LLVM 19.0.0git
InstructionCombining.cpp
Go to the documentation of this file.
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions. This pass does not modify the CFG. This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14// %Y = add i32 %X, 1
15// %Z = add i32 %Y, 1
16// into:
17// %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23// 1. If a binary operator has a constant operand, it is moved to the RHS
24// 2. Bitwise operators with constant operands are always grouped so that
25// shifts are performed first, then or's, then and's, then xor's.
26// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27// 4. All cmp instructions on boolean values are replaced with logical ops
28// 5. add X, X is represented as (X*2) => (X << 1)
29// 6. Multiplies with a power-of-two constant argument are transformed into
30// shifts.
31// ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm/ADT/APInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/Statistic.h"
46#include "llvm/Analysis/CFG.h"
61#include "llvm/IR/BasicBlock.h"
62#include "llvm/IR/CFG.h"
63#include "llvm/IR/Constant.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/IR/DIBuilder.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
69#include "llvm/IR/Dominators.h"
71#include "llvm/IR/Function.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/InstrTypes.h"
75#include "llvm/IR/Instruction.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/Metadata.h"
80#include "llvm/IR/Operator.h"
81#include "llvm/IR/PassManager.h"
83#include "llvm/IR/Type.h"
84#include "llvm/IR/Use.h"
85#include "llvm/IR/User.h"
86#include "llvm/IR/Value.h"
87#include "llvm/IR/ValueHandle.h"
92#include "llvm/Support/Debug.h"
100#include <algorithm>
101#include <cassert>
102#include <cstdint>
103#include <memory>
104#include <optional>
105#include <string>
106#include <utility>
107
108#define DEBUG_TYPE "instcombine"
110#include <optional>
111
112using namespace llvm;
113using namespace llvm::PatternMatch;
114
115STATISTIC(NumWorklistIterations,
116 "Number of instruction combining iterations performed");
117STATISTIC(NumOneIteration, "Number of functions with one iteration");
118STATISTIC(NumTwoIterations, "Number of functions with two iterations");
119STATISTIC(NumThreeIterations, "Number of functions with three iterations");
120STATISTIC(NumFourOrMoreIterations,
121 "Number of functions with four or more iterations");
122
123STATISTIC(NumCombined , "Number of insts combined");
124STATISTIC(NumConstProp, "Number of constant folds");
125STATISTIC(NumDeadInst , "Number of dead inst eliminated");
126STATISTIC(NumSunkInst , "Number of instructions sunk");
127STATISTIC(NumExpand, "Number of expansions");
128STATISTIC(NumFactor , "Number of factorizations");
129STATISTIC(NumReassoc , "Number of reassociations");
130DEBUG_COUNTER(VisitCounter, "instcombine-visit",
131 "Controls which instructions are visited");
132
133static cl::opt<bool>
134EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
135 cl::init(true));
136
138 "instcombine-max-sink-users", cl::init(32),
139 cl::desc("Maximum number of undroppable users for instruction sinking"));
140
142MaxArraySize("instcombine-maxarray-size", cl::init(1024),
143 cl::desc("Maximum array size considered when doing a combine"));
144
145// FIXME: Remove this flag when it is no longer necessary to convert
146// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
147// increases variable availability at the cost of accuracy. Variables that
148// cannot be promoted by mem2reg or SROA will be described as living in memory
149// for their entire lifetime. However, passes like DSE and instcombine can
150// delete stores to the alloca, leading to misleading and inaccurate debug
151// information. This flag can be removed when those passes are fixed.
152static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
153 cl::Hidden, cl::init(true));
154
155std::optional<Instruction *>
157 // Handle target specific intrinsics
159 return TTI.instCombineIntrinsic(*this, II);
160 }
161 return std::nullopt;
162}
163
165 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
166 bool &KnownBitsComputed) {
167 // Handle target specific intrinsics
169 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
170 KnownBitsComputed);
171 }
172 return std::nullopt;
173}
174
176 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
177 APInt &PoisonElts2, APInt &PoisonElts3,
178 std::function<void(Instruction *, unsigned, APInt, APInt &)>
179 SimplifyAndSetOp) {
180 // Handle target specific intrinsics
183 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
184 SimplifyAndSetOp);
185 }
186 return std::nullopt;
187}
188
189bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
190 return TTI.isValidAddrSpaceCast(FromAS, ToAS);
191}
192
193Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
195}
196
197/// Legal integers and common types are considered desirable. This is used to
198/// avoid creating instructions with types that may not be supported well by the
199/// the backend.
200/// NOTE: This treats i8, i16 and i32 specially because they are common
201/// types in frontend languages.
202bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
203 switch (BitWidth) {
204 case 8:
205 case 16:
206 case 32:
207 return true;
208 default:
209 return DL.isLegalInteger(BitWidth);
210 }
211}
212
213/// Return true if it is desirable to convert an integer computation from a
214/// given bit width to a new bit width.
215/// We don't want to convert from a legal or desirable type (like i8) to an
216/// illegal type or from a smaller to a larger illegal type. A width of '1'
217/// is always treated as a desirable type because i1 is a fundamental type in
218/// IR, and there are many specialized optimizations for i1 types.
219/// Common/desirable widths are equally treated as legal to convert to, in
220/// order to open up more combining opportunities.
221bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
222 unsigned ToWidth) const {
223 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
224 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
225
226 // Convert to desirable widths even if they are not legal types.
227 // Only shrink types, to prevent infinite loops.
228 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
229 return true;
230
231 // If this is a legal or desiable integer from type, and the result would be
232 // an illegal type, don't do the transformation.
233 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
234 return false;
235
236 // Otherwise, if both are illegal, do not increase the size of the result. We
237 // do allow things like i160 -> i64, but not i64 -> i160.
238 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
239 return false;
240
241 return true;
242}
243
244/// Return true if it is desirable to convert a computation from 'From' to 'To'.
245/// We don't want to convert from a legal to an illegal type or from a smaller
246/// to a larger illegal type. i1 is always treated as a legal type because it is
247/// a fundamental type in IR, and there are many specialized optimizations for
248/// i1 types.
249bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
250 // TODO: This could be extended to allow vectors. Datalayout changes might be
251 // needed to properly support that.
252 if (!From->isIntegerTy() || !To->isIntegerTy())
253 return false;
254
255 unsigned FromWidth = From->getPrimitiveSizeInBits();
256 unsigned ToWidth = To->getPrimitiveSizeInBits();
257 return shouldChangeType(FromWidth, ToWidth);
258}
259
260// Return true, if No Signed Wrap should be maintained for I.
261// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
262// where both B and C should be ConstantInts, results in a constant that does
263// not overflow. This function only handles the Add and Sub opcodes. For
264// all other opcodes, the function conservatively returns false.
266 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
267 if (!OBO || !OBO->hasNoSignedWrap())
268 return false;
269
270 // We reason about Add and Sub Only.
271 Instruction::BinaryOps Opcode = I.getOpcode();
272 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
273 return false;
274
275 const APInt *BVal, *CVal;
276 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
277 return false;
278
279 bool Overflow = false;
280 if (Opcode == Instruction::Add)
281 (void)BVal->sadd_ov(*CVal, Overflow);
282 else
283 (void)BVal->ssub_ov(*CVal, Overflow);
284
285 return !Overflow;
286}
287
289 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
290 return OBO && OBO->hasNoUnsignedWrap();
291}
292
294 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
295 return OBO && OBO->hasNoSignedWrap();
296}
297
298/// Conservatively clears subclassOptionalData after a reassociation or
299/// commutation. We preserve fast-math flags when applicable as they can be
300/// preserved.
302 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
303 if (!FPMO) {
304 I.clearSubclassOptionalData();
305 return;
306 }
307
308 FastMathFlags FMF = I.getFastMathFlags();
309 I.clearSubclassOptionalData();
310 I.setFastMathFlags(FMF);
311}
312
313/// Combine constant operands of associative operations either before or after a
314/// cast to eliminate one of the associative operations:
315/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
316/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
318 InstCombinerImpl &IC) {
319 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
320 if (!Cast || !Cast->hasOneUse())
321 return false;
322
323 // TODO: Enhance logic for other casts and remove this check.
324 auto CastOpcode = Cast->getOpcode();
325 if (CastOpcode != Instruction::ZExt)
326 return false;
327
328 // TODO: Enhance logic for other BinOps and remove this check.
329 if (!BinOp1->isBitwiseLogicOp())
330 return false;
331
332 auto AssocOpcode = BinOp1->getOpcode();
333 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
334 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
335 return false;
336
337 Constant *C1, *C2;
338 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
339 !match(BinOp2->getOperand(1), m_Constant(C2)))
340 return false;
341
342 // TODO: This assumes a zext cast.
343 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
344 // to the destination type might lose bits.
345
346 // Fold the constants together in the destination type:
347 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
348 const DataLayout &DL = IC.getDataLayout();
349 Type *DestTy = C1->getType();
350 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
351 if (!CastC2)
352 return false;
353 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
354 if (!FoldedC)
355 return false;
356
357 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
358 IC.replaceOperand(*BinOp1, 1, FoldedC);
360 Cast->dropPoisonGeneratingFlags();
361 return true;
362}
363
364// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
365// inttoptr ( ptrtoint (x) ) --> x
366Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
367 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
368 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
369 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
370 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
371 Type *CastTy = IntToPtr->getDestTy();
372 if (PtrToInt &&
373 CastTy->getPointerAddressSpace() ==
374 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
375 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
376 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
377 return PtrToInt->getOperand(0);
378 }
379 return nullptr;
380}
381
382/// This performs a few simplifications for operators that are associative or
383/// commutative:
384///
385/// Commutative operators:
386///
387/// 1. Order operands such that they are listed from right (least complex) to
388/// left (most complex). This puts constants before unary operators before
389/// binary operators.
390///
391/// Associative operators:
392///
393/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
394/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
395///
396/// Associative and commutative operators:
397///
398/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
399/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
400/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
401/// if C1 and C2 are constants.
403 Instruction::BinaryOps Opcode = I.getOpcode();
404 bool Changed = false;
405
406 do {
407 // Order operands such that they are listed from right (least complex) to
408 // left (most complex). This puts constants before unary operators before
409 // binary operators.
410 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
411 getComplexity(I.getOperand(1)))
412 Changed = !I.swapOperands();
413
414 if (I.isCommutative()) {
415 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
416 replaceOperand(I, 0, Pair->first);
417 replaceOperand(I, 1, Pair->second);
418 Changed = true;
419 }
420 }
421
422 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
423 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
424
425 if (I.isAssociative()) {
426 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
427 if (Op0 && Op0->getOpcode() == Opcode) {
428 Value *A = Op0->getOperand(0);
429 Value *B = Op0->getOperand(1);
430 Value *C = I.getOperand(1);
431
432 // Does "B op C" simplify?
433 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
434 // It simplifies to V. Form "A op V".
435 replaceOperand(I, 0, A);
436 replaceOperand(I, 1, V);
437 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
438 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
439
440 // Conservatively clear all optional flags since they may not be
441 // preserved by the reassociation. Reset nsw/nuw based on the above
442 // analysis.
444
445 // Note: this is only valid because SimplifyBinOp doesn't look at
446 // the operands to Op0.
447 if (IsNUW)
448 I.setHasNoUnsignedWrap(true);
449
450 if (IsNSW)
451 I.setHasNoSignedWrap(true);
452
453 Changed = true;
454 ++NumReassoc;
455 continue;
456 }
457 }
458
459 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
460 if (Op1 && Op1->getOpcode() == Opcode) {
461 Value *A = I.getOperand(0);
462 Value *B = Op1->getOperand(0);
463 Value *C = Op1->getOperand(1);
464
465 // Does "A op B" simplify?
466 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
467 // It simplifies to V. Form "V op C".
468 replaceOperand(I, 0, V);
469 replaceOperand(I, 1, C);
470 // Conservatively clear the optional flags, since they may not be
471 // preserved by the reassociation.
473 Changed = true;
474 ++NumReassoc;
475 continue;
476 }
477 }
478 }
479
480 if (I.isAssociative() && I.isCommutative()) {
481 if (simplifyAssocCastAssoc(&I, *this)) {
482 Changed = true;
483 ++NumReassoc;
484 continue;
485 }
486
487 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
488 if (Op0 && Op0->getOpcode() == Opcode) {
489 Value *A = Op0->getOperand(0);
490 Value *B = Op0->getOperand(1);
491 Value *C = I.getOperand(1);
492
493 // Does "C op A" simplify?
494 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
495 // It simplifies to V. Form "V op B".
496 replaceOperand(I, 0, V);
497 replaceOperand(I, 1, B);
498 // Conservatively clear the optional flags, since they may not be
499 // preserved by the reassociation.
501 Changed = true;
502 ++NumReassoc;
503 continue;
504 }
505 }
506
507 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
508 if (Op1 && Op1->getOpcode() == Opcode) {
509 Value *A = I.getOperand(0);
510 Value *B = Op1->getOperand(0);
511 Value *C = Op1->getOperand(1);
512
513 // Does "C op A" simplify?
514 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
515 // It simplifies to V. Form "B op V".
516 replaceOperand(I, 0, B);
517 replaceOperand(I, 1, V);
518 // Conservatively clear the optional flags, since they may not be
519 // preserved by the reassociation.
521 Changed = true;
522 ++NumReassoc;
523 continue;
524 }
525 }
526
527 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
528 // if C1 and C2 are constants.
529 Value *A, *B;
530 Constant *C1, *C2, *CRes;
531 if (Op0 && Op1 &&
532 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
533 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
534 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
535 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
536 bool IsNUW = hasNoUnsignedWrap(I) &&
537 hasNoUnsignedWrap(*Op0) &&
538 hasNoUnsignedWrap(*Op1);
539 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
540 BinaryOperator::CreateNUW(Opcode, A, B) :
541 BinaryOperator::Create(Opcode, A, B);
542
543 if (isa<FPMathOperator>(NewBO)) {
544 FastMathFlags Flags = I.getFastMathFlags() &
545 Op0->getFastMathFlags() &
546 Op1->getFastMathFlags();
547 NewBO->setFastMathFlags(Flags);
548 }
549 InsertNewInstWith(NewBO, I.getIterator());
550 NewBO->takeName(Op1);
551 replaceOperand(I, 0, NewBO);
552 replaceOperand(I, 1, CRes);
553 // Conservatively clear the optional flags, since they may not be
554 // preserved by the reassociation.
556 if (IsNUW)
557 I.setHasNoUnsignedWrap(true);
558
559 Changed = true;
560 continue;
561 }
562 }
563
564 // No further simplifications.
565 return Changed;
566 } while (true);
567}
568
569/// Return whether "X LOp (Y ROp Z)" is always equal to
570/// "(X LOp Y) ROp (X LOp Z)".
573 // X & (Y | Z) <--> (X & Y) | (X & Z)
574 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
575 if (LOp == Instruction::And)
576 return ROp == Instruction::Or || ROp == Instruction::Xor;
577
578 // X | (Y & Z) <--> (X | Y) & (X | Z)
579 if (LOp == Instruction::Or)
580 return ROp == Instruction::And;
581
582 // X * (Y + Z) <--> (X * Y) + (X * Z)
583 // X * (Y - Z) <--> (X * Y) - (X * Z)
584 if (LOp == Instruction::Mul)
585 return ROp == Instruction::Add || ROp == Instruction::Sub;
586
587 return false;
588}
589
590/// Return whether "(X LOp Y) ROp Z" is always equal to
591/// "(X ROp Z) LOp (Y ROp Z)".
595 return leftDistributesOverRight(ROp, LOp);
596
597 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
599
600 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
601 // but this requires knowing that the addition does not overflow and other
602 // such subtleties.
603}
604
605/// This function returns identity value for given opcode, which can be used to
606/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
608 if (isa<Constant>(V))
609 return nullptr;
610
611 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
612}
613
614/// This function predicates factorization using distributive laws. By default,
615/// it just returns the 'Op' inputs. But for special-cases like
616/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
617/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
618/// allow more factorization opportunities.
621 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
622 assert(Op && "Expected a binary operator");
623 LHS = Op->getOperand(0);
624 RHS = Op->getOperand(1);
625 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
626 Constant *C;
627 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
628 // X << C --> X * (1 << C)
629 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
630 return Instruction::Mul;
631 }
632 // TODO: We can add other conversions e.g. shr => div etc.
633 }
634 if (Instruction::isBitwiseLogicOp(TopOpcode)) {
635 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
637 // lshr nneg C, X --> ashr nneg C, X
638 return Instruction::AShr;
639 }
640 }
641 return Op->getOpcode();
642}
643
644/// This tries to simplify binary operations by factorizing out common terms
645/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
648 Instruction::BinaryOps InnerOpcode, Value *A,
649 Value *B, Value *C, Value *D) {
650 assert(A && B && C && D && "All values must be provided");
651
652 Value *V = nullptr;
653 Value *RetVal = nullptr;
654 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
655 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
656
657 // Does "X op' Y" always equal "Y op' X"?
658 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
659
660 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
661 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
662 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
663 // commutative case, "(A op' B) op (C op' A)"?
664 if (A == C || (InnerCommutative && A == D)) {
665 if (A != C)
666 std::swap(C, D);
667 // Consider forming "A op' (B op D)".
668 // If "B op D" simplifies then it can be formed with no cost.
669 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
670
671 // If "B op D" doesn't simplify then only go on if one of the existing
672 // operations "A op' B" and "C op' D" will be zapped as no longer used.
673 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
674 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
675 if (V)
676 RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
677 }
678 }
679
680 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
681 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
682 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
683 // commutative case, "(A op' B) op (B op' D)"?
684 if (B == D || (InnerCommutative && B == C)) {
685 if (B != D)
686 std::swap(C, D);
687 // Consider forming "(A op C) op' B".
688 // If "A op C" simplifies then it can be formed with no cost.
689 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
690
691 // If "A op C" doesn't simplify then only go on if one of the existing
692 // operations "A op' B" and "C op' D" will be zapped as no longer used.
693 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
694 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
695 if (V)
696 RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
697 }
698 }
699
700 if (!RetVal)
701 return nullptr;
702
703 ++NumFactor;
704 RetVal->takeName(&I);
705
706 // Try to add no-overflow flags to the final value.
707 if (isa<OverflowingBinaryOperator>(RetVal)) {
708 bool HasNSW = false;
709 bool HasNUW = false;
710 if (isa<OverflowingBinaryOperator>(&I)) {
711 HasNSW = I.hasNoSignedWrap();
712 HasNUW = I.hasNoUnsignedWrap();
713 }
714 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
715 HasNSW &= LOBO->hasNoSignedWrap();
716 HasNUW &= LOBO->hasNoUnsignedWrap();
717 }
718
719 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
720 HasNSW &= ROBO->hasNoSignedWrap();
721 HasNUW &= ROBO->hasNoUnsignedWrap();
722 }
723
724 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
725 // We can propagate 'nsw' if we know that
726 // %Y = mul nsw i16 %X, C
727 // %Z = add nsw i16 %Y, %X
728 // =>
729 // %Z = mul nsw i16 %X, C+1
730 //
731 // iff C+1 isn't INT_MIN
732 const APInt *CInt;
733 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
734 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
735
736 // nuw can be propagated with any constant or nuw value.
737 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
738 }
739 }
740 return RetVal;
741}
742
743// If `I` has one Const operand and the other matches `(ctpop (not x))`,
744// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
745// This is only useful is the new subtract can fold so we only handle the
746// following cases:
747// 1) (add/sub/disjoint_or C, (ctpop (not x))
748// -> (add/sub/disjoint_or C', (ctpop x))
749// 1) (cmp pred C, (ctpop (not x))
750// -> (cmp pred C', (ctpop x))
752 unsigned Opc = I->getOpcode();
753 unsigned ConstIdx = 1;
754 switch (Opc) {
755 default:
756 return nullptr;
757 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
758 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
759 // is constant.
760 case Instruction::Sub:
761 ConstIdx = 0;
762 break;
763 case Instruction::ICmp:
764 // Signed predicates aren't correct in some edge cases like for i2 types, as
765 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
766 // comparisons against it are simplfied to unsigned.
767 if (cast<ICmpInst>(I)->isSigned())
768 return nullptr;
769 break;
770 case Instruction::Or:
771 if (!match(I, m_DisjointOr(m_Value(), m_Value())))
772 return nullptr;
773 [[fallthrough]];
774 case Instruction::Add:
775 break;
776 }
777
778 Value *Op;
779 // Find ctpop.
780 if (!match(I->getOperand(1 - ConstIdx),
781 m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op)))))
782 return nullptr;
783
784 Constant *C;
785 // Check other operand is ImmConstant.
786 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
787 return nullptr;
788
789 Type *Ty = Op->getType();
790 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
791 // Need extra check for icmp. Note if this check is true, it generally means
792 // the icmp will simplify to true/false.
793 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality() &&
794 !ConstantExpr::getICmp(ICmpInst::ICMP_UGT, C, BitWidthC)->isZeroValue())
795 return nullptr;
796
797 // Check we can invert `(not x)` for free.
798 bool Consumes = false;
799 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
800 return nullptr;
801 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
802 assert(NotOp != nullptr &&
803 "Desync between isFreeToInvert and getFreelyInverted");
804
805 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
806
807 Value *R = nullptr;
808
809 // Do the transformation here to avoid potentially introducing an infinite
810 // loop.
811 switch (Opc) {
812 case Instruction::Sub:
813 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
814 break;
815 case Instruction::Or:
816 case Instruction::Add:
817 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
818 break;
819 case Instruction::ICmp:
820 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
821 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
822 break;
823 default:
824 llvm_unreachable("Unhandled Opcode");
825 }
826 assert(R != nullptr);
827 return replaceInstUsesWith(*I, R);
828}
829
830// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
831// IFF
832// 1) the logic_shifts match
833// 2) either both binops are binops and one is `and` or
834// BinOp1 is `and`
835// (logic_shift (inv_logic_shift C1, C), C) == C1 or
836//
837// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
838//
839// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
840// IFF
841// 1) the logic_shifts match
842// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
843//
844// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
845//
846// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
847// IFF
848// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
849// 2) Binop2 is `not`
850//
851// -> (arithmetic_shift Binop1((not X), Y), Amt)
852
854 const DataLayout &DL = I.getModule()->getDataLayout();
855 auto IsValidBinOpc = [](unsigned Opc) {
856 switch (Opc) {
857 default:
858 return false;
859 case Instruction::And:
860 case Instruction::Or:
861 case Instruction::Xor:
862 case Instruction::Add:
863 // Skip Sub as we only match constant masks which will canonicalize to use
864 // add.
