LLVM 20.0.0git
AArch64RedundantCopyElimination.cpp
Go to the documentation of this file.
1//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7// This pass removes unnecessary copies/moves in BBs based on a dominating
8// condition.
9//
10// We handle three cases:
11// 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
12// the CBZ/CBNZ source register is zero on the taken/not-taken path. For
13// instance, the copy instruction in the code below can be removed because
14// the CBZW jumps to %bb.2 when w0 is zero.
15//
16// %bb.1:
17// cbz w0, .LBB0_2
18// .LBB0_2:
19// mov w0, wzr ; <-- redundant
20//
21// 2. If the flag setting instruction defines a register other than WZR/XZR, we
22// can remove a zero copy in some cases.
23//
24// %bb.0:
25// subs w0, w1, w2
26// str w0, [x1]
27// b.ne .LBB0_2
28// %bb.1:
29// mov w0, wzr ; <-- redundant
30// str w0, [x2]
31// .LBB0_2
32//
33// 3. Finally, if the flag setting instruction is a comparison against a
34// constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
35// in some cases.
36//
37// %bb.0:
38// subs xzr, x0, #1
39// b.eq .LBB0_1
40// .LBB0_1:
41// orr x0, xzr, #0x1 ; <-- redundant
42//
43// This pass should be run after register allocation.
44//
45// FIXME: This could also be extended to check the whole dominance subtree below
46// the comparison if the compile time regression is acceptable.
47//
48// FIXME: Add support for handling CCMP instructions.
49// FIXME: If the known register value is zero, we should be able to rewrite uses
50// to use WZR/XZR directly in some cases.
51//===----------------------------------------------------------------------===//
52#include "AArch64.h"
53#include "llvm/ADT/SetVector.h"
54#include "llvm/ADT/Statistic.h"
59#include "llvm/Support/Debug.h"
60
61using namespace llvm;
62
63#define DEBUG_TYPE "aarch64-copyelim"
64
65STATISTIC(NumCopiesRemoved, "Number of copies removed.");
66
67namespace {
68class AArch64RedundantCopyElimination : public MachineFunctionPass {
71
72 // DomBBClobberedRegs is used when computing known values in the dominating
73 // BB.
74 LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;
75
76 // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
77 LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;
78
79public:
80 static char ID;
81 AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
84 }
85
86 struct RegImm {
88 int32_t Imm;
89 RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
90 };
91
92 bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
93 SmallVectorImpl<RegImm> &KnownRegs,
96 bool runOnMachineFunction(MachineFunction &MF) override;
99 MachineFunctionProperties::Property::NoVRegs);
100 }
101 StringRef getPassName() const override {
102 return "AArch64 Redundant Copy Elimination";
103 }
104};
105char AArch64RedundantCopyElimination::ID = 0;
106}
107
108INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
109 "AArch64 redundant copy elimination pass", false, false)
110
111/// It's possible to determine the value of a register based on a dominating
112/// condition. To do so, this function checks to see if the basic block \p MBB
113/// is the target of a conditional branch \p CondBr with an equality comparison.
114/// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
115/// in \p MBB for some cases. Otherwise, we find and inspect the NZCV setting
116/// instruction (e.g., SUBS, ADDS). If this instruction defines a register
117/// other than WZR/XZR, we know the value of the destination register is zero in
118/// \p MMB for some cases. In addition, if the NZCV setting instruction is
119/// comparing against a constant we know the other source register is equal to
120/// the constant in \p MBB for some cases. If we find any constant values, push
121/// a physical register and constant value pair onto the KnownRegs vector and
122/// return true. Otherwise, return false if no known values were found.
123bool AArch64RedundantCopyElimination::knownRegValInBlock(
125 SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
126 unsigned Opc = CondBr.getOpcode();
127
128 // Check if the current basic block is the target block to which the
129 // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
130 if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
131 MBB == CondBr.getOperand(1).getMBB()) ||
132 ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
133 MBB != CondBr.getOperand(1).getMBB())) {
134 FirstUse = CondBr;
135 KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
136 return true;
137 }
138
139 // Otherwise, must be a conditional branch.
140 if (Opc != AArch64::Bcc)
141 return false;
142
143 // Must be an equality check (i.e., == or !=).
