48#define DEBUG_TYPE "correlated-value-propagation"
52 cl::desc(
"Enables canonicalization of signed relational predicates to "
53 "unsigned (e.g. sgt => ugt)"));
56STATISTIC(NumPhiCommon,
"Number of phis deleted via common incoming value");
57STATISTIC(NumSelects,
"Number of selects propagated");
58STATISTIC(NumMemAccess,
"Number of memory access targets propagated");
59STATISTIC(NumCmps,
"Number of comparisons propagated");
60STATISTIC(NumReturns,
"Number of return values propagated");
61STATISTIC(NumDeadCases,
"Number of switch cases removed");
63 "Number of sdivs/srems whose width was decreased");
64STATISTIC(NumSDivs,
"Number of sdiv converted to udiv");
66 "Number of udivs/urems whose width was decreased");
67STATISTIC(NumAShrsConverted,
"Number of ashr converted to lshr");
68STATISTIC(NumAShrsRemoved,
"Number of ashr removed");
69STATISTIC(NumSRems,
"Number of srem converted to urem");
70STATISTIC(NumSExt,
"Number of sext converted to zext");
71STATISTIC(NumSICmps,
"Number of signed icmp preds simplified to unsigned");
74STATISTIC(NumNSW,
"Number of no-signed-wrap deductions");
75STATISTIC(NumNUW,
"Number of no-unsigned-wrap deductions");
76STATISTIC(NumAddNW,
"Number of no-wrap deductions for add");
77STATISTIC(NumAddNSW,
"Number of no-signed-wrap deductions for add");
78STATISTIC(NumAddNUW,
"Number of no-unsigned-wrap deductions for add");
79STATISTIC(NumSubNW,
"Number of no-wrap deductions for sub");
80STATISTIC(NumSubNSW,
"Number of no-signed-wrap deductions for sub");
81STATISTIC(NumSubNUW,
"Number of no-unsigned-wrap deductions for sub");
82STATISTIC(NumMulNW,
"Number of no-wrap deductions for mul");
83STATISTIC(NumMulNSW,
"Number of no-signed-wrap deductions for mul");
84STATISTIC(NumMulNUW,
"Number of no-unsigned-wrap deductions for mul");
85STATISTIC(NumShlNW,
"Number of no-wrap deductions for shl");
86STATISTIC(NumShlNSW,
"Number of no-signed-wrap deductions for shl");
87STATISTIC(NumShlNUW,
"Number of no-unsigned-wrap deductions for shl");
88STATISTIC(NumAbs,
"Number of llvm.abs intrinsics removed");
89STATISTIC(NumOverflows,
"Number of overflow checks removed");
91 "Number of saturating arithmetics converted to normal arithmetics");
92STATISTIC(NumNonNull,
"Number of function pointer arguments marked non-null");
93STATISTIC(NumMinMax,
"Number of llvm.[us]{min,max} intrinsics removed");
95 "Number of bound udiv's/urem's expanded");
102 if (!
C)
return false;
105 if (!CI)
return false;
131 Value *CommonValue =
nullptr;
132 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i != e; ++i) {
133 Value *Incoming =
P->getIncomingValue(i);
134 if (
auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
135 IncomingConstants.
push_back(std::make_pair(IncomingConstant, i));
136 }
else if (!CommonValue) {
138 CommonValue = Incoming;
139 }
else if (Incoming != CommonValue) {
145 if (!CommonValue || IncomingConstants.
