30#define DEBUG_TYPE "systemztti"
39 bool UsedAsMemCpySource =
false;
47 if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) {
48 UsedAsMemCpySource =
true;
54 return UsedAsMemCpySource;
63 if (
User->getParent()->getParent() ==
F) {
65 if (
SI->getPointerOperand() == Ptr && !
SI->isVolatile())
68 if (LI->getPointerOperand() == Ptr && !LI->isVolatile())
71 if (
GEP->getPointerOperand() == Ptr)
87 for (
const Argument &Arg : Callee->args()) {
88 bool OtherUse =
false;
105 if (!
SI->isVolatile())
109 if (!LI->isVolatile())
114 unsigned NumStores = 0, NumLoads = 0;
116 Ptr2NumUses[GV] += NumLoads + NumStores;
121 for (
auto [Ptr, NumCalleeUses] : Ptr2NumUses)
122 if (NumCalleeUses > 10) {
123 unsigned CallerStores = 0, CallerLoads = 0;
125 if (CallerStores + CallerLoads > 10) {
132 unsigned NumStores = 0;
133 unsigned NumLoads = 0;
141 Bonus += NumLoads * 50;
143 Bonus += NumStores * 50;
144 Bonus = std::min(Bonus,
unsigned(1000));
147 dbgs() <<
"++ SZTTI Adding inlining bonus: " << Bonus <<
"\n";);
154 assert(Ty->isIntegerTy());
156 unsigned BitSize = Ty->getPrimitiveSizeInBits();
162 if ((!ST->hasVector() && BitSize > 64) || BitSize > 128)
168 if (Imm.getBitWidth() <= 64) {
176 if ((Imm.getZExtValue() & 0xffffffff) == 0)
190 assert(Ty->isIntegerTy());
192 unsigned BitSize = Ty->getPrimitiveSizeInBits();
204 case Instruction::GetElementPtr:
211 case Instruction::Store:
212 if (Idx == 0 && Imm.getBitWidth() <= 64) {
221 case Instruction::ICmp:
222 if (Idx == 1 && Imm.getBitWidth() <= 64) {
231 case Instruction::Add:
232 case Instruction::Sub:
233 if (Idx == 1 && Imm.getBitWidth() <= 64) {
242 case Instruction::Mul:
243 if (Idx == 1 && Imm.getBitWidth() <= 64) {
249 case Instruction::Or:
250 case Instruction::Xor:
251 if (Idx == 1 && Imm.getBitWidth() <= 64) {
256 if ((Imm.getZExtValue() & 0xffffffff) == 0)
260 case Instruction::And:
261 if (Idx == 1 && Imm.getBitWidth() <= 64) {
269 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
274 if (
TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
278 case Instruction::Shl:
279 case Instruction::LShr:
280 case Instruction::AShr:
285 case Instruction::UDiv:
286 case Instruction::SDiv:
287 case Instruction::URem:
288 case Instruction::SRem:
289 case Instruction::Trunc:
290 case Instruction::ZExt:
291 case Instruction::SExt:
292 case Instruction::IntToPtr:
293 case Instruction::PtrToInt:
294 case Instruction::BitCast:
295 case Instruction::PHI:
296 case Instruction::Call:
297 case Instruction::Select:
298 case Instruction::Ret:
299 case Instruction::Load:
310 assert(Ty->isIntegerTy());
312 unsigned BitSize = Ty->getPrimitiveSizeInBits();
324 case Intrinsic::sadd_with_overflow:
325 case Intrinsic::uadd_with_overflow:
326 case Intrinsic::ssub_with_overflow:
327 case Intrinsic::usub_with_overflow:
329 if (Idx == 1 && Imm.getBitWidth() <= 64) {
336 case Intrinsic::smul_with_overflow:
337 case Intrinsic::umul_with_overflow:
339 if (Idx == 1 && Imm.getBitWidth() <= 64) {
344 case Intrinsic::experimental_stackmap:
345 if ((Idx < 2) || (Imm.getBitWidth() <= 64 &&
isInt<64>(Imm.getSExtValue())))
348 case Intrinsic::experimental_patchpoint_void:
349 case Intrinsic::experimental_patchpoint:
350 if ((Idx < 4) || (Imm.getBitWidth() <= 64 &&
isInt<64>(Imm.getSExtValue())))
360 if (ST->hasPopulationCount() && TyWidth <= 64)
370 bool HasCall =
false;
372 for (
auto &BB : L->blocks())
373 for (
auto &
I : *BB) {
378 if (
F->getIntrinsicID() == Intrinsic::memcpy ||
379 F->getIntrinsicID() == Intrinsic::memset)
386 Type *MemAccessTy =
I.getOperand(0)->getType();
395 unsigned const NumStoresVal = NumStores.
