LLVM 17.0.0git
LoopFuse.cpp
Go to the documentation of this file.
1//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the loop fusion pass.
11/// The implementation is largely based on the following document:
12///
13/// Code Transformations to Augment the Scope of Loop Fusion in a
14/// Production Compiler
15/// Christopher Mark Barton
16/// MSc Thesis
17/// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18///
19/// The general approach taken is to collect sets of control flow equivalent
20/// loops and test whether they can be fused. The necessary conditions for
21/// fusion are:
22/// 1. The loops must be adjacent (there cannot be any statements between
23/// the two loops).
24/// 2. The loops must be conforming (they must execute the same number of
25/// iterations).
26/// 3. The loops must be control flow equivalent (if one loop executes, the
27/// other is guaranteed to execute).
28/// 4. There cannot be any negative distance dependencies between the loops.
29/// If all of these conditions are satisfied, it is safe to fuse the loops.
30///
31/// This implementation creates FusionCandidates that represent the loop and the
32/// necessary information needed by fusion. It then operates on the fusion
33/// candidates, first confirming that the candidate is eligible for fusion. The
34/// candidates are then collected into control flow equivalent sets, sorted in
35/// dominance order. Each set of control flow equivalent candidates is then
36/// traversed, attempting to fuse pairs of candidates in the set. If all
37/// requirements for fusion are met, the two candidates are fused, creating a
38/// new (fused) candidate which is then added back into the set to consider for
39/// additional fusion.
40///
41/// This implementation currently does not make any modifications to remove
42/// conditions for fusion. Code transformations to make loops conform to each of
43/// the conditions for fusion are discussed in more detail in the document
44/// above. These can be added to the current implementation in the future.
45//===----------------------------------------------------------------------===//
46
48#include "llvm/ADT/Statistic.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/Verifier.h"
61#include "llvm/Pass.h"
63#include "llvm/Support/Debug.h"
71
72using namespace llvm;
73
74#define DEBUG_TYPE "loop-fusion"
75
76STATISTIC(FuseCounter, "Loops fused");
77STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
78STATISTIC(InvalidPreheader, "Loop has invalid preheader");
79STATISTIC(InvalidHeader, "Loop has invalid header");
80STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
81STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
82STATISTIC(InvalidLatch, "Loop has invalid latch");
83STATISTIC(InvalidLoop, "Loop is invalid");
84STATISTIC(AddressTakenBB, "Basic block has address taken");
85STATISTIC(MayThrowException, "Loop may throw an exception");
86STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
87STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
88STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
89STATISTIC(UnknownTripCount, "Loop has unknown trip count");
90STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
91STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
92STATISTIC(NonAdjacent, "Loops are not adjacent");
94 NonEmptyPreheader,
95 "Loop has a non-empty preheader with instructions that cannot be moved");
96STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
97STATISTIC(NonIdenticalGuards, "Candidates have different guards");
98STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
99 "instructions that cannot be moved");
100STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
101 "instructions that cannot be moved");
102STATISTIC(NotRotated, "Candidate is not rotated");
103STATISTIC(OnlySecondCandidateIsGuarded,
104 "The second candidate is guarded while the first one is not");
105STATISTIC(NumHoistedInsts, "Number of hoisted preheader instructions.");
106STATISTIC(NumSunkInsts, "Number of hoisted preheader instructions.");
107
112};
113
115 "loop-fusion-dependence-analysis",
116 cl::desc("Which dependence analysis should loop fusion use?"),
118 "Use the scalar evolution interface"),
120 "Use the dependence analysis interface"),
122 "Use all available analyses")),
124
126 "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
127 cl::desc("Max number of iterations to be peeled from a loop, such that "
128 "fusion can take place"));
129
130#ifndef NDEBUG
131static cl::opt<bool>
132 VerboseFusionDebugging("loop-fusion-verbose-debug",
133 cl::desc("Enable verbose debugging for Loop Fusion"),
134 cl::Hidden, cl::init(false));
135#endif
136
137namespace {
138/// This class is used to represent a candidate for loop fusion. When it is
139/// constructed, it checks the conditions for loop fusion to ensure that it
140/// represents a valid candidate. It caches several parts of a loop that are
141/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
142/// of continually querying the underlying Loop to retrieve these values. It is
143/// assumed these will not change throughout loop fusion.
144///
145/// The invalidate method should be used to indicate that the FusionCandidate is
146/// no longer a valid candidate for fusion. Similarly, the isValid() method can
147/// be used to ensure that the FusionCandidate is still valid for fusion.
148struct FusionCandidate {
149 /// Cache of parts of the loop used throughout loop fusion. These should not
150 /// need to change throughout the analysis and transformation.
151 /// These parts are cached to avoid repeatedly looking up in the Loop class.
152
153 /// Preheader of the loop this candidate represents
154 BasicBlock *Preheader;
155 /// Header of the loop this candidate represents
156 BasicBlock *Header;
157 /// Blocks in the loop that exit the loop
158 BasicBlock *ExitingBlock;
159 /// The successor block of this loop (where the exiting blocks go to)
160 BasicBlock *ExitBlock;
161 /// Latch of the loop
162 BasicBlock *Latch;
163 /// The loop that this fusion candidate represents
164 Loop *L;
165 /// Vector of instructions in this loop that read from memory
167 /// Vector of instructions in this loop that write to memory
169 /// Are all of the members of this fusion candidate still valid
170 bool Valid;
171 /// Guard branch of the loop, if it exists
172 BranchInst *GuardBranch;
173 /// Peeling Paramaters of the Loop.
175 /// Can you Peel this Loop?
176 bool AbleToPeel;
177 /// Has this loop been Peeled
178 bool Peeled;
179
180 /// Dominator and PostDominator trees are needed for the
181 /// FusionCandidateCompare function, required by FusionCandidateSet to
182 /// determine where the FusionCandidate should be inserted into the set. These
183 /// are used to establish ordering of the FusionCandidates based on dominance.
184 DominatorTree &DT;
185 const PostDominatorTree *PDT;
186
188
189 FusionCandidate(Loop *L, DominatorTree &DT, const PostDominatorTree *PDT,
191 : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
192 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
193 Latch(L->getLoopLatch()), L(L), Valid(true),
194 GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
195 Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
196
197 // Walk over all blocks in the loop and check for conditions that may
198 // prevent fusion. For each block, walk over all instructions and collect
199 // the memory reads and writes If any instructions that prevent fusion are
200 // found, invalidate this object and return.
201 for (BasicBlock *BB : L->blocks()) {
202 if (BB->hasAddressTaken()) {
203 invalidate();
204 reportInvalidCandidate(AddressTakenBB);
205 return;
206 }
207
208 for (Instruction &I : *BB) {
209 if (I.mayThrow()) {
210 invalidate();
211 reportInvalidCandidate(MayThrowException);
212 return;
213 }
214 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
215 if (SI->isVolatile()) {
216 invalidate();
217 reportInvalidCandidate(ContainsVolatileAccess);
218 return;
219 }
220 }
221 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
222 if (LI->isVolatile()) {
223 invalidate();
224 reportInvalidCandidate(ContainsVolatileAccess);
225 return;
226 }
227 }
228 if (I.mayWriteToMemory())
229 MemWrites.push_back(&I);
230 if (I.mayReadFromMemory())
231 MemReads.push_back(&I);
232 }
233 }
234 }
235
236 /// Check if all members of the class are valid.