144 AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
145 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
146 return false;
147
148 MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
149 if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
150 (CC == AArch64CC::NE && BrTarget == MBB))
151 return false;
152
153 // Stop if we get to the beginning of PredMBB.
154 MachineBasicBlock *PredMBB = *MBB->pred_begin();
155 assert(PredMBB == CondBr.getParent() &&
156 "Conditional branch not in predecessor block!");
157 if (CondBr == PredMBB->begin())
158 return false;
159
160 // Registers clobbered in PredMBB between CondBr instruction and current
161 // instruction being checked in loop.
162 DomBBClobberedRegs.clear();
163 DomBBUsedRegs.clear();
164
165 // Find compare instruction that sets NZCV used by CondBr.
166 MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
167 for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {
168
169 bool IsCMN = false;
170 switch (PredI.getOpcode()) {
171 default:
172 break;
173
174 // CMN is an alias for ADDS with a dead destination register.
175 case AArch64::ADDSWri:
176 case AArch64::ADDSXri:
177 IsCMN = true;
178 [[fallthrough]];
179 // CMP is an alias for SUBS with a dead destination register.
180 case AArch64::SUBSWri:
181 case AArch64::SUBSXri: {
182 // Sometimes the first operand is a FrameIndex. Bail if tht happens.
183 if (!PredI.getOperand(1).isReg())
184 return false;
185 MCPhysReg DstReg = PredI.getOperand(0).getReg();
186 MCPhysReg SrcReg = PredI.getOperand(1).getReg();
187
188 bool Res = false;
189 // If we're comparing against a non-symbolic immediate and the source
190 // register of the compare is not modified (including a self-clobbering
191 // compare) between the compare and conditional branch we known the value
192 // of the 1st source operand.
193 if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
194 SrcReg != DstReg) {
195 // We've found the instruction that sets NZCV.
196 int32_t KnownImm = PredI.getOperand(2).getImm();
197 int32_t Shift = PredI.getOperand(3).getImm();
198 KnownImm <<= Shift;
199 if (IsCMN)
200 KnownImm = -KnownImm;
201 FirstUse = PredI;
202 KnownRegs.push_back(RegImm(SrcReg, KnownImm));
203 Res = true;
204 }
205
206 // If this instructions defines something other than WZR/XZR, we know it's
207 // result is zero in some cases.
208 if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
209 return Res;
210
211 // The destination register must not be modified between the NZCV setting
212 // instruction and the conditional branch.
213 if (!DomBBClobberedRegs.available(DstReg))
214 return Res;
215
216 FirstUse = PredI;
217 KnownRegs.push_back(RegImm(DstReg, 0));
218 return true;
219 }
220
221 // Look for NZCV setting instructions that define something other than
222 // WZR/XZR.
223 case AArch64::ADCSWr:
224 case AArch64::ADCSXr:
225 case AArch64::ADDSWrr:
226 case AArch64::ADDSWrs:
227 case AArch64::ADDSWrx:
228 case AArch64::ADDSXrr:
229 case AArch64::ADDSXrs:
230 case AArch64::ADDSXrx:
231 case AArch64::ADDSXrx64:
232 case AArch64::ANDSWri:
233 case AArch64::ANDSWrr:
234 case AArch64::ANDSWrs:
235 case AArch64::ANDSXri:
236 case AArch64::ANDSXrr:
237 case AArch64::ANDSXrs:
238 case AArch64::BICSWrr:
239 case AArch64::BICSWrs:
240 case AArch64::BICSXrs:
241 case AArch64::BICSXrr:
242 case AArch64::SBCSWr:
243 case AArch64::SBCSXr:
244 case AArch64::SUBSWrr:
245 case AArch64::SUBSWrs:
246 case AArch64::SUBSWrx:
247 case AArch64::SUBSXrr:
248 case AArch64::SUBSXrs:
249 case AArch64::SUBSXrx:
250 case AArch64::SUBSXrx64: {
251 MCPhysReg DstReg = PredI.getOperand(0).getReg();
252 if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
253 return false;
254
255 // The destination register of the NZCV setting instruction must not be
256 // modified before the conditional branch.
257 if (!DomBBClobberedRegs.available(DstReg))
258 return false;
259
260 // We've found the instruction that sets NZCV whose DstReg == 0.
261 FirstUse = PredI;
262 KnownRegs.push_back(RegImm(DstReg, 0));
263 return true;
264 }
265 }
266
267 // Bail if we see an instruction that defines NZCV that we don't handle.
