LLVM  14.0.0git
InstCombineInternal.h
Go to the documentation of this file.
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
31 #include <cassert>
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 using namespace llvm::PatternMatch;
36 
37 // As a default, let's assume that we want to be aggressive,
38 // and attempt to traverse with no limits in attempt to sink negation.
39 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
40 
41 // Let's guesstimate that most often we will end up visiting/producing
42 // fairly small number of new instructions.
43 static constexpr unsigned NegatorMaxNodesSSO = 16;
44 
45 namespace llvm {
46 
47 class AAResults;
48 class APInt;
49 class AssumptionCache;
50 class BlockFrequencyInfo;
51 class DataLayout;
52 class DominatorTree;
53 class GEPOperator;
54 class GlobalVariable;
55 class LoopInfo;
56 class OptimizationRemarkEmitter;
57 class ProfileSummaryInfo;
58 class TargetLibraryInfo;
59 class User;
60 
62  : public InstCombiner,
63  public InstVisitor<InstCombinerImpl, Instruction *> {
64 public:
66  bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
70  const DataLayout &DL, LoopInfo *LI)
71  : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
72  BFI, PSI, DL, LI) {}
73 
74  virtual ~InstCombinerImpl() {}
75 
76  /// Run the combiner over the entire worklist until it is empty.
77  ///
78  /// \returns true if the IR is changed.
79  bool run();
80 
81  // Visitation implementation - Implement instruction combining for different
82  // instruction types. The semantics are as follows:
83  // Return Value:
84  // null - No change was made
85  // I - Change was made, I is still valid, I may be dead though
86  // otherwise - Change was made, replace I with returned instruction
87  //
88  Instruction *visitFNeg(UnaryOperator &I);
89  Instruction *visitAdd(BinaryOperator &I);
90  Instruction *visitFAdd(BinaryOperator &I);
91  Value *OptimizePointerDifference(
92  Value *LHS, Value *RHS, Type *Ty, bool isNUW);
93  Instruction *visitSub(BinaryOperator &I);
94  Instruction *visitFSub(BinaryOperator &I);
95  Instruction *visitMul(BinaryOperator &I);
96  Instruction *visitFMul(BinaryOperator &I);
97  Instruction *visitURem(BinaryOperator &I);
98  Instruction *visitSRem(BinaryOperator &I);
99  Instruction *visitFRem(BinaryOperator &I);
100  bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
101  Instruction *commonIRemTransforms(BinaryOperator &I);
102  Instruction *commonIDivTransforms(BinaryOperator &I);
103  Instruction *visitUDiv(BinaryOperator &I);
104  Instruction *visitSDiv(BinaryOperator &I);
105  Instruction *visitFDiv(BinaryOperator &I);
106  Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
107  Instruction *visitAnd(BinaryOperator &I);
108  Instruction *visitOr(BinaryOperator &I);
109  bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I);
110  Instruction *visitXor(BinaryOperator &I);
111  Instruction *visitShl(BinaryOperator &I);
112  Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
113  BinaryOperator *Sh0, const SimplifyQuery &SQ,
114  bool AnalyzeForSignBitExtraction = false);
115  Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
116  BinaryOperator &I);
117  Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
118  BinaryOperator &OldAShr);
119  Instruction *visitAShr(BinaryOperator &I);
120  Instruction *visitLShr(BinaryOperator &I);
121  Instruction *commonShiftTransforms(BinaryOperator &I);
122  Instruction *visitFCmpInst(FCmpInst &I);
123  CmpInst *canonicalizeICmpPredicate(CmpInst &I);
124  Instruction *visitICmpInst(ICmpInst &I);
125  Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
126  BinaryOperator &I);
127  Instruction *commonCastTransforms(CastInst &CI);
128  Instruction *commonPointerCastTransforms(CastInst &CI);
129  Instruction *visitTrunc(TruncInst &CI);
130  Instruction *visitZExt(ZExtInst &CI);
131  Instruction *visitSExt(SExtInst &CI);
132  Instruction *visitFPTrunc(FPTruncInst &CI);
133  Instruction *visitFPExt(CastInst &CI);
134  Instruction *visitFPToUI(FPToUIInst &FI);
135  Instruction *visitFPToSI(FPToSIInst &FI);
136  Instruction *visitUIToFP(CastInst &CI);
137  Instruction *visitSIToFP(CastInst &CI);
138  Instruction *visitPtrToInt(PtrToIntInst &CI);
139  Instruction *visitIntToPtr(IntToPtrInst &CI);
140  Instruction *visitBitCast(BitCastInst &CI);
141  Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
142  Instruction *foldItoFPtoI(CastInst &FI);
143  Instruction *visitSelectInst(SelectInst &SI);
144  Instruction *visitCallInst(CallInst &CI);
145  Instruction *visitInvokeInst(InvokeInst &II);
146  Instruction *visitCallBrInst(CallBrInst &CBI);
147 
148  Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
149  Instruction *visitPHINode(PHINode &PN);
150  Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
151  Instruction *visitAllocaInst(AllocaInst &AI);
152  Instruction *visitAllocSite(Instruction &FI);
153  Instruction *visitFree(CallInst &FI);
154  Instruction *visitLoadInst(LoadInst &LI);
155  Instruction *visitStoreInst(StoreInst &SI);
156  Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
157  Instruction *visitUnconditionalBranchInst(BranchInst &BI);
158  Instruction *visitBranchInst(BranchInst &BI);
159  Instruction *visitFenceInst(FenceInst &FI);
160  Instruction *visitSwitchInst(SwitchInst &SI);
161  Instruction *visitReturnInst(ReturnInst &RI);
162  Instruction *visitUnreachableInst(UnreachableInst &I);
163  Instruction *
164  foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
165  Instruction *visitInsertValueInst(InsertValueInst &IV);
166  Instruction *visitInsertElementInst(InsertElementInst &IE);
167  Instruction *visitExtractElementInst(ExtractElementInst &EI);
168  Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
169  Instruction *visitExtractValueInst(ExtractValueInst &EV);
170  Instruction *visitLandingPadInst(LandingPadInst &LI);
171  Instruction *visitVAEndInst(VAEndInst &I);
172  Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
173  bool freezeDominatedUses(FreezeInst &FI);
174  Instruction *visitFreeze(FreezeInst &I);
175 
176  /// Specify what to return for unhandled instructions.
