LLVM 22.0.0git
VPlanAnalysis.cpp
Go to the documentation of this file.
1//===- VPlanAnalysis.cpp - Various Analyses working on VPlan ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "VPlanAnalysis.h"
10#include "VPlan.h"
11#include "VPlanCFG.h"
12#include "VPlanDominatorTree.h"
13#include "VPlanHelpers.h"
14#include "VPlanPatternMatch.h"
16#include "llvm/ADT/TypeSwitch.h"
19#include "llvm/IR/Instruction.h"
21
22using namespace llvm;
23using namespace VPlanPatternMatch;
24
25#define DEBUG_TYPE "vplan"
26
28 if (auto LoopRegion = Plan.getVectorLoopRegion()) {
29 if (const auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(
30 &LoopRegion->getEntryBasicBlock()->front())) {
31 CanonicalIVTy = CanIV->getScalarType();
32 return;
33 }
34 }
35
36 // If there's no canonical IV, retrieve the type from the trip count
37 // expression.
38 auto *TC = Plan.getTripCount();
39 if (auto *TCIRV = dyn_cast<VPIRValue>(TC)) {
40 CanonicalIVTy = TCIRV->getType();
41 return;
42 }
43 CanonicalIVTy = cast<VPExpandSCEVRecipe>(TC)->getSCEV()->getType();
44}
45
46Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPBlendRecipe *R) {
47 Type *ResTy = inferScalarType(R->getIncomingValue(0));
48 for (unsigned I = 1, E = R->getNumIncomingValues(); I != E; ++I) {
49 VPValue *Inc = R->getIncomingValue(I);
50 assert(inferScalarType(Inc) == ResTy &&
51 "different types inferred for different incoming values");
52 CachedTypes[Inc] = ResTy;
53 }
54 return ResTy;
55}
56
57Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPInstruction *R) {
58 // Set the result type from the first operand, check if the types for all
59 // other operands match and cache them.
60 auto SetResultTyFromOp = [this, R]() {
61 Type *ResTy = inferScalarType(R->getOperand(0));
62 for (unsigned Op = 1; Op != R->getNumOperands(); ++Op) {
63 VPValue *OtherV = R->getOperand(Op);
64 assert(inferScalarType(OtherV) == ResTy &&
65 "different types inferred for different operands");
66 CachedTypes[OtherV] = ResTy;
67 }
68 return ResTy;
69 };
70
71 unsigned Opcode = R->getOpcode();
73 return SetResultTyFromOp();
74
75 switch (Opcode) {
76 case Instruction::ExtractElement:
77 case Instruction::Freeze:
78 case Instruction::PHI:
90 return inferScalarType(R->getOperand(0));
91 case Instruction::Select: {
92 Type *ResTy = inferScalarType(R->getOperand(1));
93 VPValue *OtherV = R->getOperand(2);
94 assert(inferScalarType(OtherV) == ResTy &&
95 "different types inferred for different operands");
96 CachedTypes[OtherV] = ResTy;
97 return ResTy;
98 }
99 case Instruction::ICmp:
100 case Instruction::FCmp:
102 assert(inferScalarType(R->getOperand(0)) ==
103 inferScalarType(R->getOperand(1)) &&
104 "different types inferred for different operands");
105 return IntegerType::get(Ctx, 1);
107 return inferScalarType(R->getOperand(1));
109 return Type::getIntNTy(Ctx, 32);
118 return SetResultTyFromOp();
120 return inferScalarType(R->getOperand(1));
123 return Type::getIntNTy(Ctx, 64);
125 assert(inferScalarType(R->getOperand(0))->isIntegerTy(1) &&
126 inferScalarType(R->getOperand(1))->isIntegerTy(1) &&
127 "LogicalAnd operands should be bool");
128 return IntegerType::get(Ctx, 1);
132 return Type::getVoidTy(Ctx);
133 default:
134 break;
135 }
136 // Type inference not implemented for opcode.