getValue();
396 unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX);
440 bool Vector = (ClassID == 1);
465 unsigned NumStridedMemAccesses,
466 unsigned NumPrefetches,
467 bool HasCall)
const {
469 if (NumPrefetches > 16)
474 if (NumStridedMemAccesses > 32 && !HasCall &&
475 (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses)
478 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
482 EVT VT = TLI->getValueType(
DL, DataType);
501 if (Insert && Ty->isIntOrIntVectorTy(64)) {
505 "Type does not match the number of values.");
507 for (
unsigned Idx = 0; Idx < NumElts; ++Idx) {
527 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
528 assert(
Size > 0 &&
"Element must have non-zero size.");
538 assert(WideBits > 0 &&
"Could not compute size of vector");
539 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
550 Op2Info, Args, CxtI);
558 unsigned ScalarBits = Ty->getScalarSizeInBits();
564 const unsigned DivInstrCost = 20;
565 const unsigned DivMulSeqCost = 10;
566 const unsigned SDivPow2Cost = 4;
569 Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
570 bool UnsignedDivRem =
571 Opcode == Instruction::UDiv || Opcode == Instruction::URem;
574 bool DivRemConst =
false;
575 bool DivRemConstPow2 =
false;
576 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
579 (
C->getType()->isVectorTy()
584 DivRemConstPow2 =
true;
590 if (!Ty->isVectorTy()) {
594 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
595 Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
599 if (Opcode == Instruction::FRem)
603 if (Args.size() == 2) {
604 if (Opcode == Instruction::Xor) {
605 for (
const Value *
A : Args) {
607 if (
I->hasOneUse() &&
608 (
I->getOpcode() == Instruction::Or ||
609 I->getOpcode() == Instruction::And ||
610 I->getOpcode() == Instruction::Xor))
611 if ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
613 (
I->getOpcode() == Instruction::Or || ST->hasVectorEnhancements1())))
617 else if (Opcode == Instruction::And || Opcode == Instruction::Or) {
618 for (
const Value *
A : Args) {
620 if ((
I->hasOneUse() &&
I->getOpcode() == Instruction::Xor) &&
621 ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
623 (Opcode == Instruction::And || ST->hasVectorEnhancements1()))))
630 if (Opcode == Instruction::Or)
633 if (Opcode == Instruction::Xor && ScalarBits == 1) {
634 if (ST->hasLoadStoreOnCond2())
640 return (SignedDivRem ? SDivPow2Cost : 1);
642 return DivMulSeqCost;
643 if (SignedDivRem || UnsignedDivRem)
646 else if (ST->hasVector()) {
648 unsigned VF = VTy->getNumElements();
653 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
654 Opcode == Instruction::AShr) {
659 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
662 return VF * DivMulSeqCost +
665 if (SignedDivRem || UnsignedDivRem) {
666 if (ST->hasVectorEnhancements3() && ScalarBits >= 32)
667 return NumVectors * DivInstrCost;
680 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
681 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
682 switch (ScalarBits) {
685 if (ST->hasVectorEnhancements1())
710 if (Opcode == Instruction::FRem) {
713 (VF * LIBCALL_COST) +
716 if (VF == 2 && ScalarBits == 32)
734 if (ST->hasVector()) {
742 if (SrcTy->getScalarType()->isFP128Ty())
750 return (Index == 0 ? 0 : NumVectors);
757 return NumVectors - 1;
784 assert(SrcTy->getPrimitiveSizeInBits().getFixedValue() >
786 "Packing must reduce size of vector type.");
