LLVM 20.0.0git
ARMLowOverheadLoops.cpp
Go to the documentation of this file.
1//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10/// instructions into machine operations.
11/// The expectation is that the loop contains three pseudo instructions:
12/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13/// form should be in the preheader, whereas the while form should be in the
14/// preheaders only predecessor.
15/// - t2LoopDec - placed within in the loop body.
16/// - t2LoopEnd - the loop latch terminator.
17///
18/// In addition to this, we also look for the presence of the VCTP instruction,
19/// which determines whether we can generated the tail-predicated low-overhead
20/// loop form.
21///
22/// Assumptions and Dependencies:
23/// Low-overhead loops are constructed and executed using a setup instruction:
24/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26/// but fixed polarity: WLS can only branch forwards and LE can only branch
27/// backwards. These restrictions mean that this pass is dependent upon block
28/// layout and block sizes, which is why it's the last pass to run. The same is
29/// true for ConstantIslands, but this pass does not increase the size of the
30/// basic blocks, nor does it change the CFG. Instructions are mainly removed
31/// during the transform and pseudo instructions are replaced by real ones. In
32/// some cases, when we have to revert to a 'normal' loop, we have to introduce
33/// multiple instructions for a single pseudo (see RevertWhile and
34/// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35/// are defined to be as large as this maximum sequence of replacement
36/// instructions.
37///
38/// A note on VPR.P0 (the lane mask):
39/// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40/// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41/// They will simply "and" the result of their calculation with the current
42/// value of VPR.P0. You can think of it like this:
43/// \verbatim
44/// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
45/// VPR.P0 &= Value
46/// else
47/// VPR.P0 = Value
48/// \endverbatim
49/// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50/// fall in the "VPT active" case, so we can consider that all VPR writes by
51/// one of those instruction is actually a "and".
52//===----------------------------------------------------------------------===//
53
54#include "ARM.h"
55#include "ARMBaseInstrInfo.h"
56#include "ARMBaseRegisterInfo.h"
57#include "ARMBasicBlockInfo.h"
58#include "ARMSubtarget.h"
59#include "MVETailPredUtils.h"
60#include "Thumb2InstrInfo.h"
62#include "llvm/ADT/SetVector.h"
69#include "llvm/CodeGen/Passes.h"
71#include "llvm/MC/MCInstrDesc.h"
72
73using namespace llvm;
74
75#define DEBUG_TYPE "arm-low-overhead-loops"
76#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
77
78static cl::opt<bool>
79DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
80 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
81 cl::init(false));
82
83static cl::opt<bool>
84 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden,
85 cl::desc("Disable omitting 'dls lr, lr' instructions"),
86 cl::init(false));
87
90 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
91}
92
94 return MI->findRegisterDefOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1;
95}
96
97static bool hasVPRUse(MachineInstr &MI) {
98 return MI.findRegisterUseOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1;
99}
100
102 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
103 return Domain == ARMII::DomainMVE;
104}
105
106static int getVecSize(const MachineInstr &MI) {
107 const MCInstrDesc &MCID = MI.getDesc();
108 uint64_t Flags = MCID.TSFlags;
109 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift;
110}
111
113 if (MI.isDebugInstr())
114 return false;
115 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
116}
117
119 const MCInstrDesc &MCID = MI.getDesc();
120 uint64_t Flags = MCID.TSFlags;
121 return (Flags & ARMII::HorizontalReduction) != 0;
122}
123
124namespace {
125
126 using InstSet = SmallPtrSetImpl<MachineInstr *>;
127
128 class PostOrderLoopTraversal {
130 MachineLoopInfo &MLI;
133
134 public:
135 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
136 : ML(ML), MLI(MLI) { }
137
138 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
139 return Order;
140 }
141
142 // Visit all the blocks within the loop, as well as exit blocks and any
143 // blocks properly dominating the header.
144 void ProcessLoop() {
145 std::function<void(MachineBasicBlock*)> Search = [this, &Search]
146 (MachineBasicBlock *MBB) -> void {
147 if (Visited.count(MBB))
148 return;
149
150 Visited.insert(MBB);
151 for (auto *Succ : MBB->successors()) {
152 if (!ML.contains(Succ))
153 continue;
154 Search(Succ);
155 }
156 Order.push_back(MBB);
157 };
158
159 // Insert exit blocks.
161 ML.getExitBlocks(ExitBlocks);
162 append_range(Order, ExitBlocks);
163
164 // Then add the loop body.
165 Search(ML.getHeader());
166
167 // Then try the preheader and its predecessors.
168 std::function<void(MachineBasicBlock*)> GetPredecessor =
169 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
170 Order.push_back(MBB);
171 if (MBB->pred_size() == 1)
172 GetPredecessor(*MBB->pred_begin());
173 };
174
175 if (auto *Preheader = ML.getLoopPreheader())
176 GetPredecessor(Preheader);
177 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true))
178 GetPredecessor(Preheader);
179 }
180 };
181
182 class VPTBlock {
184
185 public:
186 VPTBlock(MachineInstr *MI) { Insts.push_back(MI); }
187
188 // Have we found an instruction within the block which defines the vpr? If
189 // so, not all the instructions in the block will have the same predicate.
190 bool hasUniformPredicate() { return getDivergent() == nullptr; }
191
192 // If it exists, return the first internal instruction which modifies the
193 // VPR.
194 MachineInstr *getDivergent() {
195 SmallVectorImpl<MachineInstr *> &Insts = getInsts();
196 for (unsigned i = 1; i < Insts.size(); ++i) {
197 MachineInstr *Next = Insts[i];
198 if (isVectorPredicate(Next))
199 return Next; // Found an instruction altering the vpr.
200 }
201 return nullptr;
202 }
203
204 void insert(MachineInstr *MI) {
205 Insts.push_back(MI);
206 // VPT/VPST + 4 predicated instructions.
207 assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
208 }
209
210 bool containsVCTP() const { return llvm::any_of(Insts, isVCTP); }
211
212 unsigned size() const { return Insts.size(); }
213 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
214 };
215
216 // Represent the current state of the VPR and hold all instances which
217 // represent a VPT block, which is a list of instructions that begins with a
218 // VPT/VPST and has a maximum of four proceeding instructions. All
219 // instructions within the block are predicated upon the vpr and we allow
220 // instructions to define the vpr within in the block too.
221 class VPTState {
222 friend struct LowOverheadLoop;
223
225 SetVector<MachineInstr *> CurrentPredicates;
226 std::map<MachineInstr *, SetVector<MachineInstr *>> PredicatedInsts;
227
229 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
230 && "Can't begin VPT without predicate");
231 Blocks.emplace_back(MI);
232 // The execution of MI is predicated upon the current set of instructions
233 // that are AND'ed together to form the VPR predicate value. In the case
234 // that MI is a VPT, CurrentPredicates will also just be MI.
235 PredicatedInsts[MI] = CurrentPredicates;
236 }
237
238 void addInst(MachineInstr *MI) {
239 Blocks.back().insert(MI);
240 PredicatedInsts[MI] = CurrentPredicates;
241 }
242
243 void addPredicate(MachineInstr *MI) {
244 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
245 CurrentPredicates.insert(MI);
246 }
247
248 void resetPredicate(MachineInstr *MI) {
249 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
250 CurrentPredicates.clear();
251 CurrentPredicates.insert(MI);
252 }
253
254 public:
255 // Return whether the given instruction is predicated upon a VCTP.
256 bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
257 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI];
258 if (Exclusive && Predicates.size() != 1)
259 return false;
260 // We do not know how to convert an else predicate of a VCTP.
262 return false;
263 return llvm::any_of(Predicates, isVCTP);
264 }
265
266 // Is the VPST, controlling the block entry, predicated upon a VCTP.
267 bool isEntryPredicatedOnVCTP(VPTBlock &Block, bool Exclusive = false) {
268 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
269 return isPredicatedOnVCTP(Insts.front(), Exclusive);
270 }
271
272 // If this block begins with a VPT, we can check whether it's using
273 // at least one predicated input(s), as well as possible loop invariant
274 // which would result in it being implicitly predicated.
275 bool hasImplicitlyValidVPT(VPTBlock &Block, ReachingDefAnalysis &RDA) {
276 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
277 MachineInstr *VPT = Insts.front();
278 assert(isVPTOpcode(VPT->getOpcode()) &&
279 "Expected VPT block to begin with VPT/VPST");
280
281 if (VPT->getOpcode() == ARM::MVE_VPST)
282 return false;
283
284 // If the VPT block does not define something that is an "output", then
285 // the tail-predicated version will just perform a subset of the original
286 // vpt block, where the last lanes should not be used.
