an incoming carry. They produce two results: the normal result of the add or sub, and a boolean that indicates if an overflow occurred (not flag, because it may be a store to memory, etc.). If the type of the boolean is not i1 then the high bits conform to getBooleanContents.

SSUBO_CARRY 
SADDO 

RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.

These nodes take two operands: the normal LHS and RHS to the add. They produce two results: the normal result of the add, and a boolean that indicates if an overflow occurred (not a flag, because it may be store to memory, etc.). If the type of the boolean is not i1 then the high bits conform to getBooleanContents. These nodes are generated from llvm.[su]add.with.overflow intrinsics.

UADDO 
SSUBO 

Same for subtraction.

USUBO 
SMULO 

Same for multiplication.

UMULO 
SADDSAT 

RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W).

If the true value of LHS + RHS exceeds the largest value that can be represented by W bits, the resulting value is this maximum value. Otherwise, if this value is less than the smallest value that can be represented by W bits, the resulting value is this minimum value.

UADDSAT 
SSUBSAT 

RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width (W).

If the true value of LHS - RHS exceeds the largest value that can be represented by W bits, the resulting value is this maximum value. Otherwise, if this value is less than the smallest value that can be represented by W bits, the resulting value is this minimum value.

USUBSAT 
SSHLSAT 

RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.

The first operand is the value to be shifted, and the second argument is the amount to shift by. Both must be integers of the same bit width (W). If the true value of LHS << RHS exceeds the largest value that can be represented by W bits, the resulting value is this maximum value, Otherwise, if this value is less than the smallest value that can be represented by W bits, the resulting value is this minimum value.

USHLSAT 
SMULFIX 

RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same width and scale.

SCALE represents the scale of both operands as fixed point numbers. This SCALE parameter must be a constant integer. A scale of zero is effectively performing multiplication on 2 integers.

UMULFIX 
SMULFIXSAT 

Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the min and max values representable by the bits of the first 2 operands.

UMULFIXSAT 
SDIVFIX 

RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width and scale.

SCALE represents the scale of both operands as fixed point numbers. This SCALE parameter must be a constant integer.

UDIVFIX 
SDIVFIXSAT 

Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the min and max values representable by the bits of the first 2 operands.

UDIVFIXSAT 
FADD 

Simple binary floating point operators.

FSUB 
FMUL 
FDIV 
FREM 
STRICT_FADD 

Constrained versions of the binary floating point operators.

These will be lowered to the simple operators before final selection. They are used to limit optimizations while the DAG is being optimized.

STRICT_FSUB 
STRICT_FMUL 
STRICT_FDIV 
STRICT_FREM 
STRICT_FMA 
STRICT_FSQRT 

Constrained versions of libm-equivalent floating point intrinsics.

These will be lowered to the equivalent non-constrained pseudo-op (or expanded to the equivalent library call) before final selection. They are used to limit optimizations while the DAG is being optimized.

STRICT_FPOW 
STRICT_FPOWI 
STRICT_FLDEXP 
STRICT_FSIN 
STRICT_FCOS 
STRICT_FTAN 
STRICT_FASIN 
STRICT_FACOS 
STRICT_FATAN 
STRICT_FSINH 
STRICT_FCOSH 
STRICT_FTANH 
STRICT_FEXP 
STRICT_FEXP2 
STRICT_FLOG 
STRICT_FLOG10 
STRICT_FLOG2 
STRICT_FRINT 
STRICT_FNEARBYINT 
STRICT_FMAXNUM 
STRICT_FMINNUM 
STRICT_FCEIL 
STRICT_FFLOOR 
STRICT_FROUND 
STRICT_FROUNDEVEN 
STRICT_FTRUNC 
STRICT_LROUND 
STRICT_LLROUND 
STRICT_LRINT 
STRICT_LLRINT 
STRICT_FMAXIMUM 
STRICT_FMINIMUM 
STRICT_FP_TO_SINT 

STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.

These have the same semantics as fptosi and fptoui in IR. They are used to limit optimizations while the DAG is being optimized.

STRICT_FP_TO_UINT 
STRICT_SINT_TO_FP 

STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to a floating point value.

These have the same semantics as sitofp and uitofp in IR. They are used to limit optimizations while the DAG is being optimized.

STRICT_UINT_TO_FP 
STRICT_FP_ROUND 

X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the destination VT.

TRUNC is a flag, which is always an integer that is zero or one. If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND is known to not change the value of Y.

The TRUNC = 1 case is used in cases where we know that the value will not be modified by the node, because Y is not using any of the extra precision of source type. This allows certain transformations like STRICT_FP_EXTEND(STRICT_FP_ROUND(X,1)) -> X which are not safe for STRICT_FP_EXTEND(STRICT_FP_ROUND(X,0)) because the extra bits aren't removed. It is used to limit optimizations while the DAG is being optimized.

STRICT_FP_EXTEND 

X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.

It is used to limit optimizations while the DAG is being optimized.

STRICT_FSETCC 

STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.

STRICT_FSETCC performs a quiet comparison operation, while STRICT_FSETCCS performs a signaling comparison operation.

STRICT_FSETCCS 
FPTRUNC_ROUND 

FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.

FMA 

FMA - Perform a * b + c with no intermediate rounding step.

FMAD 

FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.

FCOPYSIGN 

FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.

NOTE: This DAG node does not require that X and Y have the same type, just that they are both floating point. X and the result must have the same type. FCOPYSIGN(f32, f64) is allowed.

FGETSIGN 

INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 value.

FCANONICALIZE 

Returns platform specific canonical encoding of a floating point number.

IS_FPCLASS 

Performs a check of floating point class property, defined by IEEE-754.

The first operand is the floating point value to check. The second operand specifies the checked property and is a TargetConstant which specifies test in the same way as intrinsic 'is_fpclass'. Returns boolean value.

BUILD_VECTOR 

BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified, possibly variable, elements.

The types of the operands must match the vector element type, except that integer types are allowed to be larger than the element type, in which case the operands are implicitly truncated. The types of the operands must all be the same.

INSERT_VECTOR_ELT 

INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.

If the type of VAL is larger than the vector element type then VAL is truncated before replacement.

If VECTOR is a scalable vector, then IDX may be larger than the minimum vector width. IDX is not first scaled by the runtime scaling factor of VECTOR.

EXTRACT_VECTOR_ELT 

EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially variable) element number IDX.

If the return type is an integer type larger than the element type of the vector, the result is extended to the width of the return type. In that case, the high bits are undefined.

If VECTOR is a scalable vector, then IDX may be larger than the minimum vector width. IDX is not first scaled by the runtime scaling factor of VECTOR.