177  Instruction *visitInstruction(Instruction &I) { return nullptr; }
178 
179  /// True when DB dominates all uses of DI except UI.
180  /// UI must be in the same block as DI.
181  /// The routine checks that the DI parent and DB are different.
182  bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
183  const BasicBlock *DB) const;
184 
185  /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
186  bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
187  const unsigned SIOpd);
188 
189  LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
190  const Twine &Suffix = "");
191 
192 private:
193  void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
194  bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
195  bool shouldChangeType(Type *From, Type *To) const;
196  Value *dyn_castNegVal(Value *V) const;
197  Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
198  SmallVectorImpl<Value *> &NewIndices);
199 
200  /// Classify whether a cast is worth optimizing.
201  ///
202  /// This is a helper to decide whether the simplification of
203  /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
204  ///
205  /// \param CI The cast we are interested in.
206  ///
207  /// \return true if this cast actually results in any code being generated and
208  /// if it cannot already be eliminated by some other transformation.
209  bool shouldOptimizeCast(CastInst *CI);
210 
211  /// Try to optimize a sequence of instructions checking if an operation
212  /// on LHS and RHS overflows.
213  ///
214  /// If this overflow check is done via one of the overflow check intrinsics,
215  /// then CtxI has to be the call instruction calling that intrinsic. If this
216  /// overflow check is done by arithmetic followed by a compare, then CtxI has
217  /// to be the arithmetic instruction.
218  ///
219  /// If a simplification is possible, stores the simplified result of the
220  /// operation in OperationResult and result of the overflow check in
221  /// OverflowResult, and return true. If no simplification is possible,
222  /// returns false.
223  bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
224  Value *LHS, Value *RHS,
225  Instruction &CtxI, Value *&OperationResult,
227 
228  Instruction *visitCallBase(CallBase &Call);
229  Instruction *tryOptimizeCall(CallInst *CI);
230  bool transformConstExprCastCall(CallBase &Call);
231  Instruction *transformCallThroughTrampoline(CallBase &Call,
232  IntrinsicInst &Tramp);
233 
234  Value *simplifyMaskedLoad(IntrinsicInst &II);
235  Instruction *simplifyMaskedStore(IntrinsicInst &II);
236  Instruction *simplifyMaskedGather(IntrinsicInst &II);
237  Instruction *simplifyMaskedScatter(IntrinsicInst &II);
238 
239  /// Transform (zext icmp) to bitwise / integer operations in order to
240  /// eliminate it.
241  ///
242  /// \param ICI The icmp of the (zext icmp) pair we are interested in.
243  /// \parem CI The zext of the (zext icmp) pair we are interested in.
244  /// \param DoTransform Pass false to just test whether the given (zext icmp)
245  /// would be transformed. Pass true to actually perform the transformation.
246  ///
247  /// \return null if the transformation cannot be performed. If the
248  /// transformation can be performed the new instruction that replaces the
249  /// (zext icmp) pair will be returned (if \p DoTransform is false the
250  /// unmodified \p ICI will be returned in this case).
