38#define DEBUG_TYPE "instcombine"
52 if (!V->hasOneUse())
return nullptr;
54 bool MadeChange =
false;
58 Value *
A =
nullptr, *
B =
nullptr, *One =
nullptr;
68 if (
I &&
I->isLogicalShift() &&
81 if (
I->getOpcode() == Instruction::LShr && !
I->isExact()) {
86 if (
I->getOpcode() == Instruction::Shl && !
I->hasNoUnsignedWrap()) {
87 I->setHasNoUnsignedWrap();
96 return MadeChange ? V :
nullptr;
112 bool HasAnyNoWrap =
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap();
113 Value *Neg = Builder.CreateNeg(OtherOp,
"", HasAnyNoWrap);
114 return Builder.CreateSelect(
Cond, OtherOp, Neg);
120 bool HasAnyNoWrap =
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap();
121 Value *Neg = Builder.CreateNeg(OtherOp,
"", HasAnyNoWrap);
122 return Builder.CreateSelect(
Cond, Neg, OtherOp);
130 return Builder.CreateSelectFMF(
Cond, OtherOp,
131 Builder.CreateFNegFMF(OtherOp, &
I), &
I);
138 return Builder.CreateSelectFMF(
Cond, Builder.CreateFNegFMF(OtherOp, &
I),
152 const bool HasNSW =
Mul.hasNoSignedWrap();
153 const bool HasNUW =
Mul.hasNoUnsignedWrap();
159 return Builder.CreateShl(
X, Z,
Mul.getName(), HasNUW, PropagateNSW);
172 FrX = Builder.CreateFreeze(
X,
X->getName() +
".fr");
173 Value *Shl = Builder.CreateShl(FrX, Z,
"mulshl", HasNUW, PropagateNSW);
174 return Builder.CreateAdd(Shl, FrX,
Mul.getName(), HasNUW, PropagateNSW);
185 FrX = Builder.CreateFreeze(
X,
X->getName() +
".fr");
186 Value *Shl = Builder.CreateShl(FrX, Z,
"mulshl");
187 return Builder.CreateSub(Shl, FrX,
Mul.getName());
194 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
197 SQ.getWithInstruction(&
I)))
212 Type *Ty =
I.getType();
213 const unsigned BitWidth = Ty->getScalarSizeInBits();
214 const bool HasNSW =
I.hasNoSignedWrap();
215 const bool HasNUW =
I.hasNoUnsignedWrap();
234 assert(Shl &&
"Constant folding of immediate constants failed");
237 if (HasNUW &&
Mul->hasNoUnsignedWrap())
253 if (
match(NewCst,
m_APInt(V)) && *V != V->getBitWidth() - 1)
270 (*MulAP - 1).isPowerOf2() && *ShiftC == MulAP->
logBase2()) {
276 BinOp =
Builder.CreateLShr(NewOp, ConstantInt::get(Ty, *ShiftC),
"",
279 auto *NewAdd = BinaryOperator::CreateAdd(NewOp, BinOp);
280 if (HasNSW && (HasNUW || OpBO->
getOpcode() == Instruction::LShr ||
282 NewAdd->setHasNoSignedWrap(
true);
284 NewAdd->setHasNoUnsignedWrap(HasNUW);
298 HasNSW && Op1C->isNotMinSignedValue()));
307 const APInt *NegPow2C;
311 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
313 if (ShiftAmt >=
BitWidth - SrcWidth) {
316 return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
342 (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
344 auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
345 if (HasNUW && Op0NUW) {
348 NewMulBO->setHasNoUnsignedWrap();
349 BO->setHasNoUnsignedWrap();
358 return BinaryOperator::CreateMul(
X,
X);
363 if (
I.hasNoSignedWrap() &&
368 I,
Builder.CreateBinaryIntrinsic(Intrinsic::abs,
381 auto *NewMul = BinaryOperator::CreateMul(
X,
Y);
384 NewMul->setHasNoSignedWrap();
397 return BinaryOperator::CreateMul(NegOp0,
X);
405 auto UDivCheck = [&C1](
const APInt &
C) {