CONCAT_VECTORS 

CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length and element type, this produces a concatenated vector result value, with length equal to the sum of the lengths of the input vectors.

If VECTOR0 is a fixed-width vector, then VECTOR1..VECTORN must all be fixed-width vectors. Similarly, if VECTOR0 is a scalable vector, then VECTOR1..VECTORN must all be scalable vectors.

INSERT_SUBVECTOR 

INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.

IDX represents the starting element number at which VECTOR2 will be inserted. IDX must be a constant multiple of T's known minimum vector length. Let the type of VECTOR2 be T, then if T is a scalable vector, IDX is first scaled by the runtime scaling factor of T. The elements of VECTOR1 starting at IDX are overwritten with VECTOR2. Elements IDX through (IDX + num_elements(T) - 1) must be valid VECTOR1 indices. If this condition cannot be determined statically but is false at runtime, then the result vector is undefined. The IDX parameter must be a vector index constant type, which for most targets will be an integer pointer type.

This operation supports inserting a fixed-width vector into a scalable vector, but not the other way around.

EXTRACT_SUBVECTOR 

EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.

Let the result type be T, then IDX represents the starting element number from which a subvector of type T is extracted. IDX must be a constant multiple of T's known minimum vector length. If T is a scalable vector, IDX is first scaled by the runtime scaling factor of T. Elements IDX through (IDX + num_elements(T) - 1) must be valid VECTOR indices. If this condition cannot be determined statically but is false at runtime, then the result vector is undefined. The IDX parameter must be a vector index constant type, which for most targets will be an integer pointer type.

This operation supports extracting a fixed-width vector from a scalable vector, but not the other way around.

VECTOR_DEINTERLEAVE 

VECTOR_DEINTERLEAVE(VEC1, VEC2) - Returns two vectors with all input and output vectors having the same type.

The first output contains the even indices from CONCAT_VECTORS(VEC1, VEC2), with the second output containing the odd indices. The relative order of elements within an output match that of the concatenated input.

VECTOR_INTERLEAVE 

VECTOR_INTERLEAVE(VEC1, VEC2) - Returns two vectors with all input and output vectors having the same type.

The first output contains the result of interleaving the low half of CONCAT_VECTORS(VEC1, VEC2), with the second output containing the result of interleaving the high half.

VECTOR_REVERSE 

VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled using the following algorithm: RESULT[i] = VECTOR[VECTOR.ElementCount - 1 - i].

VECTOR_SHUFFLE 

VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.

A VECTOR_SHUFFLE node also contains an array of constant int values that indicate which value (or undef) each result element will get. These constant ints are accessible through the ShuffleVectorSDNode class. This is quite similar to the Altivec 'vperm' instruction, except that the indices must be constants and are in terms of the element size of VEC1/VEC2, not in terms of bytes.

VECTOR_SPLICE 

VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTORS(VEC1, VEC2), based on the IMM in two ways.

Let the result type be T, if IMM is positive it represents the starting element number (an index) from which a subvector of type T is extracted from CONCAT_VECTORS(VEC1, VEC2). If IMM is negative it represents a count specifying the number of trailing elements to extract from VEC1, where the elements of T are selected using the following algorithm: RESULT[i] = CONCAT_VECTORS(VEC1,VEC2)[VEC1.ElementCount - ABS(IMM) + i] If IMM is not in the range [-VL, VL-1] the result vector is undefined. IMM is a constant integer.

SCALAR_TO_VECTOR 

SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the resultant vector type.

The top elements 1 to N-1 of the N-element vector are undefined. The type of the operand must match the vector element type, except when they are integer types. In this case the operand is allowed to be wider than the vector element type, and is implicitly truncated to it.

SPLAT_VECTOR 

SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.

The type of the operand must match the vector element type, except when they are integer types. In this case the operand is allowed to be wider than the vector element type, and is implicitly truncated to it.

SPLAT_VECTOR_PARTS 

SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together and then duplicated in all lanes.

This represents a SPLAT_VECTOR that has had its scalar operand expanded. This allows representing a 64-bit splat on a target with 32-bit integers. The total width of the scalars must cover the element width. SCALAR1 contains the least significant bits of the value regardless of endianness and all scalars should have the same type.

STEP_VECTOR 

STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsigned values starting from 0 with a step of IMM, where IMM must be a TargetConstant with type equal to the vector element type.

The arithmetic is performed modulo the bitwidth of the element.

The operation does not support returning fixed-width vectors or non-constant operands.

VECTOR_COMPRESS 

VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e.g., vec = {A, B, C, D} and mask = {1, 0, 1, 0} --> {A, C, ?, ?} where ? is undefined If passthru is defined, ?s are replaced with elements from passthru.

If passthru is undef, ?s remain undefined.

MULHU 

MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of type i[2*N], then return the top part.

MULHS 
AVGFLOORS 

AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1], halving the result by shifting it one bit right.

shr(add(ext(X), ext(Y)), 1)

AVGFLOORU 
AVGCEILS 

AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2], add 1 and halve the result by shifting it one bit right.

shr(add(ext(X), ext(Y), 1), 1)

AVGCEILU 
ABDS 

ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as signed/unsigned.

i.e trunc(abs(sext(Op0) - sext(Op1))) becomes abds(Op0, Op1) or trunc(abs(zext(Op0) - zext(Op1))) becomes abdu(Op0, Op1)

ABDU 
SMIN 

[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.

SMAX 
UMIN 
UMAX 
SCMP 

[US]CMP - 3-way comparison of signed or unsigned integers.

Returns -1, 0, or 1 depending on whether Op0 <, ==, or > Op1. The operands can have type different to the result.

UCMP 
AND 

Bitwise operators - logical and, logical or, logical xor.

OR 
XOR 
ABS 

ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.

Note: A value of INT_MIN will return INT_MIN, no saturation or overflow is performed.

SHL 

Shift and rotation operations.

After legalization, the type of the shift amount is known to be TLI.getShiftAmountTy(). Before legalization the shift amount can be any type, but care must be taken to ensure it is large enough. TLI.getShiftAmountTy() is i8 on some targets, but before legalization, types like i1024 can occur and i8 doesn't have enough bits to represent the shift amount. When the 1st operand is a vector, the shift amount must be in the same type. (TLI.getShiftAmountTy() will return the same type when the input type is a vector.) For rotates and funnel shifts, the shift amount is treated as an unsigned amount modulo the element size of the first operand.

