19using namespace PatternMatch;
21#define DEBUG_TYPE "instcombine"
39 unsigned MaximalPossibleTotalShiftAmount =
42 APInt MaximalRepresentableShiftAmount =
44 return MaximalRepresentableShiftAmount.
uge(MaximalPossibleTotalShiftAmount);
60 bool AnalyzeForSignBitExtraction) {
72 Value *Trunc =
nullptr;
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
104 if (Trunc && !AnalyzeForSignBitExtraction &&
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth =
X->getType()->getScalarSizeInBits();
118 APInt(NewShAmtBitWidth, XBitWidth))))
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
133 if (AnalyzeForSignBitExtraction)
137 assert(IdenticalShOpcodes &&
"Should not get here with different shifts.");
139 if (NewShAmt->getType() !=
X->getType()) {
141 X->getType(),
SQ.
DL);
153 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
193 "The input must be 'shl'!");
195 Value *Masked, *ShiftShAmt;
208 bool HadTrunc = WidestTy != NarrowestTy;
240 MaskShAmt, ShiftShAmt,
false,
false, Q));
254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.
DL);
255 if (!ExtendedSumOfShAmts)
260 auto *ExtendedInvertedMask =
276 ShiftShAmt, MaskShAmt,
false,
false, Q));
297 if (!ExtendedNumHighBitsToClear)
303 ExtendedNumHighBitsToClear, Q.
DL);
347 assert(
I.isShift() &&
"Expected a shift as input");
348 auto *BinInst = dyn_cast<BinaryOperator>(
I.getOperand(0));
350 (!BinInst->isBitwiseLogicOp() &&
351 BinInst->getOpcode() != Instruction::Add &&
352 BinInst->getOpcode() != Instruction::Sub) ||
353 !BinInst->hasOneUse())
362 if ((BinInst->getOpcode() == Instruction::Add ||
363 BinInst->getOpcode() == Instruction::Sub) &&
364 ShiftOpcode != Instruction::Shl)
367 Type *Ty =
I.getType();
373 auto matchFirstShift = [&](
Value *V) {
384 bool FirstShiftIsOp1 =
false;
385 if (matchFirstShift(BinInst->getOperand(0)))
386 Y = BinInst->getOperand(1);
387 else if (matchFirstShift(BinInst->getOperand(1))) {
388 Y = BinInst->getOperand(0);
389 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub;
397 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1;
398 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2;
406 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
408 Type *Ty =
I.getType();
422 if (isa<Constant>(Op0))
423 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
427 if (
Constant *CUI = dyn_cast<Constant>(Op1))
431 if (
auto *NewShift = cast_or_null<Instruction>(
455 assert(!
AC->isZero() &&
"Expected simplify of shifted zero");
456 unsigned PosOffset = (-*AddC).getZExtValue();
458 auto isSuitableForPreShift = [PosOffset, &
I,
AC]() {
459 switch (
I.getOpcode()) {
462 case Instruction::Shl:
463 return (
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap()) &&
464 AC->eq(
AC->lshr(PosOffset).shl(PosOffset));
465 case Instruction::LShr:
466 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).lshr(PosOffset));
467 case Instruction::AShr:
468 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).ashr(PosOffset));
471 if (isSuitableForPreShift()) {
473 ?
AC->lshr(PosOffset)
474 :
AC->shl(PosOffset));
477 if (
I.getOpcode() == Instruction::Shl) {
515 const APInt *InnerShiftConst;
522 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
523 if (IsInnerShl == IsOuterShl)
529 if (*InnerShiftConst == OuterShAmt)
539 if (InnerShiftConst->
ugt(OuterShAmt) && InnerShiftConst->
ult(TypeWidth)) {
542 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
568 if (!
I)
return false;
572 if (!
I->hasOneUse())
return false;
574 switch (
I->getOpcode()) {
575 default:
return false;
576 case Instruction::And:
577 case Instruction::Or:
578 case Instruction::Xor:
583 case Instruction::Shl:
584 case Instruction::LShr:
587 case Instruction::Select: {
589 Value *TrueVal = SI->getTrueValue();
590 Value *FalseVal = SI->getFalseValue();
594 case Instruction::PHI: {
604 case Instruction::Mul: {
605 const APInt *MulConst;
607 return !IsLeftShift &&
match(
I->getOperand(1),
m_APInt(MulConst)) &&
618 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
628 auto NewInnerShift = [&](
unsigned ShAmt) {
642 if (IsInnerShl == IsOuterShl) {
644 if (InnerShAmt + OuterShAmt >= TypeWidth)
647 return NewInnerShift(InnerShAmt + OuterShAmt);
653 if (InnerShAmt == OuterShAmt) {
654 APInt Mask = IsInnerShl
659 if (
auto *AndI = dyn_cast<Instruction>(
And)) {
660 AndI->moveBefore(InnerShift);
666 assert(InnerShAmt > OuterShAmt &&
667 "Unexpected opposite direction logical shift pair");
673 return NewInnerShift(InnerShAmt - OuterShAmt);
681 if (
Constant *
C = dyn_cast<Constant>(V)) {
691 switch (
I->getOpcode()) {
693 case Instruction::And:
694 case Instruction::Or:
695 case Instruction::Xor:
703 case Instruction::Shl:
704 case Instruction::LShr:
708 case Instruction::Select:
714 case Instruction::PHI: {
721 isLeftShift, IC,
DL));
724 case Instruction::Mul: {
725 assert(!isLeftShift &&
"Unexpected shift direction!");
728 unsigned TypeWidth =
I->getType()->getScalarSizeInBits();
730 auto *
And = BinaryOperator::CreateAnd(Neg,
745 case Instruction::Add:
746 return Shift.