return C.urem(*C1).isZero(); };
406 auto SDivCheck = [&C1](
const APInt &
C) {
427 if (!Div || (Div->
getOpcode() != Instruction::UDiv &&
428 Div->
getOpcode() != Instruction::SDiv)) {
432 Value *Neg = dyn_castNegVal(
Y);
435 (Div->
getOpcode() == Instruction::UDiv ||
436 Div->
getOpcode() == Instruction::SDiv)) {
446 auto RemOpc = Div->
getOpcode() == Instruction::UDiv ? Instruction::URem
451 XFreeze =
Builder.CreateFreeze(
X,
X->getName() +
".fr");
452 Value *Rem =
Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
454 return BinaryOperator::CreateSub(XFreeze, Rem);
455 return BinaryOperator::CreateSub(Rem, XFreeze);
464 if (Ty->isIntOrIntVectorTy(1) ||
467 return BinaryOperator::CreateAnd(Op0, Op1);
479 X->getType()->isIntOrIntVectorTy(1) &&
X->getType() ==
Y->getType() &&
480 (Op0->
hasOneUse() || Op1->hasOneUse() ||
X ==
Y)) {
489 X->getType()->isIntOrIntVectorTy(1) &&
X->getType() ==
Y->getType() &&
490 (Op0->
hasOneUse() || Op1->hasOneUse())) {
498 return createSelectInstWithUnknownProfile(
X, Op1,
501 return createSelectInstWithUnknownProfile(
X, Op0,
507 X->getType()->isIntOrIntVectorTy(1))
508 return createSelectInstWithUnknownProfile(
509 X,
Builder.CreateNeg(
Y,
"",
I.hasNoSignedWrap()),
517 return createSelectInstWithUnknownProfile(
X, NegC,
524 *
C ==
C->getBitWidth() - 1) {
527 return createSelectInstWithUnknownProfile(IsNeg, NegC,
537 *
C ==
C->getBitWidth() - 1) {
539 return createSelectInstWithUnknownProfile(IsNeg,
Y,
546 return createSelectInstWithUnknownProfile(Tr,
Y,
587 if (!HasNSW && willNotOverflowSignedMul(Op0, Op1,
I)) {
589 I.setHasNoSignedWrap(
true);
592 if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1,
I,
I.hasNoSignedWrap())) {
594 I.setHasNoUnsignedWrap(
true);
602 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
603 "Expected fmul or fdiv");
605 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
621 (Op0->
hasOneUse() || Op1->hasOneUse())) {
622 Value *XY = Builder.CreateBinOpFMF(Opcode,
X,
Y, &
I);
624 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY, &
I,
I.getName());
637 Intrinsic::powi, {
X->getType(), YZ->
getType()}, {
X, YZ}, &
I);
643 unsigned Opcode =
I.getOpcode();
644 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
645 "Unexpected opcode");
652 Constant *One = ConstantInt::get(
Y->getType(), 1);
653 if (willNotOverflowSignedAdd(
Y, One,
I)) {
660 Value *Op0 =
I.getOperand(0);
661 Value *Op1 =
I.getOperand(1);
662 if (Opcode == Instruction::FMul &&
I.isOnlyUserOfAnyOperand() &&
667 Y->getType() == Z->getType()) {
672 if (Opcode == Instruction::FDiv &&
I.hasAllowReassoc() &&
I.hasNoNaNs()) {
679 willNotOverflowSignedSub(
Y, ConstantInt::get(
Y->getType(), 1),
I)) {
681 Instruction *NewPow = createPowiExpr(
I, *
this, Op1,
Y, NegOne);
692 willNotOverflowSignedSub(
Y, ConstantInt::get(
Y->getType(), 1),
I)) {
694 auto *NewPow = createPowiExpr(
I, *
this,
X,
Y, NegOne);
726 return !R1.
empty() && !
R2.empty();
760 if (!
X->hasAllowReassoc() || !
X->hasAllowReciprocal() || !
X->hasNoInfs())
767 if (BBx != BBr1 && BBx != BBr2)
776 return (
I->getParent() != BBr1 || !
