110#define DEBUG_TYPE "instcombine"
118 "Number of instruction combining iterations performed");
119STATISTIC(NumOneIteration,
"Number of functions with one iteration");
120STATISTIC(NumTwoIterations,
"Number of functions with two iterations");
121STATISTIC(NumThreeIterations,
"Number of functions with three iterations");
123 "Number of functions with four or more iterations");
127STATISTIC(NumDeadInst ,
"Number of dead inst eliminated");
133 "Controls which instructions are visited");
140 "instcombine-max-sink-users",
cl::init(32),
141 cl::desc(
"Maximum number of undroppable users for instruction sinking"));
145 cl::desc(
"Maximum array size considered when doing a combine"));
161std::optional<Instruction *>
164 if (
II.getCalledFunction()->isTargetIntrinsic()) {
165 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*
this,
II);
172 bool &KnownBitsComputed) {
174 if (
II.getCalledFunction()->isTargetIntrinsic()) {
175 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
176 *
this,
II, DemandedMask, Known, KnownBitsComputed);
187 if (
II.getCalledFunction()->isTargetIntrinsic()) {
188 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
189 *
this,
II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
199 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
209 Builder.SetInsertPoint(Inst);
213 if (Inst && !
GEP->hasAllConstantIndices() &&
214 !
GEP->getSourceElementType()->isIntegerTy(8)) {
216 *Inst, Builder.CreateGEP(Builder.getInt8Ty(),
GEP->getPointerOperand(),
234 Value *Sum =
nullptr;
235 Value *OneUseSum =
nullptr;
236 Value *OneUseBase =
nullptr;
243 IRBuilderBase::InsertPointGuard Guard(
Builder);
245 if (RewriteGEPs && Inst)
249 if (
Offset->getType() != IdxTy)
252 if (
GEP->hasOneUse()) {
257 OneUseBase =
GEP->getPointerOperand();
266 if (RewriteGEPs && Inst &&
267 !(
GEP->getSourceElementType()->isIntegerTy(8) &&
272 OneUseBase ? OneUseBase :
GEP->getPointerOperand(),
Offset,
"",
279 OneUseSum = OneUseBase =
nullptr;
283 Sum =
Add(Sum, OneUseSum);
294bool InstCombinerImpl::isDesirableIntType(
unsigned BitWidth)
const {
313bool InstCombinerImpl::shouldChangeType(
unsigned FromWidth,
314 unsigned ToWidth)
const {
315 bool FromLegal = FromWidth == 1 ||
DL.isLegalInteger(FromWidth);
316 bool ToLegal = ToWidth == 1 ||
DL.isLegalInteger(ToWidth);
320 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
325 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
330 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
341bool InstCombinerImpl::shouldChangeType(
Type *From,
Type *To)
const {
349 return shouldChangeType(FromWidth, ToWidth);
359 if (!OBO || !OBO->hasNoSignedWrap())
362 const APInt *BVal, *CVal;
367 bool Overflow =
false;
368 switch (
I.getOpcode()) {
369 case Instruction::Add:
370 (void)BVal->
sadd_ov(*CVal, Overflow);
372 case Instruction::Sub:
373 (void)BVal->
ssub_ov(*CVal, Overflow);
375 case Instruction::Mul:
376 (void)BVal->
smul_ov(*CVal, Overflow);
387 return OBO && OBO->hasNoUnsignedWrap();
392 return OBO && OBO->hasNoSignedWrap();
401 I.clearSubclassOptionalData();
406 I.clearSubclassOptionalData();
407 I.setFastMathFlags(FMF);
417 if (!Cast || !Cast->hasOneUse())
421 auto CastOpcode = Cast->getOpcode();
422 if (CastOpcode != Instruction::ZExt)
431 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
457 Cast->dropPoisonGeneratingFlags();
463Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(
Value *Val) {
465 if (IntToPtr &&
DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
466 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
468 Type *CastTy = IntToPtr->getDestTy();
471 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
472 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
473 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
474 return PtrToInt->getOperand(0);
511 if (
I.isCommutative()) {
512 if (
auto Pair = matchSymmetricPair(
I.getOperand(0),
I.getOperand(1))) {
522 if (
I.isAssociative()) {
545 I.setHasNoUnsignedWrap(
true);
548 I.setHasNoSignedWrap(
true);
577 if (
I.isAssociative() &&
I.isCommutative()) {
654 I.setHasNoUnsignedWrap(
true);
672 if (LOp == Instruction::And)
673 return ROp == Instruction::Or || ROp == Instruction::Xor;
676 if (LOp == Instruction::Or)
677 return ROp == Instruction::And;
681 if (LOp == Instruction::Mul)
682 return ROp == Instruction::Add || ROp == Instruction::Sub;
719 assert(
Op &&
"Expected a binary operator");
720 LHS =
Op->getOperand(0);
721 RHS =
Op->getOperand(1);
722 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
727 Instruction::Shl, ConstantInt::get(
Op->getType(), 1),
C);
728 assert(
RHS &&
"Constant folding of immediate constants failed");
729 return Instruction::Mul;
734 if (OtherOp && OtherOp->
getOpcode() == Instruction::AShr &&
737 return Instruction::AShr;
740 return Op->getOpcode();
749 assert(
A &&
B &&
C &&
D &&
"All values must be provided");
752 Value *RetVal =
nullptr;
763 if (
A ==
C || (InnerCommutative &&
A ==
D)) {
772 if (!V && (
LHS->hasOneUse() ||
RHS->hasOneUse()))
773 V = Builder.CreateBinOp(TopLevelOpcode,
B,
D,
RHS->getName());
775 RetVal = Builder.CreateBinOp(InnerOpcode,
A, V);
783 if (
B ==
D || (InnerCommutative &&
B ==
C)) {
792 if (!V && (
LHS->hasOneUse() ||
RHS->hasOneUse()))
793 V = Builder.CreateBinOp(TopLevelOpcode,
A,
C,
LHS->getName());
795 RetVal = Builder.CreateBinOp(InnerOpcode, V,
B);
810 HasNSW =
I.hasNoSignedWrap();
811 HasNUW =
I.hasNoUnsignedWrap();
814 HasNSW &= LOBO->hasNoSignedWrap();
815 HasNUW &= LOBO->hasNoUnsignedWrap();
819 HasNSW &= ROBO->hasNoSignedWrap();
820 HasNUW &= ROBO->hasNoUnsignedWrap();
823 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
851 unsigned Opc =
I->getOpcode();
852 unsigned ConstIdx = 1;
859 case Instruction::Sub:
862 case Instruction::ICmp:
869 case Instruction::Or:
873 case Instruction::Add:
879 if (!
match(
I->getOperand(1 - ConstIdx),
889 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
895 if (!Cmp || !Cmp->isZeroValue())
900 bool Consumes =
false;
904 assert(NotOp !=
nullptr &&
905 "Desync between isFreeToInvert and getFreelyInverted");
907 Value *CtpopOfNotOp =
Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
914 case Instruction::Sub:
917 case Instruction::Or:
918 case Instruction::Add:
921 case Instruction::ICmp:
957 auto IsValidBinOpc = [](
unsigned Opc) {
961 case Instruction::And:
962 case Instruction::Or:
963 case Instruction::Xor:
964 case Instruction::Add:
973 auto IsCompletelyDistributable = [](
unsigned BinOpc1,
unsigned BinOpc2,
975 assert(ShOpc != Instruction::AShr);
976 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
977 ShOpc == Instruction::Shl;
980 auto GetInvShift = [](
unsigned ShOpc) {
981 assert(ShOpc != Instruction::AShr);
982 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
985 auto CanDistributeBinops = [&](
unsigned BinOpc1,
unsigned BinOpc2,
989 if (BinOpc1 == Instruction::And)
994 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
1000 if (BinOpc2 == Instruction::And)
1011 auto MatchBinOp = [&](
unsigned ShOpnum) ->
Instruction * {
1013 Value *
X, *
Y, *ShiftedX, *Mask, *Shift;
1014 if (!