865 return true;
866 }
867 };
868
869 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
870 // constraints.
871 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
872 unsigned ShOpc) {
873 assert(ShOpc != Instruction::AShr);
874 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
875 ShOpc == Instruction::Shl;
876 };
877
878 auto GetInvShift = [](unsigned ShOpc) {
879 assert(ShOpc != Instruction::AShr);
880 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
881 };
882
883 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
884 unsigned ShOpc, Constant *CMask,
885 Constant *CShift) {
886 // If the BinOp1 is `and` we don't need to check the mask.
887 if (BinOpc1 == Instruction::And)
888 return true;
889
890 // For all other possible transfers we need complete distributable
891 // binop/shift (anything but `add` + `lshr`).
892 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
893 return false;
894
895 // If BinOp2 is `and`, any mask works (this only really helps for non-splat
896 // vecs, otherwise the mask will be simplified and the following check will
897 // handle it).
898 if (BinOpc2 == Instruction::And)
899 return true;
900
901 // Otherwise, need mask that meets the below requirement.
902 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
903 Constant *MaskInvShift =
904 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
905 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
906 CMask;
907 };
908
909 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
910 Constant *CMask, *CShift;
911 Value *X, *Y, *ShiftedX, *Mask, *Shift;
912 if (!match(I.getOperand(ShOpnum),
913 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
914 return nullptr;
915 if (!match(I.getOperand(1 - ShOpnum),
916 m_BinOp(m_Value(ShiftedX), m_Value(Mask))))
917 return nullptr;
918
919 if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift)))))
920 return nullptr;
921
922 // Make sure we are matching instruction shifts and not ConstantExpr
923 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
924 auto *IX = dyn_cast<Instruction>(ShiftedX);
925 if (!IY || !IX)
926 return nullptr;
927
928 // LHS and RHS need same shift opcode
929 unsigned ShOpc = IY->getOpcode();
930 if (ShOpc != IX->getOpcode())
931 return nullptr;
932
933 // Make sure binop is real instruction and not ConstantExpr
934 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
935 if (!BO2)
936 return nullptr;
937
938 unsigned BinOpc = BO2->getOpcode();
939 // Make sure we have valid binops.
940 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
941 return nullptr;
942
943 if (ShOpc == Instruction::AShr) {
944 if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
945 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
946 Value *NotX = Builder.CreateNot(X);
947 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
949 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
950 }
951
952 return nullptr;
953 }
954
955 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
956 // distribute to drop the shift irrelevant of constants.
957 if (BinOpc == I.getOpcode() &&
958 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
959 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
960 Value *NewBinOp1 = Builder.CreateBinOp(
961 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
962 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
963 }
964
965 // Otherwise we can only distribute by constant shifting the mask, so
966 // ensure we have constants.
967 if (!match(Shift, m_ImmConstant(CShift)))
968 return nullptr;
969 if (!match(Mask, m_ImmConstant(CMask)))
970 return nullptr;
971
972 // Check if we can distribute the binops.
973 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
974 return nullptr;
975
976 Constant *NewCMask =
977 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
978 Value *NewBinOp2 = Builder.CreateBinOp(
979 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
980 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
981 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
982 NewBinOp1, CShift);
983 };
984
985 if (Instruction *R = MatchBinOp(0))
986 return R;
987 return MatchBinOp(1);
988}
989
990// (Binop (zext C), (select C, T, F))
991// -> (select C, (binop 1, T), (binop 0, F))
992//
993// (Binop (sext C), (select C, T, F))
994// -> (select C, (binop -1, T), (binop 0, F))
995//
996// Attempt to simplify binary operations into a select with folded args, when
997// one operand of the binop is a select instruction and the other operand is a
998// zext/sext extension, whose value is the select condition.
1001 // TODO: this simplification may be extended to any speculatable instruction,
1002 // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1003 Instruction::BinaryOps Opc = I.getOpcode();
1004 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1005 Value *A, *CondVal, *TrueVal, *FalseVal;
1006 Value *CastOp;
1007
1008 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1009 return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1010 A->getType()->getScalarSizeInBits() == 1 &&
1011 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1012 m_Value(FalseVal)));
1013 };
1014
1015 // Make sure one side of the binop is a select instruction, and the other is a
1016 // zero/sign extension operating on a i1.
1017 if (MatchSelectAndCast(LHS, RHS))
1018 CastOp = LHS;
1019 else if (MatchSelectAndCast(RHS, LHS))
1020 CastOp = RHS;
1021 else
1022 return nullptr;
1023
1024 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1025 bool IsCastOpRHS = (CastOp == RHS);
1026 bool IsZExt = isa<ZExtInst>(CastOp);
1027 Constant *C;
1028
1029 if (IsTrueArm) {
1030 C = Constant::getNullValue(V->getType());
1031 } else if (IsZExt) {
1032 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1033 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1034 } else {
1035 C = Constant::getAllOnesValue(V->getType());
1036 }
1037
1038 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1039 : Builder.CreateBinOp(Opc, C, V);
1040 };
1041
1042 // If the value used in the zext/sext is the select condition, or the negated
1043 // of the select condition, the binop can be simplified.
1044 if (CondVal == A) {
1045 Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1046 return SelectInst::Create(CondVal, NewTrueVal,
1047 NewFoldedConst(true, FalseVal));
1048 }
1049
1050 if (match(A, m_Not(m_Specific(CondVal)))) {
1051 Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1052 return SelectInst::Create(CondVal, NewTrueVal,
1053 NewFoldedConst(false, FalseVal));
1054 }
1055
1056 return nullptr;
1057}
1058
1060 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1061 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1062 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1063 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1064 Value *A, *B, *C, *D;
1065 Instruction::BinaryOps LHSOpcode, RHSOpcode;
1066
1067 if (Op0)
1068 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1069 if (Op1)
1070 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1071
1072 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
1073 // a common term.
1074 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1075 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1076 return V;
1077
1078 // The instruction has the form "(A op' B) op (C)". Try to factorize common
1079 // term.
1080 if (Op0)
1081 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1082 if (Value *V =
1083 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1084 return V;
1085
1086 // The instruction has the form "(B) op (C op' D)". Try to factorize common
1087 // term.
1088 if (Op1)
1089 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1090 if (Value *V =
1091 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1092 return V;
1093
1094 return nullptr;
1095}
1096
1097/// This tries to simplify binary operations which some other binary operation
1098/// distributes over either by factorizing out common terms
1099/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1100/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1101/// Returns the simplified value, or null if it didn't simplify.
1103 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1104 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1105 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1106 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1107
1108 // Factorization.
1109 if (Value *R = tryFactorizationFolds(I))
1110 return R;
1111
1112 // Expansion.
1113 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1114 // The instruction has the form "(A op' B) op C". See if expanding it out
1115 // to "(A op C) op' (B op C)" results in simplifications.
1116 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1117 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1118
1119 // Disable the use of undef because it's not safe to distribute undef.
1120 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1121 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1122 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1123
1124 // Do "A op C" and "B op C" both simplify?
1125 if (L && R) {
1126 // They do! Return "L op' R".
1127 ++NumExpand;
1128 C = Builder.CreateBinOp(InnerOpcode, L, R);
1129 C->takeName(&I);
1130 return C;
1131 }
1132
1133 // Does "A op C" simplify to the identity value for the inner opcode?
1134 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1135 // They do! Return "B op C".
1136 ++NumExpand;
1137 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1138 C->takeName(&I);
1139 return C;
1140 }
1141
1142 // Does "B op C" simplify to the identity value for the inner opcode?
1143 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1144 // They do! Return "A op C".
1145 ++NumExpand;
1146 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1147 C->takeName(&I);
1148 return C;
1149 }
1150 }
1151
1152 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1153 // The instruction has the form "A op (B op' C)". See if expanding it out
1154 // to "(A op B) op' (A op C)" results in simplifications.
1155 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1156 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1157
1158 // Disable the use of undef because it's not safe to distribute undef.
1159 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1160 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1161 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1162
1163 // Do "A op B" and "A op C" both simplify?
1164 if (L && R) {
1165 // They do! Return "L op' R".
1166 ++NumExpand;
1167 A = Builder.CreateBinOp(InnerOpcode, L, R);
1168 A->takeName(&I);
1169 return A;
1170 }
1171
1172 // Does "A op B" simplify to the identity value for the inner opcode?
1173 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1174 // They do! Return "A op C".
1175 ++NumExpand;
1176 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1177 A->takeName(&I);
1178 return A;
1179 }
1180
1181 // Does "A op C" simplify to the identity value for the inner opcode?
1182 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1183 // They do! Return "A op B".
1184 ++NumExpand;
1185 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1186 A->takeName(&I);
1187 return A;
1188 }
1189 }
1190
1192}
1193
1194static std::optional<std::pair<Value *, Value *>>
1196 if (LHS->getParent() != RHS->getParent())
1197 return std::nullopt;
1198
1199 if (LHS->getNumIncomingValues() < 2)
1200 return std::nullopt;
1201
1202 if (!equal(LHS->blocks(), RHS->blocks()))
1203 return std::nullopt;
1204
1205 Value *L0 = LHS->getIncomingValue(0);
1206 Value *R0 = RHS->getIncomingValue(0);
1207
1208 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1209 Value *L1 = LHS->getIncomingValue(I);
1210 Value *R1 = RHS->getIncomingValue(I);
1211
1212 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1213 continue;
1214
1215 return std::nullopt;
1216 }
1217
1218 return std::optional(std::pair(L0, R0));
1219}
1220
1221std::optional<std::pair<Value *, Value *>>
1222InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1223 Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1224 Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1225 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1226 return std::nullopt;
1227 switch (LHSInst->getOpcode()) {
1228 case Instruction::PHI:
1229 return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
1230 case Instruction::Select: {
1231 Value *Cond = LHSInst->getOperand(0);
1232 Value *TrueVal = LHSInst->getOperand(1);
1233 Value *FalseVal = LHSInst->getOperand(2);
1234 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1235 FalseVal == RHSInst->getOperand(1))
1236 return std::pair(TrueVal, FalseVal);
1237 return std::nullopt;
1238 }
1239 case Instruction::Call: {
1240 // Match min(a, b) and max(a, b)
1241 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1242 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1243 if (LHSMinMax && RHSMinMax &&
1244 LHSMinMax->getPredicate() ==
1246 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1247 LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1248 (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1249 LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1250 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1251 return std::nullopt;
1252 }
1253 default:
1254 return std::nullopt;
1255 }
1256}
1257
1259 Value *LHS,
1260 Value *RHS) {
1261 Value *A, *B, *C, *D, *E, *F;
1262 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1263 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1264 if (!LHSIsSelect && !RHSIsSelect)
1265 return nullptr;
1266
1267 FastMathFlags FMF;
1269 if (isa<FPMathOperator>(&I)) {
1270 FMF = I.getFastMathFlags();
1272 }
1273
1274 Instruction::BinaryOps Opcode = I.getOpcode();
1276
1277 Value *Cond, *True = nullptr, *False = nullptr;
1278
1279 // Special-case for add/negate combination. Replace the zero in the negation
1280 // with the trailing add operand:
1281 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1282 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1283 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1284 // We need an 'add' and exactly 1 arm of the select to have been simplified.
1285 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1286 return nullptr;
1287
1288 Value *N;
1289 if (True && match(FVal, m_Neg(m_Value(N)))) {
1290 Value *Sub = Builder.CreateSub(Z, N);
1291 return Builder.CreateSelect(Cond, True, Sub, I.getName());
1292 }
1293 if (False && match(TVal, m_Neg(m_Value(N)))) {
1294 Value *Sub = Builder.CreateSub(Z, N);
1295 return Builder.CreateSelect(Cond, Sub, False, I.getName());
1296 }
1297 return nullptr;
1298 };
1299
1300 if (LHSIsSelect && RHSIsSelect && A == D) {
1301 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1302 Cond = A;
1303 True = simplifyBinOp(Opcode, B, E, FMF, Q);
1304 False = simplifyBinOp(Opcode, C, F, FMF, Q);
1305
1306 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1307 if (False && !True)
1308 True = Builder.CreateBinOp(Opcode, B, E);
1309 else if (True && !False)
1310 False = Builder.CreateBinOp(Opcode, C, F);
1311 }
1312 } else if (LHSIsSelect && LHS->hasOneUse()) {
1313 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1314 Cond = A;
1315 True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1316 False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1317 if (Value *NewSel = foldAddNegate(B, C, RHS))
1318 return NewSel;
1319 } else if (RHSIsSelect && RHS->hasOneUse()) {
1320 // X op (D ? E : F) -> D ? (X op E) : (X op F)
1321 Cond = D;
1322 True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1323 False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1324 if (Value *NewSel = foldAddNegate(E, F, LHS))
1325 return NewSel;
1326 }
1327
1328 if (!True || !False)
1329 return nullptr;
1330
1331 Value *SI = Builder.CreateSelect(Cond, True, False);
1332 SI->takeName(&I);
1333 return SI;
1334}
1335
1336/// Freely adapt every user of V as-if V was changed to !V.
1337/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1339 assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1340 for (User *U : make_early_inc_range(I->users())) {
1341 if (U == IgnoredUser)
1342 continue; // Don't consider this user.
1343 switch (cast<Instruction>(U)->getOpcode()) {
1344 case Instruction::Select: {
1345 auto *SI = cast<SelectInst>(U);
1346 SI->swapValues();
1347 SI->swapProfMetadata();
1348 break;
1349 }
1350 case Instruction::Br:
1351 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
1352 break;
1353 case Instruction::Xor:
1354 replaceInstUsesWith(cast<Instruction>(*U), I);
1355 // Add to worklist for DCE.
1356 addToWorklist(cast<Instruction>(U));
1357 break;
1358 default:
1359 llvm_unreachable("Got unexpected user - out of sync with "
1360 "canFreelyInvertAllUsersOf() ?");
1361 }
1362 }
1363}
1364
1365/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1366/// constant zero (which is the 'negate' form).
1367Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1368 Value *NegV;
1369 if (match(V, m_Neg(m_Value(NegV))))
1370 return NegV;
1371
1372 // Constants can be considered to be negated values if they can be folded.
1373 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1374 return ConstantExpr::getNeg(C);
1375
1376 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
1377 if (C->getType()->getElementType()->isIntegerTy())
1378 return ConstantExpr::getNeg(C);
1379
1380 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
1381 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1382 Constant *Elt = CV->getAggregateElement(i);
1383 if (!Elt)
1384 return nullptr;
1385
1386 if (isa<UndefValue>(Elt))
1387 continue;
1388
1389 if (!isa<ConstantInt>(Elt))
1390 return nullptr;
1391 }
1392 return ConstantExpr::getNeg(CV);
1393 }
1394
1395 // Negate integer vector splats.
1396 if (auto *CV = dyn_cast<Constant>(V))
1397 if (CV->getType()->isVectorTy() &&
1398 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1399 return ConstantExpr::getNeg(CV);
1400
1401 return nullptr;
1402}
1403
1404// Try to fold:
1405// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1406// -> ({s|u}itofp (int_binop x, y))
1407// 2) (fp_binop ({s|u}itofp x), FpC)
1408// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1409//
1410// Assuming the sign of the cast for x/y is `OpsFromSigned`.
1411Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1412 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
1414
1415 Type *FPTy = BO.getType();
1416 Type *IntTy = IntOps[0]->getType();
1417
1418 unsigned IntSz = IntTy->getScalarSizeInBits();
1419 // This is the maximum number of inuse bits by the integer where the int -> fp
1420 // casts are exact.
1421 unsigned MaxRepresentableBits =
1423
1424 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1425 // checks later on.
1426 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1427
1428 // NB: This only comes up if OpsFromSigned is true, so there is no need to
1429 // cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1430 auto IsNonZero = [&](unsigned OpNo) -> bool {
1431 if (OpsKnown[OpNo].hasKnownBits() &&
1432 OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
1433 return true;
1434 return isKnownNonZero(IntOps[OpNo], SQ);
1435 };
1436
1437 auto IsNonNeg = [&](unsigned OpNo) -> bool {
1438 // NB: This matches the impl in ValueTracking, we just try to use cached
1439 // knownbits here. If we ever start supporting WithCache for
1440 // `isKnownNonNegative`, change this to an explicit call.
1441 return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
1442 };
1443
1444 // Check if we know for certain that ({s|u}itofp op) is exact.
1445 auto IsValidPromotion = [&](unsigned OpNo) -> bool {
1446 // Can we treat this operand as the desired sign?
1447 if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
1448 !IsNonNeg(OpNo))
1449 return false;
1450
1451 // If fp precision >= bitwidth(op) then its exact.
1452 // NB: This is slightly conservative for `sitofp`. For signed conversion, we
1453 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1454 // handled specially. We can't, however, increase the bound arbitrarily for
1455 // `sitofp` as for larger sizes, it won't sign extend.
1456 if (MaxRepresentableBits < IntSz) {
1457 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1458 // numSignBits(op).
1459 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1460 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1461 if (OpsFromSigned)
1462 NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
1463 // Finally for unsigned check that fp precision >= bitwidth(op) -
1464 // numLeadingZeros(op).
1465 else {
1466 NumUsedLeadingBits[OpNo] =
1467 IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
1468 }
1469 }
1470 // NB: We could also check if op is known to be a power of 2 or zero (which
1471 // will always be representable). Its unlikely, however, that is we are
1472 // unable to bound op in any way we will be able to pass the overflow checks
1473 // later on.
1474
1475 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1476 return false;
1477 // Signed + Mul also requires that op is non-zero to avoid -0 cases.
1478 return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
1479 IsNonZero(OpNo);
1480 };
1481
1482 // If we have a constant rhs, see if we can losslessly convert it to an int.
1483 if (Op1FpC != nullptr) {
1484 // Signed + Mul req non-zero
1485 if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
1486 !match(Op1FpC, m_NonZeroFP()))
1487 return nullptr;
1488
1490 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1491 IntTy, DL);
1492 if (Op1IntC == nullptr)
1493 return nullptr;
1494 if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
1495 : Instruction::UIToFP,
1496 Op1IntC, FPTy, DL) != Op1FpC)
1497 return nullptr;
1498
1499 // First try to keep sign of cast the same.
1500 IntOps[1] = Op1IntC;
1501 }
1502
1503 // Ensure lhs/rhs integer types match.
1504 if (IntTy != IntOps[1]->getType())
1505 return nullptr;
1506
1507 if (Op1FpC == nullptr) {
1508 if (!IsValidPromotion(1))
1509 return nullptr;
1510 }
1511 if (!IsValidPromotion(0))
1512 return nullptr;
1513
1514 // Final we check if the integer version of the binop will not overflow.
1516 // Because of the precision check, we can often rule out overflows.
1517 bool NeedsOverflowCheck = true;
1518 // Try to conservatively rule out overflow based on the already done precision
1519 // checks.
1520 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1521 unsigned OverflowMaxCurBits =
1522 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1523 bool OutputSigned = OpsFromSigned;
1524 switch (BO.getOpcode()) {
1525 case Instruction::FAdd:
1526 IntOpc = Instruction::Add;
1527 OverflowMaxOutputBits += OverflowMaxCurBits;
1528 break;
1529 case Instruction::FSub:
1530 IntOpc = Instruction::Sub;
1531 OverflowMaxOutputBits += OverflowMaxCurBits;
1532 break;
1533 case Instruction::FMul:
1534 IntOpc = Instruction::Mul;
1535 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1536 break;
1537 default:
1538 llvm_unreachable("Unsupported binop");
1539 }
1540 // The precision check may have already ruled out overflow.
1541 if (OverflowMaxOutputBits < IntSz) {
1542 NeedsOverflowCheck = false;
1543 // We can bound unsigned overflow from sub to in range signed value (this is
1544 // what allows us to avoid the overflow check for sub).
1545 if (IntOpc == Instruction::Sub)
1546 OutputSigned = true;
1547 }
1548
1549 // Precision check did not rule out overflow, so need to check.
1550 // TODO: If we add support for `WithCache` in `willNotOverflow`, change
1551 // `IntOps[...]` arguments to `KnownOps[...]`.
1552 if (NeedsOverflowCheck &&
1553 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1554 return nullptr;
1555
1556 Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1557 if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1558 IntBO->setHasNoSignedWrap(OutputSigned);
1559 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1560 }
1561 if (OutputSigned)
1562 return new SIToFPInst(IntBinOp, FPTy);
1563 return new UIToFPInst(IntBinOp, FPTy);
1564}
1565
1566// Try to fold:
1567// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1568// -> ({s|u}itofp (int_binop x, y))
1569// 2) (fp_binop ({s|u}itofp x), FpC)
1570// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1571Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
1572 std::array<Value *, 2> IntOps = {nullptr, nullptr};
1573 Constant *Op1FpC = nullptr;
1574 // Check for:
1575 // 1) (binop ({s|u}itofp x), ({s|u}itofp y))
1576 // 2) (binop ({s|u}itofp x), FpC)
1577 if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
1578 !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
1579 return nullptr;
1580
1581 if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
1582 !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
1583 !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
1584 return nullptr;
1585
1586 // Cache KnownBits a bit to potentially save some analysis.
1587 SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
1588
1589 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1590 // different constraints depending on the sign of the cast.
1591 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1592 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
1593 IntOps, Op1FpC, OpsKnown))
1594 return R;
1595 return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
1596 Op1FpC, OpsKnown);
1597}
1598
1599/// A binop with a constant operand and a sign-extended boolean operand may be
1600/// converted into a select of constants by applying the binary operation to
1601/// the constant with the two possible values of the extended boolean (0 or -1).
1602Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1603 // TODO: Handle non-commutative binop (constant is operand 0).
1604 // TODO: Handle zext.
1605 // TODO: Peek through 'not' of cast.