I->hasAllowReassoc());
786 return (
I->getParent() == BBr2 &&
I->hasAllowReassoc());
791 Value *Op0 =
I.getOperand(0);
792 Value *Op1 =
I.getOperand(1);
856 auto *NewFMul =
Builder.CreateFMulFMF(
X, Z, FMF);
867 Value *Sqrt =
Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &
I);
877 if (
I.hasNoSignedZeros() &&
881 if (
I.hasNoSignedZeros() &&
888 if (
I.hasNoNaNs() &&
I.hasNoSignedZeros() && Op0 == Op1 && Op0->
hasNUses(2)) {
907 Value *Y1 =
Builder.CreateFAddFMF(
Y, ConstantFP::get(
I.getType(), 1.0), &
I);
908 Value *Pow =
Builder.CreateBinaryIntrinsic(Intrinsic::pow,
X, Y1, &
I);
915 if (
I.isOnlyUserOfAnyOperand()) {
919 auto *YZ =
Builder.CreateFAddFMF(
Y, Z, &
I);
920 auto *NewPow =
Builder.CreateBinaryIntrinsic(Intrinsic::pow,
X, YZ, &
I);
926 auto *XZ =
Builder.CreateFMulFMF(
X, Z, &
I);
927 auto *NewPow =
Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ,
Y, &
I);
935 Value *Exp =
Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &
I);
943 Value *Exp2 =
Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &
I);
969 I.getFastMathFlags(),
970 SQ.getWithInstruction(&
I)))
995 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1007 Op0 =
Builder.CreateFNegFMF(Op0, &
I);
1009 {
I.getType()}, {Op1, Op0}, &
I);
1020 if (
I.hasNoNaNs() &&
I.hasNoSignedZeros()) {
1025 X->getType()->isIntOrIntVectorTy(1)) {
1026 auto *
SI = createSelectInstWithUnknownProfile(
1027 X, Op1, ConstantFP::get(
I.getType(), 0.0));
1028 SI->copyFastMathFlags(
I.getFastMathFlags());
1032 X->getType()->isIntOrIntVectorTy(1)) {
1033 auto *
SI = createSelectInstWithUnknownProfile(
1034 X, Op0, ConstantFP::get(
I.getType(), 0.0));
1035 SI->copyFastMathFlags(
I.getFastMathFlags());
1044 if (
I.hasAllowReassoc())
1072 Value *Start =
nullptr, *Step =
nullptr;
1086 if (!Result->hasNoNaNs())
1087 Result->setHasNoInfs(
false);
1092 if (
I.hasAllowContract() &&
1096 auto *Sin =
Builder.CreateUnaryIntrinsic(Intrinsic::sin,
X, &
I);
1097 if (
auto *
Metadata =
I.getMetadata(LLVMContext::MD_fpmath)) {
1098 Sin->setMetadata(LLVMContext::MD_fpmath,
Metadata);
1135 Value *SelectCond =
SI->getCondition();
1142 while (BBI != BBFront) {
1150 for (
Use &
Op : BBI->operands()) {
1154 }
else if (
Op == SelectCond) {
1164 if (&*BBI == SelectCond)
1165 SelectCond =
nullptr;
1168 if (!SelectCond && !
SI)
1179 Product = IsSigned ? C1.
smul_ov(C2, Overflow) : C1.
umul_ov(C2, Overflow);
1206 assert((
I.getOpcode() == Instruction::SDiv ||
1207 I.getOpcode() == Instruction::UDiv) &&
1208 "Expected integer divide");
1210 bool IsSigned =
I.getOpcode() == Instruction::SDiv;
1211 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1212 Type *Ty =
I.getType();
1223 bool HasNUW =
Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
1224 bool HasNSW =
Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
1227 if (!IsSigned && HasNUW)
1228 return Builder.CreateLShr(
Y, Z,
"",
I.isExact());
1231 if (IsSigned && HasNSW && (Op0->
hasOneUse() || Op1->hasOneUse())) {
1232 Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
1233 return Builder.CreateSDiv(
Y, Shl,
"",
I.isExact());
1248 ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
1249 (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
1250 Shl1->hasNoSignedWrap())))
1251 return Builder.CreateUDiv(
X,
Y,
"",
I.isExact());
1255 if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
1256 Shl1->hasNoUnsignedWrap())
1257 return Builder.CreateSDiv(
X,
Y,
"",
I.isExact());