match(
I.getOperand(ShOpnum),
1017 if (!
match(
I.getOperand(1 - ShOpnum),
1030 unsigned ShOpc = IY->getOpcode();
1031 if (ShOpc != IX->getOpcode())
1039 unsigned BinOpc = BO2->getOpcode();
1041 if (!IsValidBinOpc(
I.getOpcode()) || !IsValidBinOpc(BinOpc))
1044 if (ShOpc == Instruction::AShr) {
1058 if (BinOpc ==
I.getOpcode() &&
1059 IsCompletelyDistributable(
I.getOpcode(), BinOpc, ShOpc)) {
1074 if (!CanDistributeBinops(
I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1081 Value *NewBinOp1 =
Builder.CreateBinOp(
I.getOpcode(),
Y, NewBinOp2);
1088 return MatchBinOp(1);
1105 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1106 Value *
A, *CondVal, *TrueVal, *FalseVal;
1109 auto MatchSelectAndCast = [&](
Value *CastOp,
Value *SelectOp) {
1111 A->getType()->getScalarSizeInBits() == 1 &&
1118 if (MatchSelectAndCast(LHS, RHS))
1120 else if (MatchSelectAndCast(RHS, LHS))
1125 auto NewFoldedConst = [&](
bool IsTrueArm,
Value *V) {
1126 bool IsCastOpRHS = (CastOp == RHS);
1132 }
else if (IsZExt) {
1133 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1139 return IsCastOpRHS ?
Builder.CreateBinOp(
Opc, V,
C)
1146 Value *NewTrueVal = NewFoldedConst(
false, TrueVal);
1148 NewFoldedConst(
true, FalseVal));
1152 Value *NewTrueVal = NewFoldedConst(
true, TrueVal);
1154 NewFoldedConst(
false, FalseVal));
1161 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1175 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1204 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1221 auto SQDistributive =
SQ.getWithInstruction(&
I).getWithoutUndef();
1229 C =
Builder.CreateBinOp(InnerOpcode, L, R);
1238 C =
Builder.CreateBinOp(TopLevelOpcode,
B,
C);
1247 C =
Builder.CreateBinOp(TopLevelOpcode,
A,
C);
1260 auto SQDistributive =
SQ.getWithInstruction(&
I).getWithoutUndef();
1268 A =
Builder.CreateBinOp(InnerOpcode, L, R);
1277 A =
Builder.CreateBinOp(TopLevelOpcode,
A,
C);
1286 A =
Builder.CreateBinOp(TopLevelOpcode,
A,
B);
1295static std::optional<std::pair<Value *, Value *>>
1297 if (
LHS->getParent() !=
RHS->getParent())
1298 return std::nullopt;
1300 if (
LHS->getNumIncomingValues() < 2)
1301 return std::nullopt;
1304 return std::nullopt;
1306 Value *L0 =
LHS->getIncomingValue(0);
1307 Value *R0 =
RHS->getIncomingValue(0);
1309 for (
unsigned I = 1,
E =
LHS->getNumIncomingValues();
I !=
E; ++
I) {
1313 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1316 return std::nullopt;
1319 return std::optional(std::pair(L0, R0));
1322std::optional<std::pair<Value *, Value *>>
1327 return std::nullopt;
1329 case Instruction::PHI:
1331 case Instruction::Select: {
1337 return std::pair(TrueVal, FalseVal);
1338 return std::nullopt;
1340 case Instruction::Call: {
1344 if (LHSMinMax && RHSMinMax &&
1351 return std::pair(LHSMinMax->
getLHS(), LHSMinMax->
getRHS());
1352 return std::nullopt;
1355 return std::nullopt;
1365 if (!LHSIsSelect && !RHSIsSelect)
1375 FMF = FPOp->getFastMathFlags();
1376 Builder.setFastMathFlags(FMF);
1382 Value *
Cond, *True =
nullptr, *False =
nullptr;
1390 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1404 if (LHSIsSelect && RHSIsSelect &&
A ==
D) {
1410 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1412 True =
Builder.CreateBinOp(Opcode,
B, E);
1413 else if (True && !False)
1414 False =
Builder.CreateBinOp(Opcode,
C,
F);
1416 }
else if (LHSIsSelect && LHS->hasOneUse()) {
1421 if (
Value *NewSel = foldAddNegate(
B,
C, RHS))
1423 }
else if (RHSIsSelect && RHS->hasOneUse()) {
1428 if (
Value *NewSel = foldAddNegate(E,
F, LHS))
1432 if (!True || !False)
1445 if (U == IgnoredUser)
1448 case Instruction::Select: {
1451 SI->swapProfMetadata();
1454 case Instruction::Br: {
1461 case Instruction::Xor:
1468 "canFreelyInvertAllUsersOf() ?");
1478 for (
unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
1480 if (DbgVal->getVariableLocationOp(Idx) ==
I)
1481 DbgVal->setExpression(
1488Value *InstCombinerImpl::dyn_castNegVal(
Value *V)
const {
1498 if (
C->getType()->getElementType()->isIntegerTy())
1502 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1518 if (CV->getType()->isVectorTy() &&
1519 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1532Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1533 BinaryOperator &BO,
bool OpsFromSigned, std::array<Value *, 2> IntOps,
1537 Type *IntTy = IntOps[0]->getType();
1542 unsigned MaxRepresentableBits =
1547 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1551 auto IsNonZero = [&](
unsigned OpNo) ->
bool {
1552 if (OpsKnown[OpNo].hasKnownBits() &&
1553 OpsKnown[OpNo].getKnownBits(
SQ).isNonZero())
1558 auto IsNonNeg = [&](
unsigned OpNo) ->
bool {
1562 return OpsKnown[OpNo].getKnownBits(
SQ).isNonNegative();
1566 auto IsValidPromotion = [&](
unsigned OpNo) ->
bool {
1577 if (MaxRepresentableBits < IntSz) {
1587 NumUsedLeadingBits[OpNo] =
1588 IntSz - OpsKnown[OpNo].getKnownBits(
SQ).countMinLeadingZeros();
1596 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1599 return !OpsFromSigned || BO.
getOpcode() != Instruction::FMul ||
1604 if (Op1FpC !=
nullptr) {
1606 if (OpsFromSigned && BO.
getOpcode() == Instruction::FMul &&
1611 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1613 if (Op1IntC ==
nullptr)
1616 : Instruction::UIToFP,
1617 Op1IntC, FPTy,
DL) != Op1FpC)
1621 IntOps[1] = Op1IntC;
1625 if (IntTy != IntOps[1]->
getType())
1628 if (Op1FpC ==
nullptr) {
1629 if (!IsValidPromotion(1))
1632 if (!IsValidPromotion(0))
1638 bool NeedsOverflowCheck =
true;
1641 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1642 unsigned OverflowMaxCurBits =
1643 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1644 bool OutputSigned = OpsFromSigned;
1646 case Instruction::FAdd:
1647 IntOpc = Instruction::Add;
1648 OverflowMaxOutputBits += OverflowMaxCurBits;
1650 case Instruction::FSub:
1651 IntOpc = Instruction::Sub;
1652 OverflowMaxOutputBits += OverflowMaxCurBits;
1654 case Instruction::FMul:
1655 IntOpc = Instruction::Mul;
1656 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1662 if (OverflowMaxOutputBits < IntSz) {
1663 NeedsOverflowCheck =
false;
1666 if (IntOpc == Instruction::Sub)
1667 OutputSigned =
true;
1673 if (NeedsOverflowCheck &&
1674 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1677 Value *IntBinOp =
Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1679 IntBO->setHasNoSignedWrap(OutputSigned);
1680 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1683 return new SIToFPInst(IntBinOp, FPTy);
1684 return new UIToFPInst(IntBinOp, FPTy);
1698 std::array<Value *, 2> IntOps = {
nullptr,
nullptr};
1718 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO,
false,
1719 IntOps, Op1FpC, OpsKnown))
1721 return foldFBinOpOfIntCastsFromSign(BO,
true, IntOps,
1737 !
