48#define DEBUG_TYPE "correlated-value-propagation"
52 cl::desc(
"Enables canonicalization of signed relational predicates to "
53 "unsigned (e.g. sgt => ugt)"));
56STATISTIC(NumPhiCommon,
"Number of phis deleted via common incoming value");
57STATISTIC(NumSelects,
"Number of selects propagated");
58STATISTIC(NumCmps,
"Number of comparisons propagated");
59STATISTIC(NumReturns,
"Number of return values propagated");
60STATISTIC(NumDeadCases,
"Number of switch cases removed");
62 "Number of sdivs/srems whose width was decreased");
63STATISTIC(NumSDivs,
"Number of sdiv converted to udiv");
65 "Number of udivs/urems whose width was decreased");
66STATISTIC(NumAShrsConverted,
"Number of ashr converted to lshr");
67STATISTIC(NumAShrsRemoved,
"Number of ashr removed");
68STATISTIC(NumSRems,
"Number of srem converted to urem");
69STATISTIC(NumSExt,
"Number of sext converted to zext");
70STATISTIC(NumSICmps,
"Number of signed icmp preds simplified to unsigned");
73STATISTIC(NumNSW,
"Number of no-signed-wrap deductions");
74STATISTIC(NumNUW,
"Number of no-unsigned-wrap deductions");
75STATISTIC(NumAddNW,
"Number of no-wrap deductions for add");
76STATISTIC(NumAddNSW,
"Number of no-signed-wrap deductions for add");
77STATISTIC(NumAddNUW,
"Number of no-unsigned-wrap deductions for add");
78STATISTIC(NumSubNW,
"Number of no-wrap deductions for sub");
79STATISTIC(NumSubNSW,
"Number of no-signed-wrap deductions for sub");
80STATISTIC(NumSubNUW,
"Number of no-unsigned-wrap deductions for sub");
81STATISTIC(NumMulNW,
"Number of no-wrap deductions for mul");
82STATISTIC(NumMulNSW,
"Number of no-signed-wrap deductions for mul");
83STATISTIC(NumMulNUW,
"Number of no-unsigned-wrap deductions for mul");
84STATISTIC(NumShlNW,
"Number of no-wrap deductions for shl");
85STATISTIC(NumShlNSW,
"Number of no-signed-wrap deductions for shl");
86STATISTIC(NumShlNUW,
"Number of no-unsigned-wrap deductions for shl");
87STATISTIC(NumAbs,
"Number of llvm.abs intrinsics removed");
88STATISTIC(NumOverflows,
"Number of overflow checks removed");
90 "Number of saturating arithmetics converted to normal arithmetics");
91STATISTIC(NumNonNull,
"Number of function pointer arguments marked non-null");
92STATISTIC(NumMinMax,
"Number of llvm.[us]{min,max} intrinsics removed");
94 "Number of bound udiv's/urem's expanded");
95STATISTIC(NumZExt,
"Number of non-negative deductions");
101 bool Changed =
false;
103 auto *
I = cast<Instruction>(U.getUser());
105 if (
auto *PN = dyn_cast<PHINode>(
I))
111 auto *CI = dyn_cast_or_null<ConstantInt>(
C);
141 Value *CommonValue =
nullptr;
142 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i != e; ++i) {
143 Value *Incoming =
P->getIncomingValue(i);
144 if (
auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
145 IncomingConstants.
push_back(std::make_pair(IncomingConstant, i));
146 }
else if (!CommonValue) {
148 CommonValue = Incoming;
149 }
else if (Incoming != CommonValue) {
155 if (!CommonValue || IncomingConstants.