1606 Value *BO0 = BO.getOperand(0);
1607 Value *BO1 = BO.getOperand(1);
1608 Value *X;
1609 Constant *C;
1610 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1611 !X->getType()->isIntOrIntVectorTy(1))
1612 return nullptr;
1613
1614 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1617 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1618 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1619 return SelectInst::Create(X, TVal, FVal);
1620}
1621
1623 SelectInst *SI,
1624 bool IsTrueArm) {
1625 SmallVector<Constant *> ConstOps;
1626 for (Value *Op : I.operands()) {
1627 CmpInst::Predicate Pred;
1628 Constant *C = nullptr;
1629 if (Op == SI) {
1630 C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue()
1631 : SI->getFalseValue());
1632 } else if (match(SI->getCondition(),
1633 m_ICmp(Pred, m_Specific(Op), m_Constant(C))) &&
1634 Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
1636 // Pass
1637 } else {
1638 C = dyn_cast<Constant>(Op);
1639 }
1640 if (C == nullptr)
1641 return nullptr;
1642
1643 ConstOps.push_back(C);
1644 }
1645
1646 return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout());
1647}
1648
1650 Value *NewOp, InstCombiner &IC) {
1651 Instruction *Clone = I.clone();
1652 Clone->replaceUsesOfWith(SI, NewOp);
1654 IC.InsertNewInstBefore(Clone, SI->getIterator());
1655 return Clone;
1656}
1657
1659 bool FoldWithMultiUse) {
1660 // Don't modify shared select instructions unless set FoldWithMultiUse
1661 if (!SI->hasOneUse() && !FoldWithMultiUse)
1662 return nullptr;
1663
1664 Value *TV = SI->getTrueValue();
1665 Value *FV = SI->getFalseValue();
1666 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1667 return nullptr;
1668
1669 // Bool selects with constant operands can be folded to logical ops.
1670 if (SI->getType()->isIntOrIntVectorTy(1))
1671 return nullptr;
1672
1673 // Test if a FCmpInst instruction is used exclusively by a select as
1674 // part of a minimum or maximum operation. If so, refrain from doing
1675 // any other folding. This helps out other analyses which understand
1676 // non-obfuscated minimum and maximum idioms. And in this case, at
1677 // least one of the comparison operands has at least one user besides
1678 // the compare (the select), which would often largely negate the
1679 // benefit of folding anyway.
1680 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1681 if (CI->hasOneUse()) {
1682 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1683 if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1684 return nullptr;
1685 }
1686 }
1687
1688 // Make sure that one of the select arms constant folds successfully.
1689 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true);
1690 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false);
1691 if (!NewTV && !NewFV)
1692 return nullptr;
1693
1694 // Create an instruction for the arm that did not fold.
1695 if (!NewTV)
1696 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1697 if (!NewFV)
1698 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1699 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1700}
1701
1703 Value *InValue, BasicBlock *InBB,
1704 const DataLayout &DL,
1705 const SimplifyQuery SQ) {
1706 // NB: It is a precondition of this transform that the operands be
1707 // phi translatable! This is usually trivially satisfied by limiting it
1708 // to constant ops, and for selects we do a more sophisticated check.
1710 for (Value *Op : I.operands()) {
1711 if (Op == PN)
1712 Ops.push_back(InValue);
1713 else
1714 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1715 }
1716
1717 // Don't consider the simplification successful if we get back a constant
1718 // expression. That's just an instruction in hiding.
1719 // Also reject the case where we simplify back to the phi node. We wouldn't
1720 // be able to remove it in that case.
1722 &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1723 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1724 return NewVal;
1725
1726 // Check if incoming PHI value can be replaced with constant
1727 // based on implied condition.
1728 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1729 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1730 if (TerminatorBI && TerminatorBI->isConditional() &&
1731 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1732 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1733 std::optional<bool> ImpliedCond =
1734 isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(),
1735 Ops[0], Ops[1], DL, LHSIsTrue);
1736 if (ImpliedCond)
1737 return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1738 }
1739
1740 return nullptr;
1741}
1742
1744 unsigned NumPHIValues = PN->getNumIncomingValues();
1745 if (NumPHIValues == 0)
1746 return nullptr;
1747
1748 // We normally only transform phis with a single use. However, if a PHI has
1749 // multiple uses and they are all the same operation, we can fold *all* of the
1750 // uses into the PHI.
1751 if (!PN->hasOneUse()) {
1752 // Walk the use list for the instruction, comparing them to I.
1753 for (User *U : PN->users()) {
1754 Instruction *UI = cast<Instruction>(U);
1755 if (UI != &I && !I.isIdenticalTo(UI))
1756 return nullptr;
1757 }
1758 // Otherwise, we can replace *all* users with the new PHI we form.
1759 }
1760
1761 // Check to see whether the instruction can be folded into each phi operand.
1762 // If there is one operand that does not fold, remember the BB it is in.
1763 // If there is more than one or if *it* is a PHI, bail out.
1764 SmallVector<Value *> NewPhiValues;
1765 BasicBlock *NonSimplifiedBB = nullptr;
1766 Value *NonSimplifiedInVal = nullptr;
1767 for (unsigned i = 0; i != NumPHIValues; ++i) {
1768 Value *InVal = PN->getIncomingValue(i);
1769 BasicBlock *InBB = PN->getIncomingBlock(i);
1770
1771 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1772 NewPhiValues.push_back(NewVal);
1773 continue;
1774 }
1775
1776 if (NonSimplifiedBB) return nullptr; // More than one non-simplified value.
1777
1778 NonSimplifiedBB = InBB;
1779 NonSimplifiedInVal = InVal;
1780 NewPhiValues.push_back(nullptr);
1781
1782 // If the InVal is an invoke at the end of the pred block, then we can't
1783 // insert a computation after it without breaking the edge.
1784 if (isa<InvokeInst>(InVal))
1785 if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
1786 return nullptr;
1787
1788 // If the incoming non-constant value is reachable from the phis block,
1789 // we'll push the operation across a loop backedge. This could result in
1790 // an infinite combine loop, and is generally non-profitable (especially
1791 // if the operation was originally outside the loop).
1792 if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
1793 LI))
1794 return nullptr;
1795 }
1796
1797 // If there is exactly one non-simplified value, we can insert a copy of the
1798 // operation in that block. However, if this is a critical edge, we would be
1799 // inserting the computation on some other paths (e.g. inside a loop). Only
1800 // do this if the pred block is unconditionally branching into the phi block.
1801 // Also, make sure that the pred block is not dead code.
1802 if (NonSimplifiedBB != nullptr) {
1803 BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
1804 if (!BI || !BI->isUnconditional() ||
1805 !DT.isReachableFromEntry(NonSimplifiedBB))
1806 return nullptr;
1807 }
1808
1809 // Okay, we can do the transformation: create the new PHI node.
1810 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1811 InsertNewInstBefore(NewPN, PN->getIterator());
1812 NewPN->takeName(PN);
1813 NewPN->setDebugLoc(PN->getDebugLoc());
1814
1815 // If we are going to have to insert a new computation, do so right before the
1816 // predecessor's terminator.
1817 Instruction *Clone = nullptr;
1818 if (NonSimplifiedBB) {
1819 Clone = I.clone();
1820 for (Use &U : Clone->operands()) {
1821 if (U == PN)
1822 U = NonSimplifiedInVal;
1823 else
1824 U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
1825 }
1826 InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator());
1827 }
1828
1829 for (unsigned i = 0; i != NumPHIValues; ++i) {
1830 if (NewPhiValues[i])
1831 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
1832 else
1833 NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
1834 }
1835
1836 for (User *U : make_early_inc_range(PN->users())) {
1837 Instruction *User = cast<Instruction>(U);
1838 if (User == &I) continue;
1839 replaceInstUsesWith(*User, NewPN);
1841 }
1842
1843 replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
1844 const_cast<PHINode &>(*NewPN),
1845 const_cast<PHINode &>(*PN), DT);
1846 return replaceInstUsesWith(I, NewPN);
1847}
1848
1850 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1851 // we are guarding against replicating the binop in >1 predecessor.
1852 // This could miss matching a phi with 2 constant incoming values.
1853 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1854 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1855 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1856 Phi0->getNumOperands() != Phi1->getNumOperands())
1857 return nullptr;
1858
1859 // TODO: Remove the restriction for binop being in the same block as the phis.
1860 if (BO.getParent() != Phi0->getParent() ||
1861 BO.getParent() != Phi1->getParent())
1862 return nullptr;
1863
1864 // Fold if there is at least one specific constant value in phi0 or phi1's
1865 // incoming values that comes from the same block and this specific constant
1866 // value can be used to do optimization for specific binary operator.
1867 // For example:
1868 // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
1869 // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
1870 // %add = add i32 %phi0, %phi1
1871 // ==>
1872 // %add = phi i32 [%j, %bb0], [%i, %bb1]
1874 /*AllowRHSConstant*/ false);
1875 if (C) {
1876 SmallVector<Value *, 4> NewIncomingValues;
1877 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
1878 auto &Phi0Use = std::get<0>(T);
1879 auto &Phi1Use = std::get<1>(T);
1880 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1881 return false;
1882 Value *Phi0UseV = Phi0Use.get();
1883 Value *Phi1UseV = Phi1Use.get();
1884 if (Phi0UseV == C)
1885 NewIncomingValues.push_back(Phi1UseV);
1886 else if (Phi1UseV == C)
1887 NewIncomingValues.push_back(Phi0UseV);
1888 else
1889 return false;
1890 return true;
1891 };
1892
1893 if (all_of(zip(Phi0->operands(), Phi1->operands()),
1894 CanFoldIncomingValuePair)) {
1895 PHINode *NewPhi =
1896 PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
1897 assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
1898 "The number of collected incoming values should equal the number "
1899 "of the original PHINode operands!");
1900 for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
1901 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
1902 return NewPhi;
1903 }
1904 }
1905
1906 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1907 return nullptr;
1908
1909 // Match a pair of incoming constants for one of the predecessor blocks.
1910 BasicBlock *ConstBB, *OtherBB;
1911 Constant *C0, *C1;
1912 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1913 ConstBB = Phi0->getIncomingBlock(0);
1914 OtherBB = Phi0->getIncomingBlock(1);
1915 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1916 ConstBB = Phi0->getIncomingBlock(1);
1917 OtherBB = Phi0->getIncomingBlock(0);
1918 } else {
1919 return nullptr;
1920 }
1921 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1922 return nullptr;
1923
1924 // The block that we are hoisting to must reach here unconditionally.
1925 // Otherwise, we could be speculatively executing an expensive or
1926 // non-speculative op.
1927 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1928 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1929 !DT.isReachableFromEntry(OtherBB))
1930 return nullptr;
1931
1932 // TODO: This check could be tightened to only apply to binops (div/rem) that
1933 // are not safe to speculatively execute. But that could allow hoisting
1934 // potentially expensive instructions (fdiv for example).
1935 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1937 return nullptr;
1938
1939 // Fold constants for the predecessor block with constant incoming values.
1940 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1941 if (!NewC)
1942 return nullptr;
1943
1944 // Make a new binop in the predecessor block with the non-constant incoming
1945 // values.
1946 Builder.SetInsertPoint(PredBlockBranch);
1947 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1948 Phi0->getIncomingValueForBlock(OtherBB),
1949 Phi1->getIncomingValueForBlock(OtherBB));
1950 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1951 NotFoldedNewBO->copyIRFlags(&BO);
1952
1953 // Replace the binop with a phi of the new values. The old phis are dead.
1954 PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1955 NewPhi->addIncoming(NewBO, OtherBB);
1956 NewPhi->addIncoming(NewC, ConstBB);
1957 return NewPhi;
1958}
1959
1961 if (!isa<Constant>(I.getOperand(1)))
1962 return nullptr;
1963
1964 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1965 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1966 return NewSel;
1967 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1968 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1969 return NewPhi;
1970 }
1971 return nullptr;
1972}
1973
1975 // If this GEP has only 0 indices, it is the same pointer as
1976 // Src. If Src is not a trivial GEP too, don't combine
1977 // the indices.
1978 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1979 !Src.hasOneUse())
1980 return false;
1981 return true;
1982}
1983
1985 if (!isa<VectorType>(Inst.getType()))
1986 return nullptr;
1987
1988 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1989 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1990 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1991 cast<VectorType>(Inst.getType())->getElementCount());
1992 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1993 cast<VectorType>(Inst.getType())->getElementCount());
1994
1995 // If both operands of the binop are vector concatenations, then perform the
1996 // narrow binop on each pair of the source operands followed by concatenation
1997 // of the results.
1998 Value *L0, *L1, *R0, *R1;
1999 ArrayRef<int> Mask;
2000 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
2001 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
2002 LHS->hasOneUse() && RHS->hasOneUse() &&
2003 cast<ShuffleVectorInst>(LHS)->isConcat() &&
2004 cast<ShuffleVectorInst>(RHS)->isConcat()) {
2005 // This transform does not have the speculative execution constraint as
2006 // below because the shuffle is a concatenation. The new binops are
2007 // operating on exactly the same elements as the existing binop.
2008 // TODO: We could ease the mask requirement to allow different undef lanes,
2009 // but that requires an analysis of the binop-with-undef output value.
2010 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
2011 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2012 BO->copyIRFlags(&Inst);
2013 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
2014 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2015 BO->copyIRFlags(&Inst);
2016 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
2017 }
2018
2019 auto createBinOpReverse = [&](Value *X, Value *Y) {
2020 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2021 if (auto *BO = dyn_cast<BinaryOperator>(V))
2022 BO->copyIRFlags(&Inst);
2023 Module *M = Inst.getModule();
2025 M, Intrinsic::experimental_vector_reverse, V->getType());
2026 return CallInst::Create(F, V);
2027 };
2028
2029 // NOTE: Reverse shuffles don't require the speculative execution protection
2030 // below because they don't affect which lanes take part in the computation.
2031
2032 Value *V1, *V2;
2033 if (match(LHS, m_VecReverse(m_Value(V1)))) {
2034 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2035 if (match(RHS, m_VecReverse(m_Value(V2))) &&
2036 (LHS->hasOneUse() || RHS->hasOneUse() ||
2037 (LHS == RHS && LHS->hasNUses(2))))
2038 return createBinOpReverse(V1, V2);
2039
2040 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2041 if (LHS->hasOneUse() && isSplatValue(RHS))
2042 return createBinOpReverse(V1, RHS);
2043 }
2044 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2045 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
2046 return createBinOpReverse(LHS, V2);
2047
2048 // It may not be safe to reorder shuffles and things like div, urem, etc.
2049 // because we may trap when executing those ops on unknown vector elements.
2050 // See PR20059.
2051 if (!isSafeToSpeculativelyExecute(&Inst))
2052 return nullptr;
2053
2054 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
2055 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
2056 if (auto *BO = dyn_cast<BinaryOperator>(XY))
2057 BO->copyIRFlags(&Inst);
2058 return new ShuffleVectorInst(XY, M);
2059 };
2060
2061 // If both arguments of the binary operation are shuffles that use the same
2062 // mask and shuffle within a single vector, move the shuffle after the binop.
2063 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
2064 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
2065 V1->getType() == V2->getType() &&
2066 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2067 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2068 return createBinOpShuffle(V1, V2, Mask);
2069 }
2070
2071 // If both arguments of a commutative binop are select-shuffles that use the
2072 // same mask with commuted operands, the shuffles are unnecessary.
2073 if (Inst.isCommutative() &&
2074 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
2075 match(RHS,
2076 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
2077 auto *LShuf = cast<ShuffleVectorInst>(LHS);
2078 auto *RShuf = cast<ShuffleVectorInst>(RHS);
2079 // TODO: Allow shuffles that contain undefs in the mask?
2080 // That is legal, but it reduces undef knowledge.
2081 // TODO: Allow arbitrary shuffles by shuffling after binop?
2082 // That might be legal, but we have to deal with poison.
2083 if (LShuf->isSelect() &&
2084 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
2085 RShuf->isSelect() &&
2086 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
2087 // Example:
2088 // LHS = shuffle V1, V2, <0, 5, 6, 3>
2089 // RHS = shuffle V2, V1, <0, 5, 6, 3>
2090 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2091 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
2092 NewBO->copyIRFlags(&Inst);
2093 return NewBO;
2094 }
2095 }
2096
2097 // If one argument is a shuffle within one vector and the other is a constant,
2098 // try moving the shuffle after the binary operation. This canonicalization
2099 // intends to move shuffles closer to other shuffles and binops closer to
2100 // other binops, so they can be folded. It may also enable demanded elements
2101 // transforms.
2102 Constant *C;
2103 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
2104 if (InstVTy &&
2106 m_Mask(Mask))),
2107 m_ImmConstant(C))) &&
2108 cast<FixedVectorType>(V1->getType())->getNumElements() <=
2109 InstVTy->getNumElements()) {
2110 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
2111 "Shuffle should not change scalar type");
2112
2113 // Find constant NewC that has property:
2114 // shuffle(NewC, ShMask) = C
2115 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
2116 // reorder is not possible. A 1-to-1 mapping is not required. Example:
2117 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
2118 bool ConstOp1 = isa<Constant>(RHS);
2119 ArrayRef<int> ShMask = Mask;
2120 unsigned SrcVecNumElts =
2121 cast<FixedVectorType>(V1->getType())->getNumElements();
2122 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
2123 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar);
2124 bool MayChange = true;
2125 unsigned NumElts = InstVTy->getNumElements();
2126 for (unsigned I = 0; I < NumElts; ++I) {
2127 Constant *CElt = C->getAggregateElement(I);
2128 if (ShMask[I] >= 0) {
2129 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
2130 Constant *NewCElt = NewVecC[ShMask[I]];
2131 // Bail out if:
2132 // 1. The constant vector contains a constant expression.
2133 // 2. The shuffle needs an element of the constant vector that can't
2134 // be mapped to a new constant vector.
2135 // 3. This is a widening shuffle that copies elements of V1 into the
2136 // extended elements (extending with poison is allowed).
2137 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2138 I >= SrcVecNumElts) {
2139 MayChange = false;
2140 break;
2141 }
2142 NewVecC[ShMask[I]] = CElt;
2143 }
2144 // If this is a widening shuffle, we must be able to extend with poison
2145 // elements. If the original binop does not produce a poison in the high
2146 // lanes, then this transform is not safe.
2147 // Similarly for poison lanes due to the shuffle mask, we can only
2148 // transform binops that preserve poison.
2149 // TODO: We could shuffle those non-poison constant values into the
2150 // result by using a constant vector (rather than an poison vector)
2151 // as operand 1 of the new binop, but that might be too aggressive
2152 // for target-independent shuffle creation.
2153 if (I >= SrcVecNumElts || ShMask[I] < 0) {
2154 Constant *MaybePoison =
2155 ConstOp1
2156 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL)
2157 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL);
2158 if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
2159 MayChange = false;
2160 break;
2161 }
2162 }
2163 }
2164 if (MayChange) {
2165 Constant *NewC = ConstantVector::get(NewVecC);
2166 // It may not be safe to execute a binop on a vector with poison elements
2167 // because the entire instruction can be folded to undef or create poison
2168 // that did not exist in the original code.
2169 // TODO: The shift case should not be necessary.
2170 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
2171 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
2172
2173 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2174 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2175 Value *NewLHS = ConstOp1 ? V1 : NewC;
2176 Value *NewRHS = ConstOp1 ? NewC : V1;
2177 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2178 }
2179 }
2180
2181 // Try to reassociate to sink a splat shuffle after a binary operation.
2182 if (Inst.isAssociative() && Inst.isCommutative()) {
2183 // Canonicalize shuffle operand as LHS.
2184 if (isa<ShuffleVectorInst>(RHS))
2185 std::swap(LHS, RHS);
2186
2187 Value *X;
2188 ArrayRef<int> MaskC;
2189 int SplatIndex;
2190 Value *Y, *OtherOp;
2191 if (!match(LHS,
2192 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2193 !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
2194 X->getType() != Inst.getType() ||
2195 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2196 return nullptr;
2197
2198 // FIXME: This may not be safe if the analysis allows undef elements. By
2199 // moving 'Y' before the splat shuffle, we are implicitly assuming
2200 // that it is not undef/poison at the splat index.
2201 if (isSplatValue(OtherOp, SplatIndex)) {
2202 std::swap(Y, OtherOp);
2203 } else if (!isSplatValue(Y, SplatIndex)) {
2204 return nullptr;
2205 }
2206
2207 // X and Y are splatted values, so perform the binary operation on those
2208 // values followed by a splat followed by the 2nd binary operation:
2209 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2210 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2211 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2212 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2213 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2214
2215 // Intersect FMF on both new binops. Other (poison-generating) flags are
2216 // dropped to be safe.
2217 if (isa<FPMathOperator>(R)) {
2218 R->copyFastMathFlags(&Inst);
2219 R->andIRFlags(RHS);
2220 }
2221 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2222 NewInstBO->copyIRFlags(R);
2223 return R;
2224 }
2225
2226 return nullptr;
2227}
2228
2229/// Try to narrow the width of a binop if at least 1 operand is an extend of
2230/// of a value. This requires a potentially expensive known bits check to make
2231/// sure the narrow op does not overflow.
2232Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2233 // We need at least one extended operand.
2234 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2235
2236 // If this is a sub, we swap the operands since we always want an extension
2237 // on the RHS. The LHS can be an extension or a constant.
2238 if (BO.getOpcode() == Instruction::Sub)
2239 std::swap(Op0, Op1);
2240
2241 Value *X;
2242 bool IsSext = match(Op0, m_SExt(m_Value(X)));
2243 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2244 return nullptr;
2245
2246 // If both operands are the same extension from the same source type and we
2247 // can eliminate at least one (hasOneUse), this might work.
2248 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2249 Value *Y;
2250 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2251 cast<Operator>(Op1)->getOpcode() == CastOpc &&
2252 (Op0->hasOneUse() || Op1->hasOneUse()))) {
2253 // If that did not match, see if we have a suitable constant operand.
2254 // Truncating and extending must produce the same constant.
2255 Constant *WideC;
2256 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2257 return nullptr;
2258 Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
2259 if (!NarrowC)
2260 return nullptr;
2261 Y = NarrowC;
2262 }
2263
2264 // Swap back now that we found our operands.
2265 if (BO.getOpcode() == Instruction::Sub)
2266 std::swap(X, Y);
2267
2268 // Both operands have narrow versions. Last step: the math must not overflow
2269 // in the narrow width.
2270 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2271 return nullptr;
2272
2273 // bo (ext X), (ext Y) --> ext (bo X, Y)
2274 // bo (ext X), C --> ext (bo X, C')
2275 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2276 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2277 if (IsSext)
2278 NewBinOp->setHasNoSignedWrap();
2279 else
2280 NewBinOp->setHasNoUnsignedWrap();
2281 }
2282 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2283}
2284
2286 // At least one GEP must be inbounds.
2287 if (!GEP1.isInBounds() && !GEP2.isInBounds())
2288 return false;
2289
2290 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
2291 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
2292}
2293
2294/// Thread a GEP operation with constant indices through the constant true/false
2295/// arms of a select.