Funnel 'double' shifts take 3 operands, 2 inputs and the shift amount.

fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 
SRA 
SRL 
ROTL 
ROTR 
FSHL 
FSHR 
BSWAP 

Byte Swap and Counting operators.

CTTZ 
CTLZ 
CTPOP 
BITREVERSE 
PARITY 
CTTZ_ZERO_UNDEF 

Bit counting operators with an undefined result for zero inputs.

CTLZ_ZERO_UNDEF 
SELECT 

Select(COND, TRUEVAL, FALSEVAL).

If the type of the boolean COND is not i1 then the high bits must conform to getBooleanContents.

VSELECT 

Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector result.

All vectors have the same length. Much like the scalar select and setcc, each bit in the condition selects whether the corresponding result element is taken from op #1 or op #2. At first, the VSELECT condition is of vXi1 type. Later, targets may change the condition type in order to match the VSELECT node using a pattern. The condition follows the BooleanContent format of the target.

SELECT_CC 

Select with condition operator - This selects between a true value and a false value (ops #2 and #3) based on the boolean result of comparing the lhs and rhs (ops #0 and #1) of a conditional expression with the condition code in op #4, a CondCodeSDNode.

SETCC 

SetCC operator - This evaluates to a true value iff the condition is true.

If the result value type is not i1 then the high bits conform to getBooleanContents. The operands to this are the left and right operands to compare (ops #0, and #1) and the condition code to compare them with (op #2) as a CondCodeSDNode. If the operands are vector types then the result type must also be a vector type.

SETCCCARRY 

Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating if there is an incoming carry.

This operator checks the result of "LHS - RHS - Carry", and can be used to compare two wide integers: (setcccarry lhshi rhshi (usubo_carry lhslo rhslo) cc). Only valid for integers.

SHL_PARTS 

SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.

The operation ordering is:

[Lo,Hi] = op [LoLHS,HiLHS], Amt 
SRA_PARTS 
SRL_PARTS 
SIGN_EXTEND 

Conversion operators.

These are all single input single output operations. For all of these, the result type must be strictly wider or narrower (depending on the operation) than the source type. SIGN_EXTEND - Used for integer types, replicating the sign bit into new bits.

ZERO_EXTEND 

ZERO_EXTEND - Used for integer types, zeroing the new bits.

Can carry the NonNeg SDNodeFlag to indicate that the input is known to be non-negative. If the flag is present and the input is negative, the result is poison.

ANY_EXTEND 

ANY_EXTEND - Used for integer types. The high bits are undefined.

TRUNCATE 

TRUNCATE - Completely drop the high bits.

SINT_TO_FP 

[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter) to floating point.

UINT_TO_FP 
SIGN_EXTEND_INREG 

SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in a large integer register (e.g.

sign extending the low 8 bits of a 32-bit register to fill the top 24 bits with the 7th bit). The size of the smaller type is indicated by the 1th operand, a ValueType node.

ANY_EXTEND_VECTOR_INREG 

ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low lanes of an integer vector.

The result type must have fewer elements than the operand type, and those elements must be larger integer types such that the total size of the operand type is less than or equal to the size of the result type. Each of the low operand elements is any-extended into the corresponding, wider result elements with the high bits becoming undef. NOTE: The type legalizer prefers to make the operand and result size the same to allow expansion to shuffle vector during op legalization.

SIGN_EXTEND_VECTOR_INREG 

SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low lanes of an integer vector.

The result type must have fewer elements than the operand type, and those elements must be larger integer types such that the total size of the operand type is less than or equal to the size of the result type. Each of the low operand elements is sign-extended into the corresponding, wider result elements. NOTE: The type legalizer prefers to make the operand and result size the same to allow expansion to shuffle vector during op legalization.

ZERO_EXTEND_VECTOR_INREG 

ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low lanes of an integer vector.

The result type must have fewer elements than the operand type, and those elements must be larger integer types such that the total size of the operand type is less than or equal to the size of the result type. Each of the low operand elements is zero-extended into the corresponding, wider result elements. NOTE: The type legalizer prefers to make the operand and result size the same to allow expansion to shuffle vector during op legalization.

FP_TO_SINT 

FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.

These have the same semantics as fptosi and fptoui in IR. If the FP value cannot fit in the integer type, the results are undefined.

FP_TO_UINT 
FP_TO_SINT_SAT 

FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer type given in operand 1 with the following semantics:

  • If the value is NaN, zero is returned.
  • If the value is larger/smaller than the largest/smallest integer, the largest/smallest integer is returned (saturation).
  • Otherwise the result of rounding the value towards zero is returned.

The scalar width of the type given in operand 1 must be equal to, or smaller than, the scalar result type width. It may end up being smaller than the result width as a result of integer type legalization.

After converting to the scalar integer type in operand 1, the value is extended to the result VT. FP_TO_SINT_SAT sign extends and FP_TO_UINT_SAT zero extends.

FP_TO_UINT_SAT 
FP_ROUND 

X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the destination VT.

TRUNC is a flag, which is always an integer that is zero or one. If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND is known to not change the value of Y.

The TRUNC = 1 case is used in cases where we know that the value will not be modified by the node, because Y is not using any of the extra precision of source type. This allows certain transformations like FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.

GET_ROUNDING 

Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to +inf 3 Round to -inf 4 Round to nearest, ties to zero Other values are target dependent.

Result is rounding mode and chain. Input is a chain.

SET_ROUNDING 

Set rounding mode.

The first operand is a chain pointer. The second specifies the required rounding mode, encoded in the same way as used in 'GET_ROUNDING'.

FP_EXTEND 

X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.

BITCAST 

BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to memory with one type and loaded from the same address with the other type (or equivalently for vector format conversions, etc).

The source and result are required to have the same bit size (e.g. f32 <-> i32). This can also be used for int-to-int or fp-to-fp conversions, but that is a noop, deleted by getNode().

This operator is subtly different from the bitcast instruction from LLVM-IR since this node may change the bits in the register. For example, this occurs on big-endian NEON and big-endian MSA where the layout of the bits in the register depends on the vector type and this operator acts as a shuffle operation for some vector type combinations.

ADDRSPACECAST 

ADDRSPACECAST - This operator converts between pointers of different address spaces.

FP16_TO_FP 

FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-precision (16 bit) floating numbers.

These nodes form a semi-softened interface for dealing with f16 (as an i16), which is often a storage-only type but has native conversions.

FP_TO_FP16 
STRICT_FP16_TO_FP 
STRICT_FP_TO_FP16 
BF16_TO_FP 

BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.

These nodes form a semi-softened interface for dealing with bf16 (as an i16), which is often a storage-only type but has native conversions.

