LLVM 19.0.0git
GuardWidening.cpp
Go to the documentation of this file.
1//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the guard widening pass. The semantics of the
10// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11// more often that it did before the transform. This optimization is called
12// "widening" and can be used hoist and common runtime checks in situations like
13// these:
14//
15// %cmp0 = 7 u< Length
16// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17// call @unknown_side_effects()
18// %cmp1 = 9 u< Length
19// call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20// ...
21//
22// =>
23//
24// %cmp0 = 9 u< Length
25// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26// call @unknown_side_effects()
27// ...
28//
29// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30// generic implementation of the same function, which will have the correct
31// semantics from that point onward. It is always _legal_ to deoptimize (so
32// replacing %cmp0 with false is "correct"), though it may not always be
33// profitable to do so.
34//
35// NB! This pass is a work in progress. It hasn't been tuned to be "production
36// ready" yet. It is known to have quadriatic running time and will not scale
37// to large numbers of guards
38//
39//===----------------------------------------------------------------------===//
40
42#include "llvm/ADT/DenseMap.h"
44#include "llvm/ADT/Statistic.h"
52#include "llvm/IR/Dominators.h"
53#include "llvm/IR/IRBuilder.h"
57#include "llvm/Support/Debug.h"
62#include <functional>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "guard-widening"
67
68STATISTIC(GuardsEliminated, "Number of eliminated guards");
69STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
70STATISTIC(FreezeAdded, "Number of freeze instruction introduced");
71
72static cl::opt<bool>
73 WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
74 cl::desc("Whether or not we should widen guards "
75 "expressed as branches by widenable conditions"),
76 cl::init(true));
77
78namespace {
79
80// Get the condition of \p I. It can either be a guard or a conditional branch.
81static Value *getCondition(Instruction *I) {
82 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
83 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
84 "Bad guard intrinsic?");
85 return GI->getArgOperand(0);
86 }
87 Value *Cond, *WC;
88 BasicBlock *IfTrueBB, *IfFalseBB;
89 if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
90 return Cond;
91
92 return cast<BranchInst>(I)->getCondition();
93}
94
95// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
96// conditional branch.
97static void setCondition(Instruction *I, Value *NewCond) {
98 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
99 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
100 "Bad guard intrinsic?");
101 GI->setArgOperand(0, NewCond);
102 return;
103 }
104 cast<BranchInst>(I)->setCondition(NewCond);
105}
106
107// Eliminates the guard instruction properly.
108static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
109 GuardInst->eraseFromParent();
110 if (MSSAU)
111 MSSAU->removeMemoryAccess(GuardInst);
112 ++GuardsEliminated;
113}
114
115/// Find a point at which the widened condition of \p Guard should be inserted.
116/// When it is represented as intrinsic call, we can do it right before the call
117/// instruction. However, when we are dealing with widenable branch, we must
118/// account for the following situation: widening should not turn a
119/// loop-invariant condition into a loop-variant. It means that if
120/// widenable.condition() call is invariant (w.r.t. any loop), the new wide
121/// condition should stay invariant. Otherwise there can be a miscompile, like
122/// the one described at https://github.com/llvm/llvm-project/issues/60234. The
123/// safest way to do it is to expand the new condition at WC's block.
124static std::optional<BasicBlock::iterator>
125findInsertionPointForWideCondition(Instruction *WCOrGuard) {
126 if (isGuard(WCOrGuard))
127 return WCOrGuard->getIterator();
128 if (auto WC = extractWidenableCondition(WCOrGuard))
129 return cast<Instruction>(WC)->getIterator();
130 return std::nullopt;
131}
132
133class GuardWideningImpl {
134 DominatorTree &DT;
136 LoopInfo &LI;
137 AssumptionCache &AC;
138 MemorySSAUpdater *MSSAU;
139
140 /// Together, these describe the region of interest. This might be all of
141 /// the blocks within a function, or only a given loop's blocks and preheader.
142 DomTreeNode *Root;
143 std::function<bool(BasicBlock*)> BlockFilter;
144
145 /// The set of guards and conditional branches whose conditions have been
146 /// widened into dominating guards.
147 SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
148
149 /// The set of guards which have been widened to include conditions to other
150 /// guards.
151 DenseSet<Instruction *> WidenedGuards;
152
153 /// Try to eliminate instruction \p Instr by widening it into an earlier
154 /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
155 /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
156 /// maps BasicBlocks to the set of guards seen in that block.
157 bool eliminateInstrViaWidening(
158 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
160 &GuardsPerBlock);
161
162 /// Used to keep track of which widening potential is more effective.
163 enum WideningScore {
164 /// Don't widen.
165 WS_IllegalOrNegative,
166
167 /// Widening is performance neutral as far as the cycles spent in check
168 /// conditions goes (but can still help, e.g., code layout, having less
169 /// deopt state).
170 WS_Neutral,
171
172 /// Widening is profitable.