237 bool isValid() const {
238 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
239 !L->isInvalid() && Valid;
240 }
241
242 /// Verify that all members are in sync with the Loop object.
243 void verify() const {
244 assert(isValid() && "Candidate is not valid!!");
245 assert(!L->isInvalid() && "Loop is invalid!");
246 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
247 assert(Header == L->getHeader() && "Header is out of sync");
248 assert(ExitingBlock == L->getExitingBlock() &&
249 "Exiting Blocks is out of sync");
250 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
251 assert(Latch == L->getLoopLatch() && "Latch is out of sync");
252 }
253
254 /// Get the entry block for this fusion candidate.
255 ///
256 /// If this fusion candidate represents a guarded loop, the entry block is the
257 /// loop guard block. If it represents an unguarded loop, the entry block is
258 /// the preheader of the loop.
259 BasicBlock *getEntryBlock() const {
260 if (GuardBranch)
261 return GuardBranch->getParent();
262 else
263 return Preheader;
264 }
265
266 /// After Peeling the loop is modified quite a bit, hence all of the Blocks
267 /// need to be updated accordingly.
268 void updateAfterPeeling() {
269 Preheader = L->getLoopPreheader();
270 Header = L->getHeader();
271 ExitingBlock = L->getExitingBlock();
272 ExitBlock = L->getExitBlock();
273 Latch = L->getLoopLatch();
274 verify();
275 }
276
277 /// Given a guarded loop, get the successor of the guard that is not in the
278 /// loop.
279 ///
280 /// This method returns the successor of the loop guard that is not located
281 /// within the loop (i.e., the successor of the guard that is not the
282 /// preheader).
283 /// This method is only valid for guarded loops.
284 BasicBlock *getNonLoopBlock() const {
285 assert(GuardBranch && "Only valid on guarded loops.");
286 assert(GuardBranch->isConditional() &&
287 "Expecting guard to be a conditional branch.");
288 if (Peeled)
289 return GuardBranch->getSuccessor(1);
290 return (GuardBranch->getSuccessor(0) == Preheader)
291 ? GuardBranch->getSuccessor(1)
292 : GuardBranch->getSuccessor(0);
293 }
294
295#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
296 LLVM_DUMP_METHOD void dump() const {
297 dbgs() << "\tGuardBranch: ";
298 if (GuardBranch)
299 dbgs() << *GuardBranch;
300 else
301 dbgs() << "nullptr";
302 dbgs() << "\n"
303 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
304 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
305 << "\n"
306 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
307 << "\tExitingBB: "
308 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
309 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
310 << "\n"
311 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
312 << "\tEntryBlock: "
313 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
314 << "\n";
315 }
316#endif
317
318 /// Determine if a fusion candidate (representing a loop) is eligible for
319 /// fusion. Note that this only checks whether a single loop can be fused - it
320 /// does not check whether it is *legal* to fuse two loops together.
321 bool isEligibleForFusion(ScalarEvolution &SE) const {
322 if (!isValid()) {
323 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
324 if (!Preheader)
325 ++InvalidPreheader;
326 if (!Header)
327 ++InvalidHeader;
328 if (!ExitingBlock)
329 ++InvalidExitingBlock;
330 if (!ExitBlock)
331 ++InvalidExitBlock;
332 if (!Latch)
333 ++InvalidLatch;
334 if (L->isInvalid())
335 ++InvalidLoop;
336
337 return false;
338 }
339
340 // Require ScalarEvolution to be able to determine a trip count.
342 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
343 << " trip count not computable!\n");
344 return reportInvalidCandidate(UnknownTripCount);
345 }
346
347 if (!L->isLoopSimplifyForm()) {
348 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
349 << " is not in simplified form!\n");
350 return reportInvalidCandidate(NotSimplifiedForm);
351 }
352
353 if (!L->isRotatedForm()) {
354 LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
355 return reportInvalidCandidate(NotRotated);
356 }
357
358 return true;
359 }
360
361private:
362 // This is only used internally for now, to clear the MemWrites and MemReads
363 // list and setting Valid to false. I can't envision other uses of this right
364 // now, since once FusionCandidates are put into the FusionCandidateSet they
365 // are immutable. Thus, any time we need to change/update a FusionCandidate,
366 // we must create a new one and insert it into the FusionCandidateSet to
367 // ensure the FusionCandidateSet remains ordered correctly.
368 void invalidate() {
369 MemWrites.clear();
370 MemReads.clear();
371 Valid = false;
372 }
373
374 bool reportInvalidCandidate(llvm::Statistic &Stat) const {
375 using namespace ore;
376 assert(L && Preheader && "Fusion candidate not initialized properly!");
377#if LLVM_ENABLE_STATS
378 ++Stat;
379 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
380 L->getStartLoc(), Preheader)
381 << "[" << Preheader->getParent()->getName() << "]: "
382 << "Loop is not a candidate for fusion: " << Stat.getDesc());
383#endif
384 return false;
385 }
386};
387
388struct FusionCandidateCompare {
389 /// Comparison functor to sort two Control Flow Equivalent fusion candidates
390 /// into dominance order.
391 /// If LHS dominates RHS and RHS post-dominates LHS, return true;
392 /// If RHS dominates LHS and LHS post-dominates RHS, return false;
393 /// If both LHS and RHS are not dominating each other then, non-strictly
394 /// post dominate check will decide the order of candidates. If RHS
395 /// non-strictly post dominates LHS then, return true. If LHS non-strictly
396 /// post dominates RHS then, return false. If both are non-strictly post
397 /// dominate each other then, level in the post dominator tree will decide
398 /// the order of candidates.
399 bool operator()(const FusionCandidate &LHS,
400 const FusionCandidate &RHS) const {
401 const DominatorTree *DT = &(LHS.DT);
402
403 BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
404 BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
405
406 // Do not save PDT to local variable as it is only used in asserts and thus
407 // will trigger an unused variable warning if building without asserts.
408 assert(DT && LHS.PDT && "Expecting valid dominator tree");
409
410 // Do this compare first so if LHS == RHS, function returns false.
411 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
412 // RHS dominates LHS
413 // Verify LHS post-dominates RHS
414 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
415 return false;
416 }
417
418 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
419 // Verify RHS Postdominates LHS
420 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
421 return true;
422 }
423
424 // If two FusionCandidates are in the same level of dominator tree,
425 // they will not dominate each other, but may still be control flow
426 // equivalent. To sort those FusionCandidates, nonStrictlyPostDominate()
427 // function is needed.
428 bool WrongOrder =
429 nonStrictlyPostDominate(LHSEntryBlock, RHSEntryBlock, DT, LHS.PDT);
430 bool RightOrder =
431 nonStrictlyPostDominate(RHSEntryBlock, LHSEntryBlock, DT, LHS.PDT);
432 if (WrongOrder && RightOrder) {
433 // If common predecessor of LHS and RHS post dominates both
434 // FusionCandidates then, Order of FusionCandidate can be
435 // identified by its level in post dominator tree.