789 "Packing should not change number of elements.");
805 for (
unsigned P = 0;
P < Log2Diff; ++
P) {
814 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
826 "Should only be called with vector types.");
828 unsigned PackCost = 0;
829 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
832 if (SrcScalarBits > DstScalarBits)
835 else if (SrcScalarBits < DstScalarBits) {
838 PackCost = Log2Diff * DstNumParts;
840 PackCost += DstNumParts - 1;
849 Type *OpTy =
nullptr;
851 OpTy = CI->getOperand(0)->getType();
853 if (LogicI->getNumOperands() == 2)
856 OpTy = CI0->getOperand(0)->getType();
858 if (OpTy !=
nullptr) {
878 unsigned VF = DstVTy->getNumElements();
883 if (CmpOpTy !=
nullptr)
885 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
899 return BaseCost == 0 ? BaseCost : 1;
902 unsigned DstScalarBits = Dst->getScalarSizeInBits();
903 unsigned SrcScalarBits = Src->getScalarSizeInBits();
905 if (!Src->isVectorTy()) {
906 if (Dst->isVectorTy())
909 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
910 if (Src->isIntegerTy(128))
912 if (SrcScalarBits >= 32 ||
915 return SrcScalarBits > 1 ? 2 : 5 ;
918 if ((Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) &&
919 Dst->isIntegerTy(128))
922 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt)) {
923 if (Src->isIntegerTy(1)) {
924 if (DstScalarBits == 128) {
925 if (Opcode == Instruction::SExt && ST->hasVectorEnhancements3())
930 if (ST->hasLoadStoreOnCond2())
936 if (Opcode == Instruction::SExt)
937 Cost = (DstScalarBits < 64 ? 3 : 4);
938 if (Opcode == Instruction::ZExt)
946 else if (isInt128InVR(Dst)) {
949 if (Opcode == Instruction::ZExt &&
I !=
nullptr)
957 if (Opcode == Instruction::Trunc && isInt128InVR(Src) &&
I !=
nullptr) {
961 bool OnlyTruncatingStores =
true;
962 for (
const User *U :
I->users())
964 OnlyTruncatingStores =
false;
967 if (OnlyTruncatingStores)
972 else if (ST->hasVector()) {
980 unsigned VF = SrcVecTy->getNumElements();
984 if (Opcode == Instruction::Trunc) {
985 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
990 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
991 if (SrcScalarBits >= 8) {
993 if (Opcode == Instruction::ZExt)
994 return NumDstVectors;
1001 unsigned NumSrcVectorOps =
1002 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
1003 : (NumDstVectors / 2));
1005 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
1007 else if (SrcScalarBits == 1)
1011 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
1012 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
1017 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
1018 if (SrcScalarBits == DstScalarBits)
1019 return NumDstVectors;
1021 if (SrcScalarBits == 1)
1029 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH,
CostKind);
1031 bool NeedsInserts =
true, NeedsExtracts =
true;
1033 if (DstScalarBits == 128 &&
1034 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
1035 NeedsInserts =
false;
1036 if (SrcScalarBits == 128 &&
1037 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
1038 NeedsExtracts =
false;
1046 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
1052 if (Opcode == Instruction::FPTrunc) {
1053 if (SrcScalarBits == 128)
1058 return VF / 2 + std::max(1U, VF / 4 );
1061 if (Opcode == Instruction::FPExt) {
1062 if (SrcScalarBits == 32 && DstScalarBits == 64) {
1080 unsigned ExtCost = 0;
1097 if (!ValTy->isVectorTy()) {
1099 case Instruction::ICmp: {
