LLVM 22.0.0git
NaryReassociate.cpp
Go to the documentation of this file.
1//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass reassociates n-ary add expressions and eliminates the redundancy
10// exposed by the reassociation.
11//
12// A motivating example:
13//
14// void foo(int a, int b) {
15// bar(a + b);
16// bar((a + 2) + b);
17// }
18//
19// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20// the above code to
21//
22// int t = a + b;
23// bar(t);
24// bar(t + 2);
25//
26// However, the Reassociate pass is unable to do that because it processes each
27// instruction individually and believes (a + 2) + b is the best form according
28// to its rank system.
29//
30// To address this limitation, NaryReassociate reassociates an expression in a
31// form that reuses existing instructions. As a result, NaryReassociate can
32// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33// (a + b) is computed before.
34//
35// NaryReassociate works as follows. For every instruction in the form of (a +
36// b) + c, it checks whether a + c or b + c is already computed by a dominating
37// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38// c) + a and removes the redundancy accordingly. To efficiently look up whether
39// an expression is computed before, we store each instruction seen and its SCEV
40// into an SCEV-to-instruction map.
41//
42// Although the algorithm pattern-matches only ternary additions, it
43// automatically handles many >3-ary expressions by walking through the function
44// in the depth-first order. For example, given
45//
46// (a + c) + d
47// ((a + b) + c) + d
48//
49// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50// ((a + c) + b) + d into ((a + c) + d) + b.
51//
52// Finally, the above dominator-based algorithm may need to be run multiple
53// iterations before emitting optimal code. One source of this need is that we
54// only split an operand when it is used only once. The above algorithm can
55// eliminate an instruction and decrease the usage count of its operands. As a
56// result, an instruction that previously had multiple uses may become a
57// single-use instruction and thus eligible for split consideration. For
58// example,
59//
60// ac = a + c
61// ab = a + b
62// abc = ab + c
63// ab2 = ab + b
64// ab2c = ab2 + c
65//
66// In the first iteration, we cannot reassociate abc to ac+b because ab is used
67// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68// result, ab2 becomes dead and ab will be used only once in the second
69// iteration.
70//
71// Limitations and TODO items:
72//
73// 1) We only considers n-ary adds and muls for now. This should be extended
74// and generalized.
75//
76//===----------------------------------------------------------------------===//
77
87#include "llvm/IR/BasicBlock.h"
88#include "llvm/IR/Constants.h"
89#include "llvm/IR/DataLayout.h"
91#include "llvm/IR/Dominators.h"
92#include "llvm/IR/Function.h"
94#include "llvm/IR/IRBuilder.h"
95#include "llvm/IR/InstrTypes.h"
96#include "llvm/IR/Instruction.h"
98#include "llvm/IR/Module.h"
99#include "llvm/IR/Operator.h"
100#include "llvm/IR/PatternMatch.h"
101#include "llvm/IR/Type.h"
102#include "llvm/IR/Value.h"
103#include "llvm/IR/ValueHandle.h"
105#include "llvm/Pass.h"
106#include "llvm/Support/Casting.h"
111#include <cassert>
112#include <cstdint>
113
114using namespace llvm;
115using namespace PatternMatch;
116
117#define DEBUG_TYPE "nary-reassociate"
118
119namespace {
120
121class NaryReassociateLegacyPass : public FunctionPass {
122public:
123 static char ID;
124
125 NaryReassociateLegacyPass() : FunctionPass(ID) {
127 }
128
129 bool doInitialization(Module &M) override {
130 return false;
131 }
132
133 bool runOnFunction(Function &F) override;
134
135 void getAnalysisUsage(AnalysisUsage &AU) const override {
144 AU.setPreservesCFG();
145 }
146
147private:
149};
150
151} // end anonymous namespace
152
153char NaryReassociateLegacyPass::ID = 0;
154
155INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
156 "Nary reassociation", false, false)
162INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
163 "Nary reassociation", false, false)
164
166 return new NaryReassociateLegacyPass();
167}
168
169bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
170 if (skipFunction(F))
171 return false;
172
173 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
174 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
175 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
176 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
177 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
178
179 return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
180}
181
184 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
185 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
186 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
187 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
188 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
189
190 if (!runImpl(F, AC, DT, SE, TLI, TTI))
191 return PreservedAnalyses::all();
192
196 return PA;
197}
198
201 TargetLibraryInfo *TLI_,
202 TargetTransformInfo *TTI_) {
203 AC = AC_;
204 DT = DT_;
205 SE = SE_;
206 TLI = TLI_;
207 TTI = TTI_;
208 DL = &F.getDataLayout();
209
210 bool Changed = false, ChangedInThisIteration;
211 do {
212 ChangedInThisIteration = doOneIteration(F);
213 Changed |= ChangedInThisIteration;
214 } while (ChangedInThisIteration);
215 return Changed;
216}
217
218bool NaryReassociatePass::doOneIteration(Function &F) {
219 bool Changed = false;
220 SeenExprs.clear();
221 // Process the basic blocks in a depth first traversal of the dominator
222 // tree. This order ensures that all bases of a candidate are in Candidates
223 // when we process it.