173 WS_Positive,
174
175 /// Widening is very profitable. Not significantly different from \c
176 /// WS_Positive, except by the order.
177 WS_VeryPositive
178 };
179
180 static StringRef scoreTypeToString(WideningScore WS);
181
182 /// Compute the score for widening the condition in \p DominatedInstr
183 /// into \p WideningPoint.
184 WideningScore computeWideningScore(Instruction *DominatedInstr,
185 Instruction *ToWiden,
186 BasicBlock::iterator WideningPoint,
187 SmallVectorImpl<Value *> &ChecksToHoist,
188 SmallVectorImpl<Value *> &ChecksToWiden);
189
190 /// Helper to check if \p V can be hoisted to \p InsertPos.
191 bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos) const {
193 return canBeHoistedTo(V, InsertPos, Visited);
194 }
195
196 bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos,
198
199 bool canBeHoistedTo(const SmallVectorImpl<Value *> &Checks,
200 BasicBlock::iterator InsertPos) const {
201 return all_of(Checks,
202 [&](const Value *V) { return canBeHoistedTo(V, InsertPos); });
203 }
204 /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
205 /// canBeHoistedTo returned true.
206 void makeAvailableAt(Value *V, BasicBlock::iterator InsertPos) const;
207
208 void makeAvailableAt(const SmallVectorImpl<Value *> &Checks,
209 BasicBlock::iterator InsertPos) const {
210 for (Value *V : Checks)
211 makeAvailableAt(V, InsertPos);
212 }
213
214 /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
215 /// to generate an expression computing the logical AND of \p ChecksToHoist
216 /// and \p ChecksToWiden. Return true if the expression computing the AND is
217 /// only as expensive as computing one of the set of expressions. If \p
218 /// InsertPt is true then actually generate the resulting expression, make it
219 /// available at \p InsertPt and return it in \p Result (else no change to the
220 /// IR is made).
221 std::optional<Value *>
222 mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
223 SmallVectorImpl<Value *> &ChecksToWiden,
224 std::optional<BasicBlock::iterator> InsertPt);
225
226 /// Generate the logical AND of \p ChecksToHoist and \p OldCondition and make
227 /// it available at InsertPt
228 Value *hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
229 Value *OldCondition, BasicBlock::iterator InsertPt);
230
231 /// Adds freeze to Orig and push it as far as possible very aggressively.
232 /// Also replaces all uses of frozen instruction with frozen version.
233 Value *freezeAndPush(Value *Orig, BasicBlock::iterator InsertPt);
234
235 /// Represents a range check of the form \c Base + \c Offset u< \c Length,
236 /// with the constraint that \c Length is not negative. \c CheckInst is the
237 /// pre-existing instruction in the IR that computes the result of this range
238 /// check.
239 class RangeCheck {
240 const Value *Base;
241 const ConstantInt *Offset;
242 const Value *Length;
243 ICmpInst *CheckInst;
244
245 public:
246 explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
247 const Value *Length, ICmpInst *CheckInst)
248 : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
249
250 void setBase(const Value *NewBase) { Base = NewBase; }
251 void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
252
253 const Value *getBase() const { return Base; }
254 const ConstantInt *getOffset() const { return Offset; }
255 const APInt &getOffsetValue() const { return getOffset()->getValue(); }
256 const Value *getLength() const { return Length; };
257 ICmpInst *getCheckInst() const { return CheckInst; }
258
259 void print(raw_ostream &OS, bool PrintTypes = false) {
260 OS << "Base: ";
261 Base->printAsOperand(OS, PrintTypes);
262 OS << " Offset: ";
263 Offset->printAsOperand(OS, PrintTypes);
264 OS << " Length: ";
265 Length->printAsOperand(OS, PrintTypes);
266 }
267
268 LLVM_DUMP_METHOD void dump() {
269 print(dbgs());
270 dbgs() << "\n";
271 }
272 };
273
274 /// Parse \p ToParse into a conjunction (logical-and) of range checks; and
275 /// append them to \p Checks. Returns true on success, may clobber \c Checks
276 /// on failure.
277 bool parseRangeChecks(SmallVectorImpl<Value *> &ToParse,
279 for (auto CheckCond : ToParse) {
280 if (!parseRangeChecks(CheckCond, Checks))
281 return false;
282 }
283 return true;
284 }
285
286 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks);
287
288 /// Combine the checks in \p Checks into a smaller set of checks and append
289 /// them into \p CombinedChecks. Return true on success (i.e. all of checks
290 /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
291 /// and \p CombinedChecks on success and on failure.
292 bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
293 SmallVectorImpl<RangeCheck> &CombinedChecks) const;
294
295 /// Can we compute the logical AND of \p ChecksToHoist and \p ChecksToWiden
296 /// for the price of computing only one of the set of expressions?