1267 if (IsSigned ? (Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap())
1268 : (Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap())) {
1269 Constant *One = ConstantInt::get(
X->getType(), 1);
1272 Value *Dividend = Builder.CreateShl(
1273 One,
Y,
"shl.dividend",
1276 IsSigned ? (Shl0->hasNoUnsignedWrap() || Shl1->hasNoUnsignedWrap())
1277 : Shl0->hasNoSignedWrap());
1278 return Builder.CreateLShr(Dividend, Z,
"",
I.isExact());
1287 assert(
I.isIntDivRem() &&
"Unexpected instruction");
1288 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1293 Type *Ty =
I.getType();
1296 unsigned NumElts = VTy->getNumElements();
1297 for (
unsigned i = 0; i != NumElts; ++i) {
1337 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1338 bool IsSigned =
I.getOpcode() == Instruction::SDiv;
1339 Type *Ty =
I.getType();
1352 ConstantInt::get(Ty, Product));
1360 if (
isMultiple(*C2, *C1, Quotient, IsSigned)) {
1362 ConstantInt::get(Ty, Quotient));
1363 NewDiv->setIsExact(
I.isExact());
1368 if (
isMultiple(*C1, *C2, Quotient, IsSigned)) {
1370 ConstantInt::get(Ty, Quotient));
1372 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1373 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1386 if (
isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1388 ConstantInt::get(Ty, Quotient));
1389 BO->setIsExact(
I.isExact());
1394 if (
isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1396 ConstantInt::get(Ty, Quotient));
1398 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1399 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1412 return BinaryOperator::CreateNSWAdd(
X, ConstantInt::get(Ty, Quotient));
1417 return BinaryOperator::CreateNUWAdd(
X,
1418 ConstantInt::get(Ty, C1->
udiv(*C2)));
1427 assert(!Ty->isIntOrIntVectorTy(1) &&
"i1 divide not removed?");
1434 F1 =
Builder.CreateFreeze(Op1, Op1->getName() +
".fr");
1436 Value *Cmp =
Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
1437 return createSelectInstWithUnknownProfile(Cmp, F1,
1438 ConstantInt::get(Ty, 0));
1460 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1),
Y);
1462 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1),
Y);
1468 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1477 if (!IsSigned && Op1->hasOneUse() &&
1482 Builder.CreateShl(ConstantInt::get(Ty, 1), Z,
"",
true),
Y);
1498 if (!IsSigned &&
Mul->hasNoUnsignedWrap())
1499 NewDiv = BinaryOperator::CreateUDiv(
X,
Y);
1500 else if (IsSigned &&
Mul->hasNoSignedWrap())
1501 NewDiv = BinaryOperator::CreateSDiv(
X,
Y);
1505 NewDiv->
setIsExact(
I.isExact() && InnerDiv->isExact());
1519 const APInt *C1, *C2;
1520 if (IsSigned && OB0HasNSW) {
1522 return BinaryOperator::CreateSDiv(
A,
B);
1524 if (!IsSigned && OB0HasNUW) {
1526 return BinaryOperator::CreateUDiv(
A,
B);
1528 return BinaryOperator::CreateUDiv(
A,
B);
1534 if (
auto *Val = CreateDivOrNull(
Y, Z))
1538 if (
auto *Val = CreateDivOrNull(
X, Z))
1549 return reinterpret_cast<Value *
>(-1);
1557 return IfFold([&]() {
1573 return IfFold([&]() {
return Builder.CreateZExt(LogX,
Op->getType()); });
1579 if (AssumeNonZero || TI->hasNoUnsignedWrap())
1581 return IfFold([&]() {
1582 return Builder.CreateTrunc(LogX,
Op->getType(),
"",
1583 TI->hasNoUnsignedWrap());
1592 if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1594 return IfFold([&]() {
return Builder.CreateAdd(LogX,
Y); });
1601 if (AssumeNonZero || PEO->isExact())
1603 return IfFold([&]() {
return Builder.CreateSub(LogX,
Y); });
1610 return IfFold([&]() {