2297 InstCombiner::BuilderTy &Builder) {
2298 if (!GEP.hasAllConstantIndices())
2299 return nullptr;
2300
2301 Instruction *Sel;
2302 Value *Cond;
2303 Constant *TrueC, *FalseC;
2304 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2305 !match(Sel,
2306 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2307 return nullptr;
2308
2309 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2310 // Propagate 'inbounds' and metadata from existing instructions.
2311 // Note: using IRBuilder to create the constants for efficiency.
2312 SmallVector<Value *, 4> IndexC(GEP.indices());
2313 bool IsInBounds = GEP.isInBounds();
2314 Type *Ty = GEP.getSourceElementType();
2315 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds);
2316 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds);
2317 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2318}
2319
2321 GEPOperator *Src) {
2322 // Combine Indices - If the source pointer to this getelementptr instruction
2323 // is a getelementptr instruction with matching element type, combine the
2324 // indices of the two getelementptr instructions into a single instruction.
2325 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2326 return nullptr;
2327
2328 // For constant GEPs, use a more general offset-based folding approach.
2329 Type *PtrTy = Src->getType()->getScalarType();
2330 if (GEP.hasAllConstantIndices() &&
2331 (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2332 // Split Src into a variable part and a constant suffix.
2334 Type *BaseType = GTI.getIndexedType();
2335 bool IsFirstType = true;
2336 unsigned NumVarIndices = 0;
2337 for (auto Pair : enumerate(Src->indices())) {
2338 if (!isa<ConstantInt>(Pair.value())) {
2339 BaseType = GTI.getIndexedType();
2340 IsFirstType = false;
2341 NumVarIndices = Pair.index() + 1;
2342 }
2343 ++GTI;
2344 }
2345
2346 // Determine the offset for the constant suffix of Src.
2348 if (NumVarIndices != Src->getNumIndices()) {
2349 // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2350 if (BaseType->isScalableTy())
2351 return nullptr;
2352
2353 SmallVector<Value *> ConstantIndices;
2354 if (!IsFirstType)
2355 ConstantIndices.push_back(
2357 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2358 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2359 }
2360
2361 // Add the offset for GEP (which is fully constant).
2362 if (!GEP.accumulateConstantOffset(DL, Offset))
2363 return nullptr;
2364
2365 APInt OffsetOld = Offset;
2366 // Convert the total offset back into indices.
2367 SmallVector<APInt> ConstIndices =
2369 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2370 // If both GEP are constant-indexed, and cannot be merged in either way,
2371 // convert them to a GEP of i8.
2372 if (Src->hasAllConstantIndices())
2373 return replaceInstUsesWith(
2375 Builder.getInt8Ty(), Src->getOperand(0),
2376 Builder.getInt(OffsetOld), "",
2377 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2378 return nullptr;
2379 }
2380
2381 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2382 SmallVector<Value *> Indices;
2383 append_range(Indices, drop_end(Src->indices(),
2384 Src->getNumIndices() - NumVarIndices));
2385 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2386 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2387 // Even if the total offset is inbounds, we may end up representing it
2388 // by first performing a larger negative offset, and then a smaller
2389 // positive one. The large negative offset might go out of bounds. Only
2390 // preserve inbounds if all signs are the same.
2391 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2392 }
2393
2394 return replaceInstUsesWith(
2395 GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
2396 Indices, "", IsInBounds));
2397 }
2398
2399 if (Src->getResultElementType() != GEP.getSourceElementType())
2400 return nullptr;
2401
2402 SmallVector<Value*, 8> Indices;
2403
2404 // Find out whether the last index in the source GEP is a sequential idx.
2405 bool EndsWithSequential = false;
2406 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2407 I != E; ++I)
2408 EndsWithSequential = I.isSequential();
2409
2410 // Can we combine the two pointer arithmetics offsets?
2411 if (EndsWithSequential) {
2412 // Replace: gep (gep %P, long B), long A, ...
2413 // With: T = long A+B; gep %P, T, ...
2414 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2415 Value *GO1 = GEP.getOperand(1);
2416
2417 // If they aren't the same type, then the input hasn't been processed
2418 // by the loop above yet (which canonicalizes sequential index types to
2419 // intptr_t). Just avoid transforming this until the input has been
2420 // normalized.
2421 if (SO1->getType() != GO1->getType())
2422 return nullptr;
2423
2424 Value *Sum =
2425 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2426 // Only do the combine when we are sure the cost after the
2427 // merge is never more than that before the merge.
2428 if (Sum == nullptr)
2429 return nullptr;
2430
2431 // Update the GEP in place if possible.
2432 if (Src->getNumOperands() == 2) {
2433 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2434 replaceOperand(GEP, 0, Src->getOperand(0));
2435 replaceOperand(GEP, 1, Sum);
2436 return &GEP;
2437 }
2438 Indices.append(Src->op_begin()+1, Src->op_end()-1);
2439 Indices.push_back(Sum);
2440 Indices.append(GEP.op_begin()+2, GEP.op_end());
2441 } else if (isa<Constant>(*GEP.idx_begin()) &&
2442 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2443 Src->getNumOperands() != 1) {
2444 // Otherwise we can do the fold if the first index of the GEP is a zero
2445 Indices.append(Src->op_begin()+1, Src->op_end());
2446 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2447 }
2448
2449 if (!Indices.empty())
2450 return replaceInstUsesWith(
2452 Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2453 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2454
2455 return nullptr;
2456}
2457
2459 BuilderTy *Builder,
2460 bool &DoesConsume, unsigned Depth) {
2461 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2462 // ~(~(X)) -> X.
2463 Value *A, *B;
2464 if (match(V, m_Not(m_Value(A)))) {
2465 DoesConsume = true;
2466 return A;
2467 }
2468
2469 Constant *C;
2470 // Constants can be considered to be not'ed values.
2471 if (match(V, m_ImmConstant(C)))
2472 return ConstantExpr::getNot(C);
2473
2475 return nullptr;
2476
2477 // The rest of the cases require that we invert all uses so don't bother
2478 // doing the analysis if we know we can't use the result.
2479 if (!WillInvertAllUses)
2480 return nullptr;
2481
2482 // Compares can be inverted if all of their uses are being modified to use
2483 // the ~V.
2484 if (auto *I = dyn_cast<CmpInst>(V)) {
2485 if (Builder != nullptr)
2486 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2487 I->getOperand(1));
2488 return NonNull;
2489 }
2490
2491 // If `V` is of the form `A + B` then `-1 - V` can be folded into
2492 // `(-1 - B) - A` if we are willing to invert all of the uses.
2493 if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2494 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2495 DoesConsume, Depth))
2496 return Builder ? Builder->CreateSub(BV, A) : NonNull;
2497 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2498 DoesConsume, Depth))
2499 return Builder ? Builder->CreateSub(AV, B) : NonNull;
2500 return nullptr;
2501 }
2502
2503 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2504 // into `A ^ B` if we are willing to invert all of the uses.
2505 if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2506 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2507 DoesConsume, Depth))
2508 return Builder ? Builder->CreateXor(A, BV) : NonNull;
2509 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2510 DoesConsume, Depth))
2511 return Builder ? Builder->CreateXor(AV, B) : NonNull;
2512 return nullptr;
2513 }
2514
2515 // If `V` is of the form `B - A` then `-1 - V` can be folded into
2516 // `A + (-1 - B)` if we are willing to invert all of the uses.
2517 if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2518 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2519 DoesConsume, Depth))
2520 return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2521 return nullptr;
2522 }
2523
2524 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2525 // into `A s>> B` if we are willing to invert all of the uses.
2526 if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2527 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2528 DoesConsume, Depth))
2529 return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2530 return nullptr;
2531 }
2532
2533 Value *Cond;
2534 // LogicOps are special in that we canonicalize them at the cost of an
2535 // instruction.
2536 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2537 !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
2538 // Selects/min/max with invertible operands are freely invertible
2539 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2540 bool LocalDoesConsume = DoesConsume;
2541 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2542 LocalDoesConsume, Depth))
2543 return nullptr;
2544 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2545 LocalDoesConsume, Depth)) {
2546 DoesConsume = LocalDoesConsume;
2547 if (Builder != nullptr) {
2548 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2549 DoesConsume, Depth);
2550 assert(NotB != nullptr &&
2551 "Unable to build inverted value for known freely invertable op");
2552 if (auto *II = dyn_cast<IntrinsicInst>(V))
2554 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2555 return Builder->CreateSelect(Cond, NotA, NotB);
2556 }
2557 return NonNull;
2558 }
2559 }
2560
2561 if (PHINode *PN = dyn_cast<PHINode>(V)) {
2562 bool LocalDoesConsume = DoesConsume;
2564 for (Use &U : PN->operands()) {
2565 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2566 Value *NewIncomingVal = getFreelyInvertedImpl(
2567 U.get(), /*WillInvertAllUses=*/false,
2568 /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
2569 if (NewIncomingVal == nullptr)
2570 return nullptr;
2571 // Make sure that we can safely erase the original PHI node.
2572 if (NewIncomingVal == V)
2573 return nullptr;
2574 if (Builder != nullptr)
2575 IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
2576 }
2577
2578 DoesConsume = LocalDoesConsume;
2579 if (Builder != nullptr) {
2582 PHINode *NewPN =
2583 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
2584 for (auto [Val, Pred] : IncomingValues)
2585 NewPN->addIncoming(Val, Pred);
2586 return NewPN;
2587 }
2588 return NonNull;
2589 }
2590
2591 if (match(V, m_SExtLike(m_Value(A)))) {
2592 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2593 DoesConsume, Depth))
2594 return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
2595 return nullptr;
2596 }
2597
2598 if (match(V, m_Trunc(m_Value(A)))) {
2599 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2600 DoesConsume, Depth))
2601 return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
2602 return nullptr;
2603 }
2604
2605 // De Morgan's Laws:
2606 // (~(A | B)) -> (~A & ~B)
2607 // (~(A & B)) -> (~A | ~B)
2608 auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
2609 bool IsLogical, Value *A,
2610 Value *B) -> Value * {
2611 bool LocalDoesConsume = DoesConsume;
2612 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
2613 LocalDoesConsume, Depth))
2614 return nullptr;
2615 if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2616 LocalDoesConsume, Depth)) {
2617 auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2618 LocalDoesConsume, Depth);
2619 DoesConsume = LocalDoesConsume;
2620 if (IsLogical)
2621 return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
2622 return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
2623 }
2624
2625 return nullptr;
2626 };
2627
2628 if (match(V, m_Or(m_Value(A), m_Value(B))))
2629 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
2630 B);
2631
2632 if (match(V, m_And(m_Value(A), m_Value(B))))
2633 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
2634 B);
2635
2636 if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
2637 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
2638 B);
2639
2640 if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
2641 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
2642 B);
2643
2644 return nullptr;
2645}
2646
2648 Value *PtrOp = GEP.getOperand(0);
2649 SmallVector<Value *, 8> Indices(GEP.indices());
2650 Type *GEPType = GEP.getType();
2651 Type *GEPEltType = GEP.getSourceElementType();
2652 bool IsGEPSrcEleScalable = GEPEltType->isScalableTy();
2653 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2655 return replaceInstUsesWith(GEP, V);
2656
2657 // For vector geps, use the generic demanded vector support.
2658 // Skip if GEP return type is scalable. The number of elements is unknown at
2659 // compile-time.
2660 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2661 auto VWidth = GEPFVTy->getNumElements();
2662 APInt PoisonElts(VWidth, 0);
2663 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2664 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2665 PoisonElts)) {
2666 if (V != &GEP)
2667 return replaceInstUsesWith(GEP, V);
2668 return &GEP;
2669 }
2670
2671 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2672 // possible (decide on canonical form for pointer broadcast), 3) exploit
2673 // undef elements to decrease demanded bits
2674 }
2675
2676 // Eliminate unneeded casts for indices, and replace indices which displace
2677 // by multiples of a zero size type with zero.
2678 bool MadeChange = false;
2679
2680 // Index width may not be the same width as pointer width.
2681 // Data layout chooses the right type based on supported integer types.
2682 Type *NewScalarIndexTy =
2683 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2684
2686 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2687 ++I, ++GTI) {
2688 // Skip indices into struct types.
2689 if (GTI.isStruct())
2690 continue;
2691
2692 Type *IndexTy = (*I)->getType();
2693 Type *NewIndexType =
2694 IndexTy->isVectorTy()
2695 ? VectorType::get(NewScalarIndexTy,
2696 cast<VectorType>(IndexTy)->getElementCount())
2697 : NewScalarIndexTy;
2698
2699 // If the element type has zero size then any index over it is equivalent
2700 // to an index of zero, so replace it with zero if it is not zero already.
2701 Type *EltTy = GTI.getIndexedType();
2702 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2703 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2704 *I = Constant::getNullValue(NewIndexType);
2705 MadeChange = true;
2706 }
2707
2708 if (IndexTy != NewIndexType) {
2709 // If we are using a wider index than needed for this platform, shrink
2710 // it to what we need. If narrower, sign-extend it to what we need.
2711 // This explicit cast can make subsequent optimizations more obvious.
2712 *I = Builder.CreateIntCast(*I, NewIndexType, true);
2713 MadeChange = true;
2714 }
2715 }
2716 if (MadeChange)
2717 return &GEP;
2718
2719 // Canonicalize constant GEPs to i8 type.
2720 if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
2722 if (GEP.accumulateConstantOffset(DL, Offset))
2723 return replaceInstUsesWith(
2725 GEP.isInBounds()));
2726 }
2727
2728 // Check to see if the inputs to the PHI node are getelementptr instructions.
2729 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2730 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2731 if (!Op1)
2732 return nullptr;
2733
2734 // Don't fold a GEP into itself through a PHI node. This can only happen
2735 // through the back-edge of a loop. Folding a GEP into itself means that
2736 // the value of the previous iteration needs to be stored in the meantime,
2737 // thus requiring an additional register variable to be live, but not
2738 // actually achieving anything (the GEP still needs to be executed once per
2739 // loop iteration).
2740 if (Op1 == &GEP)
2741 return nullptr;
2742
2743 int DI = -1;
2744
2745 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2746 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2747 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2748 Op1->getSourceElementType() != Op2->getSourceElementType())
2749 return nullptr;
2750
2751 // As for Op1 above, don't try to fold a GEP into itself.
2752 if (Op2 == &GEP)
2753 return nullptr;
2754
2755 // Keep track of the type as we walk the GEP.
2756 Type *CurTy = nullptr;
2757
2758 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2759 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2760 return nullptr;
2761
2762 if (Op1->getOperand(J) != Op2->getOperand(J)) {
2763 if (DI == -1) {
2764 // We have not seen any differences yet in the GEPs feeding the
2765 // PHI yet, so we record this one if it is allowed to be a
2766 // variable.
2767
2768 // The first two arguments can vary for any GEP, the rest have to be
2769 // static for struct slots
2770 if (J > 1) {
2771 assert(CurTy && "No current type?");
2772 if (CurTy->isStructTy())
2773 return nullptr;
2774 }
2775
2776 DI = J;
2777 } else {
2778 // The GEP is different by more than one input. While this could be
2779 // extended to support GEPs that vary by more than one variable it
2780 // doesn't make sense since it greatly increases the complexity and
2781 // would result in an R+R+R addressing mode which no backend
2782 // directly supports and would need to be broken into several
2783 // simpler instructions anyway.
2784 return nullptr;
2785 }
2786 }
2787
2788 // Sink down a layer of the type for the next iteration.
2789 if (J > 0) {
2790 if (J == 1) {
2791 CurTy = Op1->getSourceElementType();
2792 } else {
2793 CurTy =
2794 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2795 }
2796 }
2797 }
2798 }
2799
2800 // If not all GEPs are identical we'll have to create a new PHI node.
2801 // Check that the old PHI node has only one use so that it will get
2802 // removed.
2803 if (DI != -1 && !PN->hasOneUse())
2804 return nullptr;
2805
2806 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2807 if (DI == -1) {
2808 // All the GEPs feeding the PHI are identical. Clone one down into our
2809 // BB so that it can be merged with the current GEP.
2810 } else {
2811 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2812 // into the current block so it can be merged, and create a new PHI to
2813 // set that index.
2814 PHINode *NewPN;
2815 {
2818 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2819 PN->getNumOperands());
2820 }
2821
2822 for (auto &I : PN->operands())
2823 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2824 PN->getIncomingBlock(I));
2825
2826 NewGEP->setOperand(DI, NewPN);
2827 }
2828
2829 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
2830 return replaceOperand(GEP, 0, NewGEP);
2831 }
2832
2833 if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2834 if (Instruction *I = visitGEPOfGEP(GEP, Src))
2835 return I;
2836
2837 // Skip if GEP source element type is scalable. The type alloc size is unknown
2838 // at compile-time.
2839 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2840 unsigned AS = GEP.getPointerAddressSpace();
2841 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2842 DL.getIndexSizeInBits(AS)) {
2843 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2844
2845 if (TyAllocSize == 1) {
2846 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
2847 // but only if the result pointer is only used as if it were an integer,
2848 // or both point to the same underlying object (otherwise provenance is
2849 // not necessarily retained).
2850 Value *X = GEP.getPointerOperand();
2851 Value *Y;
2852 if (match(GEP.getOperand(1),
2854 GEPType == Y->getType()) {
2855 bool HasSameUnderlyingObject =
2857 bool Changed = false;
2858 GEP.replaceUsesWithIf(Y, [&](Use &U) {
2859 bool ShouldReplace = HasSameUnderlyingObject ||
2860 isa<ICmpInst>(U.getUser()) ||
2861 isa<PtrToIntInst>(U.getUser());
2862 Changed |= ShouldReplace;
2863 return ShouldReplace;
2864 });
2865 return Changed ? &GEP : nullptr;
2866 }
2867 } else {
2868 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
2869 Value *V;
2870 if ((has_single_bit(TyAllocSize) &&
2871 match(GEP.getOperand(1),
2873 m_SpecificInt(countr_zero(TyAllocSize)))))) ||
2874 match(GEP.getOperand(1),
2875 m_Exact(m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) {
2877 Builder.getInt8Ty(), GEP.getPointerOperand(), V);
2878 NewGEP->setIsInBounds(GEP.isInBounds());
2879 return NewGEP;
2880 }
2881 }
2882 }
2883 }
2884 // We do not handle pointer-vector geps here.
2885 if (GEPType->isVectorTy())
2886 return nullptr;
2887
2888 if (GEP.getNumIndices() == 1) {
2889 // Try to replace ADD + GEP with GEP + GEP.
2890 Value *Idx1, *Idx2;
2891 if (match(GEP.getOperand(1),
2892 m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) {
2893 // %idx = add i64 %idx1, %idx2
2894 // %gep = getelementptr i32, ptr %ptr, i64 %idx
2895 // as:
2896 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1
2897 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2
2898 auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(),
2899 GEP.getPointerOperand(), Idx1);
2900 return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr,
2901 Idx2);
2902 }
2903 ConstantInt *C;
2904 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
2905 m_Value(Idx1), m_ConstantInt(C))))))) {
2906 // %add = add nsw i32 %idx1, idx2
2907 // %sidx = sext i32 %add to i64
2908 // %gep = getelementptr i32, ptr %ptr, i64 %sidx
2909 // as:
2910 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
2911 // %newgep = getelementptr i32, ptr %newptr, i32 idx2
2912 auto *NewPtr = Builder.CreateGEP(
2913 GEP.getResultElementType(), GEP.getPointerOperand(),
2914 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()));
2916 GEP.getResultElementType(), NewPtr,
2917 Builder.CreateSExt(C, GEP.getOperand(1)->getType()));
2918 }
2919 }
2920
2921 if (!GEP.isInBounds()) {
2922 unsigned IdxWidth =
2924 APInt BasePtrOffset(IdxWidth, 0);
2925 Value *UnderlyingPtrOp =
2927 BasePtrOffset);
2928 bool CanBeNull, CanBeFreed;
2929 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
2930 DL, CanBeNull, CanBeFreed);
2931 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
2932 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2933 BasePtrOffset.isNonNegative()) {
2934 APInt AllocSize(IdxWidth, DerefBytes);
2935 if (BasePtrOffset.ule(AllocSize)) {
2937 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2938 }
2939 }
2940 }
2941 }
2942
2944 return R;
2945
2946 return nullptr;
2947}
2948
2950 Instruction *AI) {
2951 if (isa<ConstantPointerNull>(V))
2952 return true;
2953 if (auto *LI = dyn_cast<LoadInst>(V))
2954 return isa<GlobalVariable>(LI->getPointerOperand());
2955 // Two distinct allocations will never be equal.
2956 return isAllocLikeFn(V, &TLI) && V != AI;
2957}
2958
2959/// Given a call CB which uses an address UsedV, return true if we can prove the
2960/// call's only possible effect is storing to V.
2961static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2962 const TargetLibraryInfo &TLI) {
2963 if (!CB.use_empty())
2964 // TODO: add recursion if returned attribute is present
2965 return false;
2966
2967 if (CB.isTerminator())
2968 // TODO: remove implementation restriction
2969 return false;
2970
2971 if (!CB.willReturn() || !CB.doesNotThrow())
2972 return false;
2973
2974 // If the only possible side effect of the call is writing to the alloca,
2975 // and the result isn't used, we can safely remove any reads implied by the
2976 // call including those which might read the alloca itself.
2977 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2978 return Dest && Dest->Ptr == UsedV;
2979}
2980
2983 const TargetLibraryInfo &TLI) {
2985 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
2986 Worklist.push_back(AI);
2987
2988 do {
2989 Instruction *PI = Worklist.pop_back_val();
2990 for (User *U : PI->users()) {
2991 Instruction *I = cast<Instruction>(U);
2992 switch (I->getOpcode()) {
2993 default:
2994 // Give up the moment we see something we can't handle.
2995 return false;
2996
2997 case Instruction::AddrSpaceCast:
2998 case Instruction::BitCast:
2999 case Instruction::GetElementPtr:
3000 Users.emplace_back(I);
3001 Worklist.push_back(I);
3002 continue;
3003
3004 case Instruction::ICmp: {
3005 ICmpInst *ICI = cast<ICmpInst>(I);
3006 // We can fold eq/ne comparisons with null to false/true, respectively.
3007 // We also fold comparisons in some conditions provided the alloc has
3008 // not escaped (see isNeverEqualToUnescapedAlloc).