X->getType()->isIntOrIntVectorTy(1))
1745 return createSelectInstWithUnknownProfile(
X, TVal, FVal);
1754 V = IsTrueArm ?
SI->getTrueValue() :
SI->getFalseValue();
1755 }
else if (
match(
SI->getCondition(),
1762 V = IsTrueArm ? ConstantInt::get(
Op->getType(), 1)
1783 bool FoldWithMultiUse,
1784 bool SimplifyBothArms) {
1786 if (!
SI->hasOneUse() && !FoldWithMultiUse)
1789 Value *TV =
SI->getTrueValue();
1790 Value *FV =
SI->getFalseValue();
1793 if (
SI->getType()->isIntOrIntVectorTy(1))
1799 for (
Value *IntrinOp :
Op.operands())
1801 for (
Value *PhiOp : PN->operands())
1813 if (CI->hasOneUse()) {
1814 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1815 if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
1816 !CI->isCommutative())
1825 if (!NewTV && !NewFV)
1828 if (SimplifyBothArms && !(NewTV && NewFV))
1848 Ops.push_back(InValue);
1888 assert(
Op.isAssociative() &&
"The operation must be associative!");
1894 !
Op.hasOneUse() || !
SI->hasOneUse())
1897 Value *TV =
SI->getTrueValue();
1898 Value *FV =
SI->getFalseValue();
1916 if (!NewTV || !NewFV)
1919 Value *NewSI =
Builder.CreateSelect(
SI->getCondition(), NewTV, NewFV);
1924 bool AllowMultipleUses) {
1926 if (NumPHIValues == 0)
1933 bool IdenticalUsers =
false;
1934 if (!AllowMultipleUses && !OneUse) {
1938 if (UI != &
I && !
I.isIdenticalTo(UI))
1942 IdenticalUsers =
true;
1972 bool SeenNonSimplifiedInVal =
false;
1973 for (
unsigned i = 0; i != NumPHIValues; ++i) {
1984 auto WillFold = [&]() {
1989 const APInt *Ignored;
2010 if (!OneUse && !IdenticalUsers)
2013 if (SeenNonSimplifiedInVal)
2015 SeenNonSimplifiedInVal =
true;
2039 for (
auto OpIndex : OpsToMoveUseToIncomingBB) {
2050 U = U->DoPHITranslation(PN->
getParent(), OpBB);
2053 Clones.
insert({OpBB, Clone});
2058 NewPhiValues[
OpIndex] = Clone;
2067 for (
unsigned i = 0; i != NumPHIValues; ++i)
2070 if (IdenticalUsers) {
2101 BO0->getOpcode() !=
Opc || BO1->getOpcode() !=
Opc ||
2102 !BO0->isAssociative() || !BO1->isAssociative() ||
2103 BO0->getParent() != BO1->getParent())
2107 "Expected commutative instructions!");
2111 Value *Start0, *Step0, *Start1, *Step1;
2118 "Expected PHIs with two incoming values!");
2125 if (!Init0 || !Init1 || !C0 || !C1)
2140 if (
Opc == Instruction::FAdd ||
Opc == Instruction::FMul) {
2144 NewBO->setFastMathFlags(Intersect);
2148 Flags.AllKnownNonZero =
false;
2149 Flags.mergeFlags(*BO0);
2150 Flags.mergeFlags(*BO1);
2151 Flags.mergeFlags(BO);
2152 Flags.applyFlags(*NewBO);
2154 NewBO->takeName(&BO);
2164 "Invalid incoming block!");
2165 NewPN->addIncoming(
Init, BB);
2166 }
else if (V == BO0) {
2171 "Invalid incoming block!");
2172 NewPN->addIncoming(NewBO, BB);
2178 <<
"\n with " << *PN1 <<
"\n " << *BO1
2205 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
2206 Phi0->getNumOperands() != Phi1->getNumOperands())
2210 if (BO.
getParent() != Phi0->getParent() ||
2227 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &>
T) {
2228 auto &Phi0Use = std::get<0>(
T);
2229 auto &Phi1Use = std::get<1>(
T);
2230 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
2232 Value *Phi0UseV = Phi0Use.get();
2233 Value *Phi1UseV = Phi1Use.get();
2236 else if (Phi1UseV ==
C)
2243 if (
all_of(
zip(Phi0->operands(), Phi1->operands()),
2244 CanFoldIncomingValuePair)) {
2247 assert(NewIncomingValues.
size() == Phi0->getNumOperands() &&
2248 "The number of collected incoming values should equal the number "
2249 "of the original PHINode operands!");
2250 for (
unsigned I = 0;
I < Phi0->getNumOperands();
I++)
2251 NewPhi->
addIncoming(NewIncomingValues[
I], Phi0->getIncomingBlock(
I));
2256 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2263 ConstBB = Phi0->getIncomingBlock(0);
2264 OtherBB = Phi0->getIncomingBlock(1);
2266 ConstBB = Phi0->getIncomingBlock(1);
2267 OtherBB = Phi0->getIncomingBlock(0);
2278 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2279 !
DT.isReachableFromEntry(OtherBB))
2285 for (
auto BBIter = BO.
getParent()->begin(); &*BBIter != &BO; ++BBIter)
2296 Builder.SetInsertPoint(PredBlockBranch);
2298 Phi0->getIncomingValueForBlock(OtherBB),
2299 Phi1->getIncomingValueForBlock(OtherBB));
2301 NotFoldedNewBO->copyIRFlags(&BO);
2328 if (
GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2357 for (
unsigned I = 0;
I < NumElts; ++
I) {
2359 if (ShMask[
I] >= 0) {
2360 assert(ShMask[
I] < (
int)NumElts &&
"Not expecting narrowing shuffle");
2371 NewVecC[ShMask[
I]] = CElt;
2400 auto foldConstantsThroughSubVectorInsertSplat =
2401 [&](
Value *MaybeSubVector,
Value *MaybeSplat,
2406 !
match(MaybeSubVector,
2413 if (!SubVector || !Dest)
2415 auto *InsertVector =
2416 Builder.CreateInsertVector(Dest->
getType(), Dest, SubVector, Idx);
2424 if (
Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2427 if (
Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2434 Value *L0, *L1, *R0, *R1;
2438 LHS->hasOneUse() && RHS->hasOneUse() &&
2461 M, Intrinsic::vector_reverse, V->getType());
2472 (LHS->hasOneUse() || RHS->hasOneUse() ||
2473 (LHS == RHS && LHS->hasNUses(2))))
2474 return createBinOpReverse(V1, V2);
2478 return createBinOpReverse(V1, RHS);
2482 return createBinOpReverse(LHS, V2);
2493 M, Intrinsic::experimental_vp_reverse, V->getType());
2503 (LHS->hasOneUse() || RHS->hasOneUse() ||
2504 (LHS == RHS && LHS->hasNUses(2))))
2505 return createBinOpVPReverse(V1, V2, EVL);
2509 return createBinOpVPReverse(V1, RHS, EVL);
2515 return createBinOpVPReverse(LHS, V2, EVL);
2535 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2537 return createBinOpShuffle(V1, V2, Mask);
2552 if (LShuf->isSelect() &&
2554 RShuf->isSelect() &&
2576 "Shuffle should not change scalar type");
2588 Value *NewLHS = ConstOp1 ? V1 : NewC;
2589 Value *NewRHS = ConstOp1 ? NewC : V1;
2590 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2625 Value *NewSplat =
Builder.CreateShuffleVector(NewBO, NewMask);
2631 R->copyFastMathFlags(&Inst);
2635 NewInstBO->copyIRFlags(R);
2665 (Op0->
hasOneUse() || Op1->hasOneUse()))) {
2691 NewBinOp->setHasNoSignedWrap();
2693 NewBinOp->setHasNoUnsignedWrap();
2709 if (!
