LLVM 22.0.0git
AMDGPUBaseInfo.cpp
Go to the documentation of this file.
1//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "AMDGPUBaseInfo.h"
10#include "AMDGPU.h"
11#include "AMDGPUAsmUtils.h"
12#include "AMDKernelCodeT.h"
17#include "llvm/IR/Attributes.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
20#include "llvm/IR/GlobalValue.h"
21#include "llvm/IR/IntrinsicsAMDGPU.h"
22#include "llvm/IR/IntrinsicsR600.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Metadata.h"
25#include "llvm/MC/MCInstrInfo.h"
30#include <optional>
31
32#define GET_INSTRINFO_NAMED_OPS
33#define GET_INSTRMAP_INFO
34#include "AMDGPUGenInstrInfo.inc"
35
37 "amdhsa-code-object-version", llvm::cl::Hidden,
39 llvm::cl::desc("Set default AMDHSA Code Object Version (module flag "
40 "or asm directive still take priority if present)"));
41
42namespace {
43
44/// \returns Bit mask for given bit \p Shift and bit \p Width.
45unsigned getBitMask(unsigned Shift, unsigned Width) {
46 return ((1 << Width) - 1) << Shift;
47}
48
49/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
50///
51/// \returns Packed \p Dst.
52unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
53 unsigned Mask = getBitMask(Shift, Width);
54 return ((Src << Shift) & Mask) | (Dst & ~Mask);
55}
56
57/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
58///
59/// \returns Unpacked bits.
60unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
61 return (Src & getBitMask(Shift, Width)) >> Shift;
62}
63
64/// \returns Vmcnt bit shift (lower bits).
65unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
66 return VersionMajor >= 11 ? 10 : 0;
67}
68
69/// \returns Vmcnt bit width (lower bits).
70unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
71 return VersionMajor >= 11 ? 6 : 4;
72}
73
74/// \returns Expcnt bit shift.
75unsigned getExpcntBitShift(unsigned VersionMajor) {
76 return VersionMajor >= 11 ? 0 : 4;
77}
78
79/// \returns Expcnt bit width.
80unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }
81
82/// \returns Lgkmcnt bit shift.
83unsigned getLgkmcntBitShift(unsigned VersionMajor) {
84 return VersionMajor >= 11 ? 4 : 8;
85}
86
87/// \returns Lgkmcnt bit width.
88unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89 return VersionMajor >= 10 ? 6 : 4;
90}
91
92/// \returns Vmcnt bit shift (higher bits).
93unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }
94
95/// \returns Vmcnt bit width (higher bits).
96unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
97 return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
98}
99
100/// \returns Loadcnt bit width
101unsigned getLoadcntBitWidth(unsigned VersionMajor) {
102 return VersionMajor >= 12 ? 6 : 0;
103}
104
105/// \returns Samplecnt bit width.
106unsigned getSamplecntBitWidth(unsigned VersionMajor) {
107 return VersionMajor >= 12 ? 6 : 0;
108}
109
110/// \returns Bvhcnt bit width.
111unsigned getBvhcntBitWidth(unsigned VersionMajor) {
112 return VersionMajor >= 12 ? 3 : 0;
113}
114
115/// \returns Dscnt bit width.
116unsigned getDscntBitWidth(unsigned VersionMajor) {
117 return VersionMajor >= 12 ? 6 : 0;
118}
119
120/// \returns Dscnt bit shift in combined S_WAIT instructions.
121unsigned getDscntBitShift(unsigned VersionMajor) { return 0; }
122
123/// \returns Storecnt or Vscnt bit width, depending on VersionMajor.
124unsigned getStorecntBitWidth(unsigned VersionMajor) {
125 return VersionMajor >= 10 ? 6 : 0;
126}
127
128/// \returns Kmcnt bit width.
129unsigned getKmcntBitWidth(unsigned VersionMajor) {
130 return VersionMajor >= 12 ? 5 : 0;
131}
132
133/// \returns Xcnt bit width.
134unsigned getXcntBitWidth(unsigned VersionMajor, unsigned VersionMinor) {
135 return VersionMajor == 12 && VersionMinor == 5 ? 6 : 0;
136}
137
138/// \returns shift for Loadcnt/Storecnt in combined S_WAIT instructions.
139unsigned getLoadcntStorecntBitShift(unsigned VersionMajor) {
140 return VersionMajor >= 12 ? 8 : 0;
141}
142
143/// \returns VaSdst bit width
144inline unsigned getVaSdstBitWidth() { return 3; }
145
146/// \returns VaSdst bit shift
147inline unsigned getVaSdstBitShift() { return 9; }
148
149/// \returns VmVsrc bit width
150inline unsigned getVmVsrcBitWidth() { return 3; }
151
152/// \returns VmVsrc bit shift
153inline unsigned getVmVsrcBitShift() { return 2; }
154
155/// \returns VaVdst bit width
156inline unsigned getVaVdstBitWidth() { return 4; }
157
158/// \returns VaVdst bit shift
159inline unsigned getVaVdstBitShift() { return 12; }
160
161/// \returns VaVcc bit width
162inline unsigned getVaVccBitWidth() { return 1; }
163
164/// \returns VaVcc bit shift
165inline unsigned getVaVccBitShift() { return 1; }
166
167/// \returns SaSdst bit width
168inline unsigned getSaSdstBitWidth() { return 1; }
169
170/// \returns SaSdst bit shift
171inline unsigned getSaSdstBitShift() { return 0; }
172
173/// \returns VaSsrc width
174inline unsigned getVaSsrcBitWidth() { return 1; }
175
176/// \returns VaSsrc bit shift
177inline unsigned getVaSsrcBitShift() { return 8; }
178
179/// \returns HoldCnt bit shift
180inline unsigned getHoldCntWidth() { return 1; }
181
182/// \returns HoldCnt bit shift
183inline unsigned getHoldCntBitShift() { return 7; }
184
185} // end anonymous namespace
186
187namespace llvm {
188
189namespace AMDGPU {
190
191/// \returns true if the target supports signed immediate offset for SMRD
192/// instructions.
194 return isGFX9Plus(ST);
195}
196
197/// \returns True if \p STI is AMDHSA.
198bool isHsaAbi(const MCSubtargetInfo &STI) {
199 return STI.getTargetTriple().getOS() == Triple::AMDHSA;
200}
201
204 M.getModuleFlag("amdhsa_code_object_version"))) {
205 return (unsigned)Ver->getZExtValue() / 100;
206 }
207
209}
210
214
215unsigned getAMDHSACodeObjectVersion(unsigned ABIVersion) {
216 switch (ABIVersion) {
218 return 4;
220 return 5;
222 return 6;
223 default:
225 }
226}
227
228uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion) {
229 if (T.getOS() != Triple::AMDHSA)
230 return 0;
231
232 switch (CodeObjectVersion) {
233 case 4:
235 case 5:
237 case 6:
239 default:
240 report_fatal_error("Unsupported AMDHSA Code Object Version " +
241 Twine(CodeObjectVersion));
242 }
243}
244
245unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion) {
246 switch (CodeObjectVersion) {
247 case AMDHSA_COV4:
248 return 48;
249 case AMDHSA_COV5:
250 case AMDHSA_COV6:
251 default:
253 }
254}
255
256// FIXME: All such magic numbers about the ABI should be in a
257// central TD file.
258unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion) {
259 switch (CodeObjectVersion) {
260 case AMDHSA_COV4:
261 return 24;
262 case AMDHSA_COV5:
263 case AMDHSA_COV6:
264 default:
266 }
267}
268
269unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion) {
270 switch (CodeObjectVersion) {
271 case AMDHSA_COV4:
272 return 32;
273 case AMDHSA_COV5:
274 case AMDHSA_COV6:
275 default:
277 }
278}
279
280unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion) {
281 switch (CodeObjectVersion) {
282 case AMDHSA_COV4:
283 return 40;
284 case AMDHSA_COV5:
285 case AMDHSA_COV6:
286 default:
288 }
289}
290
291#define GET_MIMGBaseOpcodesTable_IMPL
292#define GET_MIMGDimInfoTable_IMPL
293#define GET_MIMGInfoTable_IMPL
294#define GET_MIMGLZMappingTable_IMPL
295#define GET_MIMGMIPMappingTable_IMPL
296#define GET_MIMGBiasMappingTable_IMPL
297#define GET_MIMGOffsetMappingTable_IMPL
298#define GET_MIMGG16MappingTable_IMPL
299#define GET_MAIInstInfoTable_IMPL
300#define GET_WMMAInstInfoTable_IMPL
301#include "AMDGPUGenSearchableTables.inc"
302
303int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
304 unsigned VDataDwords, unsigned VAddrDwords) {
305 const MIMGInfo *Info =
306 getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, VDataDwords, VAddrDwords);
307 return Info ? Info->Opcode : -1;
308}
309
311 const MIMGInfo *Info = getMIMGInfo(Opc);
312 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
313}
314
315int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
316 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
317 const MIMGInfo *NewInfo =
318 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
319 NewChannels, OrigInfo->VAddrDwords);
320 return NewInfo ? NewInfo->Opcode : -1;
321}
322
323unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
324 const MIMGDimInfo *Dim, bool IsA16,
325 bool IsG16Supported) {
326 unsigned AddrWords = BaseOpcode->NumExtraArgs;
327 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
328 (BaseOpcode->LodOrClampOrMip ? 1 : 0);
329 if (IsA16)
330 AddrWords += divideCeil(AddrComponents, 2);
331 else
332 AddrWords += AddrComponents;
333
334 // Note: For subtargets that support A16 but not G16, enabling A16 also
335 // enables 16 bit gradients.
336 // For subtargets that support A16 (operand) and G16 (done with a different
337 // instruction encoding), they are independent.
338
339 if (BaseOpcode->Gradients) {
340 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
341 // There are two gradients per coordinate, we pack them separately.
342 // For the 3d case,
343 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
344 AddrWords += alignTo<2>(Dim->NumGradients / 2);
345 else
346 AddrWords += Dim->NumGradients;
347 }
348 return AddrWords;
349}
350
361
370
375
380
384
388
392
399
407
412
413#define GET_FP4FP8DstByteSelTable_DECL
414#define GET_FP4FP8DstByteSelTable_IMPL
415
420
426
427#define GET_DPMACCInstructionTable_DECL
428#define GET_DPMACCInstructionTable_IMPL
429#define GET_MTBUFInfoTable_DECL
430#define GET_MTBUFInfoTable_IMPL
431#define GET_MUBUFInfoTable_DECL
432#define GET_MUBUFInfoTable_IMPL
433#define GET_SMInfoTable_DECL
434#define GET_SMInfoTable_IMPL
435#define GET_VOP1InfoTable_DECL
436#define GET_VOP1InfoTable_IMPL
437#define GET_VOP2InfoTable_DECL
438#define GET_VOP2InfoTable_IMPL
439#define GET_VOP3InfoTable_DECL
440#define GET_VOP3InfoTable_IMPL
441#define GET_VOPC64DPPTable_DECL
442#define GET_VOPC64DPPTable_IMPL
443#define GET_VOPC64DPP8Table_DECL
444#define GET_VOPC64DPP8Table_IMPL
445#define GET_VOPCAsmOnlyInfoTable_DECL
446#define GET_VOPCAsmOnlyInfoTable_IMPL
447#define GET_VOP3CAsmOnlyInfoTable_DECL
448#define GET_VOP3CAsmOnlyInfoTable_IMPL
449#define GET_VOPDComponentTable_DECL
450#define GET_VOPDComponentTable_IMPL
451#define GET_VOPDPairs_DECL
452#define GET_VOPDPairs_IMPL
453#define GET_VOPTrue16Table_DECL
454#define GET_VOPTrue16Table_IMPL
455#define GET_True16D16Table_IMPL
456#define GET_WMMAOpcode2AddrMappingTable_DECL
457#define GET_WMMAOpcode2AddrMappingTable_IMPL
458#define GET_WMMAOpcode3AddrMappingTable_DECL
459#define GET_WMMAOpcode3AddrMappingTable_IMPL
460#define GET_getMFMA_F8F6F4_WithSize_DECL
461#define GET_getMFMA_F8F6F4_WithSize_IMPL
462#define GET_isMFMA_F8F6F4Table_IMPL
463#define GET_isCvtScaleF32_F32F16ToF8F4Table_IMPL
464
465#include "AMDGPUGenSearchableTables.inc"
466
467int getMTBUFBaseOpcode(unsigned Opc) {
468 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
469 return Info ? Info->BaseOpcode : -1;
470}
471
472int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
473 const MTBUFInfo *Info =
474 getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
475 return Info ? Info->Opcode : -1;
476}
477
478int getMTBUFElements(unsigned Opc) {
479 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
480 return Info ? Info->elements : 0;
481}
482
483bool getMTBUFHasVAddr(unsigned Opc) {
484 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
485 return Info && Info->has_vaddr;
486}
487
488bool getMTBUFHasSrsrc(unsigned Opc) {
489 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
490 return Info && Info->has_srsrc;
491}
492
493bool getMTBUFHasSoffset(unsigned Opc) {
494 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
495 return Info && Info->has_soffset;
496}
497
498int getMUBUFBaseOpcode(unsigned Opc) {
499 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
500 return Info ? Info->BaseOpcode : -1;
501}
502
503int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
504 const MUBUFInfo *Info =
505 getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
506 return Info ? Info->Opcode : -1;
507}
508
509int getMUBUFElements(unsigned Opc) {
510 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
511 return Info ? Info->elements : 0;
512}
513
514bool getMUBUFHasVAddr(unsigned Opc) {
515 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
516 return Info && Info->has_vaddr;
517}
518
519bool getMUBUFHasSrsrc(unsigned Opc) {
520 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
521 return Info && Info->has_srsrc;
522}
523
524bool getMUBUFHasSoffset(unsigned Opc) {
525 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
526 return Info && Info->has_soffset;
527}
528
529bool getMUBUFIsBufferInv(unsigned Opc) {
530 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
531 return Info && Info->IsBufferInv;
532}
533
534bool getMUBUFTfe(unsigned Opc) {
535 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
536 return Info && Info->tfe;
537}
538
539bool getSMEMIsBuffer(unsigned Opc) {
540 const SMInfo *Info = getSMEMOpcodeHelper(Opc);
541 return Info && Info->IsBuffer;
542}
543
544bool getVOP1IsSingle(unsigned Opc) {
545 const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
546 return !Info || Info->IsSingle;
547}
548
549bool getVOP2IsSingle(unsigned Opc) {
550 const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
551 return !Info || Info->IsSingle;
552}
553
554bool getVOP3IsSingle(unsigned Opc) {
555 const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
556 return !Info || Info->IsSingle;
557}
558
559bool isVOPC64DPP(unsigned Opc) {
560 return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
561}
562
563bool isVOPCAsmOnly(unsigned Opc) { return isVOPCAsmOnlyOpcodeHelper(Opc); }
564
565bool getMAIIsDGEMM(unsigned Opc) {
566 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
567 return Info && Info->is_dgemm;
568}
569
570bool getMAIIsGFX940XDL(unsigned Opc) {
571 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
572 return Info && Info->is_gfx940_xdl;
573}
574
575bool getWMMAIsXDL(unsigned Opc) {
576 const WMMAInstInfo *Info = getWMMAInstInfoHelper(Opc);
577 return Info ? Info->is_wmma_xdl : false;
578}
579
581 switch (EncodingVal) {
584 return 6;
586 return 4;
589 default:
590 return 8;
591 }
592
593 llvm_unreachable("covered switch over mfma scale formats");
594}
595
597 unsigned BLGP,
598 unsigned F8F8Opcode) {
599 uint8_t SrcANumRegs = mfmaScaleF8F6F4FormatToNumRegs(CBSZ);
600 uint8_t SrcBNumRegs = mfmaScaleF8F6F4FormatToNumRegs(BLGP);
601 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
602}
603
605 switch (Fmt) {
608 return 16;
611 return 12;
613 return 8;
614 }
615
616 llvm_unreachable("covered switch over wmma scale formats");
617}
618
620 unsigned FmtB,
621 unsigned F8F8Opcode) {
622 uint8_t SrcANumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtA);
623 uint8_t SrcBNumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtB);
624 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
625}
626
628 if (ST.hasFeature(AMDGPU::FeatureGFX1250Insts))
630 if (ST.hasFeature(AMDGPU::FeatureGFX12Insts))
632 if (ST.hasFeature(AMDGPU::FeatureGFX11Insts))
634 llvm_unreachable("Subtarget generation does not support VOPD!");
635}
636
637CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3) {
638 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
639 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
640 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
641 if (Info) {
642 // Check that Opc can be used as VOPDY for this encoding. V_MOV_B32 as a
643 // VOPDX is just a placeholder here, it is supported on all encodings.
644 // TODO: This can be optimized by creating tables of supported VOPDY
645 // opcodes per encoding.