empty())
160 if (
auto *CommonInst = dyn_cast<Instruction>(CommonValue))
167 for (
auto &IncomingConstant : IncomingConstants) {
169 BasicBlock *IncomingBB =
P->getIncomingBlock(IncomingConstant.second);
182 P->replaceAllUsesWith(CommonValue);
183 P->eraseFromParent();
198 auto *SI = dyn_cast<SelectInst>(Incoming);
204 Value *Condition = SI->getCondition();
208 return SI->getTrueValue();
209 if (
C->isZeroValue())
210 return SI->getFalseValue();
220 if (
auto *
C = dyn_cast<Constant>(SI->getFalseValue()))
223 return SI->getTrueValue();
227 if (
auto *
C = dyn_cast<Constant>(SI->getTrueValue()))
230 return SI->getFalseValue();
237 bool Changed =
false;
240 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i < e; ++i) {
241 Value *Incoming =
P->getIncomingValue(i);
242 if (isa<Constant>(Incoming))
continue;
246 P->setIncomingValue(i, V);
252 P->replaceAllUsesWith(V);
253 P->eraseFromParent();
271 if (Cmp->getType()->isVectorTy() ||
272 !Cmp->getOperand(0)->getType()->isIntegerTy())
275 if (!Cmp->isSigned())
284 if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
288 Cmp->setPredicate(UnsignedPred);
298 Value *Op0 = Cmp->getOperand(0);
299 Value *Op1 = Cmp->getOperand(1);
309 Cmp->replaceAllUsesWith(TorF);
310 Cmp->eraseFromParent();
318 if (
auto *ICmp = dyn_cast<ICmpInst>(Cmp))
339 bool Changed =
false;
342 SuccessorsCount[Succ]++;
348 for (
auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
358 CI = SI.removeCase(CI);
363 Cond = SI->getCondition();
367 if (--SuccessorsCount[Succ] == 0)
375 SI->setCondition(Case);
376 NumDeadCases += SI->getNumCases();
404 bool NewNSW,
bool NewNUW) {
407 case Instruction::Add:
412 case Instruction::Sub:
417 case Instruction::Mul:
422 case Instruction::Shl:
431 auto *Inst = dyn_cast<Instruction>(V);
438 Inst->setHasNoSignedWrap();
446 Inst->setHasNoUnsignedWrap();
457 Type *Ty =
X->getType();
461 bool IsIntMinPoison = cast<ConstantInt>(II->
getArgOperand(1))->isOne();
475 if (Range.getSignedMax().isNonPositive()) {
484 if (
auto *BO = dyn_cast<BinaryOperator>(NegX))
492 if (!IsIntMinPoison && !Range.contains(IntMin)) {
536 if (
auto *BO = dyn_cast<BinaryOperator>(NewOp))
544 bool NSW = SI->isSigned();
545 bool NUW = !SI->isSigned();
547 Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
551 SI->replaceAllUsesWith(BinOp);
552 SI->eraseFromParent();
556 if (
auto *BO = dyn_cast<BinaryOperator>(BinOp))
569 if (
auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
573 if (
auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
574 if (WO->getLHS()->getType()->isIntegerTy() &&
willNotOverflow(WO, LVI)) {
579 if (
auto *SI = dyn_cast<SaturatingInst>(&CB)) {
585 bool Changed =
false;
595 for (
const Use &ConstU : DeoptBundle->Inputs) {
596 Use &U =
const_cast<Use&
>(ConstU);
598 if (V->getType()->isVectorTy())
continue;
599 if (isa<Constant>(V))
continue;
625 assert(ArgNo == CB.
arg_size() &&
"Call arguments not processed correctly.");
630 NumNonNull += ArgNos.
size();
654 assert(Instr->getOpcode() == Instruction::SDiv ||
655 Instr->getOpcode() == Instruction::SRem);
656 assert(!Instr->getType()->isVectorTy());
660 unsigned OrigWidth = Instr->getType()->getIntegerBitWidth();
664 unsigned MinSignedBits =
674 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MinSignedBits), 8);
678 if (NewWidth >= OrigWidth)
681 ++NumSDivSRemsNarrowed;
684 auto *
LHS =
B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
685 Instr->getName() +
".lhs.trunc");
686 auto *
RHS =
B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
687 Instr->getName() +
".rhs.trunc");
688 auto *BO =
B.CreateBinOp(Instr->getOpcode(),
LHS,
RHS, Instr->getName());
689 auto *Sext =
B.CreateSExt(BO, Instr->getType(), Instr->getName() +
".sext");
690 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
691 if (BinOp->getOpcode() == Instruction::SDiv)
692 BinOp->setIsExact(Instr->isExact());
694 Instr->replaceAllUsesWith(Sext);
695 Instr->eraseFromParent();
701 Type *Ty = Instr->getType();
702 assert(Instr->getOpcode() == Instruction::UDiv ||
703 Instr->getOpcode() == Instruction::URem);
705 bool IsRem = Instr->getOpcode() == Instruction::URem;
707 Value *
X = Instr->getOperand(0);
708 Value *
Y = Instr->getOperand(1);
712 if (XCR.