287 if (isVPTOpcode(VPT->getOpcode()) &&
288 all_of(Block.getInsts(), [](const MachineInstr *MI) {
289 return !MI->mayStore() && !MI->mayLoad() &&
290 !isHorizontalReduction(*MI) && !isVCTP(MI);
291 }))
292 return true;
293
294 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
295 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
296 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
297 };
298
299 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
300 MachineOperand &MO = MI->getOperand(Idx);
301 if (!MO.isReg() || !MO.getReg())
302 return true;
303
305 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
306 if (Defs.empty())
307 return true;
308
309 for (auto *Def : Defs)
310 if (Def->getParent() == VPT->getParent())
311 return false;
312 return true;
313 };
314
315 // Check that at least one of the operands is directly predicated on a
316 // vctp and allow an invariant value too.
317 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
318 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
319 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
320 }
321
323 // All predication within the loop should be based on vctp. If the block
324 // isn't predicated on entry, check whether the vctp is within the block
325 // and that all other instructions are then predicated on it.
326 for (auto &Block : Blocks) {
327 if (isEntryPredicatedOnVCTP(Block, false) &&
328 !any_of(drop_begin(Block.getInsts()), [](const MachineInstr *MI) {
329 return getVPTInstrPredicate(*MI) == ARMVCC::Else;
330 }))
331 continue;
332 if (hasImplicitlyValidVPT(Block, RDA))
333 continue;
334
335 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
336 // We don't know how to convert a block with just a VPT;VCTP into
337 // anything valid once we remove the VCTP. For now just bail out.
338 assert(isVPTOpcode(Insts.front()->getOpcode()) &&
339 "Expected VPT block to start with a VPST or VPT!");
340 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
341 isVCTP(Insts.back()))
342 return false;
343
344 for (auto *MI : Insts) {
345 // Check that any internal VCTPs are 'Then' predicated.
347 return false;
348 // Skip other instructions that build up the predicate.
349 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
350 continue;
351 // Check that any other instructions are predicated upon a vctp.
352 // TODO: We could infer when VPTs are implicitly predicated on the
353 // vctp (when the operands are predicated).
354 if (!isPredicatedOnVCTP(MI)) {
355 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
356 return false;
357 }
358 }
359 }
360 return true;
361 }
362 };
363
364 struct LowOverheadLoop {
365
367 MachineBasicBlock *Preheader = nullptr;
368 MachineLoopInfo &MLI;
370 const TargetRegisterInfo &TRI;
371 const ARMBaseInstrInfo &TII;
372 MachineFunction *MF = nullptr;
373 MachineBasicBlock::iterator StartInsertPt;
374 MachineBasicBlock *StartInsertBB = nullptr;
375 MachineInstr *Start = nullptr;
376 MachineInstr *Dec = nullptr;
377 MachineInstr *End = nullptr;
378 MachineOperand TPNumElements;
381 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute;
382 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs;
384 bool Revert = false;
385 bool CannotTailPredicate = false;
386 VPTState VPTstate;
387
388 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
390 const ARMBaseInstrInfo &TII)
391 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
392 TPNumElements(MachineOperand::CreateImm(0)) {
393 MF = ML.getHeader()->getParent();
394 if (auto *MBB = ML.getLoopPreheader())
395 Preheader = MBB;
396 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true))
397 Preheader = MBB;
398 }
399
400 // If this is an MVE instruction, check that we know how to use tail
401 // predication with it. Record VPT blocks and return whether the
402 // instruction is valid for tail predication.
403 bool ValidateMVEInst(MachineInstr *MI);
404
405 void AnalyseMVEInst(MachineInstr *MI) {
406 CannotTailPredicate = !ValidateMVEInst(MI);
407 }
408
409 bool IsTailPredicationLegal() const {
410 // For now, let's keep things really simple and only support a single
411 // block for tail predication.
412 return !Revert && FoundAllComponents() && !VCTPs.empty() &&
413 !CannotTailPredicate && ML.getNumBlocks() == 1;
414 }
415
416 // Given that MI is a VCTP, check that is equivalent to any other VCTPs
417 // found.
418 bool AddVCTP(MachineInstr *MI);
419
420 // Check that the predication in the loop will be equivalent once we
421 // perform the conversion. Also ensure that we can provide the number
422 // of elements to the loop start instruction.
423 bool ValidateTailPredicate();
424
425 // Check that any values available outside of the loop will be the same
426 // after tail predication conversion.
427 bool ValidateLiveOuts();
428
429 // Check the branch targets are within range and we satisfy our
430 // restrictions.
431 void Validate(ARMBasicBlockUtils *BBUtils);
432
433 bool FoundAllComponents() const {
434 return Start && Dec && End;
435 }
436
437 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTstate.Blocks; }
438
439 // Return the operand for the loop start instruction. This will be the loop
440 // iteration count, or the number of elements if we're tail predicating.
441 MachineOperand &getLoopStartOperand() {
442 if (IsTailPredicationLegal())
443 return TPNumElements;
444 return Start->getOperand(1);
445 }
446
447 unsigned getStartOpcode() const {
448 bool IsDo = isDoLoopStart(*Start);
449 if (!IsTailPredicationLegal())
450 return IsDo ? ARM::t2DLS : ARM::t2WLS;
451
452 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
453 }
454
455 void dump() const {
456 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
457 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
458 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
459 if (!VCTPs.empty()) {
460 dbgs() << "ARM Loops: Found VCTP(s):\n";
461 for (auto *MI : VCTPs)
462 dbgs() << " - " << *MI;
463 }
464 if (!FoundAllComponents())
465 dbgs() << "ARM Loops: Not a low-overhead loop.\n";
466 else if (!(Start && Dec && End))
467 dbgs() << "ARM Loops: Failed to find all loop components.\n";
468 }
469 };
470
471 class ARMLowOverheadLoops : public MachineFunctionPass {
472 MachineFunction *MF = nullptr;
473 MachineLoopInfo *MLI = nullptr;
474 ReachingDefAnalysis *RDA = nullptr;
475 const ARMBaseInstrInfo *TII = nullptr;
476 MachineRegisterInfo *MRI = nullptr;
477 const TargetRegisterInfo *TRI = nullptr;
478 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
479
480 public:
481 static char ID;
482
483 ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
484
485 void getAnalysisUsage(AnalysisUsage &AU) const override {
486 AU.setPreservesCFG();
490 }
491
492 bool runOnMachineFunction(MachineFunction &MF) override;
493
496 MachineFunctionProperties::Property::NoVRegs).set(
497 MachineFunctionProperties::Property::TracksLiveness);
498 }
499
500 StringRef getPassName() const override {
502 }
503
504 private:
505 bool ProcessLoop(MachineLoop *ML);
506
507 bool RevertNonLoops();
508
509 void RevertWhile(MachineInstr *MI) const;
510 void RevertDo(MachineInstr *MI) const;
511
512 bool RevertLoopDec(MachineInstr *MI) const;
513
514 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
515
516 void RevertLoopEndDec(MachineInstr *MI) const;
517
518 void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
519
520 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
521
522 void Expand(LowOverheadLoop &LoLoop);
523
524 void IterationCountDCE(LowOverheadLoop &LoLoop);
525 };
526}
527
528char ARMLowOverheadLoops::ID = 0;
529
531 false, false)
532
533static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
534 InstSet &ToRemove, InstSet &Ignore) {
535
536 // Check that we can remove all of Killed without having to modify any IT
537 // blocks.
538 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
539 // Collect the dead code and the MBBs in which they reside.
541 for (auto *Dead : Killed)
542 BasicBlocks.insert(Dead->getParent());
543
544 // Collect IT blocks in all affected basic blocks.
545 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
546 for (auto *MBB : BasicBlocks) {
547 for (auto &IT : *MBB) {
548 if (IT.getOpcode() != ARM::t2IT)
549 continue;
551 ITBlocks[&IT]);
552 }
553 }
554
555 // If we're removing all of the instructions within an IT block, then
556 // also remove the IT instruction.