297 bool isWideningCondProfitable(SmallVectorImpl<Value *> &ChecksToHoist,
298 SmallVectorImpl<Value *> &ChecksToWiden) {
299 return mergeChecks(ChecksToHoist, ChecksToWiden, /*InsertPt=*/std::nullopt)
300 .has_value();
301 }
302
303 /// Widen \p ChecksToWiden to fail if any of \p ChecksToHoist is false
304 void widenGuard(SmallVectorImpl<Value *> &ChecksToHoist,
305 SmallVectorImpl<Value *> &ChecksToWiden,
306 Instruction *ToWiden) {
307 auto InsertPt = findInsertionPointForWideCondition(ToWiden);
308 auto MergedCheck = mergeChecks(ChecksToHoist, ChecksToWiden, InsertPt);
309 Value *Result = MergedCheck ? *MergedCheck
310 : hoistChecks(ChecksToHoist,
311 getCondition(ToWiden), *InsertPt);
312
313 if (isGuardAsWidenableBranch(ToWiden)) {
314 setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
315 return;
316 }
317 setCondition(ToWiden, Result);
318 }
319
320public:
321 explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
322 LoopInfo &LI, AssumptionCache &AC,
323 MemorySSAUpdater *MSSAU, DomTreeNode *Root,
324 std::function<bool(BasicBlock *)> BlockFilter)
325 : DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
326 BlockFilter(BlockFilter) {}
327
328 /// The entry point for this pass.
329 bool run();
330};
331}
332
334 if (isGuard(Insn))
335 return true;
337 return true;
338 return false;
339}
340
341bool GuardWideningImpl::run() {
343 bool Changed = false;
344 for (auto DFI = df_begin(Root), DFE = df_end(Root);
345 DFI != DFE; ++DFI) {
346 auto *BB = (*DFI)->getBlock();
347 if (!BlockFilter(BB))
348 continue;
349
350 auto &CurrentList = GuardsInBlock[BB];
351
352 for (auto &I : *BB)
354 CurrentList.push_back(cast<Instruction>(&I));
355
356 for (auto *II : CurrentList)
357 Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
358 }
359
360 assert(EliminatedGuardsAndBranches.empty() || Changed);
361 for (auto *I : EliminatedGuardsAndBranches)
362 if (!WidenedGuards.count(I)) {
363 assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
365 eliminateGuard(I, MSSAU);
366 else {
367 assert(isa<BranchInst>(I) &&
368 "Eliminated something other than guard or branch?");
369 ++CondBranchEliminated;
370 }
371 }
372
373 return Changed;
374}
375
376bool GuardWideningImpl::eliminateInstrViaWidening(
377 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
379 &GuardsInBlock) {
380 SmallVector<Value *> ChecksToHoist;
381 parseWidenableGuard(Instr, ChecksToHoist);
382 // Ignore trivial true or false conditions. These instructions will be
383 // trivially eliminated by any cleanup pass. Do not erase them because other
384 // guards can possibly be widened into them.
385 if (ChecksToHoist.empty() ||
386 (ChecksToHoist.size() == 1 && isa<ConstantInt>(ChecksToHoist.front())))
387 return false;
388
389 Instruction *BestSoFar = nullptr;
390 auto BestScoreSoFar = WS_IllegalOrNegative;
391
392 // In the set of dominating guards, find the one we can merge GuardInst with
393 // for the most profit.
394 for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
395 auto *CurBB = DFSI.getPath(i)->getBlock();
396 if (!BlockFilter(CurBB))
397 break;
398 assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
399 const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
400
401 auto I = GuardsInCurBB.begin();
402 auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
403 : GuardsInCurBB.end();
404
405#ifndef NDEBUG
406 {
407 unsigned Index = 0;
408 for (auto &I : *CurBB) {
409 if (Index == GuardsInCurBB.size())
410 break;
411 if (GuardsInCurBB[Index] == &I)
412 Index++;
413 }
414 assert(Index == GuardsInCurBB.size() &&
415 "Guards expected to be in order!");
416 }
417#endif
418
419 assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
420
421 for (auto *Candidate : make_range(I, E)) {
422 auto WideningPoint = findInsertionPointForWideCondition(Candidate);
423 if (!WideningPoint)
424 continue;
425 SmallVector<Value *> CandidateChecks;
426 parseWidenableGuard(Candidate, CandidateChecks);
427 auto Score = computeWideningScore(Instr, Candidate, *WideningPoint,
428 ChecksToHoist, CandidateChecks);
429 LLVM_DEBUG(dbgs() << "Score between " << *Instr << " and " << *Candidate
430 << " is " << scoreTypeToString(Score) << "\n");
431 if (Score > BestScoreSoFar) {
432 BestScoreSoFar = Score;
433 BestSoFar = Candidate;
434 }
435 }
436 }
437
438 if (BestScoreSoFar == WS_IllegalOrNegative) {
439 LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
440 return false;
441 }
442
443 assert(BestSoFar != Instr && "Should have never visited same guard!");
444 assert(DT.dominates(BestSoFar, Instr) && "Should be!");
445
446 LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
447 << " with score " << scoreTypeToString(BestScoreSoFar)
448 << "\n");
449 SmallVector<Value *> ChecksToWiden;
450 parseWidenableGuard(BestSoFar, ChecksToWiden);
451 widenGuard(ChecksToHoist, ChecksToWiden, BestSoFar);
452 auto NewGuardCondition = ConstantInt::getTrue(Instr->getContext());
453 setCondition(Instr, NewGuardCondition);
454 EliminatedGuardsAndBranches.push_back(Instr);
455 WidenedGuards.insert(BestSoFar);
456 return true;
457}
458
459GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
460 Instruction *DominatedInstr, Instruction *ToWiden,
461 BasicBlock::iterator WideningPoint, SmallVectorImpl<Value *> &ChecksToHoist,
462 SmallVectorImpl<Value *> &ChecksToWiden) {
463 Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
464 Loop *DominatingGuardLoop = LI.getLoopFor(WideningPoint->getParent());
465 bool HoistingOutOfLoop = false;
466
467 if (DominatingGuardLoop != DominatedInstrLoop) {
468 // Be conservative and don't widen into a sibling loop. TODO: If the
469 // sibling is colder, we should consider allowing this.