225 for (const auto Node : depth_first(DT)) {
226 BasicBlock *BB = Node->getBlock();
227 for (Instruction &OrigI : *BB) {
228 const SCEV *OrigSCEV = nullptr;
229 if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) {
230 Changed = true;
231 OrigI.replaceAllUsesWith(NewI);
232
233 // Add 'OrigI' to the list of dead instructions.
234 DeadInsts.push_back(WeakTrackingVH(&OrigI));
235 // Add the rewritten instruction to SeenExprs; the original
236 // instruction is deleted.
237 const SCEV *NewSCEV = SE->getSCEV(NewI);
238 SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
239
240 // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
241 // is equivalent to I. However, ScalarEvolution::getSCEV may
242 // weaken nsw causing NewSCEV not to equal OldSCEV. For example,
243 // suppose we reassociate
244 // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
245 // to
246 // NewI = &a[sext(i)] + sext(j).
247 //
248 // ScalarEvolution computes
249 // getSCEV(I) = a + 4 * sext(i + j)
250 // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
251 // which are different SCEVs.
252 //
253 // To alleviate this issue of ScalarEvolution not always capturing
254 // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
255 // map both SCEV before and after tryReassociate(I) to I.
256 //
257 // This improvement is exercised in @reassociate_gep_nsw in
258 // nary-gep.ll.
259 if (NewSCEV != OrigSCEV)
260 SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
261 } else if (OrigSCEV)
262 SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI));
263 }
264 }
265 // Delete all dead instructions from 'DeadInsts'.
266 // Please note ScalarEvolution is updated along the way.
268 DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
269
270 return Changed;
271}
272
273template <typename PredT>
275NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I,
276 const SCEV *&OrigSCEV) {
277 Value *LHS = nullptr;
278 Value *RHS = nullptr;
279
280 auto MinMaxMatcher =
281 MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>(
283 if (match(I, MinMaxMatcher)) {
284 OrigSCEV = SE->getSCEV(I);
285 if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
286 tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS)))
287 return NewMinMax;
288 if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
289 tryReassociateMinOrMax(I, MinMaxMatcher, RHS, LHS)))
290 return NewMinMax;
291 }
292 return nullptr;
293}
294
295Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
296 const SCEV *&OrigSCEV) {
297
298 if (!SE->isSCEVable(I->getType()))
299 return nullptr;
300
301 switch (I->getOpcode()) {
302 case Instruction::Add:
303 case Instruction::Mul:
304 OrigSCEV = SE->getSCEV(I);
305 return tryReassociateBinaryOp(cast<BinaryOperator>(I));
306 case Instruction::GetElementPtr:
307 OrigSCEV = SE->getSCEV(I);
308 return tryReassociateGEP(cast<GetElementPtrInst>(I));
309 default:
310 break;
311 }
312
313 // Try to match signed/unsigned Min/Max.
314 Instruction *ResI = nullptr;
315 // TODO: Currently min/max reassociation is restricted to integer types only
316 // due to use of SCEVExpander which my introduce incompatible forms of min/max
317 // for pointer types.
318 if (I->getType()->isIntegerTy())
319 if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) ||
320 (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) ||
321 (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) ||
322 (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV)))
323 return ResI;
324
325 return nullptr;
326}
327
329 const TargetTransformInfo *TTI) {
330 SmallVector<const Value *, 4> Indices(GEP->indices());
331 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
333}
334
335Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
336 // Not worth reassociating GEP if it is foldable.