3009 if (!ICI->isEquality())
3010 return false;
3011 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
3012 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
3013 return false;
3014
3015 // Do not fold compares to aligned_alloc calls, as they may have to
3016 // return null in case the required alignment cannot be satisfied,
3017 // unless we can prove that both alignment and size are valid.
3018 auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
3019 // Check if alignment and size of a call to aligned_alloc is valid,
3020 // that is alignment is a power-of-2 and the size is a multiple of the
3021 // alignment.
3022 const APInt *Alignment;
3023 const APInt *Size;
3024 return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
3025 match(CB->getArgOperand(1), m_APInt(Size)) &&
3026 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
3027 };
3028 auto *CB = dyn_cast<CallBase>(AI);
3029 LibFunc TheLibFunc;
3030 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3031 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3032 !AlignmentAndSizeKnownValid(CB))
3033 return false;
3034 Users.emplace_back(I);
3035 continue;
3036 }
3037
3038 case Instruction::Call:
3039 // Ignore no-op and store intrinsics.
3040 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3041 switch (II->getIntrinsicID()) {
3042 default:
3043 return false;
3044
3045 case Intrinsic::memmove:
3046 case Intrinsic::memcpy:
3047 case Intrinsic::memset: {
3048 MemIntrinsic *MI = cast<MemIntrinsic>(II);
3049 if (MI->isVolatile() || MI->getRawDest() != PI)
3050 return false;
3051 [[fallthrough]];
3052 }
3053 case Intrinsic::assume:
3054 case Intrinsic::invariant_start:
3055 case Intrinsic::invariant_end:
3056 case Intrinsic::lifetime_start:
3057 case Intrinsic::lifetime_end:
3058 case Intrinsic::objectsize:
3059 Users.emplace_back(I);
3060 continue;
3061 case Intrinsic::launder_invariant_group:
3062 case Intrinsic::strip_invariant_group:
3063 Users.emplace_back(I);
3064 Worklist.push_back(I);
3065 continue;
3066 }
3067 }
3068
3069 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
3070 Users.emplace_back(I);
3071 continue;
3072 }
3073
3074 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
3075 getAllocationFamily(I, &TLI) == Family) {
3076 assert(Family);
3077 Users.emplace_back(I);
3078 continue;
3079 }
3080
3081 if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
3082 getAllocationFamily(I, &TLI) == Family) {
3083 assert(Family);
3084 Users.emplace_back(I);
3085 Worklist.push_back(I);
3086 continue;
3087 }
3088
3089 return false;
3090
3091 case Instruction::Store: {
3092 StoreInst *SI = cast<StoreInst>(I);
3093 if (SI->isVolatile() || SI->getPointerOperand() != PI)
3094 return false;
3095 Users.emplace_back(I);
3096 continue;
3097 }
3098 }
3099 llvm_unreachable("missing a return?");
3100 }
3101 } while (!Worklist.empty());
3102 return true;
3103}
3104
3106 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
3107
3108 // If we have a malloc call which is only used in any amount of comparisons to
3109 // null and free calls, delete the calls and replace the comparisons with true
3110 // or false as appropriate.
3111
3112 // This is based on the principle that we can substitute our own allocation
3113 // function (which will never return null) rather than knowledge of the
3114 // specific function being called. In some sense this can change the permitted
3115 // outputs of a program (when we convert a malloc to an alloca, the fact that
3116 // the allocation is now on the stack is potentially visible, for example),
3117 // but we believe in a permissible manner.
3119
3120 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
3121 // before each store.
3124 std::unique_ptr<DIBuilder> DIB;
3125 if (isa<AllocaInst>(MI)) {
3126 findDbgUsers(DVIs, &MI, &DVRs);
3127 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
3128 }
3129
3130 if (isAllocSiteRemovable(&MI, Users, TLI)) {
3131 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
3132 // Lowering all @llvm.objectsize calls first because they may
3133 // use a bitcast/GEP of the alloca we are removing.
3134 if (!Users[i])
3135 continue;
3136
3137 Instruction *I = cast<Instruction>(&*Users[i]);
3138
3139 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3140 if (II->getIntrinsicID() == Intrinsic::objectsize) {
3141 SmallVector<Instruction *> InsertedInstructions;
3142 Value *Result = lowerObjectSizeCall(
3143 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
3144 for (Instruction *Inserted : InsertedInstructions)
3145 Worklist.add(Inserted);
3146 replaceInstUsesWith(*I, Result);
3148 Users[i] = nullptr; // Skip examining in the next loop.
3149 }
3150 }
3151 }
3152 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
3153 if (!Users[i])
3154 continue;
3155
3156 Instruction *I = cast<Instruction>(&*Users[i]);
3157
3158 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
3160 ConstantInt::get(Type::getInt1Ty(C->getContext()),
3161 C->isFalseWhenEqual()));
3162 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3163 for (auto *DVI : DVIs)
3164 if (DVI->isAddressOfVariable())
3165 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
3166 for (auto *DVR : DVRs)
3167 if (DVR->isAddressOfVariable())
3168 ConvertDebugDeclareToDebugValue(DVR, SI, *DIB);
3169 } else {
3170 // Casts, GEP, or anything else: we're about to delete this instruction,
3171 // so it can not have any valid uses.
3172 replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
3173 }
3175 }
3176
3177 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
3178 // Replace invoke with a NOP intrinsic to maintain the original CFG
3179 Module *M = II->getModule();
3180 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
3181 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
3182 std::nullopt, "", II->getParent());
3183 }
3184
3185 // Remove debug intrinsics which describe the value contained within the
3186 // alloca. In addition to removing dbg.{declare,addr} which simply point to
3187 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3188 //
3189 // ```
3190 // define void @foo(i32 %0) {
3191 // %a = alloca i32 ; Deleted.
3192 // store i32 %0, i32* %a
3193 // dbg.value(i32 %0, "arg0") ; Not deleted.
3194 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
3195 // call void @trivially_inlinable_no_op(i32* %a)
3196 // ret void
3197 // }
3198 // ```
3199 //
3200 // This may not be required if we stop describing the contents of allocas
3201 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3202 // the LowerDbgDeclare utility.
3203 //
3204 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3205 // "arg0" dbg.value may be stale after the call. However, failing to remove
3206 // the DW_OP_deref dbg.value causes large gaps in location coverage.
3207 //
3208 // FIXME: the Assignment Tracking project has now likely made this
3209 // redundant (and it's sometimes harmful).
3210 for (auto *DVI : DVIs)
3211 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
3212 DVI->eraseFromParent();
3213 for (auto *DVR : DVRs)
3214 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3215 DVR->eraseFromParent();
3216
3217 return eraseInstFromFunction(MI);
3218 }
3219 return nullptr;
3220}
3221
3222/// Move the call to free before a NULL test.
3223///
3224/// Check if this free is accessed after its argument has been test
3225/// against NULL (property 0).
3226/// If yes, it is legal to move this call in its predecessor block.
3227///
3228/// The move is performed only if the block containing the call to free
3229/// will be removed, i.e.:
3230/// 1. it has only one predecessor P, and P has two successors
3231/// 2. it contains the call, noops, and an unconditional branch
3232/// 3. its successor is the same as its predecessor's successor
3233///
3234/// The profitability is out-of concern here and this function should
3235/// be called only if the caller knows this transformation would be
3236/// profitable (e.g., for code size).
3238 const DataLayout &DL) {
3239 Value *Op = FI.getArgOperand(0);
3240 BasicBlock *FreeInstrBB = FI.getParent();
3241 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
3242
3243 // Validate part of constraint #1: Only one predecessor
3244 // FIXME: We can extend the number of predecessor, but in that case, we
3245 // would duplicate the call to free in each predecessor and it may
3246 // not be profitable even for code size.
3247 if (!PredBB)
3248 return nullptr;
3249
3250 // Validate constraint #2: Does this block contains only the call to
3251 // free, noops, and an unconditional branch?
3252 BasicBlock *SuccBB;
3253 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
3254 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
3255 return nullptr;
3256
3257 // If there are only 2 instructions in the block, at this point,
3258 // this is the call to free and unconditional.
3259 // If there are more than 2 instructions, check that they are noops
3260 // i.e., they won't hurt the performance of the generated code.
3261 if (FreeInstrBB->size() != 2) {
3262 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
3263 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3264 continue;
3265 auto *Cast = dyn_cast<CastInst>(&Inst);
3266 if (!Cast || !Cast->isNoopCast(DL))
3267 return nullptr;
3268 }
3269 }
3270 // Validate the rest of constraint #1 by matching on the pred branch.
3271 Instruction *TI = PredBB->getTerminator();
3272 BasicBlock *TrueBB, *FalseBB;
3274 if (!match(TI, m_Br(m_ICmp(Pred,
3276 m_Specific(Op->stripPointerCasts())),
3277 m_Zero()),
3278 TrueBB, FalseBB)))
3279 return nullptr;
3280 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3281 return nullptr;
3282
3283 // Validate constraint #3: Ensure the null case just falls through.
3284 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3285 return nullptr;
3286 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3287 "Broken CFG: missing edge from predecessor to successor");
3288
3289 // At this point, we know that everything in FreeInstrBB can be moved
3290 // before TI.
3291 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3292 if (&Instr == FreeInstrBBTerminator)
3293 break;
3294 Instr.moveBeforePreserving(TI);
3295 }
3296 assert(FreeInstrBB->size() == 1 &&
3297 "Only the branch instruction should remain");
3298
3299 // Now that we've moved the call to free before the NULL check, we have to
3300 // remove any attributes on its parameter that imply it's non-null, because
3301 // those attributes might have only been valid because of the NULL check, and
3302 // we can get miscompiles if we keep them. This is conservative if non-null is
3303 // also implied by something other than the NULL check, but it's guaranteed to
3304 // be correct, and the conservativeness won't matter in practice, since the
3305 // attributes are irrelevant for the call to free itself and the pointer
3306 // shouldn't be used after the call.
3307 AttributeList Attrs = FI.getAttributes();
3308 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3309 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3310 if (Dereferenceable.isValid()) {
3311 uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3312 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3313 Attribute::Dereferenceable);
3314 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3315 }
3316 FI.setAttributes(Attrs);
3317
3318 return &FI;
3319}
3320
3322 // free undef -> unreachable.
3323 if (isa<UndefValue>(Op)) {
3324 // Leave a marker since we can't modify the CFG here.
3326 return eraseInstFromFunction(FI);
3327 }
3328
3329 // If we have 'free null' delete the instruction. This can happen in stl code
3330 // when lots of inlining happens.
3331 if (isa<ConstantPointerNull>(Op))
3332 return eraseInstFromFunction(FI);
3333
3334 // If we had free(realloc(...)) with no intervening uses, then eliminate the
3335 // realloc() entirely.
3336 CallInst *CI = dyn_cast<CallInst>(Op);
3337 if (CI && CI->hasOneUse())
3338 if (Value *ReallocatedOp = getReallocatedOperand(CI))
3339 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3340
3341 // If we optimize for code size, try to move the call to free before the null
3342 // test so that simplify cfg can remove the empty block and dead code
3343 // elimination the branch. I.e., helps to turn something like:
3344 // if (foo) free(foo);
3345 // into
3346 // free(foo);
3347 //
3348 // Note that we can only do this for 'free' and not for any flavor of
3349 // 'operator delete'; there is no 'operator delete' symbol for which we are
3350 // permitted to invent a call, even if we're passing in a null pointer.
3351 if (MinimizeSize) {
3352 LibFunc Func;
3353 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3355 return I;
3356 }
3357
3358 return nullptr;
3359}
3360
3362 Value *RetVal = RI.getReturnValue();
3363 if (!RetVal || !AttributeFuncs::isNoFPClassCompatibleType(RetVal->getType()))
3364 return nullptr;
3365
3366 Function *F = RI.getFunction();
3367 FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
3368 if (ReturnClass == fcNone)
3369 return nullptr;
3370
3371 KnownFPClass KnownClass;
3372 Value *Simplified =
3373 SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, 0, &RI);
3374 if (!Simplified)
3375 return nullptr;
3376
3377 return ReturnInst::Create(RI.getContext(), Simplified);
3378}
3379
3380// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3382 // Try to remove the previous instruction if it must lead to unreachable.
3383 // This includes instructions like stores and "llvm.assume" that may not get
3384 // removed by simple dead code elimination.
3385 bool Changed = false;
3386 while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3387 // While we theoretically can erase EH, that would result in a block that
3388 // used to start with an EH no longer starting with EH, which is invalid.
3389 // To make it valid, we'd need to fixup predecessors to no longer refer to
3390 // this block, but that changes CFG, which is not allowed in InstCombine.
3391 if (Prev->isEHPad())
3392 break; // Can not drop any more instructions. We're done here.
3393
3395 break; // Can not drop any more instructions. We're done here.
3396 // Otherwise, this instruction can be freely erased,
3397 // even if it is not side-effect free.
3398
3399 // A value may still have uses before we process it here (for example, in
3400 // another unreachable block), so convert those to poison.
3401 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3402 eraseInstFromFunction(*Prev);
3403 Changed = true;
3404 }
3405 return Changed;
3406}
3407
3410 return nullptr;
3411}
3412
3414 assert(BI.isUnconditional() && "Only for unconditional branches.");
3415
3416 // If this store is the second-to-last instruction in the basic block
3417 // (excluding debug info and bitcasts of pointers) and if the block ends with
3418 // an unconditional branch, try to move the store to the successor block.
3419
3420 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3421 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3422 return BBI->isDebugOrPseudoInst() ||
3423 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3424 };
3425
3426 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3427 do {
3428 if (BBI != FirstInstr)
3429 --BBI;
3430 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3431
3432 return dyn_cast<StoreInst>(BBI);
3433 };
3434
3435 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3436 if (mergeStoreIntoSuccessor(*SI))
3437 return &BI;
3438
3439 return nullptr;
3440}
3441
3444 if (!DeadEdges.insert({From, To}).second)
3445 return;
3446
3447 // Replace phi node operands in successor with poison.
3448 for (PHINode &PN : To->phis())
3449 for (Use &U : PN.incoming_values())
3450 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
3451 replaceUse(U, PoisonValue::get(PN.getType()));
3452 addToWorklist(&PN);
3453 MadeIRChange = true;
3454 }
3455
3456 Worklist.push_back(To);
3457}
3458
3459// Under the assumption that I is unreachable, remove it and following
3460// instructions. Changes are reported directly to MadeIRChange.
3463 BasicBlock *BB = I->getParent();
3464 for (Instruction &Inst : make_early_inc_range(
3465 make_range(std::next(BB->getTerminator()->getReverseIterator()),
3466 std::next(I->getReverseIterator())))) {
3467 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3468 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
3469 MadeIRChange = true;
3470 }
3471 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3472 continue;
3473 // RemoveDIs: erase debug-info on this instruction manually.
3474 Inst.dropDbgRecords();
3476 MadeIRChange = true;
3477 }
3478
3479 SmallVector<Value *> Changed;
3480 if (handleUnreachableTerminator(BB->getTerminator(), Changed)) {
3481 MadeIRChange = true;
3482 for (Value *V : Changed)
3483 addToWorklist(cast<Instruction>(V));
3484 }
3485
3486 // Handle potentially dead successors.
3487 for (BasicBlock *Succ : successors(BB))
3488 addDeadEdge(BB, Succ, Worklist);
3489}
3490
3493 while (!Worklist.empty()) {
3494 BasicBlock *BB = Worklist.pop_back_val();
3495 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
3496 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
3497 }))
3498 continue;
3499
3501 }
3502}
3503
3505 BasicBlock *LiveSucc) {
3507 for (BasicBlock *Succ : successors(BB)) {
3508 // The live successor isn't dead.
3509 if (Succ == LiveSucc)
3510 continue;
3511
3512 addDeadEdge(BB, Succ, Worklist);
3513 }
3514
3516}
3517
3519 if (BI.isUnconditional())
3521
3522 // Change br (not X), label True, label False to: br X, label False, True
3523 Value *Cond = BI.getCondition();
3524 Value *X;
3525 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
3526 // Swap Destinations and condition...
3527 BI.swapSuccessors();
3528 return replaceOperand(BI, 0, X);
3529 }
3530
3531 // Canonicalize logical-and-with-invert as logical-or-with-invert.
3532 // This is done by inverting the condition and swapping successors:
3533 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3534 Value *Y;
3535 if (isa<SelectInst>(Cond) &&
3536 match(Cond,
3538 Value *NotX = Builder.CreateNot(X, "not." + X->getName());
3539 Value *Or = Builder.CreateLogicalOr(NotX, Y);
3540 BI.swapSuccessors();
3541 return replaceOperand(BI, 0, Or);
3542 }
3543
3544 // If the condition is irrelevant, remove the use so that other
3545 // transforms on the condition become more effective.
3546 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
3547 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
3548
3549 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3550 CmpInst::Predicate Pred;
3551 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
3552 !isCanonicalPredicate(Pred)) {
3553 // Swap destinations and condition.
3554 auto *Cmp = cast<CmpInst>(Cond);
3555 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
3556 BI.swapSuccessors();
3557 Worklist.push(Cmp);
3558 return &BI;
3559 }
3560
3561 if (isa<UndefValue>(Cond)) {
3562 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
3563 return nullptr;
3564 }
3565 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3567 BI.getSuccessor(!CI->getZExtValue()));
3568 return nullptr;
3569 }
3570
3571 DC.registerBranch(&BI);
3572 return nullptr;
3573}
3574
3575// Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
3576// we can prove that both (switch C) and (switch X) go to the default when cond
3577// is false/true.
3580 bool IsTrueArm) {
3581 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
3582 auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
3583 if (!C)
3584 return nullptr;
3585
3586 BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
3587 if (CstBB != SI.getDefaultDest())
3588 return nullptr;
3589 Value *X = Select->getOperand(3 - CstOpIdx);
3591 const APInt *RHSC;
3592 if (!match(Select->getCondition(),
3593 m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
3594 return nullptr;
3595 if (IsTrueArm)
3596 Pred = ICmpInst::getInversePredicate(Pred);
3597
3598 // See whether we can replace the select with X
3600 for (auto Case : SI.cases())
3601 if (!CR.contains(Case.getCaseValue()->getValue()))
3602 return nullptr;
3603
3604 return X;
3605}
3606
3608 Value *Cond = SI.getCondition();
3609 Value *Op0;
3610 ConstantInt *AddRHS;
3611 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3612 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3613 for (auto Case : SI.cases()) {
3614 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3615 assert(isa<ConstantInt>(NewCase) &&
3616 "Result of expression should be constant");
3617 Case.setValue(cast<ConstantInt>(NewCase));
3618 }
3619 return replaceOperand(SI, 0, Op0);
3620 }
3621
3622 ConstantInt *SubLHS;
3623 if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
3624 // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
3625 for (auto Case : SI.cases()) {
3626 Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
3627 assert(isa<ConstantInt>(NewCase) &&
3628 "Result of expression should be constant");
3629 Case.setValue(cast<ConstantInt>(NewCase));
3630 }
3631 return replaceOperand(SI, 0, Op0);
3632 }
3633
3634 uint64_t ShiftAmt;
3635 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
3636 ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
3637 all_of(SI.cases(), [&](const auto &Case) {
3638 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3639 })) {
3640 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
3641 OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
3642 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
3643 Shl->hasOneUse()) {
3644 Value *NewCond = Op0;
3645 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
3646 // If the shift may wrap, we need to mask off the shifted bits.
3647 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
3648 NewCond = Builder.CreateAnd(
3649 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
3650 }
3651 for (auto Case : SI.cases()) {
3652 const APInt &CaseVal = Case.getCaseValue()->getValue();
3653 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
3654 : CaseVal.lshr(ShiftAmt);
3655 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3656 }
3657 return replaceOperand(SI, 0, NewCond);
3658 }
3659 }
3660
3661 // Fold switch(zext/sext(X)) into switch(X) if possible.
3662 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
3663 bool IsZExt = isa<ZExtInst>(Cond);
3664 Type *SrcTy = Op0->getType();
3665 unsigned NewWidth = SrcTy->getScalarSizeInBits();
3666
3667 if (all_of(SI.cases(), [&](const auto &Case) {
3668 const APInt &CaseVal = Case.getCaseValue()->getValue();
3669 return IsZExt ? CaseVal.isIntN(NewWidth)
3670 : CaseVal.isSignedIntN(NewWidth);
3671 })) {
3672 for (auto &Case : SI.cases()) {
3673 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3674 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3675 }
3676 return replaceOperand(SI, 0, Op0);
3677 }
3678 }
3679
3680 // Fold switch(select cond, X, Y) into switch(X/Y) if possible
3681 if (auto *Select = dyn_cast<SelectInst>(Cond)) {
3682 if (Value *V =
3683 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
3684 return replaceOperand(SI, 0, V);
3685 if (Value *V =
3686 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
3687 return replaceOperand(SI, 0, V);
3688 }
3689
3690 KnownBits Known = computeKnownBits(Cond, 0, &SI);
3691 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3692 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3693
3694 // Compute the number of leading bits we can ignore.
3695 // TODO: A better way to determine this would use ComputeNumSignBits().
3696 for (const auto &C : SI.cases()) {
3697 LeadingKnownZeros =
3698 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
3699 LeadingKnownOnes =
3700 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
3701 }
3702
3703 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3704
3705 // Shrink the condition operand if the new type is smaller than the old type.
3706 // But do not shrink to a non-standard type, because backend can't generate
3707 // good code for that yet.
3708 // TODO: We can make it aggressive again after fixing PR39569.
3709 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3710 shouldChangeType(Known.getBitWidth(), NewWidth)) {
3711 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3713 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3714
3715 for (auto Case : SI.cases()) {
3716 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3717 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3718 }
3719 return replaceOperand(SI, 0, NewCond);
3720 }
3721
3722 if (isa<UndefValue>(Cond)) {
3723 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
3724 return nullptr;
3725 }
3726 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3727 handlePotentiallyDeadSuccessors(SI.getParent(),
3728 SI.findCaseValue(CI)->getCaseSuccessor());
3729 return nullptr;
3730 }
3731
3732 return nullptr;
3733}
3734
3736InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
3737 auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
3738 if (!WO)
3739 return nullptr;
3740
3741 Intrinsic::ID OvID = WO->getIntrinsicID();
3742 const APInt *C = nullptr;
3743 if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
3744 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3745 OvID == Intrinsic::umul_with_overflow)) {
3746 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3747 if (C->isAllOnes())
3748 return BinaryOperator::CreateNeg(WO->getLHS());
3749 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3750 if (C->isPowerOf2()) {
3751 return BinaryOperator::CreateShl(
3752 WO->getLHS(),
3753 ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
3754 }
3755 }
3756 }
3757
3758 // We're extracting from an overflow intrinsic. See if we're the only user.
