LLVM 22.0.0git
InstructionCombining.cpp
Go to the documentation of this file.
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions. This pass does not modify the CFG. This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14// %Y = add i32 %X, 1
15// %Z = add i32 %Y, 1
16// into:
17// %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23// 1. If a binary operator has a constant operand, it is moved to the RHS
24// 2. Bitwise operators with constant operands are always grouped so that
25// shifts are performed first, then or's, then and's, then xor's.
26// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27// 4. All cmp instructions on boolean values are replaced with logical ops
28// 5. add X, X is represented as (X*2) => (X << 1)
29// 6. Multiplies with a power-of-two constant argument are transformed into
30// shifts.
31// ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm/ADT/APFloat.h"
37#include "llvm/ADT/APInt.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/Statistic.h"
47#include "llvm/Analysis/CFG.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/CFG.h"
64#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DIBuilder.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugInfo.h"
70#include "llvm/IR/Dominators.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/IRBuilder.h"
75#include "llvm/IR/InstrTypes.h"
76#include "llvm/IR/Instruction.h"
79#include "llvm/IR/Intrinsics.h"
80#include "llvm/IR/Metadata.h"
81#include "llvm/IR/Operator.h"
82#include "llvm/IR/PassManager.h"
84#include "llvm/IR/Type.h"
85#include "llvm/IR/Use.h"
86#include "llvm/IR/User.h"
87#include "llvm/IR/Value.h"
88#include "llvm/IR/ValueHandle.h"
93#include "llvm/Support/Debug.h"
102#include <algorithm>
103#include <cassert>
104#include <cstdint>
105#include <memory>
106#include <optional>
107#include <string>
108#include <utility>
109
110#define DEBUG_TYPE "instcombine"
112#include <optional>
113
114using namespace llvm;
115using namespace llvm::PatternMatch;
116
117STATISTIC(NumWorklistIterations,
118 "Number of instruction combining iterations performed");
119STATISTIC(NumOneIteration, "Number of functions with one iteration");
120STATISTIC(NumTwoIterations, "Number of functions with two iterations");
121STATISTIC(NumThreeIterations, "Number of functions with three iterations");
122STATISTIC(NumFourOrMoreIterations,
123 "Number of functions with four or more iterations");
124
125STATISTIC(NumCombined , "Number of insts combined");
126STATISTIC(NumConstProp, "Number of constant folds");
127STATISTIC(NumDeadInst , "Number of dead inst eliminated");
128STATISTIC(NumSunkInst , "Number of instructions sunk");
129STATISTIC(NumExpand, "Number of expansions");
130STATISTIC(NumFactor , "Number of factorizations");
131STATISTIC(NumReassoc , "Number of reassociations");
132DEBUG_COUNTER(VisitCounter, "instcombine-visit",
133 "Controls which instructions are visited");
134
135static cl::opt<bool> EnableCodeSinking("instcombine-code-sinking",
136 cl::desc("Enable code sinking"),
137 cl::init(true));
138
140 "instcombine-max-sink-users", cl::init(32),
141 cl::desc("Maximum number of undroppable users for instruction sinking"));
142
144MaxArraySize("instcombine-maxarray-size", cl::init(1024),
145 cl::desc("Maximum array size considered when doing a combine"));
146
147namespace llvm {
149} // end namespace llvm
150
151// FIXME: Remove this flag when it is no longer necessary to convert
152// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
153// increases variable availability at the cost of accuracy. Variables that
154// cannot be promoted by mem2reg or SROA will be described as living in memory
155// for their entire lifetime. However, passes like DSE and instcombine can
156// delete stores to the alloca, leading to misleading and inaccurate debug
157// information. This flag can be removed when those passes are fixed.
158static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
159 cl::Hidden, cl::init(true));
160
161std::optional<Instruction *>
163 // Handle target specific intrinsics
164 if (II.getCalledFunction()->isTargetIntrinsic()) {
165 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*this, II);
166 }
167 return std::nullopt;
168}
169
171 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
172 bool &KnownBitsComputed) {
173 // Handle target specific intrinsics
174 if (II.getCalledFunction()->isTargetIntrinsic()) {
175 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
176 *this, II, DemandedMask, Known, KnownBitsComputed);
177 }
178 return std::nullopt;
179}
180
182 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
183 APInt &PoisonElts2, APInt &PoisonElts3,
184 std::function<void(Instruction *, unsigned, APInt, APInt &)>
185 SimplifyAndSetOp) {
186 // Handle target specific intrinsics
187 if (II.getCalledFunction()->isTargetIntrinsic()) {
188 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
189 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
190 SimplifyAndSetOp);
191 }
192 return std::nullopt;
193}
194
195bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
196 // Approved exception for TTI use: This queries a legality property of the
197 // target, not an profitability heuristic. Ideally this should be part of
198 // DataLayout instead.
199 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
200}
201
202Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) {
203 if (!RewriteGEP)
204 return llvm::emitGEPOffset(&Builder, DL, GEP);
205
206 IRBuilderBase::InsertPointGuard Guard(Builder);
207 auto *Inst = dyn_cast<Instruction>(GEP);
208 if (Inst)
209 Builder.SetInsertPoint(Inst);
210
211 Value *Offset = EmitGEPOffset(GEP);
212 // Rewrite non-trivial GEPs to avoid duplicating the offset arithmetic.
213 if (Inst && !GEP->hasAllConstantIndices() &&
214 !GEP->getSourceElementType()->isIntegerTy(8)) {
216 *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(),
217 Offset, "", GEP->getNoWrapFlags()));
219 }
220 return Offset;
221}
222
223Value *InstCombinerImpl::EmitGEPOffsets(ArrayRef<GEPOperator *> GEPs,
224 GEPNoWrapFlags NW, Type *IdxTy,
225 bool RewriteGEPs) {
226 auto Add = [&](Value *Sum, Value *Offset) -> Value * {
227 if (Sum)
228 return Builder.CreateAdd(Sum, Offset, "", NW.hasNoUnsignedWrap(),
229 NW.isInBounds());
230 else
231 return Offset;
232 };
233
234 Value *Sum = nullptr;
235 Value *OneUseSum = nullptr;
236 Value *OneUseBase = nullptr;
237 GEPNoWrapFlags OneUseFlags = GEPNoWrapFlags::all();
238 for (GEPOperator *GEP : reverse(GEPs)) {
239 Value *Offset;
240 {
241 // Expand the offset at the point of the previous GEP to enable rewriting.
242 // However, use the original insertion point for calculating Sum.
243 IRBuilderBase::InsertPointGuard Guard(Builder);
244 auto *Inst = dyn_cast<Instruction>(GEP);
245 if (RewriteGEPs && Inst)
246 Builder.SetInsertPoint(Inst);
247
249 if (Offset->getType() != IdxTy)
250 Offset = Builder.CreateVectorSplat(
251 cast<VectorType>(IdxTy)->getElementCount(), Offset);
252 if (GEP->hasOneUse()) {
253 // Offsets of one-use GEPs will be merged into the next multi-use GEP.
254 OneUseSum = Add(OneUseSum, Offset);
255 OneUseFlags = OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags());
256 if (!OneUseBase)
257 OneUseBase = GEP->getPointerOperand();
258 continue;
259 }
260
261 if (OneUseSum)
262 Offset = Add(OneUseSum, Offset);
263
264 // Rewrite the GEP to reuse the computed offset. This also includes
265 // offsets from preceding one-use GEPs.
266 if (RewriteGEPs && Inst &&
267 !(GEP->getSourceElementType()->isIntegerTy(8) &&
268 GEP->getOperand(1) == Offset)) {
270 *Inst,
271 Builder.CreatePtrAdd(
272 OneUseBase ? OneUseBase : GEP->getPointerOperand(), Offset, "",
273 OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags())));
275 }
276 }
277
278 Sum = Add(Sum, Offset);
279 OneUseSum = OneUseBase = nullptr;
280 OneUseFlags = GEPNoWrapFlags::all();
281 }
282 if (OneUseSum)
283 Sum = Add(Sum, OneUseSum);
284 if (!Sum)
285 return Constant::getNullValue(IdxTy);
286 return Sum;
287}
288
289/// Legal integers and common types are considered desirable. This is used to
290/// avoid creating instructions with types that may not be supported well by the
291/// the backend.
292/// NOTE: This treats i8, i16 and i32 specially because they are common
293/// types in frontend languages.
294bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
295 switch (BitWidth) {
296 case 8:
297 case 16:
298 case 32:
299 return true;
300 default:
301 return DL.isLegalInteger(BitWidth);
302 }
303}
304
305/// Return true if it is desirable to convert an integer computation from a
306/// given bit width to a new bit width.
307/// We don't want to convert from a legal or desirable type (like i8) to an
308/// illegal type or from a smaller to a larger illegal type. A width of '1'
309/// is always treated as a desirable type because i1 is a fundamental type in
310/// IR, and there are many specialized optimizations for i1 types.
311/// Common/desirable widths are equally treated as legal to convert to, in
312/// order to open up more combining opportunities.
313bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
314 unsigned ToWidth) const {
315 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
316 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
317
318 // Convert to desirable widths even if they are not legal types.
319 // Only shrink types, to prevent infinite loops.
320 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
321 return true;
322
323 // If this is a legal or desiable integer from type, and the result would be
324 // an illegal type, don't do the transformation.
325 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
326 return false;
327
328 // Otherwise, if both are illegal, do not increase the size of the result. We
329 // do allow things like i160 -> i64, but not i64 -> i160.
330 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
331 return false;
332
333 return true;
334}
335
336/// Return true if it is desirable to convert a computation from 'From' to 'To'.
337/// We don't want to convert from a legal to an illegal type or from a smaller
338/// to a larger illegal type. i1 is always treated as a legal type because it is
339/// a fundamental type in IR, and there are many specialized optimizations for
340/// i1 types.
341bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
342 // TODO: This could be extended to allow vectors. Datalayout changes might be
343 // needed to properly support that.
344 if (!From->isIntegerTy() || !To->isIntegerTy())
345 return false;
346
347 unsigned FromWidth = From->getPrimitiveSizeInBits();
348 unsigned ToWidth = To->getPrimitiveSizeInBits();
349 return shouldChangeType(FromWidth, ToWidth);
350}
351
352// Return true, if No Signed Wrap should be maintained for I.
353// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
354// where both B and C should be ConstantInts, results in a constant that does
355// not overflow. This function only handles the Add/Sub/Mul opcodes. For
356// all other opcodes, the function conservatively returns false.
359 if (!OBO || !OBO->hasNoSignedWrap())
360 return false;
361
362 const APInt *BVal, *CVal;
363 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
364 return false;
365
366 // We reason about Add/Sub/Mul Only.
367 bool Overflow = false;
368 switch (I.getOpcode()) {
369 case Instruction::Add:
370 (void)BVal->sadd_ov(*CVal, Overflow);
371 break;
372 case Instruction::Sub:
373 (void)BVal->ssub_ov(*CVal, Overflow);
374 break;
375 case Instruction::Mul:
376 (void)BVal->smul_ov(*CVal, Overflow);
377 break;
378 default:
379 // Conservatively return false for other opcodes.
380 return false;
381 }
382 return !Overflow;
383}
384
387 return OBO && OBO->hasNoUnsignedWrap();
388}
389
392 return OBO && OBO->hasNoSignedWrap();
393}
394
395/// Conservatively clears subclassOptionalData after a reassociation or
396/// commutation. We preserve fast-math flags when applicable as they can be
397/// preserved.
400 if (!FPMO) {
401 I.clearSubclassOptionalData();
402 return;
403 }
404
405 FastMathFlags FMF = I.getFastMathFlags();
406 I.clearSubclassOptionalData();
407 I.setFastMathFlags(FMF);
408}
409
410/// Combine constant operands of associative operations either before or after a
411/// cast to eliminate one of the associative operations:
412/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
413/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
415 InstCombinerImpl &IC) {
416 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
417 if (!Cast || !Cast->hasOneUse())
418 return false;
419
420 // TODO: Enhance logic for other casts and remove this check.
421 auto CastOpcode = Cast->getOpcode();
422 if (CastOpcode != Instruction::ZExt)
423 return false;
424
425 // TODO: Enhance logic for other BinOps and remove this check.
426 if (!BinOp1->isBitwiseLogicOp())
427 return false;
428
429 auto AssocOpcode = BinOp1->getOpcode();
430 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
431 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
432 return false;
433
434 Constant *C1, *C2;
435 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
436 !match(BinOp2->getOperand(1), m_Constant(C2)))
437 return false;
438
439 // TODO: This assumes a zext cast.
440 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
441 // to the destination type might lose bits.
442
443 // Fold the constants together in the destination type:
444 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
445 const DataLayout &DL = IC.getDataLayout();
446 Type *DestTy = C1->getType();
447 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
448 if (!CastC2)
449 return false;
450 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
451 if (!FoldedC)
452 return false;
453
454 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
455 IC.replaceOperand(*BinOp1, 1, FoldedC);
457 Cast->dropPoisonGeneratingFlags();
458 return true;
459}
460
461// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
462// inttoptr ( ptrtoint (x) ) --> x
463Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
464 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
465 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
466 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
467 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
468 Type *CastTy = IntToPtr->getDestTy();
469 if (PtrToInt &&
470 CastTy->getPointerAddressSpace() ==
471 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
472 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
473 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
474 return PtrToInt->getOperand(0);
475 }
476 return nullptr;
477}
478
479/// This performs a few simplifications for operators that are associative or
480/// commutative:
481///
482/// Commutative operators:
483///
484/// 1. Order operands such that they are listed from right (least complex) to
485/// left (most complex). This puts constants before unary operators before
486/// binary operators.
487///
488/// Associative operators:
489///
490/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
491/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
492///
493/// Associative and commutative operators:
494///
495/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
496/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
497/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
498/// if C1 and C2 are constants.
500 Instruction::BinaryOps Opcode = I.getOpcode();
501 bool Changed = false;
502
503 do {
504 // Order operands such that they are listed from right (least complex) to
505 // left (most complex). This puts constants before unary operators before
506 // binary operators.
507 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
508 getComplexity(I.getOperand(1)))
509 Changed = !I.swapOperands();
510
511 if (I.isCommutative()) {
512 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
513 replaceOperand(I, 0, Pair->first);
514 replaceOperand(I, 1, Pair->second);
515 Changed = true;
516 }
517 }
518
519 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
520 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
521
522 if (I.isAssociative()) {
523 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
524 if (Op0 && Op0->getOpcode() == Opcode) {
525 Value *A = Op0->getOperand(0);
526 Value *B = Op0->getOperand(1);
527 Value *C = I.getOperand(1);
528
529 // Does "B op C" simplify?
530 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
531 // It simplifies to V. Form "A op V".
532 replaceOperand(I, 0, A);
533 replaceOperand(I, 1, V);
534 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
535 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
536
537 // Conservatively clear all optional flags since they may not be
538 // preserved by the reassociation. Reset nsw/nuw based on the above
539 // analysis.
541
542 // Note: this is only valid because SimplifyBinOp doesn't look at
543 // the operands to Op0.
544 if (IsNUW)
545 I.setHasNoUnsignedWrap(true);
546
547 if (IsNSW)
548 I.setHasNoSignedWrap(true);
549
550 Changed = true;
551 ++NumReassoc;
552 continue;
553 }
554 }
555
556 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
557 if (Op1 && Op1->getOpcode() == Opcode) {
558 Value *A = I.getOperand(0);
559 Value *B = Op1->getOperand(0);
560 Value *C = Op1->getOperand(1);
561
562 // Does "A op B" simplify?
563 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
564 // It simplifies to V. Form "V op C".
565 replaceOperand(I, 0, V);
566 replaceOperand(I, 1, C);
567 // Conservatively clear the optional flags, since they may not be
568 // preserved by the reassociation.
570 Changed = true;
571 ++NumReassoc;
572 continue;
573 }
574 }
575 }
576
577 if (I.isAssociative() && I.isCommutative()) {
578 if (simplifyAssocCastAssoc(&I, *this)) {
579 Changed = true;
580 ++NumReassoc;
581 continue;
582 }
583
584 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
585 if (Op0 && Op0->getOpcode() == Opcode) {
586 Value *A = Op0->getOperand(0);
587 Value *B = Op0->getOperand(1);
588 Value *C = I.getOperand(1);
589
590 // Does "C op A" simplify?
591 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
592 // It simplifies to V. Form "V op B".
593 replaceOperand(I, 0, V);
594 replaceOperand(I, 1, B);
595 // Conservatively clear the optional flags, since they may not be
596 // preserved by the reassociation.
598 Changed = true;
599 ++NumReassoc;
600 continue;
601 }
602 }
603
604 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
605 if (Op1 && Op1->getOpcode() == Opcode) {
606 Value *A = I.getOperand(0);
607 Value *B = Op1->getOperand(0);
608 Value *C = Op1->getOperand(1);
609
610 // Does "C op A" simplify?
611 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
612 // It simplifies to V. Form "B op V".
613 replaceOperand(I, 0, B);
614 replaceOperand(I, 1, V);
615 // Conservatively clear the optional flags, since they may not be
616 // preserved by the reassociation.
618 Changed = true;
619 ++NumReassoc;
620 continue;
621 }
622 }
623
624 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
625 // if C1 and C2 are constants.
626 Value *A, *B;
627 Constant *C1, *C2, *CRes;
628 if (Op0 && Op1 &&
629 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
630 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
631 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
632 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
633 bool IsNUW = hasNoUnsignedWrap(I) &&
634 hasNoUnsignedWrap(*Op0) &&
635 hasNoUnsignedWrap(*Op1);
636 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
637 BinaryOperator::CreateNUW(Opcode, A, B) :
638 BinaryOperator::Create(Opcode, A, B);
639
640 if (isa<FPMathOperator>(NewBO)) {
641 FastMathFlags Flags = I.getFastMathFlags() &
642 Op0->getFastMathFlags() &
643 Op1->getFastMathFlags();
644 NewBO->setFastMathFlags(Flags);
645 }
646 InsertNewInstWith(NewBO, I.getIterator());
647 NewBO->takeName(Op1);
648 replaceOperand(I, 0, NewBO);
649 replaceOperand(I, 1, CRes);
650 // Conservatively clear the optional flags, since they may not be
651 // preserved by the reassociation.
653 if (IsNUW)
654 I.setHasNoUnsignedWrap(true);
655
656 Changed = true;
657 continue;
658 }
659 }
660
661 // No further simplifications.
662 return Changed;
663 } while (true);
664}
665
666/// Return whether "X LOp (Y ROp Z)" is always equal to
667/// "(X LOp Y) ROp (X LOp Z)".
670 // X & (Y | Z) <--> (X & Y) | (X & Z)
671 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
672 if (LOp == Instruction::And)
673 return ROp == Instruction::Or || ROp == Instruction::Xor;
674
675 // X | (Y & Z) <--> (X | Y) & (X | Z)
676 if (LOp == Instruction::Or)
677 return ROp == Instruction::And;
678
679 // X * (Y + Z) <--> (X * Y) + (X * Z)
680 // X * (Y - Z) <--> (X * Y) - (X * Z)
681 if (LOp == Instruction::Mul)
682 return ROp == Instruction::Add || ROp == Instruction::Sub;
683
684 return false;
685}
686
687/// Return whether "(X LOp Y) ROp Z" is always equal to
688/// "(X ROp Z) LOp (Y ROp Z)".
692 return leftDistributesOverRight(ROp, LOp);
693
694 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
696
697 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
698 // but this requires knowing that the addition does not overflow and other
699 // such subtleties.
700}
701
702/// This function returns identity value for given opcode, which can be used to
703/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
705 if (isa<Constant>(V))
706 return nullptr;
707
708 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
709}
710
711/// This function predicates factorization using distributive laws. By default,
712/// it just returns the 'Op' inputs. But for special-cases like
713/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
714/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
715/// allow more factorization opportunities.
718 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
719 assert(Op && "Expected a binary operator");
720 LHS = Op->getOperand(0);
721 RHS = Op->getOperand(1);
722 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
723 Constant *C;
724 if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) {
725 // X << C --> X * (1 << C)
727 Instruction::Shl, ConstantInt::get(Op->getType(), 1), C);
728 assert(RHS && "Constant folding of immediate constants failed");
729 return Instruction::Mul;
730 }
731 // TODO: We can add other conversions e.g. shr => div etc.
732 }
733 if (Instruction::isBitwiseLogicOp(TopOpcode)) {
734 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
736 // lshr nneg C, X --> ashr nneg C, X
737 return Instruction::AShr;
738 }
739 }
740 return Op->getOpcode();
741}
742
743/// This tries to simplify binary operations by factorizing out common terms
744/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
747 Instruction::BinaryOps InnerOpcode, Value *A,
748 Value *B, Value *C, Value *D) {
749 assert(A && B && C && D && "All values must be provided");
750
751 Value *V = nullptr;
752 Value *RetVal = nullptr;
753 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
754 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
755
756 // Does "X op' Y" always equal "Y op' X"?
757 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
758
759 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
760 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
761 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
762 // commutative case, "(A op' B) op (C op' A)"?
763 if (A == C || (InnerCommutative && A == D)) {
764 if (A != C)
765 std::swap(C, D);
766 // Consider forming "A op' (B op D)".
767 // If "B op D" simplifies then it can be formed with no cost.
768 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
769
770 // If "B op D" doesn't simplify then only go on if one of the existing
771 // operations "A op' B" and "C op' D" will be zapped as no longer used.
772 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
773 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
774 if (V)
775 RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
776 }
777 }
778
779 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
780 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
781 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
782 // commutative case, "(A op' B) op (B op' D)"?
783 if (B == D || (InnerCommutative && B == C)) {
784 if (B != D)
785 std::swap(C, D);
786 // Consider forming "(A op C) op' B".
787 // If "A op C" simplifies then it can be formed with no cost.
788 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
789
790 // If "A op C" doesn't simplify then only go on if one of the existing
791 // operations "A op' B" and "C op' D" will be zapped as no longer used.
792 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
793 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
794 if (V)
795 RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
796 }
797 }
798
799 if (!RetVal)
800 return nullptr;
801
802 ++NumFactor;
803 RetVal->takeName(&I);
804
805 // Try to add no-overflow flags to the final value.
806 if (isa<BinaryOperator>(RetVal)) {
807 bool HasNSW = false;
808 bool HasNUW = false;
810 HasNSW = I.hasNoSignedWrap();
811 HasNUW = I.hasNoUnsignedWrap();
812 }
813 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
814 HasNSW &= LOBO->hasNoSignedWrap();
815 HasNUW &= LOBO->hasNoUnsignedWrap();
816 }
817
818 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
819 HasNSW &= ROBO->hasNoSignedWrap();
820 HasNUW &= ROBO->hasNoUnsignedWrap();
821 }
822
823 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
824 // We can propagate 'nsw' if we know that
825 // %Y = mul nsw i16 %X, C
826 // %Z = add nsw i16 %Y, %X
827 // =>
828 // %Z = mul nsw i16 %X, C+1
829 //
830 // iff C+1 isn't INT_MIN
831 const APInt *CInt;
832 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
833 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
834
835 // nuw can be propagated with any constant or nuw value.
836 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
837 }
838 }
839 return RetVal;
840}
841
842// If `I` has one Const operand and the other matches `(ctpop (not x))`,
843// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
844// This is only useful is the new subtract can fold so we only handle the
845// following cases:
846// 1) (add/sub/disjoint_or C, (ctpop (not x))
847// -> (add/sub/disjoint_or C', (ctpop x))
848// 1) (cmp pred C, (ctpop (not x))
849// -> (cmp pred C', (ctpop x))
851 unsigned Opc = I->getOpcode();
852 unsigned ConstIdx = 1;
853 switch (Opc) {
854 default:
855 return nullptr;
856 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
857 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
858 // is constant.
859 case Instruction::Sub:
860 ConstIdx = 0;
861 break;
862 case Instruction::ICmp:
863 // Signed predicates aren't correct in some edge cases like for i2 types, as
864 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
865 // comparisons against it are simplfied to unsigned.
866 if (cast<ICmpInst>(I)->isSigned())
867 return nullptr;
868 break;
869 case Instruction::Or:
870 if (!match(I, m_DisjointOr(m_Value(), m_Value())))
871 return nullptr;
872 [[fallthrough]];
873 case Instruction::Add:
874 break;
875 }
876
877 Value *Op;
878 // Find ctpop.
879 if (!match(I->getOperand(1 - ConstIdx),
881 return nullptr;
882
883 Constant *C;
884 // Check other operand is ImmConstant.
885 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
886 return nullptr;
887
888 Type *Ty = Op->getType();
889 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
890 // Need extra check for icmp. Note if this check is true, it generally means
891 // the icmp will simplify to true/false.
892 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) {
893 Constant *Cmp =
895 if (!Cmp || !Cmp->isZeroValue())
896 return nullptr;
897 }
898
899 // Check we can invert `(not x)` for free.
900 bool Consumes = false;
901 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
902 return nullptr;
903 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
904 assert(NotOp != nullptr &&
905 "Desync between isFreeToInvert and getFreelyInverted");
906
907 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
908
909 Value *R = nullptr;
910
911 // Do the transformation here to avoid potentially introducing an infinite
912 // loop.
913 switch (Opc) {
914 case Instruction::Sub:
915 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
916 break;
917 case Instruction::Or:
918 case Instruction::Add:
919 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
920 break;
921 case Instruction::ICmp:
922 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
923 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
924 break;
925 default:
926 llvm_unreachable("Unhandled Opcode");
927 }
928 assert(R != nullptr);
929 return replaceInstUsesWith(*I, R);
930}
931
932// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
933// IFF
934// 1) the logic_shifts match
935// 2) either both binops are binops and one is `and` or
936// BinOp1 is `and`
937// (logic_shift (inv_logic_shift C1, C), C) == C1 or
938//
939// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
940//
941// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
942// IFF
943// 1) the logic_shifts match
944// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
945//
946// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
947//
948// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
949// IFF
950// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
951// 2) Binop2 is `not`
952//
953// -> (arithmetic_shift Binop1((not X), Y), Amt)
954
956 const DataLayout &DL = I.getDataLayout();
957 auto IsValidBinOpc = [](unsigned Opc) {
958 switch (Opc) {
959 default:
960 return false;
961 case Instruction::And:
962 case Instruction::Or:
963 case Instruction::Xor:
964 case Instruction::Add:
965 // Skip Sub as we only match constant masks which will canonicalize to use
966 // add.