436 DomTreeNode *LNode = LHS.PDT->getNode(LHSEntryBlock);
437 DomTreeNode *RNode = LHS.PDT->getNode(RHSEntryBlock);
438 return LNode->getLevel() > RNode->getLevel();
439 } else if (WrongOrder)
440 return false;
441 else if (RightOrder)
442 return true;
443
444 // If LHS does not non-strict Postdominate RHS and RHS does not non-strict
445 // Postdominate LHS then, there is no dominance relationship between the
446 // two FusionCandidates. Thus, they should not be in the same set together.
448 "No dominance relationship between these fusion candidates!");
449 }
450};
451
452using LoopVector = SmallVector<Loop *, 4>;
453
454// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
455// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
456// dominates FC1 and FC1 post-dominates FC0.
457// std::set was chosen because we want a sorted data structure with stable
458// iterators. A subsequent patch to loop fusion will enable fusing non-adjacent
459// loops by moving intervening code around. When this intervening code contains
460// loops, those loops will be moved also. The corresponding FusionCandidates
461// will also need to be moved accordingly. As this is done, having stable
462// iterators will simplify the logic. Similarly, having an efficient insert that
463// keeps the FusionCandidateSet sorted will also simplify the implementation.
464using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
465using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
466
467#if !defined(NDEBUG)
469 const FusionCandidate &FC) {
470 if (FC.isValid())
471 OS << FC.Preheader->getName();
472 else
473 OS << "<Invalid>";
474
475 return OS;
476}
477
479 const FusionCandidateSet &CandSet) {
480 for (const FusionCandidate &FC : CandSet)
481 OS << FC << '\n';
482
483 return OS;
484}
485
486static void
487printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
488 dbgs() << "Fusion Candidates: \n";
489 for (const auto &CandidateSet : FusionCandidates) {
490 dbgs() << "*** Fusion Candidate Set ***\n";
491 dbgs() << CandidateSet;
492 dbgs() << "****************************\n";
493 }
494}
495#endif
496
497/// Collect all loops in function at the same nest level, starting at the
498/// outermost level.
499///
500/// This data structure collects all loops at the same nest level for a
501/// given function (specified by the LoopInfo object). It starts at the
502/// outermost level.
503struct LoopDepthTree {
504 using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
505 using iterator = LoopsOnLevelTy::iterator;
507
508 LoopDepthTree(LoopInfo &LI) : Depth(1) {
509 if (!LI.empty())
510 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
511 }
512
513 /// Test whether a given loop has been removed from the function, and thus is
514 /// no longer valid.
515 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
516
517 /// Record that a given loop has been removed from the function and is no
518 /// longer valid.
519 void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
520
521 /// Descend the tree to the next (inner) nesting level
522 void descend() {
523 LoopsOnLevelTy LoopsOnNextLevel;
524
525 for (const LoopVector &LV : *this)
526 for (Loop *L : LV)
527 if (!isRemovedLoop(L) && L->begin() != L->end())
528 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
529
530 LoopsOnLevel = LoopsOnNextLevel;
531 RemovedLoops.clear();
532 Depth++;
533 }
534
535 bool empty() const { return size() == 0; }
536 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
537 unsigned getDepth() const { return Depth; }
538
539 iterator begin() { return LoopsOnLevel.begin(); }
540 iterator end() { return LoopsOnLevel.end(); }
541 const_iterator begin() const { return LoopsOnLevel.begin(); }
542 const_iterator end() const { return LoopsOnLevel.end(); }
543
544private:
545 /// Set of loops that have been removed from the function and are no longer
546 /// valid.
547 SmallPtrSet<const Loop *, 8> RemovedLoops;
548
549 /// Depth of the current level, starting at 1 (outermost loops).
550 unsigned Depth;
551
552 /// Vector of loops at the current depth level that have the same parent loop
553 LoopsOnLevelTy LoopsOnLevel;
554};
555
556#ifndef NDEBUG
557static void printLoopVector(const LoopVector &LV) {
558 dbgs() << "****************************\n";
559 for (auto *L : LV)
560 printLoop(*L, dbgs());
561 dbgs() << "****************************\n";
562}
563#endif
564
565struct LoopFuser {
566private:
567 // Sets of control flow equivalent fusion candidates for a given nest level.
568 FusionCandidateCollection FusionCandidates;
569
570 LoopDepthTree LDT;
571 DomTreeUpdater DTU;
572
573 LoopInfo &LI;
574 DominatorTree &DT;
575 DependenceInfo &DI;
576 ScalarEvolution &SE;
579 AssumptionCache &AC;
581
582public:
583 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
587 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
588 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
589
590 /// This is the main entry point for loop fusion. It will traverse the
591 /// specified function and collect candidate loops to fuse, starting at the
592 /// outermost nesting level and working inwards.
593 bool fuseLoops(Function &F) {
594#ifndef NDEBUG
596 LI.print(dbgs());
597 }
598#endif
599
600 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
601 << "\n");
602 bool Changed = false;
603
604 while (!LDT.empty()) {
605 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
606 << LDT.getDepth() << "\n";);
607
608 for (const LoopVector &LV : LDT) {
609 assert(LV.size() > 0 && "Empty loop set was build!");
610
611 // Skip singleton loop sets as they do not offer fusion opportunities on
612 // this level.
613 if (LV.size() == 1)
614 continue;
615#ifndef NDEBUG
617 LLVM_DEBUG({
618 dbgs() << " Visit loop set (#" << LV.size() << "):\n";
619 printLoopVector(LV);
620 });
621 }
622#endif
623
624 collectFusionCandidates(LV);
625 Changed |= fuseCandidates();
626 }
627
628 // Finished analyzing candidates at this level.
629 // Descend to the next level and clear all of the candidates currently
630 // collected. Note that it will not be possible to fuse any of the
631 // existing candidates with new candidates because the new candidates will
632 // be at a different nest level and thus not be control flow equivalent
633 // with all of the candidates collected so far.
634 LLVM_DEBUG(dbgs() << "Descend one level!\n");
635 LDT.descend();
636 FusionCandidates.clear();
637 }
638
639 if (Changed)
640 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
641
642#ifndef NDEBUG
643 assert(DT.verify());
644 assert(PDT.verify());
645 LI.verify(DT);
646 SE.verify();
647#endif
648
649 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
650 return Changed;
651 }
652
653private:
654 /// Determine if two fusion candidates are control flow equivalent.
655 ///
656 /// Two fusion candidates are control flow equivalent if when one executes,
657 /// the other is guaranteed to execute. This is determined using dominators
658 /// and post-dominators: if A dominates B and B post-dominates A then A and B
659 /// are control-flow equivalent.
660 bool isControlFlowEquivalent(const FusionCandidate &FC0,
661 const FusionCandidate &FC1) const {
662 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
663
664 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
665 DT, PDT);
666 }
667
668 /// Iterate over all loops in the given loop set and identify the loops that
669 /// are eligible for fusion. Place all eligible fusion candidates into Control
670 /// Flow Equivalent sets, sorted by dominance.