251  Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
252  bool DoTransform = true);
253 
254  Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
255 
256  bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
257  const Instruction &CxtI) const {
258  return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
260  }
261 
262  bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
263  const Instruction &CxtI) const {
264  return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
266  }
267 
268  bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
269  const Instruction &CxtI, bool IsSigned) const {
270  return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
271  : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
272  }
273 
274  bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
275  const Instruction &CxtI) const {
276  return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
278  }
279 
280  bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
281  const Instruction &CxtI) const {
282  return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
284  }
285 
286  bool willNotOverflowSub(const Value *LHS, const Value *RHS,
287  const Instruction &CxtI, bool IsSigned) const {
288  return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
289  : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
290  }
291 
292  bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
293  const Instruction &CxtI) const {
294  return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
296  }
297 
298  bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
299  const Instruction &CxtI) const {
300  return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
302  }
303 
304  bool willNotOverflowMul(const Value *LHS, const Value *RHS,
305  const Instruction &CxtI, bool IsSigned) const {
306  return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
307  : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
308  }
309 
310  bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
311  const Value *RHS, const Instruction &CxtI,
312  bool IsSigned) const {
313  switch (Opcode) {
314  case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
315  case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
316  case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
317  default: llvm_unreachable("Unexpected opcode for overflow query");
318  }
319  }
320 
321  Value *EmitGEPOffset(User *GEP);
322  Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
323  Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
324  Instruction *narrowBinOp(TruncInst &Trunc);
325  Instruction *narrowMaskedBinOp(BinaryOperator &And);
326  Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
327  Instruction *narrowFunnelShift(TruncInst &Trunc);
328  Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
329  Instruction *matchSAddSubSat(SelectInst &MinMax1);
330 
331  void freelyInvertAllUsersOf(Value *V);
332 
333  /// Determine if a pair of casts can be replaced by a single cast.
334  ///
335  /// \param CI1 The first of a pair of casts.
336  /// \param CI2 The second of a pair of casts.
337  ///
338  /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
339  /// Instruction::CastOps value for a cast that can replace the pair, casting
340  /// CI1->getSrcTy() to CI2->getDstTy().
341  ///
342  /// \see CastInst::isEliminableCastPair
343  Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
344  const CastInst *CI2);
345  Value *simplifyIntToPtrRoundTripCast(Value *Val);
346 
347  Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &And);
348  Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Or);
349  Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
350 
351  /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
352  /// NOTE: Unlike most of instcombine, this returns a Value which should
353  /// already be inserted into the function.
354  Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
355 
356  Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
357  Instruction *CxtI, bool IsAnd,
358  bool IsLogical = false);
359  Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
360  Value *getSelectCondition(Value *A, Value *B);
361 
362  Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
363  Instruction *foldFPSignBitOps(BinaryOperator &I);
364 
365  // Optimize one of these forms:
366  // and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
367  // or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
368  // into simplier select instruction using isImpliedCondition.
369  Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
370  bool IsAnd);
371 
372 public:
373  /// Inserts an instruction \p New before instruction \p Old
374  ///
375  /// Also adds the new instruction to the worklist and returns \p New so that
376  /// it is suitable for use as the return from the visitation patterns.
378  assert(New && !New->getParent() &&
379  "New instruction already inserted into a basic block!");
380  BasicBlock *BB = Old.getParent();
381  BB->getInstList().insert(Old.getIterator(), New); // Insert inst
382  Worklist.add(New);
383  return New;
384  }
385 
386  /// Same as InsertNewInstBefore, but also sets the debug loc.
388  New->setDebugLoc(Old.getDebugLoc());
389  return InsertNewInstBefore(New, Old);
390  }
391 
392  /// A combiner-aware RAUW-like routine.
393  ///
394  /// This method is to be used when an instruction is found to be dead,
395  /// replaceable with another preexisting expression. Here we add all uses of
396  /// I to the worklist, replace all uses of I with the new value, then return
397  /// I, so that the inst combiner will know that I was modified.
399  // If there are no uses to replace, then we return nullptr to indicate that
400  // no changes were made to the program.
401  if (I.use_empty()) return nullptr;
402 
403  Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
404 
405  // If we are replacing the instruction with itself, this must be in a
406  // segment of unreachable code, so just clobber the instruction.
407  if (&I == V)
408  V = UndefValue::get(I.getType());
409 
410  LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
411  << " with " << *V << '\n');
412 
413  I.replaceAllUsesWith(V);
414  MadeIRChange = true;
415  return &I;
416  }
417 
418  /// Replace operand of instruction and add old operand to the worklist.
419  Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
420  Worklist.addValue(I.getOperand(OpNum));
421  I.setOperand(OpNum, V);
422  return &I;
423  }
424 
425  /// Replace use and add the previously used value to the worklist.
426  void replaceUse(Use &U, Value *NewValue) {
427  Worklist.addValue(U);
428  U = NewValue;
429  }
430 
431  /// Create and insert the idiom we use to indicate a block is unreachable
432  /// without having to rewrite the CFG from within InstCombine.
434  auto &Ctx = InsertAt->getContext();
437  InsertAt);
438  }
439 
440 
441  /// Combiner aware instruction erasure.
442  ///
443  /// When dealing with an instruction that has side effects or produces a void
444  /// value, we can't rely on DCE to delete the instruction. Instead, visit
445  /// methods should return the value returned by this function.
447  LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
448  assert(I.use_empty() && "Cannot erase instruction that is used!");
450 
451  // Make sure that we reprocess all operands now that we reduced their
452  // use counts.