559 for (auto *Dead : Killed) {
560 if (MachineOperand *MO =
561 Dead->findRegisterUseOperand(ARM::ITSTATE, /*TRI=*/nullptr)) {
562 MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
563 RemoveITs.insert(IT);
564 auto &CurrentBlock = ITBlocks[IT];
565 CurrentBlock.erase(Dead);
566 if (CurrentBlock.empty())
567 ModifiedITs.erase(IT);
568 else
569 ModifiedITs.insert(IT);
570 }
571 }
572 if (!ModifiedITs.empty())
573 return false;
574 Killed.insert(RemoveITs.begin(), RemoveITs.end());
575 return true;
576 };
577
580 return false;
581
582 if (WontCorruptITs(Uses, RDA)) {
583 ToRemove.insert(Uses.begin(), Uses.end());
584 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
585 << " - can also remove:\n";
586 for (auto *Use : Uses)
587 dbgs() << " - " << *Use);
588
591 if (WontCorruptITs(Killed, RDA)) {
592 ToRemove.insert(Killed.begin(), Killed.end());
593 LLVM_DEBUG(for (auto *Dead : Killed)
594 dbgs() << " - " << *Dead);
595 }
596 return true;
597 }
598 return false;
599}
600
601bool LowOverheadLoop::ValidateTailPredicate() {
602 if (!IsTailPredicationLegal()) {
603 LLVM_DEBUG(if (VCTPs.empty())
604 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
605 dbgs() << "ARM Loops: Tail-predication is not valid.\n");
606 return false;
607 }
608
609 assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
610 assert(ML.getBlocks().size() == 1 &&
611 "Shouldn't be processing a loop with more than one block");
612
614 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
615 return false;
616 }
617
618 if (!VPTstate.isValid(RDA)) {
619 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
620 return false;
621 }
622
623 if (!ValidateLiveOuts()) {
624 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
625 return false;
626 }
627
628 // For tail predication, we need to provide the number of elements, instead
629 // of the iteration count, to the loop start instruction. The number of
630 // elements is provided to the vctp instruction, so we need to check that
631 // we can use this register at InsertPt.
632 MachineInstr *VCTP = VCTPs.back();
633 if (Start->getOpcode() == ARM::t2DoLoopStartTP ||
634 Start->getOpcode() == ARM::t2WhileLoopStartTP) {
635 TPNumElements = Start->getOperand(2);
636 StartInsertPt = Start;
637 StartInsertBB = Start->getParent();
638 } else {
639 TPNumElements = VCTP->getOperand(1);
640 MCRegister NumElements = TPNumElements.getReg().asMCReg();
641
642 // If the register is defined within loop, then we can't perform TP.
643 // TODO: Check whether this is just a mov of a register that would be
644 // available.
645 if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
646 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
647 return false;
648 }
649
650 // The element count register maybe defined after InsertPt, in which case we
651 // need to try to move either InsertPt or the def so that the [w|d]lstp can
652 // use the value.
653
654 if (StartInsertPt != StartInsertBB->end() &&
655 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
656 if (auto *ElemDef =
657 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
658 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
659 ElemDef->removeFromParent();
660 StartInsertBB->insert(StartInsertPt, ElemDef);
662 << "ARM Loops: Moved element count def: " << *ElemDef);
663 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
664 StartInsertPt->removeFromParent();
665 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
666 &*StartInsertPt);
667 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
668 } else {
669 // If we fail to move an instruction and the element count is provided
670 // by a mov, use the mov operand if it will have the same value at the
671 // insertion point
672 MachineOperand Operand = ElemDef->getOperand(1);
673 if (isMovRegOpcode(ElemDef->getOpcode()) &&
674 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
675 RDA.getUniqueReachingMIDef(&*StartInsertPt,
676 Operand.getReg().asMCReg())) {
677 TPNumElements = Operand;
678 NumElements = TPNumElements.getReg();
679 } else {
681 << "ARM Loops: Unable to move element count to loop "
682 << "start instruction.\n");
683 return false;
684 }
685 }
686 }
687 }
688
689 // Especially in the case of while loops, InsertBB may not be the
690 // preheader, so we need to check that the register isn't redefined
691 // before entering the loop.
692 auto CannotProvideElements = [this](MachineBasicBlock *MBB,
693 MCRegister NumElements) {
694 if (MBB->empty())
695 return false;
696 // NumElements is redefined in this block.
697 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
698 return true;
699
700 // Don't continue searching up through multiple predecessors.
701 if (MBB->pred_size() > 1)
702 return true;
703
704 return false;
705 };
706
707 // Search backwards for a def, until we get to InsertBB.
708 MachineBasicBlock *MBB = Preheader;
709 while (MBB && MBB != StartInsertBB) {
710 if (CannotProvideElements(MBB, NumElements)) {
711 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
712 return false;
713 }
714 MBB = *MBB->pred_begin();
715 }
716 }
717
718 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
719 // world the [w|d]lstp instruction would be last instruction in the preheader
720 // and so it would only affect instructions within the loop body. But due to
721 // scheduling, and/or the logic in this pass (above), the insertion point can
722 // be moved earlier. So if the Loop Start isn't the last instruction in the
723 // preheader, and if the initial element count is smaller than the vector
724 // width, the Loop Start instruction will immediately generate one or more
725 // false lane mask which can, incorrectly, affect the proceeding MVE
726 // instructions in the preheader.
727 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
728 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
729 return false;
730 }
731
732 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they
733 // need to compute an output size that is smaller than the VCTP mask operates
734 // on. The VecSize of the DoubleWidthResult is the larger vector size - the
735 // size it extends into, so any VCTP VecSize <= is valid.
736 unsigned VCTPVecSize = getVecSize(*VCTP);
737 for (MachineInstr *MI : DoubleWidthResultInstrs) {
738 unsigned InstrVecSize = getVecSize(*MI);
739 if (InstrVecSize > VCTPVecSize) {
740 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP "
741 << "VecSize:\n" << *MI);
742 return false;
743 }
744 }
745
746 // Check that the value change of the element count is what we expect and
747 // that the predication will be equivalent. For this we need:
748 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
749 // and we can also allow register copies within the chain too.
750 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
751 return -getAddSubImmediate(*MI) == ExpectedVecWidth;
752 };
753
755 // Remove modifications to the element count since they have no purpose in a
756 // tail predicated loop. Explicitly refer to the vctp operand no matter which
757 // register NumElements has been assigned to, since that is what the
758 // modifications will be using
759 if (auto *Def = RDA.getUniqueReachingMIDef(
760 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
763 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
764
765 Ignore.insert(VCTPs.begin(), VCTPs.end());
766
767 if (TryRemove(Def, RDA, ElementChain, Ignore)) {
768 bool FoundSub = false;
769
770 for (auto *MI : ElementChain) {
771 if (isMovRegOpcode(MI->getOpcode()))
772 continue;
773
774 if (isSubImmOpcode(MI->getOpcode())) {
775 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
776 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
777 " count: " << *MI);
778 return false;
779 }
780 FoundSub = true;
781 } else {
782 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
783 " count: " << *MI);
784 return false;
785 }
786 }
787 ToRemove.insert(ElementChain.begin(), ElementChain.end());
788 }
789 }
790
791 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we
792 // can also remove any extra instructions in the preheader, which often
793 // includes a now unused MOV.
794 if ((Start->getOpcode() == ARM::t2DoLoopStartTP ||
795 Start->getOpcode() == ARM::t2WhileLoopStartTP) &&
796 Preheader && !Preheader->empty() &&
797 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
798 if (auto *Def = RDA.getUniqueReachingMIDef(
799 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
801 Ignore.insert(VCTPs.begin(), VCTPs.end());
802 TryRemove(Def, RDA, ToRemove, Ignore);
803 }
804 }
805
806 return true;
807}
808
809static bool isRegInClass(const MachineOperand &MO,
810 const TargetRegisterClass *Class) {
811 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
812}
813
814// MVE 'narrowing' operate on half a lane, reading from half and writing
815// to half, which are referred to has the top and bottom half. The other
816// half retains its previous value.
818 const MCInstrDesc &MCID = MI.getDesc();
819 uint64_t Flags = MCID.TSFlags;
820 return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
821}
822
823// Some MVE instructions read from the top/bottom halves of their operand(s)
824// and generate a vector result with result elements that are double the
825// width of the input.
827 const MCInstrDesc &MCID = MI.getDesc();
828 uint64_t Flags = MCID.TSFlags;
829 return (Flags & ARMII::DoubleWidthResult) != 0;
830}
831
832// Can this instruction generate a non-zero result when given only zeroed
833// operands? This allows us to know that, given operands with false bytes
834// zeroed by masked loads, that the result will also contain zeros in those
835// bytes.