3759 // That allows us to simplify multiple result intrinsics to simpler things
3760 // that just get one value.
3761 if (!WO->hasOneUse())
3762 return nullptr;
3763
3764 // Check if we're grabbing only the result of a 'with overflow' intrinsic
3765 // and replace it with a traditional binary instruction.
3766 if (*EV.idx_begin() == 0) {
3767 Instruction::BinaryOps BinOp = WO->getBinaryOp();
3768 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3769 // Replace the old instruction's uses with poison.
3770 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3772 return BinaryOperator::Create(BinOp, LHS, RHS);
3773 }
3774
3775 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
3776
3777 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
3778 if (OvID == Intrinsic::usub_with_overflow)
3779 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
3780
3781 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
3782 // +1 is not possible because we assume signed values.
3783 if (OvID == Intrinsic::smul_with_overflow &&
3784 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
3785 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
3786
3787 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
3788 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
3789 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
3790 // Only handle even bitwidths for performance reasons.
3791 if (BitWidth % 2 == 0)
3792 return new ICmpInst(
3793 ICmpInst::ICMP_UGT, WO->getLHS(),
3794 ConstantInt::get(WO->getLHS()->getType(),
3796 }
3797
3798 // If only the overflow result is used, and the right hand side is a
3799 // constant (or constant splat), we can remove the intrinsic by directly
3800 // checking for overflow.
3801 if (C) {
3802 // Compute the no-wrap range for LHS given RHS=C, then construct an
3803 // equivalent icmp, potentially using an offset.
3805 WO->getBinaryOp(), *C, WO->getNoWrapKind());
3806
3807 CmpInst::Predicate Pred;
3808 APInt NewRHSC, Offset;
3809 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3810 auto *OpTy = WO->getRHS()->getType();
3811 auto *NewLHS = WO->getLHS();
3812 if (Offset != 0)
3813 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3814 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3815 ConstantInt::get(OpTy, NewRHSC));
3816 }
3817
3818 return nullptr;
3819}
3820
3822 Value *Agg = EV.getAggregateOperand();
3823
3824 if (!EV.hasIndices())
3825 return replaceInstUsesWith(EV, Agg);
3826
3827 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3828 SQ.getWithInstruction(&EV)))
3829 return replaceInstUsesWith(EV, V);
3830
3831 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3832 // We're extracting from an insertvalue instruction, compare the indices
3833 const unsigned *exti, *exte, *insi, *inse;
3834 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3835 exte = EV.idx_end(), inse = IV->idx_end();
3836 exti != exte && insi != inse;
3837 ++exti, ++insi) {
3838 if (*insi != *exti)
3839 // The insert and extract both reference distinctly different elements.
3840 // This means the extract is not influenced by the insert, and we can
3841 // replace the aggregate operand of the extract with the aggregate
3842 // operand of the insert. i.e., replace
3843 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3844 // %E = extractvalue { i32, { i32 } } %I, 0
3845 // with
3846 // %E = extractvalue { i32, { i32 } } %A, 0
3847 return ExtractValueInst::Create(IV->getAggregateOperand(),
3848 EV.getIndices());
3849 }
3850 if (exti == exte && insi == inse)
3851 // Both iterators are at the end: Index lists are identical. Replace
3852 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3853 // %C = extractvalue { i32, { i32 } } %B, 1, 0
3854 // with "i32 42"
3855 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3856 if (exti == exte) {
3857 // The extract list is a prefix of the insert list. i.e. replace
3858 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3859 // %E = extractvalue { i32, { i32 } } %I, 1
3860 // with
3861 // %X = extractvalue { i32, { i32 } } %A, 1
3862 // %E = insertvalue { i32 } %X, i32 42, 0
3863 // by switching the order of the insert and extract (though the
3864 // insertvalue should be left in, since it may have other uses).
3865 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3866 EV.getIndices());
3867 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3868 ArrayRef(insi, inse));
3869 }
3870 if (insi == inse)
3871 // The insert list is a prefix of the extract list
3872 // We can simply remove the common indices from the extract and make it
3873 // operate on the inserted value instead of the insertvalue result.
3874 // i.e., replace
3875 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3876 // %E = extractvalue { i32, { i32 } } %I, 1, 0
3877 // with
3878 // %E extractvalue { i32 } { i32 42 }, 0
3879 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3880 ArrayRef(exti, exte));
3881 }
3882
3883 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
3884 return R;
3885
3886 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
3887 // Bail out if the aggregate contains scalable vector type
3888 if (auto *STy = dyn_cast<StructType>(Agg->getType());
3889 STy && STy->containsScalableVectorType())
3890 return nullptr;
3891
3892 // If the (non-volatile) load only has one use, we can rewrite this to a
3893 // load from a GEP. This reduces the size of the load. If a load is used
3894 // only by extractvalue instructions then this either must have been
3895 // optimized before, or it is a struct with padding, in which case we
3896 // don't want to do the transformation as it loses padding knowledge.
3897 if (L->isSimple() && L->hasOneUse()) {
3898 // extractvalue has integer indices, getelementptr has Value*s. Convert.
3899 SmallVector<Value*, 4> Indices;
3900 // Prefix an i32 0 since we need the first element.
3901 Indices.push_back(Builder.getInt32(0));
3902 for (unsigned Idx : EV.indices())
3903 Indices.push_back(Builder.getInt32(Idx));
3904
3905 // We need to insert these at the location of the old load, not at that of
3906 // the extractvalue.
3908 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3909 L->getPointerOperand(), Indices);
3911 // Whatever aliasing information we had for the orignal load must also
3912 // hold for the smaller load, so propagate the annotations.
3913 NL->setAAMetadata(L->getAAMetadata());
3914 // Returning the load directly will cause the main loop to insert it in
3915 // the wrong spot, so use replaceInstUsesWith().
3916 return replaceInstUsesWith(EV, NL);
3917 }
3918 }
3919
3920 if (auto *PN = dyn_cast<PHINode>(Agg))
3921 if (Instruction *Res = foldOpIntoPhi(EV, PN))
3922 return Res;
3923
3924 // Canonicalize extract (select Cond, TV, FV)
3925 // -> select cond, (extract TV), (extract FV)
3926 if (auto *SI = dyn_cast<SelectInst>(Agg))
3927 if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
3928 return R;
3929
3930 // We could simplify extracts from other values. Note that nested extracts may
3931 // already be simplified implicitly by the above: extract (extract (insert) )
3932 // will be translated into extract ( insert ( extract ) ) first and then just
3933 // the value inserted, if appropriate. Similarly for extracts from single-use
3934 // loads: extract (extract (load)) will be translated to extract (load (gep))
3935 // and if again single-use then via load (gep (gep)) to load (gep).
3936 // However, double extracts from e.g. function arguments or return values
3937 // aren't handled yet.
3938 return nullptr;
3939}
3940
3941/// Return 'true' if the given typeinfo will match anything.
3942static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3943 switch (Personality) {
3947 // The GCC C EH and Rust personality only exists to support cleanups, so
3948 // it's not clear what the semantics of catch clauses are.
3949 return false;
3951 return false;
3953 // While __gnat_all_others_value will match any Ada exception, it doesn't
3954 // match foreign exceptions (or didn't, before gcc-4.7).
3955 return false;
3965 return TypeInfo->isNullValue();
3966 }
3967 llvm_unreachable("invalid enum");
3968}
3969
3970static bool shorter_filter(const Value *LHS, const Value *RHS) {
3971 return
3972 cast<ArrayType>(LHS->getType())->getNumElements()
3973 <
3974 cast<ArrayType>(RHS->getType())->getNumElements();
3975}
3976
3978 // The logic here should be correct for any real-world personality function.
3979 // However if that turns out not to be true, the offending logic can always
3980 // be conditioned on the personality function, like the catch-all logic is.
3981 EHPersonality Personality =
3982 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3983
3984 // Simplify the list of clauses, eg by removing repeated catch clauses
3985 // (these are often created by inlining).
3986 bool MakeNewInstruction = false; // If true, recreate using the following:
3987 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3988 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
3989
3990 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3991 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3992 bool isLastClause = i + 1 == e;
3993 if (LI.isCatch(i)) {
3994 // A catch clause.
3995 Constant *CatchClause = LI.getClause(i);
3996 Constant *TypeInfo = CatchClause->stripPointerCasts();
3997
3998 // If we already saw this clause, there is no point in having a second
3999 // copy of it.
4000 if (AlreadyCaught.insert(TypeInfo).second) {
4001 // This catch clause was not already seen.
4002 NewClauses.push_back(CatchClause);
4003 } else {
4004 // Repeated catch clause - drop the redundant copy.
4005 MakeNewInstruction = true;
4006 }
4007
4008 // If this is a catch-all then there is no point in keeping any following
4009 // clauses or marking the landingpad as having a cleanup.
4010 if (isCatchAll(Personality, TypeInfo)) {
4011 if (!isLastClause)
4012 MakeNewInstruction = true;
4013 CleanupFlag = false;
4014 break;
4015 }
4016 } else {
4017 // A filter clause. If any of the filter elements were already caught
4018 // then they can be dropped from the filter. It is tempting to try to
4019 // exploit the filter further by saying that any typeinfo that does not
4020 // occur in the filter can't be caught later (and thus can be dropped).
4021 // However this would be wrong, since typeinfos can match without being
4022 // equal (for example if one represents a C++ class, and the other some
4023 // class derived from it).
4024 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
4025 Constant *FilterClause = LI.getClause(i);
4026 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
4027 unsigned NumTypeInfos = FilterType->getNumElements();
4028
4029 // An empty filter catches everything, so there is no point in keeping any
4030 // following clauses or marking the landingpad as having a cleanup. By
4031 // dealing with this case here the following code is made a bit simpler.
4032 if (!NumTypeInfos) {
4033 NewClauses.push_back(FilterClause);
4034 if (!isLastClause)
4035 MakeNewInstruction = true;
4036 CleanupFlag = false;
4037 break;
4038 }
4039
4040 bool MakeNewFilter = false; // If true, make a new filter.
4041 SmallVector<Constant *, 16> NewFilterElts; // New elements.
4042 if (isa<ConstantAggregateZero>(FilterClause)) {
4043 // Not an empty filter - it contains at least one null typeinfo.
4044 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
4045 Constant *TypeInfo =
4047 // If this typeinfo is a catch-all then the filter can never match.
4048 if (isCatchAll(Personality, TypeInfo)) {
4049 // Throw the filter away.
4050 MakeNewInstruction = true;
4051 continue;
4052 }
4053
4054 // There is no point in having multiple copies of this typeinfo, so
4055 // discard all but the first copy if there is more than one.
4056 NewFilterElts.push_back(TypeInfo);
4057 if (NumTypeInfos > 1)
4058 MakeNewFilter = true;
4059 } else {
4060 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
4061 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
4062 NewFilterElts.reserve(NumTypeInfos);
4063
4064 // Remove any filter elements that were already caught or that already
4065 // occurred in the filter. While there, see if any of the elements are
4066 // catch-alls. If so, the filter can be discarded.
4067 bool SawCatchAll = false;
4068 for (unsigned j = 0; j != NumTypeInfos; ++j) {
4069 Constant *Elt = Filter->getOperand(j);
4070 Constant *TypeInfo = Elt->stripPointerCasts();
4071 if (isCatchAll(Personality, TypeInfo)) {
4072 // This element is a catch-all. Bail out, noting this fact.
4073 SawCatchAll = true;
4074 break;
4075 }
4076
4077 // Even if we've seen a type in a catch clause, we don't want to
4078 // remove it from the filter. An unexpected type handler may be
4079 // set up for a call site which throws an exception of the same
4080 // type caught. In order for the exception thrown by the unexpected
4081 // handler to propagate correctly, the filter must be correctly
4082 // described for the call site.
4083 //
4084 // Example:
4085 //
4086 // void unexpected() { throw 1;}
4087 // void foo() throw (int) {
4088 // std::set_unexpected(unexpected);
4089 // try {
4090 // throw 2.0;
4091 // } catch (int i) {}
4092 // }
4093
4094 // There is no point in having multiple copies of the same typeinfo in
4095 // a filter, so only add it if we didn't already.
4096 if (SeenInFilter.insert(TypeInfo).second)
4097 NewFilterElts.push_back(cast<Constant>(Elt));
4098 }
4099 // A filter containing a catch-all cannot match anything by definition.
4100 if (SawCatchAll) {
4101 // Throw the filter away.
4102 MakeNewInstruction = true;
4103 continue;
4104 }
4105
4106 // If we dropped something from the filter, make a new one.
4107 if (NewFilterElts.size() < NumTypeInfos)
4108 MakeNewFilter = true;
4109 }
4110 if (MakeNewFilter) {
4111 FilterType = ArrayType::get(FilterType->getElementType(),
4112 NewFilterElts.size());
4113 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
4114 MakeNewInstruction = true;
4115 }
4116
4117 NewClauses.push_back(FilterClause);
4118
4119 // If the new filter is empty then it will catch everything so there is
4120 // no point in keeping any following clauses or marking the landingpad
4121 // as having a cleanup. The case of the original filter being empty was
4122 // already handled above.
4123 if (MakeNewFilter && !NewFilterElts.size()) {
4124 assert(MakeNewInstruction && "New filter but not a new instruction!");
4125 CleanupFlag = false;
4126 break;
4127 }
4128 }
4129 }
4130
4131 // If several filters occur in a row then reorder them so that the shortest
4132 // filters come first (those with the smallest number of elements). This is
4133 // advantageous because shorter filters are more likely to match, speeding up
4134 // unwinding, but mostly because it increases the effectiveness of the other
4135 // filter optimizations below.
4136 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
4137 unsigned j;
4138 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4139 for (j = i; j != e; ++j)
4140 if (!isa<ArrayType>(NewClauses[j]->getType()))
4141 break;
4142
4143 // Check whether the filters are already sorted by length. We need to know
4144 // if sorting them is actually going to do anything so that we only make a
4145 // new landingpad instruction if it does.
4146 for (unsigned k = i; k + 1 < j; ++k)
4147 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
4148 // Not sorted, so sort the filters now. Doing an unstable sort would be
4149 // correct too but reordering filters pointlessly might confuse users.
4150 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
4152 MakeNewInstruction = true;
4153 break;
4154 }
4155
4156 // Look for the next batch of filters.
4157 i = j + 1;
4158 }
4159
4160 // If typeinfos matched if and only if equal, then the elements of a filter L
4161 // that occurs later than a filter F could be replaced by the intersection of
4162 // the elements of F and L. In reality two typeinfos can match without being
4163 // equal (for example if one represents a C++ class, and the other some class
4164 // derived from it) so it would be wrong to perform this transform in general.
4165 // However the transform is correct and useful if F is a subset of L. In that
4166 // case L can be replaced by F, and thus removed altogether since repeating a
4167 // filter is pointless. So here we look at all pairs of filters F and L where
4168 // L follows F in the list of clauses, and remove L if every element of F is
4169 // an element of L. This can occur when inlining C++ functions with exception
4170 // specifications.
4171 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
4172 // Examine each filter in turn.
4173 Value *Filter = NewClauses[i];
4174 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
4175 if (!FTy)
4176 // Not a filter - skip it.
4177 continue;
4178 unsigned FElts = FTy->getNumElements();
4179 // Examine each filter following this one. Doing this backwards means that
4180 // we don't have to worry about filters disappearing under us when removed.
4181 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
4182 Value *LFilter = NewClauses[j];
4183 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
4184 if (!LTy)
4185 // Not a filter - skip it.
4186 continue;
4187 // If Filter is a subset of LFilter, i.e. every element of Filter is also
4188 // an element of LFilter, then discard LFilter.
4189 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
4190 // If Filter is empty then it is a subset of LFilter.
4191 if (!FElts) {
4192 // Discard LFilter.
4193 NewClauses.erase(J);
4194 MakeNewInstruction = true;
4195 // Move on to the next filter.
4196 continue;
4197 }
4198 unsigned LElts = LTy->getNumElements();
4199 // If Filter is longer than LFilter then it cannot be a subset of it.
4200 if (FElts > LElts)
4201 // Move on to the next filter.
4202 continue;
4203 // At this point we know that LFilter has at least one element.
4204 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
4205 // Filter is a subset of LFilter iff Filter contains only zeros (as we
4206 // already know that Filter is not longer than LFilter).
4207 if (isa<ConstantAggregateZero>(Filter)) {
4208 assert(FElts <= LElts && "Should have handled this case earlier!");
4209 // Discard LFilter.
4210 NewClauses.erase(J);
4211 MakeNewInstruction = true;
4212 }
4213 // Move on to the next filter.
4214 continue;
4215 }
4216 ConstantArray *LArray = cast<ConstantArray>(LFilter);
4217 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
4218 // Since Filter is non-empty and contains only zeros, it is a subset of
4219 // LFilter iff LFilter contains a zero.
4220 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
4221 for (unsigned l = 0; l != LElts; ++l)
4222 if (LArray->getOperand(l)->isNullValue()) {
4223 // LFilter contains a zero - discard it.
4224 NewClauses.erase(J);
4225 MakeNewInstruction = true;
4226 break;
4227 }
4228 // Move on to the next filter.
4229 continue;
4230 }
4231 // At this point we know that both filters are ConstantArrays. Loop over
4232 // operands to see whether every element of Filter is also an element of
4233 // LFilter. Since filters tend to be short this is probably faster than
4234 // using a method that scales nicely.
4235 ConstantArray *FArray = cast<ConstantArray>(Filter);
4236 bool AllFound = true;
4237 for (unsigned f = 0; f != FElts; ++f) {
4238 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
4239 AllFound = false;
4240 for (unsigned l = 0; l != LElts; ++l) {
4241 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
4242 if (LTypeInfo == FTypeInfo) {
4243 AllFound = true;
4244 break;
4245 }
4246 }
4247 if (!AllFound)
4248 break;
4249 }
4250 if (AllFound) {
4251 // Discard LFilter.
4252 NewClauses.erase(J);
4253 MakeNewInstruction = true;
4254 }
4255 // Move on to the next filter.
4256 }
4257 }
4258
4259 // If we changed any of the clauses, replace the old landingpad instruction
4260 // with a new one.
4261 if (MakeNewInstruction) {
4262 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
4263 NewClauses.size());
4264 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
4265 NLI->addClause(NewClauses[i]);
4266 // A landing pad with no clauses must have the cleanup flag set. It is
4267 // theoretically possible, though highly unlikely, that we eliminated all
4268 // clauses. If so, force the cleanup flag to true.
4269 if (NewClauses.empty())
4270 CleanupFlag = true;
4271 NLI->setCleanup(CleanupFlag);
4272 return NLI;
4273 }
4274
4275 // Even if none of the clauses changed, we may nonetheless have understood
4276 // that the cleanup flag is pointless. Clear it if so.
4277 if (LI.isCleanup() != CleanupFlag) {
4278 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
4279 LI.setCleanup(CleanupFlag);
4280 return &LI;
4281 }
4282
4283 return nullptr;
4284}
4285
4286Value *
4288 // Try to push freeze through instructions that propagate but don't produce
4289 // poison as far as possible. If an operand of freeze follows three
4290 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
4291 // guaranteed-non-poison operands then push the freeze through to the one
4292 // operand that is not guaranteed non-poison. The actual transform is as
4293 // follows.
4294 // Op1 = ... ; Op1 can be posion
4295 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
4296 // ; single guaranteed-non-poison operands
4297 // ... = Freeze(Op0)
4298 // =>
4299 // Op1 = ...
4300 // Op1.fr = Freeze(Op1)
4301 // ... = Inst(Op1.fr, NonPoisonOps...)
4302 auto *OrigOp = OrigFI.getOperand(0);
4303 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
4304
4305 // While we could change the other users of OrigOp to use freeze(OrigOp), that
4306 // potentially reduces their optimization potential, so let's only do this iff
4307 // the OrigOp is only used by the freeze.
4308 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
4309 return nullptr;
4310
4311 // We can't push the freeze through an instruction which can itself create
4312 // poison. If the only source of new poison is flags, we can simply
4313 // strip them (since we know the only use is the freeze and nothing can
4314 // benefit from them.)
4315 if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
4316 /*ConsiderFlagsAndMetadata*/ false))
4317 return nullptr;
4318
4319 // If operand is guaranteed not to be poison, there is no need to add freeze
4320 // to the operand. So we first find the operand that is not guaranteed to be
4321 // poison.
4322 Use *MaybePoisonOperand = nullptr;
4323 for (Use &U : OrigOpInst->operands()) {
4324 if (isa<MetadataAsValue>(U.get()) ||
4326 continue;
4327 if (!MaybePoisonOperand)
4328 MaybePoisonOperand = &U;
4329 else
4330 return nullptr;
4331 }
4332
4333 OrigOpInst->dropPoisonGeneratingAnnotations();
4334
4335 // If all operands are guaranteed to be non-poison, we can drop freeze.
4336 if (!MaybePoisonOperand)
4337 return OrigOp;
4338
4339 Builder.SetInsertPoint(OrigOpInst);
4340 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
4341 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
4342
4343 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
4344 return OrigOp;
4345}
4346
4348 PHINode *PN) {
4349 // Detect whether this is a recurrence with a start value and some number of
4350 // backedge values. We'll check whether we can push the freeze through the
4351 // backedge values (possibly dropping poison flags along the way) until we
4352 // reach the phi again. In that case, we can move the freeze to the start
4353 // value.
4354 Use *StartU = nullptr;
4356 for (Use &U : PN->incoming_values()) {
4357 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
4358 // Add backedge value to worklist.
4359 Worklist.push_back(U.get());
4360 continue;
4361 }
4362
4363 // Don't bother handling multiple start values.
4364 if (StartU)
4365 return nullptr;
4366 StartU = &U;
4367 }
4368
4369 if (!StartU || Worklist.empty())
4370 return nullptr; // Not a recurrence.
4371
4372 Value *StartV = StartU->get();
4373 BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
4374 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
4375 // We can't insert freeze if the start value is the result of the
4376 // terminator (e.g. an invoke).
4377 if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
4378 return nullptr;
4379
4382 while (!Worklist.empty()) {
4383 Value *V = Worklist.pop_back_val();
4384 if (!Visited.insert(V).second)
4385 continue;
4386
4387 if (Visited.size() > 32)
4388 return nullptr; // Limit the total number of values we inspect.