FP_TO_BF16 
STRICT_BF16_TO_FP 
STRICT_FP_TO_BF16 
FNEG 

Perform various unary floating-point operations inspired by libm.

For FPOWI, the result is undefined if the integer operand doesn't fit into sizeof(int).

FABS 
FSQRT 
FCBRT 
FSIN 
FCOS 
FTAN 
FASIN 
FACOS 
FATAN 
FSINH 
FCOSH 
FTANH 
FPOW 
FPOWI 
FLDEXP 

FLDEXP - ldexp, inspired by libm (op0 * 2**op1).

FFREXP 

FFREXP - frexp, extract fractional and exponent component of a floating-point value.

Returns the two components as separate return values.

FLOG 
FLOG2 
FLOG10 
FEXP 
FEXP2 
FEXP10 
FCEIL 
FTRUNC 
FRINT 
FNEARBYINT 
FROUND 
FROUNDEVEN 
FFLOOR 
LROUND 
LLROUND 
LRINT 
LLRINT 
FMINNUM 

FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.

In the case where a single input is a NaN (either signaling or quiet), the non-NaN input is returned.

The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.

FMAXNUM 
FMINNUM_IEEE 

FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values, following IEEE-754 definitions.

This differs from FMINNUM/FMAXNUM in the handling of signaling NaNs, and signed zero.

If one input is a signaling NaN, returns a quiet NaN. This matches IEEE-754 2008's minnum/maxnum behavior for signaling NaNs (which differs from 2019).

These treat -0 as ordered less than +0, matching the behavior of IEEE-754 2019's minimumNumber/maximumNumber.

FMAXNUM_IEEE 
FMINIMUM 

FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0.0.

While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008 semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2019 semantics.

FMAXIMUM 
FSINCOS 

FSINCOS - Compute both fsin and fcos as a single operation.

GET_FPENV 

Gets the current floating-point environment.

The first operand is a token chain. The results are FP environment, represented by an integer value, and a token chain.

SET_FPENV 

Sets the current floating-point environment.

The first operand is a token chain, the second is FP environment, represented by an integer value. The result is a token chain.

RESET_FPENV 

Set floating-point environment to default state.

The first operand and the result are token chains.

GET_FPENV_MEM 

Gets the current floating-point environment.

The first operand is a token chain, the second is a pointer to memory, where FP environment is stored to. The result is a token chain.

SET_FPENV_MEM 

Sets the current floating point environment.

The first operand is a token chain, the second is a pointer to memory, where FP environment is loaded from. The result is a token chain.

GET_FPMODE 

Reads the current dynamic floating-point control modes.

The operand is a token chain.

SET_FPMODE 

Sets the current dynamic floating-point control modes.

The first operand is a token chain, the second is control modes set represented as integer value.

RESET_FPMODE 

Sets default dynamic floating-point control modes.

The operand is a token chain.

LOAD 

LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store instruction, then an offset node that is added / subtracted from the base pointer to form the address (for indexed memory ops).

STORE 
DYNAMIC_STACKALLOC 

DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.

This node always has two return values: a new stack pointer value and a chain. The first operand is the token chain, the second is the number of bytes to allocate, and the third is the alignment boundary. The size is guaranteed to be a multiple of the stack alignment, and the alignment is guaranteed to be bigger than the stack alignment (if required) or 0 to get standard stack alignment.

BR 

Control flow instructions. These all have token chains.

BR - Unconditional branch. The first operand is the chain operand, the second is the MBB to branch to.

BRIND 

BRIND - Indirect branch.

The first operand is the chain, the second is the value to branch to, which must be of the same type as the target's pointer type.

BR_JT 

BR_JT - Jumptable branch.

The first operand is the chain, the second is the jumptable index, the last one is the jumptable entry index.

JUMP_TABLE_DEBUG_INFO 

JUMP_TABLE_DEBUG_INFO - Jumptable debug info.

The first operand is the chain, the second is the jumptable index.

BRCOND 

BRCOND - Conditional branch.

The first operand is the chain, the second is the condition, the third is the block to branch to if the condition is true. If the type of the condition is not i1, then the high bits must conform to getBooleanContents. If the condition is undef, it nondeterministically jumps to the block. TODO: Its semantics w.r.t undef requires further discussion; we need to make it sure that it is consistent with optimizations in MIR & the meaning of IMPLICIT_DEF. See https://reviews.llvm.org/D92015

BR_CC 

BR_CC - Conditional branch.

The behavior is like that of SELECT_CC, in that the condition is represented as condition code, and two nodes to compare, rather than as a combined SetCC node. The operands in order are chain, cc, lhs, rhs, block to branch to if condition is true. If condition is undef, it nondeterministically jumps to the block.

INLINEASM 

INLINEASM - Represents an inline asm block.

This node always has two return values: a chain and a flag result. The inputs are as follows: Operand #0 : Input chain. Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string. Operand #2 : a MDNodeSDNode with the !srcloc metadata. Operand #3 : HasSideEffect, IsAlignStack bits. After this, it is followed by a list of operands with this format: ConstantSDNode: Flags that encode whether it is a mem or not, the of operands that follow, etc. See InlineAsm.h. ... however many operands ... Operand #last: Optional, an incoming flag.

The variable width operands are required to represent target addressing modes as a single "operand", even though they may have multiple SDOperands.

INLINEASM_BR 

INLINEASM_BR - Branching version of inline asm. Used by asm-goto.

EH_LABEL 

EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and exception handling tables.

These nodes take a chain as input and return a chain.

ANNOTATION_LABEL 

ANNOTATION_LABEL - Represents a mid basic block label used by annotations.

This should remain within the basic block and be ordered with respect to other call instructions, but loads and stores may float past it.

CATCHRET 

CATCHRET - Represents a return from a catch block funclet.

Used for MSVC compatible exception handling. Takes a chain operand and a destination basic block operand.

CLEANUPRET 

CLEANUPRET - Represents a return from a cleanup block funclet.

Used for MSVC compatible exception handling. Takes only a chain operand.

STACKSAVE 

STACKSAVE - STACKSAVE has one operand, an input chain.

It produces a value, the same type as the pointer type for the system, and an output chain.

STACKRESTORE 

STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.

CALLSEQ_START 

CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence, and carry arbitrary information that target might want to know.

The first operand is a chain, the rest are specified by the target and not touched by the DAG optimizers. Targets that may use stack to pass call arguments define additional operands:

  • size of the call frame part that must be set up within the CALLSEQ_START..CALLSEQ_END pair,
  • part of the call frame prepared prior to CALLSEQ_START. Both these parameters must be constants, their sum is the total call frame size. CALLSEQ_START..CALLSEQ_END pairs may not be nested.
CALLSEQ_END 
VAARG 

VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.