646 unsigned VOPDMov = AMDGPU::getVOPDOpcode(AMDGPU::V_MOV_B32_e32, VOPD3);
647 bool CanBeVOPDY = getVOPDFull(VOPDMov, AMDGPU::getVOPDOpcode(Opc, VOPD3),
648 EncodingFamily, VOPD3) != -1;
649 return {VOPD3 ? Info->CanBeVOPD3X : Info->CanBeVOPDX, CanBeVOPDY};
650 }
651
652 return {false, false};
653}
654
655unsigned getVOPDOpcode(unsigned Opc, bool VOPD3) {
656 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
657 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
658 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
659 return Info ? Info->VOPDOp : ~0u;
660}
661
662bool isVOPD(unsigned Opc) {
663 return AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0X);
664}
665
666bool isMAC(unsigned Opc) {
667 return Opc == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
668 Opc == AMDGPU::V_MAC_F32_e64_gfx10 ||
669 Opc == AMDGPU::V_MAC_F32_e64_vi ||
670 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
671 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
672 Opc == AMDGPU::V_MAC_F16_e64_vi ||
673 Opc == AMDGPU::V_FMAC_F64_e64_gfx90a ||
674 Opc == AMDGPU::V_FMAC_F64_e64_gfx12 ||
675 Opc == AMDGPU::V_FMAC_F32_e64_gfx10 ||
676 Opc == AMDGPU::V_FMAC_F32_e64_gfx11 ||
677 Opc == AMDGPU::V_FMAC_F32_e64_gfx12 ||
678 Opc == AMDGPU::V_FMAC_F32_e64_vi ||
679 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
680 Opc == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
681 Opc == AMDGPU::V_FMAC_F16_e64_gfx10 ||
682 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx11 ||
683 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx11 ||
684 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx12 ||
685 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx12 ||
686 Opc == AMDGPU::V_DOT2C_F32_F16_e64_vi ||
687 Opc == AMDGPU::V_DOT2C_F32_BF16_e64_vi ||
688 Opc == AMDGPU::V_DOT2C_I32_I16_e64_vi ||
689 Opc == AMDGPU::V_DOT4C_I32_I8_e64_vi ||
690 Opc == AMDGPU::V_DOT8C_I32_I4_e64_vi;
691}
692
693bool isPermlane16(unsigned Opc) {
694 return Opc == AMDGPU::V_PERMLANE16_B32_gfx10 ||
695 Opc == AMDGPU::V_PERMLANEX16_B32_gfx10 ||
696 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx11 ||
697 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx11 ||
698 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx12 ||
699 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx12 ||
700 Opc == AMDGPU::V_PERMLANE16_VAR_B32_e64_gfx12 ||
701 Opc == AMDGPU::V_PERMLANEX16_VAR_B32_e64_gfx12;
702}
703
705 return Opc == AMDGPU::V_CVT_F32_BF8_e64_gfx12 ||
706 Opc == AMDGPU::V_CVT_F32_FP8_e64_gfx12 ||
707 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp_gfx12 ||
708 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp_gfx12 ||
709 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp8_gfx12 ||
710 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp8_gfx12 ||
711 Opc == AMDGPU::V_CVT_PK_F32_BF8_fake16_e64_gfx12 ||
712 Opc == AMDGPU::V_CVT_PK_F32_FP8_fake16_e64_gfx12 ||
713 Opc == AMDGPU::V_CVT_PK_F32_BF8_t16_e64_gfx12 ||
714 Opc == AMDGPU::V_CVT_PK_F32_FP8_t16_e64_gfx12;
715}
716
717bool isGenericAtomic(unsigned Opc) {
718 return Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP ||
719 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD ||
720 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB ||
721 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN ||
722 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN ||
723 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX ||
724 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX ||
725 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND ||
726 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR ||
727 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR ||
728 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC ||
729 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC ||
730 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD ||
731 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN ||
732 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX ||
733 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP ||
734 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB_CLAMP_U32 ||
735 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32 ||
736 Opc == AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG;
737}
738
739bool isAsyncStore(unsigned Opc) {
740 return Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_gfx1250 ||
741 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_gfx1250 ||
742 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_gfx1250 ||
743 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_gfx1250 ||
744 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_SADDR_gfx1250 ||
745 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_SADDR_gfx1250 ||
746 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_SADDR_gfx1250 ||
747 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_SADDR_gfx1250;
748}
749
750bool isTensorStore(unsigned Opc) {
751 return Opc == TENSOR_STORE_FROM_LDS_gfx1250 ||
752 Opc == TENSOR_STORE_FROM_LDS_D2_gfx1250;
753}
754
755unsigned getTemporalHintType(const MCInstrDesc TID) {
758 unsigned Opc = TID.getOpcode();
759 // Async and Tensor store should have the temporal hint type of TH_TYPE_STORE
760 if (TID.mayStore() &&
761 (isAsyncStore(Opc) || isTensorStore(Opc) || !TID.mayLoad()))
762 return CPol::TH_TYPE_STORE;
763
764 // This will default to returning TH_TYPE_LOAD when neither MayStore nor
765 // MayLoad flag is present which is the case with instructions like
766 // image_get_resinfo.
767 return CPol::TH_TYPE_LOAD;
768}
769
770bool isTrue16Inst(unsigned Opc) {
771 const VOPTrue16Info *Info = getTrue16OpcodeHelper(Opc);
772 return Info && Info->IsTrue16;
773}
774
776 const FP4FP8DstByteSelInfo *Info = getFP4FP8DstByteSelHelper(Opc);
777 if (!Info)
778 return FPType::None;
779 if (Info->HasFP8DstByteSel)
780 return FPType::FP8;
781 if (Info->HasFP4DstByteSel)
782 return FPType::FP4;
783
784 return FPType::None;
785}
786
787bool isDPMACCInstruction(unsigned Opc) {
788 const DPMACCInstructionInfo *Info = getDPMACCInstructionHelper(Opc);
789 return Info && Info->IsDPMACCInstruction;
790}
791
792unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
793 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
794 return Info ? Info->Opcode3Addr : ~0u;
795}
796
797unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
798 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
799 return Info ? Info->Opcode2Addr : ~0u;
800}
801
802// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
803// header files, so we need to wrap it in a function that takes unsigned
804// instead.
805int getMCOpcode(uint16_t Opcode, unsigned Gen) {
806 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
807}
808
809unsigned getBitOp2(unsigned Opc) {
810 switch (Opc) {
811 default:
812 return 0;
813 case AMDGPU::V_AND_B32_e32:
814 return 0x40;
815 case AMDGPU::V_OR_B32_e32:
816 return 0x54;
817 case AMDGPU::V_XOR_B32_e32:
818 return 0x14;
819 case AMDGPU::V_XNOR_B32_e32:
820 return 0x41;
821 }
822}
823
824int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily,
825 bool VOPD3) {
826 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(OpY) : 0;
827 OpY = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : OpY;
828 const VOPDInfo *Info =
829 getVOPDInfoFromComponentOpcodes(OpX, OpY, EncodingFamily, VOPD3);
830 return Info ? Info->Opcode : -1;
831}
832
833std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode) {
834 const VOPDInfo *Info = getVOPDOpcodeHelper(VOPDOpcode);
835 assert(Info);
836 const auto *OpX = getVOPDBaseFromComponent(Info->OpX);
837 const auto *OpY = getVOPDBaseFromComponent(Info->OpY);
838 assert(OpX && OpY);
839 return {OpX->BaseVOP, OpY->BaseVOP};
840}
841
842namespace VOPD {
843
844ComponentProps::ComponentProps(const MCInstrDesc &OpDesc, bool VOP3Layout) {
846
849 auto TiedIdx = OpDesc.getOperandConstraint(Component::SRC2, MCOI::TIED_TO);
850 assert(TiedIdx == -1 || TiedIdx == Component::DST);
851 HasSrc2Acc = TiedIdx != -1;
852 Opcode = OpDesc.getOpcode();
853
854 IsVOP3 = VOP3Layout || (OpDesc.TSFlags & SIInstrFlags::VOP3);
855 SrcOperandsNum = AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2) ? 3
856 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::imm) ? 3
857 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src1) ? 2
858 : 1;
859 assert(SrcOperandsNum <= Component::MAX_SRC_NUM);
860
861 if (Opcode == AMDGPU::V_CNDMASK_B32_e32 ||
862 Opcode == AMDGPU::V_CNDMASK_B32_e64) {
863 // CNDMASK is an awkward exception, it has FP modifiers, but not FP
864 // operands.
865 NumVOPD3Mods = 2;
866 if (IsVOP3)
867 SrcOperandsNum = 3;
868 } else if (isSISrcFPOperand(OpDesc,
869 getNamedOperandIdx(Opcode, OpName::src0))) {
870 // All FP VOPD instructions have Neg modifiers for all operands except
871 // for tied src2.
872 NumVOPD3Mods = SrcOperandsNum;
873 if (HasSrc2Acc)
874 --NumVOPD3Mods;
875 }
876
877 if (OpDesc.TSFlags & SIInstrFlags::VOP3)
878 return;
879
880 auto OperandsNum = OpDesc.getNumOperands();
881 unsigned CompOprIdx;
882 for (CompOprIdx = Component::SRC1; CompOprIdx < OperandsNum; ++CompOprIdx) {
883 if (OpDesc.operands()[CompOprIdx].OperandType == AMDGPU::OPERAND_KIMM32) {
884 MandatoryLiteralIdx = CompOprIdx;
885 break;
886 }
887 }
888}
889
891 return getNamedOperandIdx(Opcode, OpName::bitop3);
892}
893
894unsigned ComponentInfo::getIndexInParsedOperands(unsigned CompOprIdx) const {
895 assert(CompOprIdx < Component::MAX_OPR_NUM);
896
897 if (CompOprIdx == Component::DST)
899
900 auto CompSrcIdx = CompOprIdx - Component::DST_NUM;
901 if (CompSrcIdx < getCompParsedSrcOperandsNum())
902 return getIndexOfSrcInParsedOperands(CompSrcIdx);
903
904 // The specified operand does not exist.
905 return 0;
906}
907
909 std::function<MCRegister(unsigned, unsigned)> GetRegIdx,
910 const MCRegisterInfo &MRI, bool SkipSrc, bool AllowSameVGPR,
911 bool VOPD3) const {
912
913 auto OpXRegs = getRegIndices(ComponentIndex::X, GetRegIdx,
914 CompInfo[ComponentIndex::X].isVOP3());
915 auto OpYRegs = getRegIndices(ComponentIndex::Y, GetRegIdx,
916 CompInfo[ComponentIndex::Y].isVOP3());
917
918 const auto banksOverlap = [&MRI](MCRegister X, MCRegister Y,
919 unsigned BanksMask) -> bool {
920 MCRegister BaseX = MRI.getSubReg(X, AMDGPU::sub0);
921 MCRegister BaseY = MRI.getSubReg(Y, AMDGPU::sub0);
922 if (!BaseX)
923 BaseX = X;
924 if (!BaseY)
925 BaseY = Y;
926 if ((BaseX.id() & BanksMask) == (BaseY.id() & BanksMask))
927 return true;
928 if (BaseX != X /* This is 64-bit register */ &&
929 ((BaseX.id() + 1) & BanksMask) == (BaseY.id() & BanksMask))
930 return true;
931 if (BaseY != Y &&
932 (BaseX.id() & BanksMask) == ((BaseY.id() + 1) & BanksMask))
933 return true;
934
935 // If both are 64-bit bank conflict will be detected yet while checking
936 // the first subreg.
937 return false;
938 };
939
940 unsigned CompOprIdx;
941 for (CompOprIdx = 0; CompOprIdx < Component::MAX_OPR_NUM; ++CompOprIdx) {
942 unsigned BanksMasks = VOPD3 ? VOPD3_VGPR_BANK_MASKS[CompOprIdx]
943 : VOPD_VGPR_BANK_MASKS[CompOprIdx];
944 if (!OpXRegs[CompOprIdx] || !OpYRegs[CompOprIdx])
945 continue;
946
947 if (getVGPREncodingMSBs(OpXRegs[CompOprIdx], MRI) !=
948 getVGPREncodingMSBs(OpYRegs[CompOprIdx], MRI))
949 return CompOprIdx;
950
951 if (SkipSrc && CompOprIdx >= Component::DST_NUM)
952 continue;
953
954 if (CompOprIdx < Component::DST_NUM) {
955 // Even if we do not check vdst parity, vdst operands still shall not
956 // overlap.
957 if (MRI.regsOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx]))
958 return CompOprIdx;
959 if (VOPD3) // No need to check dst parity.
960 continue;
961 }
962
963 if (banksOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx], BanksMasks) &&
964 (!AllowSameVGPR || CompOprIdx < Component::DST_NUM ||
965 OpXRegs[CompOprIdx] != OpYRegs[CompOprIdx]))
966 return CompOprIdx;
967 }
968
969 return {};
970}
971
972// Return an array of VGPR registers [DST,SRC0,SRC1,SRC2] used
973// by the specified component. If an operand is unused
974// or is not a VGPR, the corresponding value is 0.
975//
976// GetRegIdx(Component, MCOperandIdx) must return a VGPR register index
977// for the specified component and MC operand. The callback must return 0
978// if the operand is not a register or not a VGPR.
980InstInfo::getRegIndices(unsigned CompIdx,
981 std::function<MCRegister(unsigned, unsigned)> GetRegIdx,
982 bool VOPD3) const {
983 assert(CompIdx < COMPONENTS_NUM);
984
985 const auto &Comp = CompInfo[CompIdx];
987
988 RegIndices[DST] = GetRegIdx(CompIdx, Comp.getIndexOfDstInMCOperands());
989
990 for (unsigned CompOprIdx : {SRC0, SRC1, SRC2}) {
991 unsigned CompSrcIdx = CompOprIdx - DST_NUM;
992 RegIndices[CompOprIdx] =
993 Comp.hasRegSrcOperand(CompSrcIdx)
994 ? GetRegIdx(CompIdx,
995 Comp.getIndexOfSrcInMCOperands(CompSrcIdx, VOPD3))
996 : MCRegister();
997 }
998 return RegIndices;
999}
1000
1001} // namespace VOPD
1002
1004 return VOPD::InstInfo(OpX, OpY);
1005}
1006
1008 const MCInstrInfo *InstrInfo) {
1009 auto [OpX, OpY] = getVOPDComponents(VOPDOpcode);
1010 const auto &OpXDesc = InstrInfo->get(OpX);
1011 const auto &OpYDesc = InstrInfo->get(OpY);
1012 bool VOPD3 = InstrInfo->get(VOPDOpcode).TSFlags & SIInstrFlags::VOPD3;
1014 VOPD::ComponentInfo OpYInfo(OpYDesc, OpXInfo, VOPD3);
1015 return VOPD::InstInfo(OpXInfo, OpYInfo);
1016}
1017
1018namespace IsaInfo {
1019
1021 : STI(STI), XnackSetting(TargetIDSetting::Any),
1022 SramEccSetting(TargetIDSetting::Any) {
1023 if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
1024 XnackSetting = TargetIDSetting::Unsupported;
1025 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
1026 SramEccSetting = TargetIDSetting::Unsupported;
1027}
1028
1030 // Check if xnack or sramecc is explicitly enabled or disabled. In the
1031 // absence of the target features we assume we must generate code that can run
1032 // in any environment.
1033 SubtargetFeatures Features(FS);
1034 std::optional<bool> XnackRequested;
1035 std::optional<bool> SramEccRequested;
1036
1037 for (const std::string &Feature : Features.getFeatures()) {
1038 if (Feature == "+xnack")
1039 XnackRequested = true;
1040 else if (Feature == "-xnack")
1041 XnackRequested = false;
1042 else if (Feature == "+sramecc")
1043 SramEccRequested = true;
1044 else if (Feature == "-sramecc")
1045 SramEccRequested = false;
1046 }
1047
1048 bool XnackSupported = isXnackSupported();
1049 bool SramEccSupported = isSramEccSupported();
1050
1051 if (XnackRequested) {
1052 if (XnackSupported) {
1053 XnackSetting =
1054 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1055 } else {
1056 // If a specific xnack setting was requested and this GPU does not support
1057 // xnack emit a warning. Setting will remain set to "Unsupported".
1058 if (*XnackRequested) {
1059 errs() << "warning: xnack 'On' was requested for a processor that does "
1060 "not support it!\n";
1061 } else {
1062 errs() << "warning: xnack 'Off' was requested for a processor that "
1063 "does not support it!\n";
1064 }
1065 }
1066 }
1067
1068 if (SramEccRequested) {
1069 if (SramEccSupported) {
1070 SramEccSetting =
1071 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1072 } else {
1073 // If a specific sramecc setting was requested and this GPU does not
1074 // support sramecc emit a warning. Setting will remain set to
1075 // "Unsupported".
1076 if (*SramEccRequested) {
1077 errs() << "warning: sramecc 'On' was requested for a processor that "
1078 "does not support it!\n";
1079 } else {
1080 errs() << "warning: sramecc 'Off' was requested for a processor that "
1081 "does not support it!\n";
1082 }
1083 }
1084 }
1085}
1086
1087static TargetIDSetting
1089 if (FeatureString.ends_with("-"))
1090 return TargetIDSetting::Off;
1091 if (FeatureString.ends_with("+"))
1092 return TargetIDSetting::On;
1093
1094 llvm_unreachable("Malformed feature string");
1095}
1096
1098 SmallVector<StringRef, 3> TargetIDSplit;
1099 TargetID.split(TargetIDSplit, ':');
1100
1101 for (const auto &FeatureString : TargetIDSplit) {
1102 if (FeatureString.starts_with("xnack"))
1103 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
1104 if (FeatureString.starts_with("sramecc"))
1105 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
1106 }
1107}
1108
1109std::string AMDGPUTargetID::toString() const {
1110 std::string StringRep;
1111 raw_string_ostream StreamRep(StringRep);
1112
1113 auto TargetTriple = STI.getTargetTriple();
1114 auto Version = getIsaVersion(STI.getCPU());
1115
1116 StreamRep << TargetTriple.getArchName() << '-' << TargetTriple.getVendorName()
1117 << '-' << TargetTriple.getOSName() << '-'
1118 << TargetTriple.getEnvironmentName() << '-';
1119
1120 std::string Processor;
1121 // TODO: Following else statement is present here because we used various
1122 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
1123 // Remove once all aliases are removed from GCNProcessors.td.
1124 if (Version.Major >= 9)
1125 Processor = STI.getCPU().str();
1126 else
1127 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
1128 Twine(Version.Stepping))
1129 .str();
1130
1131 std::string Features;
1132 if (STI.getTargetTriple().getOS() == Triple::AMDHSA) {
1133 // sramecc.
1135 Features += ":sramecc-";
1137 Features += ":sramecc+";
1138 // xnack.
1140 Features += ":xnack-";
1142 Features += ":xnack+";
1143 }
1144
1145 StreamRep << Processor << Features;
1146
1147 return StringRep;
1148}
1149
1150unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
1151 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
1152 return 16;
1153 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
1154 return 32;
1155
1156 return 64;
1157}
1158
1160 unsigned BytesPerCU = getAddressableLocalMemorySize(STI);
1161
1162 // "Per CU" really means "per whatever functional block the waves of a
1163 // workgroup must share". So the effective local memory size is doubled in
1164 // WGP mode on gfx10.