4389
4390 // Assume that PN is non-poison, because it will be after the transform.
4391 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
4392 continue;
4393
4394 Instruction *I = dyn_cast<Instruction>(V);
4395 if (!I || canCreateUndefOrPoison(cast<Operator>(I),
4396 /*ConsiderFlagsAndMetadata*/ false))
4397 return nullptr;
4398
4399 DropFlags.push_back(I);
4400 append_range(Worklist, I->operands());
4401 }
4402
4403 for (Instruction *I : DropFlags)
4404 I->dropPoisonGeneratingAnnotations();
4405
4406 if (StartNeedsFreeze) {
4408 Value *FrozenStartV = Builder.CreateFreeze(StartV,
4409 StartV->getName() + ".fr");
4410 replaceUse(*StartU, FrozenStartV);
4411 }
4412 return replaceInstUsesWith(FI, PN);
4413}
4414
4416 Value *Op = FI.getOperand(0);
4417
4418 if (isa<Constant>(Op) || Op->hasOneUse())
4419 return false;
4420
4421 // Move the freeze directly after the definition of its operand, so that
4422 // it dominates the maximum number of uses. Note that it may not dominate
4423 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
4424 // the normal/default destination. This is why the domination check in the
4425 // replacement below is still necessary.
4426 BasicBlock::iterator MoveBefore;
4427 if (isa<Argument>(Op)) {
4428 MoveBefore =
4430 } else {
4431 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
4432 if (!MoveBeforeOpt)
4433 return false;
4434 MoveBefore = *MoveBeforeOpt;
4435 }
4436
4437 // Don't move to the position of a debug intrinsic.
4438 if (isa<DbgInfoIntrinsic>(MoveBefore))
4439 MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4440 // Re-point iterator to come after any debug-info records, if we're
4441 // running in "RemoveDIs" mode
4442 MoveBefore.setHeadBit(false);
4443
4444 bool Changed = false;
4445 if (&FI != &*MoveBefore) {
4446 FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
4447 Changed = true;
4448 }
4449
4450 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
4451 bool Dominates = DT.dominates(&FI, U);
4452 Changed |= Dominates;
4453 return Dominates;
4454 });
4455
4456 return Changed;
4457}
4458
4459// Check if any direct or bitcast user of this value is a shuffle instruction.
4461 for (auto *U : V->users()) {
4462 if (isa<ShuffleVectorInst>(U))
4463 return true;
4464 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
4465 return true;
4466 }
4467 return false;
4468}
4469
4471 Value *Op0 = I.getOperand(0);
4472
4474 return replaceInstUsesWith(I, V);
4475
4476 // freeze (phi const, x) --> phi const, (freeze x)
4477 if (auto *PN = dyn_cast<PHINode>(Op0)) {
4478 if (Instruction *NV = foldOpIntoPhi(I, PN))
4479 return NV;
4480 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
4481 return NV;
4482 }
4483
4485 return replaceInstUsesWith(I, NI);
4486
4487 // If I is freeze(undef), check its uses and fold it to a fixed constant.
4488 // - or: pick -1
4489 // - select's condition: if the true value is constant, choose it by making
4490 // the condition true.
4491 // - default: pick 0
4492 //
4493 // Note that this transform is intentionally done here rather than
4494 // via an analysis in InstSimplify or at individual user sites. That is
4495 // because we must produce the same value for all uses of the freeze -
4496 // it's the reason "freeze" exists!
4497 //
4498 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
4499 // duplicating logic for binops at least.
4500 auto getUndefReplacement = [&I](Type *Ty) {
4501 Constant *BestValue = nullptr;
4502 Constant *NullValue = Constant::getNullValue(Ty);
4503 for (const auto *U : I.users()) {
4504 Constant *C = NullValue;
4505 if (match(U, m_Or(m_Value(), m_Value())))
4507 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
4508 C = ConstantInt::getTrue(Ty);
4509
4510 if (!BestValue)
4511 BestValue = C;
4512 else if (BestValue != C)
4513 BestValue = NullValue;
4514 }
4515 assert(BestValue && "Must have at least one use");
4516 return BestValue;
4517 };
4518
4519 if (match(Op0, m_Undef())) {
4520 // Don't fold freeze(undef/poison) if it's used as a vector operand in
4521 // a shuffle. This may improve codegen for shuffles that allow
4522 // unspecified inputs.
4524 return nullptr;
4525 return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
4526 }
4527
4528 Constant *C;
4529 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
4530 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
4532 }
4533
4534 // Replace uses of Op with freeze(Op).
4535 if (freezeOtherUses(I))
4536 return &I;
4537
4538 return nullptr;
4539}
4540
4541/// Check for case where the call writes to an otherwise dead alloca. This
4542/// shows up for unused out-params in idiomatic C/C++ code. Note that this
4543/// helper *only* analyzes the write; doesn't check any other legality aspect.
4545 auto *CB = dyn_cast<CallBase>(I);
4546 if (!CB)
4547 // TODO: handle e.g. store to alloca here - only worth doing if we extend
4548 // to allow reload along used path as described below. Otherwise, this
4549 // is simply a store to a dead allocation which will be removed.
4550 return false;
4551 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
4552 if (!Dest)
4553 return false;
4554 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
4555 if (!AI)
4556 // TODO: allow malloc?
4557 return false;
4558 // TODO: allow memory access dominated by move point? Note that since AI
4559 // could have a reference to itself captured by the call, we would need to
4560 // account for cycles in doing so.
4561 SmallVector<const User *> AllocaUsers;
4563 auto pushUsers = [&](const Instruction &I) {
4564 for (const User *U : I.users()) {
4565 if (Visited.insert(U).second)
4566 AllocaUsers.push_back(U);
4567 }
4568 };
4569 pushUsers(*AI);
4570 while (!AllocaUsers.empty()) {
4571 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4572 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4573 isa<AddrSpaceCastInst>(UserI)) {
4574 pushUsers(*UserI);
4575 continue;
4576 }
4577 if (UserI == CB)
4578 continue;
4579 // TODO: support lifetime.start/end here
4580 return false;
4581 }
4582 return true;
4583}
4584
4585/// Try to move the specified instruction from its current block into the
4586/// beginning of DestBlock, which can only happen if it's safe to move the
4587/// instruction past all of the instructions between it and the end of its
4588/// block.
4590 BasicBlock *DestBlock) {
4591 BasicBlock *SrcBlock = I->getParent();
4592
4593 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4594 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4595 I->isTerminator())
4596 return false;
4597
4598 // Do not sink static or dynamic alloca instructions. Static allocas must
4599 // remain in the entry block, and dynamic allocas must not be sunk in between
4600 // a stacksave / stackrestore pair, which would incorrectly shorten its
4601 // lifetime.
4602 if (isa<AllocaInst>(I))
4603 return false;
4604
4605 // Do not sink into catchswitch blocks.
4606 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4607 return false;
4608
4609 // Do not sink convergent call instructions.
4610 if (auto *CI = dyn_cast<CallInst>(I)) {
4611 if (CI->isConvergent())
4612 return false;
4613 }
4614
4615 // Unless we can prove that the memory write isn't visibile except on the
4616 // path we're sinking to, we must bail.
4617 if (I->mayWriteToMemory()) {
4618 if (!SoleWriteToDeadLocal(I, TLI))
4619 return false;
4620 }
4621
4622 // We can only sink load instructions if there is nothing between the load and
4623 // the end of block that could change the value.
4624 if (I->mayReadFromMemory()) {
4625 // We don't want to do any sophisticated alias analysis, so we only check
4626 // the instructions after I in I's parent block if we try to sink to its
4627 // successor block.
4628 if (DestBlock->getUniquePredecessor() != I->getParent())
4629 return false;
4630 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4631 E = I->getParent()->end();
4632 Scan != E; ++Scan)
4633 if (Scan->mayWriteToMemory())
4634 return false;
4635 }
4636
4637 I->dropDroppableUses([&](const Use *U) {
4638 auto *I = dyn_cast<Instruction>(U->getUser());
4639 if (I && I->getParent() != DestBlock) {
4640 Worklist.add(I);
4641 return true;
4642 }
4643 return false;
4644 });
4645 /// FIXME: We could remove droppable uses that are not dominated by
4646 /// the new position.
4647
4648 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4649 I->moveBefore(*DestBlock, InsertPos);
4650 ++NumSunkInst;
4651
4652 // Also sink all related debug uses from the source basic block. Otherwise we
4653 // get debug use before the def. Attempt to salvage debug uses first, to
4654 // maximise the range variables have location for. If we cannot salvage, then
4655 // mark the location undef: we know it was supposed to receive a new location
4656 // here, but that computation has been sunk.
4658 SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
4659 findDbgUsers(DbgUsers, I, &DbgVariableRecords);
4660 if (!DbgUsers.empty())
4661 tryToSinkInstructionDbgValues(I, InsertPos, SrcBlock, DestBlock, DbgUsers);
4662 if (!DbgVariableRecords.empty())
4663 tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
4664 DbgVariableRecords);
4665
4666 // PS: there are numerous flaws with this behaviour, not least that right now
4667 // assignments can be re-ordered past other assignments to the same variable
4668 // if they use different Values. Creating more undef assignements can never be
4669 // undone. And salvaging all users outside of this block can un-necessarily
4670 // alter the lifetime of the live-value that the variable refers to.
4671 // Some of these things can be resolved by tolerating debug use-before-defs in
4672 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend
4673 // being used for more architectures.
4674
4675 return true;
4676}
4677
4679 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
4681 // For all debug values in the destination block, the sunk instruction
4682 // will still be available, so they do not need to be dropped.
4684 for (auto &DbgUser : DbgUsers)
4685 if (DbgUser->getParent() != DestBlock)
4686 DbgUsersToSalvage.push_back(DbgUser);
4687
4688 // Process the sinking DbgUsersToSalvage in reverse order, as we only want
4689 // to clone the last appearing debug intrinsic for each given variable.
4691 for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
4692 if (DVI->getParent() == SrcBlock)
4693 DbgUsersToSink.push_back(DVI);
4694 llvm::sort(DbgUsersToSink,
4695 [](auto *A, auto *B) { return B->comesBefore(A); });
4696
4698 SmallSet<DebugVariable, 4> SunkVariables;
4699 for (auto *User : DbgUsersToSink) {
4700 // A dbg.declare instruction should not be cloned, since there can only be
4701 // one per variable fragment. It should be left in the original place
4702 // because the sunk instruction is not an alloca (otherwise we could not be
4703 // here).
4704 if (isa<DbgDeclareInst>(User))
4705 continue;
4706
4707 DebugVariable DbgUserVariable =
4708 DebugVariable(User->getVariable(), User->getExpression(),
4709 User->getDebugLoc()->getInlinedAt());
4710
4711 if (!SunkVariables.insert(DbgUserVariable).second)
4712 continue;
4713
4714 // Leave dbg.assign intrinsics in their original positions and there should
4715 // be no need to insert a clone.
4716 if (isa<DbgAssignIntrinsic>(User))
4717 continue;
4718
4719 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4720 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4721 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4722 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4723 }
4724
4725 // Perform salvaging without the clones, then sink the clones.
4726 if (!DIIClones.empty()) {
4727 salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, {});
4728 // The clones are in reverse order of original appearance, reverse again to
4729 // maintain the original order.
4730 for (auto &DIIClone : llvm::reverse(DIIClones)) {
4731 DIIClone->insertBefore(&*InsertPos);
4732 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4733 }
4734 }
4735}
4736
4738 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
4739 BasicBlock *DestBlock,
4740 SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
4741 // Implementation of tryToSinkInstructionDbgValues, but for the
4742 // DbgVariableRecord of variable assignments rather than dbg.values.
4743
4744 // Fetch all DbgVariableRecords not already in the destination.
4745 SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
4746 for (auto &DVR : DbgVariableRecords)
4747 if (DVR->getParent() != DestBlock)
4748 DbgVariableRecordsToSalvage.push_back(DVR);
4749
4750 // Fetch a second collection, of DbgVariableRecords in the source block that
4751 // we're going to sink.
4752 SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
4753 for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
4754 if (DVR->getParent() == SrcBlock)
4755 DbgVariableRecordsToSink.push_back(DVR);
4756
4757 // Sort DbgVariableRecords according to their position in the block. This is a
4758 // partial order: DbgVariableRecords attached to different instructions will
4759 // be ordered by the instruction order, but DbgVariableRecords attached to the
4760 // same instruction won't have an order.
4761 auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
4762 return B->getInstruction()->comesBefore(A->getInstruction());
4763 };
4764 llvm::stable_sort(DbgVariableRecordsToSink, Order);
4765
4766 // If there are two assignments to the same variable attached to the same
4767 // instruction, the ordering between the two assignments is important. Scan
4768 // for this (rare) case and establish which is the last assignment.
4769 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
4771 if (DbgVariableRecordsToSink.size() > 1) {
4773 // Count how many assignments to each variable there is per instruction.
4774 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
4775 DebugVariable DbgUserVariable =
4776 DebugVariable(DVR->getVariable(), DVR->getExpression(),
4777 DVR->getDebugLoc()->getInlinedAt());
4778 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
4779 }
4780
4781 // If there are any instructions with two assignments, add them to the
4782 // FilterOutMap to record that they need extra filtering.
4784 for (auto It : CountMap) {
4785 if (It.second > 1) {
4786 FilterOutMap[It.first] = nullptr;
4787 DupSet.insert(It.first.first);
4788 }
4789 }
4790
4791 // For all instruction/variable pairs needing extra filtering, find the
4792 // latest assignment.
4793 for (const Instruction *Inst : DupSet) {
4794 for (DbgVariableRecord &DVR :
4795 llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
4796 DebugVariable DbgUserVariable =
4797 DebugVariable(DVR.getVariable(), DVR.getExpression(),
4798 DVR.getDebugLoc()->getInlinedAt());
4799 auto FilterIt =
4800 FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
4801 if (FilterIt == FilterOutMap.end())
4802 continue;
4803 if (FilterIt->second != nullptr)
4804 continue;
4805 FilterIt->second = &DVR;
4806 }
4807 }
4808 }
4809
4810 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter
4811 // out any duplicate assignments identified above.
4813 SmallSet<DebugVariable, 4> SunkVariables;
4814 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
4816 continue;
4817
4818 DebugVariable DbgUserVariable =
4819 DebugVariable(DVR->getVariable(), DVR->getExpression(),
4820 DVR->getDebugLoc()->getInlinedAt());
4821
4822 // For any variable where there were multiple assignments in the same place,
4823 // ignore all but the last assignment.
4824 if (!FilterOutMap.empty()) {
4825 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
4826 auto It = FilterOutMap.find(IVP);
4827
4828 // Filter out.
4829 if (It != FilterOutMap.end() && It->second != DVR)
4830 continue;
4831 }
4832
4833 if (!SunkVariables.insert(DbgUserVariable).second)
4834 continue;
4835
4836 if (DVR->isDbgAssign())
4837 continue;
4838
4839 DVRClones.emplace_back(DVR->clone());
4840 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
4841 }
4842
4843 // Perform salvaging without the clones, then sink the clones.
4844 if (DVRClones.empty())
4845 return;
4846
4847 salvageDebugInfoForDbgValues(*I, {}, DbgVariableRecordsToSalvage);
4848
4849 // The clones are in reverse order of original appearance. Assert that the
4850 // head bit is set on the iterator as we _should_ have received it via
4851 // getFirstInsertionPt. Inserting like this will reverse the clone order as
4852 // we'll repeatedly insert at the head, such as:
4853 // DVR-3 (third insertion goes here)
4854 // DVR-2 (second insertion goes here)
4855 // DVR-1 (first insertion goes here)
4856 // Any-Prior-DVRs
4857 // InsertPtInst
4858 assert(InsertPos.getHeadBit());
4859 for (DbgVariableRecord *DVRClone : DVRClones) {
4860 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
4861 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
4862 }
4863}
4864
4866 while (!Worklist.isEmpty()) {
4867 // Walk deferred instructions in reverse order, and push them to the
4868 // worklist, which means they'll end up popped from the worklist in-order.
4869 while (Instruction *I = Worklist.popDeferred()) {
4870 // Check to see if we can DCE the instruction. We do this already here to
4871 // reduce the number of uses and thus allow other folds to trigger.
4872 // Note that eraseInstFromFunction() may push additional instructions on
4873 // the deferred worklist, so this will DCE whole instruction chains.
4876 ++NumDeadInst;
4877 continue;
4878 }
4879
4880 Worklist.push(I);
4881 }
4882
4884 if (I == nullptr) continue; // skip null values.
4885
4886 // Check to see if we can DCE the instruction.
4889 ++NumDeadInst;
4890 continue;
4891 }
4892
4893 if (!DebugCounter::shouldExecute(VisitCounter))
4894 continue;
4895
4896 // See if we can trivially sink this instruction to its user if we can
4897 // prove that the successor is not executed more frequently than our block.
4898 // Return the UserBlock if successful.
4899 auto getOptionalSinkBlockForInst =
4900 [this](Instruction *I) -> std::optional<BasicBlock *> {
4901 if (!EnableCodeSinking)
4902 return std::nullopt;
4903
4904 BasicBlock *BB = I->getParent();
4905 BasicBlock *UserParent = nullptr;
4906 unsigned NumUsers = 0;
4907
4908 for (auto *U : I->users()) {
4909 if (U->isDroppable())
4910 continue;
4911 if (NumUsers > MaxSinkNumUsers)
4912 return std::nullopt;
4913
4914 Instruction *UserInst = cast<Instruction>(U);
4915 // Special handling for Phi nodes - get the block the use occurs in.
4916 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4917 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4918 if (PN->getIncomingValue(i) == I) {
4919 // Bail out if we have uses in different blocks. We don't do any
4920 // sophisticated analysis (i.e finding NearestCommonDominator of
4921 // these use blocks).
4922 if (UserParent && UserParent != PN->getIncomingBlock(i))
4923 return std::nullopt;
4924 UserParent = PN->getIncomingBlock(i);
4925 }
4926 }
4927 assert(UserParent && "expected to find user block!");
4928 } else {
4929 if (UserParent && UserParent != UserInst->getParent())
4930 return std::nullopt;
4931 UserParent = UserInst->getParent();
4932 }
4933
4934 // Make sure these checks are done only once, naturally we do the checks
4935 // the first time we get the userparent, this will save compile time.
4936 if (NumUsers == 0) {
4937 // Try sinking to another block. If that block is unreachable, then do
4938 // not bother. SimplifyCFG should handle it.
4939 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4940 return std::nullopt;
4941
4942 auto *Term = UserParent->getTerminator();
4943 // See if the user is one of our successors that has only one
4944 // predecessor, so that we don't have to split the critical edge.
4945 // Another option where we can sink is a block that ends with a
4946 // terminator that does not pass control to other block (such as
4947 // return or unreachable or resume). In this case:
4948 // - I dominates the User (by SSA form);
4949 // - the User will be executed at most once.
4950 // So sinking I down to User is always profitable or neutral.
4951 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
4952 return std::nullopt;
4953
4954 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4955 }
4956
4957 NumUsers++;
4958 }
4959
4960 // No user or only has droppable users.
4961 if (!UserParent)
4962 return std::nullopt;
4963
4964 return UserParent;
4965 };
4966
4967 auto OptBB = getOptionalSinkBlockForInst(I);
4968 if (OptBB) {
4969 auto *UserParent = *OptBB;
4970 // Okay, the CFG is simple enough, try to sink this instruction.
4971 if (tryToSinkInstruction(I, UserParent)) {
4972 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4973 MadeIRChange = true;
4974 // We'll add uses of the sunk instruction below, but since
4975 // sinking can expose opportunities for it's *operands* add
4976 // them to the worklist
4977 for (Use &U : I->operands())
4978 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4979 Worklist.push(OpI);
4980 }
4981 }
4982
4983 // Now that we have an instruction, try combining it to simplify it.
4986 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4987
4988#ifndef NDEBUG
4989 std::string OrigI;
4990#endif
4991 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4992 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4993
4994 if (Instruction *Result = visit(*I)) {
4995 ++NumCombined;
4996 // Should we replace the old instruction with a new one?
4997 if (Result != I) {
4998 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4999 << " New = " << *Result << '\n');
5000
5001 Result->copyMetadata(*I,
5002 {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5003 // Everything uses the new instruction now.
5004 I->replaceAllUsesWith(Result);
5005
5006 // Move the name to the new instruction first.
5007 Result->takeName(I);
5008
5009 // Insert the new instruction into the basic block...
5010 BasicBlock *InstParent = I->getParent();
5011 BasicBlock::iterator InsertPos = I->getIterator();
5012
5013 // Are we replace a PHI with something that isn't a PHI, or vice versa?
5014 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
5015 // We need to fix up the insertion point.
5016 if (isa<PHINode>(I)) // PHI -> Non-PHI
5017 InsertPos = InstParent->getFirstInsertionPt();
5018 else // Non-PHI -> PHI
5019 InsertPos = InstParent->getFirstNonPHIIt();
5020 }
5021
5022 Result->insertInto(InstParent, InsertPos);
5023
5024 // Push the new instruction and any users onto the worklist.
5026 Worklist.push(Result);
5027
5029 } else {
5030 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
5031 << " New = " << *I << '\n');
5032
5033 // If the instruction was modified, it's possible that it is now dead.
5034 // if so, remove it.
5037 } else {
5039 Worklist.push(I);
5040 }
5041 }
5042 MadeIRChange = true;
5043 }
5044 }
5045
5046 Worklist.zap();
5047 return MadeIRChange;
5048}
5049
5050// Track the scopes used by !alias.scope and !noalias. In a function, a
5051// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5052// by both sets. If not, the declaration of the scope can be safely omitted.
5053// The MDNode of the scope can be omitted as well for the instructions that are
5054// part of this function. We do not do that at this point, as this might become
5055// too time consuming to do.