GEP.hasAllConstantIndices())
2725 Type *Ty =
GEP.getSourceElementType();
2726 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC,
"", NW);
2727 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC,
"", NW);
2737 if (
GEP.getNumIndices() != 1)
2747 unsigned IndexSizeInBits =
DL.getIndexTypeSizeInBits(PtrTy);
2758 if (NewOffset.
isZero() ||
2759 (Src->hasOneUse() &&
GEP.getOperand(1)->hasOneUse())) {
2761 if (
GEP.hasNoUnsignedWrap() &&
2781 if (!
GEP.hasAllConstantIndices())
2792 if (InnerGEP->hasAllConstantIndices())
2795 if (!InnerGEP->hasOneUse())
2798 Skipped.push_back(InnerGEP);
2804 if (Skipped.empty())
2809 if (!InnerGEP->hasOneUse())
2814 if (InnerGEP->getType() != Ty)
2820 !InnerGEP->accumulateConstantOffset(
DL,
Offset))
2823 IC.
replaceOperand(*Skipped.back(), 0, InnerGEP->getPointerOperand());
2825 SkippedGEP->setNoWrapFlags(NW);
2847 if (Src->getResultElementType() !=
GEP.getSourceElementType())
2851 bool EndsWithSequential =
false;
2854 EndsWithSequential =
I.isSequential();
2855 if (!EndsWithSequential)
2860 Value *SO1 = Src->getOperand(Src->getNumOperands() - 1);
2878 Indices.
append(Src->op_begin() + 1, Src->op_end() - 1);
2883 unsigned NumNonZeroIndices =
count_if(Indices, [](
Value *Idx) {
2885 return !
C || !
C->isNullValue();
2887 if (NumNonZeroIndices > 1)
2892 Src->getSourceElementType(), Src->getOperand(0), Indices,
"",
2898 bool &DoesConsume,
unsigned Depth) {
2899 static Value *
const NonNull =
reinterpret_cast<Value *
>(uintptr_t(1));
2917 if (!WillInvertAllUses)
2924 return Builder->CreateCmp(
I->getInversePredicate(),
I->getOperand(0),
2933 DoesConsume,
Depth))
2936 DoesConsume,
Depth))
2945 DoesConsume,
Depth))
2948 DoesConsume,
Depth))
2957 DoesConsume,
Depth))
2966 DoesConsume,
Depth))
2978 bool LocalDoesConsume = DoesConsume;
2980 LocalDoesConsume,
Depth))
2983 LocalDoesConsume,
Depth)) {
2984 DoesConsume = LocalDoesConsume;
2987 DoesConsume,
Depth);
2988 assert(NotB !=
nullptr &&
2989 "Unable to build inverted value for known freely invertable op");
2991 return Builder->CreateBinaryIntrinsic(
3000 bool LocalDoesConsume = DoesConsume;
3002 for (
Use &U : PN->operands()) {
3003 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
3007 if (NewIncomingVal ==
nullptr)
3010 if (NewIncomingVal == V)
3013 IncomingValues.
emplace_back(NewIncomingVal, IncomingBlock);
3016 DoesConsume = LocalDoesConsume;
3021 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
3022 for (
auto [Val, Pred] : IncomingValues)
3031 DoesConsume,
Depth))
3032 return Builder ?
Builder->CreateSExt(AV, V->getType()) : NonNull;
3038 DoesConsume,
Depth))
3039 return Builder ?
Builder->CreateTrunc(AV, V->getType()) : NonNull;
3047 bool IsLogical,
Value *
A,
3049 bool LocalDoesConsume = DoesConsume;
3051 LocalDoesConsume,
Depth))
3054 LocalDoesConsume,
Depth)) {
3056 LocalDoesConsume,
Depth);
3057 DoesConsume = LocalDoesConsume;
3059 return Builder ?
Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
3060 return Builder ?
Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
3067 return TryInvertAndOrUsingDeMorgan(Instruction::And,
false,
A,
3071 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
false,
A,
3075 return TryInvertAndOrUsingDeMorgan(Instruction::And,
true,
A,
3079 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
true,
A,
3088 Type *GEPEltType =
GEP.getSourceElementType();
3099 if (
GEP.getNumIndices() == 1 &&
3108 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
3111 return match(V, m_APInt(C)) && !C->isZero();
3135 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
3136 Op1->getSourceElementType() != Op2->getSourceElementType())
3144 Type *CurTy =
nullptr;
3146 for (
unsigned J = 0,
F = Op1->getNumOperands(); J !=
F; ++J) {
3147 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
3150 if (Op1->getOperand(J) != Op2->getOperand(J)) {
3159 assert(CurTy &&
"No current type?");
3179 CurTy = Op1->getSourceElementType();
3187 NW &= Op2->getNoWrapFlags();
3197 NewGEP->setNoWrapFlags(NW);
3209 Builder.SetInsertPoint(PN);
3210 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
3218 NewGEP->setOperand(DI, NewPN);
3221 NewGEP->insertBefore(*
GEP.getParent(),
GEP.getParent()->getFirstInsertionPt());
3228 Type *GEPType =
GEP.getType();
3229 Type *GEPEltType =
GEP.getSourceElementType();
3232 SQ.getWithInstruction(&
GEP)))
3239 auto VWidth = GEPFVTy->getNumElements();
3240 APInt PoisonElts(VWidth, 0);
3252 bool MadeChange =
false;
3256 Type *NewScalarIndexTy =
3257 DL.getIndexType(
GEP.getPointerOperandType()->getScalarType());
3266 Type *IndexTy = (*I)->getType();
3267 Type *NewIndexType =
3276 if (EltTy->
isSized() &&
DL.getTypeAllocSize(EltTy).isZero())
3282 if (IndexTy != NewIndexType) {
3288 if (
GEP.hasNoUnsignedWrap() &&
GEP.hasNoUnsignedSignedWrap())
3289 *
I =
Builder.CreateZExt(*
I, NewIndexType,
"",
true);
3291 *
I =
Builder.CreateSExt(*
I, NewIndexType);
3293 *
I =
Builder.CreateTrunc(*
I, NewIndexType,
"",
GEP.hasNoUnsignedWrap(),
3294 GEP.hasNoUnsignedSignedWrap());
3303 if (!GEPEltType->
isIntegerTy(8) &&
GEP.hasAllConstantIndices()) {
3308 GEP.getNoWrapFlags()));
3320 if (LastIdx && LastIdx->isNullValue() && !LastIdx->getType()->isVectorTy()) {
3328 if (FirstIdx && FirstIdx->isNullValue() &&
3329 !FirstIdx->getType()->isVectorTy()) {
3334 GEP.getPointerOperand(),
3336 GEP.getNoWrapFlags()));
3343 return Op->getType()->isVectorTy() && getSplatValue(Op);
3346 for (
auto &
Op :
GEP.operands()) {
3347 if (
Op->getType()->isVectorTy())
3357 GEP.getNoWrapFlags());
3360 Res =
Builder.CreateVectorSplat(EC, Res);
3365 bool SeenNonZeroIndex =
false;
3366 for (
auto [IdxNum, Idx] :
enumerate(Indices)) {
3368 if (
C &&
C->isNullValue())
3371 if (!SeenNonZeroIndex) {
3372 SeenNonZeroIndex =
true;
3379 Builder.CreateGEP(GEPEltType, PtrOp, FrontIndices,
3380 GEP.getName() +
".split",
GEP.getNoWrapFlags());
3387 BackIndices,
GEP.getNoWrapFlags());
3400 if (
GEP.getNumIndices() == 1) {
3401 unsigned AS =
GEP.getPointerAddressSpace();
3402 if (
GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3403 DL.getIndexSizeInBits(AS)) {
3404 uint64_t TyAllocSize =
DL.getTypeAllocSize(GEPEltType).getFixedValue();
3406 if (TyAllocSize == 1) {
3415 GEPType ==
Y->getType()) {
3416 bool HasNonAddressBits =
3417 DL.getAddressSizeInBits(AS) !=
DL.getPointerSizeInBits(AS);
3419 GEP.replaceUsesWithIf(
Y, [&](
Use &U) {
3420 bool ShouldReplace =
3424 return ShouldReplace;
3428 }
else if (
auto *ExactIns =
3432 if (ExactIns->isExact()) {
3440 GEP.getPointerOperand(), V,
3441 GEP.getNoWrapFlags());
3444 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3450 std::optional<APInt> NewC;
3470 if (NewC.has_value()) {
3473 ConstantInt::get(V->getType(), *NewC));
3476 GEP.getPointerOperand(), NewOp,
3477 GEP.getNoWrapFlags());
3487 if (!