671 void collectFusionCandidates(const LoopVector &LV) {
672 for (Loop *L : LV) {
674 gatherPeelingPreferences(L, SE, TTI, std::nullopt, std::nullopt);
675 FusionCandidate CurrCand(L, DT, &PDT, ORE, PP);
676 if (!CurrCand.isEligibleForFusion(SE))
677 continue;
678
679 // Go through each list in FusionCandidates and determine if L is control
680 // flow equivalent with the first loop in that list. If it is, append LV.
681 // If not, go to the next list.
682 // If no suitable list is found, start another list and add it to
683 // FusionCandidates.
684 bool FoundSet = false;
685
686 for (auto &CurrCandSet : FusionCandidates) {
687 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
688 CurrCandSet.insert(CurrCand);
689 FoundSet = true;
690#ifndef NDEBUG
692 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
693 << " to existing candidate set\n");
694#endif
695 break;
696 }
697 }
698 if (!FoundSet) {
699 // No set was found. Create a new set and add to FusionCandidates
700#ifndef NDEBUG
702 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
703#endif
704 FusionCandidateSet NewCandSet;
705 NewCandSet.insert(CurrCand);
706 FusionCandidates.push_back(NewCandSet);
707 }
708 NumFusionCandidates++;
709 }
710 }
711
712 /// Determine if it is beneficial to fuse two loops.
713 ///
714 /// For now, this method simply returns true because we want to fuse as much
715 /// as possible (primarily to test the pass). This method will evolve, over
716 /// time, to add heuristics for profitability of fusion.
717 bool isBeneficialFusion(const FusionCandidate &FC0,
718 const FusionCandidate &FC1) {
719 return true;
720 }
721
722 /// Determine if two fusion candidates have the same trip count (i.e., they
723 /// execute the same number of iterations).
724 ///
725 /// This function will return a pair of values. The first is a boolean,
726 /// stating whether or not the two candidates are known at compile time to
727 /// have the same TripCount. The second is the difference in the two
728 /// TripCounts. This information can be used later to determine whether or not
729 /// peeling can be performed on either one of the candidates.
730 std::pair<bool, std::optional<unsigned>>
731 haveIdenticalTripCounts(const FusionCandidate &FC0,
732 const FusionCandidate &FC1) const {
733 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
734 if (isa<SCEVCouldNotCompute>(TripCount0)) {
735 UncomputableTripCount++;
736 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
737 return {false, std::nullopt};
738 }
739
740 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
741 if (isa<SCEVCouldNotCompute>(TripCount1)) {
742 UncomputableTripCount++;
743 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
744 return {false, std::nullopt};
745 }
746
747 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
748 << *TripCount1 << " are "
749 << (TripCount0 == TripCount1 ? "identical" : "different")
750 << "\n");
751
752 if (TripCount0 == TripCount1)
753 return {true, 0};
754
755 LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
756 "determining the difference between trip counts\n");
757
758 // Currently only considering loops with a single exit point
759 // and a non-constant trip count.
760 const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
761 const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
762
763 // If any of the tripcounts are zero that means that loop(s) do not have
764 // a single exit or a constant tripcount.
765 if (TC0 == 0 || TC1 == 0) {
766 LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
767 "have a constant number of iterations. Peeling "
768 "is not benefical\n");
769 return {false, std::nullopt};
770 }
771
772 std::optional<unsigned> Difference;
773 int Diff = TC0 - TC1;
774
775 if (Diff > 0)
776 Difference = Diff;
777 else {
779 dbgs() << "Difference is less than 0. FC1 (second loop) has more "
780 "iterations than the first one. Currently not supported\n");
781 }
782
783 LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
784 << "\n");
785
786 return {false, Difference};
787 }
788
789 void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
790 unsigned PeelCount) {
791 assert(FC0.AbleToPeel && "Should be able to peel loop");
792
793 LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
794 << " iterations of the first loop. \n");
795
797 FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true, VMap);
798 if (FC0.Peeled) {
799 LLVM_DEBUG(dbgs() << "Done Peeling\n");
800
801#ifndef NDEBUG
802 auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
803
804 assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
805 "Loops should have identical trip counts after peeling");
806#endif
807
808 FC0.PP.PeelCount += PeelCount;
809
810 // Peeling does not update the PDT
811 PDT.recalculate(*FC0.Preheader->getParent());
812
813 FC0.updateAfterPeeling();
814
815 // In this case the iterations of the loop are constant, so the first
816 // loop will execute completely (will not jump from one of
817 // the peeled blocks to the second loop). Here we are updating the
818 // branch conditions of each of the peeled blocks, such that it will
819 // branch to its successor which is not the preheader of the second loop
820 // in the case of unguarded loops, or the succesors of the exit block of
821 // the first loop otherwise. Doing this update will ensure that the entry
822 // block of the first loop dominates the entry block of the second loop.
823 BasicBlock *BB =
824 FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
825 if (BB) {
828 for (BasicBlock *Pred : predecessors(BB)) {
829 if (Pred != FC0.ExitBlock) {
830 WorkList.emplace_back(Pred->getTerminator());
831 TreeUpdates.emplace_back(
832 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
833 }
834 }
835 // Cannot modify the predecessors inside the above loop as it will cause
836 // the iterators to be nullptrs, causing memory errors.
837 for (Instruction *CurrentBranch : WorkList) {
838 BasicBlock *Succ = CurrentBranch->getSuccessor(0);
839 if (Succ == BB)
840 Succ = CurrentBranch->getSuccessor(1);
841 ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
842 }
843
844 DTU.applyUpdates(TreeUpdates);
845 DTU.flush();
846 }
848 dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
849 << " iterations from the first loop.\n"
850 "Both Loops have the same number of iterations now.\n");
851 }
852 }
853
854 /// Walk each set of control flow equivalent fusion candidates and attempt to
855 /// fuse them. This does a single linear traversal of all candidates in the
856 /// set. The conditions for legal fusion are checked at this point. If a pair
857 /// of fusion candidates passes all legality checks, they are fused together
858 /// and a new fusion candidate is created and added to the FusionCandidateSet.
859 /// The original fusion candidates are then removed, as they are no longer
860 /// valid.
861 bool fuseCandidates() {
862 bool Fused = false;
863 LLVM_DEBUG(printFusionCandidates(FusionCandidates));
864 for (auto &CandidateSet : FusionCandidates) {
865 if (CandidateSet.size() < 2)
866 continue;
867
868 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
869 << CandidateSet << "\n");
870
871 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
872 assert(!LDT.isRemovedLoop(FC0->L) &&
873 "Should not have removed loops in CandidateSet!");
874 auto FC1 = FC0;
875 for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
876 assert(!LDT.isRemovedLoop(FC1->L) &&
877 "Should not have removed loops in CandidateSet!");
878
879 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
880 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
881
882 FC0->verify();
883 FC1->verify();
884
885 // Check if the candidates have identical tripcounts (first value of
886 // pair), and if not check the difference in the tripcounts between
887 // the loops (second value of pair). The difference is not equal to
888 // std::nullopt iff the loops iterate a constant number of times, and
889 // have a single exit.