967 return true;
968 }
969 };
970
971 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
972 // constraints.
973 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
974 unsigned ShOpc) {
975 assert(ShOpc != Instruction::AShr);
976 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
977 ShOpc == Instruction::Shl;
978 };
979
980 auto GetInvShift = [](unsigned ShOpc) {
981 assert(ShOpc != Instruction::AShr);
982 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
983 };
984
985 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
986 unsigned ShOpc, Constant *CMask,
987 Constant *CShift) {
988 // If the BinOp1 is `and` we don't need to check the mask.
989 if (BinOpc1 == Instruction::And)
990 return true;
991
992 // For all other possible transfers we need complete distributable
993 // binop/shift (anything but `add` + `lshr`).
994 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
995 return false;
996
997 // If BinOp2 is `and`, any mask works (this only really helps for non-splat
998 // vecs, otherwise the mask will be simplified and the following check will
999 // handle it).
1000 if (BinOpc2 == Instruction::And)
1001 return true;
1002
1003 // Otherwise, need mask that meets the below requirement.
1004 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
1005 Constant *MaskInvShift =
1006 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1007 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
1008 CMask;
1009 };
1010
1011 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
1012 Constant *CMask, *CShift;
1013 Value *X, *Y, *ShiftedX, *Mask, *Shift;
1014 if (!match(I.getOperand(ShOpnum),
1015 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
1016 return nullptr;
1017 if (!match(I.getOperand(1 - ShOpnum),
1019 m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))),
1020 m_Value(ShiftedX)),
1021 m_Value(Mask))))
1022 return nullptr;
1023 // Make sure we are matching instruction shifts and not ConstantExpr
1024 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
1025 auto *IX = dyn_cast<Instruction>(ShiftedX);
1026 if (!IY || !IX)
1027 return nullptr;
1028
1029 // LHS and RHS need same shift opcode
1030 unsigned ShOpc = IY->getOpcode();
1031 if (ShOpc != IX->getOpcode())
1032 return nullptr;
1033
1034 // Make sure binop is real instruction and not ConstantExpr
1035 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
1036 if (!BO2)
1037 return nullptr;
1038
1039 unsigned BinOpc = BO2->getOpcode();
1040 // Make sure we have valid binops.
1041 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
1042 return nullptr;
1043
1044 if (ShOpc == Instruction::AShr) {
1045 if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
1046 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
1047 Value *NotX = Builder.CreateNot(X);
1048 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
1050 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
1051 }
1052
1053 return nullptr;
1054 }
1055
1056 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
1057 // distribute to drop the shift irrelevant of constants.
1058 if (BinOpc == I.getOpcode() &&
1059 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
1060 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
1061 Value *NewBinOp1 = Builder.CreateBinOp(
1062 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
1063 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
1064 }
1065
1066 // Otherwise we can only distribute by constant shifting the mask, so
1067 // ensure we have constants.
1068 if (!match(Shift, m_ImmConstant(CShift)))
1069 return nullptr;
1070 if (!match(Mask, m_ImmConstant(CMask)))
1071 return nullptr;
1072
1073 // Check if we can distribute the binops.
1074 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1075 return nullptr;
1076
1077 Constant *NewCMask =
1078 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1079 Value *NewBinOp2 = Builder.CreateBinOp(
1080 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
1081 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
1082 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
1083 NewBinOp1, CShift);
1084 };
1085
1086 if (Instruction *R = MatchBinOp(0))
1087 return R;
1088 return MatchBinOp(1);
1089}
1090
1091// (Binop (zext C), (select C, T, F))
1092// -> (select C, (binop 1, T), (binop 0, F))
1093//
1094// (Binop (sext C), (select C, T, F))
1095// -> (select C, (binop -1, T), (binop 0, F))
1096//
1097// Attempt to simplify binary operations into a select with folded args, when
1098// one operand of the binop is a select instruction and the other operand is a
1099// zext/sext extension, whose value is the select condition.
1102 // TODO: this simplification may be extended to any speculatable instruction,
1103 // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1104 Instruction::BinaryOps Opc = I.getOpcode();
1105 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1106 Value *A, *CondVal, *TrueVal, *FalseVal;
1107 Value *CastOp;
1108
1109 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1110 return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1111 A->getType()->getScalarSizeInBits() == 1 &&
1112 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1113 m_Value(FalseVal)));
1114 };
1115
1116 // Make sure one side of the binop is a select instruction, and the other is a
1117 // zero/sign extension operating on a i1.
1118 if (MatchSelectAndCast(LHS, RHS))
1119 CastOp = LHS;
1120 else if (MatchSelectAndCast(RHS, LHS))
1121 CastOp = RHS;
1122 else
1123 return nullptr;
1124
1125 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1126 bool IsCastOpRHS = (CastOp == RHS);
1127 bool IsZExt = isa<ZExtInst>(CastOp);
1128 Constant *C;
1129
1130 if (IsTrueArm) {
1131 C = Constant::getNullValue(V->getType());
1132 } else if (IsZExt) {
1133 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1134 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1135 } else {
1136 C = Constant::getAllOnesValue(V->getType());
1137 }
1138
1139 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1140 : Builder.CreateBinOp(Opc, C, V);
1141 };
1142
1143 // If the value used in the zext/sext is the select condition, or the negated
1144 // of the select condition, the binop can be simplified.
1145 if (CondVal == A) {
1146 Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1147 return SelectInst::Create(CondVal, NewTrueVal,
1148 NewFoldedConst(true, FalseVal));
1149 }
1150
1151 if (match(A, m_Not(m_Specific(CondVal)))) {
1152 Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1153 return SelectInst::Create(CondVal, NewTrueVal,
1154 NewFoldedConst(false, FalseVal));
1155 }
1156
1157 return nullptr;
1158}
1159
1161 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1164 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1165 Value *A, *B, *C, *D;
1166 Instruction::BinaryOps LHSOpcode, RHSOpcode;
1167
1168 if (Op0)
1169 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1170 if (Op1)
1171 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1172
1173 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
1174 // a common term.
1175 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1176 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1177 return V;
1178
1179 // The instruction has the form "(A op' B) op (C)". Try to factorize common
1180 // term.
1181 if (Op0)
1182 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1183 if (Value *V =
1184 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1185 return V;
1186
1187 // The instruction has the form "(B) op (C op' D)". Try to factorize common
1188 // term.
1189 if (Op1)
1190 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1191 if (Value *V =
1192 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1193 return V;
1194
1195 return nullptr;
1196}
1197
1198/// This tries to simplify binary operations which some other binary operation
1199/// distributes over either by factorizing out common terms
1200/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1201/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1202/// Returns the simplified value, or null if it didn't simplify.
1204 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1207 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1208
1209 // Factorization.
1210 if (Value *R = tryFactorizationFolds(I))
1211 return R;
1212
1213 // Expansion.
1214 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1215 // The instruction has the form "(A op' B) op C". See if expanding it out
1216 // to "(A op C) op' (B op C)" results in simplifications.
1217 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1218 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1219
1220 // Disable the use of undef because it's not safe to distribute undef.
1221 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1222 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1223 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1224
1225 // Do "A op C" and "B op C" both simplify?
1226 if (L && R) {
1227 // They do! Return "L op' R".
1228 ++NumExpand;
1229 C = Builder.CreateBinOp(InnerOpcode, L, R);
1230 C->takeName(&I);
1231 return C;
1232 }
1233
1234 // Does "A op C" simplify to the identity value for the inner opcode?
1235 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1236 // They do! Return "B op C".
1237 ++NumExpand;
1238 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1239 C->takeName(&I);
1240 return C;
1241 }
1242
1243 // Does "B op C" simplify to the identity value for the inner opcode?
1244 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1245 // They do! Return "A op C".
1246 ++NumExpand;
1247 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1248 C->takeName(&I);
1249 return C;
1250 }
1251 }
1252
1253 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1254 // The instruction has the form "A op (B op' C)". See if expanding it out
1255 // to "(A op B) op' (A op C)" results in simplifications.
1256 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1257 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1258
1259 // Disable the use of undef because it's not safe to distribute undef.
1260 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1261 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1262 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1263
1264 // Do "A op B" and "A op C" both simplify?
1265 if (L && R) {
1266 // They do! Return "L op' R".
1267 ++NumExpand;
1268 A = Builder.CreateBinOp(InnerOpcode, L, R);
1269 A->takeName(&I);
1270 return A;
1271 }
1272
1273 // Does "A op B" simplify to the identity value for the inner opcode?
1274 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1275 // They do! Return "A op C".
1276 ++NumExpand;
1277 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1278 A->takeName(&I);
1279 return A;
1280 }
1281
1282 // Does "A op C" simplify to the identity value for the inner opcode?
1283 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1284 // They do! Return "A op B".
1285 ++NumExpand;
1286 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1287 A->takeName(&I);
1288 return A;
1289 }
1290 }
1291
1292 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1293}
1294
1295static std::optional<std::pair<Value *, Value *>>
1297 if (LHS->getParent() != RHS->getParent())
1298 return std::nullopt;
1299
1300 if (LHS->getNumIncomingValues() < 2)
1301 return std::nullopt;
1302
1303 if (!equal(LHS->blocks(), RHS->blocks()))
1304 return std::nullopt;
1305
1306 Value *L0 = LHS->getIncomingValue(0);
1307 Value *R0 = RHS->getIncomingValue(0);
1308
1309 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1310 Value *L1 = LHS->getIncomingValue(I);
1311 Value *R1 = RHS->getIncomingValue(I);
1312
1313 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1314 continue;
1315
1316 return std::nullopt;
1317 }
1318
1319 return std::optional(std::pair(L0, R0));
1320}
1321
1322std::optional<std::pair<Value *, Value *>>
1323InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1326 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1327 return std::nullopt;
1328 switch (LHSInst->getOpcode()) {
1329 case Instruction::PHI:
1331 case Instruction::Select: {
1332 Value *Cond = LHSInst->getOperand(0);
1333 Value *TrueVal = LHSInst->getOperand(1);
1334 Value *FalseVal = LHSInst->getOperand(2);
1335 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1336 FalseVal == RHSInst->getOperand(1))
1337 return std::pair(TrueVal, FalseVal);
1338 return std::nullopt;
1339 }
1340 case Instruction::Call: {
1341 // Match min(a, b) and max(a, b)
1342 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1343 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1344 if (LHSMinMax && RHSMinMax &&
1345 LHSMinMax->getPredicate() ==
1347 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1348 LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1349 (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1350 LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1351 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1352 return std::nullopt;
1353 }
1354 default:
1355 return std::nullopt;
1356 }
1357}
1358
1360 Value *LHS,
1361 Value *RHS) {
1362 Value *A, *B, *C, *D, *E, *F;
1363 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1364 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1365 if (!LHSIsSelect && !RHSIsSelect)
1366 return nullptr;
1367
1369 ? nullptr
1370 : cast<SelectInst>(LHSIsSelect ? LHS : RHS);
1371
1372 FastMathFlags FMF;
1374 if (const auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
1375 FMF = FPOp->getFastMathFlags();
1376 Builder.setFastMathFlags(FMF);
1377 }
1378
1379 Instruction::BinaryOps Opcode = I.getOpcode();
1380 SimplifyQuery Q = SQ.getWithInstruction(&I);
1381
1382 Value *Cond, *True = nullptr, *False = nullptr;
1383
1384 // Special-case for add/negate combination. Replace the zero in the negation
1385 // with the trailing add operand:
1386 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1387 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1388 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1389 // We need an 'add' and exactly 1 arm of the select to have been simplified.
1390 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1391 return nullptr;
1392 Value *N;
1393 if (True && match(FVal, m_Neg(m_Value(N)))) {
1394 Value *Sub = Builder.CreateSub(Z, N);
1395 return Builder.CreateSelect(Cond, True, Sub, I.getName(), SI);
1396 }
1397 if (False && match(TVal, m_Neg(m_Value(N)))) {
1398 Value *Sub = Builder.CreateSub(Z, N);
1399 return Builder.CreateSelect(Cond, Sub, False, I.getName(), SI);
1400 }
1401 return nullptr;
1402 };
1403
1404 if (LHSIsSelect && RHSIsSelect && A == D) {
1405 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1406 Cond = A;
1407 True = simplifyBinOp(Opcode, B, E, FMF, Q);
1408 False = simplifyBinOp(Opcode, C, F, FMF, Q);
1409
1410 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1411 if (False && !True)
1412 True = Builder.CreateBinOp(Opcode, B, E);
1413 else if (True && !False)
1414 False = Builder.CreateBinOp(Opcode, C, F);
1415 }
1416 } else if (LHSIsSelect && LHS->hasOneUse()) {
1417 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1418 Cond = A;
1419 True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1420 False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1421 if (Value *NewSel = foldAddNegate(B, C, RHS))
1422 return NewSel;
1423 } else if (RHSIsSelect && RHS->hasOneUse()) {
1424 // X op (D ? E : F) -> D ? (X op E) : (X op F)
1425 Cond = D;
1426 True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1427 False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1428 if (Value *NewSel = foldAddNegate(E, F, LHS))
1429 return NewSel;
1430 }
1431
1432 if (!True || !False)
1433 return nullptr;
1434
1435 Value *NewSI = Builder.CreateSelect(Cond, True, False, I.getName(), SI);
1436 NewSI->takeName(&I);
1437 return NewSI;
1438}
1439
1440/// Freely adapt every user of V as-if V was changed to !V.
1441/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1443 assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1444 for (User *U : make_early_inc_range(I->users())) {
1445 if (U == IgnoredUser)
1446 continue; // Don't consider this user.
1447 switch (cast<Instruction>(U)->getOpcode()) {
1448 case Instruction::Select: {
1449 auto *SI = cast<SelectInst>(U);
1450 SI->swapValues();
1451 SI->swapProfMetadata();
1452 break;
1453 }
1454 case Instruction::Br: {
1456 BI->swapSuccessors(); // swaps prof metadata too
1457 if (BPI)
1458 BPI->swapSuccEdgesProbabilities(BI->getParent());
1459 break;
1460 }
1461 case Instruction::Xor:
1463 // Add to worklist for DCE.
1465 break;
1466 default:
1467 llvm_unreachable("Got unexpected user - out of sync with "
1468 "canFreelyInvertAllUsersOf() ?");
1469 }
1470 }
1471
1472 // Update pre-existing debug value uses.
1473 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1474 llvm::findDbgValues(I, DbgVariableRecords);
1475
1476 for (DbgVariableRecord *DbgVal : DbgVariableRecords) {
1477 SmallVector<uint64_t, 1> Ops = {dwarf::DW_OP_not};
1478 for (unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
1479 Idx != End; ++Idx)
1480 if (DbgVal->getVariableLocationOp(Idx) == I)
1481 DbgVal->setExpression(
1482 DIExpression::appendOpsToArg(DbgVal->getExpression(), Ops, Idx));
1483 }
1484}
1485
1486/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1487/// constant zero (which is the 'negate' form).
1488Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1489 Value *NegV;
1490 if (match(V, m_Neg(m_Value(NegV))))
1491 return NegV;
1492
1493 // Constants can be considered to be negated values if they can be folded.
1495 return ConstantExpr::getNeg(C);
1496
1498 if (C->getType()->getElementType()->isIntegerTy())
1499 return ConstantExpr::getNeg(C);
1500
1502 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1503 Constant *Elt = CV->getAggregateElement(i);
1504 if (!Elt)
1505 return nullptr;
1506
1507 if (isa<UndefValue>(Elt))
1508 continue;
1509
1510 if (!isa<ConstantInt>(Elt))
1511 return nullptr;
1512 }
1513 return ConstantExpr::getNeg(CV);
1514 }
1515
1516 // Negate integer vector splats.
1517 if (auto *CV = dyn_cast<Constant>(V))
1518 if (CV->getType()->isVectorTy() &&
1519 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1520 return ConstantExpr::getNeg(CV);
1521
1522 return nullptr;
1523}
1524
1525// Try to fold:
1526// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1527// -> ({s|u}itofp (int_binop x, y))
1528// 2) (fp_binop ({s|u}itofp x), FpC)
1529// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1530//
1531// Assuming the sign of the cast for x/y is `OpsFromSigned`.
1532Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1533 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
1535
1536 Type *FPTy = BO.getType();
1537 Type *IntTy = IntOps[0]->getType();
1538
1539 unsigned IntSz = IntTy->getScalarSizeInBits();
1540 // This is the maximum number of inuse bits by the integer where the int -> fp
1541 // casts are exact.
1542 unsigned MaxRepresentableBits =
1544
1545 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1546 // checks later on.
1547 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1548
1549 // NB: This only comes up if OpsFromSigned is true, so there is no need to
1550 // cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1551 auto IsNonZero = [&](unsigned OpNo) -> bool {
1552 if (OpsKnown[OpNo].hasKnownBits() &&
1553 OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
1554 return true;
1555 return isKnownNonZero(IntOps[OpNo], SQ);
1556 };
1557
1558 auto IsNonNeg = [&](unsigned OpNo) -> bool {
1559 // NB: This matches the impl in ValueTracking, we just try to use cached
1560 // knownbits here. If we ever start supporting WithCache for
1561 // `isKnownNonNegative`, change this to an explicit call.
1562 return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
1563 };
1564
1565 // Check if we know for certain that ({s|u}itofp op) is exact.
1566 auto IsValidPromotion = [&](unsigned OpNo) -> bool {
1567 // Can we treat this operand as the desired sign?
1568 if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
1569 !IsNonNeg(OpNo))
1570 return false;
1571
1572 // If fp precision >= bitwidth(op) then its exact.
1573 // NB: This is slightly conservative for `sitofp`. For signed conversion, we
1574 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1575 // handled specially. We can't, however, increase the bound arbitrarily for
1576 // `sitofp` as for larger sizes, it won't sign extend.
1577 if (MaxRepresentableBits < IntSz) {
1578 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1579 // numSignBits(op).
1580 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1581 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1582 if (OpsFromSigned)
1583 NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
1584 // Finally for unsigned check that fp precision >= bitwidth(op) -
1585 // numLeadingZeros(op).
1586 else {
1587 NumUsedLeadingBits[OpNo] =
1588 IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
1589 }
1590 }
1591 // NB: We could also check if op is known to be a power of 2 or zero (which
1592 // will always be representable). Its unlikely, however, that is we are
1593 // unable to bound op in any way we will be able to pass the overflow checks
1594 // later on.
1595
1596 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1597 return false;
1598 // Signed + Mul also requires that op is non-zero to avoid -0 cases.
1599 return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
1600 IsNonZero(OpNo);
1601 };
1602
1603 // If we have a constant rhs, see if we can losslessly convert it to an int.
1604 if (Op1FpC != nullptr) {
1605 // Signed + Mul req non-zero
1606 if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
1607 !match(Op1FpC, m_NonZeroFP()))
1608 return nullptr;
1609
1611 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1612 IntTy, DL);
1613 if (Op1IntC == nullptr)
1614 return nullptr;
1615 if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
1616 : Instruction::UIToFP,
1617 Op1IntC, FPTy, DL) != Op1FpC)
1618 return nullptr;
1619
1620 // First try to keep sign of cast the same.
1621 IntOps[1] = Op1IntC;
1622 }
1623
1624 // Ensure lhs/rhs integer types match.
1625 if (IntTy != IntOps[1]->getType())
1626 return nullptr;
1627
1628 if (Op1FpC == nullptr) {
1629 if (!IsValidPromotion(1))
1630 return nullptr;
1631 }
1632 if (!IsValidPromotion(0))
1633 return nullptr;
1634
1635 // Final we check if the integer version of the binop will not overflow.
1637 // Because of the precision check, we can often rule out overflows.
1638 bool NeedsOverflowCheck = true;
1639 // Try to conservatively rule out overflow based on the already done precision
1640 // checks.
1641 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1642 unsigned OverflowMaxCurBits =
1643 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1644 bool OutputSigned = OpsFromSigned;
1645 switch (BO.getOpcode()) {
1646 case Instruction::FAdd:
1647 IntOpc = Instruction::Add;
1648 OverflowMaxOutputBits += OverflowMaxCurBits;
1649 break;
1650 case Instruction::FSub:
1651 IntOpc = Instruction::Sub;
1652 OverflowMaxOutputBits += OverflowMaxCurBits;
1653 break;
1654 case Instruction::FMul:
1655 IntOpc = Instruction::Mul;
1656 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1657 break;
1658 default:
1659 llvm_unreachable("Unsupported binop");
1660 }
1661 // The precision check may have already ruled out overflow.
1662 if (OverflowMaxOutputBits < IntSz) {
1663 NeedsOverflowCheck = false;
1664 // We can bound unsigned overflow from sub to in range signed value (this is
1665 // what allows us to avoid the overflow check for sub).
1666 if (IntOpc == Instruction::Sub)
1667 OutputSigned = true;
1668 }
1669
1670 // Precision check did not rule out overflow, so need to check.
1671 // TODO: If we add support for `WithCache` in `willNotOverflow`, change
1672 // `IntOps[...]` arguments to `KnownOps[...]`.
1673 if (NeedsOverflowCheck &&
1674 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1675 return nullptr;
1676
1677 Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1678 if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1679 IntBO->setHasNoSignedWrap(OutputSigned);
1680 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1681 }
1682 if (OutputSigned)
1683 return new SIToFPInst(IntBinOp, FPTy);
1684 return new UIToFPInst(IntBinOp, FPTy);
1685}
1686
1687// Try to fold:
1688// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1689// -> ({s|u}itofp (int_binop x, y))
1690// 2) (fp_binop ({s|u}itofp x), FpC)
1691// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1692Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
1693 // Don't perform the fold on vectors, as the integer operation may be much
1694 // more expensive than the float operation in that case.
1695 if (BO.getType()->isVectorTy())
1696 return nullptr;
1697
1698 std::array<Value *, 2> IntOps = {nullptr, nullptr};
1699 Constant *Op1FpC = nullptr;
1700 // Check for:
1701 // 1) (binop ({s|u}itofp x), ({s|u}itofp y))
1702 // 2) (binop ({s|u}itofp x), FpC)
1703 if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
1704 !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
1705 return nullptr;
1706
1707 if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
1708 !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
1709 !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
1710 return nullptr;
1711
1712 // Cache KnownBits a bit to potentially save some analysis.
1713 SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
1714
1715 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1716 // different constraints depending on the sign of the cast.
1717 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1718 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
1719 IntOps, Op1FpC, OpsKnown))
1720 return R;
1721 return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
1722 Op1FpC, OpsKnown);
1723}
1724
1725/// A binop with a constant operand and a sign-extended boolean operand may be
1726/// converted into a select of constants by applying the binary operation to
1727/// the constant with the two possible values of the extended boolean (0 or -1).
1728Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1729 // TODO: Handle non-commutative binop (constant is operand 0).
1730 // TODO: Handle zext.
1731 // TODO: Peek through 'not' of cast.
1732 Value *BO0 = BO.getOperand(0);
1733 Value *BO1 = BO.getOperand(1);
1734 Value *X;
1735 Constant *C;
1736 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1737 !X->getType()->isIntOrIntVectorTy(1))
1738 return nullptr;
1739
1740 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1743 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1744 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1745 return createSelectInstWithUnknownProfile(X, TVal, FVal);
1746}
1747
1749 bool IsTrueArm) {
1751 for (Value *Op : I.operands()) {
1752 Value *V = nullptr;
1753 if (Op == SI) {
1754 V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue();
1755 } else if (match(SI->getCondition(),
1758 m_Specific(Op), m_Value(V))) &&
1760 // Pass
1761 } else if (match(Op, m_ZExt(m_Specific(SI->getCondition())))) {
1762 V = IsTrueArm ? ConstantInt::get(Op->getType(), 1)
1763 : ConstantInt::getNullValue(Op->getType());
1764 } else {
1765 V = Op;
1766 }
1767 Ops.push_back(V);
1768 }
1769
1770 return simplifyInstructionWithOperands(&I, Ops, I.getDataLayout());
1771}
1772
1774 Value *NewOp, InstCombiner &IC) {
1775 Instruction *Clone = I.clone();
1776 Clone->replaceUsesOfWith(SI, NewOp);
1778 IC.InsertNewInstBefore(Clone, I.getIterator());
1779 return Clone;
1780}
1781
1783 bool FoldWithMultiUse,
1784 bool SimplifyBothArms) {
1785 // Don't modify shared select instructions unless set FoldWithMultiUse
1786 if (!SI->hasOneUse() && !FoldWithMultiUse)
1787 return nullptr;
1788
1789 Value *TV = SI->getTrueValue();
1790 Value *FV = SI->getFalseValue();
1791
1792 // Bool selects with constant operands can be folded to logical ops.
1793 if (SI->getType()->isIntOrIntVectorTy(1))
1794 return nullptr;
1795
1796 // Avoid breaking min/max reduction pattern,
1797 // which is necessary for vectorization later.
1799 for (Value *IntrinOp : Op.operands())
1800 if (auto *PN = dyn_cast<PHINode>(IntrinOp))
1801 for (Value *PhiOp : PN->operands())
1802 if (PhiOp == &Op)
1803 return nullptr;
1804
1805 // Test if a FCmpInst instruction is used exclusively by a select as
1806 // part of a minimum or maximum operation. If so, refrain from doing
1807 // any other folding. This helps out other analyses which understand
1808 // non-obfuscated minimum and maximum idioms. And in this case, at
1809 // least one of the comparison operands has at least one user besides
1810 // the compare (the select), which would often largely negate the
1811 // benefit of folding anyway.