getOpcode() == Instruction::Shl;
747 case Instruction::Or:
748 case Instruction::And:
750 case Instruction::Xor:
767 bool IsLeftShift =
I.getOpcode() == Instruction::Shl;
768 Type *Ty =
I.getType();
781 auto ExtOpcode = (
I.getOpcode() == Instruction::AShr) ? Instruction::SExt
791 "Shift over the type width should have been removed already");
795 if (
I.getOpcode() != Instruction::AShr &&
798 dbgs() <<
"ICE: GetShiftedValue propagating shift through expression"
799 " to eliminate shift:\n IN: "
800 << *Op0 <<
"\n SH: " <<
I <<
"\n");
812 if (
auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
844 if (!isa<Constant>(FalseVal) && TBO->
getOperand(0) == FalseVal &&
861 if (!isa<Constant>(TrueVal) && FBO->
getOperand(0) == TrueVal &&
888 assert(
I.getOpcode() == Instruction::LShr);
891 Value *ShiftAmt =
I.getOperand(1);
892 Type *Ty =
I.getType();
897 const APInt *ShAmtAPInt =
nullptr;
898 Value *
X =
nullptr, *
Y =
nullptr;
909 if (
X->getType()->getScalarSizeInBits() != ShAmt ||
910 Y->getType()->getScalarSizeInBits() != ShAmt)
914 if (!
Add->hasOneUse()) {
919 TruncInst *Trunc = dyn_cast<TruncInst>(U);
937 if (!
Add->hasOneUse()) {
948 assert(
I.isShift() &&
"Expected a shift as input");
950 if (
I.getOpcode() == Instruction::Shl) {
951 if (
I.hasNoUnsignedWrap() &&
I.hasNoSignedWrap())
972 bool Changed =
false;
974 if (
I.getOpcode() == Instruction::Shl) {
977 I.setHasNoUnsignedWrap();
981 if (!
I.hasNoSignedWrap()) {
985 I.setHasNoSignedWrap();
995 I.setIsExact(Changed);
1004 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), Q))
1016 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1017 Type *Ty =
I.getType();
1022 unsigned ShAmtC =
C->getZExtValue();
1028 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1029 if (ShAmtC < SrcWidth &&
1044 if (ShrAmt < ShAmtC) {
1047 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1048 NewShl->setHasNoUnsignedWrap(
1049 I.hasNoUnsignedWrap() ||
1051 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1052 I.hasNoSignedWrap()));
1053 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1056 if (ShrAmt > ShAmtC) {
1060 cast<BinaryOperator>(Op0)->
getOpcode(),
X, ShiftDiff);
1061 NewShr->setIsExact(
true);
1069 if (ShrAmt < ShAmtC) {
1072 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1073 NewShl->setHasNoUnsignedWrap(
1074 I.hasNoUnsignedWrap() ||
1076 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1077 I.hasNoSignedWrap()));
1078 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1083 if (ShrAmt > ShAmtC) {
1086 auto *OldShr = cast<BinaryOperator>(Op0);
1089 NewShr->setIsExact(OldShr->isExact());
1102 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1104 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->
getOpcode() : Instruction::Shl;
1127 switch (BinOpcode) {
1130 case Instruction::Add:
1131 case Instruction::And:
1132 case Instruction::Or:
1133 case Instruction::Xor:
1134 case Instruction::Sub:
1142 isSuitableBinOpcode(Op0BO->
getOpcode())) {
1163 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1166 return BinaryOperator::CreateAnd(
B, Mask);
1177 X->getName() +
".mask");
1186 return BinaryOperator::CreateSub(NewLHS, NewShift);
1199 return BinaryOperator::CreateAnd(Mask,
X);
1220 return BinaryOperator::CreateLShr(
1228 return BinaryOperator::CreateAnd(NegX,
X);
1246 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1247 Type *Ty =
I.getType();
1258 unsigned ShAmtC =
C->getZExtValue();
1259 auto *II = dyn_cast<IntrinsicInst>(Op0);
1261 (II->getIntrinsicID() == Intrinsic::ctlz ||
1262 II->getIntrinsicID() == Intrinsic::cttz ||
1263 II->getIntrinsicID() == Intrinsic::ctpop)) {
1267 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1276 if (C1->
ult(ShAmtC)) {
1281 auto *NewLShr = BinaryOperator::CreateLShr(
X, ShiftDiff);
1282 NewLShr->setIsExact(
I.isExact());
1291 }
else if (C1->
ugt(ShAmtC)) {
1296 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1297 NewShl->setHasNoUnsignedWrap(
true);
1298 NewShl->setHasNoSignedWrap(ShAmtC > 0);
1324 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1327 return BinaryOperator::CreateAnd(NewAdd, Mask);
1331 (!Ty->
isIntegerTy() || shouldChangeType(Ty,
X->getType()))) {
1333 "Big shift not simplified to zero?");
1340 unsigned SrcTyBitWidth =
X->getType()->getScalarSizeInBits();
1342 if (SrcTyBitWidth == 1) {
1348 if ((!Ty->
isIntegerTy() || shouldChangeType(Ty,
X->getType())) &&
1358 if (ShAmtC ==
BitWidth - SrcTyBitWidth) {
1360 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1380 return BinaryOperator::CreateAnd(Signbit,
X);
1395 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1403 if (AmtSum < SrcWidth &&
1432 if (MulC->
eq(NewMulC.