453  for (Use &Operand : I.operands())
454  if (auto *Inst = dyn_cast<Instruction>(Operand))
455  Worklist.add(Inst);
456 
457  Worklist.remove(&I);
458  I.eraseFromParent();
459  MadeIRChange = true;
460  return nullptr; // Don't do anything with FI
461  }
462 
463  void computeKnownBits(const Value *V, KnownBits &Known,
464  unsigned Depth, const Instruction *CxtI) const {
465  llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
466  }
467 
468  KnownBits computeKnownBits(const Value *V, unsigned Depth,
469  const Instruction *CxtI) const {
470  return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
471  }
472 
473  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
474  unsigned Depth = 0,
475  const Instruction *CxtI = nullptr) {
476  return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
477  }
478 
479  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
480  const Instruction *CxtI = nullptr) const {
481  return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
482  }
483 
484  unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
485  const Instruction *CxtI = nullptr) const {
486  return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
487  }
488 
490  const Value *RHS,
491  const Instruction *CxtI) const {
492  return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
493  }
494 
496  const Value *RHS,
497  const Instruction *CxtI) const {
498  return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
499  }
500 
502  const Value *RHS,
503  const Instruction *CxtI) const {
504  return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
505  }
506 
508  const Value *RHS,
509  const Instruction *CxtI) const {
510  return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
511  }
512 
514  const Value *RHS,
515  const Instruction *CxtI) const {
516  return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
517  }
518 
520  const Instruction *CxtI) const {
521  return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
522  }
523 
524  OverflowResult computeOverflow(
525  Instruction::BinaryOps BinaryOp, bool IsSigned,
526  Value *LHS, Value *RHS, Instruction *CxtI) const;
527 
528  /// Performs a few simplifications for operators which are associative
529  /// or commutative.
530  bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
531 
532  /// Tries to simplify binary operations which some other binary
533  /// operation distributes over.
534  ///
535  /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
536  /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
537  /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
538  /// value, or null if it didn't simplify.
539  Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
540 
541  /// Tries to simplify add operations using the definition of remainder.
542  ///
543  /// The definition of remainder is X % C = X - (X / C ) * C. The add
544  /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
545  /// X % (C0 * C1)
546  Value *SimplifyAddWithRemainder(BinaryOperator &I);
547 
548  // Binary Op helper for select operations where the expression can be
549  // efficiently reorganized.
550  Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
551  Value *RHS);
552 
553  /// This tries to simplify binary operations by factorizing out common terms
554  /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
555  Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
556  Value *, Value *, Value *);
557 
558  /// Match a select chain which produces one of three values based on whether
559  /// the LHS is less than, equal to, or greater than RHS respectively.
560  /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
561  /// Equal and Greater values are saved in the matching process and returned to
562  /// the caller.
563  bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
565  ConstantInt *&Greater);
566 
567  /// Attempts to replace V with a simpler value based on the demanded
568  /// bits.
569  Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
570  unsigned Depth, Instruction *CxtI);
571  bool SimplifyDemandedBits(Instruction *I, unsigned Op,
572  const APInt &DemandedMask, KnownBits &Known,
573  unsigned Depth = 0) override;
574 
575  /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
576  /// bits. It also tries to handle simplifications that can be done based on
577  /// DemandedMask, but without modifying the Instruction.
578  Value *SimplifyMultipleUseDemandedBits(Instruction *I,
579  const APInt &DemandedMask,
580  KnownBits &Known,
581  unsigned Depth, Instruction *CxtI);
582 
583  /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
584  /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
585  Value *simplifyShrShlDemandedBits(
586  Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
587  const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
588 
589  /// Tries to simplify operands to an integer instruction based on its
590  /// demanded bits.
591  bool SimplifyDemandedInstructionBits(Instruction &Inst);
592 
593  virtual Value *
594  SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
595  unsigned Depth = 0,
596  bool AllowMultipleUsers = false) override;
597 
598  /// Canonicalize the position of binops relative to shufflevector.
599  Instruction *foldVectorBinop(BinaryOperator &Inst);
600  Instruction *foldVectorSelect(SelectInst &Sel);
601 
602  /// Given a binary operator, cast instruction, or select which has a PHI node
603  /// as operand #0, see if we can fold the instruction into the PHI (which is
604  /// only possible if all operands to the PHI are constants).
605  Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
606 
607  /// Given an instruction with a select as one operand and a constant as the
608  /// other operand, try to fold the binary operator into the select arguments.
609  /// This also works for Cast instructions, which obviously do not have a
610  /// second operand.
611  Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
612 
613  /// This is a convenience wrapper function for the above two functions.
614  Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
615 
616  Instruction *foldAddWithConstant(BinaryOperator &Add);
617 
618  /// Try to rotate an operation below a PHI node, using PHI nodes for
619  /// its operands.