1812 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1813 if (CI->hasOneUse()) {
1814 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1815 if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
1816 !CI->isCommutative())
1817 return nullptr;
1818 }
1819 }
1820
1821 // Make sure that one of the select arms folds successfully.
1822 Value *NewTV = simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/true);
1823 Value *NewFV =
1824 simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/false);
1825 if (!NewTV && !NewFV)
1826 return nullptr;
1827
1828 if (SimplifyBothArms && !(NewTV && NewFV))
1829 return nullptr;
1830
1831 // Create an instruction for the arm that did not fold.
1832 if (!NewTV)
1833 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1834 if (!NewFV)
1835 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1836 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1837}
1838
1840 Value *InValue, BasicBlock *InBB,
1841 const DataLayout &DL,
1842 const SimplifyQuery SQ) {
1843 // NB: It is a precondition of this transform that the operands be
1844 // phi translatable!
1846 for (Value *Op : I.operands()) {
1847 if (Op == PN)
1848 Ops.push_back(InValue);
1849 else
1850 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1851 }
1852
1853 // Don't consider the simplification successful if we get back a constant
1854 // expression. That's just an instruction in hiding.
1855 // Also reject the case where we simplify back to the phi node. We wouldn't
1856 // be able to remove it in that case.
1858 &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1859 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1860 return NewVal;
1861
1862 // Check if incoming PHI value can be replaced with constant
1863 // based on implied condition.
1864 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1865 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1866 if (TerminatorBI && TerminatorBI->isConditional() &&
1867 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1868 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1869 std::optional<bool> ImpliedCond = isImpliedCondition(
1870 TerminatorBI->getCondition(), ICmp->getCmpPredicate(), Ops[0], Ops[1],
1871 DL, LHSIsTrue);
1872 if (ImpliedCond)
1873 return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1874 }
1875
1876 return nullptr;
1877}
1878
1879/// In some cases it is beneficial to fold a select into a binary operator.
1880/// For example:
1881/// %1 = or %in, 4
1882/// %2 = select %cond, %1, %in
1883/// %3 = or %2, 1
1884/// =>
1885/// %1 = select i1 %cond, 5, 1
1886/// %2 = or %1, %in
1888 assert(Op.isAssociative() && "The operation must be associative!");
1889
1890 SelectInst *SI = dyn_cast<SelectInst>(Op.getOperand(0));
1891
1892 Constant *Const;
1893 if (!SI || !match(Op.getOperand(1), m_ImmConstant(Const)) ||
1894 !Op.hasOneUse() || !SI->hasOneUse())
1895 return nullptr;
1896
1897 Value *TV = SI->getTrueValue();
1898 Value *FV = SI->getFalseValue();
1899 Value *Input, *NewTV, *NewFV;
1900 Constant *Const2;
1901
1902 if (TV->hasOneUse() && match(TV, m_BinOp(Op.getOpcode(), m_Specific(FV),
1903 m_ImmConstant(Const2)))) {
1904 NewTV = ConstantFoldBinaryInstruction(Op.getOpcode(), Const, Const2);
1905 NewFV = Const;
1906 Input = FV;
1907 } else if (FV->hasOneUse() &&
1908 match(FV, m_BinOp(Op.getOpcode(), m_Specific(TV),
1909 m_ImmConstant(Const2)))) {
1910 NewTV = Const;
1911 NewFV = ConstantFoldBinaryInstruction(Op.getOpcode(), Const, Const2);
1912 Input = TV;
1913 } else
1914 return nullptr;
1915
1916 if (!NewTV || !NewFV)
1917 return nullptr;
1918
1919 Value *NewSI = Builder.CreateSelect(SI->getCondition(), NewTV, NewFV);
1920 return BinaryOperator::Create(Op.getOpcode(), NewSI, Input);
1921}
1922
1924 bool AllowMultipleUses) {
1925 unsigned NumPHIValues = PN->getNumIncomingValues();
1926 if (NumPHIValues == 0)
1927 return nullptr;
1928
1929 // We normally only transform phis with a single use. However, if a PHI has
1930 // multiple uses and they are all the same operation, we can fold *all* of the
1931 // uses into the PHI.
1932 bool OneUse = PN->hasOneUse();
1933 bool IdenticalUsers = false;
1934 if (!AllowMultipleUses && !OneUse) {
1935 // Walk the use list for the instruction, comparing them to I.
1936 for (User *U : PN->users()) {
1938 if (UI != &I && !I.isIdenticalTo(UI))
1939 return nullptr;
1940 }
1941 // Otherwise, we can replace *all* users with the new PHI we form.
1942 IdenticalUsers = true;
1943 }
1944
1945 // Check that all operands are phi-translatable.
1946 for (Value *Op : I.operands()) {
1947 if (Op == PN)
1948 continue;
1949
1950 // Non-instructions never require phi-translation.
1951 auto *I = dyn_cast<Instruction>(Op);
1952 if (!I)
1953 continue;
1954
1955 // Phi-translate can handle phi nodes in the same block.
1956 if (isa<PHINode>(I))
1957 if (I->getParent() == PN->getParent())
1958 continue;
1959
1960 // Operand dominates the block, no phi-translation necessary.
1961 if (DT.dominates(I, PN->getParent()))
1962 continue;
1963
1964 // Not phi-translatable, bail out.
1965 return nullptr;
1966 }
1967
1968 // Check to see whether the instruction can be folded into each phi operand.
1969 // If there is one operand that does not fold, remember the BB it is in.
1970 SmallVector<Value *> NewPhiValues;
1971 SmallVector<unsigned int> OpsToMoveUseToIncomingBB;
1972 bool SeenNonSimplifiedInVal = false;
1973 for (unsigned i = 0; i != NumPHIValues; ++i) {
1974 Value *InVal = PN->getIncomingValue(i);
1975 BasicBlock *InBB = PN->getIncomingBlock(i);
1976
1977 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1978 NewPhiValues.push_back(NewVal);
1979 continue;
1980 }
1981
1982 // Handle some cases that can't be fully simplified, but where we know that
1983 // the two instructions will fold into one.
1984 auto WillFold = [&]() {
1985 if (!InVal->hasUseList() || !InVal->hasOneUser())
1986 return false;
1987
1988 // icmp of ucmp/scmp with constant will fold to icmp.
1989 const APInt *Ignored;
1990 if (isa<CmpIntrinsic>(InVal) &&
1991 match(&I, m_ICmp(m_Specific(PN), m_APInt(Ignored))))
1992 return true;
1993
1994 // icmp eq zext(bool), 0 will fold to !bool.
1995 if (isa<ZExtInst>(InVal) &&
1996 cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) &&
1997 match(&I,
1999 return true;
2000
2001 return false;
2002 };
2003
2004 if (WillFold()) {
2005 OpsToMoveUseToIncomingBB.push_back(i);
2006 NewPhiValues.push_back(nullptr);
2007 continue;
2008 }
2009
2010 if (!OneUse && !IdenticalUsers)
2011 return nullptr;
2012
2013 if (SeenNonSimplifiedInVal)
2014 return nullptr; // More than one non-simplified value.
2015 SeenNonSimplifiedInVal = true;
2016
2017 // If there is exactly one non-simplified value, we can insert a copy of the
2018 // operation in that block. However, if this is a critical edge, we would
2019 // be inserting the computation on some other paths (e.g. inside a loop).
2020 // Only do this if the pred block is unconditionally branching into the phi
2021 // block. Also, make sure that the pred block is not dead code.
2023 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(InBB))
2024 return nullptr;
2025
2026 NewPhiValues.push_back(nullptr);
2027 OpsToMoveUseToIncomingBB.push_back(i);
2028
2029 // Do not push the operation across a loop backedge. This could result in
2030 // an infinite combine loop, and is generally non-profitable (especially
2031 // if the operation was originally outside the loop).
2032 if (isBackEdge(InBB, PN->getParent()))
2033 return nullptr;
2034 }
2035
2036 // Clone the instruction that uses the phi node and move it into the incoming
2037 // BB because we know that the next iteration of InstCombine will simplify it.
2039 for (auto OpIndex : OpsToMoveUseToIncomingBB) {
2041 BasicBlock *OpBB = PN->getIncomingBlock(OpIndex);
2042
2043 Instruction *Clone = Clones.lookup(OpBB);
2044 if (!Clone) {
2045 Clone = I.clone();
2046 for (Use &U : Clone->operands()) {
2047 if (U == PN)
2048 U = Op;
2049 else
2050 U = U->DoPHITranslation(PN->getParent(), OpBB);
2051 }
2052 Clone = InsertNewInstBefore(Clone, OpBB->getTerminator()->getIterator());
2053 Clones.insert({OpBB, Clone});
2054 // We may have speculated the instruction.
2056 }
2057
2058 NewPhiValues[OpIndex] = Clone;
2059 }
2060
2061 // Okay, we can do the transformation: create the new PHI node.
2062 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
2063 InsertNewInstBefore(NewPN, PN->getIterator());
2064 NewPN->takeName(PN);
2065 NewPN->setDebugLoc(PN->getDebugLoc());
2066
2067 for (unsigned i = 0; i != NumPHIValues; ++i)
2068 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
2069
2070 if (IdenticalUsers) {
2071 // Collect and deduplicate users up-front to avoid iterator invalidation.
2073 for (User *U : PN->users()) {
2075 if (User == &I)
2076 continue;
2077 ToReplace.insert(User);
2078 }
2079 for (Instruction *I : ToReplace) {
2080 replaceInstUsesWith(*I, NewPN);
2082 }
2083 OneUse = true;
2084 }
2085
2086 if (OneUse) {
2087 replaceAllDbgUsesWith(*PN, *NewPN, *PN, DT);
2088 }
2089 return replaceInstUsesWith(I, NewPN);
2090}
2091
2093 if (!BO.isAssociative())
2094 return nullptr;
2095
2096 // Find the interleaved binary ops.
2097 auto Opc = BO.getOpcode();
2098 auto *BO0 = dyn_cast<BinaryOperator>(BO.getOperand(0));
2099 auto *BO1 = dyn_cast<BinaryOperator>(BO.getOperand(1));
2100 if (!BO0 || !BO1 || !BO0->hasNUses(2) || !BO1->hasNUses(2) ||
2101 BO0->getOpcode() != Opc || BO1->getOpcode() != Opc ||
2102 !BO0->isAssociative() || !BO1->isAssociative() ||
2103 BO0->getParent() != BO1->getParent())
2104 return nullptr;
2105
2106 assert(BO.isCommutative() && BO0->isCommutative() && BO1->isCommutative() &&
2107 "Expected commutative instructions!");
2108
2109 // Find the matching phis, forming the recurrences.
2110 PHINode *PN0, *PN1;
2111 Value *Start0, *Step0, *Start1, *Step1;
2112 if (!matchSimpleRecurrence(BO0, PN0, Start0, Step0) || !PN0->hasOneUse() ||
2113 !matchSimpleRecurrence(BO1, PN1, Start1, Step1) || !PN1->hasOneUse() ||
2114 PN0->getParent() != PN1->getParent())
2115 return nullptr;
2116
2117 assert(PN0->getNumIncomingValues() == 2 && PN1->getNumIncomingValues() == 2 &&
2118 "Expected PHIs with two incoming values!");
2119
2120 // Convert the start and step values to constants.
2121 auto *Init0 = dyn_cast<Constant>(Start0);
2122 auto *Init1 = dyn_cast<Constant>(Start1);
2123 auto *C0 = dyn_cast<Constant>(Step0);
2124 auto *C1 = dyn_cast<Constant>(Step1);
2125 if (!Init0 || !Init1 || !C0 || !C1)
2126 return nullptr;
2127
2128 // Fold the recurrence constants.
2129 auto *Init = ConstantFoldBinaryInstruction(Opc, Init0, Init1);
2130 auto *C = ConstantFoldBinaryInstruction(Opc, C0, C1);
2131 if (!Init || !C)
2132 return nullptr;
2133
2134 // Create the reduced PHI.
2135 auto *NewPN = PHINode::Create(PN0->getType(), PN0->getNumIncomingValues(),
2136 "reduced.phi");
2137
2138 // Create the new binary op.
2139 auto *NewBO = BinaryOperator::Create(Opc, NewPN, C);
2140 if (Opc == Instruction::FAdd || Opc == Instruction::FMul) {
2141 // Intersect FMF flags for FADD and FMUL.
2142 FastMathFlags Intersect = BO0->getFastMathFlags() &
2143 BO1->getFastMathFlags() & BO.getFastMathFlags();
2144 NewBO->setFastMathFlags(Intersect);
2145 } else {
2146 OverflowTracking Flags;
2147 Flags.AllKnownNonNegative = false;
2148 Flags.AllKnownNonZero = false;
2149 Flags.mergeFlags(*BO0);
2150 Flags.mergeFlags(*BO1);
2151 Flags.mergeFlags(BO);
2152 Flags.applyFlags(*NewBO);
2153 }
2154 NewBO->takeName(&BO);
2155
2156 for (unsigned I = 0, E = PN0->getNumIncomingValues(); I != E; ++I) {
2157 auto *V = PN0->getIncomingValue(I);
2158 auto *BB = PN0->getIncomingBlock(I);
2159 if (V == Init0) {
2160 assert(((PN1->getIncomingValue(0) == Init1 &&
2161 PN1->getIncomingBlock(0) == BB) ||
2162 (PN1->getIncomingValue(1) == Init1 &&
2163 PN1->getIncomingBlock(1) == BB)) &&
2164 "Invalid incoming block!");
2165 NewPN->addIncoming(Init, BB);
2166 } else if (V == BO0) {
2167 assert(((PN1->getIncomingValue(0) == BO1 &&
2168 PN1->getIncomingBlock(0) == BB) ||
2169 (PN1->getIncomingValue(1) == BO1 &&
2170 PN1->getIncomingBlock(1) == BB)) &&
2171 "Invalid incoming block!");
2172 NewPN->addIncoming(NewBO, BB);
2173 } else
2174 llvm_unreachable("Unexpected incoming value!");
2175 }
2176
2177 LLVM_DEBUG(dbgs() << " Combined " << *PN0 << "\n " << *BO0
2178 << "\n with " << *PN1 << "\n " << *BO1
2179 << '\n');
2180
2181 // Insert the new recurrence and remove the old (dead) ones.
2182 InsertNewInstWith(NewPN, PN0->getIterator());
2183 InsertNewInstWith(NewBO, BO0->getIterator());
2184
2191
2192 return replaceInstUsesWith(BO, NewBO);
2193}
2194
2196 // Attempt to fold binary operators whose operands are simple recurrences.
2197 if (auto *NewBO = foldBinopWithRecurrence(BO))
2198 return NewBO;
2199
2200 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
2201 // we are guarding against replicating the binop in >1 predecessor.
2202 // This could miss matching a phi with 2 constant incoming values.
2203 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
2204 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
2205 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
2206 Phi0->getNumOperands() != Phi1->getNumOperands())
2207 return nullptr;
2208
2209 // TODO: Remove the restriction for binop being in the same block as the phis.
2210 if (BO.getParent() != Phi0->getParent() ||
2211 BO.getParent() != Phi1->getParent())
2212 return nullptr;
2213
2214 // Fold if there is at least one specific constant value in phi0 or phi1's
2215 // incoming values that comes from the same block and this specific constant
2216 // value can be used to do optimization for specific binary operator.
2217 // For example:
2218 // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
2219 // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
2220 // %add = add i32 %phi0, %phi1
2221 // ==>
2222 // %add = phi i32 [%j, %bb0], [%i, %bb1]
2224 /*AllowRHSConstant*/ false);
2225 if (C) {
2226 SmallVector<Value *, 4> NewIncomingValues;
2227 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
2228 auto &Phi0Use = std::get<0>(T);
2229 auto &Phi1Use = std::get<1>(T);
2230 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
2231 return false;
2232 Value *Phi0UseV = Phi0Use.get();
2233 Value *Phi1UseV = Phi1Use.get();
2234 if (Phi0UseV == C)
2235 NewIncomingValues.push_back(Phi1UseV);
2236 else if (Phi1UseV == C)
2237 NewIncomingValues.push_back(Phi0UseV);
2238 else
2239 return false;
2240 return true;
2241 };
2242
2243 if (all_of(zip(Phi0->operands(), Phi1->operands()),
2244 CanFoldIncomingValuePair)) {
2245 PHINode *NewPhi =
2246 PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
2247 assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
2248 "The number of collected incoming values should equal the number "
2249 "of the original PHINode operands!");
2250 for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
2251 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
2252 return NewPhi;
2253 }
2254 }
2255
2256 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2257 return nullptr;
2258
2259 // Match a pair of incoming constants for one of the predecessor blocks.
2260 BasicBlock *ConstBB, *OtherBB;
2261 Constant *C0, *C1;
2262 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
2263 ConstBB = Phi0->getIncomingBlock(0);
2264 OtherBB = Phi0->getIncomingBlock(1);
2265 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
2266 ConstBB = Phi0->getIncomingBlock(1);
2267 OtherBB = Phi0->getIncomingBlock(0);
2268 } else {
2269 return nullptr;
2270 }
2271 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
2272 return nullptr;
2273
2274 // The block that we are hoisting to must reach here unconditionally.
2275 // Otherwise, we could be speculatively executing an expensive or
2276 // non-speculative op.
2277 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
2278 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2279 !DT.isReachableFromEntry(OtherBB))
2280 return nullptr;
2281
2282 // TODO: This check could be tightened to only apply to binops (div/rem) that
2283 // are not safe to speculatively execute. But that could allow hoisting
2284 // potentially expensive instructions (fdiv for example).
2285 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
2287 return nullptr;
2288
2289 // Fold constants for the predecessor block with constant incoming values.
2290 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
2291 if (!NewC)
2292 return nullptr;
2293
2294 // Make a new binop in the predecessor block with the non-constant incoming
2295 // values.
2296 Builder.SetInsertPoint(PredBlockBranch);
2297 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
2298 Phi0->getIncomingValueForBlock(OtherBB),
2299 Phi1->getIncomingValueForBlock(OtherBB));
2300 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
2301 NotFoldedNewBO->copyIRFlags(&BO);
2302
2303 // Replace the binop with a phi of the new values. The old phis are dead.
2304 PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
2305 NewPhi->addIncoming(NewBO, OtherBB);
2306 NewPhi->addIncoming(NewC, ConstBB);
2307 return NewPhi;
2308}
2309
2311 bool IsOtherParamConst = isa<Constant>(I.getOperand(1));
2312
2313 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
2314 if (Instruction *NewSel =
2315 FoldOpIntoSelect(I, Sel, false, !IsOtherParamConst))
2316 return NewSel;
2317 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
2318 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
2319 return NewPhi;
2320 }
2321 return nullptr;
2322}
2323
2325 // If this GEP has only 0 indices, it is the same pointer as
2326 // Src. If Src is not a trivial GEP too, don't combine
2327 // the indices.
2328 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2329 !Src.hasOneUse())
2330 return false;
2331 return true;
2332}
2333
2334/// Find a constant NewC that has property:
2335/// shuffle(NewC, ShMask) = C
2336/// Returns nullptr if such a constant does not exist e.g. ShMask=<0,0> C=<1,2>
2337///
2338/// A 1-to-1 mapping is not required. Example:
2339/// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <poison,5,6,poison>
2341 VectorType *NewCTy) {
2342 if (isa<ScalableVectorType>(NewCTy)) {
2343 Constant *Splat = C->getSplatValue();
2344 if (!Splat)
2345 return nullptr;
2347 }
2348
2349 if (cast<FixedVectorType>(NewCTy)->getNumElements() >
2350 cast<FixedVectorType>(C->getType())->getNumElements())
2351 return nullptr;
2352
2353 unsigned NewCNumElts = cast<FixedVectorType>(NewCTy)->getNumElements();
2354 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
2355 SmallVector<Constant *, 16> NewVecC(NewCNumElts, PoisonScalar);
2356 unsigned NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
2357 for (unsigned I = 0; I < NumElts; ++I) {
2358 Constant *CElt = C->getAggregateElement(I);
2359 if (ShMask[I] >= 0) {
2360 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
2361 Constant *NewCElt = NewVecC[ShMask[I]];
2362 // Bail out if:
2363 // 1. The constant vector contains a constant expression.
2364 // 2. The shuffle needs an element of the constant vector that can't
2365 // be mapped to a new constant vector.
2366 // 3. This is a widening shuffle that copies elements of V1 into the
2367 // extended elements (extending with poison is allowed).
2368 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2369 I >= NewCNumElts)
2370 return nullptr;
2371 NewVecC[ShMask[I]] = CElt;
2372 }
2373 }
2374 return ConstantVector::get(NewVecC);
2375}
2376
2377// Get the result of `Vector Op Splat` (or Splat Op Vector if \p SplatLHS).
2379 Constant *Splat, bool SplatLHS,
2380 const DataLayout &DL) {
2381 ElementCount EC = cast<VectorType>(Vector->getType())->getElementCount();
2383 Constant *RHS = Vector;
2384 if (!SplatLHS)
2385 std::swap(LHS, RHS);
2386 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
2387}
2388
2390 if (!isa<VectorType>(Inst.getType()))
2391 return nullptr;
2392
2393 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
2394 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
2395 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
2396 cast<VectorType>(Inst.getType())->getElementCount());
2397 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
2398 cast<VectorType>(Inst.getType())->getElementCount());
2399
2400 auto foldConstantsThroughSubVectorInsertSplat =
2401 [&](Value *MaybeSubVector, Value *MaybeSplat,
2402 bool SplatLHS) -> Instruction * {
2403 Value *Idx;
2404 Constant *Splat, *SubVector, *Dest;
2405 if (!match(MaybeSplat, m_ConstantSplat(m_Constant(Splat))) ||
2406 !match(MaybeSubVector,
2407 m_VectorInsert(m_Constant(Dest), m_Constant(SubVector),
2408 m_Value(Idx))))
2409 return nullptr;
2410 SubVector =
2411 constantFoldBinOpWithSplat(Opcode, SubVector, Splat, SplatLHS, DL);
2412 Dest = constantFoldBinOpWithSplat(Opcode, Dest, Splat, SplatLHS, DL);
2413 if (!SubVector || !Dest)
2414 return nullptr;
2415 auto *InsertVector =
2416 Builder.CreateInsertVector(Dest->getType(), Dest, SubVector, Idx);
2417 return replaceInstUsesWith(Inst, InsertVector);
2418 };
2419
2420 // If one operand is a constant splat and the other operand is a
2421 // `vector.insert` where both the destination and subvector are constant,
2422 // apply the operation to both the destination and subvector, returning a new
2423 // constant `vector.insert`. This helps constant folding for scalable vectors.
2424 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2425 /*MaybeSubVector=*/LHS, /*MaybeSplat=*/RHS, /*SplatLHS=*/false))
2426 return Folded;
2427 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2428 /*MaybeSubVector=*/RHS, /*MaybeSplat=*/LHS, /*SplatLHS=*/true))
2429 return Folded;
2430
2431 // If both operands of the binop are vector concatenations, then perform the
2432 // narrow binop on each pair of the source operands followed by concatenation
2433 // of the results.
2434 Value *L0, *L1, *R0, *R1;
2435 ArrayRef<int> Mask;
2436 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
2437 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
2438 LHS->hasOneUse() && RHS->hasOneUse() &&
2439 cast<ShuffleVectorInst>(LHS)->isConcat() &&
2440 cast<ShuffleVectorInst>(RHS)->isConcat()) {
2441 // This transform does not have the speculative execution constraint as
2442 // below because the shuffle is a concatenation. The new binops are
2443 // operating on exactly the same elements as the existing binop.
2444 // TODO: We could ease the mask requirement to allow different undef lanes,
2445 // but that requires an analysis of the binop-with-undef output value.
2446 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
2447 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2448 BO->copyIRFlags(&Inst);
2449 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
2450 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2451 BO->copyIRFlags(&Inst);
2452 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
2453 }
2454
2455 auto createBinOpReverse = [&](Value *X, Value *Y) {
2456 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2457 if (auto *BO = dyn_cast<BinaryOperator>(V))
2458 BO->copyIRFlags(&Inst);
2459 Module *M = Inst.getModule();
2461 M, Intrinsic::vector_reverse, V->getType());
2462 return CallInst::Create(F, V);
2463 };
2464
2465 // NOTE: Reverse shuffles don't require the speculative execution protection
2466 // below because they don't affect which lanes take part in the computation.
2467
2468 Value *V1, *V2;
2469 if (match(LHS, m_VecReverse(m_Value(V1)))) {
2470 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2471 if (match(RHS, m_VecReverse(m_Value(V2))) &&
2472 (LHS->hasOneUse() || RHS->hasOneUse() ||
2473 (LHS == RHS && LHS->hasNUses(2))))
2474 return createBinOpReverse(V1, V2);
2475
2476 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2477 if (LHS->hasOneUse() && isSplatValue(RHS))
2478 return createBinOpReverse(V1, RHS);
2479 }
2480 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2481 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
2482 return createBinOpReverse(LHS, V2);
2483
2484 auto createBinOpVPReverse = [&](Value *X, Value *Y, Value *EVL) {
2485 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2486 if (auto *BO = dyn_cast<BinaryOperator>(V))
2487 BO->copyIRFlags(&Inst);
2488
2489 ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
2490 Value *AllTrueMask = Builder.CreateVectorSplat(EC, Builder.getTrue());
2491 Module *M = Inst.getModule();
2493 M, Intrinsic::experimental_vp_reverse, V->getType());
2494 return CallInst::Create(F, {V, AllTrueMask, EVL});
2495 };
2496
2497 Value *EVL;
2499 m_Value(V1), m_AllOnes(), m_Value(EVL)))) {
2500 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2502 m_Value(V2), m_AllOnes(), m_Specific(EVL))) &&
2503 (LHS->hasOneUse() || RHS->hasOneUse() ||
2504 (LHS == RHS && LHS->hasNUses(2))))
2505 return createBinOpVPReverse(V1, V2, EVL);
2506
2507 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2508 if (LHS->hasOneUse() && isSplatValue(RHS))
2509 return createBinOpVPReverse(V1, RHS, EVL);
2510 }
2511 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2512 else if (isSplatValue(LHS) &&
2514 m_Value(V2), m_AllOnes(), m_Value(EVL))))
2515 return createBinOpVPReverse(LHS, V2, EVL);
2516
2517 // It may not be safe to reorder shuffles and things like div, urem, etc.