337 if (isGEPFoldable(GEP, TTI))
338 return nullptr;
339
341 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
342 if (GTI.isSequential()) {
343 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
344 GTI.getIndexedType())) {
345 return NewGEP;
346 }
347 }
348 }
349 return nullptr;
350}
351
352bool NaryReassociatePass::requiresSignExtension(Value *Index,
353 GetElementPtrInst *GEP) {
354 unsigned IndexSizeInBits =
355 DL->getIndexSizeInBits(GEP->getType()->getPointerAddressSpace());
356 return cast<IntegerType>(Index->getType())->getBitWidth() < IndexSizeInBits;
357}
358
359GetElementPtrInst *
360NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
361 unsigned I, Type *IndexedType) {
362 SimplifyQuery SQ(*DL, DT, AC, GEP);
363 Value *IndexToSplit = GEP->getOperand(I + 1);
364 if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
365 IndexToSplit = SExt->getOperand(0);
366 } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
367 // zext can be treated as sext if the source is non-negative.
368 if (isKnownNonNegative(ZExt->getOperand(0), SQ))
369 IndexToSplit = ZExt->getOperand(0);
370 }
371
372 if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
373 // If the I-th index needs sext and the underlying add is not equipped with
374 // nsw, we cannot split the add because
375 // sext(LHS + RHS) != sext(LHS) + sext(RHS).
376 if (requiresSignExtension(IndexToSplit, GEP) &&
377 computeOverflowForSignedAdd(AO, SQ) != OverflowResult::NeverOverflows)
378 return nullptr;
379
380 Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
381 // IndexToSplit = LHS + RHS.
382 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
383 return NewGEP;
384 // Symmetrically, try IndexToSplit = RHS + LHS.
385 if (LHS != RHS) {
386 if (auto *NewGEP =
387 tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
388 return NewGEP;
389 }
390 }
391 return nullptr;
392}
393
394GetElementPtrInst *
395NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
396 unsigned I, Value *LHS,
397 Value *RHS, Type *IndexedType) {
398 // Look for GEP's closest dominator that has the same SCEV as GEP except that
399 // the I-th index is replaced with LHS.
401 for (Use &Index : GEP->indices())
402 IndexExprs.push_back(SE->getSCEV(Index));
403 // Replace the I-th index with LHS.
404 IndexExprs[I] = SE->getSCEV(LHS);
405 Type *GEPArgType = SE->getEffectiveSCEVType(GEP->getOperand(I)->getType());
406 Type *LHSType = SE->getEffectiveSCEVType(LHS->getType());
407 size_t LHSSize = DL->getTypeSizeInBits(LHSType).getFixedValue();
408 size_t GEPArgSize = DL->getTypeSizeInBits(GEPArgType).getFixedValue();
409 if (isKnownNonNegative(LHS, SimplifyQuery(*DL, DT, AC, GEP)) &&
410 LHSSize < GEPArgSize) {
411 // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
412 // zext if the source operand is proved non-negative. We should do that
413 // consistently so that CandidateExpr more likely appears before. See
414 // @reassociate_gep_assume for an example of this canonicalization.
415 IndexExprs[I] = SE->getZeroExtendExpr(IndexExprs[I], GEPArgType);
416 }
417 const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
418 IndexExprs);
419
420 Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
421 if (Candidate == nullptr)
422 return nullptr;
423
424 IRBuilder<> Builder(GEP);
425 // Candidate should have the same pointer type as GEP.
426 assert(Candidate->getType() == GEP->getType());
427
428 // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
429 uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
430 Type *ElementType = GEP->getResultElementType();
431 uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
432 // Another less rare case: because I is not necessarily the last index of the
433 // GEP, the size of the type at the I-th index (IndexedSize) is not
434 // necessarily divisible by ElementSize. For example,
435 //
436 // #pragma pack(1)
437 // struct S {
438 // int a[3];
439 // int64 b[8];
440 // };
441 // #pragma pack()
442 //
443 // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
444 //
445 // TODO: bail out on this case for now. We could emit uglygep.