It returns a pair of values: the vaarg value and a new chain.

VACOPY 

VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the source.

VAEND 

VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.

VASTART 
PREALLOCATED_SETUP 

PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE with the preallocated call Value.

PREALLOCATED_ARG 

PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE with the preallocated call Value, and a constant int.

SRCVALUE 

SRCVALUE - This is a node type that holds a Value* that is used to make reference to a value in the LLVM IR.

MDNODE_SDNODE 

MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to reference metadata in the IR.

PCMARKER 

PCMARKER - This corresponds to the pcmarker intrinsic.

READCYCLECOUNTER 

READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.

It produces a chain and one i64 value. The only operand is a chain. If i64 is not legal, the result will be expanded into smaller values. Still, it returns an i64, so targets should set legality for i64. The result is the content of the architecture-specific cycle counter-like register (or other high accuracy low latency clock source).

READSTEADYCOUNTER 

READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.

It has the same semantics as the READCYCLECOUNTER implementation except that the result is the content of the architecture-specific fixed frequency counter suitable for measuring elapsed time.

HANDLENODE 

HANDLENODE node - Used as a handle for various purposes.

INIT_TRAMPOLINE 

INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.

It takes as input a token chain, the pointer to the trampoline, the pointer to the nested function, the pointer to pass for the 'nest' parameter, a SRCVALUE for the trampoline and another for the nested function (allowing targets to access the original Function*). It produces a token chain as output.

ADJUST_TRAMPOLINE 

ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.

It takes a pointer to the trampoline and produces a (possibly) new pointer to the same trampoline with platform-specific adjustments applied. The pointer it returns points to an executable block of code.

TRAP 

TRAP - Trapping instruction.

DEBUGTRAP 

DEBUGTRAP - Trap intended to get the attention of a debugger.

UBSANTRAP 

UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.

PREFETCH 

PREFETCH - This corresponds to a prefetch intrinsic.

The first operand is the chain. The other operands are the address to prefetch, read / write specifier, locality specifier and instruction / data cache specifier.

ARITH_FENCE 

ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.

Both its operand and output are the same floating type.

MEMBARRIER 

MEMBARRIER - Compiler barrier only; generate a no-op.

ATOMIC_FENCE 

OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.

It takes an input chain, and two integer constants: an AtomicOrdering and a SynchronizationScope.

ATOMIC_LOAD 

Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.

ATOMIC_STORE 

OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val) This corresponds to "store atomic" instruction.

ATOMIC_CMP_SWAP 

Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi, swapLo, swapHi) This corresponds to the cmpxchg instruction.

ATOMIC_CMP_SWAP_WITH_SUCCESS 

Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.

this is still a strong cmpxchg operation, so Success == "Val == cmp".

ATOMIC_SWAP 

Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt) For double-word atomic operations: ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi) ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi) These correspond to the atomicrmw instruction.

ATOMIC_LOAD_ADD 
ATOMIC_LOAD_SUB 
ATOMIC_LOAD_AND 
ATOMIC_LOAD_CLR 
ATOMIC_LOAD_OR 
ATOMIC_LOAD_XOR 
ATOMIC_LOAD_NAND 
ATOMIC_LOAD_MIN 
ATOMIC_LOAD_MAX 
ATOMIC_LOAD_UMIN 
ATOMIC_LOAD_UMAX 
ATOMIC_LOAD_FADD 
ATOMIC_LOAD_FSUB 
ATOMIC_LOAD_FMAX 
ATOMIC_LOAD_FMIN 
ATOMIC_LOAD_UINC_WRAP 
ATOMIC_LOAD_UDEC_WRAP 
MLOAD 

Masked load and store - consecutive vector load and store operations with additional mask operand that prevents memory accesses to the masked-off lanes.

Val, OutChain = MLOAD(BasePtr, Mask, PassThru)
OutChain = MSTORE(Value, BasePtr, Mask) 
MSTORE 
MGATHER 

Masked gather and scatter - load and store operations for a vector of random addresses with additional mask operand that prevents memory accesses to the masked-off lanes.

Val, OutChain = GATHER(InChain, PassThru, Mask, BasePtr, Index, Scale)
OutChain = SCATTER(InChain, Value, Mask, BasePtr, Index, Scale)

The Index operand can have more vector elements than the other operands due to type legalization. The extra elements are ignored.

MSCATTER 
LIFETIME_START 

This corresponds to the llvm.lifetime.

  • intrinsics. The first operand is the chain and the second operand is the alloca pointer.
LIFETIME_END 
GC_TRANSITION_START 

GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the beginning and end of GC transition sequence, and carry arbitrary information that target might need for lowering.

The first operand is a chain, the rest are specified by the target and not touched by the DAG optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be nested.

GC_TRANSITION_END 
GET_DYNAMIC_AREA_OFFSET 

GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.

For most targets that would be 0, but for some others (e.g. PowerPC, PowerPC64) that would be compile-time known nonzero constant. The only operand here is the chain.

PSEUDO_PROBE 

Pseudo probe for AutoFDO, as a place holder in a basic block to improve the sample counts quality.

VSCALE 

VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a scalable vector.

IMM is a constant integer multiplier that is applied to the runtime value.

VECREDUCE_SEQ_FADD 

Generic reduction nodes.

These nodes represent horizontal vector reduction operations, producing a scalar result. The SEQ variants perform reductions in sequential order. The first operand is an initial scalar accumulator value, and the second operand is the vector to reduce. E.g. RES = VECREDUCE_SEQ_FADD f32 ACC, <4 x f32> SRC_VEC ... is equivalent to RES = (((ACC + SRC_VEC[0]) + SRC_VEC[1]) + SRC_VEC[2]) + SRC_VEC[3]

VECREDUCE_SEQ_FMUL 
VECREDUCE_FADD 

These reductions have relaxed evaluation order semantics, and have a single vector operand.

The order of evaluation is unspecified. For pow-of-2 vectors, one valid legalizer expansion is to use a tree reduction, i.e.: For RES = VECREDUCE_FADD <8 x f16> SRC_VEC

PART_RDX = FADD SRC_VEC[0:3], SRC_VEC[4:7]
PART_RDX2 = FADD PART_RDX[0:1], PART_RDX[2:3]
RES = FADD PART_RDX2[0], PART_RDX2[1]

For non-pow-2 vectors, this can be computed by extracting each element and performing the operation as if it were scalarized.

VECREDUCE_FMUL 
VECREDUCE_FMAX 

FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.