2518 // because we may trap when executing those ops on unknown vector elements.
2519 // See PR20059.
2521 return nullptr;
2522
2523 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
2524 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
2525 if (auto *BO = dyn_cast<BinaryOperator>(XY))
2526 BO->copyIRFlags(&Inst);
2527 return new ShuffleVectorInst(XY, M);
2528 };
2529
2530 // If both arguments of the binary operation are shuffles that use the same
2531 // mask and shuffle within a single vector, move the shuffle after the binop.
2532 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
2533 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
2534 V1->getType() == V2->getType() &&
2535 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2536 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2537 return createBinOpShuffle(V1, V2, Mask);
2538 }
2539
2540 // If both arguments of a commutative binop are select-shuffles that use the
2541 // same mask with commuted operands, the shuffles are unnecessary.
2542 if (Inst.isCommutative() &&
2543 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
2544 match(RHS,
2545 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
2546 auto *LShuf = cast<ShuffleVectorInst>(LHS);
2547 auto *RShuf = cast<ShuffleVectorInst>(RHS);
2548 // TODO: Allow shuffles that contain undefs in the mask?
2549 // That is legal, but it reduces undef knowledge.
2550 // TODO: Allow arbitrary shuffles by shuffling after binop?
2551 // That might be legal, but we have to deal with poison.
2552 if (LShuf->isSelect() &&
2553 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
2554 RShuf->isSelect() &&
2555 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
2556 // Example:
2557 // LHS = shuffle V1, V2, <0, 5, 6, 3>
2558 // RHS = shuffle V2, V1, <0, 5, 6, 3>
2559 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2560 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
2561 NewBO->copyIRFlags(&Inst);
2562 return NewBO;
2563 }
2564 }
2565
2566 // If one argument is a shuffle within one vector and the other is a constant,
2567 // try moving the shuffle after the binary operation. This canonicalization
2568 // intends to move shuffles closer to other shuffles and binops closer to
2569 // other binops, so they can be folded. It may also enable demanded elements
2570 // transforms.
2571 Constant *C;
2573 m_Mask(Mask))),
2574 m_ImmConstant(C)))) {
2575 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
2576 "Shuffle should not change scalar type");
2577
2578 bool ConstOp1 = isa<Constant>(RHS);
2579 if (Constant *NewC =
2581 // For fixed vectors, lanes of NewC not used by the shuffle will be poison
2582 // which will cause UB for div/rem. Mask them with a safe constant.
2583 if (isa<FixedVectorType>(V1->getType()) && Inst.isIntDivRem())
2584 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
2585
2586 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2587 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2588 Value *NewLHS = ConstOp1 ? V1 : NewC;
2589 Value *NewRHS = ConstOp1 ? NewC : V1;
2590 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2591 }
2592 }
2593
2594 // Try to reassociate to sink a splat shuffle after a binary operation.
2595 if (Inst.isAssociative() && Inst.isCommutative()) {
2596 // Canonicalize shuffle operand as LHS.
2597 if (isa<ShuffleVectorInst>(RHS))
2598 std::swap(LHS, RHS);
2599
2600 Value *X;
2601 ArrayRef<int> MaskC;
2602 int SplatIndex;
2603 Value *Y, *OtherOp;
2604 if (!match(LHS,
2605 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2606 !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
2607 X->getType() != Inst.getType() ||
2608 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2609 return nullptr;
2610
2611 // FIXME: This may not be safe if the analysis allows undef elements. By
2612 // moving 'Y' before the splat shuffle, we are implicitly assuming
2613 // that it is not undef/poison at the splat index.
2614 if (isSplatValue(OtherOp, SplatIndex)) {
2615 std::swap(Y, OtherOp);
2616 } else if (!isSplatValue(Y, SplatIndex)) {
2617 return nullptr;
2618 }
2619
2620 // X and Y are splatted values, so perform the binary operation on those
2621 // values followed by a splat followed by the 2nd binary operation:
2622 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2623 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2624 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2625 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2626 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2627
2628 // Intersect FMF on both new binops. Other (poison-generating) flags are
2629 // dropped to be safe.
2630 if (isa<FPMathOperator>(R)) {
2631 R->copyFastMathFlags(&Inst);
2632 R->andIRFlags(RHS);
2633 }
2634 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2635 NewInstBO->copyIRFlags(R);
2636 return R;
2637 }
2638
2639 return nullptr;
2640}
2641
2642/// Try to narrow the width of a binop if at least 1 operand is an extend of
2643/// of a value. This requires a potentially expensive known bits check to make
2644/// sure the narrow op does not overflow.
2645Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2646 // We need at least one extended operand.
2647 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2648
2649 // If this is a sub, we swap the operands since we always want an extension
2650 // on the RHS. The LHS can be an extension or a constant.
2651 if (BO.getOpcode() == Instruction::Sub)
2652 std::swap(Op0, Op1);
2653
2654 Value *X;
2655 bool IsSext = match(Op0, m_SExt(m_Value(X)));
2656 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2657 return nullptr;
2658
2659 // If both operands are the same extension from the same source type and we
2660 // can eliminate at least one (hasOneUse), this might work.
2661 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2662 Value *Y;
2663 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2664 cast<Operator>(Op1)->getOpcode() == CastOpc &&
2665 (Op0->hasOneUse() || Op1->hasOneUse()))) {
2666 // If that did not match, see if we have a suitable constant operand.
2667 // Truncating and extending must produce the same constant.
2668 Constant *WideC;
2669 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2670 return nullptr;
2671 Constant *NarrowC = getLosslessInvCast(WideC, X->getType(), CastOpc, DL);
2672 if (!NarrowC)
2673 return nullptr;
2674 Y = NarrowC;
2675 }
2676
2677 // Swap back now that we found our operands.
2678 if (BO.getOpcode() == Instruction::Sub)
2679 std::swap(X, Y);
2680
2681 // Both operands have narrow versions. Last step: the math must not overflow
2682 // in the narrow width.
2683 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2684 return nullptr;
2685
2686 // bo (ext X), (ext Y) --> ext (bo X, Y)
2687 // bo (ext X), C --> ext (bo X, C')
2688 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2689 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2690 if (IsSext)
2691 NewBinOp->setHasNoSignedWrap();
2692 else
2693 NewBinOp->setHasNoUnsignedWrap();
2694 }
2695 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2696}
2697
2698/// Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y))
2699/// transform.
2704
2705/// Thread a GEP operation with constant indices through the constant true/false
2706/// arms of a select.
2708 InstCombiner::BuilderTy &Builder) {
2709 if (!GEP.hasAllConstantIndices())
2710 return nullptr;
2711
2712 Instruction *Sel;
2713 Value *Cond;
2714 Constant *TrueC, *FalseC;
2715 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2716 !match(Sel,
2717 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2718 return nullptr;
2719
2720 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2721 // Propagate 'inbounds' and metadata from existing instructions.
2722 // Note: using IRBuilder to create the constants for efficiency.
2723 SmallVector<Value *, 4> IndexC(GEP.indices());
2724 GEPNoWrapFlags NW = GEP.getNoWrapFlags();
2725 Type *Ty = GEP.getSourceElementType();
2726 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW);
2727 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW);
2728 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2729}
2730
2731// Canonicalization:
2732// gep T, (gep i8, base, C1), (Index + C2) into
2733// gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
2735 GEPOperator *Src,
2736 InstCombinerImpl &IC) {
2737 if (GEP.getNumIndices() != 1)
2738 return nullptr;
2739 auto &DL = IC.getDataLayout();
2740 Value *Base;
2741 const APInt *C1;
2742 if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1))))
2743 return nullptr;
2744 Value *VarIndex;
2745 const APInt *C2;
2746 Type *PtrTy = Src->getType()->getScalarType();
2747 unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy);
2748 if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2))))
2749 return nullptr;
2750 if (C1->getBitWidth() != IndexSizeInBits ||
2751 C2->getBitWidth() != IndexSizeInBits)
2752 return nullptr;
2753 Type *BaseType = GEP.getSourceElementType();
2755 return nullptr;
2756 APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType));
2757 APInt NewOffset = TypeSize * *C2 + *C1;
2758 if (NewOffset.isZero() ||
2759 (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) {
2761 if (GEP.hasNoUnsignedWrap() &&
2762 cast<GEPOperator>(Src)->hasNoUnsignedWrap() &&
2763 match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()))) {
2765 if (GEP.isInBounds() && cast<GEPOperator>(Src)->isInBounds())
2766 Flags |= GEPNoWrapFlags::inBounds();
2767 }
2768
2769 Value *GEPConst =
2770 IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset), "", Flags);
2771 return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex, Flags);
2772 }
2773
2774 return nullptr;
2775}
2776
2777/// Combine constant offsets separated by variable offsets.
2778/// ptradd (ptradd (ptradd p, C1), x), C2 -> ptradd (ptradd p, x), C1+C2
2780 InstCombinerImpl &IC) {
2781 if (!GEP.hasAllConstantIndices())
2782 return nullptr;
2783
2786 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
2787 while (true) {
2788 if (!InnerGEP)
2789 return nullptr;
2790
2791 NW = NW.intersectForReassociate(InnerGEP->getNoWrapFlags());
2792 if (InnerGEP->hasAllConstantIndices())
2793 break;
2794
2795 if (!InnerGEP->hasOneUse())
2796 return nullptr;
2797
2798 Skipped.push_back(InnerGEP);
2799 InnerGEP = dyn_cast<GetElementPtrInst>(InnerGEP->getPointerOperand());
2800 }
2801
2802 // The two constant offset GEPs are directly adjacent: Let normal offset
2803 // merging handle it.
2804 if (Skipped.empty())
2805 return nullptr;
2806
2807 // FIXME: This one-use check is not strictly necessary. Consider relaxing it
2808 // if profitable.
2809 if (!InnerGEP->hasOneUse())
2810 return nullptr;
2811
2812 // Don't bother with vector splats.
2813 Type *Ty = GEP.getType();
2814 if (InnerGEP->getType() != Ty)
2815 return nullptr;
2816
2817 const DataLayout &DL = IC.getDataLayout();
2818 APInt Offset(DL.getIndexTypeSizeInBits(Ty), 0);
2819 if (!GEP.accumulateConstantOffset(DL, Offset) ||
2820 !InnerGEP->accumulateConstantOffset(DL, Offset))
2821 return nullptr;
2822
2823 IC.replaceOperand(*Skipped.back(), 0, InnerGEP->getPointerOperand());
2824 for (GetElementPtrInst *SkippedGEP : Skipped)
2825 SkippedGEP->setNoWrapFlags(NW);
2826
2827 return IC.replaceInstUsesWith(
2828 GEP,
2829 IC.Builder.CreatePtrAdd(Skipped.front(), IC.Builder.getInt(Offset), "",
2830 NW.intersectForOffsetAdd(GEP.getNoWrapFlags())));
2831}
2832
2834 GEPOperator *Src) {
2835 // Combine Indices - If the source pointer to this getelementptr instruction
2836 // is a getelementptr instruction with matching element type, combine the
2837 // indices of the two getelementptr instructions into a single instruction.
2838 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2839 return nullptr;
2840
2841 if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this))
2842 return I;
2843
2844 if (auto *I = combineConstantOffsets(GEP, *this))
2845 return I;
2846
2847 if (Src->getResultElementType() != GEP.getSourceElementType())
2848 return nullptr;
2849
2850 // Find out whether the last index in the source GEP is a sequential idx.
2851 bool EndsWithSequential = false;
2852 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2853 I != E; ++I)
2854 EndsWithSequential = I.isSequential();
2855 if (!EndsWithSequential)
2856 return nullptr;
2857
2858 // Replace: gep (gep %P, long B), long A, ...
2859 // With: T = long A+B; gep %P, T, ...
2860 Value *SO1 = Src->getOperand(Src->getNumOperands() - 1);
2861 Value *GO1 = GEP.getOperand(1);
2862
2863 // If they aren't the same type, then the input hasn't been processed
2864 // by the loop above yet (which canonicalizes sequential index types to
2865 // intptr_t). Just avoid transforming this until the input has been
2866 // normalized.
2867 if (SO1->getType() != GO1->getType())
2868 return nullptr;
2869
2870 Value *Sum =
2871 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2872 // Only do the combine when we are sure the cost after the
2873 // merge is never more than that before the merge.
2874 if (Sum == nullptr)
2875 return nullptr;
2876
2878 Indices.append(Src->op_begin() + 1, Src->op_end() - 1);
2879 Indices.push_back(Sum);
2880 Indices.append(GEP.op_begin() + 2, GEP.op_end());
2881
2882 // Don't create GEPs with more than one non-zero index.
2883 unsigned NumNonZeroIndices = count_if(Indices, [](Value *Idx) {
2884 auto *C = dyn_cast<Constant>(Idx);
2885 return !C || !C->isNullValue();
2886 });
2887 if (NumNonZeroIndices > 1)
2888 return nullptr;
2889
2890 return replaceInstUsesWith(
2891 GEP, Builder.CreateGEP(
2892 Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2894}
2895
2898 bool &DoesConsume, unsigned Depth) {
2899 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2900 // ~(~(X)) -> X.
2901 Value *A, *B;
2902 if (match(V, m_Not(m_Value(A)))) {
2903 DoesConsume = true;
2904 return A;
2905 }
2906
2907 Constant *C;
2908 // Constants can be considered to be not'ed values.
2909 if (match(V, m_ImmConstant(C)))
2910 return ConstantExpr::getNot(C);
2911
2913 return nullptr;
2914
2915 // The rest of the cases require that we invert all uses so don't bother
2916 // doing the analysis if we know we can't use the result.
2917 if (!WillInvertAllUses)
2918 return nullptr;
2919
2920 // Compares can be inverted if all of their uses are being modified to use
2921 // the ~V.
2922 if (auto *I = dyn_cast<CmpInst>(V)) {
2923 if (Builder != nullptr)
2924 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2925 I->getOperand(1));
2926 return NonNull;
2927 }
2928
2929 // If `V` is of the form `A + B` then `-1 - V` can be folded into
2930 // `(-1 - B) - A` if we are willing to invert all of the uses.
2931 if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2932 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2933 DoesConsume, Depth))
2934 return Builder ? Builder->CreateSub(BV, A) : NonNull;
2935 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2936 DoesConsume, Depth))
2937 return Builder ? Builder->CreateSub(AV, B) : NonNull;
2938 return nullptr;
2939 }
2940
2941 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2942 // into `A ^ B` if we are willing to invert all of the uses.
2943 if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2944 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2945 DoesConsume, Depth))
2946 return Builder ? Builder->CreateXor(A, BV) : NonNull;
2947 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2948 DoesConsume, Depth))
2949 return Builder ? Builder->CreateXor(AV, B) : NonNull;
2950 return nullptr;
2951 }
2952
2953 // If `V` is of the form `B - A` then `-1 - V` can be folded into
2954 // `A + (-1 - B)` if we are willing to invert all of the uses.
2955 if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2956 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2957 DoesConsume, Depth))
2958 return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2959 return nullptr;
2960 }
2961
2962 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2963 // into `A s>> B` if we are willing to invert all of the uses.
2964 if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2965 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2966 DoesConsume, Depth))
2967 return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2968 return nullptr;
2969 }
2970
2971 Value *Cond;
2972 // LogicOps are special in that we canonicalize them at the cost of an
2973 // instruction.
2974 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2976 // Selects/min/max with invertible operands are freely invertible
2977 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2978 bool LocalDoesConsume = DoesConsume;
2979 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2980 LocalDoesConsume, Depth))
2981 return nullptr;
2982 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2983 LocalDoesConsume, Depth)) {
2984 DoesConsume = LocalDoesConsume;
2985 if (Builder != nullptr) {
2986 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2987 DoesConsume, Depth);
2988 assert(NotB != nullptr &&
2989 "Unable to build inverted value for known freely invertable op");
2990 if (auto *II = dyn_cast<IntrinsicInst>(V))
2991 return Builder->CreateBinaryIntrinsic(
2992 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2993 return Builder->CreateSelect(Cond, NotA, NotB);
2994 }
2995 return NonNull;
2996 }
2997 }
2998
2999 if (PHINode *PN = dyn_cast<PHINode>(V)) {
3000 bool LocalDoesConsume = DoesConsume;
3002 for (Use &U : PN->operands()) {
3003 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
3004 Value *NewIncomingVal = getFreelyInvertedImpl(
3005 U.get(), /*WillInvertAllUses=*/false,
3006 /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
3007 if (NewIncomingVal == nullptr)
3008 return nullptr;
3009 // Make sure that we can safely erase the original PHI node.
3010 if (NewIncomingVal == V)
3011 return nullptr;
3012 if (Builder != nullptr)
3013 IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
3014 }
3015
3016 DoesConsume = LocalDoesConsume;
3017 if (Builder != nullptr) {
3019 Builder->SetInsertPoint(PN);
3020 PHINode *NewPN =
3021 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
3022 for (auto [Val, Pred] : IncomingValues)
3023 NewPN->addIncoming(Val, Pred);
3024 return NewPN;
3025 }
3026 return NonNull;
3027 }
3028
3029 if (match(V, m_SExtLike(m_Value(A)))) {
3030 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3031 DoesConsume, Depth))
3032 return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
3033 return nullptr;
3034 }
3035
3036 if (match(V, m_Trunc(m_Value(A)))) {
3037 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3038 DoesConsume, Depth))
3039 return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
3040 return nullptr;
3041 }
3042
3043 // De Morgan's Laws:
3044 // (~(A | B)) -> (~A & ~B)
3045 // (~(A & B)) -> (~A | ~B)
3046 auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
3047 bool IsLogical, Value *A,
3048 Value *B) -> Value * {
3049 bool LocalDoesConsume = DoesConsume;
3050 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
3051 LocalDoesConsume, Depth))
3052 return nullptr;
3053 if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3054 LocalDoesConsume, Depth)) {
3055 auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
3056 LocalDoesConsume, Depth);
3057 DoesConsume = LocalDoesConsume;
3058 if (IsLogical)
3059 return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
3060 return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
3061 }
3062
3063 return nullptr;
3064 };
3065
3066 if (match(V, m_Or(m_Value(A), m_Value(B))))
3067 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
3068 B);
3069
3070 if (match(V, m_And(m_Value(A), m_Value(B))))
3071 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
3072 B);
3073
3074 if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
3075 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
3076 B);
3077
3078 if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
3079 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
3080 B);
3081
3082 return nullptr;
3083}
3084
3085/// Return true if we should canonicalize the gep to an i8 ptradd.
3087 Value *PtrOp = GEP.getOperand(0);
3088 Type *GEPEltType = GEP.getSourceElementType();
3089 if (GEPEltType->isIntegerTy(8))
3090 return false;
3091
3092 // Canonicalize scalable GEPs to an explicit offset using the llvm.vscale
3093 // intrinsic. This has better support in BasicAA.
3094 if (GEPEltType->isScalableTy())
3095 return true;
3096
3097 // gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two multiplies
3098 // together.
3099 if (GEP.getNumIndices() == 1 &&
3100 match(GEP.getOperand(1),
3102 m_Shl(m_Value(), m_ConstantInt())))))
3103 return true;
3104
3105 // gep (gep %p, C1), %x, C2 is expanded so the two constants can
3106 // possibly be merged together.
3107 auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp);
3108 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
3109 any_of(GEP.indices(), [](Value *V) {
3110 const APInt *C;
3111 return match(V, m_APInt(C)) && !C->isZero();
3112 });
3113}
3114
3116 IRBuilderBase &Builder) {
3117 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
3118 if (!Op1)
3119 return nullptr;
3120
3121 // Don't fold a GEP into itself through a PHI node. This can only happen
3122 // through the back-edge of a loop. Folding a GEP into itself means that
3123 // the value of the previous iteration needs to be stored in the meantime,
3124 // thus requiring an additional register variable to be live, but not
3125 // actually achieving anything (the GEP still needs to be executed once per
3126 // loop iteration).
3127 if (Op1 == &GEP)
3128 return nullptr;
3129 GEPNoWrapFlags NW = Op1->getNoWrapFlags();
3130
3131 int DI = -1;
3132
3133 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
3134 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
3135 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
3136 Op1->getSourceElementType() != Op2->getSourceElementType())
3137 return nullptr;
3138
3139 // As for Op1 above, don't try to fold a GEP into itself.
3140 if (Op2 == &GEP)
3141 return nullptr;
3142
3143 // Keep track of the type as we walk the GEP.
3144 Type *CurTy = nullptr;
3145
3146 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
3147 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
3148 return nullptr;
3149
3150 if (Op1->getOperand(J) != Op2->getOperand(J)) {
3151 if (DI == -1) {
3152 // We have not seen any differences yet in the GEPs feeding the
3153 // PHI yet, so we record this one if it is allowed to be a
3154 // variable.
3155
3156 // The first two arguments can vary for any GEP, the rest have to be
3157 // static for struct slots
3158 if (J > 1) {
3159 assert(CurTy && "No current type?");
3160 if (CurTy->isStructTy())
3161 return nullptr;
3162 }
3163
3164 DI = J;
3165 } else {
3166 // The GEP is different by more than one input. While this could be
3167 // extended to support GEPs that vary by more than one variable it
3168 // doesn't make sense since it greatly increases the complexity and
3169 // would result in an R+R+R addressing mode which no backend
3170 // directly supports and would need to be broken into several
3171 // simpler instructions anyway.
3172 return nullptr;
3173 }
3174 }
3175
3176 // Sink down a layer of the type for the next iteration.
3177 if (J > 0) {
3178 if (J == 1) {
3179 CurTy = Op1->getSourceElementType();
3180 } else {
3181 CurTy =
3182 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
3183 }
3184 }
3185 }
3186
3187 NW &= Op2->getNoWrapFlags();
3188 }
3189
3190 // If not all GEPs are identical we'll have to create a new PHI node.
3191 // Check that the old PHI node has only one use so that it will get
3192 // removed.
3193 if (DI != -1 && !PN->hasOneUse())
3194 return nullptr;
3195
3196 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
3197 NewGEP->setNoWrapFlags(NW);
3198
3199 if (DI == -1) {
3200 // All the GEPs feeding the PHI are identical. Clone one down into our
3201 // BB so that it can be merged with the current GEP.
3202 } else {
3203 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
3204 // into the current block so it can be merged, and create a new PHI to
3205 // set that index.
3206 PHINode *NewPN;
3207 {
3208 IRBuilderBase::InsertPointGuard Guard(Builder);
3209 Builder.SetInsertPoint(PN);
3210 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
3211 PN->getNumOperands());
3212 }
3213
3214 for (auto &I : PN->operands())
3215 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
3216 PN->getIncomingBlock(I));
3217
3218 NewGEP->setOperand(DI, NewPN);
3219 }
3220
3221 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
3222 return NewGEP;
3223}
3224
3226 Value *PtrOp = GEP.getOperand(0);
3227 SmallVector<Value *, 8> Indices(GEP.indices());
3228 Type *GEPType = GEP.getType();
3229 Type *GEPEltType = GEP.getSourceElementType();
3230 if (Value *V =
3231 simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(),
3232 SQ.getWithInstruction(&GEP)))
3233 return replaceInstUsesWith(GEP, V);
3234
3235 // For vector geps, use the generic demanded vector support.
3236 // Skip if GEP return type is scalable. The number of elements is unknown at
3237 // compile-time.
3238 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
3239 auto VWidth = GEPFVTy->getNumElements();
3240 APInt PoisonElts(VWidth, 0);
3241 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
3242 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
3243 PoisonElts)) {
3244 if (V != &GEP)
3245 return replaceInstUsesWith(GEP, V);
3246 return &GEP;
3247 }
3248 }
3249
3250 // Eliminate unneeded casts for indices, and replace indices which displace
3251 // by multiples of a zero size type with zero.
3252 bool MadeChange = false;
3253
3254 // Index width may not be the same width as pointer width.
3255 // Data layout chooses the right type based on supported integer types.
3256 Type *NewScalarIndexTy =
3257 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
3258
3260 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
3261 ++I, ++GTI) {
3262 // Skip indices into struct types.
3263 if (GTI.isStruct())
3264 continue;
3265
3266 Type *IndexTy = (*I)->getType();
3267 Type *NewIndexType =
3268 IndexTy->isVectorTy()
3269 ? VectorType::get(NewScalarIndexTy,
3270 cast<VectorType>(IndexTy)->getElementCount())
3271 : NewScalarIndexTy;
3272
3273 // If the element type has zero size then any index over it is equivalent
3274 // to an index of zero, so replace it with zero if it is not zero already.
3275 Type *EltTy = GTI.getIndexedType();
3276 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
3277 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
3278 *I = Constant::getNullValue(NewIndexType);
3279 MadeChange = true;
3280 }
3281
3282 if (IndexTy != NewIndexType) {
3283 // If we are using a wider index than needed for this platform, shrink
3284 // it to what we need. If narrower, sign-extend it to what we need.
3285 // This explicit cast can make subsequent optimizations more obvious.