837
838 // Check for instructions which can write into a larger element size,
839 // possibly writing into a previous zero'd lane.
841 return true;
842
843 switch (MI.getOpcode()) {
844 default:
845 break;
846 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
847 // fp16 -> fp32 vector conversions.
848 // Instructions that perform a NOT will generate 1s from 0s.
849 case ARM::MVE_VMVN:
850 case ARM::MVE_VORN:
851 // Count leading zeros will do just that!
852 case ARM::MVE_VCLZs8:
853 case ARM::MVE_VCLZs16:
854 case ARM::MVE_VCLZs32:
855 return true;
856 }
857 return false;
858}
859
860// Look at its register uses to see if it only can only receive zeros
861// into its false lanes which would then produce zeros. Also check that
862// the output register is also defined by an FalseLanesZero instruction
863// so that if tail-predication happens, the lanes that aren't updated will
864// still be zeros.
866 const TargetRegisterClass *QPRs,
868 InstSet &FalseLanesZero) {
870 return false;
871
872 bool isPredicated = isVectorPredicated(&MI);
873 // Predicated loads will write zeros to the falsely predicated bytes of the
874 // destination register.
875 if (MI.mayLoad())
876 return isPredicated;
877
878 auto IsZeroInit = [](MachineInstr *Def) {
879 return !isVectorPredicated(Def) &&
880 Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
881 Def->getOperand(1).getImm() == 0;
882 };
883
884 bool AllowScalars = isHorizontalReduction(MI);
885 for (auto &MO : MI.operands()) {
886 if (!MO.isReg() || !MO.getReg())
887 continue;
888 if (!isRegInClass(MO, QPRs) && AllowScalars)
889 continue;
890 // Skip the lr predicate reg
892 if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2)
893 continue;
894
895 // Check that this instruction will produce zeros in its false lanes:
896 // - If it only consumes false lanes zero or constant 0 (vmov #0)
897 // - If it's predicated, it only matters that it's def register already has
898 // false lane zeros, so we can ignore the uses.
900 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
901 if (Defs.empty())
902 return false;
903 for (auto *Def : Defs) {
904 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
905 continue;
906 if (MO.isUse() && isPredicated)
907 continue;
908 return false;
909 }
910 }
911 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
912 return true;
913}
914
915bool LowOverheadLoop::ValidateLiveOuts() {
916 // We want to find out if the tail-predicated version of this loop will
917 // produce the same values as the loop in its original form. For this to
918 // be true, the newly inserted implicit predication must not change the
919 // the (observable) results.
920 // We're doing this because many instructions in the loop will not be
921 // predicated and so the conversion from VPT predication to tail-predication
922 // can result in different values being produced; due to the tail-predication
923 // preventing many instructions from updating their falsely predicated
924 // lanes. This analysis assumes that all the instructions perform lane-wise
925 // operations and don't perform any exchanges.
926 // A masked load, whether through VPT or tail predication, will write zeros
927 // to any of the falsely predicated bytes. So, from the loads, we know that
928 // the false lanes are zeroed and here we're trying to track that those false
929 // lanes remain zero, or where they change, the differences are masked away
930 // by their user(s).
931 // All MVE stores have to be predicated, so we know that any predicate load
932 // operands, or stored results are equivalent already. Other explicitly
933 // predicated instructions will perform the same operation in the original
934 // loop and the tail-predicated form too. Because of this, we can insert
935 // loads, stores and other predicated instructions into our Predicated
936 // set and build from there.
937 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
938 SetVector<MachineInstr *> FalseLanesUnknown;
941 MachineBasicBlock *Header = ML.getHeader();
942
943 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n");
944
945 for (auto &MI : *Header) {
946 if (!shouldInspect(MI))
947 continue;
948
949 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
950 continue;
951
953 bool retainsOrReduces =
955
956 if (isPredicated)
957 Predicated.insert(&MI);
958 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
959 FalseLanesZero.insert(&MI);
960 else if (MI.getNumDefs() == 0)
961 continue;
962 else if (!isPredicated && retainsOrReduces) {
963 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI);
964 return false;
965 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy)
966 FalseLanesUnknown.insert(&MI);
967 }
968
969 LLVM_DEBUG({
970 dbgs() << " Predicated:\n";
971 for (auto *I : Predicated)
972 dbgs() << " " << *I;
973 dbgs() << " FalseLanesZero:\n";
974 for (auto *I : FalseLanesZero)
975 dbgs() << " " << *I;
976 dbgs() << " FalseLanesUnknown:\n";
977 for (auto *I : FalseLanesUnknown)
978 dbgs() << " " << *I;
979 });
980
981 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
984 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
985 for (auto *Use : Uses) {
986 if (Use != MI && !Predicated.count(Use))
987 return false;
988 }
989 return true;
990 };
991
992 // Visit the unknowns in reverse so that we can start at the values being
993 // stored and then we can work towards the leaves, hopefully adding more
994 // instructions to Predicated. Successfully terminating the loop means that
995 // all the unknown values have to found to be masked by predicated user(s).
996 // For any unpredicated values, we store them in NonPredicated so that we
997 // can later check whether these form a reduction.
998 SmallPtrSet<MachineInstr*, 2> NonPredicated;
999 for (auto *MI : reverse(FalseLanesUnknown)) {
1000 for (auto &MO : MI->operands()) {
1001 if (!isRegInClass(MO, QPRs) || !MO.isDef())
1002 continue;
1003 if (!HasPredicatedUsers(MI, MO, Predicated)) {
1004 LLVM_DEBUG(dbgs() << " Found an unknown def of : "
1005 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
1006 NonPredicated.insert(MI);
1007 break;
1008 }
1009 }
1010 // Any unknown false lanes have been masked away by the user(s).
1011 if (!NonPredicated.contains(MI))
1012 Predicated.insert(MI);
1013 }
1014
1017 ML.getExitBlocks(ExitBlocks);
1018 assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
1019 assert(ExitBlocks.size() == 1 && "Expected a single exit block");
1020 MachineBasicBlock *ExitBB = ExitBlocks.front();
1021 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
1022 // TODO: Instead of blocking predication, we could move the vctp to the exit
1023 // block and calculate it's operand there in or the preheader.
1024 if (RegMask.PhysReg == ARM::VPR) {
1025 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block.");
1026 return false;
1027 }
1028 // Check Q-regs that are live in the exit blocks. We don't collect scalars
1029 // because they won't be affected by lane predication.
1030 if (QPRs->contains(RegMask.PhysReg))
1031 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1032 LiveOutMIs.insert(MI);
1033 }
1034
1035 // We've already validated that any VPT predication within the loop will be
1036 // equivalent when we perform the predication transformation; so we know that
1037 // any VPT predicated instruction is predicated upon VCTP. Any live-out
1038 // instruction needs to be predicated, so check this here. The instructions
1039 // in NonPredicated have been found to be a reduction that we can ensure its
1040 // legality. Any MQPRCopy found will need to validate its input as if it was
1041 // live out.
1042 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end());
1043 while (!Worklist.empty()) {
1044 MachineInstr *MI = Worklist.pop_back_val();
1045 if (MI->getOpcode() == ARM::MQPRCopy) {
1046 VMOVCopies.insert(MI);
1047 MachineInstr *CopySrc =
1048 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg());
1049 if (CopySrc)
1050 Worklist.push_back(CopySrc);
1051 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1052 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI);
1053 VMOVCopies.clear();
1054 return false;
1055 }
1056 }
1057
1058 return true;
1059}
1060
1061void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1062 if (Revert)
1063 return;
1064
1065 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1066 // can only jump back.
1067 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1068 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1069 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1070 ? End->getOperand(1).getMBB()
1071 : End->getOperand(2).getMBB();
1072 // TODO Maybe there's cases where the target doesn't have to be the header,
1073 // but for now be safe and revert.
1074 if (TgtBB != ML.getHeader()) {
1075 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1076 return false;
1077 }
1078
1079 // The WLS and LE instructions have 12-bits for the label offset. WLS
1080 // requires a positive offset, while LE uses negative.