1165 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1166 BytesPerCU *= 2;
1167
1168 return BytesPerCU;
1169}
1170
1172 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize32768))
1173 return 32768;
1174 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize65536))
1175 return 65536;
1176 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize163840))
1177 return 163840;
1178 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize327680))
1179 return 327680;
1180 return 32768;
1181}
1182
1183unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
1184 // "Per CU" really means "per whatever functional block the waves of a
1185 // workgroup must share".
1186
1187 // GFX12.5 only supports CU mode, which contains four SIMDs.
1188 if (isGFX1250(*STI)) {
1189 assert(STI->getFeatureBits().test(FeatureCuMode));
1190 return 4;
1191 }
1192
1193 // For gfx10 in CU mode the functional block is the CU, which contains
1194 // two SIMDs.
1195 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
1196 return 2;
1197
1198 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP
1199 // contains two CUs, so a total of four SIMDs.
1200 return 4;
1201}
1202
1204 unsigned FlatWorkGroupSize) {
1205 assert(FlatWorkGroupSize != 0);
1206 if (!STI->getTargetTriple().isAMDGCN())
1207 return 8;
1208 unsigned MaxWaves = getMaxWavesPerEU(STI) * getEUsPerCU(STI);
1209 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
1210 if (N == 1) {
1211 // Single-wave workgroups don't consume barrier resources.
1212 return MaxWaves;
1213 }
1214
1215 unsigned MaxBarriers = 16;
1216 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1217 MaxBarriers = 32;
1218
1219 return std::min(MaxWaves / N, MaxBarriers);
1220}
1221
1222unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { return 1; }
1223
1224unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
1225 // FIXME: Need to take scratch memory into account.
1226 if (isGFX90A(*STI))
1227 return 8;
1228 if (!isGFX10Plus(*STI))
1229 return 10;
1230 return hasGFX10_3Insts(*STI) ? 16 : 20;
1231}
1232
1234 unsigned FlatWorkGroupSize) {
1235 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
1236 getEUsPerCU(STI));
1237}
1238
1239unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { return 1; }
1240
1242 // Some subtargets allow encoding 2048, but this isn't tested or supported.
1243 return 1024;
1244}
1245
1247 unsigned FlatWorkGroupSize) {
1248 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
1249}
1250
1253 if (Version.Major >= 10)
1254 return getAddressableNumSGPRs(STI);
1255 if (Version.Major >= 8)
1256 return 16;
1257 return 8;
1258}
1259
1260unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { return 8; }
1261
1262unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
1264 if (Version.Major >= 8)
1265 return 800;
1266 return 512;
1267}
1268
1270 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
1272
1274 if (Version.Major >= 10)
1275 return 106;
1276 if (Version.Major >= 8)
1277 return 102;
1278 return 104;
1279}
1280
1281unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
1282 assert(WavesPerEU != 0);
1283
1285 if (Version.Major >= 10)
1286 return 0;
1287
1288 if (WavesPerEU >= getMaxWavesPerEU(STI))
1289 return 0;
1290
1291 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
1292 if (STI->getFeatureBits().test(FeatureTrapHandler))
1293 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1294 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
1295 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
1296}
1297
1298unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1299 bool Addressable) {
1300 assert(WavesPerEU != 0);
1301
1302 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
1304 if (Version.Major >= 10)
1305 return Addressable ? AddressableNumSGPRs : 108;
1306 if (Version.Major >= 8 && !Addressable)
1307 AddressableNumSGPRs = 112;
1308 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
1309 if (STI->getFeatureBits().test(FeatureTrapHandler))
1310 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1311 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
1312 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
1313}
1314
1315unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1316 bool FlatScrUsed, bool XNACKUsed) {
1317 unsigned ExtraSGPRs = 0;
1318 if (VCCUsed)
1319 ExtraSGPRs = 2;
1320
1322 if (Version.Major >= 10)
1323 return ExtraSGPRs;
1324
1325 if (Version.Major < 8) {
1326 if (FlatScrUsed)
1327 ExtraSGPRs = 4;
1328 } else {
1329 if (XNACKUsed)
1330 ExtraSGPRs = 4;
1331
1332 if (FlatScrUsed ||
1333 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
1334 ExtraSGPRs = 6;
1335 }
1336
1337 return ExtraSGPRs;
1338}
1339
1340unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1341 bool FlatScrUsed) {
1342 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
1343 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
1344}
1345
1346static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs,
1347 unsigned Granule) {
1348 return divideCeil(std::max(1u, NumRegs), Granule);
1349}
1350
1351unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
1352 // SGPRBlocks is actual number of SGPR blocks minus 1.
1354 1;
1355}
1356
1358 unsigned DynamicVGPRBlockSize,
1359 std::optional<bool> EnableWavefrontSize32) {
1360 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1361 return 8;
1362
1363 if (DynamicVGPRBlockSize != 0)
1364 return DynamicVGPRBlockSize;
1365
1366 bool IsWave32 = EnableWavefrontSize32
1367 ? *EnableWavefrontSize32
1368 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1369
1370 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1371 return IsWave32 ? 24 : 12;
1372
1373 if (hasGFX10_3Insts(*STI))
1374 return IsWave32 ? 16 : 8;
1375
1376 return IsWave32 ? 8 : 4;
1377}
1378
1380 std::optional<bool> EnableWavefrontSize32) {
1381 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1382 return 8;
1383
1384 bool IsWave32 = EnableWavefrontSize32
1385 ? *EnableWavefrontSize32
1386 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1387
1388 if (STI->getFeatureBits().test(Feature1024AddressableVGPRs))
1389 return IsWave32 ? 16 : 8;
1390
1391 return IsWave32 ? 8 : 4;
1392}
1393
1394unsigned getArchVGPRAllocGranule() { return 4; }
1395
1396unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
1397 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1398 return 512;
1399 if (!isGFX10Plus(*STI))
1400 return 256;
1401 bool IsWave32 = STI->getFeatureBits().test(FeatureWavefrontSize32);
1402 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1403 return IsWave32 ? 1536 : 768;
1404 return IsWave32 ? 1024 : 512;
1405}
1406
1408 const auto &Features = STI->getFeatureBits();
1409 if (Features.test(Feature1024AddressableVGPRs))
1410 return Features.test(FeatureWavefrontSize32) ? 1024 : 512;
1411 return 256;
1412}
1413
1415 unsigned DynamicVGPRBlockSize) {
1416 const auto &Features = STI->getFeatureBits();
1417 if (Features.test(FeatureGFX90AInsts))
1418 return 512;
1419
1420 if (DynamicVGPRBlockSize != 0)
1421 // On GFX12 we can allocate at most 8 blocks of VGPRs.
1422 return 8 * getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1423 return getAddressableNumArchVGPRs(STI);
1424}
1425
1427 unsigned NumVGPRs,
1428 unsigned DynamicVGPRBlockSize) {
1430 NumVGPRs, getVGPRAllocGranule(STI, DynamicVGPRBlockSize),
1432}
1433
1434unsigned getNumWavesPerEUWithNumVGPRs(unsigned NumVGPRs, unsigned Granule,
1435 unsigned MaxWaves,
1436 unsigned TotalNumVGPRs) {
1437 if (NumVGPRs < Granule)
1438 return MaxWaves;
1439 unsigned RoundedRegs = alignTo(NumVGPRs, Granule);
1440 return std::min(std::max(TotalNumVGPRs / RoundedRegs, 1u), MaxWaves);
1441}
1442
1443unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves,
1445 if (Gen >= AMDGPUSubtarget::GFX10)
1446 return MaxWaves;
1447
1449 if (SGPRs <= 80)
1450 return 10;
1451 if (SGPRs <= 88)
1452 return 9;
1453 if (SGPRs <= 100)
1454 return 8;
1455 return 7;
1456 }
1457 if (SGPRs <= 48)
1458 return 10;
1459 if (SGPRs <= 56)
1460 return 9;
1461 if (SGPRs <= 64)
1462 return 8;
1463 if (SGPRs <= 72)
1464 return 7;
1465 if (SGPRs <= 80)
1466 return 6;
1467 return 5;
1468}
1469
1470unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1471 unsigned DynamicVGPRBlockSize) {
1472 assert(WavesPerEU != 0);
1473
1474 unsigned MaxWavesPerEU = getMaxWavesPerEU(STI);
1475 if (WavesPerEU >= MaxWavesPerEU)
1476 return 0;
1477
1478 unsigned TotNumVGPRs = getTotalNumVGPRs(STI);
1479 unsigned AddrsableNumVGPRs =
1480 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1481 unsigned Granule = getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1482 unsigned MaxNumVGPRs = alignDown(TotNumVGPRs / WavesPerEU, Granule);
1483
1484 if (MaxNumVGPRs == alignDown(TotNumVGPRs / MaxWavesPerEU, Granule))
1485 return 0;
1486
1487 unsigned MinWavesPerEU = getNumWavesPerEUWithNumVGPRs(STI, AddrsableNumVGPRs,
1488 DynamicVGPRBlockSize);
1489 if (WavesPerEU < MinWavesPerEU)
1490 return getMinNumVGPRs(STI, MinWavesPerEU, DynamicVGPRBlockSize);
1491
1492 unsigned MaxNumVGPRsNext = alignDown(TotNumVGPRs / (WavesPerEU + 1), Granule);
1493 unsigned MinNumVGPRs = 1 + std::min(MaxNumVGPRs - Granule, MaxNumVGPRsNext);
1494 return std::min(MinNumVGPRs, AddrsableNumVGPRs);
1495}
1496
1497unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1498 unsigned DynamicVGPRBlockSize) {
1499 assert(WavesPerEU != 0);
1500
1501 unsigned MaxNumVGPRs =
1502 alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
1503 getVGPRAllocGranule(STI, DynamicVGPRBlockSize));
1504 unsigned AddressableNumVGPRs =
1505 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1506 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
1507}
1508
1509unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
1510 std::optional<bool> EnableWavefrontSize32) {
1512 NumVGPRs, getVGPREncodingGranule(STI, EnableWavefrontSize32)) -
1513 1;
1514}
1515
1517 unsigned NumVGPRs,
1518 unsigned DynamicVGPRBlockSize,
1519 std::optional<bool> EnableWavefrontSize32) {
1521 NumVGPRs,
1522 getVGPRAllocGranule(STI, DynamicVGPRBlockSize, EnableWavefrontSize32));
1523}
1524} // end namespace IsaInfo
1525
1527 const MCSubtargetInfo *STI) {
1529 KernelCode.amd_kernel_code_version_major = 1;
1530 KernelCode.amd_kernel_code_version_minor = 2;
1531 KernelCode.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
1532 KernelCode.amd_machine_version_major = Version.Major;
1533 KernelCode.amd_machine_version_minor = Version.Minor;
1534 KernelCode.amd_machine_version_stepping = Version.Stepping;
1536 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
1537 KernelCode.wavefront_size = 5;
1539 } else {
1540 KernelCode.wavefront_size = 6;
1541 }
1542
1543 // If the code object does not support indirect functions, then the value must
1544 // be 0xffffffff.
1545 KernelCode.call_convention = -1;
1546
1547 // These alignment values are specified in powers of two, so alignment =
1548 // 2^n. The minimum alignment is 2^4 = 16.
1549 KernelCode.kernarg_segment_alignment = 4;
1550 KernelCode.group_segment_alignment = 4;
1551 KernelCode.private_segment_alignment = 4;
1552
1553 if (Version.Major >= 10) {
1554 KernelCode.compute_pgm_resource_registers |=
1555 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
1557 }
1558}
1559
1562}
1563
1566}
1567
1569 unsigned AS = GV->getAddressSpace();
1570 return AS == AMDGPUAS::CONSTANT_ADDRESS ||
1572}
1573
1575 return TT.getArch() == Triple::r600;
1576}
1577
1578static bool isValidRegPrefix(char C) {
1579 return C == 'v' || C == 's' || C == 'a';
1580}
1581
1582std::tuple<char, unsigned, unsigned> parseAsmPhysRegName(StringRef RegName) {
1583 char Kind = RegName.front();
1584 if (!isValidRegPrefix(Kind))
1585 return {};
1586
1587 RegName = RegName.drop_front();
1588 if (RegName.consume_front("[")) {
1589 unsigned Idx, End;
1590 bool Failed = RegName.consumeInteger(10, Idx);
1591 Failed |= !RegName.consume_front(":");
1592 Failed |= RegName.consumeInteger(10, End);
1593 Failed |= !RegName.consume_back("]");
1594 if (!Failed) {
1595 unsigned NumRegs = End - Idx + 1;
1596 if (NumRegs > 1)
1597 return {Kind, Idx, NumRegs};
1598 }
1599 } else {
1600 unsigned Idx;
1601 bool Failed = RegName.getAsInteger(10, Idx);
1602 if (!Failed)
1603 return {Kind, Idx, 1};
1604 }
1605
1606 return {};
1607}
1608
1609std::tuple<char, unsigned, unsigned>
1611 StringRef RegName = Constraint;
1612 if (!RegName.consume_front("{") || !RegName.consume_back("}"))
1613 return {};
1615}
1616
1617std::pair<unsigned, unsigned>
1619 std::pair<unsigned, unsigned> Default,
1620 bool OnlyFirstRequired) {
1621 if (auto Attr = getIntegerPairAttribute(F, Name, OnlyFirstRequired))
1622 return {Attr->first, Attr->second.value_or(Default.second)};
1623 return Default;
1624}
1625
1626std::optional<std::pair<unsigned, std::optional<unsigned>>>
1628 bool OnlyFirstRequired) {
1629 Attribute A = F.getFnAttribute(Name);
1630 if (!A.isStringAttribute())
1631 return std::nullopt;
1632
1633 LLVMContext &Ctx = F.getContext();
1634 std::pair<unsigned, std::optional<unsigned>> Ints;
1635 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
1636 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
1637 Ctx.emitError("can't parse first integer attribute " + Name);
1638 return std::nullopt;
1639 }
1640 unsigned Second = 0;
1641 if (Strs.second.trim().getAsInteger(0, Second)) {
1642 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
1643 Ctx.emitError("can't parse second integer attribute " + Name);
1644 return std::nullopt;
1645 }
1646 } else {
1647 Ints.second = Second;
1648 }
1649
1650 return Ints;
1651}
1652
1654 unsigned Size,
1655 unsigned DefaultVal) {
1656 std::optional<SmallVector<unsigned>> R =
1658 return R.has_value() ? *R : SmallVector<unsigned>(Size, DefaultVal);
1659}
1660
1661std::optional<SmallVector<unsigned>>
1663 assert(Size > 2);
1664 LLVMContext &Ctx = F.getContext();
1665
1666 Attribute A = F.getFnAttribute(Name);
1667 if (!A.isValid())
1668 return std::nullopt;
1669 if (!A.isStringAttribute()) {
1670 Ctx.emitError(Name + " is not a string attribute");
1671 return std::nullopt;
1672 }
1673
1675
1676 StringRef S = A.getValueAsString();
1677 unsigned i = 0;
1678 for (; !S.empty() && i < Size; i++) {
1679 std::pair<StringRef, StringRef> Strs = S.split(',');
1680 unsigned IntVal;
1681 if (Strs.first.trim().getAsInteger(0, IntVal)) {
1682 Ctx.emitError("can't parse integer attribute " + Strs.first + " in " +
1683 Name);
1684 return std::nullopt;
1685 }
1686 Vals[i] = IntVal;
1687 S = Strs.second;
1688 }
1689
1690 if (!S.empty() || i < Size) {
1691 Ctx.emitError("attribute " + Name +
1692 " has incorrect number of integers; expected " +
1694 return std::nullopt;
1695 }
1696 return Vals;
1697}
1698
1699bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val) {
1700 assert((MD.getNumOperands() % 2 == 0) && "invalid number of operands!");
1701 for (unsigned I = 0, E = MD.getNumOperands() / 2; I != E; ++I) {
1702 auto Low =
1703 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 0))->getValue();
1704 auto High =
1705 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 1))->getValue();
1706 // There are two types of [A; B) ranges:
1707 // A < B, e.g. [4; 5) which is a range that only includes 4.
1708 // A > B, e.g. [5; 4) which is a range that wraps around and includes
1709 // everything except 4.