470 if (DominatingGuardLoop &&
471 !DominatingGuardLoop->contains(DominatedInstrLoop))
472 return WS_IllegalOrNegative;
473
474 HoistingOutOfLoop = true;
475 }
476
477 if (!canBeHoistedTo(ChecksToHoist, WideningPoint))
478 return WS_IllegalOrNegative;
479 // Further in the GuardWideningImpl::hoistChecks the entire condition might be
480 // widened, not the parsed list of checks. So we need to check the possibility
481 // of that condition hoisting.
482 if (!canBeHoistedTo(getCondition(ToWiden), WideningPoint))
483 return WS_IllegalOrNegative;
484
485 // If the guard was conditional executed, it may never be reached
486 // dynamically. There are two potential downsides to hoisting it out of the
487 // conditionally executed region: 1) we may spuriously deopt without need and
488 // 2) we have the extra cost of computing the guard condition in the common
489 // case. At the moment, we really only consider the second in our heuristic
490 // here. TODO: evaluate cost model for spurious deopt
491 // NOTE: As written, this also lets us hoist right over another guard which
492 // is essentially just another spelling for control flow.
493 if (isWideningCondProfitable(ChecksToHoist, ChecksToWiden))
494 return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
495
496 if (HoistingOutOfLoop)
497 return WS_Positive;
498
499 // For a given basic block \p BB, return its successor which is guaranteed or
500 // highly likely will be taken as its successor.
501 auto GetLikelySuccessor = [](const BasicBlock * BB)->const BasicBlock * {
502 if (auto *UniqueSucc = BB->getUniqueSuccessor())
503 return UniqueSucc;
504 auto *Term = BB->getTerminator();
505 Value *Cond = nullptr;
506 const BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
507 using namespace PatternMatch;
508 if (!match(Term, m_Br(m_Value(Cond), m_BasicBlock(IfTrue),
509 m_BasicBlock(IfFalse))))
510 return nullptr;
511 // For constant conditions, only one dynamical successor is possible
512 if (auto *ConstCond = dyn_cast<ConstantInt>(Cond))
513 return ConstCond->isAllOnesValue() ? IfTrue : IfFalse;
514 // If one of successors ends with deopt, another one is likely.
515 if (IfFalse->getPostdominatingDeoptimizeCall())
516 return IfTrue;
518 return IfFalse;
519 // TODO: Use branch frequency metatada to allow hoisting through non-deopt
520 // branches?
521 return nullptr;
522 };
523
524 // Returns true if we might be hoisting above explicit control flow into a
525 // considerably hotter block. Note that this completely ignores implicit
526 // control flow (guards, calls which throw, etc...). That choice appears
527 // arbitrary (we assume that implicit control flow exits are all rare).
528 auto MaybeHoistingToHotterBlock = [&]() {
529 const auto *DominatingBlock = WideningPoint->getParent();
530 const auto *DominatedBlock = DominatedInstr->getParent();
531
532 // Descend as low as we can, always taking the likely successor.
533 assert(DT.isReachableFromEntry(DominatingBlock) && "Unreached code");
534 assert(DT.isReachableFromEntry(DominatedBlock) && "Unreached code");
535 assert(DT.dominates(DominatingBlock, DominatedBlock) && "No dominance");
536 while (DominatedBlock != DominatingBlock) {
537 auto *LikelySucc = GetLikelySuccessor(DominatingBlock);
538 // No likely successor?
539 if (!LikelySucc)
540 break;
541 // Only go down the dominator tree.