1081 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1082 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1083 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1084 return false;
1085 }
1086
1087 if (isWhileLoopStart(*Start)) {
1088 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start);
1089 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) ||
1090 !BBUtils->isBBInRange(Start, TargetBB, 4094)) {
1091 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1092 return false;
1093 }
1094 }
1095 return true;
1096 };
1097
1098 StartInsertPt = MachineBasicBlock::iterator(Start);
1099 StartInsertBB = Start->getParent();
1100 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1101 << *StartInsertPt);
1102
1103 Revert = !ValidateRanges(Start, End, BBUtils, ML);
1104 CannotTailPredicate = !ValidateTailPredicate();
1105}
1106
1107bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1108 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1109 if (VCTPs.empty()) {
1110 VCTPs.push_back(MI);
1111 return true;
1112 }
1113
1114 // If we find another VCTP, check whether it uses the same value as the main VCTP.
1115 // If it does, store it in the VCTPs set, else refuse it.
1116 MachineInstr *Prev = VCTPs.back();
1117 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1118 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1119 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1120 "definition from the main VCTP");
1121 return false;
1122 }
1123 VCTPs.push_back(MI);
1124 return true;
1125}
1126
1128
1129 auto GetFrameIndex = [](MachineMemOperand *Operand) {
1130 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue();
1131 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) {
1132 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) {
1133 return FS->getFrameIndex();
1134 }
1135 }
1136 return -1;
1137 };
1138
1139 auto IsStackOp = [GetFrameIndex](MachineInstr *I) {
1140 switch (I->getOpcode()) {
1141 case ARM::MVE_VSTRWU32:
1142 case ARM::MVE_VLDRWU32: {
1143 return I->getOperand(1).getReg() == ARM::SP &&
1144 I->memoperands().size() == 1 &&
1145 GetFrameIndex(I->memoperands().front()) >= 0;
1146 }
1147 default:
1148 return false;
1149 }
1150 };
1151
1152 // An unpredicated vector register spill is allowed if all of the uses of the
1153 // stack slot are within the loop
1154 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI))
1155 return false;
1156
1157 // Search all blocks after the loop for accesses to the same stack slot.
1158 // ReachingDefAnalysis doesn't work for sp as it relies on registers being
1159 // live-out (which sp never is) to know what blocks to look in
1160 if (MI->memoperands().size() == 0)
1161 return false;
1162 int FI = GetFrameIndex(MI->memoperands().front());
1163
1164 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo();
1165 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI))
1166 return false;
1167
1169 ML->getExitBlocks(Frontier);
1170 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()};
1171 unsigned Idx = 0;
1172 while (Idx < Frontier.size()) {
1173 MachineBasicBlock *BB = Frontier[Idx];
1174 bool LookAtSuccessors = true;
1175 for (auto &I : *BB) {
1176 if (!IsStackOp(&I) || I.memoperands().size() == 0)
1177 continue;
1178 if (GetFrameIndex(I.memoperands().front()) != FI)
1179 continue;
1180 // If this block has a store to the stack slot before any loads then we
1181 // can ignore the block
1182 if (I.getOpcode() == ARM::MVE_VSTRWU32) {
1183 LookAtSuccessors = false;
1184 break;
1185 }
1186 // If the store and the load are using the same stack slot then the
1187 // store isn't valid for tail predication
1188 if (I.getOpcode() == ARM::MVE_VLDRWU32)
1189 return false;
1190 }
1191
1192 if (LookAtSuccessors) {
1193 for (auto *Succ : BB->successors()) {
1194 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ))
1195 Frontier.push_back(Succ);
1196 }
1197 }
1198 Visited.insert(BB);
1199 Idx++;
1200 }
1201
1202 return true;
1203}
1204
1205bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) {
1206 if (CannotTailPredicate)
1207 return false;
1208
1209 if (!shouldInspect(*MI))
1210 return true;
1211
1212 if (MI->getOpcode() == ARM::MVE_VPSEL ||
1213 MI->getOpcode() == ARM::MVE_VPNOT) {
1214 // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1215 // 1) It will use the VPR as a predicate operand, but doesn't have to be
1216 // instead a VPT block, which means we can assert while building up
1217 // the VPT block because we don't find another VPT or VPST to being a new
1218 // one.
1219 // 2) VPSEL still requires a VPR operand even after tail predicating,
1220 // which means we can't remove it unless there is another
1221 // instruction, such as vcmp, that can provide the VPR def.
1222 return false;
1223 }
1224
1225 // Record all VCTPs and check that they're equivalent to one another.
1226 if (isVCTP(MI) && !AddVCTP(MI))
1227 return false;
1228
1229 // Inspect uses first so that any instructions that alter the VPR don't
1230 // alter the predicate upon themselves.
1231 const MCInstrDesc &MCID = MI->getDesc();
1232 bool IsUse = false;
1233 unsigned LastOpIdx = MI->getNumOperands() - 1;
1234 for (const auto &Op : enumerate(reverse(MCID.operands()))) {
1235 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1236 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1237 continue;
1238
1239 if (ARM::isVpred(Op.value().OperandType)) {
1240 VPTstate.addInst(MI);
1241 IsUse = true;
1242 } else if (MI->getOpcode() != ARM::MVE_VPST) {
1243 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1244 return false;
1245 }
1246 }
1247
1248 // If we find an instruction that has been marked as not valid for tail
1249 // predication, only allow the instruction if it's contained within a valid
1250 // VPT block.
1251 bool RequiresExplicitPredication =
1253 if (isDomainMVE(MI) && RequiresExplicitPredication) {
1254 if (MI->getOpcode() == ARM::MQPRCopy)
1255 return true;
1256 if (!IsUse && producesDoubleWidthResult(*MI)) {
1257 DoubleWidthResultInstrs.insert(MI);
1258 return true;
1259 }
1260
1261 LLVM_DEBUG(if (!IsUse) dbgs()
1262 << "ARM Loops: Can't tail predicate: " << *MI);
1263 return IsUse;
1264 }
1265
1266 // If the instruction is already explicitly predicated, then the conversion
1267 // will be fine, but ensure that all store operations are predicated.
1268 if (MI->mayStore() && !ValidateMVEStore(MI, &ML))
1269 return IsUse;
1270
1271 // If this instruction defines the VPR, update the predicate for the
1272 // proceeding instructions.
1273 if (isVectorPredicate(MI)) {
1274 // Clear the existing predicate when we're not in VPT Active state,
1275 // otherwise we add to it.
1276 if (!isVectorPredicated(MI))
1277 VPTstate.resetPredicate(MI);
1278 else
1279 VPTstate.addPredicate(MI);
1280 }
1281
1282 // Finally once the predicate has been modified, we can start a new VPT
1283 // block if necessary.
1284 if (isVPTOpcode(MI->getOpcode()))
1285 VPTstate.CreateVPTBlock(MI);
1286
1287 return true;
1288}
1289
1290bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1292 if (!ST.hasLOB())
1293 return false;
1294
1295 MF = &mf;
1296 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1297
1298 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1299 RDA = &getAnalysis<ReachingDefAnalysis>();
1300 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1301 MRI = &MF->getRegInfo();
1302 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1303 TRI = ST.getRegisterInfo();
1304 BBUtils = std::make_unique<ARMBasicBlockUtils>(*MF);
1305 BBUtils->computeAllBlockSizes();
1306 BBUtils->adjustBBOffsetsAfter(&MF->front());
1307
1308 bool Changed = false;
1309 for (auto *ML : *MLI) {
1310 if (ML->isOutermost())
1311 Changed |= ProcessLoop(ML);
1312 }
1313 Changed |= RevertNonLoops();
1314 return Changed;
1315}
1316
1317bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1318 bool Changed = false;
1319
1320 // Process inner loops first.
1321 for (MachineLoop *L : *ML)
1322 Changed |= ProcessLoop(L);
1323
1324 LLVM_DEBUG({
1325 dbgs() << "ARM Loops: Processing loop containing:\n";
1326 if (auto *Preheader = ML->getLoopPreheader())
1327 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1328 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true))
1329 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1330 for (auto *MBB : ML->getBlocks())
1331 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n";
1332 });
1333
1334 // Search the given block for a loop start instruction. If one isn't found,
1335 // and there's only one predecessor block, search that one too.
1336 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1337 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1338 for (auto &MI : *MBB) {
1339 if (isLoopStart(MI))
1340 return &MI;
1341 }
1342 if (MBB->pred_size() == 1)
1343 return SearchForStart(*MBB->pred_begin());
1344 return nullptr;
1345 };
1346
1347 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1348 // Search the preheader for the start intrinsic.