890 std::pair<bool, std::optional<unsigned>> IdenticalTripCountRes =
891 haveIdenticalTripCounts(*FC0, *FC1);
892 bool SameTripCount = IdenticalTripCountRes.first;
893 std::optional<unsigned> TCDifference = IdenticalTripCountRes.second;
894
895 // Here we are checking that FC0 (the first loop) can be peeled, and
896 // both loops have different tripcounts.
897 if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
898 if (*TCDifference > FusionPeelMaxCount) {
900 << "Difference in loop trip counts: " << *TCDifference
901 << " is greater than maximum peel count specificed: "
902 << FusionPeelMaxCount << "\n");
903 } else {
904 // Dependent on peeling being performed on the first loop, and
905 // assuming all other conditions for fusion return true.
906 SameTripCount = true;
907 }
908 }
909
910 if (!SameTripCount) {
911 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
912 "counts. Not fusing.\n");
913 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
914 NonEqualTripCount);
915 continue;
916 }
917
918 if (!isAdjacent(*FC0, *FC1)) {
920 << "Fusion candidates are not adjacent. Not fusing.\n");
921 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
922 continue;
923 }
924
925 if ((!FC0->GuardBranch && FC1->GuardBranch) ||
926 (FC0->GuardBranch && !FC1->GuardBranch)) {
927 LLVM_DEBUG(dbgs() << "The one of candidate is guarded while the "
928 "another one is not. Not fusing.\n");
929 reportLoopFusion<OptimizationRemarkMissed>(
930 *FC0, *FC1, OnlySecondCandidateIsGuarded);
931 continue;
932 }
933
934 // Ensure that FC0 and FC1 have identical guards.
935 // If one (or both) are not guarded, this check is not necessary.
936 if (FC0->GuardBranch && FC1->GuardBranch &&
937 !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
938 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
939 "guards. Not Fusing.\n");
940 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
941 NonIdenticalGuards);
942 continue;
943 }
944
945 if (FC0->GuardBranch) {
946 assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
947
948 if (!isSafeToMoveBefore(*FC0->ExitBlock,
949 *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
950 &PDT, &DI)) {
951 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
952 "instructions in exit block. Not fusing.\n");
953 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
954 NonEmptyExitBlock);
955 continue;
956 }
957
959 *FC1->GuardBranch->getParent(),
960 *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
961 &DI)) {
963 << "Fusion candidate contains unsafe "
964 "instructions in guard block. Not fusing.\n");
965 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
966 NonEmptyGuardBlock);
967 continue;
968 }
969 }
970
971 // Check the dependencies across the loops and do not fuse if it would
972 // violate them.
973 if (!dependencesAllowFusion(*FC0, *FC1)) {
974 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
975 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
976 InvalidDependencies);
977 continue;
978 }
979
980 // If the second loop has instructions in the pre-header, attempt to
981 // hoist them up to the first loop's pre-header or sink them into the
982 // body of the second loop.
985 // At this point, this is the last remaining legality check.
986 // Which means if we can make this pre-header empty, we can fuse
987 // these loops
988 if (!isEmptyPreheader(*FC1)) {
989 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
990 "preheader.\n");
991
992 // If it is not safe to hoist/sink all instructions in the
993 // pre-header, we cannot fuse these loops.
994 if (!collectMovablePreheaderInsts(*FC0, *FC1, SafeToHoist,
995 SafeToSink)) {
996 LLVM_DEBUG(dbgs() << "Could not hoist/sink all instructions in "
997 "Fusion Candidate Pre-header.\n"
998 << "Not Fusing.\n");
999 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
1000 NonEmptyPreheader);
1001 continue;
1002 }
1003 }
1004
1005 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
1007 << "\tFusion appears to be "
1008 << (BeneficialToFuse ? "" : "un") << "profitable!\n");
1009 if (!BeneficialToFuse) {
1010 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
1011 FusionNotBeneficial);
1012 continue;
1013 }
1014 // All analysis has completed and has determined that fusion is legal
1015 // and profitable. At this point, start transforming the code and
1016 // perform fusion.
1017
1018 // Execute the hoist/sink operations on preheader instructions
1019 movePreheaderInsts(*FC0, *FC1, SafeToHoist, SafeToSink);
1020
1021 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
1022 << *FC1 << "\n");
1023
1024 FusionCandidate FC0Copy = *FC0;
1025 // Peel the loop after determining that fusion is legal. The Loops
1026 // will still be safe to fuse after the peeling is performed.
1027 bool Peel = TCDifference && *TCDifference > 0;
1028 if (Peel)
1029 peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
1030
1031 // Report fusion to the Optimization Remarks.
1032 // Note this needs to be done *before* performFusion because
1033 // performFusion will change the original loops, making it not
1034 // possible to identify them after fusion is complete.
1035 reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
1036 FuseCounter);
1037
1038 FusionCandidate FusedCand(
1039 performFusion((Peel ? FC0Copy : *FC0), *FC1), DT, &PDT, ORE,
1040 FC0Copy.PP);
1041 FusedCand.verify();
1042 assert(FusedCand.isEligibleForFusion(SE) &&
1043 "Fused candidate should be eligible for fusion!");
1044
1045 // Notify the loop-depth-tree that these loops are not valid objects
1046 LDT.removeLoop(FC1->L);
1047
1048 CandidateSet.erase(FC0);
1049 CandidateSet.erase(FC1);
1050
1051 auto InsertPos = CandidateSet.insert(FusedCand);
1052
1053 assert(InsertPos.second &&
1054 "Unable to insert TargetCandidate in CandidateSet!");
1055
1056 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
1057 // of the FC1 loop will attempt to fuse the new (fused) loop with the
1058 // remaining candidates in the current candidate set.
1059 FC0 = FC1 = InsertPos.first;
1060
1061 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
1062 << "\n");
1063
1064 Fused = true;
1065 }
1066 }
1067 }
1068 return Fused;
1069 }
1070
1071 // Returns true if the instruction \p I can be hoisted to the end of the
1072 // preheader of \p FC0. \p SafeToHoist contains the instructions that are
1073 // known to be safe to hoist. The instructions encountered that cannot be
1074 // hoisted are in \p NotHoisting.
1075 // TODO: Move functionality into CodeMoverUtils
1076 bool canHoistInst(Instruction &I,
1077 const SmallVector<Instruction *, 4> &SafeToHoist,
1078 const SmallVector<Instruction *, 4> &NotHoisting,
1079 const FusionCandidate &FC0) const {
1080 const BasicBlock *FC0PreheaderTarget = FC0.Preheader->getSingleSuccessor();
1081 assert(FC0PreheaderTarget &&
1082 "Expected single successor for loop preheader.");
1083
1084 for (Use &Op : I.operands()) {
1085 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
1086 bool OpHoisted = is_contained(SafeToHoist, OpInst);
1087 // Check if we have already decided to hoist this operand. In this
1088 // case, it does not dominate FC0 *yet*, but will after we hoist it.