3286 if (IndexTy->getScalarSizeInBits() <
3287 NewIndexType->getScalarSizeInBits()) {
3288 if (GEP.hasNoUnsignedWrap() && GEP.hasNoUnsignedSignedWrap())
3289 *I = Builder.CreateZExt(*I, NewIndexType, "", /*IsNonNeg=*/true);
3290 else
3291 *I = Builder.CreateSExt(*I, NewIndexType);
3292 } else {
3293 *I = Builder.CreateTrunc(*I, NewIndexType, "", GEP.hasNoUnsignedWrap(),
3294 GEP.hasNoUnsignedSignedWrap());
3295 }
3296 MadeChange = true;
3297 }
3298 }
3299 if (MadeChange)
3300 return &GEP;
3301
3302 // Canonicalize constant GEPs to i8 type.
3303 if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
3304 APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0);
3305 if (GEP.accumulateConstantOffset(DL, Offset))
3306 return replaceInstUsesWith(
3307 GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "",
3308 GEP.getNoWrapFlags()));
3309 }
3310
3312 Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP));
3313 Value *NewGEP =
3314 Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags());
3315 return replaceInstUsesWith(GEP, NewGEP);
3316 }
3317
3318 // Strip trailing zero indices.
3319 auto *LastIdx = dyn_cast<Constant>(Indices.back());
3320 if (LastIdx && LastIdx->isNullValue() && !LastIdx->getType()->isVectorTy()) {
3321 return replaceInstUsesWith(
3322 GEP, Builder.CreateGEP(GEP.getSourceElementType(), PtrOp,
3323 drop_end(Indices), "", GEP.getNoWrapFlags()));
3324 }
3325
3326 // Strip leading zero indices.
3327 auto *FirstIdx = dyn_cast<Constant>(Indices.front());
3328 if (FirstIdx && FirstIdx->isNullValue() &&
3329 !FirstIdx->getType()->isVectorTy()) {
3331 ++GTI;
3332 if (!GTI.isStruct())
3333 return replaceInstUsesWith(GEP, Builder.CreateGEP(GTI.getIndexedType(),
3334 GEP.getPointerOperand(),
3335 drop_begin(Indices), "",
3336 GEP.getNoWrapFlags()));
3337 }
3338
3339 // Scalarize vector operands; prefer splat-of-gep.as canonical form.
3340 // Note that this looses information about undef lanes; we run it after
3341 // demanded bits to partially mitigate that loss.
3342 if (GEPType->isVectorTy() && llvm::any_of(GEP.operands(), [](Value *Op) {
3343 return Op->getType()->isVectorTy() && getSplatValue(Op);
3344 })) {
3345 SmallVector<Value *> NewOps;
3346 for (auto &Op : GEP.operands()) {
3347 if (Op->getType()->isVectorTy())
3348 if (Value *Scalar = getSplatValue(Op)) {
3349 NewOps.push_back(Scalar);
3350 continue;
3351 }
3352 NewOps.push_back(Op);
3353 }
3354
3355 Value *Res = Builder.CreateGEP(GEP.getSourceElementType(), NewOps[0],
3356 ArrayRef(NewOps).drop_front(), GEP.getName(),
3357 GEP.getNoWrapFlags());
3358 if (!Res->getType()->isVectorTy()) {
3359 ElementCount EC = cast<VectorType>(GEPType)->getElementCount();
3360 Res = Builder.CreateVectorSplat(EC, Res);
3361 }
3362 return replaceInstUsesWith(GEP, Res);
3363 }
3364
3365 bool SeenNonZeroIndex = false;
3366 for (auto [IdxNum, Idx] : enumerate(Indices)) {
3367 auto *C = dyn_cast<Constant>(Idx);
3368 if (C && C->isNullValue())
3369 continue;
3370
3371 if (!SeenNonZeroIndex) {
3372 SeenNonZeroIndex = true;
3373 continue;
3374 }
3375
3376 // GEP has multiple non-zero indices: Split it.
3377 ArrayRef<Value *> FrontIndices = ArrayRef(Indices).take_front(IdxNum);
3378 Value *FrontGEP =
3379 Builder.CreateGEP(GEPEltType, PtrOp, FrontIndices,
3380 GEP.getName() + ".split", GEP.getNoWrapFlags());
3381
3382 SmallVector<Value *> BackIndices;
3383 BackIndices.push_back(Constant::getNullValue(NewScalarIndexTy));
3384 append_range(BackIndices, drop_begin(Indices, IdxNum));
3386 GetElementPtrInst::getIndexedType(GEPEltType, FrontIndices), FrontGEP,
3387 BackIndices, GEP.getNoWrapFlags());
3388 }
3389
3390 // Check to see if the inputs to the PHI node are getelementptr instructions.
3391 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
3392 if (Value *NewPtrOp = foldGEPOfPhi(GEP, PN, Builder))
3393 return replaceOperand(GEP, 0, NewPtrOp);
3394 }
3395
3396 if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
3397 if (Instruction *I = visitGEPOfGEP(GEP, Src))
3398 return I;
3399
3400 if (GEP.getNumIndices() == 1) {
3401 unsigned AS = GEP.getPointerAddressSpace();
3402 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3403 DL.getIndexSizeInBits(AS)) {
3404 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
3405
3406 if (TyAllocSize == 1) {
3407 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
3408 // but only if the result pointer is only used as if it were an integer.
3409 // (The case where the underlying object is the same is handled by
3410 // InstSimplify.)
3411 Value *X = GEP.getPointerOperand();
3412 Value *Y;
3413 if (match(GEP.getOperand(1), m_Sub(m_PtrToIntOrAddr(m_Value(Y)),
3415 GEPType == Y->getType()) {
3416 bool HasNonAddressBits =
3417 DL.getAddressSizeInBits(AS) != DL.getPointerSizeInBits(AS);
3418 bool Changed = false;
3419 GEP.replaceUsesWithIf(Y, [&](Use &U) {
3420 bool ShouldReplace =
3421 isa<PtrToAddrInst, ICmpInst>(U.getUser()) ||
3422 (!HasNonAddressBits && isa<PtrToIntInst>(U.getUser()));
3423 Changed |= ShouldReplace;
3424 return ShouldReplace;
3425 });
3426 return Changed ? &GEP : nullptr;
3427 }
3428 } else if (auto *ExactIns =
3429 dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) {
3430 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
3431 Value *V;
3432 if (ExactIns->isExact()) {
3433 if ((has_single_bit(TyAllocSize) &&
3434 match(GEP.getOperand(1),
3435 m_Shr(m_Value(V),
3436 m_SpecificInt(countr_zero(TyAllocSize))))) ||
3437 match(GEP.getOperand(1),
3438 m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) {
3439 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3440 GEP.getPointerOperand(), V,
3441 GEP.getNoWrapFlags());
3442 }
3443 }
3444 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3445 // Try to canonicalize non-i8 element type to i8 if the index is an
3446 // exact instruction. If the index is an exact instruction (div/shr)
3447 // with a constant RHS, we can fold the non-i8 element scale into the
3448 // div/shr (similiar to the mul case, just inverted).
3449 const APInt *C;
3450 std::optional<APInt> NewC;
3451 if (has_single_bit(TyAllocSize) &&
3452 match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) &&
3453 C->uge(countr_zero(TyAllocSize)))
3454 NewC = *C - countr_zero(TyAllocSize);
3455 else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) {
3456 APInt Quot;
3457 uint64_t Rem;
3458 APInt::udivrem(*C, TyAllocSize, Quot, Rem);
3459 if (Rem == 0)
3460 NewC = Quot;
3461 } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) {
3462 APInt Quot;
3463 int64_t Rem;
3464 APInt::sdivrem(*C, TyAllocSize, Quot, Rem);
3465 // For sdiv we need to make sure we arent creating INT_MIN / -1.
3466 if (!Quot.isAllOnes() && Rem == 0)
3467 NewC = Quot;
3468 }
3469
3470 if (NewC.has_value()) {
3471 Value *NewOp = Builder.CreateBinOp(
3472 static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V,
3473 ConstantInt::get(V->getType(), *NewC));
3474 cast<BinaryOperator>(NewOp)->setIsExact();
3475 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3476 GEP.getPointerOperand(), NewOp,
3477 GEP.getNoWrapFlags());
3478 }
3479 }
3480 }
3481 }
3482 }
3483 // We do not handle pointer-vector geps here.
3484 if (GEPType->isVectorTy())
3485 return nullptr;
3486
3487 if (!GEP.isInBounds()) {
3488 unsigned IdxWidth =
3489 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
3490 APInt BasePtrOffset(IdxWidth, 0);
3491 Value *UnderlyingPtrOp =
3492 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, BasePtrOffset);
3493 bool CanBeNull, CanBeFreed;
3494 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
3495 DL, CanBeNull, CanBeFreed);
3496 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3497 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
3498 BasePtrOffset.isNonNegative()) {
3499 APInt AllocSize(IdxWidth, DerefBytes);
3500 if (BasePtrOffset.ule(AllocSize)) {
3502 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
3503 }
3504 }
3505 }
3506 }
3507
3508 // nusw + nneg -> nuw
3509 if (GEP.hasNoUnsignedSignedWrap() && !GEP.hasNoUnsignedWrap() &&
3510 all_of(GEP.indices(), [&](Value *Idx) {
3511 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3512 })) {
3513 GEP.setNoWrapFlags(GEP.getNoWrapFlags() | GEPNoWrapFlags::noUnsignedWrap());
3514 return &GEP;
3515 }
3516
3517 // These rewrites are trying to preserve inbounds/nuw attributes. So we want
3518 // to do this after having tried to derive "nuw" above.
3519 if (GEP.getNumIndices() == 1) {
3520 // Given (gep p, x+y) we want to determine the common nowrap flags for both
3521 // geps if transforming into (gep (gep p, x), y).
3522 auto GetPreservedNoWrapFlags = [&](bool AddIsNUW) {
3523 // We can preserve both "inbounds nuw", "nusw nuw" and "nuw" if we know
3524 // that x + y does not have unsigned wrap.
3525 if (GEP.hasNoUnsignedWrap() && AddIsNUW)
3526 return GEP.getNoWrapFlags();
3527 return GEPNoWrapFlags::none();
3528 };
3529
3530 // Try to replace ADD + GEP with GEP + GEP.
3531 Value *Idx1, *Idx2;
3532 if (match(GEP.getOperand(1),
3533 m_OneUse(m_AddLike(m_Value(Idx1), m_Value(Idx2))))) {
3534 // %idx = add i64 %idx1, %idx2
3535 // %gep = getelementptr i32, ptr %ptr, i64 %idx
3536 // as:
3537 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1
3538 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2
3539 bool NUW = match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()));
3540 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3541 auto *NewPtr =
3542 Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(),
3543 Idx1, "", NWFlags);
3544 return replaceInstUsesWith(GEP,
3545 Builder.CreateGEP(GEP.getSourceElementType(),
3546 NewPtr, Idx2, "", NWFlags));
3547 }
3548 ConstantInt *C;
3549 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAddLike(
3550 m_Value(Idx1), m_ConstantInt(C))))))) {
3551 // %add = add nsw i32 %idx1, idx2
3552 // %sidx = sext i32 %add to i64
3553 // %gep = getelementptr i32, ptr %ptr, i64 %sidx
3554 // as:
3555 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
3556 // %newgep = getelementptr i32, ptr %newptr, i32 idx2
3557 bool NUW = match(GEP.getOperand(1),
3559 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3560 auto *NewPtr = Builder.CreateGEP(
3561 GEP.getSourceElementType(), GEP.getPointerOperand(),
3562 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", NWFlags);
3563 return replaceInstUsesWith(
3564 GEP,
3565 Builder.CreateGEP(GEP.getSourceElementType(), NewPtr,
3566 Builder.CreateSExt(C, GEP.getOperand(1)->getType()),
3567 "", NWFlags));
3568 }
3569 }
3570
3572 return R;
3573
3574 return nullptr;
3575}
3576
3578 Instruction *AI) {
3580 return true;
3581 if (auto *LI = dyn_cast<LoadInst>(V))
3582 return isa<GlobalVariable>(LI->getPointerOperand());
3583 // Two distinct allocations will never be equal.
3584 return isAllocLikeFn(V, &TLI) && V != AI;
3585}
3586
3587/// Given a call CB which uses an address UsedV, return true if we can prove the
3588/// call's only possible effect is storing to V.
3589static bool isRemovableWrite(CallBase &CB, Value *UsedV,
3590 const TargetLibraryInfo &TLI) {
3591 if (!CB.use_empty())
3592 // TODO: add recursion if returned attribute is present
3593 return false;
3594
3595 if (CB.isTerminator())
3596 // TODO: remove implementation restriction
3597 return false;
3598
3599 if (!CB.willReturn() || !CB.doesNotThrow())
3600 return false;
3601
3602 // If the only possible side effect of the call is writing to the alloca,
3603 // and the result isn't used, we can safely remove any reads implied by the
3604 // call including those which might read the alloca itself.
3605 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
3606 return Dest && Dest->Ptr == UsedV;
3607}
3608
3609static std::optional<ModRefInfo>
3611 const TargetLibraryInfo &TLI, bool KnowInit) {
3613 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
3614 Worklist.push_back(AI);
3616
3617 do {
3618 Instruction *PI = Worklist.pop_back_val();
3619 for (User *U : PI->users()) {
3621 switch (I->getOpcode()) {
3622 default:
3623 // Give up the moment we see something we can't handle.
3624 return std::nullopt;
3625
3626 case Instruction::AddrSpaceCast:
3627 case Instruction::BitCast:
3628 case Instruction::GetElementPtr:
3629 Users.emplace_back(I);
3630 Worklist.push_back(I);
3631 continue;
3632
3633 case Instruction::ICmp: {
3634 ICmpInst *ICI = cast<ICmpInst>(I);
3635 // We can fold eq/ne comparisons with null to false/true, respectively.
3636 // We also fold comparisons in some conditions provided the alloc has
3637 // not escaped (see isNeverEqualToUnescapedAlloc).
3638 if (!ICI->isEquality())
3639 return std::nullopt;
3640 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
3641 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
3642 return std::nullopt;
3643
3644 // Do not fold compares to aligned_alloc calls, as they may have to
3645 // return null in case the required alignment cannot be satisfied,
3646 // unless we can prove that both alignment and size are valid.
3647 auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
3648 // Check if alignment and size of a call to aligned_alloc is valid,
3649 // that is alignment is a power-of-2 and the size is a multiple of the
3650 // alignment.
3651 const APInt *Alignment;
3652 const APInt *Size;
3653 return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
3654 match(CB->getArgOperand(1), m_APInt(Size)) &&
3655 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
3656 };
3657 auto *CB = dyn_cast<CallBase>(AI);
3658 LibFunc TheLibFunc;
3659 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3660 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3661 !AlignmentAndSizeKnownValid(CB))
3662 return std::nullopt;
3663 Users.emplace_back(I);
3664 continue;
3665 }
3666
3667 case Instruction::Call:
3668 // Ignore no-op and store intrinsics.
3670 switch (II->getIntrinsicID()) {
3671 default:
3672 return std::nullopt;
3673
3674 case Intrinsic::memmove:
3675 case Intrinsic::memcpy:
3676 case Intrinsic::memset: {
3678 if (MI->isVolatile())
3679 return std::nullopt;
3680 // Note: this could also be ModRef, but we can still interpret that
3681 // as just Mod in that case.
3682 ModRefInfo NewAccess =
3683 MI->getRawDest() == PI ? ModRefInfo::Mod : ModRefInfo::Ref;
3684 if ((Access & ~NewAccess) != ModRefInfo::NoModRef)
3685 return std::nullopt;
3686 Access |= NewAccess;
3687 [[fallthrough]];
3688 }
3689 case Intrinsic::assume:
3690 case Intrinsic::invariant_start:
3691 case Intrinsic::invariant_end:
3692 case Intrinsic::lifetime_start:
3693 case Intrinsic::lifetime_end:
3694 case Intrinsic::objectsize:
3695 Users.emplace_back(I);
3696 continue;
3697 case Intrinsic::launder_invariant_group:
3698 case Intrinsic::strip_invariant_group:
3699 Users.emplace_back(I);
3700 Worklist.push_back(I);
3701 continue;
3702 }
3703 }
3704
3705 if (Family && getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
3706 getAllocationFamily(I, &TLI) == Family) {
3707 Users.emplace_back(I);
3708 continue;
3709 }
3710
3711 if (Family && getReallocatedOperand(cast<CallBase>(I)) == PI &&
3712 getAllocationFamily(I, &TLI) == Family) {
3713 Users.emplace_back(I);
3714 Worklist.push_back(I);
3715 continue;
3716 }
3717
3718 if (!isRefSet(Access) &&
3719 isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
3721 Users.emplace_back(I);
3722 continue;
3723 }
3724
3725 return std::nullopt;
3726
3727 case Instruction::Store: {
3729 if (SI->isVolatile() || SI->getPointerOperand() != PI)
3730 return std::nullopt;
3731 if (isRefSet(Access))
3732 return std::nullopt;
3734 Users.emplace_back(I);
3735 continue;
3736 }
3737
3738 case Instruction::Load: {
3739 LoadInst *LI = cast<LoadInst>(I);
3740 if (LI->isVolatile() || LI->getPointerOperand() != PI)
3741 return std::nullopt;
3742 if (isModSet(Access))
3743 return std::nullopt;
3745 Users.emplace_back(I);
3746 continue;
3747 }
3748 }
3749 llvm_unreachable("missing a return?");
3750 }
3751 } while (!Worklist.empty());
3752
3754 return Access;
3755}
3756
3759
3760 // If we have a malloc call which is only used in any amount of comparisons to
3761 // null and free calls, delete the calls and replace the comparisons with true
3762 // or false as appropriate.
3763
3764 // This is based on the principle that we can substitute our own allocation
3765 // function (which will never return null) rather than knowledge of the
3766 // specific function being called. In some sense this can change the permitted
3767 // outputs of a program (when we convert a malloc to an alloca, the fact that
3768 // the allocation is now on the stack is potentially visible, for example),
3769 // but we believe in a permissible manner.
3771
3772 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
3773 // before each store.
3775 std::unique_ptr<DIBuilder> DIB;
3776 if (isa<AllocaInst>(MI)) {
3777 findDbgUsers(&MI, DVRs);
3778 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
3779 }
3780
3781 // Determine what getInitialValueOfAllocation would return without actually
3782 // allocating the result.
3783 bool KnowInitUndef = false;
3784 bool KnowInitZero = false;
3785 Constant *Init =
3787 if (Init) {
3788 if (isa<UndefValue>(Init))
3789 KnowInitUndef = true;
3790 else if (Init->isNullValue())
3791 KnowInitZero = true;
3792 }
3793 // The various sanitizers don't actually return undef memory, but rather
3794 // memory initialized with special forms of runtime poison
3795 auto &F = *MI.getFunction();
3796 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
3797 F.hasFnAttribute(Attribute::SanitizeAddress))
3798 KnowInitUndef = false;
3799
3800 auto Removable =
3801 isAllocSiteRemovable(&MI, Users, TLI, KnowInitZero | KnowInitUndef);
3802 if (Removable) {
3803 for (WeakTrackingVH &User : Users) {
3804 // Lowering all @llvm.objectsize and MTI calls first because they may use
3805 // a bitcast/GEP of the alloca we are removing.
3806 if (!User)
3807 continue;
3808
3810
3812 if (II->getIntrinsicID() == Intrinsic::objectsize) {
3813 SmallVector<Instruction *> InsertedInstructions;
3814 Value *Result = lowerObjectSizeCall(
3815 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
3816 for (Instruction *Inserted : InsertedInstructions)
3817 Worklist.add(Inserted);
3818 replaceInstUsesWith(*I, Result);
3820 User = nullptr; // Skip examining in the next loop.
3821 continue;
3822 }
3823 if (auto *MTI = dyn_cast<MemTransferInst>(I)) {
3824 if (KnowInitZero && isRefSet(*Removable)) {
3826 Builder.SetInsertPoint(MTI);
3827 auto *M = Builder.CreateMemSet(
3828 MTI->getRawDest(),
3829 ConstantInt::get(Type::getInt8Ty(MI.getContext()), 0),
3830 MTI->getLength(), MTI->getDestAlign());
3831 M->copyMetadata(*MTI);
3832 }
3833 }
3834 }
3835 }
3836 for (WeakTrackingVH &User : Users) {
3837 if (!User)
3838 continue;
3839
3841
3842 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
3844 ConstantInt::get(Type::getInt1Ty(C->getContext()),
3845 C->isFalseWhenEqual()));
3846 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3847 for (auto *DVR : DVRs)
3848 if (DVR->isAddressOfVariable())
3850 } else {
3851 // Casts, GEP, or anything else: we're about to delete this instruction,
3852 // so it can not have any valid uses.
3853 Constant *Replace;
3854 if (isa<LoadInst>(I)) {
3855 assert(KnowInitZero || KnowInitUndef);
3856 Replace = KnowInitUndef ? UndefValue::get(I->getType())
3857 : Constant::getNullValue(I->getType());
3858 } else
3859 Replace = PoisonValue::get(I->getType());
3860 replaceInstUsesWith(*I, Replace);
3861 }
3863 }
3864
3866 // Replace invoke with a NOP intrinsic to maintain the original CFG
3867 Module *M = II->getModule();
3868 Function *F = Intrinsic::getOrInsertDeclaration(M, Intrinsic::donothing);
3869 auto *NewII = InvokeInst::Create(
3870 F, II->getNormalDest(), II->getUnwindDest(), {}, "", II->getParent());
3871 NewII->setDebugLoc(II->getDebugLoc());
3872 }
3873
3874 // Remove debug intrinsics which describe the value contained within the
3875 // alloca. In addition to removing dbg.{declare,addr} which simply point to
3876 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3877 //
3878 // ```
3879 // define void @foo(i32 %0) {
3880 // %a = alloca i32 ; Deleted.
3881 // store i32 %0, i32* %a
3882 // dbg.value(i32 %0, "arg0") ; Not deleted.
3883 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
3884 // call void @trivially_inlinable_no_op(i32* %a)
3885 // ret void
3886 // }
3887 // ```
3888 //
3889 // This may not be required if we stop describing the contents of allocas
3890 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3891 // the LowerDbgDeclare utility.
3892 //
3893 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3894 // "arg0" dbg.value may be stale after the call. However, failing to remove
3895 // the DW_OP_deref dbg.value causes large gaps in location coverage.
3896 //
3897 // FIXME: the Assignment Tracking project has now likely made this
3898 // redundant (and it's sometimes harmful).
3899 for (auto *DVR : DVRs)
3900 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3901 DVR->eraseFromParent();
3902
3903 return eraseInstFromFunction(MI);
3904 }
3905 return nullptr;
3906}
3907
3908/// Move the call to free before a NULL test.
3909///
3910/// Check if this free is accessed after its argument has been test
3911/// against NULL (property 0).
3912/// If yes, it is legal to move this call in its predecessor block.
3913///
3914/// The move is performed only if the block containing the call to free
3915/// will be removed, i.e.:
3916/// 1. it has only one predecessor P, and P has two successors
3917/// 2. it contains the call, noops, and an unconditional branch
3918/// 3. its successor is the same as its predecessor's successor
3919///
3920/// The profitability is out-of concern here and this function should
3921/// be called only if the caller knows this transformation would be
3922/// profitable (e.g., for code size).
3924 const DataLayout &DL) {
3925 Value *Op = FI.getArgOperand(0);
3926 BasicBlock *FreeInstrBB = FI.getParent();
3927 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
3928
3929 // Validate part of constraint #1: Only one predecessor
3930 // FIXME: We can extend the number of predecessor, but in that case, we
3931 // would duplicate the call to free in each predecessor and it may
3932 // not be profitable even for code size.
3933 if (!PredBB)
3934 return nullptr;
3935
3936 // Validate constraint #2: Does this block contains only the call to
3937 // free, noops, and an unconditional branch?
3938 BasicBlock *SuccBB;
3939 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
3940 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
3941 return nullptr;
3942
3943 // If there are only 2 instructions in the block, at this point,
3944 // this is the call to free and unconditional.
3945 // If there are more than 2 instructions, check that they are noops
3946 // i.e., they won't hurt the performance of the generated code.
3947 if (FreeInstrBB->size() != 2) {
3948 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
3949 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3950 continue;
3951 auto *Cast = dyn_cast<CastInst>(&Inst);
3952 if (!Cast || !Cast->isNoopCast(DL))
3953 return nullptr;
3954 }
3955 }
3956 // Validate the rest of constraint #1 by matching on the pred branch.
3957 Instruction *TI = PredBB->getTerminator();
3958 BasicBlock *TrueBB, *FalseBB;
3959 CmpPredicate Pred;
3960 if (!match(TI, m_Br(m_ICmp(Pred,
3962 m_Specific(Op->stripPointerCasts())),
3963 m_Zero()),
3964 TrueBB, FalseBB)))
3965 return nullptr;
3966 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3967 return nullptr;
3968
3969 // Validate constraint #3: Ensure the null case just falls through.
3970 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3971 return nullptr;
3972 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3973 "Broken CFG: missing edge from predecessor to successor");
3974
3975 // At this point, we know that everything in FreeInstrBB can be moved
3976 // before TI.
3977 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3978 if (&Instr == FreeInstrBBTerminator)
3979 break;
3980 Instr.moveBeforePreserving(TI->getIterator());
3981 }
3982 assert(FreeInstrBB->size() == 1 &&
3983 "Only the branch instruction should remain");
3984
3985 // Now that we've moved the call to free before the NULL check, we have to
3986 // remove any attributes on its parameter that imply it's non-null, because
3987 // those attributes might have only been valid because of the NULL check, and
3988 // we can get miscompiles if we keep them. This is conservative if non-null is
3989 // also implied by something other than the NULL check, but it's guaranteed to
3990 // be correct, and the conservativeness won't matter in practice, since the
3991 // attributes are irrelevant for the call to free itself and the pointer
3992 // shouldn't be used after the call.