446 if (IndexedSize % ElementSize != 0)
447 return nullptr;
448
449 // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
450 Type *PtrIdxTy = DL->getIndexType(GEP->getType());
451 if (RHS->getType() != PtrIdxTy)
452 RHS = Builder.CreateSExtOrTrunc(RHS, PtrIdxTy);
453 if (IndexedSize != ElementSize) {
454 RHS = Builder.CreateMul(
455 RHS, ConstantInt::get(PtrIdxTy, IndexedSize / ElementSize));
456 }
457 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
458 Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
459 NewGEP->setIsInBounds(GEP->isInBounds());
460 NewGEP->takeName(GEP);
461 return NewGEP;
462}
463
464Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
465 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
466 // There is no need to reassociate 0.
467 if (SE->getSCEV(I)->isZero())
468 return nullptr;
469 if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
470 return NewI;
471 if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
472 return NewI;
473 return nullptr;
474}
475
476Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
477 BinaryOperator *I) {
478 Value *A = nullptr, *B = nullptr;
479 // To be conservative, we reassociate I only when it is the only user of (A op
480 // B).
481 if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
482 // I = (A op B) op RHS
483 // = (A op RHS) op B or (B op RHS) op A
484 const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
485 const SCEV *RHSExpr = SE->getSCEV(RHS);
486 if (BExpr != RHSExpr) {
487 if (auto *NewI =
488 tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
489 return NewI;
490 }
491 if (AExpr != RHSExpr) {
492 if (auto *NewI =
493 tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
494 return NewI;
495 }
496 }
497 return nullptr;
498}
499
500Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
501 Value *RHS,
502 BinaryOperator *I) {
503 // Look for the closest dominator LHS of I that computes LHSExpr, and replace
504 // I with LHS op RHS.
505 auto *LHS = findClosestMatchingDominator(LHSExpr, I);
506 if (LHS == nullptr)
507 return nullptr;
508
509 Instruction *NewI = nullptr;
510 switch (I->getOpcode()) {
511 case Instruction::Add:
512 NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I->getIterator());
513 break;
514 case Instruction::Mul:
515 NewI = BinaryOperator::CreateMul(LHS, RHS, "", I->getIterator());
516 break;
517 default:
518 llvm_unreachable("Unexpected instruction.");
519 }
520 NewI->setDebugLoc(I->getDebugLoc());
521 NewI->takeName(I);
522 return NewI;
523}
524
525bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
526 Value *&Op1, Value *&Op2) {
527 switch (I->getOpcode()) {
528 case Instruction::Add:
529 return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
530 case Instruction::Mul:
531 return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
532 default:
533 llvm_unreachable("Unexpected instruction.");
534 }
535 return false;
536}
537
538const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
539 const SCEV *LHS,
540 const SCEV *RHS) {
541 switch (I->getOpcode()) {
542 case Instruction::Add:
543 return SE->getAddExpr(LHS, RHS);
544 case Instruction::Mul:
545 return SE->getMulExpr(LHS, RHS);
546 default:
547 llvm_unreachable("Unexpected instruction.");
548 }
549 return nullptr;
550}
551
553NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
554 Instruction *Dominatee) {
555 auto Pos = SeenExprs.find(CandidateExpr);
556 if (Pos == SeenExprs.end())
557 return nullptr;
558
559 auto &Candidates = Pos->second;
560 // Because we process the basic blocks in pre-order of the dominator tree, a
561 // candidate that doesn't dominate the current instruction won't dominate any
562 // future instruction either. Therefore, we pop it out of the stack. This
563 // optimization makes the algorithm O(n).
564 while (!Candidates.empty()) {
565 // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
566 // removed during rewriting.
567 if (Value *Candidate = Candidates.pop_back_val()) {
568 Instruction *CandidateInstruction = cast<Instruction>(Candidate);
569 if (!DT->dominates(CandidateInstruction, Dominatee))
570 continue;
571
572 // Make sure that the instruction is safe to reuse without introducing
573 // poison.