137 LLVM_DEBUG({
138 dbgs() << "LV: Found unhandled opcode for: ";
139 R->getVPSingleValue()->dump();
140 });
141 llvm_unreachable("Unhandled opcode!");
142}
143
144Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenRecipe *R) {
145 unsigned Opcode = R->getOpcode();
146 if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
148 Type *ResTy = inferScalarType(R->getOperand(0));
149 assert(ResTy == inferScalarType(R->getOperand(1)) &&
150 "types for both operands must match for binary op");
151 CachedTypes[R->getOperand(1)] = ResTy;
152 return ResTy;
153 }
154
155 switch (Opcode) {
156 case Instruction::ICmp:
157 case Instruction::FCmp:
158 return IntegerType::get(Ctx, 1);
159 case Instruction::FNeg:
160 case Instruction::Freeze:
161 return inferScalarType(R->getOperand(0));
162 case Instruction::ExtractValue: {
163 assert(R->getNumOperands() == 2 && "expected single level extractvalue");
164 auto *StructTy = cast<StructType>(inferScalarType(R->getOperand(0)));
165 auto *CI = cast<ConstantInt>(R->getOperand(1)->getLiveInIRValue());
166 return StructTy->getTypeAtIndex(CI->getZExtValue());
167 }
168 case Instruction::Select:
169 return inferScalarType(R->getOperand(1));
170 default:
171 break;
172 }
173
174 // Type inference not implemented for opcode.
175 LLVM_DEBUG({
176 dbgs() << "LV: Found unhandled opcode for: ";
177 R->getVPSingleValue()->dump();
178 });
179 llvm_unreachable("Unhandled opcode!");
180}
181
182Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenCallRecipe *R) {
183 auto &CI = *cast<CallInst>(R->getUnderlyingInstr());
184 return CI.getType();
185}
186
187Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenMemoryRecipe *R) {
189 "Store recipes should not define any values");
190 return cast<LoadInst>(&R->getIngredient())->getType();
191}
192
193Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPReplicateRecipe *R) {
194 unsigned Opcode = R->getUnderlyingInstr()->getOpcode();
195
196 if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
198 Type *ResTy = inferScalarType(R->getOperand(0));
199 assert(ResTy == inferScalarType(R->getOperand(1)) &&
200 "inferred types for operands of binary op don't match");
201 CachedTypes[R->getOperand(1)] = ResTy;
202 return ResTy;
203 }
204
205 if (Instruction::isCast(Opcode))
206 return R->getUnderlyingInstr()->getType();
207
208 switch (Opcode) {
209 case Instruction::Call: {
210 unsigned CallIdx = R->getNumOperands() - (R->isPredicated() ? 2 : 1);
211 return cast<Function>(R->getOperand(CallIdx)->getLiveInIRValue())
212 ->getReturnType();
213 }
214 case Instruction::Select: {
215 Type *ResTy = inferScalarType(R->getOperand(1));
216 assert(ResTy == inferScalarType(R->getOperand(2)) &&
217 "inferred types for operands of select op don't match");
218 CachedTypes[R->getOperand(2)] = ResTy;
219 return ResTy;
220 }
221 case Instruction::ICmp:
222 case Instruction::FCmp:
223 return IntegerType::get(Ctx, 1);
224 case Instruction::Alloca:
225 case Instruction::ExtractValue:
226 return R->getUnderlyingInstr()->getType();
227 case Instruction::Freeze:
228 case Instruction::FNeg:
229 case Instruction::GetElementPtr:
230 return inferScalarType(R->getOperand(0));
231 case Instruction::Load:
232 return cast<LoadInst>(R->getUnderlyingInstr())->getType();
233 case Instruction::Store:
234 // FIXME: VPReplicateRecipes with store opcodes still define a result
235 // VPValue, so we need to handle them here. Remove the code here once this
236 // is modeled accurately in VPlan.
237 return Type::getVoidTy(Ctx);
238 default:
239 break;
240 }
241 // Type inference not implemented for opcode.