empty())
150 if (
auto *CommonInst = dyn_cast<Instruction>(CommonValue))
157 for (
auto &IncomingConstant : IncomingConstants) {
159 BasicBlock *IncomingBB =
P->getIncomingBlock(IncomingConstant.second);
172 P->replaceAllUsesWith(CommonValue);
173 P->eraseFromParent();
188 auto *
SI = dyn_cast<SelectInst>(Incoming);
194 Value *Condition =
SI->getCondition();
198 return SI->getTrueValue();
199 if (
C->isZeroValue())
200 return SI->getFalseValue();
210 if (
auto *
C = dyn_cast<Constant>(
SI->getFalseValue()))
213 return SI->getTrueValue();
217 if (
auto *
C = dyn_cast<Constant>(
SI->getTrueValue()))
220 return SI->getFalseValue();
227 bool Changed =
false;
230 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i < e; ++i) {
231 Value *Incoming =
P->getIncomingValue(i);
232 if (isa<Constant>(Incoming))
continue;
236 P->setIncomingValue(i, V);
242 P->replaceAllUsesWith(V);
243 P->eraseFromParent();
257 Value *Pointer =
nullptr;
259 Pointer = L->getPointerOperand();
261 Pointer = cast<StoreInst>(
I)->getPointerOperand();
263 if (isa<Constant>(Pointer))
return false;
266 if (!
C)
return false;
269 I->replaceUsesOfWith(Pointer,
C);
278 if (Cmp->getType()->isVectorTy() ||
279 !Cmp->getOperand(0)->getType()->isIntegerTy())
282 if (!Cmp->isSigned())
290 if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
294 Cmp->setPredicate(UnsignedPred);
304 Value *Op0 = Cmp->getOperand(0);
305 Value *Op1 = Cmp->getOperand(1);
315 Cmp->replaceAllUsesWith(TorF);
316 Cmp->eraseFromParent();
324 if (
auto *ICmp = dyn_cast<ICmpInst>(Cmp))
345 bool Changed =
false;
348 SuccessorsCount[Succ]++;
354 for (
auto CI =
SI->case_begin(), CE =
SI->case_end(); CI != CE;) {
364 CI =
SI.removeCase(CI);
369 Cond =
SI->getCondition();
373 if (--SuccessorsCount[Succ] == 0)
381 SI->setCondition(Case);
382 NumDeadCases +=
SI->getNumCases();
410 bool NewNSW,
bool NewNUW) {
413 case Instruction::Add:
418 case Instruction::Sub:
423 case Instruction::Mul:
428 case Instruction::Shl:
437 auto *Inst = dyn_cast<Instruction>(V);
444 Inst->setHasNoSignedWrap();
452 Inst->setHasNoUnsignedWrap();
463 bool IsIntMinPoison = cast<ConstantInt>(II->
getArgOperand(1))->isOne();
465 Type *Ty =
X->getType();
471 Result = LVI->
getPredicateAt(CmpInst::Predicate::ICMP_ULE,
X, IntMin, II,
481 Constant *Zero = ConstantInt::getNullValue(Ty);
482 Result = LVI->
getPredicateAt(CmpInst::Predicate::ICMP_SLE,
X, Zero, II,
488 bool Changed =
false;
489 if (!IsIntMinPoison) {
491 Result = LVI->
getPredicateAt(CmpInst::Predicate::ICMP_NE,
X, IntMin, II,
511 if (
auto *BO = dyn_cast<BinaryOperator>(NegX))
552 if (
auto *BO = dyn_cast<BinaryOperator>(NewOp))
560 bool NSW =
SI->isSigned();
561 bool NUW = !
SI->isSigned();
563 Opcode,
SI->getLHS(),
SI->getRHS(),
SI->getName(),
SI);
567 SI->replaceAllUsesWith(BinOp);
568 SI->eraseFromParent();
572 if (
auto *BO = dyn_cast<BinaryOperator>(BinOp))
585 if (
auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
589 if (
auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
590 if (WO->getLHS()->getType()->isIntegerTy() &&
willNotOverflow(WO, LVI)) {
595 if (
auto *
SI = dyn_cast<SaturatingInst>(&CB)) {
601 bool Changed =
false;
611 for (
const Use &ConstU : DeoptBundle->Inputs) {
612 Use &U =
const_cast<Use&
>(ConstU);
614 if (V->getType()->isVectorTy())
continue;
615 if (isa<Constant>(V))
continue;
641 assert(ArgNo == CB.