574 SmallVector<Instruction *> DropPoisonGeneratingInsts;
575 if (!SE->canReuseInstruction(CandidateExpr, CandidateInstruction,
576 DropPoisonGeneratingInsts))
577 continue;
578
579 for (Instruction *I : DropPoisonGeneratingInsts)
580 I->dropPoisonGeneratingAnnotations();
581
582 return CandidateInstruction;
583 }
584 }
585 return nullptr;
586}
587
588template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) {
589 if (std::is_same_v<smax_pred_ty, typename MaxMinT::PredType>)
590 return scSMaxExpr;
591 else if (std::is_same_v<umax_pred_ty, typename MaxMinT::PredType>)
592 return scUMaxExpr;
593 else if (std::is_same_v<smin_pred_ty, typename MaxMinT::PredType>)
594 return scSMinExpr;
595 else if (std::is_same_v<umin_pred_ty, typename MaxMinT::PredType>)
596 return scUMinExpr;
597
598 llvm_unreachable("Can't convert MinMax pattern to SCEV type");
599 return scUnknown;
600}
601
602// Parameters:
603// I - instruction matched by MaxMinMatch matcher
604// MaxMinMatch - min/max idiom matcher
605// LHS - first operand of I
606// RHS - second operand of I
607template <typename MaxMinT>
608Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I,
609 MaxMinT MaxMinMatch,
610 Value *LHS, Value *RHS) {
611 Value *A = nullptr, *B = nullptr;
612 MaxMinT m_MaxMin(m_Value(A), m_Value(B));
613
614 if (!match(LHS, m_MaxMin))
615 return nullptr;
616
617 if (LHS->hasNUsesOrMore(3) ||
618 // The optimization is profitable only if LHS can be removed in the end.
619 // In other words LHS should be used (directly or indirectly) by I only.
620 llvm::any_of(LHS->users(), [&](auto *U) {
621 return U != I && !(U->hasOneUser() && *U->users().begin() == I);
622 }))
623 return nullptr;
624
625 auto tryCombination = [&](Value *A, const SCEV *AExpr, Value *B,
626 const SCEV *BExpr, Value *C,
627 const SCEV *CExpr) -> Value * {
628 SmallVector<const SCEV *, 2> Ops1{BExpr, AExpr};
629 const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin);
630 const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1);
631
632 Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I);
633
634 if (!R1MinMax)
635 return nullptr;
636
637 LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax << "\n");
638
639 SmallVector<const SCEV *, 2> Ops2{SE->getUnknown(C),
640 SE->getUnknown(R1MinMax)};
641 const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2);
642
643 SCEVExpander Expander(*SE, *DL, "nary-reassociate");
644 Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I);
645 NewMinMax->setName(Twine(I->getName()).concat(".nary"));
646
647 LLVM_DEBUG(dbgs() << "NARY: Deleting: " << *I << "\n"
648 << "NARY: Inserting: " << *NewMinMax << "\n");
649 return NewMinMax;
650 };
651
652 const SCEV *AExpr = SE->getSCEV(A);
653 const SCEV *BExpr = SE->getSCEV(B);
654 const SCEV *RHSExpr = SE->getSCEV(RHS);
655
656 if (BExpr != RHSExpr) {
657 // Try (A op RHS) op B
658 if (auto *NewMinMax = tryCombination(A, AExpr, RHS, RHSExpr, B, BExpr))
659 return NewMinMax;
660 }
661
662 if (AExpr != RHSExpr) {
663 // Try (RHS op B) op A
664 if (auto *NewMinMax = tryCombination(RHS, RHSExpr, B, BExpr, A, AExpr))
665 return NewMinMax;
666 }
667
668 return nullptr;
669}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static bool runOnFunction(Function &F, bool PostInlining)
static bool runImpl(Function &F, const TargetLowering &TLI, AssumptionCache *AC)
Definition ExpandFp.cpp:992
Hexagon Common GEP
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
static SCEVTypes convertToSCEVype(MaxMinT &MM)
static bool isGEPFoldable(GetElementPtrInst *GEP, const TargetTransformInfo *TTI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition Pass.cpp:270
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:322
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_, ScalarEvolution *SE_, TargetLibraryInfo *TLI_, TargetTransformInfo *TTI_)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
This class represents an analyzed expression in the program.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
@ TCC_Free
Expected to fold away in lowering.
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition Value.cpp:158
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
Value handle that is nullable, but tries to track the Value.
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
ElementType
The element type of an SRV or UAV resource.
Definition DXILABI.h:60
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
LLVM_ABI FunctionPass * createNaryReassociatePass()
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
generic_gep_type_iterator<> gep_type_iterator
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
TargetTransformInfo TTI
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI void initializeNaryReassociateLegacyPassPass(PassRegistry &)
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(SmallVectorImpl< WeakTrackingVH > &DeadInsts, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow instructions that are not...
Definition Local.cpp:548
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
gep_type_iterator gep_type_begin(const User *GEP)
iterator_range< df_iterator< T > > depth_first(const T &G)
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.