icmp(ICmpInst::ICMP_ULT, YCR)) {
714 Instr->eraseFromParent();
715 ++NumUDivURemsNarrowedExpanded;
743 if (!XCR.
icmp(ICmpInst::ICMP_ULT,
750 if (XCR.
icmp(ICmpInst::ICMP_UGE, YCR)) {
753 ExpandedOp =
B.CreateNUWSub(
X,
Y);
761 FrozenX =
B.CreateFreeze(
X,
X->getName() +
".frozen");
762 auto *AdjX =
B.CreateNUWSub(FrozenX,
Y, Instr->getName() +
".urem");
764 B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX,
Y, Instr->getName() +
".cmp");
765 ExpandedOp =
B.CreateSelect(Cmp, FrozenX, AdjX);
768 B.CreateICmp(ICmpInst::ICMP_UGE,
X,
Y, Instr->getName() +
".cmp");
769 ExpandedOp =
B.CreateZExt(Cmp, Ty, Instr->getName() +
".udiv");
772 Instr->replaceAllUsesWith(ExpandedOp);
773 Instr->eraseFromParent();
774 ++NumUDivURemsNarrowedExpanded;
782 assert(Instr->getOpcode() == Instruction::UDiv ||
783 Instr->getOpcode() == Instruction::URem);
784 assert(!Instr->getType()->isVectorTy());
793 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MaxActiveBits), 8);
797 if (NewWidth >= Instr->getType()->getIntegerBitWidth())
800 ++NumUDivURemsNarrowed;
803 auto *
LHS =
B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
804 Instr->getName() +
".lhs.trunc");
805 auto *
RHS =
B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
806 Instr->getName() +
".rhs.trunc");
807 auto *BO =
B.CreateBinOp(Instr->getOpcode(),
LHS,
RHS, Instr->getName());
808 auto *Zext =
B.CreateZExt(BO, Instr->getType(), Instr->getName() +
".zext");
809 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
810 if (BinOp->getOpcode() == Instruction::UDiv)
811 BinOp->setIsExact(Instr->isExact());
813 Instr->replaceAllUsesWith(Zext);
814 Instr->eraseFromParent();
819 assert(Instr->getOpcode() == Instruction::UDiv ||
820 Instr->getOpcode() == Instruction::URem);
821 if (Instr->getType()->isVectorTy())
856 for (Operand &
Op : Ops) {
866 BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->
getName(), SDI);
917 for (Operand &
Op : Ops) {
927 BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->
getName(), SDI);
929 UDiv->setIsExact(SDI->
isExact());
934 if (Ops[0].
D != Ops[1].
D)
947 assert(Instr->getOpcode() == Instruction::SDiv ||
948 Instr->getOpcode() == Instruction::SRem);
949 if (Instr->getType()->isVectorTy())
954 if (Instr->getOpcode() == Instruction::SDiv)
958 if (Instr->getOpcode() == Instruction::SRem) {
975 if (NegOneOrZero.
contains(LRange)) {
991 BO->setIsExact(SDI->
isExact());
1009 ZExt->takeName(SDI);
1054 bool Changed =
false;
1055 bool NewNUW =
false, NewNSW =
false;
1058 Opcode, RRange, OBO::NoUnsignedWrap);
1059 NewNUW = NUWRange.
contains(LRange);
1064 Opcode, RRange, OBO::NoSignedWrap);
1065 NewNSW = NSWRange.
contains(LRange);
1082 if (!
RHS || !
RHS->getValue().isMask())
1105 auto *
C = dyn_cast<CmpInst>(V);
1106 if (!