268 if (PredI.definesRegister(AArch64::NZCV, /*TRI=*/nullptr))
269 return false;
270
271 // Track clobbered and used registers.
272 LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
273 TRI);
274 }
275 return false;
276}
277
278bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
279 // Check if the current basic block has a single predecessor.
280 if (MBB->pred_size() != 1)
281 return false;
282
283 // Check if the predecessor has two successors, implying the block ends in a
284 // conditional branch.
285 MachineBasicBlock *PredMBB = *MBB->pred_begin();
286 if (PredMBB->succ_size() != 2)
287 return false;
288
290 if (CondBr == PredMBB->end())
291 return false;
292
293 // Keep track of the earliest point in the PredMBB block where kill markers
294 // need to be removed if a COPY is removed.
296 // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
297 // or a compare (i.e., SUBS). In the latter case, we must take care when
298 // updating FirstUse when scanning for COPY instructions. In particular, if
299 // there's a COPY in between the compare and branch the COPY should not
300 // update FirstUse.
301 bool SeenFirstUse = false;
302 // Registers that contain a known value at the start of MBB.
303 SmallVector<RegImm, 4> KnownRegs;
304
305 MachineBasicBlock::iterator Itr = std::next(CondBr);
306 do {
307 --Itr;
308
309 if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
310 continue;
311
312 // Reset the clobbered and used register units.
313 OptBBClobberedRegs.clear();
314 OptBBUsedRegs.clear();
315
316 // Look backward in PredMBB for COPYs from the known reg to find other
317 // registers that are known to be a constant value.
318 for (auto PredI = Itr;; --PredI) {
319 if (FirstUse == PredI)
320 SeenFirstUse = true;
321
322 if (PredI->isCopy()) {
323 MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
324 MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
325 for (auto &KnownReg : KnownRegs) {
326 if (!OptBBClobberedRegs.available(KnownReg.Reg))
327 continue;
328 // If we have X = COPY Y, and Y is known to be zero, then now X is
329 // known to be zero.
330 if (CopySrcReg == KnownReg.Reg &&
331 OptBBClobberedRegs.available(CopyDstReg)) {
332 KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
333 if (SeenFirstUse)
334 FirstUse = PredI;
335 break;
336 }
337 // If we have X = COPY Y, and X is known to be zero, then now Y is
338 // known to be zero.
339 if (CopyDstReg == KnownReg.Reg &&
340 OptBBClobberedRegs.available(CopySrcReg)) {
341 KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
342 if (SeenFirstUse)
343 FirstUse = PredI;
344 break;
345 }
346 }
347 }
348
349 // Stop if we get to the beginning of PredMBB.
350 if (PredI == PredMBB->begin())
351 break;
352
353 LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
354 OptBBUsedRegs, TRI);
355 // Stop if all of the known-zero regs have been clobbered.
356 if (all_of(KnownRegs, [&](RegImm KnownReg) {
357 return !OptBBClobberedRegs.available(KnownReg.Reg);
358 }))
359 break;
360 }
361 break;
362
363 } while (Itr != PredMBB->begin() && Itr->isTerminator());
364
365 // We've not found a registers with a known value, time to bail out.
366 if (KnownRegs.empty())
367 return false;
368
369 bool Changed = false;
370 // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
371 SmallSetVector<unsigned, 4> UsedKnownRegs;
372 MachineBasicBlock::iterator LastChange = MBB->begin();
373 // Remove redundant copy/move instructions unless KnownReg is modified.
374 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
375 MachineInstr *MI = &*I;
376 ++I;
377 bool RemovedMI = false;
378 bool IsCopy = MI->isCopy();
379 bool IsMoveImm = MI->isMoveImmediate();
380 if (IsCopy || IsMoveImm) {
381 Register DefReg = MI->getOperand(0).getReg();
382 Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
383 int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
384 if (!MRI->isReserved(DefReg) &&
385 ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
386 IsMoveImm)) {
387 for (RegImm &KnownReg : KnownRegs) {
388 if (KnownReg.Reg != DefReg &&
389 !TRI->isSuperRegister(DefReg, KnownReg.Reg))
390 continue;
391
392 // For a copy, the known value must be a zero.
393 if (IsCopy && KnownReg.Imm != 0)
394 continue;
395
396 if (IsMoveImm) {
397 // For a move immediate, the known immediate must match the source
398 // immediate.