GEP.isInBounds()) {
3490 APInt BasePtrOffset(IdxWidth, 0);
3491 Value *UnderlyingPtrOp =
3493 bool CanBeNull, CanBeFreed;
3495 DL, CanBeNull, CanBeFreed);
3496 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3497 if (
GEP.accumulateConstantOffset(
DL, BasePtrOffset) &&
3499 APInt AllocSize(IdxWidth, DerefBytes);
3500 if (BasePtrOffset.
ule(AllocSize)) {
3502 GEP.getSourceElementType(), PtrOp, Indices,
GEP.getName());
3509 if (
GEP.hasNoUnsignedSignedWrap() && !
GEP.hasNoUnsignedWrap() &&
3511 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3519 if (
GEP.getNumIndices() == 1) {
3522 auto GetPreservedNoWrapFlags = [&](
bool AddIsNUW) {
3525 if (
GEP.hasNoUnsignedWrap() && AddIsNUW)
3526 return GEP.getNoWrapFlags();
3542 Builder.CreateGEP(
GEP.getSourceElementType(),
GEP.getPointerOperand(),
3545 Builder.CreateGEP(
GEP.getSourceElementType(),
3546 NewPtr, Idx2,
"", NWFlags));
3557 bool NUW =
match(
GEP.getOperand(1),
3560 auto *NewPtr =
Builder.CreateGEP(
3561 GEP.getSourceElementType(),
GEP.getPointerOperand(),
3562 Builder.CreateSExt(Idx1,
GEP.getOperand(1)->getType()),
"", NWFlags);
3565 Builder.CreateGEP(
GEP.getSourceElementType(), NewPtr,
3566 Builder.CreateSExt(
C,
GEP.getOperand(1)->getType()),
3606 return Dest && Dest->Ptr == UsedV;
3609static std::optional<ModRefInfo>
3621 switch (
I->getOpcode()) {
3624 return std::nullopt;
3626 case Instruction::AddrSpaceCast:
3627 case Instruction::BitCast:
3628 case Instruction::GetElementPtr:
3633 case Instruction::ICmp: {
3639 return std::nullopt;
3640 unsigned OtherIndex = (ICI->
getOperand(0) == PI) ? 1 : 0;
3642 return std::nullopt;
3647 auto AlignmentAndSizeKnownValid = [](
CallBase *CB) {
3651 const APInt *Alignment;
3653 return match(CB->getArgOperand(0),
m_APInt(Alignment)) &&
3659 if (CB && TLI.
getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3660 TLI.
has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3661 !AlignmentAndSizeKnownValid(CB))
3662 return std::nullopt;
3667 case Instruction::Call:
3670 switch (
II->getIntrinsicID()) {
3672 return std::nullopt;
3674 case Intrinsic::memmove:
3675 case Intrinsic::memcpy:
3676 case Intrinsic::memset: {
3678 if (
MI->isVolatile())
3679 return std::nullopt;
3685 return std::nullopt;
3689 case Intrinsic::assume:
3690 case Intrinsic::invariant_start:
3691 case Intrinsic::invariant_end:
3692 case Intrinsic::lifetime_start:
3693 case Intrinsic::lifetime_end:
3694 case Intrinsic::objectsize:
3697 case Intrinsic::launder_invariant_group:
3698 case Intrinsic::strip_invariant_group:
3725 return std::nullopt;
3727 case Instruction::Store: {
3729 if (
SI->isVolatile() ||
SI->getPointerOperand() != PI)
3730 return std::nullopt;
3732 return std::nullopt;
3738 case Instruction::Load: {
3741 return std::nullopt;
3743 return std::nullopt;
3751 }
while (!Worklist.
empty());
3775 std::unique_ptr<DIBuilder> DIB;
3783 bool KnowInitUndef =
false;
3784 bool KnowInitZero =
false;
3789 KnowInitUndef =
true;
3790 else if (
Init->isNullValue())
3791 KnowInitZero =
true;
3795 auto &
F = *
MI.getFunction();
3796 if (
F.hasFnAttribute(Attribute::SanitizeMemory) ||
3797 F.hasFnAttribute(Attribute::SanitizeAddress))
3798 KnowInitUndef =
false;
3812 if (
II->getIntrinsicID() == Intrinsic::objectsize) {
3815 II,
DL, &
TLI,
AA,
true, &InsertedInstructions);
3816 for (
Instruction *Inserted : InsertedInstructions)
3824 if (KnowInitZero &&
isRefSet(*Removable)) {
3827 auto *M =
Builder.CreateMemSet(
3830 MTI->getLength(), MTI->getDestAlign());
3831 M->copyMetadata(*MTI);
3845 C->isFalseWhenEqual()));
3847 for (
auto *DVR : DVRs)
3848 if (DVR->isAddressOfVariable())
3855 assert(KnowInitZero || KnowInitUndef);
3870 F,
II->getNormalDest(),
II->getUnwindDest(), {},
"",
II->getParent());
3871 NewII->setDebugLoc(
II->getDebugLoc());
3899 for (
auto *DVR : DVRs)
3900 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3901 DVR->eraseFromParent();
3947 if (FreeInstrBB->
size() != 2) {
3949 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3952 if (!Cast || !Cast->isNoopCast(
DL))
3973 "Broken CFG: missing edge from predecessor to successor");
3978 if (&Instr == FreeInstrBBTerminator)
3983 "Only the branch instruction should remain");
3994 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0, Attribute::NonNull);
3995 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3996 if (Dereferenceable.
isValid()) {
3998 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0,
3999 Attribute::Dereferenceable);
4000 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.
getContext(), 0, Bytes);
4039 if (
TLI.getLibFunc(FI, Func) &&
TLI.has(Func) && Func == LibFunc_free)
4055 bool HasDereferenceable =
4056 F->getAttributes().getRetDereferenceableBytes() > 0;
4057 if (
F->hasRetAttribute(Attribute::NonNull) ||
4058 (HasDereferenceable &&
4060 if (
Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
4065 if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
4068 FPClassTest ReturnClass =
F->getAttributes().getRetNoFPClass();
4069 if (ReturnClass ==
fcNone)
4090 if (Prev->isEHPad())
4122 if (BBI != FirstInstr)
4124 }
while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
4138 if (!