620  Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
621  Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
622  Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
623  Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
624  Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
625  Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
626  Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
627  Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
628 
629  /// If an integer typed PHI has only one use which is an IntToPtr operation,
630  /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
631  /// insert a new pointer typed PHI and replace the original one.
632  Instruction *foldIntegerTypedPHI(PHINode &PN);
633 
634  /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
635  /// folded operation.
636  void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
637 
638  Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
640  Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
641  const Value *Other);
642  Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
643  GlobalVariable *GV, CmpInst &ICI,
644  ConstantInt *AndCst = nullptr);
645  Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
646  Constant *RHSC);
647  Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
648  ICmpInst::Predicate Pred);
649  Instruction *foldICmpWithCastOp(ICmpInst &ICI);
650 
651  Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
653  Instruction *foldICmpWithConstant(ICmpInst &Cmp);
654  Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
655  Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
656  Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
657  Instruction *foldICmpEquality(ICmpInst &Cmp);
658  Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
659  Instruction *foldSignBitTest(ICmpInst &I);
660  Instruction *foldICmpWithZero(ICmpInst &Cmp);
661 
662  Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
663 
664  Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
665  ConstantInt *C);
666  Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
667  const APInt &C);
668  Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
669  const APInt &C);
670  Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
671  const APInt &C);
672  Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
673  const APInt &C);
674  Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
675  const APInt &C);
676  Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
677  const APInt &C);
678  Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
679  const APInt &C);
680  Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
681  const APInt &C);
682  Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
683  const APInt &C);
684  Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
685  const APInt &C);
686  Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
687  const APInt &C);
688  Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
689  const APInt &C);
690  Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
691  const APInt &C1);
692  Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
693  const APInt &C1, const APInt &C2);
694  Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
695  const APInt &C2);
696  Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
697  const APInt &C2);
698 
699  Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
700  BinaryOperator *BO,
701  const APInt &C);
702  Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
703  const APInt &C);
704  Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
705  const APInt &C);
706  Instruction *foldICmpBitCast(ICmpInst &Cmp);
707 
708  // Helpers of visitSelectInst().
709  Instruction *foldSelectExtConst(SelectInst &Sel);
710  Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
711  Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
712  Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
713  Value *A, Value *B, Instruction &Outer,
714  SelectPatternFlavor SPF2, Value *C);
715  Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
716  Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
717 
718  Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
719  bool isSigned, bool Inside);
720  Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
721  bool mergeStoreIntoSuccessor(StoreInst &SI);
722 
723  /// Given an initial instruction, check to see if it is the root of a
724  /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
725  /// intrinsic.
726  Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
727  bool MatchBitReversals);
728 
729  Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
730  Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
731 
732  Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
733 
734  /// Returns a value X such that Val = X * Scale, or null if none.
735  ///
736  /// If the multiplication is known not to overflow then NoSignedWrap is set.
737  Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
738 };
739 
740 class Negator final {
741  /// Top-to-bottom, def-to-use negated instruction tree we produced.
743 
746 
747  const DataLayout &DL;
748  AssumptionCache &AC;
749  const DominatorTree &DT;
750 
751  const bool IsTrulyNegation;
752 
753  SmallDenseMap<Value *, Value *> NegationsCache;
754 
756  const DominatorTree &DT, bool IsTrulyNegation);
757 
758 #if LLVM_ENABLE_STATS
759  unsigned NumValuesVisitedInThisNegator = 0;
760  ~Negator();
761 #endif
762 
763  using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
764  Value * /*NegatedRoot*/>;
765 
766  std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
767 
768  LLVM_NODISCARD Value *visitImpl(Value *V, unsigned Depth);
769 
770  LLVM_NODISCARD Value *negate(Value *V, unsigned Depth);
771 
772  /// Recurse depth-first and attempt to sink the negation.
773  /// FIXME: use worklist?
775 
776  Negator(const Negator &) = delete;
777  Negator(Negator &&) = delete;
778  Negator &operator=(const Negator &) = delete;
779  Negator &operator=(Negator &&) = delete;
780 
781 public:
782  /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
783  /// otherwise returns negated value.
784  LLVM_NODISCARD static Value *Negate(bool LHSIsZero, Value *Root,
785  InstCombinerImpl &IC);
786 };
787 
788 } // end namespace llvm
789 
790 #undef DEBUG_TYPE
791 
792 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
llvm::InstCombinerImpl::isKnownToBeAPowerOfTwo
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, unsigned Depth=0, const Instruction *CxtI=nullptr)
Definition: InstCombineInternal.h:473
MI
IRTranslator LLVM IR MI
Definition: IRTranslator.cpp:102
llvm::object::Equal
@ Equal
Definition: COFFModuleDefinition.cpp:38
llvm
---------------------— PointerInfo ------------------------------------—
Definition: AllocatorList.h:23
llvm::OverflowResult::NeverOverflows
@ NeverOverflows
Never overflows.
llvm::ReturnInst
Return a value (possibly void), from a function.
Definition: Instructions.h:2980
llvm::MaskedValueIsZero
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if 'V & Mask' is known to be zero.