1710 if (Low.ult(High)) {
1711 if (Low.ule(Val) && High.ugt(Val))
1712 return true;
1713 } else {
1714 if (Low.uge(Val) && High.ult(Val))
1715 return true;
1716 }
1717 }
1718
1719 return false;
1720}
1721
1723 ListSeparator LS;
1724 if (Wait.LoadCnt != ~0u)
1725 OS << LS << "LoadCnt: " << Wait.LoadCnt;
1726 if (Wait.ExpCnt != ~0u)
1727 OS << LS << "ExpCnt: " << Wait.ExpCnt;
1728 if (Wait.DsCnt != ~0u)
1729 OS << LS << "DsCnt: " << Wait.DsCnt;
1730 if (Wait.StoreCnt != ~0u)
1731 OS << LS << "StoreCnt: " << Wait.StoreCnt;
1732 if (Wait.SampleCnt != ~0u)
1733 OS << LS << "SampleCnt: " << Wait.SampleCnt;
1734 if (Wait.BvhCnt != ~0u)
1735 OS << LS << "BvhCnt: " << Wait.BvhCnt;
1736 if (Wait.KmCnt != ~0u)
1737 OS << LS << "KmCnt: " << Wait.KmCnt;
1738 if (Wait.XCnt != ~0u)
1739 OS << LS << "XCnt: " << Wait.XCnt;
1740 if (LS.unused())
1741 OS << "none";
1742 OS << '\n';
1743 return OS;
1744}
1745
1747 return (1 << (getVmcntBitWidthLo(Version.Major) +
1748 getVmcntBitWidthHi(Version.Major))) -
1749 1;
1750}
1751
1753 return (1 << getLoadcntBitWidth(Version.Major)) - 1;
1754}
1755
1757 return (1 << getSamplecntBitWidth(Version.Major)) - 1;
1758}
1759
1761 return (1 << getBvhcntBitWidth(Version.Major)) - 1;
1762}
1763
1765 return (1 << getExpcntBitWidth(Version.Major)) - 1;
1766}
1767
1769 return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
1770}
1771
1773 return (1 << getDscntBitWidth(Version.Major)) - 1;
1774}
1775
1777 return (1 << getKmcntBitWidth(Version.Major)) - 1;
1778}
1779
1781 return (1 << getXcntBitWidth(Version.Major, Version.Minor)) - 1;
1782}
1783
1785 return (1 << getStorecntBitWidth(Version.Major)) - 1;
1786}
1787
1789 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
1790 getVmcntBitWidthLo(Version.Major));
1791 unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
1792 getExpcntBitWidth(Version.Major));
1793 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
1794 getLgkmcntBitWidth(Version.Major));
1795 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
1796 getVmcntBitWidthHi(Version.Major));
1797 return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
1798}
1799
1800unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1801 unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
1802 getVmcntBitWidthLo(Version.Major));
1803 unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
1804 getVmcntBitWidthHi(Version.Major));
1805 return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
1806}
1807
1808unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
1809 return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
1810 getExpcntBitWidth(Version.Major));
1811}
1812
1813unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1814 return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
1815 getLgkmcntBitWidth(Version.Major));
1816}
1817
1818void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt,
1819 unsigned &Expcnt, unsigned &Lgkmcnt) {
1820 Vmcnt = decodeVmcnt(Version, Waitcnt);
1821 Expcnt = decodeExpcnt(Version, Waitcnt);
1822 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
1823}
1824
1825Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
1826 Waitcnt Decoded;
1827 Decoded.LoadCnt = decodeVmcnt(Version, Encoded);
1828 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
1829 Decoded.DsCnt = decodeLgkmcnt(Version, Encoded);
1830 return Decoded;
1831}
1832
1833unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1834 unsigned Vmcnt) {
1835 Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
1836 getVmcntBitWidthLo(Version.Major));
1837 return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
1838 getVmcntBitShiftHi(Version.Major),
1839 getVmcntBitWidthHi(Version.Major));
1840}
1841
1842unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1843 unsigned Expcnt) {
1844 return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
1845 getExpcntBitWidth(Version.Major));
1846}
1847
1848unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1849 unsigned Lgkmcnt) {
1850 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
1851 getLgkmcntBitWidth(Version.Major));
1852}
1853
1854unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt,
1855 unsigned Expcnt, unsigned Lgkmcnt) {
1856 unsigned Waitcnt = getWaitcntBitMask(Version);
1858 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1859 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1860 return Waitcnt;
1861}
1862
1863unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1864 return encodeWaitcnt(Version, Decoded.LoadCnt, Decoded.ExpCnt, Decoded.DsCnt);
1865}
1866
1868 bool IsStore) {
1869 unsigned Dscnt = getBitMask(getDscntBitShift(Version.Major),
1870 getDscntBitWidth(Version.Major));
1871 if (IsStore) {
1872 unsigned Storecnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1873 getStorecntBitWidth(Version.Major));
1874 return Dscnt | Storecnt;
1875 }
1876 unsigned Loadcnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1877 getLoadcntBitWidth(Version.Major));
1878 return Dscnt | Loadcnt;
1879}
1880
1881Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt) {
1882 Waitcnt Decoded;
1883 Decoded.LoadCnt =
1884 unpackBits(LoadcntDscnt, getLoadcntStorecntBitShift(Version.Major),
1885 getLoadcntBitWidth(Version.Major));
1886 Decoded.DsCnt = unpackBits(LoadcntDscnt, getDscntBitShift(Version.Major),
1887 getDscntBitWidth(Version.Major));
1888 return Decoded;
1889}
1890
1891Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt) {
1892 Waitcnt Decoded;
1893 Decoded.StoreCnt =
1894 unpackBits(StorecntDscnt, getLoadcntStorecntBitShift(Version.Major),
1895 getStorecntBitWidth(Version.Major));
1896 Decoded.DsCnt = unpackBits(StorecntDscnt, getDscntBitShift(Version.Major),
1897 getDscntBitWidth(Version.Major));
1898 return Decoded;
1899}
1900
1901static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt,
1902 unsigned Loadcnt) {
1903 return packBits(Loadcnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1904 getLoadcntBitWidth(Version.Major));
1905}
1906
1907static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt,
1908 unsigned Storecnt) {
1909 return packBits(Storecnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1910 getStorecntBitWidth(Version.Major));
1911}
1912
1913static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt,
1914 unsigned Dscnt) {
1915 return packBits(Dscnt, Waitcnt, getDscntBitShift(Version.Major),
1916 getDscntBitWidth(Version.Major));
1917}
1918
1919static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt,
1920 unsigned Dscnt) {
1921 unsigned Waitcnt = getCombinedCountBitMask(Version, false);
1922 Waitcnt = encodeLoadcnt(Version, Waitcnt, Loadcnt);
1924 return Waitcnt;
1925}
1926
1927unsigned encodeLoadcntDscnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1928 return encodeLoadcntDscnt(Version, Decoded.LoadCnt, Decoded.DsCnt);
1929}
1930
1932 unsigned Storecnt, unsigned Dscnt) {
1933 unsigned Waitcnt = getCombinedCountBitMask(Version, true);
1934 Waitcnt = encodeStorecnt(Version, Waitcnt, Storecnt);
1936 return Waitcnt;
1937}
1938
1940 const Waitcnt &Decoded) {
1941 return encodeStorecntDscnt(Version, Decoded.StoreCnt, Decoded.DsCnt);
1942}
1943
1944//===----------------------------------------------------------------------===//
1945// Custom Operand Values
1946//===----------------------------------------------------------------------===//
1947
1949 int Size,
1950 const MCSubtargetInfo &STI) {
1951 unsigned Enc = 0;
1952 for (int Idx = 0; Idx < Size; ++Idx) {
1953 const auto &Op = Opr[Idx];
1954 if (Op.isSupported(STI))
1955 Enc |= Op.encode(Op.Default);
1956 }
1957 return Enc;
1958}
1959
1961 int Size, unsigned Code,
1962 bool &HasNonDefaultVal,
1963 const MCSubtargetInfo &STI) {
1964 unsigned UsedOprMask = 0;
1965 HasNonDefaultVal = false;
1966 for (int Idx = 0; Idx < Size; ++Idx) {
1967 const auto &Op = Opr[Idx];
1968 if (!Op.isSupported(STI))
1969 continue;
1970 UsedOprMask |= Op.getMask();
1971 unsigned Val = Op.decode(Code);
1972 if (!Op.isValid(Val))
1973 return false;
1974 HasNonDefaultVal |= (Val != Op.Default);
1975 }
1976 return (Code & ~UsedOprMask) == 0;
1977}
1978
1979static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
1980 unsigned Code, int &Idx, StringRef &Name,
1981 unsigned &Val, bool &IsDefault,
1982 const MCSubtargetInfo &STI) {
1983 while (Idx < Size) {
1984 const auto &Op = Opr[Idx++];
1985 if (Op.isSupported(STI)) {
1986 Name = Op.Name;
1987 Val = Op.decode(Code);
1988 IsDefault = (Val == Op.Default);
1989 return true;
1990 }
1991 }
1992
1993 return false;
1994}
1995
1997 int64_t InputVal) {
1998 if (InputVal < 0 || InputVal > Op.Max)
1999 return OPR_VAL_INVALID;
2000 return Op.encode(InputVal);
2001}
2002
2003static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
2004 const StringRef Name, int64_t InputVal,
2005 unsigned &UsedOprMask,
2006 const MCSubtargetInfo &STI) {
2007 int InvalidId = OPR_ID_UNKNOWN;
2008 for (int Idx = 0; Idx < Size; ++Idx) {
2009 const auto &Op = Opr[Idx];
2010 if (Op.Name == Name) {
2011 if (!Op.isSupported(STI)) {
2012 InvalidId = OPR_ID_UNSUPPORTED;
2013 continue;
2014 }
2015 auto OprMask = Op.getMask();
2016 if (OprMask & UsedOprMask)
2017 return OPR_ID_DUPLICATE;
2018 UsedOprMask |= OprMask;
2019 return encodeCustomOperandVal(Op, InputVal);
2020 }
2021 }
2022 return InvalidId;
2023}
2024
2025//===----------------------------------------------------------------------===//
2026// DepCtr
2027//===----------------------------------------------------------------------===//
2028
2029namespace DepCtr {
2030
2032 static int Default = -1;
2033 if (Default == -1)
2035 return Default;
2036}
2037
2038bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
2039 const MCSubtargetInfo &STI) {
2041 HasNonDefaultVal, STI);
2042}
2043
2044bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
2045 bool &IsDefault, const MCSubtargetInfo &STI) {
2046 return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
2047 IsDefault, STI);
2048}
2049
2050int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
2051 const MCSubtargetInfo &STI) {
2052 return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
2053 STI);
2054}
2055
2056unsigned getVaVdstBitMask() { return (1 << getVaVdstBitWidth()) - 1; }
2057
2058unsigned getVmVsrcBitMask() { return (1 << getVmVsrcBitWidth()) - 1; }
2059
2060unsigned decodeFieldVmVsrc(unsigned Encoded) {
2061 return unpackBits(Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2062}
2063
2064unsigned decodeFieldVaVdst(unsigned Encoded) {
2065 return unpackBits(Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2066}
2067
2068unsigned decodeFieldSaSdst(unsigned Encoded) {
2069 return unpackBits(Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2070}
2071
2072unsigned decodeFieldVaSdst(unsigned Encoded) {
2073 return unpackBits(Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2074}
2075
2076unsigned decodeFieldVaVcc(unsigned Encoded) {
2077 return unpackBits(Encoded, getVaVccBitShift(), getVaVccBitWidth());
2078}
2079
2080unsigned decodeFieldVaSsrc(unsigned Encoded) {
2081 return unpackBits(Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2082}
2083
2084unsigned decodeFieldHoldCnt(unsigned Encoded) {
2085 return unpackBits(Encoded, getHoldCntBitShift(), getHoldCntWidth());
2086}
2087
2088unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc) {
2089 return packBits(VmVsrc, Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2090}
2091
2092unsigned encodeFieldVmVsrc(unsigned VmVsrc, const MCSubtargetInfo &STI) {
2093 unsigned Encoded = getDefaultDepCtrEncoding(STI);
2094 return encodeFieldVmVsrc(Encoded, VmVsrc);
2095}
2096
2097unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst) {
2098 return packBits(VaVdst, Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2099}
2100
2101unsigned encodeFieldVaVdst(unsigned VaVdst, const MCSubtargetInfo &STI) {
2102 unsigned Encoded = getDefaultDepCtrEncoding(STI);
2103 return encodeFieldVaVdst(Encoded, VaVdst);
2104}
2105
2106unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst) {
2107 return packBits(SaSdst, Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2108}
2109
2110unsigned encodeFieldSaSdst(unsigned SaSdst, const MCSubtargetInfo &STI) {
2111 unsigned Encoded = getDefaultDepCtrEncoding(STI);
2112 return encodeFieldSaSdst(Encoded, SaSdst);
2113}
2114
2115unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst) {
2116 return packBits(VaSdst, Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2117}
2118
2119unsigned encodeFieldVaSdst(unsigned VaSdst, const MCSubtargetInfo &STI) {
2120 unsigned Encoded = getDefaultDepCtrEncoding(STI);
2121 return encodeFieldVaSdst(Encoded, VaSdst);
2122}
2123
2124unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc) {
2125 return packBits(VaVcc, Encoded, getVaVccBitShift(), getVaVccBitWidth());
2126}
2127
2128unsigned encodeFieldVaVcc(unsigned VaVcc, const MCSubtargetInfo &STI) {
2129 unsigned Encoded = getDefaultDepCtrEncoding(STI);
2130 return encodeFieldVaVcc(Encoded, VaVcc);
2131}
2132
2133unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc) {
2134 return packBits(VaSsrc, Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2135}
2136
2137unsigned encodeFieldVaSsrc(unsigned VaSsrc, const MCSubtargetInfo &STI) {
2138 unsigned Encoded = getDefaultDepCtrEncoding(STI);
2139 return encodeFieldVaSsrc(Encoded, VaSsrc);
2140}
2141
2142unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt) {
2143 return packBits(HoldCnt, Encoded, getHoldCntBitShift(), getHoldCntWidth());
2144}
2145
2146unsigned encodeFieldHoldCnt(unsigned HoldCnt, const MCSubtargetInfo &STI) {
2147 unsigned Encoded = getDefaultDepCtrEncoding(STI);
2148 return encodeFieldHoldCnt(Encoded, HoldCnt);
2149}
2150
2151} // namespace DepCtr
2152
2153//===----------------------------------------------------------------------===//
2154// exp tgt
2155//===----------------------------------------------------------------------===//
2156
2157namespace Exp {
2158
2159struct ExpTgt {
2161 unsigned Tgt;
2162 unsigned MaxIndex;
2163};
2164
2165// clang-format off
2166static constexpr ExpTgt ExpTgtInfo[] = {
2167 {{"null"}, ET_NULL, ET_NULL_MAX_IDX},
2168 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
2169 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
2170 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
2171 {{"pos"}, ET_POS0, ET_POS_MAX_IDX},
2172 {{"dual_src_blend"},ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
2173 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
2174};
2175// clang-format on
2176
2177bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
2178 for (const ExpTgt &Val : ExpTgtInfo) {
2179 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
2180 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
2181 Name = Val.Name;
2182 return true;
2183 }
2184 }
2185 return false;
2186}
2187
2188unsigned getTgtId(const StringRef Name) {
2189
2190 for (const ExpTgt &Val : ExpTgtInfo) {
2191 if (Val.MaxIndex == 0 && Name == Val.Name)
2192 return Val.Tgt;
2193
2194 if (Val.MaxIndex > 0 && Name.starts_with(Val.Name)) {
2195 StringRef Suffix = Name.drop_front(Val.Name.size());
2196
2197 unsigned Id;
2198 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
2199 return ET_INVALID;
2200
2201 // Disable leading zeroes
2202 if (Suffix.size() > 1 && Suffix[0] == '0')
2203 return ET_INVALID;
2204
2205 return Val.Tgt + Id;
2206 }
2207 }
2208 return ET_INVALID;
2209}
2210
2211bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
2212 switch (Id) {
2213 case ET_NULL:
2214 return !isGFX11Plus(STI);
2215 case ET_POS4:
2216 case ET_PRIM:
2217 return isGFX10Plus(STI);
2218 case ET_DUAL_SRC_BLEND0:
2219 case ET_DUAL_SRC_BLEND1:
2220 return isGFX11Plus(STI);
2221 default:
2222 if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
2223 return !isGFX11Plus(STI);
2224 return true;
2225 }
2226}
2227
2228} // namespace Exp
2229
2230//===----------------------------------------------------------------------===//
2231// MTBUF Format
2232//===----------------------------------------------------------------------===//
2233
2234namespace MTBUFFormat {
2235
2236int64_t getDfmt(const StringRef Name) {
2237 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
2238 if (Name == DfmtSymbolic[Id])
2239 return Id;
2240 }
2241 return DFMT_UNDEF;
2242}
2243
2245 assert(Id <= DFMT_MAX);
2246 return DfmtSymbolic[Id];
2247}
2248
2250 if (isSI(STI) || isCI(STI))
2251 return NfmtSymbolicSICI;
2252 if (isVI(STI) || isGFX9(STI))
2253 return NfmtSymbolicVI;
2254 return NfmtSymbolicGFX10;
2255}
2256
2257int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
2258 const auto *lookupTable = getNfmtLookupTable(STI);
2259 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
2260 if (Name == lookupTable[Id])
2261 return Id;
2262 }
2263 return NFMT_UNDEF;
2264}
2265
2266StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
2267 assert(Id <= NFMT_MAX);
2268 return getNfmtLookupTable(STI)[Id];
2269}
2270
2271bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2272 unsigned Dfmt;
2273 unsigned Nfmt;
2274 decodeDfmtNfmt(Id, Dfmt, Nfmt);
2275 return isValidNfmt(Nfmt, STI);
2276}
2277
2278bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2279 return !getNfmtName(Id, STI).empty();
2280}
2281
2282int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
2283 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
2284}
2285
2286void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
2287 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
2288 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
2289}
2290
2291int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
2292 if (isGFX11Plus(STI)) {
2293 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2294 if (Name == UfmtSymbolicGFX11[Id])
2295 return Id;
2296 }
2297 } else {
2298 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2299 if (Name == UfmtSymbolicGFX10[Id])
2300 return Id;
2301 }
2302 }
2303 return UFMT_UNDEF;
2304}
2305
2307 if (isValidUnifiedFormat(Id, STI))
2308 return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
2309 return "";
2310}
2311
2312bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
2313 return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
2314}
2315
2316int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
2317 const MCSubtargetInfo &STI) {
2318 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
2319 if (isGFX11Plus(STI)) {
2320 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2321 if (Fmt == DfmtNfmt2UFmtGFX11[Id])
2322 return Id;
2323 }
2324 } else {
2325 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2326 if (Fmt == DfmtNfmt2UFmtGFX10[Id])
2327 return Id;
2328 }
2329 }
2330 return UFMT_UNDEF;
2331}
2332
2333bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
2334 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
2335}
2336
2338 if (isGFX10Plus(STI))
2339 return UFMT_DEFAULT;
2340 return DFMT_NFMT_DEFAULT;
2341}
2342
2343} // namespace MTBUFFormat
2344
2345//===----------------------------------------------------------------------===//
2346// SendMsg
2347//===----------------------------------------------------------------------===//
2348
2349namespace SendMsg {
2350
2354
2355bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
2356 return (MsgId & ~(getMsgIdMask(STI))) == 0;
2357}
2358
2359bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
2360 bool Strict) {
2361 assert(isValidMsgId(MsgId, STI));
2362
2363 if (!Strict)
2364 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
2365
2366 if (msgRequiresOp(MsgId, STI)) {
2367 if (MsgId == ID_GS_PreGFX11 && OpId == OP_GS_NOP)
2368 return false;
2369
2370 return !getMsgOpName(MsgId, OpId, STI).empty();
2371 }
2372
2373 return OpId == OP_NONE_;
2374}
2375
2376bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
2377 const MCSubtargetInfo &STI, bool Strict) {
2378 assert(isValidMsgOp(MsgId, OpId, STI, Strict));
2379
2380 if (!Strict)
2382
2383 if (!isGFX11Plus(STI)) {
2384 switch (MsgId) {
2385 case ID_GS_PreGFX11:
2388 return (OpId == OP_GS_NOP)
2391 }
2392 }
2393 return StreamId == STREAM_ID_NONE_;
2394}
2395
2396bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
2397 return MsgId == ID_SYSMSG ||
2398 (!isGFX11Plus(STI) &&
2399 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
2400}
2401
2402bool msgSupportsStream(int64_t MsgId, int64_t OpId,
2403 const MCSubtargetInfo &STI) {
2404 return !isGFX11Plus(STI) &&
2405 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
2406 OpId != OP_GS_NOP;
2407}
2408
2409void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
2410 uint16_t &StreamId, const MCSubtargetInfo &STI) {
2411 MsgId = Val & getMsgIdMask(STI);
2412 if (isGFX11Plus(STI)) {
2413 OpId = 0;
2414 StreamId = 0;
2415 } else {
2416 OpId = (Val & OP_MASK_) >> OP_SHIFT_;
2418 }
2419}
2420
2422 return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
2423}
2424
2425} // namespace SendMsg
2426
2427//===----------------------------------------------------------------------===//
2428//
2429//===----------------------------------------------------------------------===//
2430
2432 return F.getFnAttributeAsParsedInteger("InitialPSInputAddr", 0);
2433}
2434
2436 // As a safe default always respond as if PS has color exports.
