23#define DEBUG_TYPE "vplan"
27 if (const auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(
28 &LoopRegion->getEntryBasicBlock()->front())) {
29 CanonicalIVTy = CanIV->getScalarType();
36 auto *TC = Plan.getTripCount();
38 CanonicalIVTy = TC->getLiveInIRValue()->getType();
46 for (
unsigned I = 1,
E = R->getNumIncomingValues();
I !=
E; ++
I) {
47 VPValue *Inc = R->getIncomingValue(
I);
49 "different types inferred for different incoming values");
50 CachedTypes[Inc] = ResTy;
58 auto SetResultTyFromOp = [
this,
R]() {
60 for (
unsigned Op = 1;
Op !=
R->getNumOperands(); ++
Op) {
61 VPValue *OtherV =
R->getOperand(
Op);
63 "different types inferred for different operands");
64 CachedTypes[OtherV] = ResTy;
69 unsigned Opcode =
R->getOpcode();
71 return SetResultTyFromOp();
74 case Instruction::ExtractElement:
75 case Instruction::Freeze:
79 case Instruction::Select: {
81 VPValue *OtherV =
R->getOperand(2);
83 "different types inferred for different operands");
84 CachedTypes[OtherV] = ResTy;
87 case Instruction::ICmp:
88 case Instruction::FCmp:
92 "different types inferred for different operands");
102 case Instruction::PHI:
113 return SetResultTyFromOp();
122 return VecTy->getElementType();
128 "LogicalAnd operands should be bool");
143 dbgs() <<
"LV: Found unhandled opcode for: ";
144 R->getVPSingleValue()->dump();
150 unsigned Opcode =
R->getOpcode();
155 "types for both operands must match for binary op");
156 CachedTypes[
R->getOperand(1)] = ResTy;
161 case Instruction::ICmp:
162 case Instruction::FCmp:
164 case Instruction::FNeg:
165 case Instruction::Freeze:
167 case Instruction::ExtractValue: {
168 assert(
R->getNumOperands() == 2 &&
"expected single level extractvalue");
171 return StructTy->getTypeAtIndex(CI->getZExtValue());
179 dbgs() <<
"LV: Found unhandled opcode for: ";
180 R->getVPSingleValue()->dump();
192 "Store recipes should not define any values");
198 VPValue *OtherV =
R->getOperand(2);
200 "different types inferred for different operands");
201 CachedTypes[OtherV] = ResTy;
206 unsigned Opcode =
R->getUnderlyingInstr()->getOpcode();
212 "inferred types for operands of binary op don't match");
213 CachedTypes[
R->getOperand(1)] = ResTy;
218 return R->getUnderlyingInstr()->getType();
221 case Instruction::Call: {
222 unsigned CallIdx =
R->getNumOperands() - (
R->isPredicated() ? 2 : 1);
226 case Instruction::Select: {
229 "inferred types for operands of select op don't match");
230 CachedTypes[
R->getOperand(2)] = ResTy;
233 case Instruction::ICmp:
234 case Instruction::FCmp:
236 case Instruction::Alloca:
237 case Instruction::ExtractValue:
238 return R->getUnderlyingInstr()->getType();
239 case Instruction::Freeze:
240 case Instruction::FNeg:
241 case Instruction::GetElementPtr:
243 case Instruction::Load:
245 case Instruction::Store:
255 dbgs() <<
"LV: Found unhandled opcode for: ";
256 R->getVPSingleValue()->dump();
262 if (
Type *CachedTy = CachedTypes.lookup(V))
266 if (
auto *IRValue = V->getLiveInIRValue())
267 return IRValue->getType();
270 return CanonicalIVTy;
278 [
this](
const auto *R) {
285 .Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
286 [](
const auto *R) {
return R->getScalarType(); })
296 [](
const auto *R) {
return R->getResultType(); })
299 [
this](
const auto *R) {
return inferScalarTypeForRecipe(R); })
300 .Case<VPInterleaveBase>([V](
const auto *R) {
302 return V->getUnderlyingValue()->getType();
305 return R->getSCEV()->getType();
307 .Case<VPReductionRecipe>([
this](
const auto *R) {
310 .Case<VPExpressionRecipe>([
this](
const auto *R) {
314 assert(ResultTy &&
"could not infer type for the given VPValue");
315 CachedTypes[V] = ResultTy;
327 if (!RepR || !
match(RepR->getUnderlyingInstr(),
338 while (!Worklist.
empty()) {
341 auto *OpR =
Op->getDefiningRecipe();
342 if (!OpR || OpR->mayHaveSideEffects() || EphRecipes.