242 LLVM_DEBUG({
243 dbgs() << "LV: Found unhandled opcode for: ";
244 R->getVPSingleValue()->dump();
245 });
246 llvm_unreachable("Unhandled opcode");
247}
248
250 if (Type *CachedTy = CachedTypes.lookup(V))
251 return CachedTy;
252
253 if (auto *IRV = dyn_cast<VPIRValue>(V))
254 return IRV->getType();
255
256 if (isa<VPSymbolicValue>(V)) {
257 // All VPValues without any underlying IR value (like the vector trip count
258 // or the backedge-taken count) have the same type as the canonical IV.
259 return CanonicalIVTy;
260 }
261
262 Type *ResultTy =
263 TypeSwitch<const VPRecipeBase *, Type *>(V->getDefiningRecipe())
267 [this](const auto *R) {
268 // Handle header phi recipes, except VPWidenIntOrFpInduction
269 // which needs special handling due it being possibly truncated.
270 // TODO: consider inferring/caching type of siblings, e.g.,
271 // backedge value, here and in cases below.
272 return inferScalarType(R->getStartValue());
273 })
274 .Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
275 [](const auto *R) { return R->getScalarType(); })
279 [this](const VPRecipeBase *R) {
280 return inferScalarType(R->getOperand(0));
281 })
282 // VPInstructionWithType must be handled before VPInstruction.
285 [](const auto *R) { return R->getResultType(); })
288 [this](const auto *R) { return inferScalarTypeForRecipe(R); })
289 .Case<VPInterleaveBase>([V](const auto *R) {
290 // TODO: Use info from interleave group.
291 return V->getUnderlyingValue()->getType();
292 })
293 .Case<VPExpandSCEVRecipe>([](const VPExpandSCEVRecipe *R) {
294 return R->getSCEV()->getType();
295 })
296 .Case<VPReductionRecipe>([this](const auto *R) {
297 return inferScalarType(R->getChainOp());
298 })
299 .Case<VPExpressionRecipe>([this](const auto *R) {
300 return inferScalarType(R->getOperandOfResultType());
301 });
302
303 assert(ResultTy && "could not infer type for the given VPValue");
304 CachedTypes[V] = ResultTy;
305 return ResultTy;
306}
307
309 VPlan &Plan, DenseSet<VPRecipeBase *> &EphRecipes) {
310 // First, collect seed recipes which are operands of assumes.
314 for (VPRecipeBase &R : *VPBB) {
315 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
316 if (!RepR || !match(RepR, m_Intrinsic<Intrinsic::assume>()))
317 continue;
318 Worklist.push_back(RepR);
319 EphRecipes.insert(RepR);
320 }
321 }
322
323 // Process operands of candidates in worklist and add them to the set of
324 // ephemeral recipes, if they don't have side-effects and are only used by
325 // other ephemeral recipes.
326 while (!Worklist.empty()) {
327 VPRecipeBase *Cur = Worklist.pop_back_val();
328 for (VPValue *Op : Cur->operands()) {
329 auto *OpR = Op->getDefiningRecipe();
330 if (!OpR || OpR->mayHaveSideEffects() || EphRecipes.contains(OpR))
331 continue;
332 if (any_of(Op->users(), [EphRecipes](VPUser *U) {
333 auto *UR = dyn_cast<VPRecipeBase>(U);
334 return !UR || !EphRecipes.contains(UR);
335 }))
336 continue;
337 EphRecipes.insert(OpR);
338 Worklist.push_back(OpR);
339 }
340 }
341}
342
345
347 const VPRecipeBase *B) {
348 if (A == B)
349 return false;
350
351 auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
352 for (auto &R : *A->getParent()) {
353 if (&R == A)
354 return true;
355 if (&R == B)
356 return false;
357 }
358 llvm_unreachable("recipe not found");
359 };
360 const VPBlockBase *ParentA = A->getParent();
361 const VPBlockBase *ParentB = B->getParent();
362 if (ParentA == ParentB)
363 return LocalComesBefore(A, B);
364
365#ifndef NDEBUG
366 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
367 VPRegionBlock *Region = R->getRegion();
368 if (Region && Region->isReplicator()) {
369 assert(Region->getNumSuccessors() == 1 &&
370 Region->getNumPredecessors() == 1 && "Expected SESE region!");
371 assert(R->getParent()->size() == 1 &&
372 "A recipe in an original replicator region must be the only "
373 "recipe in its block");
374 return Region;
375 }
376 return nullptr;
377 };
378 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
379 "No replicate regions expected at this point");
380 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
381 "No replicate regions expected at this point");
382#endif
383 return Base::properlyDominates(ParentA, ParentB);
384}
385
387 unsigned OverrideMaxNumRegs) const {
388 return any_of(MaxLocalUsers, [&TTI, &OverrideMaxNumRegs](auto &LU) {
389 return LU.second > (OverrideMaxNumRegs > 0
390 ? OverrideMaxNumRegs
391 : TTI.getNumberOfRegisters(LU.first));
392 });
393}
394
397 const SmallPtrSetImpl<const Value *> &ValuesToIgnore) {
398 // Each 'key' in the map opens a new interval. The values
399 // of the map are the index of the 'last seen' usage of the
400 // VPValue that is the key.