1102 unsigned ScalarBits = ValTy->getScalarSizeInBits();
1103 if (
I !=
nullptr && (ScalarBits == 32 || ScalarBits == 64))
1106 if (!Ld->hasOneUse() && Ld->getParent() ==
I->getParent() &&
1111 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
1115 case Instruction::Select:
1116 if (ValTy->isFloatingPointTy())
1123 if (CI->getOperand(0)->getType()->isIntegerTy(128))
1124 return ST->hasVectorEnhancements3() ? 1 : 4;
1127 return !isInt128InVR(ValTy) ? 1 : 4;
1130 else if (ST->hasVector()) {
1134 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
1135 unsigned PredicateExtraCost = 0;
1144 PredicateExtraCost = 1;
1150 PredicateExtraCost = 2;
1159 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
1162 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
1166 assert (Opcode == Instruction::Select);
1170 unsigned PackCost = 0;
1172 if (CmpOpTy !=
nullptr)
1187 if (Opcode == Instruction::InsertElement) {
1196 return ((Index % 2 == 0) ? 1 : 0);
1199 if (Opcode == Instruction::ExtractElement) {
1220 unsigned TruncBits = 0;
1221 unsigned SExtBits = 0;
1222 unsigned ZExtBits = 0;
1226 TruncBits = UserBits;
1228 SExtBits = UserBits;
1230 ZExtBits = UserBits;
1232 if (TruncBits || SExtBits || ZExtBits) {
1233 FoldedValue = UserI;
1237 if ((UserI->
getOpcode() == Instruction::Sub ||
1238 UserI->
getOpcode() == Instruction::SDiv ||
1239 UserI->
getOpcode() == Instruction::UDiv) &&
1244 unsigned LoadOrTruncBits =
1245 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
1247 case Instruction::Add:
1248 case Instruction::Sub:
1249 case Instruction::ICmp:
1250 if (LoadedBits == 32 && ZExtBits == 64)
1253 case Instruction::Mul:
1254 if (UserI->
getOpcode() != Instruction::ICmp) {
1255 if (LoadedBits == 16 &&
1257 (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
1259 if (LoadOrTruncBits == 16)
1263 case Instruction::SDiv:
1264 if (LoadedBits == 32 && SExtBits == 64)
1267 case Instruction::UDiv:
1268 case Instruction::And:
1269 case Instruction::Or:
1270 case Instruction::Xor:
1282 if (UserI->
getOpcode() == Instruction::ICmp)
1284 if (CI->getValue().isIntN(16))
1286 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
1295 if (
auto *
F = CI->getCalledFunction())
1296 if (
F->getIntrinsicID() == Intrinsic::bswap)
1307 assert(!Src->isVoidTy() &&
"Invalid type");
1313 if (!Src->isVectorTy() && Opcode == Instruction::Load &&
I !=
nullptr) {
1322 for (
unsigned i = 0; i < 2; ++i) {
1342 if (TLI->getValueType(
DL, Src,
true) == MVT::Other)
1347 if (Src->isFP128Ty() && !ST->hasVectorEnhancements1())
1354 if (((!Src->isVectorTy() &&
NumOps == 1) || ST->hasVectorEnhancements2()) &&
1356 if (Opcode == Instruction::Load &&
I->hasOneUse()) {
1364 const Value *StoredVal =
SI->getValueOperand();
1381 bool UseMaskForCond,
bool UseMaskForGaps)
const {
1382 if (UseMaskForCond || UseMaskForGaps)
1385 UseMaskForCond, UseMaskForGaps);
1387 "Expect a vector type for interleaved memory op");
1390 assert(Factor > 1 && NumElts % Factor == 0 &&
"Invalid interleave factor");
1391 unsigned VF = NumElts / Factor;
1394 unsigned NumPermutes = 0;
1396 if (Opcode == Instruction::Load) {
1400 BitVector UsedInsts(NumVectorMemOps,
false);
1401 std::vector<BitVector> ValueVecs(Factor,
BitVector(NumVectorMemOps,
false));
1402 for (
unsigned Index : Indices)
1403 for (
unsigned Elt = 0; Elt < VF; ++Elt) {
1404 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1406 ValueVecs[Index].set(Vec);