DeadEdges.insert({From, To}).second)
4143 for (
Use &U : PN.incoming_values())
4160 std::next(
I->getReverseIterator())))) {
4161 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
4165 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
4168 Inst.dropDbgRecords();
4190 return DeadEdges.contains({Pred, BB}) ||
DT.dominates(BB, Pred);
4203 if (Succ == LiveSucc)
4277 if (
DT.dominates(Edge0, U)) {
4283 if (
DT.dominates(Edge1, U)) {
4290 DC.registerBranch(&BI);
4300 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
4305 BasicBlock *CstBB =
SI.findCaseValue(
C)->getCaseSuccessor();
4306 if (CstBB !=
SI.getDefaultDest())
4319 for (
auto Case :
SI.cases())
4320 if (!CR.
contains(Case.getCaseValue()->getValue()))
4329 const APInt *CondOpC;
4332 auto MaybeInvertible = [&](
Value *
Cond) -> InvertFn {
4335 return [](
const APInt &Case,
const APInt &
C) {
return Case -
C; };
4339 return [](
const APInt &Case,
const APInt &
C) {
return C - Case; };
4345 return [](
const APInt &Case,
const APInt &
C) {
return Case ^
C; };
4351 if (
auto InvertFn = MaybeInvertible(
Cond); InvertFn) {
4352 for (
auto &Case :
SI.cases()) {
4353 const APInt &New = InvertFn(Case.getCaseValue()->getValue(), *CondOpC);
4354 Case.setValue(ConstantInt::get(
SI.getContext(), New));
4362 all_of(
SI.cases(), [&](
const auto &Case) {
4363 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
4369 Value *NewCond = Op0;
4376 for (
auto Case :
SI.cases()) {
4377 const APInt &CaseVal = Case.getCaseValue()->getValue();
4379 : CaseVal.
lshr(ShiftAmt);
4380 Case.setValue(ConstantInt::get(
SI.getContext(), ShiftedCase));
4392 if (
all_of(
SI.cases(), [&](
const auto &Case) {
4393 const APInt &CaseVal = Case.getCaseValue()->getValue();
4394 return IsZExt ? CaseVal.isIntN(NewWidth)
4395 : CaseVal.isSignedIntN(NewWidth);
4397 for (
auto &Case :
SI.cases()) {
4398 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
4399 Case.setValue(ConstantInt::get(
SI.getContext(), TruncatedCase));
4421 for (
const auto &
C :
SI.cases()) {
4423 std::min(LeadingKnownZeros,
C.getCaseValue()->getValue().countl_zero());
4425 std::min(LeadingKnownOnes,
C.getCaseValue()->getValue().countl_one());
4428 unsigned NewWidth = Known.
getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
4434 if (NewWidth > 0 && NewWidth < Known.
getBitWidth() &&
4435 shouldChangeType(Known.
getBitWidth(), NewWidth)) {
4440 for (
auto Case :
SI.cases()) {
4441 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
4442 Case.setValue(ConstantInt::get(
SI.getContext(), TruncatedCase));
4453 SI.findCaseValue(CI)->getCaseSuccessor());
4467 const APInt *
C =
nullptr;
4469 if (*EV.
idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
4470 OvID == Intrinsic::umul_with_overflow)) {
4475 if (
C->isPowerOf2()) {
4476 return BinaryOperator::CreateShl(
4478 ConstantInt::get(WO->getLHS()->getType(),
C->logBase2()));
4486 if (!WO->hasOneUse())
4500 assert(*EV.
idx_begin() == 1 &&
"Unexpected extract index for overflow inst");
4503 if (OvID == Intrinsic::usub_with_overflow)
4508 if (OvID == Intrinsic::smul_with_overflow &&
4509 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4510 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4513 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4514 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4517 return new ICmpInst(
4519 ConstantInt::get(WO->getLHS()->getType(),
4530 WO->getBinaryOp(), *
C, WO->getNoWrapKind());
4535 auto *OpTy = WO->getRHS()->getType();
4536 auto *NewLHS = WO->getLHS();
4538 NewLHS =
Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy,
Offset));
4540 ConstantInt::get(OpTy, NewRHSC));
4557 const APFloat *ConstVal =
nullptr;
4558 Value *VarOp =
nullptr;
4559 bool ConstIsTrue =
false;
4566 ConstIsTrue =
false;
4571 Builder.SetInsertPoint(&EV);
4577 Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0,
"mantissa");
4582 Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
4584 Value *NewSel = Builder.CreateSelectFMF(
4585 Cond, ConstIsTrue ? ConstantMantissa : NewEV,
4586 ConstIsTrue ? NewEV : ConstantMantissa,
SelectInst,
"select.frexp");
4596 SQ.getWithInstruction(&EV)))
4610 const unsigned *exti, *exte, *insi, *inse;
4611 for (exti = EV.
idx_begin(), insi =
IV->idx_begin(),
4612 exte = EV.
idx_end(), inse =
IV->idx_end();
4613 exti != exte && insi != inse;
4627 if (exti == exte && insi == inse)
4642 Value *NewEV =
Builder.CreateExtractValue(
IV->getAggregateOperand(),
4660 if (
Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4666 STy && STy->isScalableTy())
4674 if (L->isSimple() && L->hasOneUse()) {
4679 for (
unsigned Idx : EV.
indices())
4686 L->getPointerOperand(), Indices);
4720 switch (Personality) {
4764 bool MakeNewInstruction =
false;
4770 bool isLastClause = i + 1 == e;
4778 if (AlreadyCaught.
insert(TypeInfo).second) {
4783 MakeNewInstruction =
true;
4790 MakeNewInstruction =
true;
4791 CleanupFlag =
false;
4810 if (!NumTypeInfos) {
4813 MakeNewInstruction =
true;
4814 CleanupFlag =
false;
4818 bool MakeNewFilter =
false;
4822 assert(NumTypeInfos > 0 &&
"Should have handled empty filter already!");
4828 MakeNewInstruction =
true;
4835 if (NumTypeInfos > 1)
4836 MakeNewFilter =
true;
4840 NewFilterElts.
reserve(NumTypeInfos);
4845 bool SawCatchAll =
false;
4846 for (
unsigned j = 0; j != NumTypeInfos; ++j) {
4874 if (SeenInFilter.
insert(TypeInfo).second)
4880 MakeNewInstruction =
true;
4885 if (NewFilterElts.
size() < NumTypeInfos)
4886 MakeNewFilter =
true;
4888 if (MakeNewFilter) {
4890 NewFilterElts.
size());
4892 MakeNewInstruction =
true;
4901 if (MakeNewFilter && !NewFilterElts.
size()) {
4902 assert(MakeNewInstruction &&
"New filter but not a new instruction!");
4903 CleanupFlag =
false;
4914 for (
unsigned i = 0, e = NewClauses.
size(); i + 1 < e; ) {
4917 for (j = i; j != e; ++j)
4924 for (
unsigned k = i; k + 1 < j; ++k)
4928 std::stable_sort(NewClauses.