1089 if (!(OpHoisted || DT.dominates(OpInst, FC0PreheaderTarget))) {
1090 return false;
1091 }
1092 }
1093 }
1094
1095 // PHIs in FC1's header only have FC0 blocks as predecessors. PHIs
1096 // cannot be hoisted and should be sunk to the exit of the fused loop.
1097 if (isa<PHINode>(I))
1098 return false;
1099
1100 // If this isn't a memory inst, hoisting is safe
1101 if (!I.mayReadOrWriteMemory())
1102 return true;
1103
1104 LLVM_DEBUG(dbgs() << "Checking if this mem inst can be hoisted.\n");
1105 for (Instruction *NotHoistedInst : NotHoisting) {
1106 if (auto D = DI.depends(&I, NotHoistedInst, true)) {
1107 // Dependency is not read-before-write, write-before-read or
1108 // write-before-write
1109 if (D->isFlow() || D->isAnti() || D->isOutput()) {
1110 LLVM_DEBUG(dbgs() << "Inst depends on an instruction in FC1's "
1111 "preheader that is not being hoisted.\n");
1112 return false;
1113 }
1114 }
1115 }
1116
1117 for (Instruction *ReadInst : FC0.MemReads) {
1118 if (auto D = DI.depends(ReadInst, &I, true)) {
1119 // Dependency is not read-before-write
1120 if (D->isAnti()) {
1121 LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC0.\n");
1122 return false;
1123 }
1124 }
1125 }
1126
1127 for (Instruction *WriteInst : FC0.MemWrites) {
1128 if (auto D = DI.depends(WriteInst, &I, true)) {
1129 // Dependency is not write-before-read or write-before-write
1130 if (D->isFlow() || D->isOutput()) {
1131 LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC0.\n");
1132 return false;
1133 }
1134 }
1135 }
1136 return true;
1137 }
1138
1139 // Returns true if the instruction \p I can be sunk to the top of the exit
1140 // block of \p FC1.
1141 // TODO: Move functionality into CodeMoverUtils
1142 bool canSinkInst(Instruction &I, const FusionCandidate &FC1) const {
1143 for (User *U : I.users()) {
1144 if (auto *UI{dyn_cast<Instruction>(U)}) {
1145 // Cannot sink if user in loop
1146 // If FC1 has phi users of this value, we cannot sink it into FC1.
1147 if (FC1.L->contains(UI)) {
1148 // Cannot hoist or sink this instruction. No hoisting/sinking
1149 // should take place, loops should not fuse
1150 return false;
1151 }
1152 }
1153 }
1154
1155 // If this isn't a memory inst, sinking is safe
1156 if (!I.mayReadOrWriteMemory())
1157 return true;
1158
1159 for (Instruction *ReadInst : FC1.MemReads) {
1160 if (auto D = DI.depends(&I, ReadInst, true)) {
1161 // Dependency is not write-before-read
1162 if (D->isFlow()) {
1163 LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC1.\n");
1164 return false;
1165 }
1166 }
1167 }
1168
1169 for (Instruction *WriteInst : FC1.MemWrites) {
1170 if (auto D = DI.depends(&I, WriteInst, true)) {
1171 // Dependency is not write-before-write or read-before-write
1172 if (D->isOutput() || D->isAnti()) {
1173 LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC1.\n");
1174 return false;
1175 }
1176 }
1177 }
1178
1179 return true;
1180 }
1181
1182 /// Collect instructions in the \p FC1 Preheader that can be hoisted
1183 /// to the \p FC0 Preheader or sunk into the \p FC1 Body
1184 bool collectMovablePreheaderInsts(
1185 const FusionCandidate &FC0, const FusionCandidate &FC1,
1186 SmallVector<Instruction *, 4> &SafeToHoist,
1187 SmallVector<Instruction *, 4> &SafeToSink) const {
1188 BasicBlock *FC1Preheader = FC1.Preheader;
1189 // Save the instructions that are not being hoisted, so we know not to hoist
1190 // mem insts that they dominate.
1192
1193 for (Instruction &I : *FC1Preheader) {
1194 // Can't move a branch
1195 if (&I == FC1Preheader->getTerminator())
1196 continue;
1197 // If the instruction has side-effects, give up.
1198 // TODO: The case of mayReadFromMemory we can handle but requires
1199 // additional work with a dependence analysis so for now we give
1200 // up on memory reads.
1201 if (I.mayThrow() || !I.willReturn()) {
1202 LLVM_DEBUG(dbgs() << "Inst: " << I << " may throw or won't return.\n");
1203 return false;
1204 }
1205
1206 LLVM_DEBUG(dbgs() << "Checking Inst: " << I << "\n");
1207
1208 if (I.isAtomic() || I.isVolatile()) {
1209 LLVM_DEBUG(
1210 dbgs() << "\tInstruction is volatile or atomic. Cannot move it.\n");
1211 return false;
1212 }
1213
1214 if (canHoistInst(I, SafeToHoist, NotHoisting, FC0)) {
1215 SafeToHoist.push_back(&I);
1216 LLVM_DEBUG(dbgs() << "\tSafe to hoist.\n");
1217 } else {
1218 LLVM_DEBUG(dbgs() << "\tCould not hoist. Trying to sink...\n");
1219 NotHoisting.push_back(&I);
1220
1221 if (canSinkInst(I, FC1)) {
1222 SafeToSink.push_back(&I);
1223 LLVM_DEBUG(dbgs() << "\tSafe to sink.\n");
1224 } else {
1225 LLVM_DEBUG(dbgs() << "\tCould not sink.\n");
1226 return false;
1227 }
1228 }
1229 }
1230 LLVM_DEBUG(
1231 dbgs() << "All preheader instructions could be sunk or hoisted!\n");
1232 return true;
1233 }
1234
1235 /// Rewrite all additive recurrences in a SCEV to use a new loop.
1236 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
1237 public:
1238 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
1239 bool UseMax = true)
1240 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
1241 NewL(NewL) {}
1242
1243 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
1244 const Loop *ExprL = Expr->getLoop();
1246 if (ExprL == &OldL) {
1247 append_range(Operands, Expr->operands());
1248 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
1249 }
1250
1251 if (OldL.contains(ExprL)) {
1252 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
1253 if (!UseMax || !Pos || !Expr->isAffine()) {
1254 Valid = false;
1255 return Expr;
1256 }
1257 return visit(Expr->getStart());
1258 }
1259
1260 for (const SCEV *Op : Expr->operands())
1261 Operands.push_back(visit(Op));
1262 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
1263 }
1264
1265 bool wasValidSCEV() const { return Valid; }
1266
1267 private:
1268 bool Valid, UseMax;
1269 const Loop &OldL, &NewL;
1270 };
1271
1272 /// Return false if the access functions of \p I0 and \p I1 could cause
1273 /// a negative dependence.