arg_size() &&
"Call arguments not processed correctly.");
646 NumNonNull += ArgNos.
size();
671 Instr->
getOpcode() == Instruction::SRem);
680 unsigned MinSignedBits =
690 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MinSignedBits), 8);
694 if (NewWidth >= OrigWidth)
697 ++NumSDivSRemsNarrowed;
701 Instr->
getName() +
".lhs.trunc");
703 Instr->
getName() +
".rhs.trunc");
705 auto *Sext =
B.CreateSExt(BO, Instr->
getType(), Instr->
getName() +
".sext");
706 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
707 if (BinOp->getOpcode() == Instruction::SDiv)
708 BinOp->setIsExact(Instr->
isExact());
719 Instr->
getOpcode() == Instruction::URem);
721 bool IsRem = Instr->
getOpcode() == Instruction::URem;
728 if (XCR.
icmp(ICmpInst::ICMP_ULT, YCR)) {
731 ++NumUDivURemsNarrowedExpanded;
759 if (!XCR.
icmp(ICmpInst::ICMP_ULT,
769 Value *FrozenX =
B.CreateFreeze(
X,
X->getName() +
".frozen");
770 auto *AdjX =
B.CreateNUWSub(FrozenX,
Y, Instr->
getName() +
".urem");
772 B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX,
Y, Instr->
getName() +
".cmp");
773 ExpandedOp =
B.CreateSelect(Cmp, FrozenX, AdjX);
776 B.CreateICmp(ICmpInst::ICMP_UGE,
X,
Y, Instr->
getName() +
".cmp");
777 ExpandedOp =
B.CreateZExt(Cmp, Ty, Instr->
getName() +
".udiv");
782 ++NumUDivURemsNarrowedExpanded;
791 Instr->
getOpcode() == Instruction::URem);
801 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MaxActiveBits), 8);
808 ++NumUDivURemsNarrowed;
812 Instr->
getName() +
".lhs.trunc");
814 Instr->
getName() +
".rhs.trunc");
816 auto *Zext =
B.CreateZExt(BO, Instr->
getType(), Instr->
getName() +
".zext");
817 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
818 if (BinOp->getOpcode() == Instruction::UDiv)
819 BinOp->setIsExact(Instr->
isExact());
828 Instr->
getOpcode() == Instruction::URem);
864 for (Operand &Op : Ops) {
874 BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->
getName(), SDI);
917 for (Operand &Op : Ops) {
927 BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->
getName(), SDI);
929 UDiv->setIsExact(SDI->
isExact());
934 if (Ops[0].
D != Ops[1].
D)
948 Instr->
getOpcode() == Instruction::SRem);
954 if (Instr->
getOpcode() == Instruction::SDiv)
958 if (Instr->
getOpcode() == Instruction::SRem) {
974 if (NegOneOrZero.
contains(LRange)) {
990 BO->setIsExact(SDI->
isExact());
1007 ZExt->takeName(SDI);
1033 bool Changed =
false;
1034 bool NewNUW =
false, NewNSW =
false;
1037 Opcode, RRange, OBO::NoUnsignedWrap);
1038 NewNUW = NUWRange.
contains(LRange);
1043 Opcode, RRange, OBO::NoSignedWrap);
1044 NewNSW = NSWRange.
contains(LRange);
1061 if (!
RHS || !
RHS->getValue().isMask())
1084 auto *
C = dyn_cast<CmpInst>(V);
1085 if (!