Definition: ValueTracking.cpp:361
llvm::DataLayout
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:112
InstCombiner.h
llvm::CmpInst::Predicate
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:720
llvm::computeOverflowForUnsignedMul
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
Definition: ValueTracking.cpp:4701
llvm::SimplifyQuery
Definition: InstructionSimplify.h:94
llvm::ExtractElementInst
This instruction extracts a single (scalar) element from a VectorType value.
Definition: Instructions.h:1875
TargetFolder.h
llvm::BitCastInst
This class represents a no-op cast from one type to another.
Definition: Instructions.h:5194
C1
instcombine should handle this C2 when C1
Definition: README.txt:263
llvm::SmallVector
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1168
llvm::InstCombinerImpl::InsertNewInstBefore
Instruction * InsertNewInstBefore(Instruction *New, Instruction &Old)
Inserts an instruction New before instruction Old.
Definition: InstCombineInternal.h:377
Statistic.h
llvm::LandingPadInst
The landingpad instruction holds all of the information necessary to generate correct exception handl...
Definition: Instructions.h:2879
llvm::MipsISD::Lo
@ Lo
Definition: MipsISelLowering.h:79
llvm::TargetTransformInfo
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Definition: TargetTransformInfo.h:168
llvm::IRBuilder< TargetFolder, IRBuilderCallbackInserter >
llvm::GlobalVariable
Definition: GlobalVariable.h:40
llvm::SmallDenseMap
Definition: DenseMap.h:880
llvm::computeOverflowForUnsignedAdd
OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
Definition: ValueTracking.cpp:4757
ValueTracking.h
Local.h
llvm::DominatorTree
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:151
llvm::InstCombinerImpl::~InstCombinerImpl
virtual ~InstCombinerImpl()
Definition: InstCombineInternal.h:74
llvm::Depth
@ Depth
Definition: SIMachineScheduler.h:34
llvm::Type
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
llvm::InstCombinerImpl::computeKnownBits
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Instruction *CxtI) const
Definition: InstCombineInternal.h:468
llvm::InstCombinerImpl::replaceInstUsesWith
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombineInternal.h:398
llvm::Optional
Definition: APInt.h:33
llvm::FenceInst
An instruction for ordering other memory operations.
Definition: Instructions.h:444
Offset
uint64_t Offset
Definition: ELFObjHandler.cpp:81
llvm::ComputeNumSignBits
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
Definition: ValueTracking.cpp:385
llvm::UnaryOperator
Definition: InstrTypes.h:102
llvm::SelectPatternFlavor
SelectPatternFlavor
Specific patterns of select instructions we can match.
Definition: ValueTracking.h:657
llvm::BitmaskEnumDetail::Mask
std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:80
llvm::EmitGEPOffset
Value * EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition: Local.h:29
llvm::SystemZII::IsLogical
@ IsLogical
Definition: SystemZInstrInfo.h:49
LLVM_DEBUG
#define LLVM_DEBUG(X)
Definition: Debug.h:122
KnownBits.h
llvm::BasicBlock
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
llvm::MipsISD::Hi
@ Hi
Definition: MipsISelLowering.h:75
llvm::dbgs
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
llvm::InstCombinerImpl::eraseInstFromFunction
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Definition: InstCombineInternal.h:446
llvm::ConstantInt
This is the shared class of boolean and integer constants.
Definition: Constants.h:79
llvm::computeOverflowForSignedSub
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT)
Definition: ValueTracking.cpp:4856
llvm::BlockFrequencyInfo
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Definition: BlockFrequencyInfo.h:37
llvm::AddrSpaceCastInst
This class represents a conversion between pointers from one address space to another.
Definition: Instructions.h:5234
llvm::computeOverflowForSignedAdd
OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Definition: ValueTracking.cpp:5257
llvm::AAResults
Definition: AliasAnalysis.h:456
C
(vector float) vec_cmpeq(*A, *B) C
Definition: README_ALTIVEC.txt:86
llvm::FCmpInst
This instruction compares its operands according to the predicate given to the constructor.
Definition: Instructions.h:1369
llvm::InsertElementInst
This instruction inserts a single (scalar) element into a VectorType value.
Definition: Instructions.h:1939
B
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
llvm::Instruction::CastOps
CastOps
Definition: Instruction.h:801
llvm::Instruction
Definition: Instruction.h:45
llvm::InstCombinerImpl::computeOverflowForUnsignedMul
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:489
llvm::UndefValue::get
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1784
llvm::InstCombinerImpl
Definition: InstCombineInternal.h:61
InstCombineWorklist.h
llvm::InstCombineWorklist
InstCombineWorklist - This is the worklist management logic for InstCombine.