1349 // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1350 // with potentially multiple set.loop.iterations, so we need to enable this.
1351 if (LoLoop.Preheader)
1352 LoLoop.Start = SearchForStart(LoLoop.Preheader);
1353 else
1354 return Changed;
1355
1356 // Find the low-overhead loop components and decide whether or not to fall
1357 // back to a normal loop. Also look for a vctp instructions and decide
1358 // whether we can convert that predicate using tail predication.
1359 for (auto *MBB : reverse(ML->getBlocks())) {
1360 for (auto &MI : *MBB) {
1361 if (MI.isDebugValue())
1362 continue;
1363 else if (MI.getOpcode() == ARM::t2LoopDec)
1364 LoLoop.Dec = &MI;
1365 else if (MI.getOpcode() == ARM::t2LoopEnd)
1366 LoLoop.End = &MI;
1367 else if (MI.getOpcode() == ARM::t2LoopEndDec)
1368 LoLoop.End = LoLoop.Dec = &MI;
1369 else if (isLoopStart(MI))
1370 LoLoop.Start = &MI;
1371 else if (MI.getDesc().isCall()) {
1372 // TODO: Though the call will require LE to execute again, does this
1373 // mean we should revert? Always executing LE hopefully should be
1374 // faster than performing a sub,cmp,br or even subs,br.
1375 LoLoop.Revert = true;
1376 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1377 } else {
1378 // Record VPR defs and build up their corresponding vpt blocks.
1379 // Check we know how to tail predicate any mve instructions.
1380 LoLoop.AnalyseMVEInst(&MI);
1381 }
1382 }
1383 }
1384
1385 LLVM_DEBUG(LoLoop.dump());
1386 if (!LoLoop.FoundAllComponents()) {
1387 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1388 return Changed;
1389 }
1390
1391 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
1392 "Expected t2WhileLoopStart to be removed before regalloc!");
1393
1394 // Check that the only instruction using LoopDec is LoopEnd. This can only
1395 // happen when the Dec and End are separate, not a single t2LoopEndDec.
1396 // TODO: Check for copy chains that really have no effect.
1397 if (LoLoop.Dec != LoLoop.End) {
1399 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1400 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1401 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1402 LoLoop.Revert = true;
1403 }
1404 }
1405 LoLoop.Validate(BBUtils.get());
1406 Expand(LoLoop);
1407 return true;
1408}
1409
1410// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1411// beq that branches to the exit branch.
1412// TODO: We could also try to generate a cbz if the value in LR is also in
1413// another low register.
1414void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1415 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1417 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1418 ARM::tBcc : ARM::t2Bcc;
1419
1420 RevertWhileLoopStartLR(MI, TII, BrOpc);
1421}
1422
1423void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1424 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1426}
1427
1428bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1429 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1430 MachineBasicBlock *MBB = MI->getParent();
1432 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1433 if (I->getOpcode() == ARM::t2LoopEnd) {
1434 Ignore.insert(&*I);
1435 break;
1436 }
1437 }
1438
1439 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1440 bool SetFlags =
1442
1443 llvm::RevertLoopDec(MI, TII, SetFlags);
1444 return SetFlags;
1445}
1446
1447// Generate a subs, or sub and cmp, and a branch instead of an LE.
1448void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1449 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1450
1451 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1452 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1453 ARM::tBcc : ARM::t2Bcc;
1454
1455 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1456}
1457
1458// Generate a subs, or sub and cmp, and a branch instead of an LE.
1459void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1460 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1461 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1462 MachineBasicBlock *MBB = MI->getParent();
1463
1465 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1466 MIB.addDef(ARM::LR);
1467 MIB.add(MI->getOperand(1));
1468 MIB.addImm(1);
1469 MIB.addImm(ARMCC::AL);
1470 MIB.addReg(ARM::NoRegister);
1471 MIB.addReg(ARM::CPSR);
1472 MIB->getOperand(5).setIsDef(true);
1473
1474 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1475 unsigned BrOpc =
1476 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1477
1478 // Create bne
1479 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1480 MIB.add(MI->getOperand(2)); // branch target
1481 MIB.addImm(ARMCC::NE); // condition code
1482 MIB.addReg(ARM::CPSR);
1483
1484 MI->eraseFromParent();
1485}
1486
1487// Perform dead code elimation on the loop iteration count setup expression.
1488// If we are tail-predicating, the number of elements to be processed is the
1489// operand of the VCTP instruction in the vector body, see getCount(), which is
1490// register $r3 in this example:
1491//
1492// $lr = big-itercount-expression
1493// ..
1494// $lr = t2DoLoopStart renamable $lr
1495// vector.body:
1496// ..
1497// $vpr = MVE_VCTP32 renamable $r3
1498// renamable $lr = t2LoopDec killed renamable $lr, 1
1499// t2LoopEnd renamable $lr, %vector.body
1500// tB %end
1501//
1502// What we would like achieve here is to replace the do-loop start pseudo
1503// instruction t2DoLoopStart with:
1504//
1505// $lr = MVE_DLSTP_32 killed renamable $r3
1506//
1507// Thus, $r3 which defines the number of elements, is written to $lr,
1508// and then we want to delete the whole chain that used to define $lr,
1509// see the comment below how this chain could look like.
1510//
1511void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1512 if (!LoLoop.IsTailPredicationLegal())
1513 return;
1514
1515 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1516
1517 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1);
1518 if (!Def) {
1519 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1520 return;
1521 }
1522
1523 // Collect and remove the users of iteration count.
1524 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec,
1525 LoLoop.End };
1526 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1527 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1528}
1529
1530MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1531 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1532 // When using tail-predication, try to delete the dead code that was used to
1533 // calculate the number of loop iterations.
1534 IterationCountDCE(LoLoop);
1535
1536 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1537 MachineInstr *Start = LoLoop.Start;
1538 MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1539 unsigned Opc = LoLoop.getStartOpcode();
1540 MachineOperand &Count = LoLoop.getLoopStartOperand();
1541
1542 // A DLS lr, lr we needn't emit
1543 MachineInstr* NewStart;
1544 if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() &&
1545 Count.getReg() == ARM::LR) {
1546 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1547 NewStart = nullptr;
1548 } else {
1550 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1551
1552 MIB.addDef(ARM::LR);
1553 MIB.add(Count);
1554 if (isWhileLoopStart(*Start))
1555 MIB.addMBB(getWhileLoopStartTargetBB(*Start));
1556
1557 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1558 NewStart = &*MIB;
1559 }
1560
1561 LoLoop.ToRemove.insert(Start);
1562 return NewStart;
1563}
1564
1565void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1566 auto RemovePredicate = [](MachineInstr *MI) {
1567 if (MI->isDebugInstr())
1568 return;
1569 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1571 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1572 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1573 "Expected Then predicate!");
1574 MI->getOperand(PIdx).setImm(ARMVCC::None);
1575 MI->getOperand(PIdx + 1).setReg(0);
1576 };
1577
1578 for (auto &Block : LoLoop.getVPTBlocks()) {
1579 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1580
1581 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1582 assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1583 // Replace the VCMP with a VPT
1585 BuildMI(*At->getParent(), At, At->getDebugLoc(),
1586 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1587 MIB.addImm(ARMVCC::Then);
1588 // Register one
1589 MIB.add(TheVCMP->getOperand(1));
1590 // Register two
1591 MIB.add(TheVCMP->getOperand(2));
1592 // The comparison code, e.g. ge, eq, lt
1593 MIB.add(TheVCMP->getOperand(3));
1594 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1595 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1596 LoLoop.ToRemove.insert(TheVCMP);
1597 TheVCMP = nullptr;
1598 };
1599
1600 if (LoLoop.VPTstate.isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1601 MachineInstr *VPST = Insts.front();
1602 if (Block.hasUniformPredicate()) {
1603 // A vpt block starting with VPST, is only predicated upon vctp and has no
1604 // internal vpr defs:
1605 // - Remove vpst.
1606 // - Unpredicate the remaining instructions.
1607 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1608 for (unsigned i = 1; i < Insts.size(); ++i)
1609 RemovePredicate(Insts[i]);
1610 } else {
1611 // The VPT block has a non-uniform predicate but it uses a vpst and its
1612 // entry is guarded only by a vctp, which means we:
1613 // - Need to remove the original vpst.
1614 // - Then need to unpredicate any following instructions, until
1615 // we come across the divergent vpr def.