402
403 // Maps indices to recipes.
405 // Marks the end of each interval.
406 IntervalMap EndPoint;
407 // Saves the list of VPValues that are used in the loop.
409 // Saves the list of values that are used in the loop but are defined outside
410 // the loop (not including non-recipe values such as arguments and
411 // constants).
412 SmallSetVector<VPValue *, 8> LoopInvariants;
413 LoopInvariants.insert(&Plan.getVectorTripCount());
414
415 // We scan the loop in a topological order in order and assign a number to
416 // each recipe. We use RPO to ensure that defs are met before their users. We
417 // assume that each recipe that has in-loop users starts an interval. We
418 // record every time that an in-loop value is used, so we have a list of the
419 // first occurences of each recipe and last occurrence of each VPValue.
420 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
422 LoopRegion);
424 if (!VPBB->getParent())
425 break;
426 for (VPRecipeBase &R : *VPBB) {
427 Idx2Recipe.push_back(&R);
428
429 // Save the end location of each USE.
430 for (VPValue *U : R.operands()) {
431 auto *DefR = U->getDefiningRecipe();
432
433 // Ignore non-recipe values such as arguments, constants, etc.
434 // FIXME: Might need some motivation why these values are ignored. If
435 // for example an argument is used inside the loop it will increase the
436 // register pressure (so shouldn't we add it to LoopInvariants).
437 auto *IRV = dyn_cast<VPIRValue>(U);
438 if (!DefR && (!IRV || !isa<Instruction>(IRV->getValue())))
439 continue;
440
441 // If this recipe is outside the loop then record it and continue.
442 if (!DefR) {
443 LoopInvariants.insert(U);
444 continue;
445 }
446
447 // Overwrite previous end points.
448 EndPoint[U] = Idx2Recipe.size();
449 Ends.insert(U);
450 }
451 }
452 if (VPBB == LoopRegion->getExiting()) {
453 // VPWidenIntOrFpInductionRecipes are used implicitly at the end of the
454 // exiting block, where their increment will get materialized eventually.
455 for (auto &R : LoopRegion->getEntryBasicBlock()->phis()) {
456 if (auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) {
457 EndPoint[WideIV] = Idx2Recipe.size();
458 Ends.insert(WideIV);
459 }
460 }
461 }
462 }
463
464 // Saves the list of intervals that end with the index in 'key'.
465 using VPValueList = SmallVector<VPValue *, 2>;
467
468 // Next, we transpose the EndPoints into a multi map that holds the list of
469 // intervals that *end* at a specific location.
470 for (auto &Interval : EndPoint)
471 TransposeEnds[Interval.second].push_back(Interval.first);
472
473 SmallPtrSet<VPValue *, 8> OpenIntervals;
476
477 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
478
479 VPTypeAnalysis TypeInfo(Plan);
480
481 const auto &TTICapture = TTI;
482 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
483 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty) ||
484 (VF.isScalable() &&
485 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
486 return 0;
487 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
488 };
489
490 // We scan the instructions linearly and record each time that a new interval
491 // starts, by placing it in a set. If we find this value in TransposEnds then
492 // we remove it from the set. The max register usage is the maximum register
493 // usage of the recipes of the set.