return LogX; });
1612 return IfFold([&]() {
return LogY; });
1621 return IfFold([&]() {
1622 return Builder.CreateSelect(
SI->getOperand(0), LogX, LogY);
1635 return IfFold([&]() {
1636 return Builder.CreateBinaryIntrinsic(
MinMax->getIntrinsicID(), LogX,
1651 Type *Ty =
I.getType();
1654 X->getType() ==
Y->getType() && (
N->hasOneUse() ||
D->hasOneUse())) {
1691 SQ.getWithInstruction(&
I)))
1701 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1703 const APInt *C1, *C2;
1711 X, ConstantInt::get(
X->getType(), C2ShlC1));
1720 Type *Ty =
I.getType();
1746 auto GetShiftableDenom = [&](
Value *Denom) ->
Value * {
1756 return Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Denom,
1762 if (
auto *Res = GetShiftableDenom(Op1))
1764 I,
Builder.CreateLShr(Op0, Res,
I.getName(),
I.isExact()));
1771 SQ.getWithInstruction(&
I)))
1781 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1782 Type *Ty =
I.getType();
1798 return BinaryOperator::CreateExactAShr(Op0,
C);
1804 return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1810 Value *Ashr =
Builder.CreateAShr(Op0,
C,
I.getName() +
".neg",
true);
1831 Value *NarrowOp =
Builder.CreateSDiv(Op0Src, NarrowDivisor);
1839 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1850 Builder.CreateSDiv(
X,
Y,
I.getName(),
I.isExact()));
1858 return createSelectInstWithUnknownProfile(
Cond, ConstantInt::get(Ty, 1),
1873 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1,
I.getName());
1874 BO->setIsExact(
I.isExact());
1883 Value *Shr =
Builder.CreateLShr(Op0, CNegLog2,
I.getName(),
I.isExact());
1892 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1,
I.getName());
1893 BO->setIsExact(
I.isExact());
1902 return createSelectInstWithUnknownProfile(
Cond, ConstantInt::get(Ty, 1),
1923 if (
I.hasNoNaNs() &&
1928 Intrinsic::copysign, {
C->getType()},
1937 if (!(
C->hasExactInverseFP() || (
I.hasAllowReciprocal() &&
C->isNormalFP())))
1945 Instruction::FDiv, ConstantFP::get(
I.getType(), 1.0),
C,
DL);
1946 if (!RecipC || !RecipC->isNormalFP())
1966 if (!
I.hasAllowReassoc() || !
I.hasAllowReciprocal())
1991 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1993 if (!
II || !
II->hasOneUse() || !
I.hasAllowReassoc() ||
1994 !
I.hasAllowReciprocal())
2004 case Intrinsic::pow:
2005 Args.push_back(
II->getArgOperand(0));
2006 Args.push_back(Builder.CreateFNegFMF(
II->getArgOperand(1), &
I));
2008 case Intrinsic::powi: {
2016 Args.push_back(
II->getArgOperand(0));
2017 Args.push_back(Builder.CreateNeg(
II->getArgOperand(1)));
2018 Type *Tys[] = {
I.getType(),
II->getArgOperand(1)->getType()};
2019 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &
I);
2022 case Intrinsic::exp:
2023 case Intrinsic::exp2:
2024 Args.push_back(Builder.CreateFNegFMF(
II->getArgOperand(0), &
I));
2029 Value *Pow = Builder.CreateIntrinsic(IID,
I.getType(), Args, &
I);
2038 if (!
I.hasAllowReassoc() || !
I.hasAllowReciprocal())
2040 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2042 if (!
II ||
II->getIntrinsicID() != Intrinsic::sqrt || !
II->hasOneUse() ||
2043 !
II->hasAllowReassoc() || !
II->hasAllowReciprocal())
2052 if (!DivOp->hasAllowReassoc() || !
I.hasAllowReciprocal() ||
2053 !DivOp->hasOneUse())
2055 Value *SwapDiv = Builder.CreateFDivFMF(Z,
Y, DivOp);
2057 Builder.CreateUnaryIntrinsic(
II->getIntrinsicID(), SwapDiv,
II);
2080 B.SetInsertPoint(
X);
2086 B.CreateFDiv(ConstantFP::get(
X->getType(), 1.0), SqrtOp));
2087 auto *R1FPMathMDNode = (*R1.