542 if (!DT.properlyDominates(DominatingBlock, LikelySucc))
543 break;
544 DominatingBlock = LikelySucc;
545 }
546
547 // Found?
548 if (DominatedBlock == DominatingBlock)
549 return false;
550 // We followed the likely successor chain and went past the dominated
551 // block. It means that the dominated guard is in dead/very cold code.
552 if (!DT.dominates(DominatingBlock, DominatedBlock))
553 return true;
554 // TODO: diamond, triangle cases
555 if (!PDT)
556 return true;
557 return !PDT->dominates(DominatedBlock, DominatingBlock);
558 };
559
560 return MaybeHoistingToHotterBlock() ? WS_IllegalOrNegative : WS_Neutral;
561}
562
563bool GuardWideningImpl::canBeHoistedTo(
564 const Value *V, BasicBlock::iterator Loc,
566 auto *Inst = dyn_cast<Instruction>(V);
567 if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
568 return true;
569
570 if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
571 Inst->mayReadFromMemory())
572 return false;
573
574 Visited.insert(Inst);
575
576 // We only want to go _up_ the dominance chain when recursing.
577 assert(!isa<PHINode>(Loc) &&
578 "PHIs should return false for isSafeToSpeculativelyExecute");
579 assert(DT.isReachableFromEntry(Inst->getParent()) &&
580 "We did a DFS from the block entry!");
581 return all_of(Inst->operands(),
582 [&](Value *Op) { return canBeHoistedTo(Op, Loc, Visited); });
583}
584
585void GuardWideningImpl::makeAvailableAt(Value *V,
586 BasicBlock::iterator Loc) const {
587 auto *Inst = dyn_cast<Instruction>(V);
588 if (!Inst || DT.dominates(Inst, Loc))
589 return;
590
591 assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
592 !Inst->mayReadFromMemory() &&
593 "Should've checked with canBeHoistedTo!");
594
595 for (Value *Op : Inst->operands())
596 makeAvailableAt(Op, Loc);
597
598 Inst->moveBefore(*Loc->getParent(), Loc);
599}
600
601// Return Instruction before which we can insert freeze for the value V as close
602// to def as possible. If there is no place to add freeze, return empty.
603static std::optional<BasicBlock::iterator>
605 auto *I = dyn_cast<Instruction>(V);
606 if (!I)
607 return DT.getRoot()->getFirstNonPHIOrDbgOrAlloca()->getIterator();
608
609 std::optional<BasicBlock::iterator> Res = I->getInsertionPointAfterDef();
610 // If there is no place to add freeze - return nullptr.
611 if (!Res || !DT.dominates(I, &**Res))
612 return std::nullopt;
613
614 Instruction *ResInst = &**Res;
615
616 // If there is a User dominated by original I, then it should be dominated
617 // by Freeze instruction as well.
618 if (any_of(I->users(), [&](User *U) {
619 Instruction *User = cast<Instruction>(U);
620 return ResInst != User && DT.dominates(I, User) &&
621 !DT.dominates(ResInst, User);
622 }))
623 return std::nullopt;
624 return Res;
625}
626
627Value *GuardWideningImpl::freezeAndPush(Value *Orig,
628 BasicBlock::iterator InsertPt) {
629 if (isGuaranteedNotToBePoison(Orig, nullptr, InsertPt, &DT))
630 return Orig;
631 std::optional<BasicBlock::iterator> InsertPtAtDef =
632 getFreezeInsertPt(Orig, DT);
633 if (!InsertPtAtDef) {
634 FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
635 FI->insertBefore(*InsertPt->getParent(), InsertPt);
636 return FI;
637 }
638 if (isa<Constant>(Orig) || isa<GlobalValue>(Orig)) {
639 BasicBlock::iterator InsertPt = *InsertPtAtDef;
640 FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
641 FI->insertBefore(*InsertPt->getParent(), InsertPt);
642 return FI;
643 }
644
645 SmallSet<Value *, 16> Visited;
647 SmallSet<Instruction *, 16> DropPoisonFlags;
648 SmallVector<Value *, 16> NeedFreeze;
649 DenseMap<Value *, FreezeInst *> CacheOfFreezes;
650
651 // A bit overloaded data structures. Visited contains constant/GV
652 // if we already met it. In this case CacheOfFreezes has a freeze if it is
653 // required.