494 for (unsigned int Idx = 0, Sz = Idx2Recipe.size(); Idx < Sz; ++Idx) {
495 VPRecipeBase *R = Idx2Recipe[Idx];
496
497 // Remove all of the VPValues that end at this location.
498 VPValueList &List = TransposeEnds[Idx];
499 for (VPValue *ToRemove : List)
500 OpenIntervals.erase(ToRemove);
501
502 // Ignore recipes that are never used within the loop and do not have side
503 // effects.
504 if (none_of(R->definedValues(),
505 [&Ends](VPValue *Def) { return Ends.count(Def); }) &&
506 !R->mayHaveSideEffects())
507 continue;
508
509 // Skip recipes for ignored values.
510 // TODO: Should mark recipes for ephemeral values that cannot be removed
511 // explictly in VPlan.
512 if (isa<VPSingleDefRecipe>(R) &&
513 ValuesToIgnore.contains(
514 cast<VPSingleDefRecipe>(R)->getUnderlyingValue()))
515 continue;
516
517 // For each VF find the maximum usage of registers.
518 for (unsigned J = 0, E = VFs.size(); J < E; ++J) {
519 // Count the number of registers used, per register class, given all open
520 // intervals.
521 // Note that elements in this SmallMapVector will be default constructed
522 // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
523 // there is no previous entry for ClassID.
525
526 for (auto *VPV : OpenIntervals) {
527 // Skip artificial values or values that weren't present in the original
528 // loop.
529 // TODO: Remove skipping values that weren't present in the original
530 // loop after removing the legacy
531 // LoopVectorizationCostModel::calculateRegisterUsage
533 VPBranchOnMaskRecipe>(VPV) ||
535 continue;
536
537 if (VFs[J].isScalar() ||
542 (cast<VPReductionPHIRecipe>(VPV))->isInLoop())) {
543 unsigned ClassID =
544 TTI.getRegisterClassForType(false, TypeInfo.inferScalarType(VPV));
545 // FIXME: The target might use more than one register for the type
546 // even in the scalar case.
547 RegUsage[ClassID] += 1;
548 } else {
549 // The output from scaled phis and scaled reductions actually has
550 // fewer lanes than the VF.
551 unsigned ScaleFactor =
552 vputils::getVFScaleFactor(VPV->getDefiningRecipe());
553 ElementCount VF = VFs[J];
554 if (ScaleFactor > 1) {
555 VF = VFs[J].divideCoefficientBy(ScaleFactor);
556 LLVM_DEBUG(dbgs() << "LV(REG): Scaled down VF from " << VFs[J]
557 << " to " << VF << " for " << *R << "\n";);
558 }
559
560 Type *ScalarTy = TypeInfo.inferScalarType(VPV);
561 unsigned ClassID = TTI.getRegisterClassForType(true, ScalarTy);
562 RegUsage[ClassID] += GetRegUsage(ScalarTy, VF);
563 }
564 }
565
566 for (const auto &Pair : RegUsage) {
567 auto &Entry = MaxUsages[J][Pair.first];
568 Entry = std::max(Entry, Pair.second);
569 }
570 }
571
572 LLVM_DEBUG(dbgs() << "LV(REG): At #" << Idx << " Interval # "
573 << OpenIntervals.size() << '\n');
574
575 // Add used VPValues defined by the current recipe to the list of open
576 // intervals.
577 for (VPValue *DefV : R->definedValues())
578 if (Ends.contains(DefV))
579 OpenIntervals.insert(DefV);
580 }
581
582 // We also search for instructions that are defined outside the loop, but are
583 // used inside the loop. We need this number separately from the max-interval
584 // usage number because when we unroll, loop-invariant values do not take
585 // more register.