VECREDUCE_FMIN 
VECREDUCE_FMAXIMUM 

FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm.maximum semantics.

VECREDUCE_FMINIMUM 
VECREDUCE_ADD 

Integer reductions may have a result type larger than the vector element type.

However, the reduction is performed using the vector element type and the value in the top bits is unspecified.

VECREDUCE_MUL 
VECREDUCE_AND 
VECREDUCE_OR 
VECREDUCE_XOR 
VECREDUCE_SMAX 
VECREDUCE_SMIN 
VECREDUCE_UMAX 
VECREDUCE_UMIN 
STACKMAP 
PATCHPOINT 
CONVERGENCECTRL_ANCHOR 
CONVERGENCECTRL_ENTRY 
CONVERGENCECTRL_LOOP 
CONVERGENCECTRL_GLUE 
EXPERIMENTAL_VECTOR_HISTOGRAM 
CLEAR_CACHE 
BUILTIN_OP_END 

BUILTIN_OP_END - This must be the last enum value in this list.

The target-specific pre-isel opcode values start here.

Definition at line 40 of file ISDOpcodes.h.

Function Documentation

◆ allOperandsUndef()

bool llvm::ISD::allOperandsUndef ( const SDNode N)

Return true if the node has at least one operand and all operands of the specified node are ISD::UNDEF.

Definition at line 342 of file SelectionDAG.cpp.

References llvm::all_of(), and N.

Referenced by PerformEXTRACTCombine().

◆ getBaseOpcodeForVP()

std::optional< unsigned > llvm::ISD::getBaseOpcodeForVP ( unsigned  Opcode,
bool  hasFPExcept 
)

Translate this VP Opcode to its corresponding non-VP Opcode.

Definition at line 540 of file SelectionDAG.cpp.

◆ getExtForLoadExtType()

ISD::NodeType llvm::ISD::getExtForLoadExtType ( bool  IsFP,
ISD::LoadExtType  ExtType 
)

◆ getSetCCAndOperation()

ISD::CondCode llvm::ISD::getSetCCAndOperation ( ISD::CondCode  Op1,
ISD::CondCode  Op2,
EVT  Type 
)

Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X op2 Y)).

This function returns SETCC_INVALID if it is not possible to represent the resultant comparison.

Definition at line 652 of file SelectionDAG.cpp.

References isSignedOp(), SETCC_INVALID, SETEQ, SETFALSE, SETOEQ, SETOGT, SETOLT, SETUEQ, SETUGT, SETULT, and SETUO.

◆ getSetCCInverse()

ISD::CondCode llvm::ISD::getSetCCInverse ( ISD::CondCode  Op,
EVT  Type 
)

◆ getSetCCOrOperation()

ISD::CondCode llvm::ISD::getSetCCOrOperation ( ISD::CondCode  Op1,
ISD::CondCode  Op2,
EVT  Type 
)

Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X op2 Y)).

This function returns SETCC_INVALID if it is not possible to represent the resultant comparison.

Definition at line 631 of file SelectionDAG.cpp.

References isSignedOp(), SETCC_INVALID, SETNE, SETTRUE2, and SETUNE.

◆ getSetCCSwappedOperands()

ISD::CondCode llvm::ISD::getSetCCSwappedOperands ( ISD::CondCode  Operation)

◆ getUnorderedFlavor()

unsigned llvm::ISD::getUnorderedFlavor ( CondCode  Cond)
inline

This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if the condition is undefined if the operand is a NaN.

Definition at line 1641 of file ISDOpcodes.h.

References Cond.

Referenced by llvm::SelectionDAG::FoldSetCC(), and llvm::TargetLowering::SimplifySetCC().

◆ getVecReduceBaseOpcode()

ISD::NodeType llvm::ISD::getVecReduceBaseOpcode ( unsigned  VecReduceOpcode)

◆ getVPExplicitVectorLengthIdx()

std::optional< unsigned > llvm::ISD::getVPExplicitVectorLengthIdx ( unsigned  Opcode)

The operand position of the explicit vector length parameter.

Definition at line 529 of file SelectionDAG.cpp.

Referenced by llvm::getAVLPos(), llvm::VETargetLowering::lowerToVVP(), and SplitVPOp().

◆ getVPForBaseOpcode()

unsigned llvm::ISD::getVPForBaseOpcode ( unsigned  Opcode)

Translate this non-VP Opcode to its corresponding VP Opcode.

Definition at line 554 of file SelectionDAG.cpp.

References llvm_unreachable.

◆ getVPMaskIdx()

std::optional< unsigned > llvm::ISD::getVPMaskIdx ( unsigned  Opcode)

The operand position of the vector mask.

Definition at line 517 of file SelectionDAG.cpp.

Referenced by llvm::getMaskPos(), and llvm::VETargetLowering::lowerToVVP().

◆ isBitwiseLogicOp()

bool llvm::ISD::isBitwiseLogicOp ( unsigned  Opcode)
inline

◆ isBuildVectorAllOnes()

bool llvm::ISD::isBuildVectorAllOnes ( const SDNode N)

◆ isBuildVectorAllZeros()

bool llvm::ISD::isBuildVectorAllZeros ( const SDNode N)

Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.

Definition at line 275 of file SelectionDAG.cpp.

References isConstantSplatVectorAllZeros(), and N.

Referenced by adjustBitcastSrcVectorSSE1(), canonicalizeShuffleWithOp(), checkBitcastSrcVectorSize(), combineAdd(), combineAndnp(), combineBitcast(), combineBitcastvxi1(), combineConcatVectorOps(), combineEXTRACT_SUBVECTOR(), combineFaddCFmul(), combineINSERT_SUBVECTOR(), combineKSHIFT(), combineLogicBlendIntoConditionalNegate(), combineMaskedLoadConstantMask(), combineOrXorWithSETCC(), combinePMULDQ(), combineSelect(), combineSetCC(), combineShuffleOfScalars(), combineVectorShiftImm(), combineVectorShiftVar(), combineVPMADD(), combineVSelectWithAllOnesOrZeros(), computeZeroableShuffleElements(), EltsFromConsecutiveLoads(), ExtendToType(), getFauxShuffleMask(), insert1BitVector(), IsNOT(), isNullFPScalarOrVectorConst(), isZeroVector(), LowerAVXCONCAT_VECTORS(), LowerBUILD_VECTORvXi1(), lowerBuildVectorOfConstants(), LowerCONCAT_VECTORSvXi1(), LowerMLOAD(), lowerShuffleAsPermuteAndUnpack(), lowerV2X128Shuffle(), lowerVECTOR_SHUFFLE(), LowerVSETCC(), matchShuffleAsBlend(), materializeVectorConstant(), llvm::PPCTargetLowering::PerformDAGCombine(), PerformVECREDUCE_ADDCombine(), llvm::TargetLowering::SimplifyDemandedBits(), llvm::X86TargetLowering::SimplifyDemandedBitsForTargetNode(), llvm::TargetLowering::SimplifyMultipleUseDemandedBits(), and llvm::X86TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode().