2437 return F.getFnAttributeAsParsedInteger(
2438 "amdgpu-color-export",
2439 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
2440}
2441
2443 return F.getFnAttributeAsParsedInteger("amdgpu-depth-export", 0) != 0;
2444}
2445
2447 unsigned BlockSize =
2448 F.getFnAttributeAsParsedInteger("amdgpu-dynamic-vgpr-block-size", 0);
2449
2450 if (BlockSize == 16 || BlockSize == 32)
2451 return BlockSize;
2452
2453 return 0;
2454}
2455
2456bool hasXNACK(const MCSubtargetInfo &STI) {
2457 return STI.hasFeature(AMDGPU::FeatureXNACK);
2458}
2459
2460bool hasSRAMECC(const MCSubtargetInfo &STI) {
2461 return STI.hasFeature(AMDGPU::FeatureSRAMECC);
2462}
2463
2465 return STI.hasFeature(AMDGPU::FeatureMIMG_R128) &&
2466 !STI.hasFeature(AMDGPU::FeatureR128A16);
2467}
2468
2469bool hasA16(const MCSubtargetInfo &STI) {
2470 return STI.hasFeature(AMDGPU::FeatureA16);
2471}
2472
2473bool hasG16(const MCSubtargetInfo &STI) {
2474 return STI.hasFeature(AMDGPU::FeatureG16);
2475}
2476
2478 return !STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && !isCI(STI) &&
2479 !isSI(STI);
2480}
2481
2482bool hasGDS(const MCSubtargetInfo &STI) {
2483 return STI.hasFeature(AMDGPU::FeatureGDS);
2484}
2485
2486unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler) {
2487 auto Version = getIsaVersion(STI.getCPU());
2488 if (Version.Major == 10)
2489 return Version.Minor >= 3 ? 13 : 5;
2490 if (Version.Major == 11)
2491 return 5;
2492 if (Version.Major >= 12)
2493 return HasSampler ? 4 : 5;
2494 return 0;
2495}
2496
2498 if (isGFX1250(STI))
2499 return 32;
2500 return 16;
2501}
2502
2503bool isSI(const MCSubtargetInfo &STI) {
2504 return STI.hasFeature(AMDGPU::FeatureSouthernIslands);
2505}
2506
2507bool isCI(const MCSubtargetInfo &STI) {
2508 return STI.hasFeature(AMDGPU::FeatureSeaIslands);
2509}
2510
2511bool isVI(const MCSubtargetInfo &STI) {
2512 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
2513}
2514
2515bool isGFX9(const MCSubtargetInfo &STI) {
2516 return STI.hasFeature(AMDGPU::FeatureGFX9);
2517}
2518
2520 return isGFX9(STI) || isGFX10(STI);
2521}
2522
2524 return isGFX9(STI) || isGFX10(STI) || isGFX11(STI);
2525}
2526
2528 return isVI(STI) || isGFX9(STI) || isGFX10(STI);
2529}
2530
2531bool isGFX8Plus(const MCSubtargetInfo &STI) {
2532 return isVI(STI) || isGFX9Plus(STI);
2533}
2534
2535bool isGFX9Plus(const MCSubtargetInfo &STI) {
2536 return isGFX9(STI) || isGFX10Plus(STI);
2537}
2538
2539bool isNotGFX9Plus(const MCSubtargetInfo &STI) { return !isGFX9Plus(STI); }
2540
2541bool isGFX10(const MCSubtargetInfo &STI) {
2542 return STI.hasFeature(AMDGPU::FeatureGFX10);
2543}
2544
2546 return isGFX10(STI) || isGFX11(STI);
2547}
2548
2550 return isGFX10(STI) || isGFX11Plus(STI);
2551}
2552
2553bool isGFX11(const MCSubtargetInfo &STI) {
2554 return STI.hasFeature(AMDGPU::FeatureGFX11);
2555}
2556
2558 return isGFX11(STI) || isGFX12Plus(STI);
2559}
2560
2561bool isGFX12(const MCSubtargetInfo &STI) {
2562 return STI.getFeatureBits()[AMDGPU::FeatureGFX12];
2563}
2564
2565bool isGFX12Plus(const MCSubtargetInfo &STI) { return isGFX12(STI); }
2566
2567bool isNotGFX12Plus(const MCSubtargetInfo &STI) { return !isGFX12Plus(STI); }
2568
2569bool isGFX1250(const MCSubtargetInfo &STI) {
2570 return STI.getFeatureBits()[AMDGPU::FeatureGFX1250Insts];
2571}
2572
2574 if (isGFX1250(STI))
2575 return false;
2576 return isGFX10Plus(STI);
2577}
2578
2579bool isNotGFX11Plus(const MCSubtargetInfo &STI) { return !isGFX11Plus(STI); }
2580
2582 return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
2583}
2584
2586 return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
2587}
2588
2590 return STI.hasFeature(AMDGPU::FeatureGCN3Encoding);
2591}
2592
2594 return STI.hasFeature(AMDGPU::FeatureGFX10_AEncoding);
2595}
2596
2598 return STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding);
2599}
2600
2602 return STI.hasFeature(AMDGPU::FeatureGFX10_3Insts);
2603}
2604
2606 return isGFX10_BEncoding(STI) && !isGFX12Plus(STI);
2607}
2608
2609bool isGFX90A(const MCSubtargetInfo &STI) {
2610 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
2611}
2612
2613bool isGFX940(const MCSubtargetInfo &STI) {
2614 return STI.hasFeature(AMDGPU::FeatureGFX940Insts);
2615}
2616
2618 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
2619}
2620
2622 return STI.hasFeature(AMDGPU::FeatureMAIInsts);
2623}
2624
2625bool hasVOPD(const MCSubtargetInfo &STI) {
2626 return STI.hasFeature(AMDGPU::FeatureVOPD);
2627}
2628
2630 return STI.hasFeature(AMDGPU::FeatureDPPSrc1SGPR);
2631}
2632
2634 return STI.hasFeature(AMDGPU::FeatureKernargPreload);
2635}
2636
2637int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
2638 int32_t ArgNumVGPR) {
2639 if (has90AInsts && ArgNumAGPR)
2640 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
2641 return std::max(ArgNumVGPR, ArgNumAGPR);
2642}
2643
2645 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
2646 const MCRegister FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
2647 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
2648 Reg == AMDGPU::SCC;
2649}
2650
2652 return MRI.getEncodingValue(Reg) & AMDGPU::HWEncoding::IS_HI16;
2653}
2654
2655#define MAP_REG2REG \
2656 using namespace AMDGPU; \
2657 switch (Reg.id()) { \
2658 default: \
2659 return Reg; \
2660 CASE_CI_VI(FLAT_SCR) \
2661 CASE_CI_VI(FLAT_SCR_LO) \
2662 CASE_CI_VI(FLAT_SCR_HI) \
2663 CASE_VI_GFX9PLUS(TTMP0) \
2664 CASE_VI_GFX9PLUS(TTMP1) \
2665 CASE_VI_GFX9PLUS(TTMP2) \
2666 CASE_VI_GFX9PLUS(TTMP3) \
2667 CASE_VI_GFX9PLUS(TTMP4) \
2668 CASE_VI_GFX9PLUS(TTMP5) \
2669 CASE_VI_GFX9PLUS(TTMP6) \
2670 CASE_VI_GFX9PLUS(TTMP7) \
2671 CASE_VI_GFX9PLUS(TTMP8) \
2672 CASE_VI_GFX9PLUS(TTMP9) \
2673 CASE_VI_GFX9PLUS(TTMP10) \
2674 CASE_VI_GFX9PLUS(TTMP11) \
2675 CASE_VI_GFX9PLUS(TTMP12) \
2676 CASE_VI_GFX9PLUS(TTMP13) \
2677 CASE_VI_GFX9PLUS(TTMP14) \
2678 CASE_VI_GFX9PLUS(TTMP15) \
2679 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
2680 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
2681 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
2682 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
2683 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
2684 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
2685 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
2686 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
2687 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
2688 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
2689 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
2690 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
2691 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
2692 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
2693 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2694 CASE_VI_GFX9PLUS( \
2695 TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2696 CASE_GFXPRE11_GFX11PLUS(M0) \
2697 CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
2698 CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
2699 }
2700
2701#define CASE_CI_VI(node) \
2702 assert(!isSI(STI)); \
2703 case node: \
2704 return isCI(STI) ? node##_ci : node##_vi;
2705
2706#define CASE_VI_GFX9PLUS(node) \
2707 case node: \
2708 return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
2709
2710#define CASE_GFXPRE11_GFX11PLUS(node) \
2711 case node: \
2712 return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;
2713
2714#define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
2715 case node: \
2716 return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;
2717
2719 if (STI.getTargetTriple().getArch() == Triple::r600)
2720 return Reg;
2722}
2723
2724#undef CASE_CI_VI
2725#undef CASE_VI_GFX9PLUS
2726#undef CASE_GFXPRE11_GFX11PLUS
2727#undef CASE_GFXPRE11_GFX11PLUS_TO
2728
2729#define CASE_CI_VI(node) \
2730 case node##_ci: \
2731 case node##_vi: \
2732 return node;
2733#define CASE_VI_GFX9PLUS(node) \
2734 case node##_vi: \
2735 case node##_gfx9plus: \
2736 return node;
2737#define CASE_GFXPRE11_GFX11PLUS(node) \
2738 case node##_gfx11plus: \
2739 case node##_gfxpre11: \
2740 return node;
2741#define CASE_GFXPRE11_GFX11PLUS_TO(node, result)
2742
2744
2746 switch (Reg.id()) {
2747 case AMDGPU::SRC_SHARED_BASE_LO:
2748 case AMDGPU::SRC_SHARED_BASE:
2749 case AMDGPU::SRC_SHARED_LIMIT_LO:
2750 case AMDGPU::SRC_SHARED_LIMIT:
2751 case AMDGPU::SRC_PRIVATE_BASE_LO:
2752 case AMDGPU::SRC_PRIVATE_BASE:
2753 case AMDGPU::SRC_PRIVATE_LIMIT_LO:
2754 case AMDGPU::SRC_PRIVATE_LIMIT:
2755 case AMDGPU::SRC_FLAT_SCRATCH_BASE_LO:
2756 case AMDGPU::SRC_FLAT_SCRATCH_BASE_HI:
2757 case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
2758 return true;
2759 case AMDGPU::SRC_VCCZ:
2760 case AMDGPU::SRC_EXECZ:
2761 case AMDGPU::SRC_SCC:
2762 return true;
2763 case AMDGPU::SGPR_NULL:
2764 return true;
2765 default:
2766 return false;
2767 }
2768}
2769
2770#undef CASE_CI_VI
2771#undef CASE_VI_GFX9PLUS
2772#undef CASE_GFXPRE11_GFX11PLUS
2773#undef CASE_GFXPRE11_GFX11PLUS_TO
2774#undef MAP_REG2REG
2775
2776bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2777 assert(OpNo < Desc.NumOperands);
2778 unsigned OpType = Desc.operands()[OpNo].OperandType;
2779 return OpType >= AMDGPU::OPERAND_KIMM_FIRST &&
2780 OpType <= AMDGPU::OPERAND_KIMM_LAST;
2781}
2782
2783bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2784 assert(OpNo < Desc.NumOperands);
2785 unsigned OpType = Desc.operands()[OpNo].OperandType;
2786 switch (OpType) {
2799 return true;
2800 default:
2801 return false;
2802 }
2803}
2804
2805bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2806 assert(OpNo < Desc.NumOperands);
2807 unsigned OpType = Desc.operands()[OpNo].OperandType;
2808 return (OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
2812}
2813
2814// Avoid using MCRegisterClass::getSize, since that function will go away
2815// (move from MC* level to Target* level). Return size in bits.