654 auto handleConstantOrGlobal = [&](Use &U) {
655 Value *Def = U.get();
656 if (!isa<Constant>(Def) && !isa<GlobalValue>(Def))
657 return false;
658
659 if (Visited.insert(Def).second) {
660 if (isGuaranteedNotToBePoison(Def, nullptr, InsertPt, &DT))
661 return true;
662 BasicBlock::iterator InsertPt = *getFreezeInsertPt(Def, DT);
663 FreezeInst *FI = new FreezeInst(Def, Def->getName() + ".gw.fr");
664 FI->insertBefore(*InsertPt->getParent(), InsertPt);
665 CacheOfFreezes[Def] = FI;
666 }
667
668 if (CacheOfFreezes.count(Def))
669 U.set(CacheOfFreezes[Def]);
670 return true;
671 };
672
673 Worklist.push_back(Orig);
674 while (!Worklist.empty()) {
675 Value *V = Worklist.pop_back_val();
676 if (!Visited.insert(V).second)
677 continue;
678
679 if (isGuaranteedNotToBePoison(V, nullptr, InsertPt, &DT))
680 continue;
681
682 Instruction *I = dyn_cast<Instruction>(V);
683 if (!I || canCreateUndefOrPoison(cast<Operator>(I),
684 /*ConsiderFlagsAndMetadata*/ false)) {
685 NeedFreeze.push_back(V);
686 continue;
687 }
688 // Check all operands. If for any of them we cannot insert Freeze,
689 // stop here. Otherwise, iterate.
690 if (any_of(I->operands(), [&](Value *Op) {
691 return isa<Instruction>(Op) && !getFreezeInsertPt(Op, DT);
692 })) {
693 NeedFreeze.push_back(I);
694 continue;
695 }
696 DropPoisonFlags.insert(I);
697 for (Use &U : I->operands())
698 if (!handleConstantOrGlobal(U))
699 Worklist.push_back(U.get());
700 }
701 for (Instruction *I : DropPoisonFlags)
702 I->dropPoisonGeneratingAnnotations();
703
704 Value *Result = Orig;
705 for (Value *V : NeedFreeze) {
706 BasicBlock::iterator FreezeInsertPt = *getFreezeInsertPt(V, DT);
707 FreezeInst *FI = new FreezeInst(V, V->getName() + ".gw.fr");
708 FI->insertBefore(*FreezeInsertPt->getParent(), FreezeInsertPt);
709 ++FreezeAdded;
710 if (V == Orig)
711 Result = FI;
712 V->replaceUsesWithIf(
713 FI, [&](const Use & U)->bool { return U.getUser() != FI; });
714 }
715
716 return Result;
717}
718
719std::optional<Value *>
720GuardWideningImpl::mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
721 SmallVectorImpl<Value *> &ChecksToWiden,
722 std::optional<BasicBlock::iterator> InsertPt) {
723 using namespace llvm::PatternMatch;
724
725 Value *Result = nullptr;
726 {
727 // L >u C0 && L >u C1 -> L >u max(C0, C1)
728 ConstantInt *RHS0, *RHS1;
729 Value *LHS;
730 ICmpInst::Predicate Pred0, Pred1;
731 // TODO: Support searching for pairs to merge from both whole lists of
732 // ChecksToHoist and ChecksToWiden.
733 if (ChecksToWiden.size() == 1 && ChecksToHoist.size() == 1 &&
734 match(ChecksToWiden.front(),
735 m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
736 match(ChecksToHoist.front(),
737 m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
738
739 ConstantRange CR0 =
741 ConstantRange CR1 =
743
744 // Given what we're doing here and the semantics of guards, it would
745 // be correct to use a subset intersection, but that may be too
746 // aggressive in cases we care about.
747 if (std::optional<ConstantRange> Intersect =
748 CR0.exactIntersectWith(CR1)) {
749 APInt NewRHSAP;
751 if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
752 if (InsertPt) {
753 ConstantInt *NewRHS =
754 ConstantInt::get((*InsertPt)->getContext(), NewRHSAP);
755 assert(canBeHoistedTo(LHS, *InsertPt) && "must be");
756 makeAvailableAt(LHS, *InsertPt);
757 Result = new ICmpInst(*InsertPt, Pred, LHS, NewRHS, "wide.chk");
758 }
759 return Result;
760 }
761 }
762 }
763 }
764
765 {
767 if (parseRangeChecks(ChecksToWiden, Checks) &&
768 parseRangeChecks(ChecksToHoist, Checks) &&
769 combineRangeChecks(Checks, CombinedChecks)) {
770 if (InsertPt) {
771 for (auto &RC : CombinedChecks) {
772 makeAvailableAt(RC.getCheckInst(), *InsertPt);
773 if (Result)
774 Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
775 *InsertPt);
776 else
777 Result = RC.getCheckInst();
778 }
779 assert(Result && "Failed to find result value");
780 Result->setName("wide.chk");
781 Result = freezeAndPush(Result, *InsertPt);
782 }
783 return Result;
784 }
785 }
786 // We were not able to compute ChecksToHoist AND ChecksToWiden for the price
787 // of one.