3993 AttributeList Attrs = FI.getAttributes();
3994 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3995 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3996 if (Dereferenceable.isValid()) {
3997 uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3998 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3999 Attribute::Dereferenceable);
4000 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
4001 }
4002 FI.setAttributes(Attrs);
4003
4004 return &FI;
4005}
4006
4008 // free undef -> unreachable.
4009 if (isa<UndefValue>(Op)) {
4010 // Leave a marker since we can't modify the CFG here.
4012 return eraseInstFromFunction(FI);
4013 }
4014
4015 // If we have 'free null' delete the instruction. This can happen in stl code
4016 // when lots of inlining happens.
4018 return eraseInstFromFunction(FI);
4019
4020 // If we had free(realloc(...)) with no intervening uses, then eliminate the
4021 // realloc() entirely.
4023 if (CI && CI->hasOneUse())
4024 if (Value *ReallocatedOp = getReallocatedOperand(CI))
4025 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
4026
4027 // If we optimize for code size, try to move the call to free before the null
4028 // test so that simplify cfg can remove the empty block and dead code
4029 // elimination the branch. I.e., helps to turn something like:
4030 // if (foo) free(foo);
4031 // into
4032 // free(foo);
4033 //
4034 // Note that we can only do this for 'free' and not for any flavor of
4035 // 'operator delete'; there is no 'operator delete' symbol for which we are
4036 // permitted to invent a call, even if we're passing in a null pointer.
4037 if (MinimizeSize) {
4038 LibFunc Func;
4039 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
4041 return I;
4042 }
4043
4044 return nullptr;
4045}
4046
4048 Value *RetVal = RI.getReturnValue();
4049 if (!RetVal)
4050 return nullptr;
4051
4052 Function *F = RI.getFunction();
4053 Type *RetTy = RetVal->getType();
4054 if (RetTy->isPointerTy()) {
4055 bool HasDereferenceable =
4056 F->getAttributes().getRetDereferenceableBytes() > 0;
4057 if (F->hasRetAttribute(Attribute::NonNull) ||
4058 (HasDereferenceable &&
4060 if (Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
4061 return replaceOperand(RI, 0, V);
4062 }
4063 }
4064
4065 if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
4066 return nullptr;
4067
4068 FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
4069 if (ReturnClass == fcNone)
4070 return nullptr;
4071
4072 KnownFPClass KnownClass;
4073 if (SimplifyDemandedFPClass(&RI, 0, ~ReturnClass, KnownClass))
4074 return &RI;
4075
4076 return nullptr;
4077}
4078
4079// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
4081 // Try to remove the previous instruction if it must lead to unreachable.
4082 // This includes instructions like stores and "llvm.assume" that may not get
4083 // removed by simple dead code elimination.
4084 bool Changed = false;
4085 while (Instruction *Prev = I.getPrevNode()) {
4086 // While we theoretically can erase EH, that would result in a block that
4087 // used to start with an EH no longer starting with EH, which is invalid.
4088 // To make it valid, we'd need to fixup predecessors to no longer refer to
4089 // this block, but that changes CFG, which is not allowed in InstCombine.
4090 if (Prev->isEHPad())
4091 break; // Can not drop any more instructions. We're done here.
4092
4094 break; // Can not drop any more instructions. We're done here.
4095 // Otherwise, this instruction can be freely erased,
4096 // even if it is not side-effect free.
4097
4098 // A value may still have uses before we process it here (for example, in
4099 // another unreachable block), so convert those to poison.
4100 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
4101 eraseInstFromFunction(*Prev);
4102 Changed = true;
4103 }
4104 return Changed;
4105}
4106
4111
4113 assert(BI.isUnconditional() && "Only for unconditional branches.");
4114
4115 // If this store is the second-to-last instruction in the basic block
4116 // (excluding debug info) and if the block ends with
4117 // an unconditional branch, try to move the store to the successor block.
4118
4119 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
4120 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
4121 do {
4122 if (BBI != FirstInstr)
4123 --BBI;
4124 } while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
4125
4126 return dyn_cast<StoreInst>(BBI);
4127 };
4128
4129 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
4131 return &BI;
4132
4133 return nullptr;
4134}
4135
4138 if (!DeadEdges.insert({From, To}).second)
4139 return;
4140
4141 // Replace phi node operands in successor with poison.
4142 for (PHINode &PN : To->phis())
4143 for (Use &U : PN.incoming_values())
4144 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
4145 replaceUse(U, PoisonValue::get(PN.getType()));
4146 addToWorklist(&PN);
4147 MadeIRChange = true;
4148 }
4149
4150 Worklist.push_back(To);
4151}
4152
4153// Under the assumption that I is unreachable, remove it and following
4154// instructions. Changes are reported directly to MadeIRChange.
4157 BasicBlock *BB = I->getParent();
4158 for (Instruction &Inst : make_early_inc_range(
4159 make_range(std::next(BB->getTerminator()->getReverseIterator()),
4160 std::next(I->getReverseIterator())))) {
4161 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
4162 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
4163 MadeIRChange = true;
4164 }
4165 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
4166 continue;
4167 // RemoveDIs: erase debug-info on this instruction manually.
4168 Inst.dropDbgRecords();
4170 MadeIRChange = true;
4171 }
4172
4175 MadeIRChange = true;
4176 for (Value *V : Changed)
4178 }
4179
4180 // Handle potentially dead successors.
4181 for (BasicBlock *Succ : successors(BB))
4182 addDeadEdge(BB, Succ, Worklist);
4183}
4184
4187 while (!Worklist.empty()) {
4188 BasicBlock *BB = Worklist.pop_back_val();
4189 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
4190 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
4191 }))
4192 continue;
4193
4195 }
4196}
4197
4199 BasicBlock *LiveSucc) {
4201 for (BasicBlock *Succ : successors(BB)) {
4202 // The live successor isn't dead.
4203 if (Succ == LiveSucc)
4204 continue;
4205
4206 addDeadEdge(BB, Succ, Worklist);
4207 }
4208
4210}
4211
4213 if (BI.isUnconditional())
4215
4216 // Change br (not X), label True, label False to: br X, label False, True
4217 Value *Cond = BI.getCondition();
4218 Value *X;
4219 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
4220 // Swap Destinations and condition...
4221 BI.swapSuccessors();
4222 if (BPI)
4223 BPI->swapSuccEdgesProbabilities(BI.getParent());
4224 return replaceOperand(BI, 0, X);
4225 }
4226
4227 // Canonicalize logical-and-with-invert as logical-or-with-invert.
4228 // This is done by inverting the condition and swapping successors:
4229 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
4230 Value *Y;
4231 if (isa<SelectInst>(Cond) &&
4232 match(Cond,
4234 Value *NotX = Builder.CreateNot(X, "not." + X->getName());
4235 Value *Or = Builder.CreateLogicalOr(NotX, Y);
4236 BI.swapSuccessors();
4237 if (BPI)
4238 BPI->swapSuccEdgesProbabilities(BI.getParent());
4239 return replaceOperand(BI, 0, Or);
4240 }
4241
4242 // If the condition is irrelevant, remove the use so that other
4243 // transforms on the condition become more effective.
4244 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
4245 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
4246
4247 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
4248 CmpPredicate Pred;
4249 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
4250 !isCanonicalPredicate(Pred)) {
4251 // Swap destinations and condition.
4252 auto *Cmp = cast<CmpInst>(Cond);
4253 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
4254 BI.swapSuccessors();
4255 if (BPI)
4256 BPI->swapSuccEdgesProbabilities(BI.getParent());
4257 Worklist.push(Cmp);
4258 return &BI;
4259 }
4260
4261 if (isa<UndefValue>(Cond)) {
4262 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
4263 return nullptr;
4264 }
4265 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4267 BI.getSuccessor(!CI->getZExtValue()));
4268 return nullptr;
4269 }
4270
4271 // Replace all dominated uses of the condition with true/false
4272 // Ignore constant expressions to avoid iterating over uses on other
4273 // functions.
4274 if (!isa<Constant>(Cond) && BI.getSuccessor(0) != BI.getSuccessor(1)) {
4275 for (auto &U : make_early_inc_range(Cond->uses())) {
4276 BasicBlockEdge Edge0(BI.getParent(), BI.getSuccessor(0));
4277 if (DT.dominates(Edge0, U)) {
4278 replaceUse(U, ConstantInt::getTrue(Cond->getType()));
4279 addToWorklist(cast<Instruction>(U.getUser()));
4280 continue;
4281 }
4282 BasicBlockEdge Edge1(BI.getParent(), BI.getSuccessor(1));
4283 if (DT.dominates(Edge1, U)) {
4284 replaceUse(U, ConstantInt::getFalse(Cond->getType()));
4285 addToWorklist(cast<Instruction>(U.getUser()));
4286 }
4287 }
4288 }
4289
4290 DC.registerBranch(&BI);
4291 return nullptr;
4292}
4293
4294// Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
4295// we can prove that both (switch C) and (switch X) go to the default when cond
4296// is false/true.
4299 bool IsTrueArm) {
4300 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
4301 auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
4302 if (!C)
4303 return nullptr;
4304
4305 BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
4306 if (CstBB != SI.getDefaultDest())
4307 return nullptr;
4308 Value *X = Select->getOperand(3 - CstOpIdx);
4309 CmpPredicate Pred;
4310 const APInt *RHSC;
4311 if (!match(Select->getCondition(),
4312 m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
4313 return nullptr;
4314 if (IsTrueArm)
4315 Pred = ICmpInst::getInversePredicate(Pred);
4316
4317 // See whether we can replace the select with X
4319 for (auto Case : SI.cases())
4320 if (!CR.contains(Case.getCaseValue()->getValue()))
4321 return nullptr;
4322
4323 return X;
4324}
4325
4327 Value *Cond = SI.getCondition();
4328 Value *Op0;
4329 const APInt *CondOpC;
4330 using InvertFn = std::function<APInt(const APInt &Case, const APInt &C)>;
4331
4332 auto MaybeInvertible = [&](Value *Cond) -> InvertFn {
4333 if (match(Cond, m_Add(m_Value(Op0), m_APInt(CondOpC))))
4334 // Change 'switch (X+C) case Case:' into 'switch (X) case Case-C'.
4335 return [](const APInt &Case, const APInt &C) { return Case - C; };
4336
4337 if (match(Cond, m_Sub(m_APInt(CondOpC), m_Value(Op0))))
4338 // Change 'switch (C-X) case Case:' into 'switch (X) case C-Case'.
4339 return [](const APInt &Case, const APInt &C) { return C - Case; };
4340
4341 if (match(Cond, m_Xor(m_Value(Op0), m_APInt(CondOpC))) &&
4342 !CondOpC->isMinSignedValue() && !CondOpC->isMaxSignedValue())
4343 // Change 'switch (X^C) case Case:' into 'switch (X) case Case^C'.
4344 // Prevent creation of large case values by excluding extremes.
4345 return [](const APInt &Case, const APInt &C) { return Case ^ C; };
4346
4347 return nullptr;
4348 };
4349
4350 // Attempt to invert and simplify the switch condition.
4351 if (auto InvertFn = MaybeInvertible(Cond); InvertFn) {
4352 for (auto &Case : SI.cases()) {
4353 const APInt &New = InvertFn(Case.getCaseValue()->getValue(), *CondOpC);
4354 Case.setValue(ConstantInt::get(SI.getContext(), New));
4355 }
4356 return replaceOperand(SI, 0, Op0);
4357 }
4358
4359 uint64_t ShiftAmt;
4360 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
4361 ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
4362 all_of(SI.cases(), [&](const auto &Case) {
4363 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
4364 })) {
4365 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
4367 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
4368 Shl->hasOneUse()) {
4369 Value *NewCond = Op0;
4370 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
4371 // If the shift may wrap, we need to mask off the shifted bits.
4372 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4373 NewCond = Builder.CreateAnd(
4374 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
4375 }
4376 for (auto Case : SI.cases()) {
4377 const APInt &CaseVal = Case.getCaseValue()->getValue();
4378 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
4379 : CaseVal.lshr(ShiftAmt);
4380 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
4381 }
4382 return replaceOperand(SI, 0, NewCond);
4383 }
4384 }
4385
4386 // Fold switch(zext/sext(X)) into switch(X) if possible.
4387 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
4388 bool IsZExt = isa<ZExtInst>(Cond);
4389 Type *SrcTy = Op0->getType();
4390 unsigned NewWidth = SrcTy->getScalarSizeInBits();
4391
4392 if (all_of(SI.cases(), [&](const auto &Case) {
4393 const APInt &CaseVal = Case.getCaseValue()->getValue();
4394 return IsZExt ? CaseVal.isIntN(NewWidth)
4395 : CaseVal.isSignedIntN(NewWidth);
4396 })) {
4397 for (auto &Case : SI.cases()) {
4398 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4399 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4400 }
4401 return replaceOperand(SI, 0, Op0);
4402 }
4403 }
4404
4405 // Fold switch(select cond, X, Y) into switch(X/Y) if possible
4406 if (auto *Select = dyn_cast<SelectInst>(Cond)) {
4407 if (Value *V =
4408 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
4409 return replaceOperand(SI, 0, V);
4410 if (Value *V =
4411 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
4412 return replaceOperand(SI, 0, V);
4413 }
4414
4415 KnownBits Known = computeKnownBits(Cond, &SI);
4416 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
4417 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
4418
4419 // Compute the number of leading bits we can ignore.
4420 // TODO: A better way to determine this would use ComputeNumSignBits().
4421 for (const auto &C : SI.cases()) {
4422 LeadingKnownZeros =
4423 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
4424 LeadingKnownOnes =
4425 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
4426 }
4427
4428 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
4429
4430 // Shrink the condition operand if the new type is smaller than the old type.
4431 // But do not shrink to a non-standard type, because backend can't generate
4432 // good code for that yet.
4433 // TODO: We can make it aggressive again after fixing PR39569.
4434 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
4435 shouldChangeType(Known.getBitWidth(), NewWidth)) {
4436 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
4437 Builder.SetInsertPoint(&SI);
4438 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
4439
4440 for (auto Case : SI.cases()) {
4441 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4442 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4443 }
4444 return replaceOperand(SI, 0, NewCond);
4445 }
4446
4447 if (isa<UndefValue>(Cond)) {
4448 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
4449 return nullptr;
4450 }
4451 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4453 SI.findCaseValue(CI)->getCaseSuccessor());
4454 return nullptr;
4455 }
4456
4457 return nullptr;
4458}
4459
4461InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
4463 if (!WO)
4464 return nullptr;
4465
4466 Intrinsic::ID OvID = WO->getIntrinsicID();
4467 const APInt *C = nullptr;
4468 if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
4469 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
4470 OvID == Intrinsic::umul_with_overflow)) {
4471 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
4472 if (C->isAllOnes())
4473 return BinaryOperator::CreateNeg(WO->getLHS());
4474 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
4475 if (C->isPowerOf2()) {
4476 return BinaryOperator::CreateShl(
4477 WO->getLHS(),
4478 ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
4479 }
4480 }
4481 }
4482
4483 // We're extracting from an overflow intrinsic. See if we're the only user.
4484 // That allows us to simplify multiple result intrinsics to simpler things
4485 // that just get one value.
4486 if (!WO->hasOneUse())
4487 return nullptr;
4488
4489 // Check if we're grabbing only the result of a 'with overflow' intrinsic
4490 // and replace it with a traditional binary instruction.
4491 if (*EV.idx_begin() == 0) {
4492 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4493 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
4494 // Replace the old instruction's uses with poison.
4495 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
4497 return BinaryOperator::Create(BinOp, LHS, RHS);
4498 }
4499
4500 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
4501
4502 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
4503 if (OvID == Intrinsic::usub_with_overflow)
4504 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
4505
4506 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
4507 // +1 is not possible because we assume signed values.
4508 if (OvID == Intrinsic::smul_with_overflow &&
4509 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4510 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4511
4512 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
4513 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4514 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4515 // Only handle even bitwidths for performance reasons.
4516 if (BitWidth % 2 == 0)
4517 return new ICmpInst(
4518 ICmpInst::ICMP_UGT, WO->getLHS(),
4519 ConstantInt::get(WO->getLHS()->getType(),
4521 }
4522
4523 // If only the overflow result is used, and the right hand side is a
4524 // constant (or constant splat), we can remove the intrinsic by directly
4525 // checking for overflow.
4526 if (C) {
4527 // Compute the no-wrap range for LHS given RHS=C, then construct an
4528 // equivalent icmp, potentially using an offset.
4529 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
4530 WO->getBinaryOp(), *C, WO->getNoWrapKind());
4531
4532 CmpInst::Predicate Pred;
4533 APInt NewRHSC, Offset;
4534 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
4535 auto *OpTy = WO->getRHS()->getType();
4536 auto *NewLHS = WO->getLHS();
4537 if (Offset != 0)
4538 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
4539 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
4540 ConstantInt::get(OpTy, NewRHSC));
4541 }
4542
4543 return nullptr;
4544}
4545
4548 InstCombiner::BuilderTy &Builder) {
4549 // Helper to fold frexp of select to select of frexp.
4550
4551 if (!SelectInst->hasOneUse() || !FrexpCall->hasOneUse())
4552 return nullptr;
4554 Value *TrueVal = SelectInst->getTrueValue();
4555 Value *FalseVal = SelectInst->getFalseValue();
4556
4557 const APFloat *ConstVal = nullptr;
4558 Value *VarOp = nullptr;
4559 bool ConstIsTrue = false;
4560
4561 if (match(TrueVal, m_APFloat(ConstVal))) {
4562 VarOp = FalseVal;
4563 ConstIsTrue = true;
4564 } else if (match(FalseVal, m_APFloat(ConstVal))) {
4565 VarOp = TrueVal;
4566 ConstIsTrue = false;
4567 } else {
4568 return nullptr;
4569 }
4570
4571 Builder.SetInsertPoint(&EV);
4572
4573 CallInst *NewFrexp =
4574 Builder.CreateCall(FrexpCall->getCalledFunction(), {VarOp}, "frexp");
4575 NewFrexp->copyIRFlags(FrexpCall);
4576
4577 Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0, "mantissa");
4578
4579 int Exp;
4580 APFloat Mantissa = frexp(*ConstVal, Exp, APFloat::rmNearestTiesToEven);
4581
4582 Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
4583
4584 Value *NewSel = Builder.CreateSelectFMF(
4585 Cond, ConstIsTrue ? ConstantMantissa : NewEV,
4586 ConstIsTrue ? NewEV : ConstantMantissa, SelectInst, "select.frexp");
4587 return NewSel;
4588}
4590 Value *Agg = EV.getAggregateOperand();
4591
4592 if (!EV.hasIndices())
4593 return replaceInstUsesWith(EV, Agg);
4594
4595 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
4596 SQ.getWithInstruction(&EV)))
4597 return replaceInstUsesWith(EV, V);
4598
4599 Value *Cond, *TrueVal, *FalseVal;
4601 m_Value(Cond), m_Value(TrueVal), m_Value(FalseVal)))))) {
4602 auto *SelInst =
4603 cast<SelectInst>(cast<IntrinsicInst>(Agg)->getArgOperand(0));
4604 if (Value *Result =
4605 foldFrexpOfSelect(EV, cast<IntrinsicInst>(Agg), SelInst, Builder))
4606 return replaceInstUsesWith(EV, Result);
4607 }
4609 // We're extracting from an insertvalue instruction, compare the indices
4610 const unsigned *exti, *exte, *insi, *inse;
4611 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
4612 exte = EV.idx_end(), inse = IV->idx_end();
4613 exti != exte && insi != inse;
4614 ++exti, ++insi) {
4615 if (*insi != *exti)
4616 // The insert and extract both reference distinctly different elements.
4617 // This means the extract is not influenced by the insert, and we can
4618 // replace the aggregate operand of the extract with the aggregate
4619 // operand of the insert. i.e., replace
4620 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4621 // %E = extractvalue { i32, { i32 } } %I, 0
4622 // with
4623 // %E = extractvalue { i32, { i32 } } %A, 0
4624 return ExtractValueInst::Create(IV->getAggregateOperand(),
4625 EV.getIndices());
4626 }
4627 if (exti == exte && insi == inse)
4628 // Both iterators are at the end: Index lists are identical. Replace
4629 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4630 // %C = extractvalue { i32, { i32 } } %B, 1, 0
4631 // with "i32 42"
4632 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
4633 if (exti == exte) {
4634 // The extract list is a prefix of the insert list. i.e. replace
4635 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4636 // %E = extractvalue { i32, { i32 } } %I, 1
4637 // with
4638 // %X = extractvalue { i32, { i32 } } %A, 1
4639 // %E = insertvalue { i32 } %X, i32 42, 0
4640 // by switching the order of the insert and extract (though the
4641 // insertvalue should be left in, since it may have other uses).
4642 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
4643 EV.getIndices());
4644 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
4645 ArrayRef(insi, inse));
4646 }
4647 if (insi == inse)
4648 // The insert list is a prefix of the extract list
4649 // We can simply remove the common indices from the extract and make it
4650 // operate on the inserted value instead of the insertvalue result.
4651 // i.e., replace
4652 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4653 // %E = extractvalue { i32, { i32 } } %I, 1, 0
4654 // with
4655 // %E extractvalue { i32 } { i32 42 }, 0
4656 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
4657 ArrayRef(exti, exte));
4658 }
4659
4660 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4661 return R;
4662
4663 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4664 // Bail out if the aggregate contains scalable vector type
4665 if (auto *STy = dyn_cast<StructType>(Agg->getType());
4666 STy && STy->isScalableTy())
4667 return nullptr;
4668
4669 // If the (non-volatile) load only has one use, we can rewrite this to a
4670 // load from a GEP. This reduces the size of the load. If a load is used
4671 // only by extractvalue instructions then this either must have been
4672 // optimized before, or it is a struct with padding, in which case we
4673 // don't want to do the transformation as it loses padding knowledge.
4674 if (L->isSimple() && L->hasOneUse()) {
4675 // extractvalue has integer indices, getelementptr has Value*s. Convert.
4676 SmallVector<Value*, 4> Indices;
4677 // Prefix an i32 0 since we need the first element.
4678 Indices.push_back(Builder.getInt32(0));
4679 for (unsigned Idx : EV.indices())
4680 Indices.push_back(Builder.getInt32(Idx));
4681
4682 // We need to insert these at the location of the old load, not at that of
4683 // the extractvalue.
4684 Builder.SetInsertPoint(L);
4685 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
4686 L->getPointerOperand(), Indices);
4687 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
4688 // Whatever aliasing information we had for the orignal load must also
4689 // hold for the smaller load, so propagate the annotations.
4690 NL->setAAMetadata(L->getAAMetadata());
4691 // Returning the load directly will cause the main loop to insert it in
4692 // the wrong spot, so use replaceInstUsesWith().
4693 return replaceInstUsesWith(EV, NL);
4694 }
4695 }
4696
4697 if (auto *PN = dyn_cast<PHINode>(Agg))
4698 if (Instruction *Res = foldOpIntoPhi(EV, PN))
4699 return Res;
4700
4701 // Canonicalize extract (select Cond, TV, FV)
4702 // -> select cond, (extract TV), (extract FV)
4703 if (auto *SI = dyn_cast<SelectInst>(Agg))
4704 if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
4705 return R;
4706
4707 // We could simplify extracts from other values. Note that nested extracts may
4708 // already be simplified implicitly by the above: extract (extract (insert) )
4709 // will be translated into extract ( insert ( extract ) ) first and then just
4710 // the value inserted, if appropriate. Similarly for extracts from single-use
4711 // loads: extract (extract (load)) will be translated to extract (load (gep))
4712 // and if again single-use then via load (gep (gep)) to load (gep).
4713 // However, double extracts from e.g. function arguments or return values
4714 // aren't handled yet.
4715 return nullptr;
4716}
4717
4718/// Return 'true' if the given typeinfo will match anything.
4719static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
4720 switch (Personality) {
4724 // The GCC C EH and Rust personality only exists to support cleanups, so
4725 // it's not clear what the semantics of catch clauses are.
4726 return false;
4728 return false;
4730 // While __gnat_all_others_value will match any Ada exception, it doesn't
4731 // match foreign exceptions (or didn't, before gcc-4.7).
4732 return false;
4743 return TypeInfo->isNullValue();
4744 }
4745 llvm_unreachable("invalid enum");
4746}
4747
4748static bool shorter_filter(const Value *LHS, const Value *RHS) {
4749 return
4750 cast<ArrayType>(LHS->getType())->getNumElements()
4751 <
4752 cast<ArrayType>(RHS->getType())->getNumElements();
4753}
4754
4756 // The logic here should be correct for any real-world personality function.
4757 // However if that turns out not to be true, the offending logic can always
4758 // be conditioned on the personality function, like the catch-all logic is.
4759 EHPersonality Personality =
4760 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
4761
4762 // Simplify the list of clauses, eg by removing repeated catch clauses
4763 // (these are often created by inlining).
4764 bool MakeNewInstruction = false; // If true, recreate using the following:
4765 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
4766 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
4767
4768 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
4769 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
4770 bool isLastClause = i + 1 == e;
4771 if (LI.isCatch(i)) {
4772 // A catch clause.
4773 Constant *CatchClause = LI.getClause(i);
4774 Constant *TypeInfo = CatchClause->stripPointerCasts();
4775
4776 // If we already saw this clause, there is no point in having a second
4777 // copy of it.
4778 if (AlreadyCaught.insert(TypeInfo).second) {
4779 // This catch clause was not already seen.
4780 NewClauses.push_back(CatchClause);
4781 } else {
4782 // Repeated catch clause - drop the redundant copy.
4783 MakeNewInstruction = true;
4784 }
4785
4786 // If this is a catch-all then there is no point in keeping any following
4787 // clauses or marking the landingpad as having a cleanup.
4788 if (isCatchAll(Personality, TypeInfo)) {
4789 if (!isLastClause)
4790 MakeNewInstruction = true;
4791 CleanupFlag = false;
4792 break;
4793 }
4794 } else {
4795 // A filter clause. If any of the filter elements were already caught
4796 // then they can be dropped from the filter. It is tempting to try to
4797 // exploit the filter further by saying that any typeinfo that does not
4798 // occur in the filter can't be caught later (and thus can be dropped).