1274 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
1275 Instruction &I1, bool EqualIsInvalid) {
1276 Value *Ptr0 = getLoadStorePointerOperand(&I0);
1277 Value *Ptr1 = getLoadStorePointerOperand(&I1);
1278 if (!Ptr0 || !Ptr1)
1279 return false;
1280
1281 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1282 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1283#ifndef NDEBUG
1285 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
1286 << *SCEVPtr1 << "\n");
1287#endif
1288 AddRecLoopReplacer Rewriter(SE, L0, L1);
1289 SCEVPtr0 = Rewriter.visit(SCEVPtr0);
1290#ifndef NDEBUG
1292 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
1293 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
1294#endif
1295 if (!Rewriter.wasValidSCEV())
1296 return false;
1297
1298 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
1299 // L0) and the other is not. We could check if it is monotone and test
1300 // the beginning and end value instead.
1301
1302 BasicBlock *L0Header = L0.getHeader();
1303 auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
1304 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
1305 if (!AddRec)
1306 return false;
1307 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
1308 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
1309 };
1310 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
1311 return false;
1312
1313 ICmpInst::Predicate Pred =
1314 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1315 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1316#ifndef NDEBUG
1318 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
1319 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
1320 << "\n");
1321#endif
1322 return IsAlwaysGE;
1323 }
1324
1325 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
1326 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
1327 /// specified by @p DepChoice are used to determine this.
1328 bool dependencesAllowFusion(const FusionCandidate &FC0,
1329 const FusionCandidate &FC1, Instruction &I0,
1330 Instruction &I1, bool AnyDep,
1332#ifndef NDEBUG
1334 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
1335 << DepChoice << "\n");
1336 }
1337#endif
1338 switch (DepChoice) {
1340 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1342 auto DepResult = DI.depends(&I0, &I1, true);
1343 if (!DepResult)
1344 return true;
1345#ifndef NDEBUG
1347 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
1348 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
1349 << (DepResult->isOrdered() ? "true" : "false")
1350 << "]\n");
1351 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
1352 << "\n");
1353 }
1354#endif
1355
1356 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1357 LLVM_DEBUG(
1358 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
1359
1360 // TODO: Can we actually use the dependence info analysis here?
1361 return false;
1362 }
1363
1365 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1367 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1369 }
1370
1371 llvm_unreachable("Unknown fusion dependence analysis choice!");
1372 }
1373
1374 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
1375 bool dependencesAllowFusion(const FusionCandidate &FC0,
1376 const FusionCandidate &FC1) {
1377 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
1378 << "\n");
1379 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
1380 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1381
1382 for (Instruction *WriteL0 : FC0.MemWrites) {
1383 for (Instruction *WriteL1 : FC1.MemWrites)
1384 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1385 /* AnyDep */ false,
1387 InvalidDependencies++;
1388 return false;
1389 }
1390 for (Instruction *ReadL1 : FC1.MemReads)
1391 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1392 /* AnyDep */ false,
1394 InvalidDependencies++;
1395 return false;
1396 }
1397 }
1398
1399 for (Instruction *WriteL1 : FC1.MemWrites) {
1400 for (Instruction *WriteL0 : FC0.MemWrites)
1401 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1402 /* AnyDep */ false,
1404 InvalidDependencies++;
1405 return false;
1406 }
1407 for (Instruction *ReadL0 : FC0.MemReads)
1408 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1409 /* AnyDep */ false,
1411 InvalidDependencies++;
1412 return false;
1413 }
1414 }
1415
1416 // Walk through all uses in FC1. For each use, find the reaching def. If the
1417 // def is located in FC0 then it is is not safe to fuse.
1418 for (BasicBlock *BB : FC1.L->blocks())
1419 for (Instruction &I : *BB)
1420 for (auto &Op : I.operands())
1421 if (Instruction *Def = dyn_cast<Instruction>(Op))
1422 if (FC0.L->contains(Def->getParent())) {
1423 InvalidDependencies++;
1424 return false;
1425 }
1426
1427 return true;
1428 }
1429
1430 /// Determine if two fusion candidates are adjacent in the CFG.
1431 ///
1432 /// This method will determine if there are additional basic blocks in the CFG
1433 /// between the exit of \p FC0 and the entry of \p FC1.
1434 /// If the two candidates are guarded loops, then it checks whether the
1435 /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1436 /// FC1. If not, then the loops are not adjacent. If the two candidates are
1437 /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1438 /// preheader of \p FC1.
1439 bool isAdjacent(const FusionCandidate &FC0,
1440 const FusionCandidate &FC1) const {
1441 // If the successor of the guard branch is FC1, then the loops are adjacent
1442 if (FC0.GuardBranch)
1443 return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1444 else
1445 return FC0.ExitBlock == FC1.getEntryBlock();
1446 }
1447
1448 bool isEmptyPreheader(const FusionCandidate &FC) const {
1449 return FC.Preheader->size() == 1;
1450 }
1451
1452 /// Hoist \p FC1 Preheader instructions to \p FC0 Preheader
1453 /// and sink others into the body of \p FC1.
1454 void movePreheaderInsts(const FusionCandidate &FC0,
1455 const FusionCandidate &FC1,
1457 SmallVector<Instruction *, 4> &SinkInsts) const {
1458 // All preheader instructions except the branch must be hoisted or sunk
1459 assert(HoistInsts.size() + SinkInsts.size() == FC1.Preheader->size() - 1 &&
1460 "Attempting to sink and hoist preheader instructions, but not all "
1461 "the preheader instructions are accounted for.");
1462
1463 NumHoistedInsts += HoistInsts.size();
1464 NumSunkInsts += SinkInsts.size();
1465
1467 if (!HoistInsts.empty())
1468 dbgs() << "Hoisting: \n";
1469 for (Instruction *I : HoistInsts)
1470 dbgs() << *I << "\n";
1471 if (!SinkInsts.empty())
1472 dbgs() << "Sinking: \n";
1473 for (Instruction *I : SinkInsts)
1474 dbgs() << *I << "\n";
1475 });
1476
1477 for (Instruction *I : HoistInsts) {
1478 assert(I->getParent() == FC1.Preheader);
1479 I->moveBefore(FC0.Preheader->getTerminator());
1480 }
1481 // insert instructions in reverse order to maintain dominance relationship
1482 for (Instruction *I : reverse(SinkInsts)) {
1483 assert(I->getParent() == FC1.Preheader);
1484 I->moveBefore(&*FC1.ExitBlock->getFirstInsertionPt());
1485 }
1486 }
1487
1488 /// Determine if two fusion candidates have identical guards
1489 ///
1490 /// This method will determine if two fusion candidates have the same guards.
1491 /// The guards are considered the same if:
1492 /// 1. The instructions to compute the condition used in the compare are
1493 /// identical.
1494 /// 2. The successors of the guard have the same flow into/around the loop.
1495 /// If the compare instructions are identical, then the first successor of the
1496 /// guard must go to the same place (either the preheader of the loop or the
1497 /// NonLoopBlock). In other words, the the first successor of both loops must
1498 /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1499 /// the NonLoopBlock). The same must be true for the second successor.