2816unsigned getRegBitWidth(unsigned RCID) {
2817 switch (RCID) {
2818 case AMDGPU::VGPR_16RegClassID:
2819 case AMDGPU::VGPR_16_Lo128RegClassID:
2820 case AMDGPU::SGPR_LO16RegClassID:
2821 case AMDGPU::AGPR_LO16RegClassID:
2822 return 16;
2823 case AMDGPU::SGPR_32RegClassID:
2824 case AMDGPU::VGPR_32RegClassID:
2825 case AMDGPU::VGPR_32_Lo256RegClassID:
2826 case AMDGPU::VRegOrLds_32RegClassID:
2827 case AMDGPU::AGPR_32RegClassID:
2828 case AMDGPU::VS_32RegClassID:
2829 case AMDGPU::AV_32RegClassID:
2830 case AMDGPU::SReg_32RegClassID:
2831 case AMDGPU::SReg_32_XM0RegClassID:
2832 case AMDGPU::SRegOrLds_32RegClassID:
2833 return 32;
2834 case AMDGPU::SGPR_64RegClassID:
2835 case AMDGPU::VS_64RegClassID:
2836 case AMDGPU::SReg_64RegClassID:
2837 case AMDGPU::VReg_64RegClassID:
2838 case AMDGPU::AReg_64RegClassID:
2839 case AMDGPU::SReg_64_XEXECRegClassID:
2840 case AMDGPU::VReg_64_Align2RegClassID:
2841 case AMDGPU::AReg_64_Align2RegClassID:
2842 case AMDGPU::AV_64RegClassID:
2843 case AMDGPU::AV_64_Align2RegClassID:
2844 case AMDGPU::VReg_64_Lo256_Align2RegClassID:
2845 case AMDGPU::VS_64_Lo256RegClassID:
2846 return 64;
2847 case AMDGPU::SGPR_96RegClassID:
2848 case AMDGPU::SReg_96RegClassID:
2849 case AMDGPU::VReg_96RegClassID:
2850 case AMDGPU::AReg_96RegClassID:
2851 case AMDGPU::VReg_96_Align2RegClassID:
2852 case AMDGPU::AReg_96_Align2RegClassID:
2853 case AMDGPU::AV_96RegClassID:
2854 case AMDGPU::AV_96_Align2RegClassID:
2855 case AMDGPU::VReg_96_Lo256_Align2RegClassID:
2856 return 96;
2857 case AMDGPU::SGPR_128RegClassID:
2858 case AMDGPU::SReg_128RegClassID:
2859 case AMDGPU::VReg_128RegClassID:
2860 case AMDGPU::AReg_128RegClassID:
2861 case AMDGPU::VReg_128_Align2RegClassID:
2862 case AMDGPU::AReg_128_Align2RegClassID:
2863 case AMDGPU::AV_128RegClassID:
2864 case AMDGPU::AV_128_Align2RegClassID:
2865 case AMDGPU::SReg_128_XNULLRegClassID:
2866 case AMDGPU::VReg_128_Lo256_Align2RegClassID:
2867 return 128;
2868 case AMDGPU::SGPR_160RegClassID:
2869 case AMDGPU::SReg_160RegClassID:
2870 case AMDGPU::VReg_160RegClassID:
2871 case AMDGPU::AReg_160RegClassID:
2872 case AMDGPU::VReg_160_Align2RegClassID:
2873 case AMDGPU::AReg_160_Align2RegClassID:
2874 case AMDGPU::AV_160RegClassID:
2875 case AMDGPU::AV_160_Align2RegClassID:
2876 case AMDGPU::VReg_160_Lo256_Align2RegClassID:
2877 return 160;
2878 case AMDGPU::SGPR_192RegClassID:
2879 case AMDGPU::SReg_192RegClassID:
2880 case AMDGPU::VReg_192RegClassID:
2881 case AMDGPU::AReg_192RegClassID:
2882 case AMDGPU::VReg_192_Align2RegClassID:
2883 case AMDGPU::AReg_192_Align2RegClassID:
2884 case AMDGPU::AV_192RegClassID:
2885 case AMDGPU::AV_192_Align2RegClassID:
2886 case AMDGPU::VReg_192_Lo256_Align2RegClassID:
2887 return 192;
2888 case AMDGPU::SGPR_224RegClassID:
2889 case AMDGPU::SReg_224RegClassID:
2890 case AMDGPU::VReg_224RegClassID:
2891 case AMDGPU::AReg_224RegClassID:
2892 case AMDGPU::VReg_224_Align2RegClassID:
2893 case AMDGPU::AReg_224_Align2RegClassID:
2894 case AMDGPU::AV_224RegClassID:
2895 case AMDGPU::AV_224_Align2RegClassID:
2896 case AMDGPU::VReg_224_Lo256_Align2RegClassID:
2897 return 224;
2898 case AMDGPU::SGPR_256RegClassID:
2899 case AMDGPU::SReg_256RegClassID:
2900 case AMDGPU::VReg_256RegClassID:
2901 case AMDGPU::AReg_256RegClassID:
2902 case AMDGPU::VReg_256_Align2RegClassID:
2903 case AMDGPU::AReg_256_Align2RegClassID:
2904 case AMDGPU::AV_256RegClassID:
2905 case AMDGPU::AV_256_Align2RegClassID:
2906 case AMDGPU::SReg_256_XNULLRegClassID:
2907 case AMDGPU::VReg_256_Lo256_Align2RegClassID:
2908 return 256;
2909 case AMDGPU::SGPR_288RegClassID:
2910 case AMDGPU::SReg_288RegClassID:
2911 case AMDGPU::VReg_288RegClassID:
2912 case AMDGPU::AReg_288RegClassID:
2913 case AMDGPU::VReg_288_Align2RegClassID:
2914 case AMDGPU::AReg_288_Align2RegClassID:
2915 case AMDGPU::AV_288RegClassID:
2916 case AMDGPU::AV_288_Align2RegClassID:
2917 case AMDGPU::VReg_288_Lo256_Align2RegClassID:
2918 return 288;
2919 case AMDGPU::SGPR_320RegClassID:
2920 case AMDGPU::SReg_320RegClassID:
2921 case AMDGPU::VReg_320RegClassID:
2922 case AMDGPU::AReg_320RegClassID:
2923 case AMDGPU::VReg_320_Align2RegClassID:
2924 case AMDGPU::AReg_320_Align2RegClassID:
2925 case AMDGPU::AV_320RegClassID:
2926 case AMDGPU::AV_320_Align2RegClassID:
2927 case AMDGPU::VReg_320_Lo256_Align2RegClassID:
2928 return 320;
2929 case AMDGPU::SGPR_352RegClassID:
2930 case AMDGPU::SReg_352RegClassID:
2931 case AMDGPU::VReg_352RegClassID:
2932 case AMDGPU::AReg_352RegClassID:
2933 case AMDGPU::VReg_352_Align2RegClassID:
2934 case AMDGPU::AReg_352_Align2RegClassID:
2935 case AMDGPU::AV_352RegClassID:
2936 case AMDGPU::AV_352_Align2RegClassID:
2937 case AMDGPU::VReg_352_Lo256_Align2RegClassID:
2938 return 352;
2939 case AMDGPU::SGPR_384RegClassID:
2940 case AMDGPU::SReg_384RegClassID:
2941 case AMDGPU::VReg_384RegClassID:
2942 case AMDGPU::AReg_384RegClassID:
2943 case AMDGPU::VReg_384_Align2RegClassID:
2944 case AMDGPU::AReg_384_Align2RegClassID:
2945 case AMDGPU::AV_384RegClassID:
2946 case AMDGPU::AV_384_Align2RegClassID:
2947 case AMDGPU::VReg_384_Lo256_Align2RegClassID:
2948 return 384;
2949 case AMDGPU::SGPR_512RegClassID:
2950 case AMDGPU::SReg_512RegClassID:
2951 case AMDGPU::VReg_512RegClassID:
2952 case AMDGPU::AReg_512RegClassID:
2953 case AMDGPU::VReg_512_Align2RegClassID:
2954 case AMDGPU::AReg_512_Align2RegClassID:
2955 case AMDGPU::AV_512RegClassID:
2956 case AMDGPU::AV_512_Align2RegClassID:
2957 case AMDGPU::VReg_512_Lo256_Align2RegClassID:
2958 return 512;
2959 case AMDGPU::SGPR_1024RegClassID:
2960 case AMDGPU::SReg_1024RegClassID:
2961 case AMDGPU::VReg_1024RegClassID:
2962 case AMDGPU::AReg_1024RegClassID:
2963 case AMDGPU::VReg_1024_Align2RegClassID:
2964 case AMDGPU::AReg_1024_Align2RegClassID:
2965 case AMDGPU::AV_1024RegClassID:
2966 case AMDGPU::AV_1024_Align2RegClassID:
2967 case AMDGPU::VReg_1024_Lo256_Align2RegClassID:
2968 return 1024;
2969 default:
2970 llvm_unreachable("Unexpected register class");
2971 }
2972}
2973
2974unsigned getRegBitWidth(const MCRegisterClass &RC) {
2975 return getRegBitWidth(RC.getID());
2976}
2977
2978bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
2980 return true;
2981
2982 uint64_t Val = static_cast<uint64_t>(Literal);
2983 return (Val == llvm::bit_cast<uint64_t>(0.0)) ||
2984 (Val == llvm::bit_cast<uint64_t>(1.0)) ||
2985 (Val == llvm::bit_cast<uint64_t>(-1.0)) ||
2986 (Val == llvm::bit_cast<uint64_t>(0.5)) ||
2987 (Val == llvm::bit_cast<uint64_t>(-0.5)) ||
2988 (Val == llvm::bit_cast<uint64_t>(2.0)) ||
2989 (Val == llvm::bit_cast<uint64_t>(-2.0)) ||
2990 (Val == llvm::bit_cast<uint64_t>(4.0)) ||
2991 (Val == llvm::bit_cast<uint64_t>(-4.0)) ||
2992 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
2993}
2994
2995bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
2997 return true;
2998
2999 // The actual type of the operand does not seem to matter as long
3000 // as the bits match one of the inline immediate values. For example:
3001 //
3002 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
3003 // so it is a legal inline immediate.
3004 //
3005 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
3006 // floating-point, so it is a legal inline immediate.
3007
3008 uint32_t Val = static_cast<uint32_t>(Literal);
3009 return (Val == llvm::bit_cast<uint32_t>(0.0f)) ||
3010 (Val == llvm::bit_cast<uint32_t>(1.0f)) ||
3011 (Val == llvm::bit_cast<uint32_t>(-1.0f)) ||
3012 (Val == llvm::bit_cast<uint32_t>(0.5f)) ||
3013 (Val == llvm::bit_cast<uint32_t>(-0.5f)) ||
3014 (Val == llvm::bit_cast<uint32_t>(2.0f)) ||
3015 (Val == llvm::bit_cast<uint32_t>(-2.0f)) ||
3016 (Val == llvm::bit_cast<uint32_t>(4.0f)) ||
3017 (Val == llvm::bit_cast<uint32_t>(-4.0f)) ||
3018 (Val == 0x3e22f983 && HasInv2Pi);
3019}
3020
3021bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi) {
3022 if (!HasInv2Pi)
3023 return false;
3025 return true;
3026 uint16_t Val = static_cast<uint16_t>(Literal);
3027 return Val == 0x3F00 || // 0.5
3028 Val == 0xBF00 || // -0.5
3029 Val == 0x3F80 || // 1.0
3030 Val == 0xBF80 || // -1.0
3031 Val == 0x4000 || // 2.0
3032 Val == 0xC000 || // -2.0
3033 Val == 0x4080 || // 4.0
3034 Val == 0xC080 || // -4.0
3035 Val == 0x3E22; // 1.0 / (2.0 * pi)
3036}
3037
3038bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi) {
3039 return isInlinableLiteral32(Literal, HasInv2Pi);
3040}
3041
3042bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi) {
3043 if (!HasInv2Pi)
3044 return false;
3046 return true;
3047 uint16_t Val = static_cast<uint16_t>(Literal);
3048 return Val == 0x3C00 || // 1.0
3049 Val == 0xBC00 || // -1.0
3050 Val == 0x3800 || // 0.5
3051 Val == 0xB800 || // -0.5
3052 Val == 0x4000 || // 2.0
3053 Val == 0xC000 || // -2.0
3054 Val == 0x4400 || // 4.0
3055 Val == 0xC400 || // -4.0
3056 Val == 0x3118; // 1/2pi
3057}
3058
3059std::optional<unsigned> getInlineEncodingV216(bool IsFloat, uint32_t Literal) {
3060 // Unfortunately, the Instruction Set Architecture Reference Guide is
3061 // misleading about how the inline operands work for (packed) 16-bit
3062 // instructions. In a nutshell, the actual HW behavior is:
3063 //
3064 // - integer encodings (-16 .. 64) are always produced as sign-extended
3065 // 32-bit values
3066 // - float encodings are produced as:
3067 // - for F16 instructions: corresponding half-precision float values in
3068 // the LSBs, 0 in the MSBs
3069 // - for UI16 instructions: corresponding single-precision float value
3070 int32_t Signed = static_cast<int32_t>(Literal);
3071 if (Signed >= 0 && Signed <= 64)
3072 return 128 + Signed;
3073
3074 if (Signed >= -16 && Signed <= -1)
3075 return 192 + std::abs(Signed);
3076
3077 if (IsFloat) {
3078 // clang-format off
3079 switch (Literal) {
3080 case 0x3800: return 240; // 0.5
3081 case 0xB800: return 241; // -0.5
3082 case 0x3C00: return 242; // 1.0
3083 case 0xBC00: return 243; // -1.0
3084 case 0x4000: return 244; // 2.0
3085 case 0xC000: return 245; // -2.0
3086 case 0x4400: return 246; // 4.0
3087 case 0xC400: return 247; // -4.0
3088 case 0x3118: return 248; // 1.0 / (2.0 * pi)
3089 default: break;
3090 }
3091 // clang-format on
3092 } else {
3093 // clang-format off
3094 switch (Literal) {
3095 case 0x3F000000: return 240; // 0.5
3096 case 0xBF000000: return 241; // -0.5
3097 case 0x3F800000: return 242; // 1.0
3098 case 0xBF800000: return 243; // -1.0
3099 case 0x40000000: return 244; // 2.0
3100 case 0xC0000000: return 245; // -2.0
3101 case 0x40800000: return 246; // 4.0
3102 case 0xC0800000: return 247; // -4.0
3103 case 0x3E22F983: return 248; // 1.0 / (2.0 * pi)
3104 default: break;
3105 }
3106 // clang-format on
3107 }
3108
3109 return {};
3110}
3111
3112// Encoding of the literal as an inline constant for a V_PK_*_IU16 instruction
3113// or nullopt.
3114std::optional<unsigned> getInlineEncodingV2I16(uint32_t Literal) {
3115 return getInlineEncodingV216(false, Literal);
3116}
3117
3118// Encoding of the literal as an inline constant for a V_PK_*_BF16 instruction
3119// or nullopt.
3120std::optional<unsigned> getInlineEncodingV2BF16(uint32_t Literal) {
3121 int32_t Signed = static_cast<int32_t>(Literal);
3122 if (Signed >= 0 && Signed <= 64)
3123 return 128 + Signed;
3124
3125 if (Signed >= -16 && Signed <= -1)
3126 return 192 + std::abs(Signed);
3127
3128 // clang-format off
3129 switch (Literal) {
3130 case 0x3F00: return 240; // 0.5
3131 case 0xBF00: return 241; // -0.5
3132 case 0x3F80: return 242; // 1.0
3133 case 0xBF80: return 243; // -1.0
3134 case 0x4000: return 244; // 2.0
3135 case 0xC000: return 245; // -2.0
3136 case 0x4080: return 246; // 4.0
3137 case 0xC080: return 247; // -4.0
3138 case 0x3E22: return 248; // 1.0 / (2.0 * pi)
3139 default: break;
3140 }
3141 // clang-format on
3142
3143 return std::nullopt;
3144}
3145
3146// Encoding of the literal as an inline constant for a V_PK_*_F16 instruction
3147// or nullopt.
3148std::optional<unsigned> getInlineEncodingV2F16(uint32_t Literal) {
3149 return getInlineEncodingV216(true, Literal);
3150}
3151
3152// Whether the given literal can be inlined for a V_PK_* instruction.
3154 switch (OpType) {
3157 return getInlineEncodingV216(false, Literal).has_value();
3160 return getInlineEncodingV216(true, Literal).has_value();
3165 return false;
3166 default:
3167 llvm_unreachable("bad packed operand type");
3168 }
3169}
3170
3171// Whether the given literal can be inlined for a V_PK_*_IU16 instruction.
3175
3176// Whether the given literal can be inlined for a V_PK_*_BF16 instruction.
3180
3181// Whether the given literal can be inlined for a V_PK_*_F16 instruction.
3185
3186bool isValid32BitLiteral(uint64_t Val, bool IsFP64) {
3187 if (IsFP64)
3188 return !Lo_32(Val);
3189
3190 return isUInt<32>(Val) || isInt<32>(Val);
3191}
3192
3193int64_t encode32BitLiteral(int64_t Imm, OperandType Type, bool IsLit) {
3194 switch (Type) {
3195 default:
3196 break;
3201 return Imm & 0xffff;
3214 return Lo_32(Imm);
3216 return IsLit ? Imm : Hi_32(Imm);
3217 }
3218 return Imm;
3219}
3220
3222 const Function *F = A->getParent();
3223
3224 // Arguments to compute shaders are never a source of divergence.
3225 CallingConv::ID CC = F->getCallingConv();
3226 switch (CC) {
3229 return true;
3240 // For non-compute shaders, SGPR inputs are marked with either inreg or
3241 // byval. Everything else is in VGPRs.
3242 return A->hasAttribute(Attribute::InReg) ||
3243 A->hasAttribute(Attribute::ByVal);
3244 default:
3245 // TODO: treat i1 as divergent?
3246 return A->hasAttribute(Attribute::InReg);
3247 }
3248}
3249
3250bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo) {
3251 // Arguments to compute shaders are never a source of divergence.
3253 switch (CC) {
3256 return true;
3267 // For non-compute shaders, SGPR inputs are marked with either inreg or
3268 // byval. Everything else is in VGPRs.
3269 return CB->paramHasAttr(ArgNo, Attribute::InReg) ||
3270 CB->paramHasAttr(ArgNo, Attribute::ByVal);
3271 default:
3272 return CB->paramHasAttr(ArgNo, Attribute::InReg);
3273 }
3274}
3275
3276static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
3277 return isGCN3Encoding(ST) || isGFX10Plus(ST);
3278}
3279
3281 int64_t EncodedOffset) {
3282 if (isGFX12Plus(ST))
3283 return isUInt<23>(EncodedOffset);
3284
3285 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
3286 : isUInt<8>(EncodedOffset);
3287}
3288
3290 int64_t EncodedOffset, bool IsBuffer) {
3291 if (isGFX12Plus(ST)) {
3292 if (IsBuffer && EncodedOffset < 0)
3293 return false;
3294 return isInt<24>(EncodedOffset);
3295 }
3296
3297 return !IsBuffer && hasSMRDSignedImmOffset(ST) && isInt<21>(EncodedOffset);
3298}
3299
3300static bool isDwordAligned(uint64_t ByteOffset) {
3301 return (ByteOffset & 3) == 0;
3302}
3303
3305 uint64_t ByteOffset) {
3306 if (hasSMEMByteOffset(ST))
3307 return ByteOffset;
3308
3309 assert(isDwordAligned(ByteOffset));
3310 return ByteOffset >> 2;
3311}
3312
3313std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
3314 int64_t ByteOffset, bool IsBuffer,
3315 bool HasSOffset) {
3316 // For unbuffered smem loads, it is illegal for the Immediate Offset to be
3317 // negative if the resulting (Offset + (M0 or SOffset or zero) is negative.
3318 // Handle case where SOffset is not present.
3319 if (!IsBuffer && !HasSOffset && ByteOffset < 0 && hasSMRDSignedImmOffset(ST))
3320 return std::nullopt;
3321
3322 if (isGFX12Plus(ST)) // 24 bit signed offsets
3323 return isInt<24>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3324 : std::nullopt;
3325
3326 // The signed version is always a byte offset.
3327 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
3329 return isInt<20>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3330 : std::nullopt;
3331 }
3332
3333 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
3334 return std::nullopt;
3335
3336 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3337 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
3338 ? std::optional<int64_t>(EncodedOffset)
3339 : std::nullopt;
3340}
3341
3342std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
3343 int64_t ByteOffset) {
3344 if (!isCI(ST) || !isDwordAligned(ByteOffset))
3345 return std::nullopt;
3346
3347 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3348 return isUInt<32>(EncodedOffset) ? std::optional<int64_t>(EncodedOffset)
3349 : std::nullopt;
3350}
3351
3353 if (AMDGPU::isGFX10(ST))
3354 return 12;
3355
3356 if (AMDGPU::isGFX12(ST))
3357 return 24;
3358 return 13;
3359}
3360
3361namespace {
3362
3363struct SourceOfDivergence {
3364 unsigned Intr;
3365};
3366const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
3367
3368struct AlwaysUniform {
3369 unsigned Intr;
3370};
3371const AlwaysUniform *lookupAlwaysUniform(unsigned Intr);
3372
3373#define GET_SourcesOfDivergence_IMPL
3374#define GET_UniformIntrinsics_IMPL
3375#define GET_Gfx9BufferFormat_IMPL
3376#define GET_Gfx10BufferFormat_IMPL
3377#define GET_Gfx11PlusBufferFormat_IMPL
3378
3379#include "AMDGPUGenSearchableTables.inc"
3380
3381} // end anonymous namespace
3382
3383bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
3384 return lookupSourceOfDivergence(IntrID);
3385}
3386
3387bool isIntrinsicAlwaysUniform(unsigned IntrID) {
3388 return lookupAlwaysUniform(IntrID);
3389}
3390
3392 uint8_t NumComponents,
3393 uint8_t NumFormat,
3394 const MCSubtargetInfo &STI) {
3395 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(
3396 BitsPerComp, NumComponents, NumFormat)
3397 : isGFX10(STI)
3398 ? getGfx10BufferFormatInfo(BitsPerComp, NumComponents, NumFormat)
3399 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
3400}
3401
3403 const MCSubtargetInfo &STI) {
3404 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
3405 : isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
3406 : getGfx9BufferFormatInfo(Format);
3407}
3408
3410 const MCRegisterInfo &MRI) {
3411 const unsigned VGPRClasses[] = {
3412 AMDGPU::VGPR_16RegClassID, AMDGPU::VGPR_32RegClassID,
3413 AMDGPU::VReg_64RegClassID, AMDGPU::VReg_96RegClassID,
3414 AMDGPU::VReg_128RegClassID, AMDGPU::VReg_160RegClassID,
3415 AMDGPU::VReg_192RegClassID, AMDGPU::VReg_224RegClassID,
3416 AMDGPU::VReg_256RegClassID, AMDGPU::VReg_288RegClassID,
3417 AMDGPU::VReg_320RegClassID, AMDGPU::VReg_352RegClassID,
3418 AMDGPU::VReg_384RegClassID, AMDGPU::VReg_512RegClassID,
3419 AMDGPU::VReg_1024RegClassID};
3420
3421 for (unsigned RCID : VGPRClasses) {
3422 const MCRegisterClass &RC = MRI.getRegClass(RCID);
3423 if (RC.contains(Reg))
3424 return &RC;
3425 }
3426
3427 return nullptr;
3428}
3429
3431 unsigned Enc = MRI.getEncodingValue(Reg);
3432 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3433 return Idx >> 8;
3434}
3435
3437 const MCRegisterInfo &MRI) {
3438 unsigned Enc = MRI.getEncodingValue(Reg);
3439 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3440 if (Idx >= 0x100)
3441 return MCRegister();
3442
3444 if (!RC)
3445 return MCRegister();
3446
3447 Idx |= MSBs << 8;
3448 if (RC->getID() == AMDGPU::VGPR_16RegClassID) {
3449 // This class has 2048 registers with interleaved lo16 and hi16.