begin())->getMetadata(LLVMContext::MD_fpmath);
2091 R1FPMathMDNode,
I->getMetadata(LLVMContext::MD_fpmath));
2092 R1FMF &=
I->getFastMathFlags();
2096 FDiv->setMetadata(LLVMContext::MD_fpmath, R1FPMathMDNode);
2097 FDiv->copyFastMathFlags(R1FMF);
2104 auto *R2FPMathMDNode = (*
R2.begin())->getMetadata(LLVMContext::MD_fpmath);
2108 R2FPMathMDNode,
I->getMetadata(LLVMContext::MD_fpmath));
2109 R2FMF &=
I->getFastMathFlags();
2113 FSqrt->setMetadata(LLVMContext::MD_fpmath, R2FPMathMDNode);
2114 FSqrt->copyFastMathFlags(R2FMF);
2123 FMul->copyMetadata(*
X);
2133 I.getFastMathFlags(),
2134 SQ.getWithInstruction(&
I)))
2152 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2181 if (
I.hasAllowReassoc() &&
I.hasAllowReciprocal()) {
2205 if (
I.hasAllowReassoc() && Op0->
hasOneUse() && Op1->hasOneUse()) {
2215 if ((IsTan || IsCot) &&
hasFloatFn(M, &
TLI,
I.getType(), LibFunc_tan,
2216 LibFunc_tanf, LibFunc_tanl)) {
2219 B.setFastMathFlags(
I.getFastMathFlags());
2220 AttributeList Attrs =
2223 LibFunc_tanl,
B, Attrs);
2225 Res =
B.CreateFDiv(ConstantFP::get(
I.getType(), 1.0), Res);
2234 if (
I.hasNoNaNs() &&
I.hasAllowReassoc() &&
2243 if (
I.hasNoNaNs() &&
I.hasNoInfs() &&
2247 Intrinsic::copysign, ConstantFP::get(
I.getType(), 1.0),
X, &
I);
2258 if (
I.hasAllowReassoc() &&
2262 Builder.CreateFAddFMF(
Y, ConstantFP::get(
I.getType(), -1.0), &
I);
2263 Value *Pow =
Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &
I);
2281 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1), *
X =
nullptr;
2283 bool ShiftByX =
false;
2287 bool &PreserveNSW) ->
bool {
2288 const APInt *Tmp =
nullptr;
2307 const APInt *Tmp =
nullptr;
2319 bool Op0PreserveNSW =
true, Op1PreserveNSW =
true;
2320 if (MatchShiftOrMulXC(Op0,
X,
Y, Op0PreserveNSW) &&
2321 MatchShiftOrMulXC(Op1,
X, Z, Op1PreserveNSW)) {
2323 }
else if (MatchShiftCX(Op0,
Y,
X) && MatchShiftCX(Op1, Z,
X)) {
2329 bool IsSRem =
I.getOpcode() == Instruction::SRem;
2336 bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
2338 APInt RemYZ = IsSRem ?
Y.srem(Z) :
Y.urem(Z);
2342 if (RemYZ.
isZero() && BO0NoWrap)
2348 auto CreateMulOrShift =
2350 Value *RemSimplification =
2351 ConstantInt::get(
I.getType(), RemSimplificationC);
2352 return ShiftByX ? BinaryOperator::CreateShl(RemSimplification,
X)
2353 : BinaryOperator::CreateMul(
X, RemSimplification);
2359 bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
2363 if (RemYZ ==
Y && BO1NoWrap) {
2374 if (
Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
2392 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2400 const APInt *Op1Int;
2402 (
I.getOpcode() == Instruction::URem ||
2426 SQ.getWithInstruction(&
I)))
2439 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2440 Type *Ty =
I.getType();
2446 return BinaryOperator::CreateAnd(Op0,
Add);
2451 Value *Cmp =
Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
2463 return createSelectInstWithUnknownProfile(Cmp, F0,
Sub);
2472 Value *FrozenOp0 = Op0;
2474 FrozenOp0 =
Builder.CreateFreeze(Op0, Op0->
getName() +
".frozen");
2477 return createSelectInstWithUnknownProfile(
2486 Value *FrozenOp0 = Op0;
2488 FrozenOp0 =
Builder.CreateFreeze(Op0, Op0->
getName() +
".frozen");
2490 return createSelectInstWithUnknownProfile(
2500 SQ.getWithInstruction(&
I)))
2510 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2528 return BinaryOperator::CreateURem(Op0, Op1,
I.getName());
2536 bool hasNegative =
false;
2537 bool hasMissing =
false;
2538 for (
unsigned i = 0; i != VWidth; ++i) {
2539 Constant *Elt =
C->getAggregateElement(i);
2546 if (RHS->isNegative())
2550 if (hasNegative && !hasMissing) {
2552 for (
unsigned i = 0; i != VWidth; ++i) {
2553 Elts[i] =
C->getAggregateElement(i);
2555 if (RHS->isNegative())
2571 I.getFastMathFlags(),
2572 SQ.getWithInstruction(&
I)))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides internal interfaces used to implement the InstCombine.