1616 // - Insert a new vpst to predicate the instruction(s) that following
1617 // the divergent vpr def.
1618 MachineInstr *Divergent = Block.getDivergent();
1619 MachineBasicBlock *MBB = Divergent->getParent();
1620 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1621 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1622 ++DivergentNext;
1623
1624 bool DivergentNextIsPredicated =
1625 DivergentNext != MBB->end() &&
1626 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1627
1628 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1629 I != E; ++I)
1630 RemovePredicate(&*I);
1631
1632 // Check if the instruction defining vpr is a vcmp so it can be combined
1633 // with the VPST This should be the divergent instruction
1635 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1636
1637 if (DivergentNextIsPredicated) {
1638 // Insert a VPST at the divergent only if the next instruction
1639 // would actually use it. A VCMP following a VPST can be
1640 // merged into a VPT so do that instead if the VCMP exists.
1641 if (!VCMP) {
1642 // Create a VPST (with a null mask for now, we'll recompute it
1643 // later)
1645 BuildMI(*Divergent->getParent(), Divergent,
1646 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1647 MIB.addImm(0);
1648 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1649 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1650 } else {
1651 // No RDA checks are necessary here since the VPST would have been
1652 // directly after the VCMP
1653 ReplaceVCMPWithVPT(VCMP, VCMP);
1654 }
1655 }
1656 }
1657 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1658 LoLoop.ToRemove.insert(VPST);
1659 } else if (Block.containsVCTP()) {
1660 // The vctp will be removed, so either the entire block will be dead or
1661 // the block mask of the vp(s)t will need to be recomputed.
1662 MachineInstr *VPST = Insts.front();
1663 if (Block.size() == 2) {
1664 assert(VPST->getOpcode() == ARM::MVE_VPST &&
1665 "Found a VPST in an otherwise empty vpt block");
1666 LoLoop.ToRemove.insert(VPST);
1667 } else
1668 LoLoop.BlockMasksToRecompute.insert(VPST);
1669 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1670 // If this block starts with a VPST then attempt to merge it with the
1671 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1672 // block that no longer exists
1673 MachineInstr *VPST = Insts.front();
1674 auto Next = ++MachineBasicBlock::iterator(VPST);
1676 "The instruction after a VPST must be predicated");
1677 (void)Next;
1678 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1679 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1680 !LoLoop.ToRemove.contains(VprDef)) {
1681 MachineInstr *VCMP = VprDef;
1682 // The VCMP and VPST can only be merged if the VCMP's operands will have
1683 // the same values at the VPST.
1684 // If any of the instructions between the VCMP and VPST are predicated
1685 // then a different code path is expected to have merged the VCMP and
1686 // VPST already.
1687 if (std::none_of(++MachineBasicBlock::iterator(VCMP),
1689 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1690 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1691 ReplaceVCMPWithVPT(VCMP, VPST);
1692 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1693 LoLoop.ToRemove.insert(VPST);
1694 }
1695 }
1696 }
1697 }
1698
1699 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1700}
1701
1702void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1703
1704 // Combine the LoopDec and LoopEnd instructions into LE(TP).
1705 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1706 MachineInstr *End = LoLoop.End;
1707 MachineBasicBlock *MBB = End->getParent();
1708 unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1709 ARM::MVE_LETP : ARM::t2LEUpdate;
1710 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1711 TII->get(Opc));
1712 MIB.addDef(ARM::LR);
1713 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1714 MIB.add(End->getOperand(Off + 0));
1715 MIB.add(End->getOperand(Off + 1));
1716 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1717 LoLoop.ToRemove.insert(LoLoop.Dec);
1718 LoLoop.ToRemove.insert(End);
1719 return &*MIB;
1720 };
1721
1722 // TODO: We should be able to automatically remove these branches before we
1723 // get here - probably by teaching analyzeBranch about the pseudo
1724 // instructions.
1725 // If there is an unconditional branch, after I, that just branches to the
1726 // next block, remove it.
1727 auto RemoveDeadBranch = [](MachineInstr *I) {
1728 MachineBasicBlock *BB = I->getParent();
1730 if (Terminator->isUnconditionalBranch() && I != Terminator) {
1731 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1732 if (BB->isLayoutSuccessor(Succ)) {
1733 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1734 Terminator->eraseFromParent();
1735 }
1736 }
1737 };
1738
1739 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid.
1740 // Anything other MQPRCopy can be converted to MVE_VORR later on.
1741 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) {
1742 for (auto *MI : VMOVCopies) {
1743 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI);
1744 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1745 MachineBasicBlock *MBB = MI->getParent();
1746 Register Dst = MI->getOperand(0).getReg();
1747 Register Src = MI->getOperand(1).getReg();
1748 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1749 ARM::D0 + (Dst - ARM::Q0) * 2)
1750 .addReg(ARM::D0 + (Src - ARM::Q0) * 2)
1752 (void)MIB1;
1753 LLVM_DEBUG(dbgs() << " into " << *MIB1);
1754 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1755 ARM::D0 + (Dst - ARM::Q0) * 2 + 1)
1756 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1)
1758 LLVM_DEBUG(dbgs() << " and " << *MIB2);
1759 (void)MIB2;
1760 MI->eraseFromParent();
1761 }
1762 };
1763
1764 if (LoLoop.Revert) {
1765 if (isWhileLoopStart(*LoLoop.Start))
1766 RevertWhile(LoLoop.Start);
1767 else
1768 RevertDo(LoLoop.Start);
1769 if (LoLoop.Dec == LoLoop.End)
1770 RevertLoopEndDec(LoLoop.End);
1771 else
1772 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1773 } else {
1774 ExpandVMOVCopies(LoLoop.VMOVCopies);
1775 LoLoop.Start = ExpandLoopStart(LoLoop);
1776 if (LoLoop.Start)
1777 RemoveDeadBranch(LoLoop.Start);
1778 LoLoop.End = ExpandLoopEnd(LoLoop);
1779 RemoveDeadBranch(LoLoop.End);
1780 if (LoLoop.IsTailPredicationLegal())
1781 ConvertVPTBlocks(LoLoop);
1782 for (auto *I : LoLoop.ToRemove) {
1783 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1784 I->eraseFromParent();
1785 }
1786 for (auto *I : LoLoop.BlockMasksToRecompute) {
1787 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1789 LLVM_DEBUG(dbgs() << " ... done: " << *I);
1790 }
1791 }
1792
1793 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1794 DFS.ProcessLoop();
1795 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1796 fullyRecomputeLiveIns(PostOrder);
1797
1798 for (auto *MBB : reverse(PostOrder))
1800
1801 // We've moved, removed and inserted new instructions, so update RDA.