3450 Idx *= 2;
3452 ++Idx;
3453 }
3454
3455 return RC->getRegister(Idx);
3456}
3457
3458std::pair<const AMDGPU::OpName *, const AMDGPU::OpName *>
3460 static const AMDGPU::OpName VOPOps[4] = {
3461 AMDGPU::OpName::src0, AMDGPU::OpName::src1, AMDGPU::OpName::src2,
3462 AMDGPU::OpName::vdst};
3463 static const AMDGPU::OpName VDSOps[4] = {
3464 AMDGPU::OpName::addr, AMDGPU::OpName::data0, AMDGPU::OpName::data1,
3465 AMDGPU::OpName::vdst};
3466 static const AMDGPU::OpName FLATOps[4] = {
3467 AMDGPU::OpName::vaddr, AMDGPU::OpName::vdata,
3468 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdst};
3469 static const AMDGPU::OpName BUFOps[4] = {
3470 AMDGPU::OpName::vaddr, AMDGPU::OpName::NUM_OPERAND_NAMES,
3471 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdata};
3472 static const AMDGPU::OpName VIMGOps[4] = {
3473 AMDGPU::OpName::vaddr0, AMDGPU::OpName::vaddr1, AMDGPU::OpName::vaddr2,
3474 AMDGPU::OpName::vdata};
3475
3476 // For VOPD instructions MSB of a corresponding Y component operand VGPR
3477 // address is supposed to match X operand, otherwise VOPD shall not be
3478 // combined.
3479 static const AMDGPU::OpName VOPDOpsX[4] = {
3480 AMDGPU::OpName::src0X, AMDGPU::OpName::vsrc1X, AMDGPU::OpName::vsrc2X,
3481 AMDGPU::OpName::vdstX};
3482 static const AMDGPU::OpName VOPDOpsY[4] = {
3483 AMDGPU::OpName::src0Y, AMDGPU::OpName::vsrc1Y, AMDGPU::OpName::vsrc2Y,
3484 AMDGPU::OpName::vdstY};
3485
3486 // VOP2 MADMK instructions use src0, imm, src1 scheme.
3487 static const AMDGPU::OpName VOP2MADMKOps[4] = {
3488 AMDGPU::OpName::src0, AMDGPU::OpName::NUM_OPERAND_NAMES,
3489 AMDGPU::OpName::src1, AMDGPU::OpName::vdst};
3490 static const AMDGPU::OpName VOPDFMAMKOpsX[4] = {
3491 AMDGPU::OpName::src0X, AMDGPU::OpName::NUM_OPERAND_NAMES,
3492 AMDGPU::OpName::vsrc1X, AMDGPU::OpName::vdstX};
3493 static const AMDGPU::OpName VOPDFMAMKOpsY[4] = {
3494 AMDGPU::OpName::src0Y, AMDGPU::OpName::NUM_OPERAND_NAMES,
3495 AMDGPU::OpName::vsrc1Y, AMDGPU::OpName::vdstY};
3496
3497 unsigned TSFlags = Desc.TSFlags;
3498
3499 if (TSFlags &
3502 switch (Desc.getOpcode()) {
3503 // LD_SCALE operands ignore MSB.
3504 case AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32:
3505 case AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32_gfx1250:
3506 case AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64:
3507 case AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64_gfx1250:
3508 return {};
3509 case AMDGPU::V_FMAMK_F16:
3510 case AMDGPU::V_FMAMK_F16_t16:
3511 case AMDGPU::V_FMAMK_F16_t16_gfx12:
3512 case AMDGPU::V_FMAMK_F16_fake16:
3513 case AMDGPU::V_FMAMK_F16_fake16_gfx12:
3514 case AMDGPU::V_FMAMK_F32:
3515 case AMDGPU::V_FMAMK_F32_gfx12:
3516 case AMDGPU::V_FMAMK_F64:
3517 case AMDGPU::V_FMAMK_F64_gfx1250:
3518 return {VOP2MADMKOps, nullptr};
3519 default:
3520 break;
3521 }
3522 return {VOPOps, nullptr};
3523 }
3524
3525 if (TSFlags & SIInstrFlags::DS)
3526 return {VDSOps, nullptr};
3527
3528 if (TSFlags & SIInstrFlags::FLAT)
3529 return {FLATOps, nullptr};
3530
3531 if (TSFlags & (SIInstrFlags::MUBUF | SIInstrFlags::MTBUF))
3532 return {BUFOps, nullptr};
3533
3534 if (TSFlags & SIInstrFlags::VIMAGE)
3535 return {VIMGOps, nullptr};
3536
3537 if (AMDGPU::isVOPD(Desc.getOpcode())) {
3538 auto [OpX, OpY] = getVOPDComponents(Desc.getOpcode());
3539 return {(OpX == AMDGPU::V_FMAMK_F32) ? VOPDFMAMKOpsX : VOPDOpsX,
3540 (OpY == AMDGPU::V_FMAMK_F32) ? VOPDFMAMKOpsY : VOPDOpsY};
3541 }
3542
3543 assert(!(TSFlags & SIInstrFlags::MIMG));
3544
3545 if (TSFlags & (SIInstrFlags::VSAMPLE | SIInstrFlags::EXP))
3546 llvm_unreachable("Sample and export VGPR lowering is not implemented and"
3547 " these instructions are not expected on gfx1250");
3548
3549 return {};
3550}
3551
3552bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode) {
3553 uint64_t TSFlags = MII.get(Opcode).TSFlags;
3554
3555 if (TSFlags & SIInstrFlags::SMRD)
3556 return !getSMEMIsBuffer(Opcode);
3557 if (!(TSFlags & SIInstrFlags::FLAT))
3558 return false;
3559
3560 // Only SV and SVS modes are supported.
3561 if (TSFlags & SIInstrFlags::FlatScratch)
3562 return hasNamedOperand(Opcode, OpName::vaddr);
3563
3564 // Only GVS mode is supported.
3565 return hasNamedOperand(Opcode, OpName::vaddr) &&
3566 hasNamedOperand(Opcode, OpName::saddr);
3567
3568 return false;
3569}
3570
3571bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc, const MCInstrInfo &MII,
3572 const MCSubtargetInfo &ST) {
3573 for (auto OpName : {OpName::vdst, OpName::src0, OpName::src1, OpName::src2}) {
3574 int Idx = getNamedOperandIdx(OpDesc.getOpcode(), OpName);
3575 if (Idx == -1)
3576 continue;
3577
3578 const MCOperandInfo &OpInfo = OpDesc.operands()[Idx];
3579 int16_t RegClass = MII.getOpRegClassID(
3580 OpInfo, ST.getHwMode(MCSubtargetInfo::HwMode_RegInfo));
3581 if (RegClass == AMDGPU::VReg_64RegClassID ||
3582 RegClass == AMDGPU::VReg_64_Align2RegClassID)
3583 return true;
3584 }
3585
3586 return false;
3587}
3588
3589bool isDPALU_DPP32BitOpc(unsigned Opc) {
3590 switch (Opc) {
3591 case AMDGPU::V_MUL_LO_U32_e64:
3592 case AMDGPU::V_MUL_LO_U32_e64_dpp:
3593 case AMDGPU::V_MUL_LO_U32_e64_dpp_gfx1250:
3594 case AMDGPU::V_MUL_HI_U32_e64:
3595 case AMDGPU::V_MUL_HI_U32_e64_dpp:
3596 case AMDGPU::V_MUL_HI_U32_e64_dpp_gfx1250:
3597 case AMDGPU::V_MUL_HI_I32_e64:
3598 case AMDGPU::V_MUL_HI_I32_e64_dpp:
3599 case AMDGPU::V_MUL_HI_I32_e64_dpp_gfx1250:
3600 case AMDGPU::V_MAD_U32_e64:
3601 case AMDGPU::V_MAD_U32_e64_dpp:
3602 case AMDGPU::V_MAD_U32_e64_dpp_gfx1250:
3603 return true;
3604 default:
3605 return false;
3606 }
3607}
3608
3609bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCInstrInfo &MII,
3610 const MCSubtargetInfo &ST) {
3611 if (!ST.hasFeature(AMDGPU::FeatureDPALU_DPP))
3612 return false;
3613
3614 if (isDPALU_DPP32BitOpc(OpDesc.getOpcode()))
3615 return ST.hasFeature(AMDGPU::FeatureGFX1250Insts);
3616
3617 return hasAny64BitVGPROperands(OpDesc, MII, ST);
3618}
3619
3621 if (ST.getFeatureBits().test(FeatureAddressableLocalMemorySize32768))
3622 return 64;
3623 if (ST.getFeatureBits().test(FeatureAddressableLocalMemorySize65536))
3624 return 128;
3625 if (ST.getFeatureBits().test(FeatureAddressableLocalMemorySize163840))
3626 return 320;
3627 if (ST.getFeatureBits().test(FeatureAddressableLocalMemorySize327680))
3628 return 512;
3629 return 64; // In sync with getAddressableLocalMemorySize
3630}
3631
3632bool isPackedFP32Inst(unsigned Opc) {
3633 switch (Opc) {
3634 case AMDGPU::V_PK_ADD_F32:
3635 case AMDGPU::V_PK_ADD_F32_gfx12:
3636 case AMDGPU::V_PK_MUL_F32:
3637 case AMDGPU::V_PK_MUL_F32_gfx12:
3638 case AMDGPU::V_PK_FMA_F32:
3639 case AMDGPU::V_PK_FMA_F32_gfx12:
3640 return true;
3641 default:
3642 return false;
3643 }
3644}
3645
3646const std::array<unsigned, 3> &ClusterDimsAttr::getDims() const {
3647 assert(isFixedDims() && "expect kind to be FixedDims");
3648 return Dims;
3649}
3650
3651std::string ClusterDimsAttr::to_string() const {
3652 SmallString<10> Buffer;
3653 raw_svector_ostream OS(Buffer);
3654
3655 switch (getKind()) {
3656 case Kind::Unknown:
3657 return "";
3658 case Kind::NoCluster: {
3659 OS << EncoNoCluster << ',' << EncoNoCluster << ',' << EncoNoCluster;
3660 return Buffer.c_str();
3661 }
3662 case Kind::VariableDims: {
3663 OS << EncoVariableDims << ',' << EncoVariableDims << ','
3664 << EncoVariableDims;
3665 return Buffer.c_str();
3666 }
3667 case Kind::FixedDims: {
3668 OS << Dims[0] << ',' << Dims[1] << ',' << Dims[2];
3669 return Buffer.c_str();
3670 }
3671 }
3672 llvm_unreachable("Unknown ClusterDimsAttr kind");
3673}
3674
3676 std::optional<SmallVector<unsigned>> Attr =
3677 getIntegerVecAttribute(F, "amdgpu-cluster-dims", /*Size=*/3);
3679
3680 if (!Attr.has_value())
3681 AttrKind = Kind::Unknown;
3682 else if (all_of(*Attr, [](unsigned V) { return V == EncoNoCluster; }))
3683 AttrKind = Kind::NoCluster;
3684 else if (all_of(*Attr, [](unsigned V) { return V == EncoVariableDims; }))
3685 AttrKind = Kind::VariableDims;
3686
3687 ClusterDimsAttr A(AttrKind);
3688 if (AttrKind == Kind::FixedDims)
3689 A.Dims = {(*Attr)[0], (*Attr)[1], (*Attr)[2]};
3690
3691 return A;
3692}
3693
3694} // namespace AMDGPU
3695
3698 switch (S) {
3700 OS << "Unsupported";
3701 break;
3703 OS << "Any";
3704 break;
3706 OS << "Off";
3707 break;
3709 OS << "On";
3710 break;
3711 }
3712 return OS;
3713}
3714
3715} // namespace llvm
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static llvm::cl::opt< unsigned > DefaultAMDHSACodeObjectVersion("amdhsa-code-object-version", llvm::cl::Hidden, llvm::cl::init(llvm::AMDGPU::AMDHSA_COV6), llvm::cl::desc("Set default AMDHSA Code Object Version (module flag " "or asm directive still take priority if present)"))
#define MAP_REG2REG
Provides AMDGPU specific target descriptions.
MC layer struct for AMDGPUMCKernelCodeT, provides MCExpr functionality where required.
@ AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define RegName(no)
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Register Reg
Register const TargetRegisterInfo * TRI
This file contains the declarations for metadata subclasses.
#define T
uint64_t High
if(PassOpts->AAPipeline)
#define S_00B848_MEM_ORDERED(x)
Definition SIDefines.h:1237
#define S_00B848_WGP_MODE(x)
Definition SIDefines.h:1234
#define S_00B848_FWD_PROGRESS(x)
Definition SIDefines.h:1240
unsigned unsigned DefaultVal
This file contains some functions that are useful when dealing with strings.
static const int BlockSize
Definition TarWriter.cpp:33
static ClusterDimsAttr get(const Function &F)
const std::array< unsigned, 3 > & getDims() const
TargetIDSetting getXnackSetting() const
AMDGPUTargetID(const MCSubtargetInfo &STI)
void setTargetIDFromTargetIDStream(StringRef TargetID)
TargetIDSetting getSramEccSetting() const
unsigned getIndexInParsedOperands(unsigned CompOprIdx) const
unsigned getIndexOfSrcInParsedOperands(unsigned CompSrcIdx) const
std::optional< unsigned > getInvalidCompOperandIndex(std::function< MCRegister(unsigned, unsigned)> GetRegIdx, const MCRegisterInfo &MRI, bool SkipSrc=false, bool AllowSameVGPR=false, bool VOPD3=false) const
std::array< MCRegister, Component::MAX_OPR_NUM > RegIndices
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
constexpr bool test(unsigned I) const
unsigned getAddressSpace() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
A helper class to return the specified delimiter string after the first invocation of operator String...
Describe properties that are true of each instruction in the target description file.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
ArrayRef< MCOperandInfo > operands() const
bool mayStore() const
Return true if this instruction could possibly modify memory.
bool mayLoad() const
Return true if this instruction could possibly read memory.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specified operand constraint if it is present.
unsigned getOpcode() const
Return the opcode number for this descriptor.
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition MCInstrInfo.h:90
int16_t getOpRegClassID(const MCOperandInfo &OpInfo, unsigned HwModeId) const
Return the ID of the register class to use for OpInfo, for the active HwMode HwModeId.
Definition MCInstrInfo.h:80
This holds information about one operand of a machine instruction, indicating the register class for ...
Definition MCInstrDesc.h:86
MCRegisterClass - Base class of TargetRegisterClass.
unsigned getID() const
getID() - Return the register class ID number.
MCRegister getRegister(unsigned i) const
getRegister - Return the specified register in the class.
bool contains(MCRegister Reg) const
contains - Return true if the specified register is included in this register class.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
constexpr unsigned id() const
Definition MCRegister.h:82
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
const Triple & getTargetTriple() const
const FeatureBitset & getFeatureBits() const
StringRef getCPU() const
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
const char * c_str()
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
A wrapper around a string literal that serves as a proxy for constructing global tables of StringRefs...
Definition StringRef.h:864
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:712
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition StringRef.h:472
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition StringRef.h:273
Manages the enabling and disabling of subtarget specific features.
const std::vector< std::string > & getFeatures() const
Returns the vector of individual subtarget features.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
OSType getOS() const
Get the parsed operating system type of this triple.
Definition Triple.h:426
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition Triple.h:417
bool isAMDGCN() const
Tests whether the target is AMDGCN.
Definition Triple.h:932
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
std::string & str()
Returns the string's reference.
A raw_ostream that writes to an SmallVector or SmallString.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
unsigned decodeFieldVaVcc(unsigned Encoded)
unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc)
unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt)
bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc)
unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst)
unsigned decodeFieldSaSdst(unsigned Encoded)
unsigned decodeFieldVaSdst(unsigned Encoded)
unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc)
unsigned decodeFieldVaSsrc(unsigned Encoded)
int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst)
const CustomOperandVal DepCtrInfo[]
bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
unsigned decodeFieldVaVdst(unsigned Encoded)
unsigned decodeFieldHoldCnt(unsigned Encoded)
int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI)
unsigned decodeFieldVmVsrc(unsigned Encoded)
unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst)
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI)
static constexpr ExpTgt ExpTgtInfo[]
bool getTgtName(unsigned Id, StringRef &Name, int &Index)
unsigned getTgtId(const StringRef Name)
constexpr uint32_t VersionMinor
HSA metadata minor version.
constexpr uint32_t VersionMajor
HSA metadata major version.