static Instruction * convertFSqrtDivIntoFMul(CallInst *CI, Instruction *X, const SmallPtrSetImpl< Instruction * > &R1, const SmallPtrSetImpl< Instruction * > &R2, InstCombiner::BuilderTy &B, InstCombinerImpl *IC)
static Instruction * simplifyIRemMulShl(BinaryOperator &I, InstCombinerImpl &IC)
static Instruction * narrowUDivURem(BinaryOperator &I, InstCombinerImpl &IC)
If we have zero-extended operands of an unsigned div or rem, we may be able to narrow the operation (...
static Value * simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, Instruction &CxtI)
The specific integer value is used in a context where it is known to be non-zero.
static bool getFSqrtDivOptPattern(Instruction *Div, SmallPtrSetImpl< Instruction * > &R1, SmallPtrSetImpl< Instruction * > &R2)
static Value * foldMulSelectToNegate(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool isFSqrtDivToFMulLegal(Instruction *X, SmallPtrSetImpl< Instruction * > &R1, SmallPtrSetImpl< Instruction * > &R2)
static Instruction * foldFDivPowDivisor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Negate the exponent of pow/exp to fold division-by-pow() into multiply.
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, bool IsSigned)
True if the multiply can not be expressed in an int this size.
static Value * foldMulShl1(BinaryOperator &Mul, bool CommuteOperands, InstCombiner::BuilderTy &Builder)
Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, bool IsSigned)
True if C1 is a multiple of C2. Quotient contains C1/C2.
static Instruction * foldFDivSqrtDivisor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Convert div to mul if we have an sqrt divisor iff sqrt's operand is a fdiv instruction.
static Instruction * foldFDivConstantDividend(BinaryOperator &I)
Remove negation and try to reassociate constant math.
static Value * foldIDivShl(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool hasNoUnsignedWrap(BinaryOperator &I)
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool isMinValue() const
Determine if this is the smallest unsigned value.
unsigned countr_zero() const
Count the number of trailing zero bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt ushl_ov(const APInt &Amt, bool &Overflow) const
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned logBase2() const
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * CreateExact(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Value * getArgOperand(unsigned i) const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
@ ICMP_ULT
unsigned less than
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isNormalFP() const
Return true if this is a normal (as opposed to denormal, infinity, nan, or zero) floating-point scala...
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value, or, for vectors, does not contain smallest...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
bool allowReassoc() const
Flag queries.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Instruction * visitMul(BinaryOperator &I)
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Instruction * visitUDiv(BinaryOperator &I)
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * visitURem(BinaryOperator &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder, Function &F, AAResults *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const DataLayout &DL, ReversePostOrderTraversal< BasicBlock * > &RPOT)
Value * takeLog2(Value *Op, unsigned Depth, bool AssumeNonZero, bool DoFold)
Take the exact integer log2 of the value.
Instruction * visitSRem(BinaryOperator &I)
Instruction * foldBinOpSelectBinOp(BinaryOperator &Op)
In some cases it is beneficial to fold a select into a binary operator.
Instruction * visitFDiv(BinaryOperator &I)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I)
Fold a divide or remainder with a select instruction divisor when one of the select operands is zero.
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * commonIDivRemTransforms(BinaryOperator &I)
Common integer divide/remainder transforms.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * commonIDivTransforms(BinaryOperator &I)
This function implements the transforms common to both integer division instructions (udiv and sdiv).
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * visitFRem(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * visitFMul(BinaryOperator &I)
Instruction * foldFMulReassoc(BinaryOperator &I)
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
Instruction * foldPowiReassoc(BinaryOperator &I)
Instruction * visitSDiv(BinaryOperator &I)
Instruction * commonIRemTransforms(BinaryOperator &I)
This function implements the transforms common to both integer remainder instructions (urem and srem)...
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasAllowReassoc() const LLVM_READONLY
Determine whether the allow-reassociation flag is set.
A wrapper class for inspecting calls to intrinsic functions.
static LLVM_ABI MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
A Module instance is used to store all the information related to an LLVM module.
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
This class represents zero extension of integer types.
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
CommutativeBinaryIntrinsic_match< IntrID, T0, T1 > m_c_Intrinsic(const T0 &Op0, const T1 &Op1)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
AllowReassoc_match< T > m_AllowReassoc(const T &SubPattern)
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
ap_match< APFloat > m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Value * emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the unary function named 'Name' (e.g.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
LLVM_ABI Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
LLVM_ABI bool hasFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded floating point function corresponding to Ty is available.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
LLVM_ABI Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.