1802 RDA->reset();
1803}
1804
1805bool ARMLowOverheadLoops::RevertNonLoops() {
1806 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1807 bool Changed = false;
1808
1809 for (auto &MBB : *MF) {
1815
1816 for (auto &I : MBB) {
1817 if (isLoopStart(I))
1818 Starts.push_back(&I);
1819 else if (I.getOpcode() == ARM::t2LoopDec)
1820 Decs.push_back(&I);
1821 else if (I.getOpcode() == ARM::t2LoopEnd)
1822 Ends.push_back(&I);
1823 else if (I.getOpcode() == ARM::t2LoopEndDec)
1824 EndDecs.push_back(&I);
1825 else if (I.getOpcode() == ARM::MQPRCopy)
1826 MQPRCopies.push_back(&I);
1827 }
1828
1829 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() &&
1830 MQPRCopies.empty())
1831 continue;
1832
1833 Changed = true;
1834
1835 for (auto *Start : Starts) {
1836 if (isWhileLoopStart(*Start))
1837 RevertWhile(Start);
1838 else
1839 RevertDo(Start);
1840 }
1841 for (auto *Dec : Decs)
1842 RevertLoopDec(Dec);
1843
1844 for (auto *End : Ends)
1846 for (auto *End : EndDecs)
1847 RevertLoopEndDec(End);
1848 for (auto *MI : MQPRCopies) {
1849 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI);
1850 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1851 MachineBasicBlock *MBB = MI->getParent();
1852 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR),
1853 MI->getOperand(0).getReg())
1854 .add(MI->getOperand(1))
1855 .add(MI->getOperand(1));
1856 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg());
1857 MI->eraseFromParent();
1858 }
1859 }
1860 return Changed;
1861}
1862
1864 return new ARMLowOverheadLoops();
1865}
unsigned const MachineRegisterInfo * MRI
static bool isDomainMVE(MachineInstr *MI)
SmallPtrSet< MachineInstr *, 2 > Uses
static bool isVectorPredicated(MachineInstr *MI)
ReachingDefAnalysis & RDA
static bool canGenerateNonZeros(const MachineInstr &MI)
static bool isHorizontalReduction(const MachineInstr &MI)
ReachingDefAnalysis InstSet & ToRemove
static bool producesDoubleWidthResult(const MachineInstr &MI)
static bool hasVPRUse(MachineInstr &MI)
static bool isRegInClass(const MachineOperand &MO, const TargetRegisterClass *Class)
static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML)
static bool isVectorPredicate(MachineInstr *MI)
static bool retainsPreviousHalfElement(const MachineInstr &MI)
static bool shouldInspect(MachineInstr &MI)
static cl::opt< bool > DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), cl::init(false))
static bool producesFalseLanesZero(MachineInstr &MI, const TargetRegisterClass *QPRs, const ReachingDefAnalysis &RDA, InstSet &FalseLanesZero)
#define DEBUG_TYPE
static int getVecSize(const MachineInstr &MI)
#define ARM_LOW_OVERHEAD_LOOPS_NAME
static cl::opt< bool > DisableOmitDLS("arm-disable-omit-dls", cl::Hidden, cl::desc("Disable omitting 'dls lr, lr' instructions"), cl::init(false))
ReachingDefAnalysis InstSet InstSet & Ignore
MachineBasicBlock & MBB
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
bool End
Definition: ELF_riscv.cpp:480
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define I(x, y, z)
Definition: MD5.cpp:58
static ARM::PredBlockMask CreateVPTBlock(MachineBasicBlock::instr_iterator &Iter, MachineBasicBlock::instr_iterator EndIter, SmallVectorImpl< MachineInstr * > &DeadInstructions)
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines generic set operations that may be used on set's of different types,...
This file implements a set that has insertion order iteration characteristics.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
This class represents an Operation in the Expression.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
ArrayRef< MCOperandInfo > operands() const
Definition: MCInstrDesc.h:239
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
static MCRegister from(unsigned Val)
Check the provided unsigned value is a valid MCRegister.
Definition: MCRegister.h:74
unsigned pred_size() const
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
iterator_range< livein_iterator > liveins() const
MachineInstr & instr_back()
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
iterator_range< succ_iterator > successors()
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
MachineInstrBundleIterator< MachineInstr > iterator
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const MachineFunctionProperties & getProperties() const
Get the function properties.
const MachineBasicBlock & front() const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:569
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:346
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:498
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
MachineBasicBlock * findLoopPreheader(MachineLoop *L, bool SpeculativePreheader=false, bool FindMultiLoopPreheader=false) const
Find the block that either is the loop preheader, or could speculatively be used as the preheader.
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
unsigned getOperandNo() const
Returns the index of this operand in the instruction that it belongs to.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
void setIsDef(bool Val=true)
Change a def to a use, or a use to a def.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Special value supplied for machine level alias analysis.
This class provides the reaching def analysis.
bool isSafeToMoveForwards(MachineInstr *From, MachineInstr *To) const
Return whether From can be moved forwards to just before To.
bool isSafeToDefRegAt(MachineInstr *MI, MCRegister PhysReg) const
Return whether a MachineInstr could be inserted at MI and safely define the given register without af...
bool isSafeToRemove(MachineInstr *MI, InstSet &ToRemove) const
Return whether removing this instruction will have no effect on the program, returning the redundant ...
MachineInstr * getLocalLiveOutMIDef(MachineBasicBlock *MBB, MCRegister PhysReg) const
Return the local MI that produces the live out value for PhysReg, or nullptr for a non-live out or no...
MachineInstr * getMIOperand(MachineInstr *MI, unsigned Idx) const
If a single MachineInstr creates the reaching definition, for MIs operand at Idx, then return it.
void getReachingLocalUses(MachineInstr *MI, MCRegister PhysReg, InstSet &Uses) const
Provides the uses, in the same block as MI, of register that MI defines.
void reset()
Re-run the analysis.
bool hasLocalDefBefore(MachineInstr *MI, MCRegister PhysReg) const
Provide whether the register has been defined in the same basic block as, and before,...
bool hasSameReachingDef(MachineInstr *A, MachineInstr *B, MCRegister PhysReg) const
Return whether A and B use the same def of PhysReg.
void getGlobalUses(MachineInstr *MI, MCRegister PhysReg, InstSet &Uses) const
Collect the users of the value stored in PhysReg, which is defined by MI.
void collectKilledOperands(MachineInstr *MI, InstSet &Dead) const
Assuming MI is dead, recursively search the incoming operands which are killed by MI and collect thos...
bool isSafeToMoveBackwards(MachineInstr *From, MachineInstr *To) const
Return whether From can be moved backwards to just after To.
void getGlobalReachingDefs(MachineInstr *MI, MCRegister PhysReg, InstSet &Defs) const
Collect all possible definitions of the value stored in PhysReg, which is used by MI.
MachineInstr * getUniqueReachingMIDef(MachineInstr *MI, MCRegister PhysReg) const
If a single MachineInstr creates the reaching definition, then return it.
bool isReachingDefLiveOut(MachineInstr *MI, MCRegister PhysReg) const
Return whether the reaching def for MI also is live out of its parent block.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
Definition: Register.h:110
A vector that has set insertion semantics.
Definition: SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
void clear()
Completely clear the SetVector.
Definition: SetVector.h:273
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
Definition: SetVector.h:254
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:347
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:385
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:436
iterator end() const
Definition: SmallPtrSet.h:461
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:368
iterator begin() const
Definition: SmallPtrSet.h:456
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:442
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:503
bool empty() const
Definition: SmallVector.h:95
size_t size() const
Definition: SmallVector.h:92
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:587
void push_back(const T &Elt)
Definition: SmallVector.h:427
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
@ ValidForTailPredication
Definition: ARMBaseInfo.h:418
@ HorizontalReduction
Definition: ARMBaseInfo.h:425
@ RetainsPreviousHalfElement
Definition: ARMBaseInfo.h:422
bool isPredicated(const MCInst &MI, const MCInstrInfo *MCII)
bool isVpred(OperandType op)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool isDoLoopStart(const MachineInstr &MI)
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
int findFirstVPTPredOperandIdx(const MachineInstr &MI)
ARMVCC::VPTCodes getVPTInstrPredicate(const MachineInstr &MI, Register &PredReg)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
static bool isVCTP(const MachineInstr *MI)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2406
static bool isVPTOpcode(int Opc)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2073
static unsigned getTailPredVectorWidth(unsigned Opcode)
static std::array< MachineOperand, 2 > predOps(ARMCC::CondCodes Pred, unsigned PredReg=0)
Get the operands corresponding to the given Pred value.
FunctionPass * createARMLowOverheadLoopsPass()
static bool isMovRegOpcode(int Opc)
static bool isSubImmOpcode(int Opc)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
static bool isLoopStart(const MachineInstr &MI)
void RevertWhileLoopStartLR(MachineInstr *MI, const TargetInstrInfo *TII, unsigned BrOpc=ARM::t2Bcc, bool UseCmp=false)
void recomputeLivenessFlags(MachineBasicBlock &MBB)
Recomputes dead and kill flags in MBB.
static unsigned VCTPOpcodeToLSTP(unsigned Opcode, bool IsDoLoop)
void addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, Register DestReg)
void RevertLoopEnd(MachineInstr *MI, const TargetInstrInfo *TII, unsigned BrOpc=ARM::t2Bcc, bool SkipCmp=false)
void RevertLoopDec(MachineInstr *MI, const TargetInstrInfo *TII, bool SetFlags=false)
MachineBasicBlock * getWhileLoopStartTargetBB(const MachineInstr &MI)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1879
static bool isWhileLoopStart(const MachineInstr &MI)
static unsigned VCMPOpcodeToVPT(unsigned Opcode)
void RevertDoLoopStart(MachineInstr *MI, const TargetInstrInfo *TII)
int getAddSubImmediate(MachineInstr &MI)
void recomputeVPTBlockMask(MachineInstr &Instr)
void fullyRecomputeLiveIns(ArrayRef< MachineBasicBlock * > MBBs)
Convenience function for recomputing live-in's for a set of MBBs until the computation converges.
Definition: LivePhysRegs.h:215
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
Pair of physical register and lane mask.