788 return std::nullopt;
789}
790
791Value *GuardWideningImpl::hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
792 Value *OldCondition,
793 BasicBlock::iterator InsertPt) {
794 assert(!ChecksToHoist.empty());
795 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
796 makeAvailableAt(ChecksToHoist, InsertPt);
797 makeAvailableAt(OldCondition, InsertPt);
798 Value *Result = Builder.CreateAnd(ChecksToHoist);
799 Result = freezeAndPush(Result, InsertPt);
800 Result = Builder.CreateAnd(OldCondition, Result);
801 Result->setName("wide.chk");
802 return Result;
803}
804
805bool GuardWideningImpl::parseRangeChecks(
807 using namespace llvm::PatternMatch;
808
809 auto *IC = dyn_cast<ICmpInst>(CheckCond);
810 if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
811 (IC->getPredicate() != ICmpInst::ICMP_ULT &&
812 IC->getPredicate() != ICmpInst::ICMP_UGT))
813 return false;
814
815 const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
816 if (IC->getPredicate() == ICmpInst::ICMP_UGT)
817 std::swap(CmpLHS, CmpRHS);
818
819 auto &DL = IC->getModule()->getDataLayout();
820
821 GuardWideningImpl::RangeCheck Check(
822 CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
823 CmpRHS, IC);
824
825 if (!isKnownNonNegative(Check.getLength(), DL))
826 return false;
827
828 // What we have in \c Check now is a correct interpretation of \p CheckCond.
829 // Try to see if we can move some constant offsets into the \c Offset field.
830
831 bool Changed;
832 auto &Ctx = CheckCond->getContext();
833
834 do {
835 Value *OpLHS;
836 ConstantInt *OpRHS;
837 Changed = false;
838
839#ifndef NDEBUG
840 auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
841 assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
842 "Unreachable instruction?");
843#endif
844
845 if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
846 Check.setBase(OpLHS);
847 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
848 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
849 Changed = true;
850 } else if (match(Check.getBase(),
851 m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
852 KnownBits Known = computeKnownBits(OpLHS, DL);
853 if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
854 Check.setBase(OpLHS);
855 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
856 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
857 Changed = true;
858 }
859 }
860 } while (Changed);
861
862 Checks.push_back(Check);
863 return true;
864}
865
866bool GuardWideningImpl::combineRangeChecks(
869 unsigned OldCount = Checks.size();
870 while (!Checks.empty()) {
871 // Pick all of the range checks with a specific base and length, and try to
872 // merge them.
873 const Value *CurrentBase = Checks.front().getBase();
874 const Value *CurrentLength = Checks.front().getLength();
875
877
878 auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
879 return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
880 };
881
882 copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
883 erase_if(Checks, IsCurrentCheck);
884
885 assert(CurrentChecks.size() != 0 && "We know we have at least one!");
886
887 if (CurrentChecks.size() < 3) {
888 llvm::append_range(RangeChecksOut, CurrentChecks);
889 continue;
890 }
891
892 // CurrentChecks.size() will typically be 3 here, but so far there has been
893 // no need to hard-code that fact.
894
895 llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
896 const GuardWideningImpl::RangeCheck &RHS) {
897 return LHS.getOffsetValue().slt(RHS.getOffsetValue());
898 });
899
900 // Note: std::sort should not invalidate the ChecksStart iterator.
901
902 const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
903 const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
904
905 unsigned BitWidth = MaxOffset->getValue().getBitWidth();
906 if ((MaxOffset->getValue() - MinOffset->getValue())
908 return false;
909
910 APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
911 const APInt &HighOffset = MaxOffset->getValue();
912 auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
913 return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
914 };
915
916 if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
917 return false;
918
919 // We have a series of f+1 checks as:
920 //
921 // I+k_0 u< L ... Chk_0
922 // I+k_1 u< L ... Chk_1
923 // ...
924 // I+k_f u< L ... Chk_f
925 //
926 // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
927 // k_f-k_0 u< INT_MIN+k_f ... Precond_1
928 // k_f != k_0 ... Precond_2
929 //
930 // Claim:
931 // Chk_0 AND Chk_f implies all the other checks
932 //
933 // Informal proof sketch:
934 //
935 // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
936 // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
937 // thus I+k_f is the greatest unsigned value in that range.
938 //
939 // This combined with Ckh_(f+1) shows that everything in that range is u< L.
940 // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
941 // lie in [I+k_0,I+k_f], this proving our claim.
942 //
943 // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
944 // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
945 // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
946 // range by definition, and the latter case is impossible:
947 //
948 // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
949 // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
950 //
951 // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
952 // with 'x' above) to be at least >u INT_MIN.
953
954 RangeChecksOut.emplace_back(CurrentChecks.front());
955 RangeChecksOut.emplace_back(CurrentChecks.back());
956 }
957
958 assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
959 return RangeChecksOut.size() != OldCount;
960}
961
962#ifndef NDEBUG
963StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
964 switch (WS) {
965 case WS_IllegalOrNegative:
966 return "IllegalOrNegative";
967 case WS_Neutral:
968 return "Neutral";
969 case WS_Positive:
970 return "Positive";
971 case WS_VeryPositive:
972 return "VeryPositive";
973 }
974
975 llvm_unreachable("Fully covered switch above!");
976}
977#endif
978
981 // Avoid requesting analyses if there are no guards or widenable conditions.