contains(OpR))
345 auto *UR = dyn_cast<VPRecipeBase>(U);
346 return !UR || !EphRecipes.contains(UR);
364 for (
auto &R : *
A->getParent()) {
374 if (ParentA == ParentB)
375 return LocalComesBefore(
A,
B);
382 Region->getNumPredecessors() == 1 &&
"Expected SESE region!");
383 assert(R->getParent()->size() == 1 &&
384 "A recipe in an original replicator region must be the only "
385 "recipe in its block");
391 "No replicate regions expected at this point");
393 "No replicate regions expected at this point");
402 return RR->getVFScaleFactor();
404 return RR->getVFScaleFactor();
408 "getting scaling factor of reduction-start-vector not implemented yet");
413 unsigned OverrideMaxNumRegs)
const {
415 return LU.second > (OverrideMaxNumRegs > 0
417 :
TTI.getNumberOfRegisters(LU.first));
450 if (!VPBB->getParent())
456 for (
VPValue *U : R.operands()) {
457 auto *DefR = U->getDefiningRecipe();
463 if (!DefR && (!U->getLiveInIRValue() ||
474 EndPoint[U] = Idx2Recipe.
size();
483 EndPoint[WideIV] = Idx2Recipe.
size();
503 LLVM_DEBUG(
dbgs() <<
"LV(REG): Calculating max register usage:\n");
507 const auto &TTICapture =
TTI;
511 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
520 for (
unsigned int Idx = 0, Sz = Idx2Recipe.
size(); Idx < Sz; ++Idx) {
524 VPValueList &
List = TransposeEnds[Idx];
530 if (
none_of(R->definedValues(),
531 [&Ends](
VPValue *Def) { return Ends.count(Def); }) &&
532 !R->mayHaveSideEffects())
544 for (
unsigned J = 0, E = VFs.
size(); J < E; ++J) {
552 for (
auto *VPV : OpenIntervals) {
560 if (VFs[J].isScalar() ||
575 ElementCount VF = VFs[J].divideCoefficientBy(ScaleFactor);
577 dbgs() <<
"LV(REG): Scaled down VF from " << VFs[J] <<
" to " << VF
578 <<
" for " << *R <<
"\n";
582 unsigned ClassID =
TTI.getRegisterClassForType(
true, ScalarTy);
583 RegUsage[ClassID] += GetRegUsage(ScalarTy, VF);
588 auto &Entry = MaxUsages[J][Pair.first];
589 Entry = std::max(Entry, Pair.second);
594 << OpenIntervals.
size() <<
'\n');
598 for (
VPValue *DefV : R->definedValues())
600 OpenIntervals.
insert(DefV);
608 for (
unsigned Idx = 0, End = VFs.
size(); Idx < End; ++Idx) {
614 for (
auto *In : LoopInvariants) {
620 unsigned ClassID =
TTI.getRegisterClassForType(
626 dbgs() <<
"LV(REG): VF = " << VFs[Idx] <<
'\n';
627 dbgs() <<
"LV(REG): Found max usage: " << MaxUsages[Idx].
size()
629 for (
const auto &pair : MaxUsages[Idx]) {
630 dbgs() <<
"LV(REG): RegisterClass: "
631 <<
TTI.getRegisterClassName(pair.first) <<
", " << pair.second
634 dbgs() <<
"LV(REG): Found invariant usage: " << Invariant.
size()
636 for (
const auto &pair : Invariant) {
637 dbgs() <<
"LV(REG): RegisterClass: "
638 <<
TTI.getRegisterClassName(pair.first) <<
", " << pair.second
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
ReachingDefInfo InstSet & ToRemove
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
std::pair< uint64_t, uint64_t > Interval
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
static unsigned getVFScaleFactor(VPValue *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Implements a dense probed hash-table based set.
Core dominator tree base class.
bool properlyDominates(const DomTreeNodeBase< VPBlockBase > *A, const DomTreeNodeBase< VPBlockBase > *B) const
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getFixed(ScalarTy MinVal)
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBasicBlock * getEntryBasicBlock() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
A recipe for generating conditional branches on the bits of a mask.
Canonical scalar induction phi of the vector loop.
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Recipe to expand a SCEV expression.
A specialization of VPInstruction augmenting it with a dedicated result type, to be used when the opc...
This is a concrete Recipe that models a single VPlan-level instruction.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
A recipe for forming partial reductions.
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
A recipe for handling reduction phis.
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
const VPBlockBase * getExiting() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
VPTypeAnalysis(const VPlan &Plan)
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
A recipe to compute the pointers for widened memory accesses of IndexTy.
A recipe for widening Call instructions using library calls.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
VPValue & getVectorTripCount()
The vector trip count.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void Calculate(DomTreeT &DT)
bool match(Val *V, const Pattern &P)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
A MapVector that performs no allocations if smaller than a certain size.
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
bool exceedsMaxNumRegs(const TargetTransformInfo &TTI, unsigned OverrideMaxNumRegs=0) const
Check if any of the tracked live intervals exceeds the number of available registers for the target.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
A recipe for widening select instructions.