399 if (KnownReg.Imm != SrcImm)
400 continue;
401
402 // Don't remove a move immediate that implicitly defines the upper
403 // bits when only the lower 32 bits are known.
404 MCPhysReg CmpReg = KnownReg.Reg;
405 if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
406 return !O.isDead() && O.isReg() && O.isDef() &&
407 O.getReg() != CmpReg;
408 }))
409 continue;
410
411 // Don't remove a move immediate that implicitly defines the upper
412 // bits as different.
413 if (TRI->isSuperRegister(DefReg, KnownReg.Reg) && KnownReg.Imm < 0)
414 continue;
415 }
416
417 if (IsCopy)
418 LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
419 else
420 LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);
421
422 MI->eraseFromParent();
423 Changed = true;
424 LastChange = I;
425 NumCopiesRemoved++;
426 UsedKnownRegs.insert(KnownReg.Reg);
427 RemovedMI = true;
428 break;
429 }
430 }
431 }
432
433 // Skip to the next instruction if we removed the COPY/MovImm.
434 if (RemovedMI)
435 continue;
436
437 // Remove any regs the MI clobbers from the KnownConstRegs set.
438 for (unsigned RI = 0; RI < KnownRegs.size();)
439 if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
440 std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
441 KnownRegs.pop_back();
442 // Don't increment RI since we need to now check the swapped-in
443 // KnownRegs[RI].
444 } else {
445 ++RI;
446 }
447
448 // Continue until the KnownRegs set is empty.
449 if (KnownRegs.empty())
450 break;
451 }
452
453 if (!Changed)
454 return false;
455
456 // Add newly used regs to the block's live-in list if they aren't there
457 // already.
458 for (MCPhysReg KnownReg : UsedKnownRegs)
459 if (!MBB->isLiveIn(KnownReg))
460 MBB->addLiveIn(KnownReg);
461
462 // Clear kills in the range where changes were made. This is conservative,
463 // but should be okay since kill markers are being phased out.
464 LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
465 << "\tLastChange: ";
466 if (LastChange == MBB->end()) dbgs() << "<end>\n";
467 else dbgs() << *LastChange);
468 for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
469 MMI.clearKillInfo();
470 for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
471 MMI.clearKillInfo();
472
473 return true;
474}
475
476bool AArch64RedundantCopyElimination::runOnMachineFunction(
477 MachineFunction &MF) {
478 if (skipFunction(MF.getFunction()))
479 return false;
481 MRI = &MF.getRegInfo();
482
483 // Resize the clobbered and used register unit trackers. We do this once per
484 // function.
485 DomBBClobberedRegs.init(*TRI);
486 DomBBUsedRegs.init(*TRI);
487 OptBBClobberedRegs.init(*TRI);
488 OptBBUsedRegs.init(*TRI);
489
490 bool Changed = false;
491 for (MachineBasicBlock &MBB : MF)
492 Changed |= optimizeBlock(&MBB);
493 return Changed;
494}
495
497 return new AArch64RedundantCopyElimination();
498}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
#define LLVM_DEBUG(X)
Definition: Debug.h:101
IRTranslator LLVM IR MI
A set of register units.
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT, const TargetTransformInfo &TTI, const DataLayout &DL, DomTreeUpdater *DTU)
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:30
static void accumulateUsedDefed(const MachineInstr &MI, LiveRegUnits &ModifiedRegUnits, LiveRegUnits &UsedRegUnits, const TargetRegisterInfo *TRI)
For a machine instruction MI, adds all register units used in UsedRegUnits and defined or clobbered i...
Definition: LiveRegUnits.h:47
bool available(MCPhysReg Reg) const
Returns true if no part of physical register Reg is live.
Definition: LiveRegUnits.h:116
void init(const TargetRegisterInfo &TRI)
Initialize and clear the set.
Definition: LiveRegUnits.h:73
void clear()
Clears the set.
Definition: LiveRegUnits.h:80
unsigned pred_size() const
reverse_iterator rend()
bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
unsigned succ_size() const
iterator getLastNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the last non-debug instruction in the basic block, or end().
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:587
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
FunctionPass * createAArch64RedundantCopyEliminationPass()
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void initializeAArch64RedundantCopyEliminationPass(PassRegistry &)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860