begin() + i, NewClauses.
begin() + j,
4930 MakeNewInstruction =
true;
4949 for (
unsigned i = 0; i + 1 < NewClauses.
size(); ++i) {
4959 for (
unsigned j = NewClauses.
size() - 1; j != i; --j) {
4960 Value *LFilter = NewClauses[j];
4971 NewClauses.
erase(J);
4972 MakeNewInstruction =
true;
4976 unsigned LElts = LTy->getNumElements();
4986 assert(FElts <= LElts &&
"Should have handled this case earlier!");
4988 NewClauses.
erase(J);
4989 MakeNewInstruction =
true;
4998 assert(FElts > 0 &&
"Should have eliminated the empty filter earlier!");
4999 for (
unsigned l = 0; l != LElts; ++l)
5002 NewClauses.
erase(J);
5003 MakeNewInstruction =
true;
5014 bool AllFound =
true;
5015 for (
unsigned f = 0; f != FElts; ++f) {
5018 for (
unsigned l = 0; l != LElts; ++l) {
5020 if (LTypeInfo == FTypeInfo) {
5030 NewClauses.
erase(J);
5031 MakeNewInstruction =
true;
5039 if (MakeNewInstruction) {
5047 if (NewClauses.empty())
5056 assert(!CleanupFlag &&
"Adding a cleanup, not removing one?!");
5078 auto CanPushFreeze = [](
Value *V) {
5099 Value *V = U->get();
5100 if (!CanPushFreeze(V)) {
5106 Builder.SetInsertPoint(UserI);
5107 Value *Frozen =
Builder.CreateFreeze(V, V->getName() +
".fr");
5113 if (!Visited.
insert(
I).second)
5124 I->dropPoisonGeneratingAnnotations();
5125 this->Worklist.add(
I);
5128 return OrigUse->get();
5138 Use *StartU =
nullptr;
5156 Value *StartV = StartU->get();
5168 if (!Visited.
insert(V).second)
5171 if (Visited.
size() > 32)
5188 I->dropPoisonGeneratingAnnotations();
5190 if (StartNeedsFreeze) {
5218 MoveBefore = *MoveBeforeOpt;
5222 MoveBefore.setHeadBit(
false);
5225 if (&FI != &*MoveBefore) {
5226 FI.
moveBefore(*MoveBefore->getParent(), MoveBefore);
5230 Op->replaceUsesWithIf(&FI, [&](
Use &U) ->
bool {
5231 bool Dominates =
DT.dominates(&FI, U);
5241 for (
auto *U : V->users()) {
5251 Value *Op0 =
I.getOperand(0);
5281 auto getUndefReplacement = [&](
Type *Ty) {
5282 auto pickCommonConstantFromPHI = [](
PHINode &PN) ->
Value * {
5286 for (
Value *V : PN.incoming_values()) {
5297 if (BestValue && BestValue !=
C)
5306 Value *BestValue =
nullptr;
5307 for (
auto *U :
I.users()) {
5308 Value *V = NullValue;
5317 if (
Value *MaybeV = pickCommonConstantFromPHI(*
PHI))
5323 else if (BestValue != V)
5324 BestValue = NullValue;
5326 assert(BestValue &&
"Must have at least one use");
5327 assert(BestValue != &
I &&
"Cannot replace with itself");
5341 Type *Ty =
C->getType();
5345 unsigned NumElts = VTy->getNumElements();
5347 for (
unsigned i = 0; i != NumElts; ++i) {
5348 Constant *EltC =
C->getAggregateElement(i);
5359 !
C->containsConstantExpression()) {
5360 if (
Constant *Repl = getFreezeVectorReplacement(
C))
5394 for (
const User *U :
I.users()) {
5395 if (Visited.
insert(U).second)
5400 while (!AllocaUsers.
empty()) {
5423 if (
isa<PHINode>(
I) ||
I->isEHPad() ||
I->mayThrow() || !
I->willReturn() ||
5440 if (CI->isConvergent())
5446 if (
I->mayWriteToMemory()) {
5453 if (
I->mayReadFromMemory() &&
5454 !
I->hasMetadata(LLVMContext::MD_invariant_load)) {
5461 E =
I->getParent()->end();
5463 if (Scan->mayWriteToMemory())
5467 I->dropDroppableUses([&](
const Use *U) {
5469 if (
I &&
I->getParent() != DestBlock) {
5479 I->moveBefore(*DestBlock, InsertPos);
5489 if (!DbgVariableRecords.
empty())
5491 DbgVariableRecords);
5514 for (
auto &DVR : DbgVariableRecords)
5515 if (DVR->getParent() != DestBlock)
5516 DbgVariableRecordsToSalvage.
push_back(DVR);
5522 if (DVR->getParent() == SrcBlock)
5523 DbgVariableRecordsToSink.
push_back(DVR);
5530 return B->getInstruction()->comesBefore(
A->getInstruction());
5537 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5539 if (DbgVariableRecordsToSink.
size() > 1) {
5545 DVR->getDebugLoc()->getInlinedAt());
5546 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5552 for (
auto It : CountMap) {
5553 if (It.second > 1) {
5554 FilterOutMap[It.first] =
nullptr;
5555 DupSet.
insert(It.first.first);
5566 DVR.getDebugLoc()->getInlinedAt());
5568 FilterOutMap.
find(std::make_pair(Inst, DbgUserVariable));
5569 if (FilterIt == FilterOutMap.
end())
5571 if (FilterIt->second !=
nullptr)
5573 FilterIt->second = &DVR;
5588 DVR->getDebugLoc()->getInlinedAt());
5592 if (!FilterOutMap.
empty()) {
5593 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5594 auto It = FilterOutMap.
find(IVP);
5597 if (It != FilterOutMap.
end() && It->second != DVR)
5601 if (!SunkVariables.
insert(DbgUserVariable).second)
5604 if (DVR->isDbgAssign())
5612 if (DVRClones.
empty())
5626 assert(InsertPos.getHeadBit());
5628 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5652 if (
I ==
nullptr)
continue;
5667 auto getOptionalSinkBlockForInst =
5668 [
this](
Instruction *
I) -> std::optional<BasicBlock *> {
5670 return std::nullopt;
5674 unsigned NumUsers = 0;
5676 for (
Use &U :
I->uses()) {
5682 if (
II->getIntrinsicID() != Intrinsic::assume ||
5683 !
II->getOperandBundle(
"dereferenceable"))
5688 return std::nullopt;
5694 UserBB = PN->getIncomingBlock(U);
5698 if (UserParent && UserParent != UserBB)
5699 return std::nullopt;
5700 UserParent = UserBB;
5704 if (NumUsers == 0) {
5707 if (UserParent == BB || !
DT.isReachableFromEntry(UserParent))
5708 return std::nullopt;
5720 return std::nullopt;
5722 assert(
DT.dominates(BB, UserParent) &&
"Dominance relation broken?");
5730 return std::nullopt;
5735 auto OptBB = getOptionalSinkBlockForInst(
I);
5737 auto *UserParent = *OptBB;
5745 for (
Use &U :
I->operands())
5753 Builder.CollectMetadataToCopy(
5754 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5767 <<
" New = " << *Result <<
'\n');
5772 Result->setDebugLoc(Result->getDebugLoc().orElse(
I->getDebugLoc()));
5774 Result->copyMetadata(*
I, LLVMContext::MD_annotation);
5776 I->replaceAllUsesWith(Result);
5779 Result->takeName(
I);
5794 Result->insertInto(InstParent, InsertPos);
5797 Worklist.pushUsersToWorkList(*Result);
5803 <<
" New = " << *
I <<
'\n');
5835 if (!