Definition: InstCombineWorklist.h:27
PatternMatch.h
willNotOverflow
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI)
Definition: CorrelatedValuePropagation.cpp:391
llvm::Type::getInt1PtrTy
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:251
NegatorDefaultMaxDepth
static constexpr unsigned NegatorDefaultMaxDepth
Definition: InstCombineInternal.h:39
llvm::InstCombinerImpl::computeOverflowForSignedMul
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:495
X
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
llvm::InstCombinerImpl::InstCombinerImpl
InstCombinerImpl(InstCombineWorklist &Worklist, BuilderTy &Builder, bool MinimizeSize, AAResults *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
Definition: InstCombineInternal.h:65
llvm::AnyMemTransferInst
Definition: IntrinsicInst.h:1007
llvm::OverflowResult
OverflowResult
Definition: ValueTracking.h:487
llvm::ProfileSummaryInfo
Analysis providing profile information.
Definition: ProfileSummaryInfo.h:39
llvm::InvokeInst
Invoke instruction.
Definition: Instructions.h:3743
llvm::ARM_PROC::IE
@ IE
Definition: ARMBaseInfo.h:27
llvm::CmpInst
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:710
llvm::StoreInst
An instruction for storing to memory.
Definition: Instructions.h:304
llvm::Constant
This is an important base class in LLVM.
Definition: Constant.h:41
llvm::ICmpInst
This instruction compares its operands according to the predicate given to the constructor.
Definition: Instructions.h:1203
llvm::FPToSIInst
This class represents a cast from floating point to signed integer.
Definition: Instructions.h:5061
D
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
llvm::TruncInst
This class represents a truncation of integer types.
Definition: Instructions.h:4749
llvm::computeOverflowForUnsignedSub
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT)
Definition: ValueTracking.cpp:4833
llvm::CallBrInst
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
Definition: Instructions.h:3952
llvm::LLVMContext
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
I
#define I(x, y, z)
Definition: MD5.cpp:59
llvm::GetElementPtrInst
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:928
llvm::InstCombinerImpl::replaceUse
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
Definition: InstCombineInternal.h:426
llvm::PointerType
Class to represent pointers.
Definition: DerivedTypes.h:631
llvm::InstCombinerImpl::computeOverflowForSignedAdd
OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:507
llvm::computeKnownBits
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
Definition: ValueTracking.cpp:213
IRBuilder.h
assert
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SI
StandardInstrumentations SI(Debug, VerifyEach)
llvm::SelectInst
This class represents the LLVM 'select' instruction.
Definition: Instructions.h:1740
llvm::FPToUIInst
This class represents a cast from floating point to unsigned integer.
Definition: Instructions.h:5022
llvm::GEPOperator
Definition: Operator.h:458
Builder
assume Assume Builder
Definition: AssumeBundleBuilder.cpp:651
llvm::APInt
Class for arbitrary precision integers.
Definition: APInt.h:70
llvm::ZExtInst
This class represents zero extension of integer types.
Definition: Instructions.h:4788
NegatorMaxNodesSSO
static constexpr unsigned NegatorMaxNodesSSO
Definition: InstCombineInternal.h:43
llvm::InstCombinerImpl::visitInstruction
Instruction * visitInstruction(Instruction &I)
Specify what to return for unhandled instructions.
Definition: InstCombineInternal.h:177
llvm::Negator
Definition: InstCombineInternal.h:740
llvm::LoopInfo
Definition: LoopInfo.h:1083
llvm::VAEndInst
This represents the llvm.va_end intrinsic.
Definition: IntrinsicInst.h:1079
llvm::BinaryOperator
Definition: InstrTypes.h:189
llvm::OptimizationRemarkEmitter
The optimization diagnostic interface.
Definition: OptimizationRemarkEmitter.h:33
llvm::InstCombinerImpl::ComputeNumSignBits
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombineInternal.h:484
Cond
SmallVector< MachineOperand, 4 > Cond
Definition: BasicBlockSections.cpp:179
InstVisitor.h
llvm::AssumptionCache
A cache of @llvm.assume calls within a function.
Definition: AssumptionCache.h:41
llvm_unreachable
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:136
llvm::Value::getContext
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:979
llvm::ilist_node_impl::getIterator
self_iterator getIterator()
Definition: ilist_node.h:81
DL
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Definition: AArch64SLSHardening.cpp:76
llvm::PtrToIntInst
This class represents a cast from a pointer to an integer.
Definition: Instructions.h:5143
LLVM_LIBRARY_VISIBILITY
#define LLVM_LIBRARY_VISIBILITY
LLVM_LIBRARY_VISIBILITY - If a class marked with this attribute is linked into a shared library,...
Definition: Compiler.h:131
llvm::InstVisitor
Base class for instruction visitors.
Definition: InstVisitor.h:79
llvm::CastInst
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:430
llvm::AMDGPUISD::BFI
@ BFI
Definition: AMDGPUISelLowering.h:421
llvm::SExtInst
This class represents a sign extension of integer types.
Definition: Instructions.h:4827
llvm::LoadInst
An instruction for reading from memory.