982 auto *GuardDecl = F.getParent()->getFunction(
983 Intrinsic::getName(Intrinsic::experimental_guard));
984 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
985 auto *WCDecl = F.getParent()->getFunction(
986 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
987 bool HasWidenableConditions = WCDecl && !WCDecl->use_empty();
988 if (!HasIntrinsicGuards && !HasWidenableConditions)
989 return PreservedAnalyses::all();
990 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
991 auto &LI = AM.getResult<LoopAnalysis>(F);
992 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
993 auto &AC = AM.getResult<AssumptionAnalysis>(F);
994 auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
995 std::unique_ptr<MemorySSAUpdater> MSSAU;
996 if (MSSAA)
997 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
998 if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
999 DT.getRootNode(), [](BasicBlock *) { return true; })
1000 .run())
1001 return PreservedAnalyses::all();
1002
1006 return PA;
1007}
1008
1011 LPMUpdater &U) {
1012 BasicBlock *RootBB = L.getLoopPredecessor();
1013 if (!RootBB)
1014 RootBB = L.getHeader();
1015 auto BlockFilter = [&](BasicBlock *BB) {
1016 return BB == RootBB || L.contains(BB);
1017 };
1018 std::unique_ptr<MemorySSAUpdater> MSSAU;
1019 if (AR.MSSA)
1020 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
1021 if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
1022 MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
1023 BlockFilter)
1024 .run())
1025 return PreservedAnalyses::all();
1026
1027 auto PA = getLoopPassPreservedAnalyses();
1028 if (AR.MSSA)
1029 PA.preserve<MemorySSAAnalysis>();
1030 return PA;
1031}
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:537
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
#define Check(C,...)
static cl::opt< bool > WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden, cl::desc("Whether or not we should widen guards " "expressed as branches by widenable conditions"), cl::init(true))
static bool isSupportedGuardInstruction(const Instruction *Insn)
static std::optional< BasicBlock::iterator > getFreezeInsertPt(Value *V, const DominatorTree &DT)
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:77
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1447
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:396
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:198
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:321
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:492
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:473
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:208
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:166
const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
Definition: BasicBlock.cpp:424
const CallInst * getPostdominatingDeoptimizeCall() const
Returns the call instruction calling @llvm.experimental.deoptimize that is present either in current ...
Definition: BasicBlock.cpp:340
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:70
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:850
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:146
This class represents a range of values.
Definition: ConstantRange.h:47
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
std::optional< ConstantRange > exactIntersectWith(const ConstantRange &CR) const
Intersect the two ranges and return the result if it can be represented exactly, otherwise return std...
This class represents an Operation in the Expression.
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
NodeT * getRoot() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
This class represents a freeze function that returns random concrete value if an operand is either a ...
This instruction compares its operands according to the predicate given to the constructor.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2666
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:99
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:566
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:928
void removeMemoryAccess(MemoryAccess *, bool OptimizePhis=false)
Remove a MemoryAccess from MemorySSA, including updating all definitions and uses.
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
bool dominates(const Instruction *I1, const Instruction *I2) const
Return true if I1 dominates I2.
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:109
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:115
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:144
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:129
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1074
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
unsigned getPathLength() const
getPathLength - Return the length of the path from the entry node to the current node,...
NodeRef getPath(unsigned n) const
getPath - Return the n'th node in the path from the entry node to the current node.
const ParentPtrTy getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
Definition: Function.cpp:1032
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:875
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
Definition: PatternMatch.h:189
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:236
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
@ Length
Definition: DWP.cpp:456
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1742
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2067
df_iterator< T > df_begin(const T &G)
Value * extractWidenableCondition(const User *U)
Definition: GuardUtils.cpp:151
void parseWidenableGuard(const User *U, llvm::SmallVectorImpl< Value * > &Checks)
Definition: GuardUtils.cpp:138
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P)
Provide wrappers to std::copy_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1768
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
void setWidenableBranchCond(BranchInst *WidenableBR, Value *Cond)
Given a branch we know is widenable (defined per Analysis/GuardUtils.h), set it's condition such that...
Definition: GuardUtils.cpp:108
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
Definition: GuardUtils.cpp:18
bool parseWidenableBranch(const User *U, Value *&Condition, Value *&WidenableCondition, BasicBlock *&IfTrueBB, BasicBlock *&IfFalseBB)
If U is widenable branch looking like: cond = ... wc = call i1 @llvm.experimental....
Definition: GuardUtils.cpp:53
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
bool isGuardAsWidenableBranch(const User *U)
Returns true iff U has semantics of a guard expressed in a form of a widenable conditional branch to ...
Definition: GuardUtils.cpp:33
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2051
df_iterator< T > df_end(const T &G)
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...