C)
return nullptr;
1108 Value *Op0 =
C->getOperand(0);
1109 Constant *Op1 = dyn_cast<Constant>(
C->getOperand(1));
1110 if (!Op1)
return nullptr;
1113 C->getPredicate(), Op0, Op1, At,
false);
1124 bool FnChanged =
false;
1131 bool BBChanged =
false;
1133 switch (II.getOpcode()) {
1134 case Instruction::Select:
1137 case Instruction::PHI:
1138 BBChanged |=
processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1140 case Instruction::ICmp:
1141 case Instruction::FCmp:
1142 BBChanged |=
processCmp(cast<CmpInst>(&II), LVI);
1144 case Instruction::Call:
1145 case Instruction::Invoke:
1148 case Instruction::SRem:
1149 case Instruction::SDiv:
1152 case Instruction::UDiv:
1153 case Instruction::URem:
1156 case Instruction::AShr:
1157 BBChanged |=
processAShr(cast<BinaryOperator>(&II), LVI);
1159 case Instruction::SExt:
1160 BBChanged |=
processSExt(cast<SExtInst>(&II), LVI);
1162 case Instruction::ZExt:
1163 BBChanged |=
processZExt(cast<ZExtInst>(&II), LVI);
1165 case Instruction::Add:
1166 case Instruction::Sub:
1167 case Instruction::Mul:
1168 case Instruction::Shl:
1169 BBChanged |=
processBinOp(cast<BinaryOperator>(&II), LVI);
1171 case Instruction::And:
1172 BBChanged |=
processAnd(cast<BinaryOperator>(&II), LVI);
1178 switch (Term->getOpcode()) {
1179 case Instruction::Switch:
1180 BBChanged |=
processSwitch(cast<SwitchInst>(Term), LVI, DT);
1182 case Instruction::Ret: {
1183 auto *RI = cast<ReturnInst>(Term);
1187 auto *RetVal = RI->getReturnValue();
1189 if (isa<Constant>(RetVal))
break;
1192 RI->replaceUsesOfWith(RetVal,
C);
1198 FnChanged |= BBChanged;
This file contains the simple types necessary to represent the attributes associated with functions a...
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool runImpl(Function &F, const TargetLowering &TLI)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This header defines various interfaces for pass management in LLVM.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static constexpr uint32_t Opcode
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt sext(unsigned width) const
Sign extend to a new width.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const
Add an argument attribute to the list.
static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
LLVM Basic Block Representation.
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
This class represents an intrinsic that is based on a binary operation.
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
AttributeList getAttributes() const
Return the parameter attributes for this call.
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
static CmpInst::Predicate getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred, const ConstantRange &CR1, const ConstantRange &CR2)
If the comparison between constant ranges this and Other is insensitive to the signedness of the comp...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
bool isAllNegative() const
Return true if all values in this range are negative.
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other? NOTE: false does not mean that inverse pr...
ConstantRange abs(bool IntMinIsPoison=false) const
Calculate absolute value range.
bool isAllNonNegative() const
Return true if all values in this range are non-negative.
ConstantRange sdiv(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed division of a value in th...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
unsigned getMinSignedBits() const
Compute the maximal number of bits needed to represent every value in this signed range.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
bool hasNonNeg() const LLVM_READONLY
Determine whether the the nneg flag is set.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Analysis to compute lazy value information.
This pass computes, caches, and vends lazy value constraint information.
ConstantRange getConstantRangeAtUse(const Use &U, bool UndefAllowed=true)
Return the ConstantRange constraint that is known to hold for the value at a specific use-site.
Tristate
This is used to return true/false/dunno results.
Constant * getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value is known to be a constant on the specified edge.
Tristate getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value comparison with a constant is known to be true or false on the ...
Tristate getPredicateAt(unsigned Pred, Value *V, Constant *C, Instruction *CxtI, bool UseBlockValue)
Determine whether the specified value comparison with a constant is known to be true or false at the ...
Constant * getConstant(Value *V, Instruction *CxtI)
Determine whether the specified value is known to be a constant at the specified instruction.
ConstantRange getConstantRange(Value *V, Instruction *CxtI, bool UndefAllowed=true)
Return the ConstantRange constraint that is known to hold for the specified value at the specified in...
This class represents min/max intrinsics.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void abandon()
Mark an analysis as abandoned.
void preserve()
Mark an analysis as preserved.
This class represents a sign extension of integer types.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
iterator_range< df_iterator< T > > depth_first(const T &G)
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)