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, std::optional< bool > EnableWavefrontSize32)
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI)
unsigned getArchVGPRAllocGranule()
For subtargets with a unified VGPR file and mixed ArchVGPR/AGPR usage, returns the allocation granule...
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getWavefrontSize(const MCSubtargetInfo *STI)
unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize)
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI)
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed, bool XNACKUsed)
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI)
unsigned getLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getEUsPerCU(const MCSubtargetInfo *STI)
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI)
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU)
static TargetIDSetting getTargetIDSettingFromFeatureString(StringRef FeatureString)
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, bool Addressable)
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs)
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI)
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI)
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getAllocatedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, std::optional< bool > EnableWavefrontSize32)
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves, AMDGPUSubtarget::Generation Gen)
static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs, unsigned Granule)
unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI)
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI)
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize)
StringLiteral const UfmtSymbolicGFX11[]
bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI)
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI)
StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX10[]
StringLiteral const DfmtSymbolic[]
static StringLiteral const * getNfmtLookupTable(const MCSubtargetInfo &STI)
bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI)
StringLiteral const NfmtSymbolicGFX10[]
bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI)
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt, const MCSubtargetInfo &STI)
StringRef getDfmtName(unsigned Id)
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt)
int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI)
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI)
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX11[]
StringLiteral const NfmtSymbolicVI[]
StringLiteral const NfmtSymbolicSICI[]
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI)
int64_t getDfmt(const StringRef Name)
StringLiteral const UfmtSymbolicGFX10[]
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt)
uint64_t encodeMsg(uint64_t MsgId, uint64_t OpId, uint64_t StreamId)
bool msgSupportsStream(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI)
void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId, uint16_t &StreamId, const MCSubtargetInfo &STI)
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, const MCSubtargetInfo &STI, bool Strict)
StringRef getMsgOpName(int64_t MsgId, uint64_t Encoding, const MCSubtargetInfo &STI)
Map from an encoding to the symbolic name for a sendmsg operation.
static uint64_t getMsgIdMask(const MCSubtargetInfo &STI)
bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, bool Strict)
constexpr unsigned VOPD_VGPR_BANK_MASKS[]
constexpr unsigned COMPONENTS_NUM
constexpr unsigned VOPD3_VGPR_BANK_MASKS[]
bool isPackedFP32Inst(unsigned Opc)
bool isGCN3Encoding(const MCSubtargetInfo &STI)
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
bool isGFX10_BEncoding(const MCSubtargetInfo &STI)
bool isInlineValue(MCRegister Reg)
bool isGFX10_GFX11(const MCSubtargetInfo &STI)
bool isInlinableLiteralV216(uint32_t Literal, uint8_t OpType)
LLVM_READONLY const MIMGInfo * getMIMGInfo(unsigned Opc)
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt)
Decodes Vmcnt, Expcnt and Lgkmcnt from given Waitcnt for given isa Version, and writes decoded values...
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
bool isSGPR(MCRegister Reg, const MCRegisterInfo *TRI)
Is Reg - scalar register.
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset)
Convert ByteOffset to dwords if the subtarget uses dword SMRD immediate offsets.
static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Storecnt)
MCRegister getMCReg(MCRegister Reg, const MCSubtargetInfo &STI)
If Reg is a pseudo reg, return the correct hardware register given STI otherwise return Reg.
static bool hasSMEMByteOffset(const MCSubtargetInfo &ST)
bool isVOPCAsmOnly(unsigned Opc)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool getMTBUFHasSrsrc(unsigned Opc)
std::optional< int64_t > getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, int64_t ByteOffset)
bool getWMMAIsXDL(unsigned Opc)
uint8_t wmmaScaleF8F6F4FormatToNumRegs(unsigned Fmt)
static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr, int Size, unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
bool isGFX10Before1030(const MCSubtargetInfo &STI)
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo)
Does this operand support only inlinable literals?
unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc)
const int OPR_ID_UNSUPPORTED
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isInlinableLiteralV2I16(uint32_t Literal)
bool isDPMACCInstruction(unsigned Opc)
int getMTBUFElements(unsigned Opc)
bool isHi16Reg(MCRegister Reg, const MCRegisterInfo &MRI)
static int encodeCustomOperandVal(const CustomOperandVal &Op, int64_t InputVal)
unsigned getTemporalHintType(const MCInstrDesc TID)
int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, int32_t ArgNumVGPR)
bool isGFX10(const MCSubtargetInfo &STI)
bool isInlinableLiteralV2BF16(uint32_t Literal)
unsigned getMaxNumUserSGPRs(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV216(bool IsFloat, uint32_t Literal)
FPType getFPDstSelType(unsigned Opc)
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST)
For pre-GFX12 FLAT instructions the offset must be positive; MSB is ignored and forced to zero.
bool hasA16(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset, bool IsBuffer)
bool isGFX12Plus(const MCSubtargetInfo &STI)
unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler)
const MCRegisterClass * getVGPRPhysRegClass(MCRegister Reg, const MCRegisterInfo &MRI)
bool hasPackedD16(const MCSubtargetInfo &STI)
unsigned getStorecntBitMask(const IsaVersion &Version)
unsigned getLdsDwGranularity(const MCSubtargetInfo &ST)
bool isGFX940(const MCSubtargetInfo &STI)
bool isInlinableLiteralV2F16(uint32_t Literal)
bool isHsaAbi(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
const int OPR_VAL_INVALID
bool getSMEMIsBuffer(unsigned Opc)
bool isGFX10_3_GFX11(const MCSubtargetInfo &STI)
bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val)
Checks if Val is inside MD, a !range-like metadata.
uint8_t mfmaScaleF8F6F4FormatToNumRegs(unsigned EncodingVal)
unsigned getVOPDOpcode(unsigned Opc, bool VOPD3)
bool isGroupSegment(const GlobalValue *GV)
LLVM_ABI IsaVersion getIsaVersion(StringRef GPU)
bool getMTBUFHasSoffset(unsigned Opc)
bool hasXNACK(const MCSubtargetInfo &STI)
bool isValid32BitLiteral(uint64_t Val, bool IsFP64)
static unsigned getCombinedCountBitMask(const IsaVersion &Version, bool IsStore)
CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3)
unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt)
Encodes Vmcnt, Expcnt and Lgkmcnt into Waitcnt for given isa Version.
bool isVOPC64DPP(unsigned Opc)
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements)
bool getMAIIsGFX940XDL(unsigned Opc)
bool isSI(const MCSubtargetInfo &STI)
unsigned getDefaultAMDHSACodeObjectVersion()
bool isReadOnlySegment(const GlobalValue *GV)
bool isArgPassedInSGPR(const Argument *A)
bool isIntrinsicAlwaysUniform(unsigned IntrID)
int getMUBUFBaseOpcode(unsigned Opc)
unsigned getAMDHSACodeObjectVersion(const Module &M)
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt)
unsigned getWaitcntBitMask(const IsaVersion &Version)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx)
bool getVOP3IsSingle(unsigned Opc)
bool isGFX9(const MCSubtargetInfo &STI)
bool isDPALU_DPP32BitOpc(unsigned Opc)
bool getVOP1IsSingle(unsigned Opc)
static bool isDwordAligned(uint64_t ByteOffset)
unsigned getVOPDEncodingFamily(const MCSubtargetInfo &ST)
bool isGFX10_AEncoding(const MCSubtargetInfo &STI)
bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this a KImm operand?
bool getHasColorExport(const Function &F)
int getMTBUFBaseOpcode(unsigned Opc)
bool isGFX90A(const MCSubtargetInfo &STI)
unsigned getSamplecntBitMask(const IsaVersion &Version)
unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion)
std::tuple< char, unsigned, unsigned > parseAsmPhysRegName(StringRef RegName)
Returns a valid charcode or 0 in the first entry if this is a valid physical register name.
bool hasSRAMECC(const MCSubtargetInfo &STI)
bool getHasDepthExport(const Function &F)
bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI)
bool getMUBUFHasVAddr(unsigned Opc)
bool isTrue16Inst(unsigned Opc)
unsigned getVGPREncodingMSBs(MCRegister Reg, const MCRegisterInfo &MRI)
std::pair< unsigned, unsigned > getVOPDComponents(unsigned VOPDOpcode)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
bool isGFX12(const MCSubtargetInfo &STI)
unsigned getInitialPSInputAddr(const Function &F)
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Expcnt)
bool isAsyncStore(unsigned Opc)
unsigned getDynamicVGPRBlockSize(const Function &F)
unsigned getKmcntBitMask(const IsaVersion &Version)
MCRegister getVGPRWithMSBs(MCRegister Reg, unsigned MSBs, const MCRegisterInfo &MRI)
If Reg is a low VGPR return a corresponding high VGPR with MSBs set.
unsigned getVmcntBitMask(const IsaVersion &Version)
bool isNotGFX10Plus(const MCSubtargetInfo &STI)
bool hasMAIInsts(const MCSubtargetInfo &STI)
unsigned getBitOp2(unsigned Opc)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
unsigned getXcntBitMask(const IsaVersion &Version)
bool isGenericAtomic(unsigned Opc)
const MFMA_F8F6F4_Info * getWMMA_F8F6F4_WithFormatArgs(unsigned FmtA, unsigned FmtB, unsigned F8F8Opcode)
Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt)
bool isGFX8Plus(const MCSubtargetInfo &STI)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
unsigned getLgkmcntBitMask(const IsaVersion &Version)
bool getMUBUFTfe(unsigned Opc)
unsigned getBvhcntBitMask(const IsaVersion &Version)
bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST)
bool hasMIMG_R128(const MCSubtargetInfo &STI)
bool hasGFX10_3Insts(const MCSubtargetInfo &STI)
std::pair< const AMDGPU::OpName *, const AMDGPU::OpName * > getVGPRLoweringOperandTables(const MCInstrDesc &Desc)
bool hasG16(const MCSubtargetInfo &STI)
unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, const MIMGDimInfo *Dim, bool IsA16, bool IsG16Supported)
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements)
unsigned getExpcntBitMask(const IsaVersion &Version)
bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI)
bool getMUBUFHasSoffset(unsigned Opc)
bool isNotGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this floating-point operand?
std::tuple< char, unsigned, unsigned > parseAsmConstraintPhysReg(StringRef Constraint)
Returns a valid charcode or 0 in the first entry if this is a valid physical register constraint.
unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion)
static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr, int Size, const MCSubtargetInfo &STI)
static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Loadcnt)
bool isGFX10Plus(const MCSubtargetInfo &STI)
static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size, unsigned Code, int &Idx, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
static bool isValidRegPrefix(char C)
std::optional< int64_t > getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset, bool IsBuffer, bool HasSOffset)
bool isGlobalSegment(const GlobalValue *GV)
int64_t encode32BitLiteral(int64_t Imm, OperandType Type, bool IsLit)
@ OPERAND_KIMM32
Operand with 32-bit immediate that uses the constant bus.
Definition SIDefines.h:231
@ OPERAND_REG_INLINE_C_LAST
Definition SIDefines.h:254
@ OPERAND_REG_IMM_V2FP16
Definition SIDefines.h:209
@ OPERAND_REG_INLINE_C_FP64
Definition SIDefines.h:222
@ OPERAND_REG_INLINE_C_BF16
Definition SIDefines.h:219
@ OPERAND_REG_INLINE_C_V2BF16
Definition SIDefines.h:224
@ OPERAND_REG_IMM_V2INT16
Definition SIDefines.h:210
@ OPERAND_REG_IMM_BF16
Definition SIDefines.h:206
@ OPERAND_REG_IMM_INT32
Operands with register, 32-bit, or 64-bit immediate.
Definition SIDefines.h:201
@ OPERAND_REG_IMM_V2BF16
Definition SIDefines.h:208
@ OPERAND_REG_INLINE_AC_FIRST
Definition SIDefines.h:256
@ OPERAND_REG_IMM_FP16
Definition SIDefines.h:207
@ OPERAND_REG_IMM_NOINLINE_V2FP16
Definition SIDefines.h:211
@ OPERAND_REG_IMM_FP64
Definition SIDefines.h:205
@ OPERAND_REG_INLINE_C_V2FP16
Definition SIDefines.h:225
@ OPERAND_REG_INLINE_AC_INT32
Operands with an AccVGPR register or inline constant.
Definition SIDefines.h:236
@ OPERAND_REG_INLINE_AC_FP32
Definition SIDefines.h:237
@ OPERAND_REG_IMM_V2INT32
Definition SIDefines.h:212
@ OPERAND_REG_IMM_FP32
Definition SIDefines.h:204
@ OPERAND_REG_INLINE_C_FIRST
Definition SIDefines.h:253
@ OPERAND_REG_INLINE_C_FP32
Definition SIDefines.h:221
@ OPERAND_REG_INLINE_AC_LAST
Definition SIDefines.h:257
@ OPERAND_REG_INLINE_C_INT32
Definition SIDefines.h:217
@ OPERAND_REG_INLINE_C_V2INT16
Definition SIDefines.h:223
@ OPERAND_REG_IMM_V2FP32
Definition SIDefines.h:213
@ OPERAND_REG_INLINE_AC_FP64
Definition SIDefines.h:238
@ OPERAND_REG_INLINE_C_FP16
Definition SIDefines.h:220
@ OPERAND_INLINE_SPLIT_BARRIER_INT32
Definition SIDefines.h:228
raw_ostream & operator<<(raw_ostream &OS, const AMDGPU::Waitcnt &Wait)
void initDefaultAMDKernelCodeT(AMDGPUMCKernelCodeT &KernelCode, const MCSubtargetInfo *STI)
bool isNotGFX9Plus(const MCSubtargetInfo &STI)
bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCInstrInfo &MII, const MCSubtargetInfo &ST)
bool hasGDS(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset)
bool isGFX9Plus(const MCSubtargetInfo &STI)
bool hasDPPSrc1SGPR(const MCSubtargetInfo &STI)
const int OPR_ID_DUPLICATE
bool isVOPD(unsigned Opc)
VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY)
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Vmcnt)
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt)
bool isCvt_F32_Fp8_Bf8_e64(unsigned Opc)
Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt)
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
unsigned getRegBitWidth(const TargetRegisterClass &RC)
Get the size in bits of a register from the register class RC.
static unsigned encodeStorecntDscnt(const IsaVersion &Version, unsigned Storecnt, unsigned Dscnt)
bool isGFX1250(const MCSubtargetInfo &STI)
int getMCOpcode(uint16_t Opcode, unsigned Gen)
const MIMGBaseOpcodeInfo * getMIMGBaseOpcode(unsigned Opc)
bool isVI(const MCSubtargetInfo &STI)
bool isTensorStore(unsigned Opc)
bool getMUBUFIsBufferInv(unsigned Opc)
bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode)
MCRegister mc2PseudoReg(MCRegister Reg)
Convert hardware register Reg to a pseudo register.
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
static int encodeCustomOperand(const CustomOperandVal *Opr, int Size, const StringRef Name, int64_t InputVal, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned hasKernargPreload(const MCSubtargetInfo &STI)
bool supportsWGP(const MCSubtargetInfo &STI)
bool isMAC(unsigned Opc)
bool isCI(const MCSubtargetInfo &STI)
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Lgkmcnt)
bool getVOP2IsSingle(unsigned Opc)
bool getMAIIsDGEMM(unsigned Opc)
Returns true if MAI operation is a double precision GEMM.
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
const int OPR_ID_UNKNOWN
unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion)
SmallVector< unsigned > getIntegerVecAttribute(const Function &F, StringRef Name, unsigned Size, unsigned DefaultVal)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
bool isNotGFX12Plus(const MCSubtargetInfo &STI)
bool getMTBUFHasVAddr(unsigned Opc)
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt)
uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion)
std::pair< unsigned, unsigned > getIntegerPairAttribute(const Function &F, StringRef Name, std::pair< unsigned, unsigned > Default, bool OnlyFirstRequired)
unsigned getLoadcntBitMask(const IsaVersion &Version)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
bool hasVOPD(const MCSubtargetInfo &STI)
int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily, bool VOPD3)
static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Dscnt)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const MFMA_F8F6F4_Info * getMFMA_F8F6F4_WithFormatArgs(unsigned CBSZ, unsigned BLGP, unsigned F8F8Opcode)
unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion)
bool isGFX9_GFX10_GFX11(const MCSubtargetInfo &STI)
bool isGFX9_GFX10(const MCSubtargetInfo &STI)
int getMUBUFElements(unsigned Opc)
static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt, unsigned Dscnt)
const GcnBufferFormatInfo * getGcnBufferFormatInfo(uint8_t BitsPerComp, uint8_t NumComponents, uint8_t NumFormat, const MCSubtargetInfo &STI)
unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc)
bool isPermlane16(unsigned Opc)
bool getMUBUFHasSrsrc(unsigned Opc)
unsigned getDscntBitMask(const IsaVersion &Version)
bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc, const MCInstrInfo &MII, const MCSubtargetInfo &ST)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ ELFABIVERSION_AMDGPU_HSA_V4
Definition ELF.h:384
@ ELFABIVERSION_AMDGPU_HSA_V5
Definition ELF.h:385
@ ELFABIVERSION_AMDGPU_HSA_V6
Definition ELF.h:386
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:682
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:165
@ Wait
Definition Threading.h:60
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition Error.h:198
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
std::string utostr(uint64_t X, bool isNeg=false)
Op::Description Desc
FunctionAddr VTableAddr uintptr_t uintptr_t Version
Definition InstrProf.h:302
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition MathExtras.h:150
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:189
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition MathExtras.h:155
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
To bit_cast(const From &from) noexcept
Definition bit.h:90
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
@ AlwaysUniform
The result values are always uniform.
Definition Uniformity.h:23
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
#define N
AMD Kernel Code Object (amd_kernel_code_t).
Instruction set architecture version.
Represents the counter values to wait for in an s_waitcnt instruction.