◆ isBuildVectorOfConstantFPSDNodes()

bool llvm::ISD::isBuildVectorOfConstantFPSDNodes ( const SDNode N)

◆ isBuildVectorOfConstantSDNodes()

bool llvm::ISD::isBuildVectorOfConstantSDNodes ( const SDNode N)

◆ isConstantSplatVector()

bool llvm::ISD::isConstantSplatVector ( const SDNode N,
APInt SplatValue 
)

◆ isConstantSplatVectorAllOnes()

bool llvm::ISD::isConstantSplatVectorAllOnes ( const SDNode N,
bool  BuildVectorOnly = false 
)

Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 or undef.

If BuildVectorOnly is set to true, it only checks BUILD_VECTOR.

Definition at line 180 of file SelectionDAG.cpp.

References BITCAST, BUILD_VECTOR, llvm::APInt::isAllOnes(), isConstantSplatVector(), N, and SPLAT_VECTOR.

Referenced by combineSetCC(), isAllActivePredicate(), isBuildVectorAllOnes(), matchIndexAsShuffle(), matchIndexAsWiderOp(), performConcatVectorsCombine(), performVSelectCombine(), llvm::SelectionDAGISel::SelectCodeCommon(), and tryCombineToBSL().

◆ isConstantSplatVectorAllZeros()

bool llvm::ISD::isConstantSplatVectorAllZeros ( const SDNode N,
bool  BuildVectorOnly = false 
)

Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 or undef.

If BuildVectorOnly is set to true, it only checks BUILD_VECTOR.

Definition at line 229 of file SelectionDAG.cpp.

References BITCAST, BUILD_VECTOR, isConstantSplatVector(), llvm::APInt::isZero(), N, and SPLAT_VECTOR.

Referenced by combineSelect(), combineShiftLeft(), combineShiftRightLogical(), combineVWADDSUBWSelect(), isAllInactivePredicate(), isBuildVectorAllZeros(), isCheapToExtend(), isZerosVector(), removeRedundantInsertVectorElt(), llvm::SelectionDAGISel::SelectCodeCommon(), and tryCombineToBSL().

◆ isEXTLoad()

bool llvm::ISD::isEXTLoad ( const SDNode N)
inline

Returns true if the specified node is a EXTLOAD.

Definition at line 3189 of file SelectionDAGNodes.h.

References EXTLOAD, and N.

Referenced by combineTargetShuffle(), llvm::SelectionDAG::computeKnownBits(), isFloatingPointZero(), isValidSplatLoad(), and tryToFoldExtOfExtload().

◆ isExtOpcode()

bool llvm::ISD::isExtOpcode ( unsigned  Opcode)
inline

◆ isExtVecInRegOpcode()

bool llvm::ISD::isExtVecInRegOpcode ( unsigned  Opcode)
inline

◆ isFPEqualitySetCC()

bool llvm::ISD::isFPEqualitySetCC ( CondCode  Code)
inline

Return true if this is a setcc instruction that performs an equality comparison when used with floating point operands.

Definition at line 1629 of file ISDOpcodes.h.

References SETOEQ, SETONE, SETUEQ, and SETUNE.

Referenced by foldAndOrOfSETCC().

◆ isFreezeUndef()

bool llvm::ISD::isFreezeUndef ( const SDNode N)

Return true if the specified node is FREEZE(UNDEF).

Definition at line 351 of file SelectionDAG.cpp.

References FREEZE, and N.

Referenced by LowerAVXCONCAT_VECTORS().

◆ isIndexTypeSigned()

bool llvm::ISD::isIndexTypeSigned ( MemIndexType  IndexType)
inline

Definition at line 1544 of file ISDOpcodes.h.

References SIGNED_SCALED.

Referenced by refineIndexType().

◆ isIntEqualitySetCC()

bool llvm::ISD::isIntEqualitySetCC ( CondCode  Code)
inline

Return true if this is a setcc instruction that performs an equality comparison when used with integer operands.

Definition at line 1623 of file ISDOpcodes.h.

References SETEQ, and SETNE.

Referenced by combine_CC(), foldAndOrOfSETCC(), llvm::RISCVTargetLowering::PerformDAGCombine(), llvm::RISCVDAGToDAGISel::selectSETCC(), and tryDemorganOfBooleanCondition().

◆ isNON_EXTLoad()

bool llvm::ISD::isNON_EXTLoad ( const SDNode N)
inline

◆ isNormalLoad()

bool llvm::ISD::isNormalLoad ( const SDNode N)
inline

◆ isNormalStore()

bool llvm::ISD::isNormalStore ( const SDNode N)
inline

◆ isOverflowIntrOpRes()

bool llvm::ISD::isOverflowIntrOpRes ( SDValue  Op)
inline

Returns true if the specified value is the overflow result from one of the overflow intrinsic nodes.

Definition at line 3260 of file SelectionDAGNodes.h.

References SADDO, SMULO, SSUBO, UADDO, UMULO, and USUBO.

◆ isSEXTLoad()

bool llvm::ISD::isSEXTLoad ( const SDNode N)
inline

Returns true if the specified node is a SEXTLOAD.

Definition at line 3195 of file SelectionDAGNodes.h.

References N, and SEXTLOAD.

Referenced by llvm::SelectionDAG::computeKnownBits(), isSignExtended(), isValidSplatLoad(), SkipExtensionForVMULL(), and tryToFoldExtOfExtload().

◆ isSignedIntSetCC()

bool llvm::ISD::isSignedIntSetCC ( CondCode  Code)
inline

Return true if this is a setcc instruction that performs a signed comparison when used with integer operands.

Definition at line 1611 of file ISDOpcodes.h.

References SETGE, SETGT, SETLE, and SETLT.

Referenced by combineSetCC(), ExtendUsesToFormExtLoad(), llvm::TargetLowering::SimplifySetCC(), and tryToFoldExtOfLoad().

◆ isTrueWhenEqual()

bool llvm::ISD::isTrueWhenEqual ( CondCode  Cond)
inline

Return true if the specified condition returns true if the two operands to the condition are equal.

Note that if one of the two operands is a NaN, this value is meaningless.