Definition: Instructions.h:175
llvm::AtomicRMWInst
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:726
llvm::MCID::Select
@ Select
Definition: MCInstrDesc.h:162
llvm::Twine
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:83
llvm::ConstantInt::getTrue
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:847
llvm::KnownBits
Definition: KnownBits.h:23
llvm::InstCombinerImpl::InsertNewInstWith
Instruction * InsertNewInstWith(Instruction *New, Instruction &Old)
Same as InsertNewInstBefore, but also sets the debug loc.
Definition: InstCombineInternal.h:387
llvm::AnyMemSetInst
This class represents any memset intrinsic.
Definition: IntrinsicInst.h:988
llvm::InstCombinerImpl::computeOverflowForSignedSub
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:519
llvm::AMDGPU::SendMsg::Op
Op
Definition: SIDefines.h:314
llvm::ExtractValueInst
This instruction extracts a struct member or array element value from an aggregate value.
Definition: Instructions.h:2374
LLVM_NODISCARD
#define LLVM_NODISCARD
LLVM_NODISCARD - Warn if a type or return value is discarded.
Definition: Compiler.h:161
llvm::TargetStackID::Value
Value
Definition: TargetFrameLowering.h:27
llvm::InstCombinerImpl::CreateNonTerminatorUnreachable
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Definition: InstCombineInternal.h:433
llvm::salvageDebugInfo
void salvageDebugInfo(Instruction &I)
Assuming the instruction I is going to be deleted, attempt to salvage debug users of I by writing the...
Definition: Local.cpp:1728
llvm::TargetLibraryInfo
Provides information about what library functions are available for the current target.
Definition: TargetLibraryInfo.h:219
llvm::computeOverflowForSignedMul
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
Definition: ValueTracking.cpp:4715
llvm::MCID::Add
@ Add
Definition: MCInstrDesc.h:183
llvm::IntToPtrInst
This class represents a cast from an integer to a pointer.
Definition: Instructions.h:5100
llvm::InstCombiner
The core instruction combiner logic.
Definition: InstCombiner.h:45
llvm::IntrinsicInst
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:45
llvm::InstCombinerImpl::replaceOperand
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombineInternal.h:419
llvm::Instruction::BinaryOps
BinaryOps
Definition: Instruction.h:787
llvm::ShuffleVectorInst
This instruction constructs a fixed permutation of two input vectors.
Definition: Instructions.h:2011
llvm::Instruction::getDebugLoc
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:372
llvm::FreezeInst
This class represents a freeze function that returns random concrete value if an operand is either a ...
Definition: Instructions.h:5354
llvm::FPTruncInst
This class represents a truncation of floating point types.
Definition: Instructions.h:4866
llvm::Instruction::getParent
const BasicBlock * getParent() const
Definition: Instruction.h:94
InstructionSimplify.h
llvm::InstCombinerImpl::computeOverflowForUnsignedAdd
OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:501
llvm::InstCombinerImpl::computeOverflowForUnsignedSub
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:513
llvm::PHINode
Definition: Instructions.h:2627
llvm::PatternMatch
Definition: PatternMatch.h:47
llvm::SmallVectorImpl< Value * >
llvm::CallBase
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1161
llvm::CallInst
This class represents a function call, abstracting a target machine's calling convention.
Definition: Instructions.h:1475
BB
Common register allocation spilling lr str ldr sxth r3 ldr mla r4 can lr mov lr str ldr sxth r3 mla r4 and then merge mul and lr str ldr sxth r3 mla r4 It also increase the likelihood the store may become dead bb27 Successors according to LLVM BB
Definition: README.txt:39
GEP
Hexagon Common GEP
Definition: HexagonCommonGEP.cpp:172
llvm::UnreachableInst
This function has undefined behavior.
Definition: Instructions.h:4709
llvm::isKnownToBeAPowerOfTwo
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined.
Definition: ValueTracking.cpp:297
From
BlockVerifier::State From
Definition: BlockVerifier.cpp:55
llvm::SwitchInst
Multiway switch.
Definition: Instructions.h:3206
llvm::AllocaInst
an instruction to allocate memory on the stack
Definition: Instructions.h:62
llvm::BranchInst
Conditional or Unconditional Branch instruction.
Definition: Instructions.h:3062
llvm::CodeGenOpt::Less
@ Less
Definition: CodeGen.h:54
llvm::InsertValueInst
This instruction inserts a struct field of array element value into an aggregate value.
Definition: Instructions.h:2485
foldICmpWithDominatingICmp
static bool foldICmpWithDominatingICmp(CmpInst *Cmp, const TargetLowering &TLI)
For pattern like:
Definition: CodeGenPrepare.cpp:1652
Value.h
llvm::Value
LLVM Value Representation.
Definition: Value.h:75
Debug.h
llvm::InstCombinerImpl::MaskedValueIsZero
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombineInternal.h:479
llvm::InstCombinerImpl::computeKnownBits
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
Definition: InstCombineInternal.h:463
llvm::Use
A Use represents the edge between a Value definition and its users.
Definition: Use.h:44