5057 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
5058 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
5059
5060public:
5062 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
5063 if (!I->hasMetadataOtherThanDebugLoc())
5064 return;
5065
5066 auto Track = [](Metadata *ScopeList, auto &Container) {
5067 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5068 if (!MDScopeList || !Container.insert(MDScopeList).second)
5069 return;
5070 for (const auto &MDOperand : MDScopeList->operands())
5071 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
5072 Container.insert(MDScope);
5073 };
5074
5075 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5076 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5077 }
5078
5080 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
5081 if (!Decl)
5082 return false;
5083
5084 assert(Decl->use_empty() &&
5085 "llvm.experimental.noalias.scope.decl in use ?");
5086 const MDNode *MDSL = Decl->getScopeList();
5087 assert(MDSL->getNumOperands() == 1 &&
5088 "llvm.experimental.noalias.scope should refer to a single scope");
5089 auto &MDOperand = MDSL->getOperand(0);
5090 if (auto *MD = dyn_cast<MDNode>(MDOperand))
5091 return !UsedAliasScopesAndLists.contains(MD) ||
5092 !UsedNoAliasScopesAndLists.contains(MD);
5093
5094 // Not an MDNode ? throw away.
5095 return true;
5096 }
5097};
5098
5099/// Populate the IC worklist from a function, by walking it in reverse
5100/// post-order and adding all reachable code to the worklist.
5101///
5102/// This has a couple of tricks to make the code faster and more powerful. In
5103/// particular, we constant fold and DCE instructions as we go, to avoid adding
5104/// them to the worklist (this significantly speeds up instcombine on code where
5105/// many instructions are dead or constant). Additionally, if we find a branch
5106/// whose condition is a known constant, we only visit the reachable successors.
5109 bool MadeIRChange = false;
5111 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
5112 DenseMap<Constant *, Constant *> FoldedConstants;
5113 AliasScopeTracker SeenAliasScopes;
5114
5115 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
5116 for (BasicBlock *Succ : successors(BB))
5117 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
5118 for (PHINode &PN : Succ->phis())
5119 for (Use &U : PN.incoming_values())
5120 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5121 U.set(PoisonValue::get(PN.getType()));
5122 MadeIRChange = true;
5123 }
5124 };
5125
5126 for (BasicBlock *BB : RPOT) {
5127 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
5128 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
5129 })) {
5130 HandleOnlyLiveSuccessor(BB, nullptr);
5131 continue;
5132 }
5133 LiveBlocks.insert(BB);
5134
5135 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
5136 // ConstantProp instruction if trivially constant.
5137 if (!Inst.use_empty() &&
5138 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5139 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
5140 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
5141 << '\n');
5142 Inst.replaceAllUsesWith(C);
5143 ++NumConstProp;
5144 if (isInstructionTriviallyDead(&Inst, &TLI))
5145 Inst.eraseFromParent();
5146 MadeIRChange = true;
5147 continue;
5148 }
5149
5150 // See if we can constant fold its operands.
5151 for (Use &U : Inst.operands()) {
5152 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
5153 continue;
5154
5155 auto *C = cast<Constant>(U);
5156 Constant *&FoldRes = FoldedConstants[C];
5157 if (!FoldRes)
5158 FoldRes = ConstantFoldConstant(C, DL, &TLI);
5159
5160 if (FoldRes != C) {
5161 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5162 << "\n Old = " << *C
5163 << "\n New = " << *FoldRes << '\n');
5164 U = FoldRes;
5165 MadeIRChange = true;
5166 }
5167 }
5168
5169 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
5170 // these call instructions consumes non-trivial amount of time and
5171 // provides no value for the optimization.
5172 if (!Inst.isDebugOrPseudoInst()) {
5173 InstrsForInstructionWorklist.push_back(&Inst);
5174 SeenAliasScopes.analyse(&Inst);
5175 }
5176 }
5177
5178 // If this is a branch or switch on a constant, mark only the single
5179 // live successor. Otherwise assume all successors are live.
5180 Instruction *TI = BB->getTerminator();
5181 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
5182 if (isa<UndefValue>(BI->getCondition())) {
5183 // Branch on undef is UB.
5184 HandleOnlyLiveSuccessor(BB, nullptr);
5185 continue;
5186 }
5187 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5188 bool CondVal = Cond->getZExtValue();
5189 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5190 continue;
5191 }
5192 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5193 if (isa<UndefValue>(SI->getCondition())) {
5194 // Switch on undef is UB.
5195 HandleOnlyLiveSuccessor(BB, nullptr);
5196 continue;
5197 }
5198 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5199 HandleOnlyLiveSuccessor(BB,
5200 SI->findCaseValue(Cond)->getCaseSuccessor());
5201 continue;
5202 }
5203 }
5204 }
5205
5206 // Remove instructions inside unreachable blocks. This prevents the
5207 // instcombine code from having to deal with some bad special cases, and
5208 // reduces use counts of instructions.
5209 for (BasicBlock &BB : F) {
5210 if (LiveBlocks.count(&BB))
5211 continue;
5212
5213 unsigned NumDeadInstInBB;
5214 unsigned NumDeadDbgInstInBB;
5215 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
5217
5218 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
5219 NumDeadInst += NumDeadInstInBB;
5220 }
5221
5222 // Once we've found all of the instructions to add to instcombine's worklist,
5223 // add them in reverse order. This way instcombine will visit from the top
5224 // of the function down. This jives well with the way that it adds all uses
5225 // of instructions to the worklist after doing a transformation, thus avoiding
5226 // some N^2 behavior in pathological cases.
5227 Worklist.reserve(InstrsForInstructionWorklist.size());
5228 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
5229 // DCE instruction if trivially dead. As we iterate in reverse program
5230 // order here, we will clean up whole chains of dead instructions.
5231 if (isInstructionTriviallyDead(Inst, &TLI) ||
5232 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
5233 ++NumDeadInst;
5234 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
5235 salvageDebugInfo(*Inst);
5236 Inst->eraseFromParent();
5237 MadeIRChange = true;
5238 continue;
5239 }
5240
5241 Worklist.push(Inst);
5242 }
5243
5244 return MadeIRChange;
5245}
5246
5251 ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) {
5252 auto &DL = F.getParent()->getDataLayout();
5253
5254 /// Builder - This is an IRBuilder that automatically inserts new
5255 /// instructions into the worklist when they are created.
5257 F.getContext(), TargetFolder(DL),
5258 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
5259 Worklist.add(I);
5260 if (auto *Assume = dyn_cast<AssumeInst>(I))
5261 AC.registerAssumption(Assume);
5262 }));
5263
5265
5266 // Lower dbg.declare intrinsics otherwise their value may be clobbered
5267 // by instcombiner.
5268 bool MadeIRChange = false;
5270 MadeIRChange = LowerDbgDeclare(F);
5271
5272 // Iterate while there is work to do.
5273 unsigned Iteration = 0;
5274 while (true) {
5275 ++Iteration;
5276
5277 if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) {
5278 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
5279 << " on " << F.getName()
5280 << " reached; stopping without verifying fixpoint\n");
5281 break;
5282 }
5283
5284 ++NumWorklistIterations;
5285 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
5286 << F.getName() << "\n");
5287
5288 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
5289 ORE, BFI, PSI, DL, LI);
5291 bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT);
5292 MadeChangeInThisIteration |= IC.run();
5293 if (!MadeChangeInThisIteration)
5294 break;
5295
5296 MadeIRChange = true;
5297 if (Iteration > Opts.MaxIterations) {
5299 "Instruction Combining did not reach a fixpoint after " +
5300 Twine(Opts.MaxIterations) + " iterations",
5301 /*GenCrashDiag=*/false);
5302 }
5303 }
5304
5305 if (Iteration == 1)
5306 ++NumOneIteration;
5307 else if (Iteration == 2)
5308 ++NumTwoIterations;
5309 else if (Iteration == 3)
5310 ++NumThreeIterations;
5311 else
5312 ++NumFourOrMoreIterations;
5313
5314 return MadeIRChange;
5315}
5316
5318
5320 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5321 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
5322 OS, MapClassName2PassName);
5323 OS << '<';
5324 OS << "max-iterations=" << Options.MaxIterations << ";";
5325 OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;";
5326 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
5327 OS << '>';
5328}
5329
5332 auto &AC = AM.getResult<AssumptionAnalysis>(F);
5333 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
5334 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
5336 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
5337
5338 // TODO: Only use LoopInfo when the option is set. This requires that the
5339 // callers in the pass pipeline explicitly set the option.
5340 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
5341 if (!LI && Options.UseLoopInfo)
5342 LI = &AM.getResult<LoopAnalysis>(F);
5343
5344 auto *AA = &AM.getResult<AAManager>(F);
5345 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
5346 ProfileSummaryInfo *PSI =
5347 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
5348 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
5349 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
5350
5351 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
5352 BFI, PSI, LI, Options))
5353 // No changes, all analyses are preserved.
5354 return PreservedAnalyses::all();
5355
5356 // Mark all the analyses that instcombine updates as preserved.
5359 return PA;
5360}
5361
5363 AU.setPreservesCFG();
5376}
5377
5379 if (skipFunction(F))
5380 return false;
5381
5382 // Required analyses.
5383 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5384 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5385 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
5386 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5387 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5388 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5389
5390 // Optional analyses.
5391 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
5392 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
5393 ProfileSummaryInfo *PSI =
5394 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
5395 BlockFrequencyInfo *BFI =
5396 (PSI && PSI->hasProfileSummary()) ?
5397 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
5398 nullptr;
5399
5400 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
5401 BFI, PSI, LI, InstCombineOptions());
5402}
5403
5405
5408}
5409
5411 "Combine redundant instructions", false, false)
5423
5424// Initialization Routines
5427}
5428
5430 return new InstructionCombiningPass();
5431}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
amdgpu AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
Expand Atomic instructions
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:182
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
#define NL
uint64_t Size
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
Hexagon Vector Combine
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
Definition: IVUsers.cpp:48
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static bool isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI)
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts)
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Constant * constantFoldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2)
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static LVOptions Options
Definition: LVOptions.cpp:25
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file contains the declarations for metadata subclasses.
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static bool IsSelect(MachineInstr &MI)
This header defines various interfaces for pass management in LLVM.
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
static unsigned getScalarSizeInBits(Type *Ty)
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
This pass exposes codegen information to IR-level passes.
This defines the Use class.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:191
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
Definition: APInt.h:76
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:212
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:401
APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:906
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1898
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:805
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:312
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1128
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:418
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:284
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1911
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:829
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:321
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:492
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:473
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
Class to represent array types.
Definition: DerivedTypes.h:371
uint64_t getNumElements() const
Definition: DerivedTypes.h:383
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:647
Type * getElementType() const
Definition: DerivedTypes.h:384
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
Definition: Attributes.cpp:390
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition: Attributes.h:193
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:430
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:499
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:409
iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
Definition: BasicBlock.cpp:247
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
Definition: BasicBlock.cpp:367
const Instruction & front() const
Definition: BasicBlock.h:453
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
Definition: BasicBlock.cpp:564
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:452
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
Definition: BasicBlock.cpp:460
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:206
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:165
const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
Definition: BasicBlock.cpp:423
size_t size() const
Definition: BasicBlock.h:451
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:221
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a binary instruction, given the opcode and the two operands.
BinaryOps getOpcode() const
Definition: InstrTypes.h:513
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name, BasicBlock::iterator InsertBefore)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition: InstrTypes.h:392
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:70
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1494
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1742
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1823
bool doesNotThrow() const
Determine if the call cannot unwind.
Definition: InstrTypes.h:2272
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1687
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1819
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr, BasicBlock::iterator InsertBefore)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:1016
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:1018
@ ICMP_EQ
equal
Definition: InstrTypes.h:1014
@ ICMP_NE
not equal
Definition: InstrTypes.h:1015
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:1167
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:1129
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:1105
ConstantArray - Constant Array Declarations.
Definition: Constants.h:423
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1291
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:766
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2542
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2529
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced=false)
get* - Return some common constants without having to specify the full Instruction::OPCODE identifier...
Definition: Constants.cpp:2402
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2560
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2535
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
Definition: Constants.cpp:2596
static Constant * getNeg(Constant *C, bool HasNSW=false)
Definition: Constants.cpp:2523
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:849
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:856
static ConstantInt * getBool(LLVMContext &Context, bool V)
Definition: Constants.cpp:863
This class represents a range of values.
Definition: ConstantRange.h:47
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
Definition: Constants.h:507
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1398
This is an important base class in LLVM.
Definition: Constant.h:41
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
Definition: Constants.cpp:400
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
Definition: Constants.cpp:767
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:417
const Constant * stripPointerCasts() const
Definition: Constant.h:213
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:370
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:432
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:90
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
SmallVector< APInt > getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const
Get GEP indices to access Offset inside ElemTy.
Definition: DataLayout.cpp:998
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU.
Definition: DataLayout.h:260
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
Definition: DataLayout.cpp:774
IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
Definition: DataLayout.cpp:905
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:504
unsigned getIndexSizeInBits(unsigned AS) const
Size in bits of index used for address calculation in getelementptr.
Definition: DataLayout.h:420
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:672
int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef< Value * > Indices) const
Returns the offset from the beginning of the type for the specified indices.
Definition: DataLayout.cpp:920
This is the common base class for debug info intrinsics for variables.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:72
Identifies a unique instance of a variable.
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool empty() const
Definition: DenseMap.h:98
iterator end()
Definition: DenseMap.h:84
void registerBranch(BranchInst *BI)
Add a branch condition to the cache.
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
idx_iterator idx_end() const
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr, BasicBlock::iterator InsertBefore)
idx_iterator idx_begin() const
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:201
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition: Pass.cpp:178
const BasicBlock & getEntryBlock() const
Definition: Function.h:783
static bool isTargetIntrinsic(Intrinsic::ID IID)
isTargetIntrinsic - Returns true if IID is an intrinsic specific to a certain target.
Definition: Function.cpp:879
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
Definition: Operator.h:420
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
Definition: Operator.h:475
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:973
static Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr, BasicBlock::iterator InsertBefore)
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr, BasicBlock::iterator InsertBefore)
Create an "inbounds" getelementptr.
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Definition: IRBuilder.cpp:921
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", bool IsInBounds=false)
Definition: IRBuilder.h:1978
Value * CreateLogicalOp(Instruction::BinaryOps Opc, Value *Cond1, Value *Cond2, const Twine &Name="")
Definition: IRBuilder.h:1688
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2516
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:932
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1110
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2033
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition: IRBuilder.h:2535
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:311
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:1876
void CollectMetadataToCopy(Instruction *Src, ArrayRef< unsigned > MetadataKinds)
Collect metadata with IDs MetadataKinds from Src which should be added to all created instructions.
Definition: IRBuilder.h:233
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:486
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2366
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:2397
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1749
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1344
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition: IRBuilder.h:1790
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition: IRBuilder.h:2494
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1475
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1327
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2007
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1666
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:2196
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:180
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1456
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1519
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", bool IsInBounds=false)
Definition: IRBuilder.h:1866
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2351
Value * CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name="")
Definition: IRBuilder.h:1682
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:516
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Definition: IRBuilder.h:502
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
Definition: IRBuilder.h:76
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr, BasicBlock::iterator InsertBefore)
InstCombinePass(InstCombineOptions Opts={})
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
bool prepareWorklist(Function &F, ReversePostOrderTraversal< BasicBlock * > &RPOT)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Constant * getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp)
Value * SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask, KnownFPClass &Known, unsigned Depth, Instruction *CxtI)
Attempts to replace V with a simpler value based on the demanded floating-point classes.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; } into a phi node...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
void tryToSinkInstructionDbgValues(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableIntrinsic * > &DbgUsers)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
Definition: InstCombiner.h:47
SimplifyQuery SQ
Definition: InstCombiner.h:76
const DataLayout & getDataLayout() const
Definition: InstCombiner.h:340
static bool isCanonicalPredicate(CmpInst::Predicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
Definition: InstCombiner.h:156
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
Definition: InstCombiner.h:231
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
Definition: InstCombiner.h:138
TargetLibraryInfo & TLI
Definition: InstCombiner.h:73
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Definition: InstCombiner.h:365
AAResults * AA
Definition: InstCombiner.h:69
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:385
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
Definition: InstCombiner.h:55
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
Definition: InstCombiner.h:190
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
Definition: InstCombiner.h:417
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Definition: InstCombiner.h:64
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
Definition: InstCombiner.h:374
const DataLayout & DL
Definition: InstCombiner.h:75
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombiner.h:451
DomConditionCache DC
Definition: InstCombiner.h:80
const bool MinimizeSize
Definition: InstCombiner.h:67
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
void addToWorklist(Instruction *I)
Definition: InstCombiner.h:335
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:409
DominatorTree & DT
Definition: InstCombiner.h:74
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
Definition: InstCombiner.h:283
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
Definition: InstCombiner.h:89
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
Definition: InstCombiner.h:430
BuilderTy & Builder
Definition: InstCombiner.h:60
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
Definition: InstCombiner.h:212
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:87
The legacy pass manager's instcombine pass.
Definition: InstCombine.h:71
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
void add(Instruction *I)
Add instruction to the worklist.
void push(Instruction *I)
Push the instruction onto the worklist stack.
void zap()
Check that the worklist is empty and nuke the backing store for the map.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
Definition: Instruction.h:301
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:454
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:82
bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
const BasicBlock * getParent() const
Definition: Instruction.h:152
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:86
bool isTerminator() const
Definition: Instruction.h:255
void dropUBImplyingAttrsAndMetadata()
Drop any attributes or metadata that can cause immediate undefined behavior.
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:252
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
Definition: Instruction.h:306
bool isShift() const
Definition: Instruction.h:259
void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:451
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
bool isIntDivRem() const
Definition: Instruction.h:258
Class to represent integer types.
Definition: DerivedTypes.h:40
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:54
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, BasicBlock::iterator InsertBefore)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
static LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr, BasicBlock::iterator InsertBefore)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Definition: Instructions.h:184
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:566
Metadata node.
Definition: Metadata.h:1067
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1428
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1434
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:889
This is the common base class for memset/memcpy/memmove.
static MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
Root of the metadata hierarchy.
Definition: Metadata.h:62
This class represents min/max intrinsics.
Value * getLHS() const
Value * getRHS() const
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MDNode * getScopeList() const
OptimizationRemarkEmitter legacy analysis pass.
The optimization diagnostic interface.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
Definition: PassManager.h:756
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition: Operator.h:76
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition: Operator.h:109
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition: Operator.h:103
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock::iterator InsertBefore)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:37
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
Definition: Constants.h:1396
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1827
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:109
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:115
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:144
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition: Registry.h:44
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal, BasicBlock::iterator InsertBefore)
This class represents a cast from signed integer to floating point.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock::iterator InsertBefore, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
size_type size() const
Definition: SmallPtrSet.h:94
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void reserve(size_type N)
Definition: SmallVector.h:676
iterator erase(const_iterator CI)
Definition: SmallVector.h:750
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
typename SuperClass::iterator iterator
Definition: SmallVector.h:590
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Multiway switch.
TargetFolder - Create constants with target dependent folding.
Definition: TargetFolder.h:34
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:265
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:249
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:302
bool isScalableTy() const
Return true if this is a type whose size is a known multiple of vscale.
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:348
This class represents a cast unsigned integer to floating point.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
op_range operands()
Definition: User.h:242
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition: Value.h:736
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
iterator_range< user_iterator > users()
Definition: Value.h:421
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:149
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:693
bool use_empty() const
Definition: Value.h:344
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1074
uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition: Value.cpp:851
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:676
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:187
constexpr bool isZero() const
Definition: TypeSize.h:156
An efficient, type-erasing, non-owning reference to a callable.
reverse_self_iterator getReverseIterator()
Definition: ilist_node.h:112
self_iterator getIterator()
Definition: ilist_node.h:109
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:660
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isNoFPClassCompatibleType(Type *Ty)
Returns true if this is a type legal for the 'nofpclass' attribute.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1461
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:477
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
Definition: PatternMatch.h:155
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:160
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:918
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:765
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:821
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
Definition: PatternMatch.h:181
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
Definition: PatternMatch.h:509
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:163
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
CmpClass_match< LHS, RHS, FCmpInst, FCmpInst::Predicate > m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R)
CastOperator_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:300
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:800
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:294
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
Exact_match< T > m_Exact(const T &SubPattern)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
Definition: PatternMatch.h:740
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:152
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:561
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:234
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
@ FalseVal
Definition: TGLexer.h:59
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition: DWP.cpp:456
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:853
void stable_sort(R &&Range)
Definition: STLExtras.h:1995
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
bool succ_empty(const Instruction *I)
Definition: CFG.h:255
Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
FunctionPass * createInstructionCombiningPass()
std::pair< unsigned, unsigned > removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
Definition: Local.cpp:2800
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are are tuples (A,...
Definition: STLExtras.h:2406
void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableIntrinsic * > Insns, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
Definition: Local.cpp:2241
void findDbgUsers(SmallVectorImpl< DbgVariableIntrinsic * > &DbgInsts, Value *V, SmallVectorImpl< DbgVariableRecord * > *DbgVariableRecords=nullptr)
Finds the debug info intrinsics describing a value.
Definition: DebugInfo.cpp:148
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition: Utils.cpp:1650
auto successors(const MachineBasicBlock *BB)
bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2073
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments and pointer casts from the specified value,...
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
gep_type_iterator gep_type_end(const User *GEP)
Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
Definition: Local.cpp:2782
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
constexpr bool has_single_bit(T Value) noexcept
Definition: bit.h:146
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition: Local.cpp:399
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition: Local.cpp:22
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:47
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool LowerDbgDeclare(Function &F)
Lowers llvm.dbg.declare intrinsics into appropriate set of llvm.dbg.value intrinsics.
Definition: Local.cpp:1915
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, StoreInst *SI, DIBuilder &Builder)
===------------------------------------------------------------------—===// Dbg Intrinsic utilities
Definition: Local.cpp:1690
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
Definition: Local.cpp:2710
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition: STLExtras.h:336
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Or
Bitwise or logical OR of integers.
DWARFExpression::Operation Op
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1879
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition: STLExtras.h:2025
Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, bool InBounds, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
void initializeInstructionCombiningPassPass(PassRegistry &)
std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
bool isPotentiallyReachable(const Instruction *From, const Instruction *To, const SmallPtrSetImpl< BasicBlock * > *ExclusionSet=nullptr, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether instruction 'To' is reachable from 'From', without passing through any blocks in Ex...
Definition: CFG.cpp:231
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
static unsigned int semanticsPrecision(const fltSemantics &)
Definition: APFloat.cpp:292
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition: KnownBits.h:247
unsigned getBitWidth() const
Get the bit width of this value.
Definition: KnownBits.h:40
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition: KnownBits.h:244
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:74
SimplifyQuery getWithInstruction(const Instruction *I) const
Definition: SimplifyQuery.h:96
SimplifyQuery getWithoutUndef() const