shl(ShAmtC))) {
1436 "lshr X, 0 should be handled by simplifyLShrInst.");
1437 NewMul->setHasNoSignedWrap(
true);
1448 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1449 unsigned WidthDiff =
BitWidth - SrcWidth;
1450 if (SrcWidth % 16 == 0) {
1452 if (ShAmtC >= WidthDiff) {
1460 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1467 Value *BoolX, *BoolY;
1472 (
X->hasOneUse() ||
Y->hasOneUse() || Op0->
hasOneUse())) {
1486 return BinaryOperator::CreateAnd(Mask,
X);
1499 "Must be called with arithmetic right-shift instruction only.");
1505 APInt(
C->getType()->getScalarSizeInBits(),
1506 V->getType()->getScalarSizeInBits())));
1514 if (!
match(&OldAShr,
1520 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1526 bool HadTrunc = MaybeTrunc != HighBitExtract;
1529 Value *
X, *NumLowBitsToSkip;
1535 if (!
match(NumLowBitsToSkip,
1538 !BitWidthSplat(C0, HighBitExtract))
1575 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1576 Type *Ty =
I.getType();
1578 const APInt *ShAmtAPInt;
1587 ShAmt ==
BitWidth -
X->getType()->getScalarSizeInBits())
1596 if (ShlAmt < ShAmt) {
1599 auto *NewAShr = BinaryOperator::CreateAShr(
X, ShiftDiff);
1600 NewAShr->setIsExact(
I.isExact());
1603 if (ShlAmt > ShAmt) {
1607 NewShl->setHasNoSignedWrap(
true);
1616 AmtSum = std::min(AmtSum,
BitWidth - 1);
1622 (Ty->
isVectorTy() || shouldChangeType(Ty,
X->getType()))) {
1624 Type *SrcTy =
X->getType();
1657 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1667 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file provides internal interfaces used to implement the InstCombine.
static Value * foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, bool IsOuterShl, InstCombiner::BuilderTy &Builder)
Fold OuterShift (InnerShift X, C1), C2.
static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q)
static Instruction * dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, InstCombinerImpl &IC, Instruction *CxtI)
See if we can compute the specified value, but shifted logically to the left or right by some number ...
bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, Value *ShAmt1)
static Instruction * foldShiftOfShiftedBinOp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ shl) that itself has a shi...
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, Instruction *InnerShift, InstCombinerImpl &IC, Instruction *CxtI)
Return true if we can simplify two logical (either left or right) shifts that have constant shift amo...
static Value * getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, InstCombinerImpl &IC, const DataLayout &DL)
When canEvaluateShifted() returns true for an expression, this function inserts the new computation t...
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, BinaryOperator *BO)
This file provides the interface for the instcombine pass implementation.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool isNegative() const
Determine sign of this APInt.
bool eq(const APInt &RHS) const
Equality comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLE
signed less or equal
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getNot(Constant *C)
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static Constant * getAllOnesValue(Type *Ty)
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitLShr(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Value * reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, const SimplifyQuery &SQ, bool AnalyzeForSignBitExtraction=false)
Instruction * visitAShr(BinaryOperator &I)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitShl(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator &OldAShr)
Instruction * commonShiftTransforms(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I)
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
bool isLogicalShift() const
Return true if this is a logical shift left or a logical shift right.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
op_range incoming_values()
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Type * getExtendedType() const
Given scalar/vector integer type, returns a type with elements twice as wide as in the original type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
This class represents zero extension of integer types.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(APInt V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
CastInst_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
CastOperator_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
CastInst_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
OneUse_match< T > m_OneUse(const T &SubPattern)
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< CastOperator_match< OpTy, Instruction::Trunc >, OpTy > m_TruncOrSelf(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
specific_intval< true > m_SpecificIntAllowUndef(APInt V)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, Instruction::ZExt >, OpTy > m_ZExtOrSelf(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
This is an optimization pass for GlobalISel generic memory operations.
Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
@ And
Bitwise or logical AND of integers.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
constexpr unsigned BitWidth
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
SimplifyQuery getWithInstruction(const Instruction *I) const