4799 // However this would be wrong, since typeinfos can match without being
4800 // equal (for example if one represents a C++ class, and the other some
4801 // class derived from it).
4802 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
4803 Constant *FilterClause = LI.getClause(i);
4804 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
4805 unsigned NumTypeInfos = FilterType->getNumElements();
4806
4807 // An empty filter catches everything, so there is no point in keeping any
4808 // following clauses or marking the landingpad as having a cleanup. By
4809 // dealing with this case here the following code is made a bit simpler.
4810 if (!NumTypeInfos) {
4811 NewClauses.push_back(FilterClause);
4812 if (!isLastClause)
4813 MakeNewInstruction = true;
4814 CleanupFlag = false;
4815 break;
4816 }
4817
4818 bool MakeNewFilter = false; // If true, make a new filter.
4819 SmallVector<Constant *, 16> NewFilterElts; // New elements.
4820 if (isa<ConstantAggregateZero>(FilterClause)) {
4821 // Not an empty filter - it contains at least one null typeinfo.
4822 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
4823 Constant *TypeInfo =
4825 // If this typeinfo is a catch-all then the filter can never match.
4826 if (isCatchAll(Personality, TypeInfo)) {
4827 // Throw the filter away.
4828 MakeNewInstruction = true;
4829 continue;
4830 }
4831
4832 // There is no point in having multiple copies of this typeinfo, so
4833 // discard all but the first copy if there is more than one.
4834 NewFilterElts.push_back(TypeInfo);
4835 if (NumTypeInfos > 1)
4836 MakeNewFilter = true;
4837 } else {
4838 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
4839 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
4840 NewFilterElts.reserve(NumTypeInfos);
4841
4842 // Remove any filter elements that were already caught or that already
4843 // occurred in the filter. While there, see if any of the elements are
4844 // catch-alls. If so, the filter can be discarded.
4845 bool SawCatchAll = false;
4846 for (unsigned j = 0; j != NumTypeInfos; ++j) {
4847 Constant *Elt = Filter->getOperand(j);
4848 Constant *TypeInfo = Elt->stripPointerCasts();
4849 if (isCatchAll(Personality, TypeInfo)) {
4850 // This element is a catch-all. Bail out, noting this fact.
4851 SawCatchAll = true;
4852 break;
4853 }
4854
4855 // Even if we've seen a type in a catch clause, we don't want to
4856 // remove it from the filter. An unexpected type handler may be
4857 // set up for a call site which throws an exception of the same
4858 // type caught. In order for the exception thrown by the unexpected
4859 // handler to propagate correctly, the filter must be correctly
4860 // described for the call site.
4861 //
4862 // Example:
4863 //
4864 // void unexpected() { throw 1;}
4865 // void foo() throw (int) {
4866 // std::set_unexpected(unexpected);
4867 // try {
4868 // throw 2.0;
4869 // } catch (int i) {}
4870 // }
4871
4872 // There is no point in having multiple copies of the same typeinfo in
4873 // a filter, so only add it if we didn't already.
4874 if (SeenInFilter.insert(TypeInfo).second)
4875 NewFilterElts.push_back(cast<Constant>(Elt));
4876 }
4877 // A filter containing a catch-all cannot match anything by definition.
4878 if (SawCatchAll) {
4879 // Throw the filter away.
4880 MakeNewInstruction = true;
4881 continue;
4882 }
4883
4884 // If we dropped something from the filter, make a new one.
4885 if (NewFilterElts.size() < NumTypeInfos)
4886 MakeNewFilter = true;
4887 }
4888 if (MakeNewFilter) {
4889 FilterType = ArrayType::get(FilterType->getElementType(),
4890 NewFilterElts.size());
4891 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
4892 MakeNewInstruction = true;
4893 }
4894
4895 NewClauses.push_back(FilterClause);
4896
4897 // If the new filter is empty then it will catch everything so there is
4898 // no point in keeping any following clauses or marking the landingpad
4899 // as having a cleanup. The case of the original filter being empty was
4900 // already handled above.
4901 if (MakeNewFilter && !NewFilterElts.size()) {
4902 assert(MakeNewInstruction && "New filter but not a new instruction!");
4903 CleanupFlag = false;
4904 break;
4905 }
4906 }
4907 }
4908
4909 // If several filters occur in a row then reorder them so that the shortest
4910 // filters come first (those with the smallest number of elements). This is
4911 // advantageous because shorter filters are more likely to match, speeding up
4912 // unwinding, but mostly because it increases the effectiveness of the other
4913 // filter optimizations below.
4914 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
4915 unsigned j;
4916 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4917 for (j = i; j != e; ++j)
4918 if (!isa<ArrayType>(NewClauses[j]->getType()))
4919 break;
4920
4921 // Check whether the filters are already sorted by length. We need to know
4922 // if sorting them is actually going to do anything so that we only make a
4923 // new landingpad instruction if it does.
4924 for (unsigned k = i; k + 1 < j; ++k)
4925 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
4926 // Not sorted, so sort the filters now. Doing an unstable sort would be
4927 // correct too but reordering filters pointlessly might confuse users.
4928 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
4930 MakeNewInstruction = true;
4931 break;
4932 }
4933
4934 // Look for the next batch of filters.
4935 i = j + 1;
4936 }
4937
4938 // If typeinfos matched if and only if equal, then the elements of a filter L
4939 // that occurs later than a filter F could be replaced by the intersection of
4940 // the elements of F and L. In reality two typeinfos can match without being
4941 // equal (for example if one represents a C++ class, and the other some class
4942 // derived from it) so it would be wrong to perform this transform in general.
4943 // However the transform is correct and useful if F is a subset of L. In that
4944 // case L can be replaced by F, and thus removed altogether since repeating a
4945 // filter is pointless. So here we look at all pairs of filters F and L where
4946 // L follows F in the list of clauses, and remove L if every element of F is
4947 // an element of L. This can occur when inlining C++ functions with exception
4948 // specifications.
4949 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
4950 // Examine each filter in turn.
4951 Value *Filter = NewClauses[i];
4952 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
4953 if (!FTy)
4954 // Not a filter - skip it.
4955 continue;
4956 unsigned FElts = FTy->getNumElements();
4957 // Examine each filter following this one. Doing this backwards means that
4958 // we don't have to worry about filters disappearing under us when removed.
4959 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
4960 Value *LFilter = NewClauses[j];
4961 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
4962 if (!LTy)
4963 // Not a filter - skip it.
4964 continue;
4965 // If Filter is a subset of LFilter, i.e. every element of Filter is also
4966 // an element of LFilter, then discard LFilter.
4967 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
4968 // If Filter is empty then it is a subset of LFilter.
4969 if (!FElts) {
4970 // Discard LFilter.
4971 NewClauses.erase(J);
4972 MakeNewInstruction = true;
4973 // Move on to the next filter.
4974 continue;
4975 }
4976 unsigned LElts = LTy->getNumElements();
4977 // If Filter is longer than LFilter then it cannot be a subset of it.
4978 if (FElts > LElts)
4979 // Move on to the next filter.
4980 continue;
4981 // At this point we know that LFilter has at least one element.
4982 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
4983 // Filter is a subset of LFilter iff Filter contains only zeros (as we
4984 // already know that Filter is not longer than LFilter).
4986 assert(FElts <= LElts && "Should have handled this case earlier!");
4987 // Discard LFilter.
4988 NewClauses.erase(J);
4989 MakeNewInstruction = true;
4990 }
4991 // Move on to the next filter.
4992 continue;
4993 }
4994 ConstantArray *LArray = cast<ConstantArray>(LFilter);
4995 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
4996 // Since Filter is non-empty and contains only zeros, it is a subset of
4997 // LFilter iff LFilter contains a zero.
4998 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
4999 for (unsigned l = 0; l != LElts; ++l)
5000 if (LArray->getOperand(l)->isNullValue()) {
5001 // LFilter contains a zero - discard it.
5002 NewClauses.erase(J);
5003 MakeNewInstruction = true;
5004 break;
5005 }
5006 // Move on to the next filter.
5007 continue;
5008 }
5009 // At this point we know that both filters are ConstantArrays. Loop over
5010 // operands to see whether every element of Filter is also an element of
5011 // LFilter. Since filters tend to be short this is probably faster than
5012 // using a method that scales nicely.
5014 bool AllFound = true;
5015 for (unsigned f = 0; f != FElts; ++f) {
5016 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
5017 AllFound = false;
5018 for (unsigned l = 0; l != LElts; ++l) {
5019 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
5020 if (LTypeInfo == FTypeInfo) {
5021 AllFound = true;
5022 break;
5023 }
5024 }
5025 if (!AllFound)
5026 break;
5027 }
5028 if (AllFound) {
5029 // Discard LFilter.
5030 NewClauses.erase(J);
5031 MakeNewInstruction = true;
5032 }
5033 // Move on to the next filter.
5034 }
5035 }
5036
5037 // If we changed any of the clauses, replace the old landingpad instruction
5038 // with a new one.
5039 if (MakeNewInstruction) {
5041 NewClauses.size());
5042 for (Constant *C : NewClauses)
5043 NLI->addClause(C);
5044 // A landing pad with no clauses must have the cleanup flag set. It is
5045 // theoretically possible, though highly unlikely, that we eliminated all
5046 // clauses. If so, force the cleanup flag to true.
5047 if (NewClauses.empty())
5048 CleanupFlag = true;
5049 NLI->setCleanup(CleanupFlag);
5050 return NLI;
5051 }
5052
5053 // Even if none of the clauses changed, we may nonetheless have understood
5054 // that the cleanup flag is pointless. Clear it if so.
5055 if (LI.isCleanup() != CleanupFlag) {
5056 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
5057 LI.setCleanup(CleanupFlag);
5058 return &LI;
5059 }
5060
5061 return nullptr;
5062}
5063
5064Value *
5066 // Try to push freeze through instructions that propagate but don't produce
5067 // poison as far as possible. If an operand of freeze does not produce poison
5068 // then push the freeze through to the operands that are not guaranteed
5069 // non-poison. The actual transform is as follows.
5070 // Op1 = ... ; Op1 can be poison
5071 // Op0 = Inst(Op1, NonPoisonOps...)
5072 // ... = Freeze(Op0)
5073 // =>
5074 // Op1 = ...
5075 // Op1.fr = Freeze(Op1)
5076 // ... = Inst(Op1.fr, NonPoisonOps...)
5077
5078 auto CanPushFreeze = [](Value *V) {
5079 if (!isa<Instruction>(V) || isa<PHINode>(V))
5080 return false;
5081
5082 // We can't push the freeze through an instruction which can itself create
5083 // poison. If the only source of new poison is flags, we can simply
5084 // strip them (since we know the only use is the freeze and nothing can
5085 // benefit from them.)
5087 /*ConsiderFlagsAndMetadata*/ false);
5088 };
5089
5090 // Pushing freezes up long instruction chains can be expensive. Instead,
5091 // we directly push the freeze all the way to the leaves. However, we leave
5092 // deduplication of freezes on the same value for freezeOtherUses().
5093 Use *OrigUse = &OrigFI.getOperandUse(0);
5096 Worklist.push_back(OrigUse);
5097 while (!Worklist.empty()) {
5098 auto *U = Worklist.pop_back_val();
5099 Value *V = U->get();
5100 if (!CanPushFreeze(V)) {
5101 // If we can't push through the original instruction, abort the transform.
5102 if (U == OrigUse)
5103 return nullptr;
5104
5105 auto *UserI = cast<Instruction>(U->getUser());
5106 Builder.SetInsertPoint(UserI);
5107 Value *Frozen = Builder.CreateFreeze(V, V->getName() + ".fr");
5108 U->set(Frozen);
5109 continue;
5110 }
5111
5112 auto *I = cast<Instruction>(V);
5113 if (!Visited.insert(I).second)
5114 continue;
5115
5116 // reverse() to emit freezes in a more natural order.
5117 for (Use &Op : reverse(I->operands())) {
5118 Value *OpV = Op.get();
5120 continue;
5121 Worklist.push_back(&Op);
5122 }
5123
5124 I->dropPoisonGeneratingAnnotations();
5125 this->Worklist.add(I);
5126 }
5127
5128 return OrigUse->get();
5129}
5130
5132 PHINode *PN) {
5133 // Detect whether this is a recurrence with a start value and some number of
5134 // backedge values. We'll check whether we can push the freeze through the
5135 // backedge values (possibly dropping poison flags along the way) until we
5136 // reach the phi again. In that case, we can move the freeze to the start
5137 // value.
5138 Use *StartU = nullptr;
5140 for (Use &U : PN->incoming_values()) {
5141 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
5142 // Add backedge value to worklist.
5143 Worklist.push_back(U.get());
5144 continue;
5145 }
5146
5147 // Don't bother handling multiple start values.
5148 if (StartU)
5149 return nullptr;
5150 StartU = &U;
5151 }
5152
5153 if (!StartU || Worklist.empty())
5154 return nullptr; // Not a recurrence.
5155
5156 Value *StartV = StartU->get();
5157 BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
5158 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
5159 // We can't insert freeze if the start value is the result of the
5160 // terminator (e.g. an invoke).
5161 if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
5162 return nullptr;
5163
5166 while (!Worklist.empty()) {
5167 Value *V = Worklist.pop_back_val();
5168 if (!Visited.insert(V).second)
5169 continue;
5170
5171 if (Visited.size() > 32)
5172 return nullptr; // Limit the total number of values we inspect.
5173
5174 // Assume that PN is non-poison, because it will be after the transform.
5175 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
5176 continue;
5177
5180 /*ConsiderFlagsAndMetadata*/ false))
5181 return nullptr;
5182
5183 DropFlags.push_back(I);
5184 append_range(Worklist, I->operands());
5185 }
5186
5187 for (Instruction *I : DropFlags)
5188 I->dropPoisonGeneratingAnnotations();
5189
5190 if (StartNeedsFreeze) {
5191 Builder.SetInsertPoint(StartBB->getTerminator());
5192 Value *FrozenStartV = Builder.CreateFreeze(StartV,
5193 StartV->getName() + ".fr");
5194 replaceUse(*StartU, FrozenStartV);
5195 }
5196 return replaceInstUsesWith(FI, PN);
5197}
5198
5200 Value *Op = FI.getOperand(0);
5201
5202 if (isa<Constant>(Op) || Op->hasOneUse())
5203 return false;
5204
5205 // Move the freeze directly after the definition of its operand, so that
5206 // it dominates the maximum number of uses. Note that it may not dominate
5207 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
5208 // the normal/default destination. This is why the domination check in the
5209 // replacement below is still necessary.
5210 BasicBlock::iterator MoveBefore;
5211 if (isa<Argument>(Op)) {
5212 MoveBefore =
5214 } else {
5215 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
5216 if (!MoveBeforeOpt)
5217 return false;
5218 MoveBefore = *MoveBeforeOpt;
5219 }
5220
5221 // Re-point iterator to come after any debug-info records.
5222 MoveBefore.setHeadBit(false);
5223
5224 bool Changed = false;
5225 if (&FI != &*MoveBefore) {
5226 FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
5227 Changed = true;
5228 }
5229
5230 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
5231 bool Dominates = DT.dominates(&FI, U);
5232 Changed |= Dominates;
5233 return Dominates;
5234 });
5235
5236 return Changed;
5237}
5238
5239// Check if any direct or bitcast user of this value is a shuffle instruction.
5241 for (auto *U : V->users()) {
5243 return true;
5244 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
5245 return true;
5246 }
5247 return false;
5248}
5249
5251 Value *Op0 = I.getOperand(0);
5252
5253 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
5254 return replaceInstUsesWith(I, V);
5255
5256 // freeze (phi const, x) --> phi const, (freeze x)
5257 if (auto *PN = dyn_cast<PHINode>(Op0)) {
5258 if (Instruction *NV = foldOpIntoPhi(I, PN))
5259 return NV;
5260 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
5261 return NV;
5262 }
5263
5265 return replaceInstUsesWith(I, NI);
5266
5267 // If I is freeze(undef), check its uses and fold it to a fixed constant.
5268 // - or: pick -1
5269 // - select's condition: if the true value is constant, choose it by making
5270 // the condition true.
5271 // - phi: pick the common constant across operands
5272 // - default: pick 0
5273 //
5274 // Note that this transform is intentionally done here rather than
5275 // via an analysis in InstSimplify or at individual user sites. That is
5276 // because we must produce the same value for all uses of the freeze -
5277 // it's the reason "freeze" exists!
5278 //
5279 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
5280 // duplicating logic for binops at least.
5281 auto getUndefReplacement = [&](Type *Ty) {
5282 auto pickCommonConstantFromPHI = [](PHINode &PN) -> Value * {
5283 // phi(freeze(undef), C, C). Choose C for freeze so the PHI can be
5284 // removed.
5285 Constant *BestValue = nullptr;
5286 for (Value *V : PN.incoming_values()) {
5287 if (match(V, m_Freeze(m_Undef())))
5288 continue;
5289
5291 if (!C)
5292 return nullptr;
5293
5295 return nullptr;
5296
5297 if (BestValue && BestValue != C)
5298 return nullptr;
5299
5300 BestValue = C;
5301 }
5302 return BestValue;
5303 };
5304
5305 Value *NullValue = Constant::getNullValue(Ty);
5306 Value *BestValue = nullptr;
5307 for (auto *U : I.users()) {
5308 Value *V = NullValue;
5309 if (match(U, m_Or(m_Value(), m_Value())))
5311 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
5312 V = ConstantInt::getTrue(Ty);
5313 else if (match(U, m_c_Select(m_Specific(&I), m_Value(V)))) {
5314 if (V == &I || !isGuaranteedNotToBeUndefOrPoison(V, &AC, &I, &DT))
5315 V = NullValue;
5316 } else if (auto *PHI = dyn_cast<PHINode>(U)) {
5317 if (Value *MaybeV = pickCommonConstantFromPHI(*PHI))
5318 V = MaybeV;
5319 }
5320
5321 if (!BestValue)
5322 BestValue = V;
5323 else if (BestValue != V)
5324 BestValue = NullValue;
5325 }
5326 assert(BestValue && "Must have at least one use");
5327 assert(BestValue != &I && "Cannot replace with itself");
5328 return BestValue;
5329 };
5330
5331 if (match(Op0, m_Undef())) {
5332 // Don't fold freeze(undef/poison) if it's used as a vector operand in
5333 // a shuffle. This may improve codegen for shuffles that allow
5334 // unspecified inputs.
5336 return nullptr;
5337 return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
5338 }
5339
5340 auto getFreezeVectorReplacement = [](Constant *C) -> Constant * {
5341 Type *Ty = C->getType();
5342 auto *VTy = dyn_cast<FixedVectorType>(Ty);
5343 if (!VTy)
5344 return nullptr;
5345 unsigned NumElts = VTy->getNumElements();
5346 Constant *BestValue = Constant::getNullValue(VTy->getScalarType());
5347 for (unsigned i = 0; i != NumElts; ++i) {
5348 Constant *EltC = C->getAggregateElement(i);
5349 if (EltC && !match(EltC, m_Undef())) {
5350 BestValue = EltC;
5351 break;
5352 }
5353 }
5354 return Constant::replaceUndefsWith(C, BestValue);
5355 };
5356
5357 Constant *C;
5358 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement() &&
5359 !C->containsConstantExpression()) {
5360 if (Constant *Repl = getFreezeVectorReplacement(C))
5361 return replaceInstUsesWith(I, Repl);
5362 }
5363
5364 // Replace uses of Op with freeze(Op).
5365 if (freezeOtherUses(I))
5366 return &I;
5367
5368 return nullptr;
5369}
5370
5371/// Check for case where the call writes to an otherwise dead alloca. This
5372/// shows up for unused out-params in idiomatic C/C++ code. Note that this
5373/// helper *only* analyzes the write; doesn't check any other legality aspect.
5375 auto *CB = dyn_cast<CallBase>(I);
5376 if (!CB)
5377 // TODO: handle e.g. store to alloca here - only worth doing if we extend
5378 // to allow reload along used path as described below. Otherwise, this
5379 // is simply a store to a dead allocation which will be removed.
5380 return false;
5381 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
5382 if (!Dest)
5383 return false;
5384 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
5385 if (!AI)
5386 // TODO: allow malloc?
5387 return false;
5388 // TODO: allow memory access dominated by move point? Note that since AI
5389 // could have a reference to itself captured by the call, we would need to
5390 // account for cycles in doing so.
5391 SmallVector<const User *> AllocaUsers;
5393 auto pushUsers = [&](const Instruction &I) {
5394 for (const User *U : I.users()) {
5395 if (Visited.insert(U).second)
5396 AllocaUsers.push_back(U);
5397 }
5398 };
5399 pushUsers(*AI);
5400 while (!AllocaUsers.empty()) {
5401 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
5402 if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) {
5403 pushUsers(*UserI);
5404 continue;
5405 }
5406 if (UserI == CB)
5407 continue;
5408 // TODO: support lifetime.start/end here
5409 return false;
5410 }
5411 return true;
5412}
5413
5414/// Try to move the specified instruction from its current block into the
5415/// beginning of DestBlock, which can only happen if it's safe to move the
5416/// instruction past all of the instructions between it and the end of its
5417/// block.
5419 BasicBlock *DestBlock) {
5420 BasicBlock *SrcBlock = I->getParent();
5421
5422 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
5423 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
5424 I->isTerminator())
5425 return false;
5426
5427 // Do not sink static or dynamic alloca instructions. Static allocas must
5428 // remain in the entry block, and dynamic allocas must not be sunk in between
5429 // a stacksave / stackrestore pair, which would incorrectly shorten its
5430 // lifetime.
5431 if (isa<AllocaInst>(I))
5432 return false;
5433
5434 // Do not sink into catchswitch blocks.
5435 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
5436 return false;
5437
5438 // Do not sink convergent call instructions.
5439 if (auto *CI = dyn_cast<CallInst>(I)) {
5440 if (CI->isConvergent())
5441 return false;
5442 }
5443
5444 // Unless we can prove that the memory write isn't visibile except on the
5445 // path we're sinking to, we must bail.
5446 if (I->mayWriteToMemory()) {
5447 if (!SoleWriteToDeadLocal(I, TLI))
5448 return false;
5449 }
5450
5451 // We can only sink load instructions if there is nothing between the load and
5452 // the end of block that could change the value.
5453 if (I->mayReadFromMemory() &&
5454 !I->hasMetadata(LLVMContext::MD_invariant_load)) {
5455 // We don't want to do any sophisticated alias analysis, so we only check
5456 // the instructions after I in I's parent block if we try to sink to its
5457 // successor block.
5458 if (DestBlock->getUniquePredecessor() != I->getParent())
5459 return false;
5460 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
5461 E = I->getParent()->end();
5462 Scan != E; ++Scan)
5463 if (Scan->mayWriteToMemory())
5464 return false;
5465 }
5466
5467 I->dropDroppableUses([&](const Use *U) {
5468 auto *I = dyn_cast<Instruction>(U->getUser());
5469 if (I && I->getParent() != DestBlock) {
5470 Worklist.add(I);
5471 return true;
5472 }
5473 return false;
5474 });
5475 /// FIXME: We could remove droppable uses that are not dominated by
5476 /// the new position.
5477
5478 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
5479 I->moveBefore(*DestBlock, InsertPos);
5480 ++NumSunkInst;
5481
5482 // Also sink all related debug uses from the source basic block. Otherwise we
5483 // get debug use before the def. Attempt to salvage debug uses first, to
5484 // maximise the range variables have location for. If we cannot salvage, then
5485 // mark the location undef: we know it was supposed to receive a new location
5486 // here, but that computation has been sunk.
5487 SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
5488 findDbgUsers(I, DbgVariableRecords);
5489 if (!DbgVariableRecords.empty())
5490 tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
5491 DbgVariableRecords);
5492
5493 // PS: there are numerous flaws with this behaviour, not least that right now
5494 // assignments can be re-ordered past other assignments to the same variable
5495 // if they use different Values. Creating more undef assignements can never be
5496 // undone. And salvaging all users outside of this block can un-necessarily
5497 // alter the lifetime of the live-value that the variable refers to.
5498 // Some of these things can be resolved by tolerating debug use-before-defs in
5499 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend
5500 // being used for more architectures.
5501
5502 return true;
5503}
5504
5506 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
5507 BasicBlock *DestBlock,
5508 SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
5509 // For all debug values in the destination block, the sunk instruction
5510 // will still be available, so they do not need to be dropped.
5511
5512 // Fetch all DbgVariableRecords not already in the destination.
5513 SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
5514 for (auto &DVR : DbgVariableRecords)
5515 if (DVR->getParent() != DestBlock)
5516 DbgVariableRecordsToSalvage.push_back(DVR);
5517
5518 // Fetch a second collection, of DbgVariableRecords in the source block that
5519 // we're going to sink.
5520 SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
5521 for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
5522 if (DVR->getParent() == SrcBlock)
5523 DbgVariableRecordsToSink.push_back(DVR);
5524
5525 // Sort DbgVariableRecords according to their position in the block. This is a
5526 // partial order: DbgVariableRecords attached to different instructions will
5527 // be ordered by the instruction order, but DbgVariableRecords attached to the
5528 // same instruction won't have an order.
5529 auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
5530 return B->getInstruction()->comesBefore(A->getInstruction());
5531 };
5532 llvm::stable_sort(DbgVariableRecordsToSink, Order);
5533
5534 // If there are two assignments to the same variable attached to the same
5535 // instruction, the ordering between the two assignments is important. Scan
5536 // for this (rare) case and establish which is the last assignment.
5537 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5539 if (DbgVariableRecordsToSink.size() > 1) {
5541 // Count how many assignments to each variable there is per instruction.