Definition at line 1636 of file ISDOpcodes.h.

References Cond.

Referenced by llvm::SelectionDAG::FoldSetCC(), LowerVSETCC(), and llvm::TargetLowering::SimplifySetCC().

◆ isUNINDEXEDLoad()

bool llvm::ISD::isUNINDEXEDLoad ( const SDNode N)
inline

Returns true if the specified node is an unindexed load.

Definition at line 3207 of file SelectionDAGNodes.h.

References N, and UNINDEXED.

Referenced by combineTargetShuffle(), isValidSplatLoad(), tryToFoldExtOfExtload(), and tryToFoldExtOfLoad().

◆ isUNINDEXEDStore()

bool llvm::ISD::isUNINDEXEDStore ( const SDNode N)
inline

Returns true if the specified node is an unindexed store.

Definition at line 3221 of file SelectionDAGNodes.h.

References N, and UNINDEXED.

◆ isUnsignedIntSetCC()

bool llvm::ISD::isUnsignedIntSetCC ( CondCode  Code)
inline

Return true if this is a setcc instruction that performs an unsigned comparison when used with integer operands.

Definition at line 1617 of file ISDOpcodes.h.

References SETUGE, SETUGT, SETULE, and SETULT.

Referenced by combineExtSetcc(), combineSetCC(), LowerBR_CC(), LowerSELECT_CC(), and LowerVSETCC().

◆ isVectorShrinkable()

bool llvm::ISD::isVectorShrinkable ( const SDNode N,
unsigned  NewEltSize,
bool  Signed 
)

Returns true if the specified node is a vector where all elements can be truncated to the specified element size without a loss in meaning.

Definition at line 305 of file SelectionDAG.cpp.

References assert(), BUILD_VECTOR, llvm::CallingConv::C, N, SIGN_EXTEND, Signed, and ZERO_EXTEND.

Referenced by findMoreOptimalIndexType().

◆ isVPBinaryOp()

bool llvm::ISD::isVPBinaryOp ( unsigned  Opcode)

Whether this is a vector-predicated binary operation opcode.

Definition at line 492 of file SelectionDAG.cpp.

◆ isVPOpcode()

bool llvm::ISD::isVPOpcode ( unsigned  Opcode)

Whether this is a vector-predicated Opcode.

Definition at line 481 of file SelectionDAG.cpp.

Referenced by llvm::SDNode::isVPOpcode(), llvm::VETargetLowering::LowerOperation(), llvm::VETargetLowering::lowerToVVP(), and SplitVPOp().

◆ isVPReduction()

bool llvm::ISD::isVPReduction ( unsigned  Opcode)

Whether this is a vector-predicated reduction opcode.

Definition at line 504 of file SelectionDAG.cpp.

Referenced by llvm::hasReductionStartParam().

◆ isZEXTLoad()

bool llvm::ISD::isZEXTLoad ( const SDNode N)
inline

Returns true if the specified node is a ZEXTLOAD.

Definition at line 3201 of file SelectionDAGNodes.h.

References N, and ZEXTLOAD.

Referenced by llvm::SelectionDAG::computeKnownBits(), isValidSplatLoad(), isZeroExtended(), llvm::TargetLowering::SimplifyDemandedBits(), SkipExtensionForVMULL(), and tryToFoldExtOfExtload().

◆ matchBinaryPredicate()

bool llvm::ISD::matchBinaryPredicate ( SDValue  LHS,
SDValue  RHS,
std::function< bool(ConstantSDNode *, ConstantSDNode *)>  Match,
bool  AllowUndefs = false,
bool  AllowTypeMismatch = false 
)

Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pair of constant BUILD_VECTORs.

If AllowUndef is true, then UNDEF elements will pass nullptr to Match. If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.

Definition at line 388 of file SelectionDAG.cpp.

References BUILD_VECTOR, llvm::SDValue::getValueType(), llvm::SDValue::isUndef(), LHS, llvm::Match, RHS, and SPLAT_VECTOR.

◆ matchUnaryFpPredicate()

bool llvm::ISD::matchUnaryFpPredicate ( SDValue  Op,
std::function< bool(ConstantFPSDNode *)>  Match,
bool  AllowUndefs = false 
)
inline

Hook for matching ConstantFPSDNode predicate.

Definition at line 3243 of file SelectionDAGNodes.h.

References llvm::Match.

Referenced by llvm::SelectionDAG::isKnownNeverZeroFloat().

◆ matchUnaryPredicate()

bool llvm::ISD::matchUnaryPredicate ( SDValue  Op,
std::function< bool(ConstantSDNode *)>  Match,
bool  AllowUndefs = false 
)
inline

◆ matchUnaryPredicateImpl()

template<typename ConstNodeType >
bool llvm::ISD::matchUnaryPredicateImpl ( SDValue  Op,
std::function< bool(ConstNodeType *)>  Match,
bool  AllowUndefs = false 
)

Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUILD_VECTOR.

If AllowUndef is true, then UNDEF elements will pass nullptr to Match.

Definition at line 356 of file SelectionDAG.cpp.

References BUILD_VECTOR, llvm::CallingConv::C, llvm::DWARFExpression::Operation::getNumOperands(), llvm::Match, and SPLAT_VECTOR.

Variable Documentation

◆ FIRST_TARGET_MEMORY_OPCODE

const int llvm::ISD::FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END + 500
static

FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific memory location should be less than this value.

Those that do must not be less than this value, and can be used with SelectionDAG::getMemIntrinsicNode.

Definition at line 1467 of file ISDOpcodes.h.

Referenced by llvm::SelectionDAG::getMemIntrinsicNode(), and llvm::SDNode::isTargetMemoryOpcode().

◆ FIRST_TARGET_STRICTFP_OPCODE

const int llvm::ISD::FIRST_TARGET_STRICTFP_OPCODE = BUILTIN_OP_END + 400
static

FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions should be less than this value.

Those that do must not be less than this value.

Definition at line 1461 of file ISDOpcodes.h.

Referenced by hasMaskOp(), hasPassthruOp(), and llvm::SDNode::isTargetStrictFPOpcode().

◆ LAST_INDEXED_MODE

const int llvm::ISD::LAST_INDEXED_MODE = POST_DEC + 1
static

◆ LAST_LOADEXT_TYPE

const int llvm::ISD::LAST_LOADEXT_TYPE = ZEXTLOAD + 1
static

◆ LAST_MEM_INDEX_TYPE

const int llvm::ISD::LAST_MEM_INDEX_TYPE = UNSIGNED_SCALED + 1
static

Definition at line 1542 of file ISDOpcodes.h.