1408 NumVectorMemOps = UsedInsts.
count();
1410 for (
unsigned Index : Indices) {
1414 unsigned NumSrcVecs = ValueVecs[Index].count();
1416 assert (NumSrcVecs >= NumDstVecs &&
"Expected at least as many sources");
1417 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1423 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1424 unsigned NumDstVecs = NumVectorMemOps;
1425 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1429 return NumVectorMemOps + NumPermutes;
1437 Cost += (ScalarBits < 32) ? 3 : 2;
1442 unsigned ScalarBits) {
1449 Cost += 2 *
Log2_32_Ceil(std::min(NumElems, NumEltsPerVecReg));
1454 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
1455 Opcode == Instruction::Add || Opcode == Instruction::Mul;
1460 std::optional<FastMathFlags> FMF,
1462 unsigned ScalarBits = Ty->getScalarSizeInBits();
1471 if (Opcode == Instruction::Add)
1477 if ((Opcode == Instruction::FAdd) || (Opcode == Instruction::FMul))
1490 if (ST->hasVectorEnhancements1()) {
1493 unsigned ScalarBits = Ty->getScalarSizeInBits();
1496 Cost += NumVectors - 1;
1527 if (!ST->hasVector())
1531 switch (
II->getIntrinsicID()) {
1535 case Intrinsic::vector_reduce_add:
1540 return VType->getScalarSizeInBits() >= 64 ||
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Expand Atomic instructions
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static unsigned InstrCount
const HexagonInstrInfo * TII
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
static const Function * getCalledFunction(const Value *V)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static unsigned getNumElements(Type *Ty)
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
unsigned getNumberOfParts(Type *Tp) const override
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *SrcTy, int &Index, VectorType *&SubTy) const
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}, TTI::VectorInstrContext VIC=TTI::VectorInstrContext::None) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1, TTI::VectorInstrContext VIC=TTI::VectorInstrContext::None) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
size_type count() const
count - Returns the number of bits which are set.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
This is the shared class of boolean and integer constants.
const APInt & getValue() const
Return the constant as an APInt value reference.
This is an important base class in LLVM.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent fixed width SIMD vectors.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
This instruction compares its operands according to the predicate given to the constructor.
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
const SmallVectorImpl< Type * > & getArgTypes() const
Type * getReturnType() const
Intrinsic::ID getID() const
A wrapper class for inspecting calls to intrinsic functions.
An instruction for reading from memory.
Represents a single loop in the control flow graph.
This class wraps the llvm.memcpy intrinsic.
The main scalar evolution driver.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}, TTI::VectorInstrContext VIC=TTI::VectorInstrContext::None) const override
Estimate the overhead of scalarizing an instruction.
bool isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) const
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
unsigned getNumberOfRegisters(unsigned ClassID) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1, TTI::VectorInstrContext VIC=TTI::VectorInstrContext::None) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
unsigned getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) const
unsigned getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, const Instruction *I) const
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const override
bool shouldExpandReduction(const IntrinsicInst *II) const override
TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
bool hasDivRemOp(Type *DataType, bool IsSigned) const override
unsigned getVectorTruncCost(Type *SrcTy, Type *DstTy) const
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
unsigned adjustInliningThreshold(const CallBase *CB) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator user_begin()
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
Base class of all SIMD vector types.
constexpr ScalarTy getFixedValue() const
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
const unsigned VectorBits
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto dyn_cast_or_null(const Y &Val)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
This struct is a compact representation of a valid (non-zero power of two) alignment.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.