5542 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5543 DebugVariable DbgUserVariable =
5544 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5545 DVR->getDebugLoc()->getInlinedAt());
5546 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5547 }
5548
5549 // If there are any instructions with two assignments, add them to the
5550 // FilterOutMap to record that they need extra filtering.
5552 for (auto It : CountMap) {
5553 if (It.second > 1) {
5554 FilterOutMap[It.first] = nullptr;
5555 DupSet.insert(It.first.first);
5556 }
5557 }
5558
5559 // For all instruction/variable pairs needing extra filtering, find the
5560 // latest assignment.
5561 for (const Instruction *Inst : DupSet) {
5562 for (DbgVariableRecord &DVR :
5563 llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
5564 DebugVariable DbgUserVariable =
5565 DebugVariable(DVR.getVariable(), DVR.getExpression(),
5566 DVR.getDebugLoc()->getInlinedAt());
5567 auto FilterIt =
5568 FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
5569 if (FilterIt == FilterOutMap.end())
5570 continue;
5571 if (FilterIt->second != nullptr)
5572 continue;
5573 FilterIt->second = &DVR;
5574 }
5575 }
5576 }
5577
5578 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter
5579 // out any duplicate assignments identified above.
5581 SmallSet<DebugVariable, 4> SunkVariables;
5582 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5584 continue;
5585
5586 DebugVariable DbgUserVariable =
5587 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5588 DVR->getDebugLoc()->getInlinedAt());
5589
5590 // For any variable where there were multiple assignments in the same place,
5591 // ignore all but the last assignment.
5592 if (!FilterOutMap.empty()) {
5593 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5594 auto It = FilterOutMap.find(IVP);
5595
5596 // Filter out.
5597 if (It != FilterOutMap.end() && It->second != DVR)
5598 continue;
5599 }
5600
5601 if (!SunkVariables.insert(DbgUserVariable).second)
5602 continue;
5603
5604 if (DVR->isDbgAssign())
5605 continue;
5606
5607 DVRClones.emplace_back(DVR->clone());
5608 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
5609 }
5610
5611 // Perform salvaging without the clones, then sink the clones.
5612 if (DVRClones.empty())
5613 return;
5614
5615 salvageDebugInfoForDbgValues(*I, DbgVariableRecordsToSalvage);
5616
5617 // The clones are in reverse order of original appearance. Assert that the
5618 // head bit is set on the iterator as we _should_ have received it via
5619 // getFirstInsertionPt. Inserting like this will reverse the clone order as
5620 // we'll repeatedly insert at the head, such as:
5621 // DVR-3 (third insertion goes here)
5622 // DVR-2 (second insertion goes here)
5623 // DVR-1 (first insertion goes here)
5624 // Any-Prior-DVRs
5625 // InsertPtInst
5626 assert(InsertPos.getHeadBit());
5627 for (DbgVariableRecord *DVRClone : DVRClones) {
5628 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5629 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
5630 }
5631}
5632
5634 while (!Worklist.isEmpty()) {
5635 // Walk deferred instructions in reverse order, and push them to the
5636 // worklist, which means they'll end up popped from the worklist in-order.
5637 while (Instruction *I = Worklist.popDeferred()) {
5638 // Check to see if we can DCE the instruction. We do this already here to
5639 // reduce the number of uses and thus allow other folds to trigger.
5640 // Note that eraseInstFromFunction() may push additional instructions on
5641 // the deferred worklist, so this will DCE whole instruction chains.
5644 ++NumDeadInst;
5645 continue;
5646 }
5647
5648 Worklist.push(I);
5649 }
5650
5651 Instruction *I = Worklist.removeOne();
5652 if (I == nullptr) continue; // skip null values.
5653
5654 // Check to see if we can DCE the instruction.
5657 ++NumDeadInst;
5658 continue;
5659 }
5660
5661 if (!DebugCounter::shouldExecute(VisitCounter))
5662 continue;
5663
5664 // See if we can trivially sink this instruction to its user if we can
5665 // prove that the successor is not executed more frequently than our block.
5666 // Return the UserBlock if successful.
5667 auto getOptionalSinkBlockForInst =
5668 [this](Instruction *I) -> std::optional<BasicBlock *> {
5669 if (!EnableCodeSinking)
5670 return std::nullopt;
5671
5672 BasicBlock *BB = I->getParent();
5673 BasicBlock *UserParent = nullptr;
5674 unsigned NumUsers = 0;
5675
5676 for (Use &U : I->uses()) {
5677 User *User = U.getUser();
5678 if (User->isDroppable()) {
5679 // Do not sink if there are dereferenceable assumes that would be
5680 // removed.
5682 if (II->getIntrinsicID() != Intrinsic::assume ||
5683 !II->getOperandBundle("dereferenceable"))
5684 continue;
5685 }
5686
5687 if (NumUsers > MaxSinkNumUsers)
5688 return std::nullopt;
5689
5690 Instruction *UserInst = cast<Instruction>(User);
5691 // Special handling for Phi nodes - get the block the use occurs in.
5692 BasicBlock *UserBB = UserInst->getParent();
5693 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
5694 UserBB = PN->getIncomingBlock(U);
5695 // Bail out if we have uses in different blocks. We don't do any
5696 // sophisticated analysis (i.e finding NearestCommonDominator of these
5697 // use blocks).
5698 if (UserParent && UserParent != UserBB)
5699 return std::nullopt;
5700 UserParent = UserBB;
5701
5702 // Make sure these checks are done only once, naturally we do the checks
5703 // the first time we get the userparent, this will save compile time.
5704 if (NumUsers == 0) {
5705 // Try sinking to another block. If that block is unreachable, then do
5706 // not bother. SimplifyCFG should handle it.
5707 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
5708 return std::nullopt;
5709
5710 auto *Term = UserParent->getTerminator();
5711 // See if the user is one of our successors that has only one
5712 // predecessor, so that we don't have to split the critical edge.
5713 // Another option where we can sink is a block that ends with a
5714 // terminator that does not pass control to other block (such as
5715 // return or unreachable or resume). In this case:
5716 // - I dominates the User (by SSA form);
5717 // - the User will be executed at most once.
5718 // So sinking I down to User is always profitable or neutral.
5719 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
5720 return std::nullopt;
5721
5722 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
5723 }
5724
5725 NumUsers++;
5726 }
5727
5728 // No user or only has droppable users.
5729 if (!UserParent)
5730 return std::nullopt;
5731
5732 return UserParent;
5733 };
5734
5735 auto OptBB = getOptionalSinkBlockForInst(I);
5736 if (OptBB) {
5737 auto *UserParent = *OptBB;
5738 // Okay, the CFG is simple enough, try to sink this instruction.
5739 if (tryToSinkInstruction(I, UserParent)) {
5740 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
5741 MadeIRChange = true;
5742 // We'll add uses of the sunk instruction below, but since
5743 // sinking can expose opportunities for it's *operands* add
5744 // them to the worklist
5745 for (Use &U : I->operands())
5746 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
5747 Worklist.push(OpI);
5748 }
5749 }
5750
5751 // Now that we have an instruction, try combining it to simplify it.
5752 Builder.SetInsertPoint(I);
5753 Builder.CollectMetadataToCopy(
5754 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5755
5756#ifndef NDEBUG
5757 std::string OrigI;
5758#endif
5759 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS););
5760 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
5761
5762 if (Instruction *Result = visit(*I)) {
5763 ++NumCombined;
5764 // Should we replace the old instruction with a new one?
5765 if (Result != I) {
5766 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
5767 << " New = " << *Result << '\n');
5768
5769 // We copy the old instruction's DebugLoc to the new instruction, unless
5770 // InstCombine already assigned a DebugLoc to it, in which case we
5771 // should trust the more specifically selected DebugLoc.
5772 Result->setDebugLoc(Result->getDebugLoc().orElse(I->getDebugLoc()));
5773 // We also copy annotation metadata to the new instruction.
5774 Result->copyMetadata(*I, LLVMContext::MD_annotation);
5775 // Everything uses the new instruction now.
5776 I->replaceAllUsesWith(Result);
5777
5778 // Move the name to the new instruction first.
5779 Result->takeName(I);
5780
5781 // Insert the new instruction into the basic block...
5782 BasicBlock *InstParent = I->getParent();
5783 BasicBlock::iterator InsertPos = I->getIterator();
5784
5785 // Are we replace a PHI with something that isn't a PHI, or vice versa?
5786 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
5787 // We need to fix up the insertion point.
5788 if (isa<PHINode>(I)) // PHI -> Non-PHI
5789 InsertPos = InstParent->getFirstInsertionPt();
5790 else // Non-PHI -> PHI
5791 InsertPos = InstParent->getFirstNonPHIIt();
5792 }
5793
5794 Result->insertInto(InstParent, InsertPos);
5795
5796 // Push the new instruction and any users onto the worklist.
5797 Worklist.pushUsersToWorkList(*Result);
5798 Worklist.push(Result);
5799
5801 } else {
5802 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
5803 << " New = " << *I << '\n');
5804
5805 // If the instruction was modified, it's possible that it is now dead.
5806 // if so, remove it.
5809 } else {
5810 Worklist.pushUsersToWorkList(*I);
5811 Worklist.push(I);
5812 }
5813 }
5814 MadeIRChange = true;
5815 }
5816 }
5817
5818 Worklist.zap();
5819 return MadeIRChange;
5820}
5821
5822// Track the scopes used by !alias.scope and !noalias. In a function, a
5823// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5824// by both sets. If not, the declaration of the scope can be safely omitted.
5825// The MDNode of the scope can be omitted as well for the instructions that are
5826// part of this function. We do not do that at this point, as this might become
5827// too time consuming to do.
5829 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
5830 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
5831
5832public:
5834 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
5835 if (!I->hasMetadataOtherThanDebugLoc())
5836 return;
5837
5838 auto Track = [](Metadata *ScopeList, auto &Container) {
5839 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5840 if (!MDScopeList || !Container.insert(MDScopeList).second)
5841 return;
5842 for (const auto &MDOperand : MDScopeList->operands())
5843 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
5844 Container.insert(MDScope);
5845 };
5846
5847 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5848 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5849 }
5850
5853 if (!Decl)
5854 return false;
5855
5856 assert(Decl->use_empty() &&
5857 "llvm.experimental.noalias.scope.decl in use ?");
5858 const MDNode *MDSL = Decl->getScopeList();
5859 assert(MDSL->getNumOperands() == 1 &&
5860 "llvm.experimental.noalias.scope should refer to a single scope");
5861 auto &MDOperand = MDSL->getOperand(0);
5862 if (auto *MD = dyn_cast<MDNode>(MDOperand))
5863 return !UsedAliasScopesAndLists.contains(MD) ||
5864 !UsedNoAliasScopesAndLists.contains(MD);
5865
5866 // Not an MDNode ? throw away.
5867 return true;
5868 }
5869};
5870
5871/// Populate the IC worklist from a function, by walking it in reverse
5872/// post-order and adding all reachable code to the worklist.
5873///
5874/// This has a couple of tricks to make the code faster and more powerful. In
5875/// particular, we constant fold and DCE instructions as we go, to avoid adding
5876/// them to the worklist (this significantly speeds up instcombine on code where
5877/// many instructions are dead or constant). Additionally, if we find a branch
5878/// whose condition is a known constant, we only visit the reachable successors.
5880 bool MadeIRChange = false;
5882 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
5883 DenseMap<Constant *, Constant *> FoldedConstants;
5884 AliasScopeTracker SeenAliasScopes;
5885
5886 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
5887 for (BasicBlock *Succ : successors(BB))
5888 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
5889 for (PHINode &PN : Succ->phis())
5890 for (Use &U : PN.incoming_values())
5891 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5892 U.set(PoisonValue::get(PN.getType()));
5893 MadeIRChange = true;
5894 }
5895 };
5896
5897 for (BasicBlock *BB : RPOT) {
5898 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
5899 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
5900 })) {
5901 HandleOnlyLiveSuccessor(BB, nullptr);
5902 continue;
5903 }
5904 LiveBlocks.insert(BB);
5905
5906 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
5907 // ConstantProp instruction if trivially constant.
5908 if (!Inst.use_empty() &&
5909 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5910 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
5911 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
5912 << '\n');
5913 Inst.replaceAllUsesWith(C);
5914 ++NumConstProp;
5915 if (isInstructionTriviallyDead(&Inst, &TLI))
5916 Inst.eraseFromParent();
5917 MadeIRChange = true;
5918 continue;
5919 }
5920
5921 // See if we can constant fold its operands.
5922 for (Use &U : Inst.operands()) {
5924 continue;
5925
5926 auto *C = cast<Constant>(U);
5927 Constant *&FoldRes = FoldedConstants[C];
5928 if (!FoldRes)
5929 FoldRes = ConstantFoldConstant(C, DL, &TLI);
5930
5931 if (FoldRes != C) {
5932 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5933 << "\n Old = " << *C
5934 << "\n New = " << *FoldRes << '\n');
5935 U = FoldRes;
5936 MadeIRChange = true;
5937 }
5938 }
5939
5940 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
5941 // these call instructions consumes non-trivial amount of time and
5942 // provides no value for the optimization.
5943 if (!Inst.isDebugOrPseudoInst()) {
5944 InstrsForInstructionWorklist.push_back(&Inst);
5945 SeenAliasScopes.analyse(&Inst);
5946 }
5947 }
5948
5949 // If this is a branch or switch on a constant, mark only the single
5950 // live successor. Otherwise assume all successors are live.
5951 Instruction *TI = BB->getTerminator();
5952 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
5953 if (isa<UndefValue>(BI->getCondition())) {
5954 // Branch on undef is UB.
5955 HandleOnlyLiveSuccessor(BB, nullptr);
5956 continue;
5957 }
5958 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5959 bool CondVal = Cond->getZExtValue();
5960 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5961 continue;
5962 }
5963 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5964 if (isa<UndefValue>(SI->getCondition())) {
5965 // Switch on undef is UB.
5966 HandleOnlyLiveSuccessor(BB, nullptr);
5967 continue;
5968 }
5969 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5970 HandleOnlyLiveSuccessor(BB,
5971 SI->findCaseValue(Cond)->getCaseSuccessor());
5972 continue;
5973 }
5974 }
5975 }
5976
5977 // Remove instructions inside unreachable blocks. This prevents the
5978 // instcombine code from having to deal with some bad special cases, and
5979 // reduces use counts of instructions.
5980 for (BasicBlock &BB : F) {
5981 if (LiveBlocks.count(&BB))
5982 continue;
5983
5984 unsigned NumDeadInstInBB;
5985 NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
5986
5987 MadeIRChange |= NumDeadInstInBB != 0;
5988 NumDeadInst += NumDeadInstInBB;
5989 }
5990
5991 // Once we've found all of the instructions to add to instcombine's worklist,
5992 // add them in reverse order. This way instcombine will visit from the top
5993 // of the function down. This jives well with the way that it adds all uses
5994 // of instructions to the worklist after doing a transformation, thus avoiding
5995 // some N^2 behavior in pathological cases.
5996 Worklist.reserve(InstrsForInstructionWorklist.size());
5997 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
5998 // DCE instruction if trivially dead. As we iterate in reverse program
5999 // order here, we will clean up whole chains of dead instructions.
6000 if (isInstructionTriviallyDead(Inst, &TLI) ||
6001 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
6002 ++NumDeadInst;
6003 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
6004 salvageDebugInfo(*Inst);
6005 Inst->eraseFromParent();
6006 MadeIRChange = true;
6007 continue;
6008 }
6009
6010 Worklist.push(Inst);
6011 }
6012
6013 return MadeIRChange;
6014}
6015
6017 // Collect backedges.
6019 for (BasicBlock *BB : RPOT) {
6020 Visited.insert(BB);
6021 for (BasicBlock *Succ : successors(BB))
6022 if (Visited.contains(Succ))
6023 BackEdges.insert({BB, Succ});
6024 }
6025 ComputedBackEdges = true;
6026}
6027
6033 const InstCombineOptions &Opts) {
6034 auto &DL = F.getDataLayout();
6035 bool VerifyFixpoint = Opts.VerifyFixpoint &&
6036 !F.hasFnAttribute("instcombine-no-verify-fixpoint");
6037
6038 /// Builder - This is an IRBuilder that automatically inserts new
6039 /// instructions into the worklist when they are created.
6041 F.getContext(), TargetFolder(DL),
6042 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
6043 Worklist.add(I);
6044 if (auto *Assume = dyn_cast<AssumeInst>(I))
6045 AC.registerAssumption(Assume);
6046 }));
6047
6049
6050 // Lower dbg.declare intrinsics otherwise their value may be clobbered
6051 // by instcombiner.
6052 bool MadeIRChange = false;
6054 MadeIRChange = LowerDbgDeclare(F);
6055
6056 // Iterate while there is work to do.
6057 unsigned Iteration = 0;
6058 while (true) {
6059 if (Iteration >= Opts.MaxIterations && !VerifyFixpoint) {
6060 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
6061 << " on " << F.getName()
6062 << " reached; stopping without verifying fixpoint\n");
6063 break;
6064 }
6065
6066 ++Iteration;
6067 ++NumWorklistIterations;
6068 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
6069 << F.getName() << "\n");
6070
6071 InstCombinerImpl IC(Worklist, Builder, F, AA, AC, TLI, TTI, DT, ORE, BFI,
6072 BPI, PSI, DL, RPOT);
6074 bool MadeChangeInThisIteration = IC.prepareWorklist(F);
6075 MadeChangeInThisIteration |= IC.run();
6076 if (!MadeChangeInThisIteration)
6077 break;
6078
6079 MadeIRChange = true;
6080 if (Iteration > Opts.MaxIterations) {
6082 "Instruction Combining on " + Twine(F.getName()) +
6083 " did not reach a fixpoint after " + Twine(Opts.MaxIterations) +
6084 " iterations. " +
6085 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
6086 "'instcombine-no-verify-fixpoint' to suppress this error.");
6087 }
6088 }
6089
6090 if (Iteration == 1)
6091 ++NumOneIteration;
6092 else if (Iteration == 2)
6093 ++NumTwoIterations;
6094 else if (Iteration == 3)
6095 ++NumThreeIterations;
6096 else
6097 ++NumFourOrMoreIterations;
6098
6099 return MadeIRChange;
6100}
6101
6103
6105 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
6106 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
6107 OS, MapClassName2PassName);
6108 OS << '<';
6109 OS << "max-iterations=" << Options.MaxIterations << ";";
6110 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
6111 OS << '>';
6112}
6113
6114char InstCombinePass::ID = 0;
6115
6118 auto &LRT = AM.getResult<LastRunTrackingAnalysis>(F);
6119 // No changes since last InstCombine pass, exit early.
6120 if (LRT.shouldSkip(&ID))
6121 return PreservedAnalyses::all();
6122
6123 auto &AC = AM.getResult<AssumptionAnalysis>(F);
6124 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6125 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
6127 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
6128
6129 auto *AA = &AM.getResult<AAManager>(F);
6130 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
6131 ProfileSummaryInfo *PSI =
6132 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
6133 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6134 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
6136
6137 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6138 BFI, BPI, PSI, Options)) {
6139 // No changes, all analyses are preserved.
6140 LRT.update(&ID, /*Changed=*/false);
6141 return PreservedAnalyses::all();
6142 }
6143
6144 // Mark all the analyses that instcombine updates as preserved.
6146 LRT.update(&ID, /*Changed=*/true);
6149 return PA;
6150}
6151
6167
6169 if (skipFunction(F))
6170 return false;
6171
6172 // Required analyses.
6173 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6174 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6175 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
6177 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6179
6180 // Optional analyses.
6181 ProfileSummaryInfo *PSI =
6183 BlockFrequencyInfo *BFI =
6184 (PSI && PSI->hasProfileSummary()) ?
6186 nullptr;
6187 BranchProbabilityInfo *BPI = nullptr;
6188 if (auto *WrapperPass =
6190 BPI = &WrapperPass->getBPI();
6191
6192 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6193 BFI, BPI, PSI, InstCombineOptions());
6194}
6195
6197
6201
6203 "Combine redundant instructions", false, false)
6214 "Combine redundant instructions", false, false)
6215
6216// Initialization Routines
6220
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI)
DXIL Resource Access
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
Definition IVUsers.cpp:48
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static Constant * constantFoldBinOpWithSplat(unsigned Opcode, Constant *Vector, Constant *Splat, bool SplatLHS, const DataLayout &DL)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * combineConstantOffsets(GetElementPtrInst &GEP, InstCombinerImpl &IC)
Combine constant offsets separated by variable offsets.
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static Value * foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall, SelectInst *SelectInst, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static std::optional< ModRefInfo > isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI, bool KnowInit)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file contains the declarations for metadata subclasses.
#define T
uint64_t IntrinsicInst * II
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
unsigned OpIndex
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
The Input class is used to parse a yaml document into in-memory structs and vectors.
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Definition APFloat.cpp:290
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1758
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition APInt.cpp:1890
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:372
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition APInt.h:406
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1151
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition Pass.cpp:270
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition ArrayRef.h:219
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
uint64_t getNumElements() const
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
LLVM_ABI uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition Attributes.h:223
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
Definition BasicBlock.h:482
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
size_t size() const
Definition BasicBlock.h:480
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Definition InstrTypes.h:374
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:294
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
Definition Constants.h:438
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition Constants.h:781
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
Definition Constants.h:522
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
Definition Constant.h:222
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(CounterInfo &Counter)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
bool empty() const
Definition DenseMap.h:109
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:321
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
idx_iterator idx_end() const
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
idx_iterator idx_begin() const
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
FunctionPass(char &pid)
Definition Pass.h:316
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition Pass.cpp:188
const BasicBlock & getEntryBlock() const
Definition Function.h:807
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags all()
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForReassociate(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep (gep, p, y), x).
bool hasNoUnsignedWrap() const
bool isInBounds() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
static GEPNoWrapFlags none()
GEPNoWrapFlags getNoWrapFlags() const
Definition Operator.h:425
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2039
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Definition IRBuilder.h:538
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
Definition IRBuilder.h:75
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2794
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI InstCombinePass(InstCombineOptions Opts={})
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
Instruction * foldBinOpSelectBinOp(BinaryOperator &Op)
In some cases it is beneficial to fold a select into a binary operator.
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * foldBinopWithRecurrence(BinaryOperator &BO)
Try to fold binary operators whose operands are simple interleaved recurrences to a single recurrence...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
bool SimplifyDemandedFPClass(Instruction *I, unsigned Op, FPClassTest DemandedMask, KnownFPClass &Known, unsigned Depth=0)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
SimplifyQuery SQ
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
TargetLibraryInfo & TLI
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
const DataLayout & DL
DomConditionCache DC
const bool MinimizeSize
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
DominatorTree & DT
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
BuilderTy & Builder
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
Definition InstVisitor.h:87
The legacy pass manager's instcombine pass.
Definition InstCombine.h:68
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void add(Instruction *I)
Add instruction to the worklist.
LLVM_ABI void dropUBImplyingAttrsAndMetadata(ArrayRef< unsigned > Keep={})
Drop any attributes or metadata that can cause immediate undefined behavior.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
bool isShift() const
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
bool isIntDivRem() const
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
A wrapper class for inspecting calls to intrinsic functions.
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
Root of the metadata hierarchy.
Definition Metadata.h:64
Value * getLHS() const
Value * getRHS() const
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
MDNode * getScopeList() const
OptimizationRemarkEmitter legacy analysis pass.
The optimization diagnostic interface.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
Definition Constants.h:1478
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition Registry.h:42
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
This instruction constructs a fixed permutation of two input vectors.
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Multiway switch.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
Definition Type.cpp:61
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Use * op_iterator
Definition User.h:280
op_range operands()
Definition User.h:293
op_iterator op_begin()
Definition User.h:285
const Use & getOperandUse(unsigned i) const
Definition User.h:246
LLVM_ABI bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
Definition User.cpp:119
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:25
Value * getOperand(unsigned i) const
Definition User.h:233
unsigned getNumOperands() const
Definition User.h:255
op_iterator op_end()
Definition User.h:287
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition Value.h:759
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
bool hasUseList() const
Check if this Value has a use-list.
Definition Value.h:344
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition Value.cpp:150
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1106
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:888
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:403
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Value handle that is nullable, but tries to track the Value.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
reverse_self_iterator getReverseIterator()
Definition ilist_node.h:126
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
Splat_match< T > m_ConstantSplat(const T &SubPattern)
Match a constant splat. TODO: Extend this to non-constant splats.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_VectorInsert(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2106
LLVM_ABI void initializeInstructionCombiningPassPass(PassRegistry &)
LLVM_ABI unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
Definition Local.cpp:2485
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
bool succ_empty(const Instruction *I)
Definition CFG.h:257
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI FunctionPass * createInstructionCombiningPass()
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2530
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1731
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2184
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
gep_type_iterator gep_type_end(const User *GEP)
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
Definition Local.cpp:2468
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition Local.cpp:22
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool LowerDbgDeclare(Function &F)
Lowers dbg.declare records into appropriate set of dbg.value records.
Definition Local.cpp:1795
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, DIBuilder &Builder)
Inserts a dbg.value record before a store to an alloca'd value that has an associated dbg....
Definition Local.cpp:1662
LLVM_ABI void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
Definition Local.cpp:2037
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
Definition Local.cpp:2414
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:323
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
Definition ModRef.h:28
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
@ ModRef
The access may reference and may modify the value stored in memory.
Definition ModRef.h:36
@ Mod
The access may modify the value stored in memory.
Definition ModRef.h:34
@ NoModRef
The access neither references nor modifies the value stored in memory.
Definition ModRef.h:30
TargetTransformInfo TTI
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:2009
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2136
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
bool isRefSet(const ModRefInfo MRI)
Definition ModRef.h:52
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition KnownBits.h:251
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
SimplifyQuery getWithInstruction(const Instruction *I) const