I->hasMetadataOtherThanDebugLoc())
5838 auto Track = [](
Metadata *ScopeList,
auto &Container) {
5840 if (!MDScopeList || !Container.insert(MDScopeList).second)
5842 for (
const auto &
MDOperand : MDScopeList->operands())
5844 Container.insert(MDScope);
5847 Track(
I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5848 Track(
I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5857 "llvm.experimental.noalias.scope.decl in use ?");
5860 "llvm.experimental.noalias.scope should refer to a single scope");
5863 return !UsedAliasScopesAndLists.contains(MD) ||
5864 !UsedNoAliasScopesAndLists.contains(MD);
5888 if (Succ != LiveSucc &&
DeadEdges.insert({BB, Succ}).second)
5889 for (
PHINode &PN : Succ->phis())
5890 for (
Use &U : PN.incoming_values())
5899 return DeadEdges.contains({Pred, BB}) ||
DT.dominates(BB, Pred);
5901 HandleOnlyLiveSuccessor(BB,
nullptr);
5908 if (!Inst.use_empty() &&
5909 (Inst.getNumOperands() == 0 ||
isa<Constant>(Inst.getOperand(0))))
5913 Inst.replaceAllUsesWith(
C);
5916 Inst.eraseFromParent();
5922 for (
Use &U : Inst.operands()) {
5927 Constant *&FoldRes = FoldedConstants[
C];
5933 <<
"\n Old = " << *
C
5934 <<
"\n New = " << *FoldRes <<
'\n');
5943 if (!Inst.isDebugOrPseudoInst()) {
5944 InstrsForInstructionWorklist.
push_back(&Inst);
5945 SeenAliasScopes.
analyse(&Inst);
5955 HandleOnlyLiveSuccessor(BB,
nullptr);
5959 bool CondVal =
Cond->getZExtValue();
5960 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5966 HandleOnlyLiveSuccessor(BB,
nullptr);
5970 HandleOnlyLiveSuccessor(BB,
5971 SI->findCaseValue(
Cond)->getCaseSuccessor());
5981 if (LiveBlocks.
count(&BB))
5984 unsigned NumDeadInstInBB;
5988 NumDeadInst += NumDeadInstInBB;
6005 Inst->eraseFromParent();
6034 auto &
DL =
F.getDataLayout();
6036 !
F.hasFnAttribute(
"instcombine-no-verify-fixpoint");
6052 bool MadeIRChange =
false;
6057 unsigned Iteration = 0;
6061 <<
" on " <<
F.getName()
6062 <<
" reached; stopping without verifying fixpoint\n");
6067 ++NumWorklistIterations;
6068 LLVM_DEBUG(
dbgs() <<
"\n\nINSTCOMBINE ITERATION #" << Iteration <<
" on "
6069 <<
F.getName() <<
"\n");
6071 InstCombinerImpl IC(Worklist, Builder,
F,
AA, AC, TLI,
TTI, DT, ORE, BFI,
6072 BPI, PSI,
DL, RPOT);
6075 MadeChangeInThisIteration |= IC.
run();
6076 if (!MadeChangeInThisIteration)
6079 MadeIRChange =
true;
6082 "Instruction Combining on " +
Twine(
F.getName()) +
6085 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
6086 "'instcombine-no-verify-fixpoint' to suppress this error.");
6092 else if (Iteration == 2)
6094 else if (Iteration == 3)
6095 ++NumThreeIterations;
6097 ++NumFourOrMoreIterations;
6099 return MadeIRChange;
6107 OS, MapClassName2PassName);
6109 OS <<
"max-iterations=" << Options.MaxIterations <<
";";
6110 OS << (Options.VerifyFixpoint ?
"" :
"no-") <<
"verify-fixpoint";
6114char InstCombinePass::ID = 0;
6120 if (LRT.shouldSkip(&ID))
6133 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6138 BFI, BPI, PSI, Options)) {
6140 LRT.update(&ID,
false);
6146 LRT.update(&ID,
true);
6188 if (
auto *WrapperPass =
6190 BPI = &WrapperPass->getBPI();
6203 "Combine redundant instructions",
false,
false)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static Constant * constantFoldBinOpWithSplat(unsigned Opcode, Constant *Vector, Constant *Splat, bool SplatLHS, const DataLayout &DL)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * combineConstantOffsets(GetElementPtrInst &GEP, InstCombinerImpl &IC)
Combine constant offsets separated by variable offsets.
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static Value * foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall, SelectInst *SelectInst, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static std::optional< ModRefInfo > isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI, bool KnowInit)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
uint64_t IntrinsicInst * II
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static const uint32_t IV[8]
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static constexpr roundingMode rmNearestTiesToEven
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
size_t size() const
size - Get the array size.
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
uint64_t getNumElements() const
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
A parsed version of the target data layout string in and methods for querying it.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(CounterInfo &Counter)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
const BasicBlock & getEntryBlock() const
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags all()
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForReassociate(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep (gep, p, y), x).
bool hasNoUnsignedWrap() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
static GEPNoWrapFlags none()
GEPNoWrapFlags getNoWrapFlags() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI InstCombinePass(InstCombineOptions Opts={})
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
Instruction * foldBinOpSelectBinOp(BinaryOperator &Op)
In some cases it is beneficial to fold a select into a binary operator.
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * foldBinopWithRecurrence(BinaryOperator &BO)
Try to fold binary operators whose operands are simple interleaved recurrences to a single recurrence...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
bool SimplifyDemandedFPClass(Instruction *I, unsigned Op, FPClassTest DemandedMask, KnownFPClass &Known, unsigned Depth=0)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
The legacy pass manager's instcombine pass.
InstructionCombiningPass()
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void add(Instruction *I)
Add instruction to the worklist.
LLVM_ABI void dropUBImplyingAttrsAndMetadata(ArrayRef< unsigned > Keep={})
Drop any attributes or metadata that can cause immediate undefined behavior.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
const MDOperand & getOperand(unsigned I) const
unsigned getNumOperands() const
Return number of MDNode operands.
Tracking metadata reference owned by Metadata.
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
MDNode * getScopeList() const
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
const Use & getOperandUse(unsigned i) const
LLVM_ABI bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
bool hasUseList() const
Check if this Value has a use-list.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Value handle that is nullable, but tries to track the Value.
An efficient, type-erasing, non-owning reference to a callable.
Type * getIndexedType() const
const ParentTy * getParent() const
reverse_self_iterator getReverseIterator()
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
Splat_match< T > m_ConstantSplat(const T &SubPattern)
Match a constant splat. TODO: Extend this to non-constant splats.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_VectorInsert(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
LLVM_ABI void initializeInstructionCombiningPassPass(PassRegistry &)
LLVM_ABI unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
bool succ_empty(const Instruction *I)
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI FunctionPass * createInstructionCombiningPass()
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
gep_type_iterator gep_type_end(const User *GEP)
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
bool isModSet(const ModRefInfo MRI)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool LowerDbgDeclare(Function &F)
Lowers dbg.declare records into appropriate set of dbg.value records.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, DIBuilder &Builder)
Inserts a dbg.value record before a store to an alloca'd value that has an associated dbg....
LLVM_ABI void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
@ Ref
The access may reference the value stored in memory.
@ ModRef
The access may reference and may modify the value stored in memory.
@ Mod
The access may modify the value stored in memory.
@ NoModRef
The access neither references nor modifies the value stored in memory.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
bool isRefSet(const ModRefInfo MRI)
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
A CRTP mix-in to automatically provide informational APIs needed for passes.
SimplifyQuery getWithInstruction(const Instruction *I) const