C)
return nullptr;
1087 Value *Op0 =
C->getOperand(0);
1088 Constant *Op1 = dyn_cast<Constant>(
C->getOperand(1));
1089 if (!Op1)
return nullptr;
1092 C->getPredicate(), Op0, Op1, At,
false);
1103 bool FnChanged =
false;
1110 bool BBChanged =
false;
1112 switch (II.getOpcode()) {
1113 case Instruction::Select:
1116 case Instruction::PHI:
1117 BBChanged |=
processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1119 case Instruction::ICmp:
1120 case Instruction::FCmp:
1121 BBChanged |=
processCmp(cast<CmpInst>(&II), LVI);
1123 case Instruction::Load:
1124 case Instruction::Store:
1127 case Instruction::Call:
1128 case Instruction::Invoke:
1131 case Instruction::SRem:
1132 case Instruction::SDiv:
1135 case Instruction::UDiv:
1136 case Instruction::URem:
1139 case Instruction::AShr:
1140 BBChanged |=
processAShr(cast<BinaryOperator>(&II), LVI);
1142 case Instruction::SExt:
1143 BBChanged |=
processSExt(cast<SExtInst>(&II), LVI);
1145 case Instruction::Add:
1146 case Instruction::Sub:
1147 case Instruction::Mul:
1148 case Instruction::Shl:
1149 BBChanged |=
processBinOp(cast<BinaryOperator>(&II), LVI);
1151 case Instruction::And:
1152 BBChanged |=
processAnd(cast<BinaryOperator>(&II), LVI);
1158 switch (Term->getOpcode()) {
1159 case Instruction::Switch:
1160 BBChanged |=
processSwitch(cast<SwitchInst>(Term), LVI, DT);
1162 case Instruction::Ret: {
1163 auto *RI = cast<ReturnInst>(Term);
1167 auto *RetVal = RI->getReturnValue();
1169 if (isa<Constant>(RetVal))
break;
1172 RI->replaceUsesOfWith(RetVal,
C);
1178 FnChanged |= BBChanged;
This file contains the simple types necessary to represent the attributes associated with functions a...
SmallVector< MachineOperand, 4 > Cond
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool runImpl(Function &F, const TargetLowering &TLI)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This header defines various interfaces for pass management in LLVM.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt sext(unsigned width) const
Sign extend to a new width.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const
Add an argument attribute to the list.
static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
LLVM Basic Block Representation.
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
This class represents an intrinsic that is based on a binary operation.
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
AttributeList getAttributes() const
Return the parameter attributes for this call.
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_ULT
unsigned less than
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
This is the shared class of boolean and integer constants.
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
static ConstantInt * getTrue(LLVMContext &Context)
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
static CmpInst::Predicate getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred, const ConstantRange &CR1, const ConstantRange &CR2)
If the comparison between constant ranges this and Other is insensitive to the signedness of the comp...
bool isAllNegative() const
Return true if all values in this range are negative.
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other? NOTE: false does not mean that inverse pr...
ConstantRange abs(bool IntMinIsPoison=false) const
Calculate absolute value range.
bool isAllNonNegative() const
Return true if all values in this range are non-negative.
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
unsigned getMinSignedBits() const
Compute the maximal number of bits needed to represent every value in this signed range.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Analysis to compute lazy value information.
This pass computes, caches, and vends lazy value constraint information.
ConstantRange getConstantRangeAtUse(const Use &U, bool UndefAllowed=true)
Return the ConstantRange constraint that is known to hold for the value at a specific use-site.
Tristate
This is used to return true/false/dunno results.
Constant * getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value is known to be a constant on the specified edge.
Tristate getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value comparison with a constant is known to be true or false on the ...
Tristate getPredicateAt(unsigned Pred, Value *V, Constant *C, Instruction *CxtI, bool UseBlockValue)
Determine whether the specified value comparison with a constant is known to be true or false at the ...
Constant * getConstant(Value *V, Instruction *CxtI)
Determine whether the specified value is known to be a constant at the specified instruction.
ConstantRange getConstantRange(Value *V, Instruction *CxtI, bool UndefAllowed=true)
Return the ConstantRange constraint that is known to hold for the specified value at the specified in...
An instruction for reading from memory.
This class represents min/max intrinsics.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void abandon()
Mark an analysis as abandoned.
void preserve()
Mark an analysis as preserved.
This class represents a sign extension of integer types.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
iterator_range< df_iterator< T > > depth_first(const T &G)
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)