587 for (unsigned Idx = 0, End = VFs.size(); Idx < End; ++Idx) {
588 // Note that elements in this SmallMapVector will be default constructed
589 // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
590 // there is no previous entry for ClassID.
592
593 for (auto *In : LoopInvariants) {
594 // FIXME: The target might use more than one register for the type
595 // even in the scalar case.
596 bool IsScalar = vputils::onlyScalarValuesUsed(In);
597
598 ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[Idx];
599 unsigned ClassID = TTI.getRegisterClassForType(
600 VF.isVector(), TypeInfo.inferScalarType(In));
601 Invariant[ClassID] += GetRegUsage(TypeInfo.inferScalarType(In), VF);
602 }
603
604 LLVM_DEBUG({
605 dbgs() << "LV(REG): VF = " << VFs[Idx] << '\n';
606 dbgs() << "LV(REG): Found max usage: " << MaxUsages[Idx].size()
607 << " item\n";
608 for (const auto &pair : MaxUsages[Idx]) {
609 dbgs() << "LV(REG): RegisterClass: "
610 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
611 << " registers\n";
612 }
613 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
614 << " item\n";
615 for (const auto &pair : Invariant) {
616 dbgs() << "LV(REG): RegisterClass: "
617 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
618 << " registers\n";
619 }
620 });
621
622 RU.LoopInvariantRegs = Invariant;
623 RU.MaxLocalUsers = MaxUsages[Idx];
624 RUs[Idx] = RU;
625 }
626
627 return RUs;
628}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
ReachingDefInfo InstSet & ToRemove
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define I(x, y, z)
Definition MD5.cpp:57
std::pair< uint64_t, uint64_t > Interval
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file contains the declarations of the Vectorization Plan base classes:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Core dominator tree base class.
bool properlyDominates(const DomTreeNodeBase< VPBlockBase > *A, const DomTreeNodeBase< VPBlockBase > *B) const
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
bool isCast() const
bool isBinaryOp() const
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
bool isShift() const
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:89
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:98
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
Definition VPlan.h:3592
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3949
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4037
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition VPlan.h:2499
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:178
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:221
A recipe for generating conditional branches on the bits of a mask.
Definition VPlan.h:3003
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3535
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Definition VPlan.h:3703
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Definition VPlan.h:3624
Recipe to expand a SCEV expression.
Definition VPlan.h:3497
A specialization of VPInstruction augmenting it with a dedicated result type, to be used when the opc...
Definition VPlan.h:1266
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1034
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1136
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1081
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1139
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
Definition VPlan.h:1078
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1130
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1073
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1070
@ CanonicalIVIncrementForPart
Definition VPlan.h:1054
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition VPlan.h:3190
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
A recipe for handling reduction phis.
Definition VPlan.h:2406
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2766
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4137
const VPBlockBase * getEntry() const
Definition VPlan.h:4173
const VPBlockBase * getExiting() const
Definition VPlan.h:4185
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2922
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3771
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
VPTypeAnalysis(const VPlan &Plan)
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:229
operand_range operands()
Definition VPlanValue.h:297
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:45
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1879
A recipe to compute the pointers for widened memory accesses of SourceElementTy.
Definition VPlan.h:1940
A recipe for widening Call instructions using library calls.
Definition VPlan.h:1720
A Recipe for widening the canonical induction variable of the vector loop.
Definition VPlan.h:3666
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1570
A recipe for handling GEP instructions.
Definition VPlan.h:1816
A recipe for widening vector intrinsics.
Definition VPlan.h:1620
A common base class for widening memory operations.
Definition VPlan.h:3233
A recipe for widened phis.
Definition VPlan.h:2302
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1522
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4267
VPSymbolicValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4443
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1022
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool match(Val *V, const Pattern &P)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
TargetTransformInfo TTI
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2344
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
bool exceedsMaxNumRegs(const TargetTransformInfo &TTI, unsigned OverrideMaxNumRegs=0) const
Check if any of the tracked live intervals exceeds the number of available registers for the target.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.