1500 bool haveIdenticalGuards(const FusionCandidate &FC0,
1501 const FusionCandidate &FC1) const {
1502 assert(FC0.GuardBranch && FC1.GuardBranch &&
1503 "Expecting FC0 and FC1 to be guarded loops.");
1504
1505 if (auto FC0CmpInst =
1506 dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1507 if (auto FC1CmpInst =
1508 dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1509 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1510 return false;
1511
1512 // The compare instructions are identical.
1513 // Now make sure the successor of the guards have the same flow into/around
1514 // the loop
1515 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1516 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1517 else
1518 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1519 }
1520
1521 /// Modify the latch branch of FC to be unconditional since successors of the
1522 /// branch are the same.
1523 void simplifyLatchBranch(const FusionCandidate &FC) const {
1524 BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1525 if (FCLatchBranch) {
1526 assert(FCLatchBranch->isConditional() &&
1527 FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1528 "Expecting the two successors of FCLatchBranch to be the same");
1529 BranchInst *NewBranch =
1530 BranchInst::Create(FCLatchBranch->getSuccessor(0));
1531 ReplaceInstWithInst(FCLatchBranch, NewBranch);
1532 }
1533 }
1534
1535 /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1536 /// successor, then merge FC0.Latch with its unique successor.
1537 void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1538 moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1539 if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1540 MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1541 DTU.flush();
1542 }
1543 }
1544
1545 /// Fuse two fusion candidates, creating a new fused loop.
1546 ///
1547 /// This method contains the mechanics of fusing two loops, represented by \p
1548 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1549 /// postdominates \p FC0 (making them control flow equivalent). It also
1550 /// assumes that the other conditions for fusion have been met: adjacent,
1551 /// identical trip counts, and no negative distance dependencies exist that
1552 /// would prevent fusion. Thus, there is no checking for these conditions in
1553 /// this method.
1554 ///
1555 /// Fusion is performed by rewiring the CFG to update successor blocks of the
1556 /// components of tho loop. Specifically, the following changes are done:
1557 ///
1558 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
1559 /// (because it is currently only a single statement block).
1560 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1561 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1562 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1563 ///
1564 /// All of these modifications are done with dominator tree updates, thus
1565 /// keeping the dominator (and post dominator) information up-to-date.
1566 ///
1567 /// This can be improved in the future by actually merging blocks during
1568 /// fusion. For example, the preheader of \p FC1 can be merged with the
1569 /// preheader of \p FC0. This would allow loops with more than a single
1570 /// statement in the preheader to be fused. Similarly, the latch blocks of the
1571 /// two loops could also be fused into a single block. This will require
1572 /// analysis to prove it is safe to move the contents of the block past
1573 /// existing code, which currently has not been implemented.
1574 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1575 assert(FC0.isValid() && FC1.isValid() &&
1576 "Expecting valid fusion candidates");
1577
1578 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1579 dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1580
1581 // Move instructions from the preheader of FC1 to the end of the preheader
1582 // of FC0.
1583 moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1584
1585 // Fusing guarded loops is handled slightly differently than non-guarded
1586 // loops and has been broken out into a separate method instead of trying to
1587 // intersperse the logic within a single method.
1588 if (FC0.GuardBranch)
1589 return fuseGuardedLoops(FC0, FC1);
1590
1591 assert(FC1.Preheader ==
1592 (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
1593 assert(FC1.Preheader->size() == 1 &&
1594 FC1.Preheader->getSingleSuccessor() == FC1.Header);
1595
1596 // Remember the phi nodes originally in the header of FC0 in order to rewire
1597 // them later. However, this is only necessary if the new loop carried
1598 // values might not dominate the exiting branch. While we do not generally
1599 // test if this is the case but simply insert intermediate phi nodes, we
1600 // need to make sure these intermediate phi nodes have different
1601 // predecessors. To this end, we filter the special case where the exiting
1602 // block is the latch block of the first loop. Nothing needs to be done
1603 // anyway as all loop carried values dominate the latch and thereby also the
1604 // exiting branch.
1605 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1606 if (FC0.ExitingBlock != FC0.Latch)
1607 for (PHINode &PHI : FC0.Header->phis())
1608 OriginalFC0PHIs.push_back(&PHI);
1609
1610 // Replace incoming blocks for header PHIs first.
1611 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1612 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1613
1614 // Then modify the control flow and update DT and PDT.
1616
1617 // The old exiting block of the first loop (FC0) has to jump to the header
1618 // of the second as we need to execute the code in the second header block
1619 // regardless of the trip count. That is, if the trip count is 0, so the
1620 // back edge is never taken, we still have to execute both loop headers,
1621 // especially (but not only!) if the second is a do-while style loop.
1622 // However, doing so might invalidate the phi nodes of the first loop as
1623 // the new values do only need to dominate their latch and not the exiting
1624 // predicate. To remedy this potential problem we always introduce phi
1625 // nodes in the header of the second loop later that select the loop carried
1626 // value, if the second header was reached through an old latch of the
1627 // first, or undef otherwise. This is sound as exiting the first implies the
1628 // second will exit too, __without__ taking the back-edge. [Their
1629 // trip-counts are equal after all.
1630 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1631 // to FC1.Header? I think this is basically what the three sequences are
1632 // trying to accomplish; however, doing this directly in the CFG may mean
1633 // the DT/PDT becomes invalid
1634 if (!FC0.Peeled) {
1635 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1636 FC1.Header);
1638 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1640 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1641 } else {
1643 DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1644
1645 // Remove the ExitBlock of the first Loop (also not needed)
1646 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1647 FC1.Header);
1649 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1650 FC0.ExitBlock->getTerminator()->eraseFromParent();
1652 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1653 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1654 }
1655
1656 // The pre-header of L1 is not necessary anymore.
1657 assert(pred_empty(FC1.Preheader));
1658 FC1.Preheader->getTerminator()->eraseFromParent();
1659 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1661 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1662
1663 // Moves the phi nodes from the second to the first loops header block.
1664 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1665 if (SE.isSCEVable(PHI->getType()))
1666 SE.forgetValue(PHI);
1667 if (PHI->hasNUsesOrMore(1))
1668 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1669 else
1670 PHI->eraseFromParent();
1671 }
1672
1673 // Introduce new phi nodes in the second loop header to ensure
1674 // exiting the first and jumping to the header of the second does not break
1675 // the SSA property of the phis originally in the first loop. See also the
1676 // comment above.
1677 Instruction *L1HeaderIP = &FC1.Header->front();
1678 for (PHINode *LCPHI : OriginalFC0PHIs) {
1679 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1680 assert(L1LatchBBIdx >= 0 &&
1681 "Expected loop carried value to be rewired at this point!");
1682
1683 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1684
1685 PHINode *L1HeaderPHI = PHINode::Create(
1686 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1687 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1688 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1689 FC0.ExitingBlock);
1690
1691 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1692 }
1693
1694 // Replace latch terminator destinations.
1695 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1696 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1697
1698 // Modify the latch branch of FC0 to be unconditional as both successors of
1699 // the branch are the same.
1700 simplifyLatchBranch(FC0);
1701
1702 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1703 // performed the updates above.
1704 if (FC0.Latch != FC0.ExitingBlock)
1706 DominatorTree::Insert, FC0.Latch, FC1.Header));
1707
1708 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1709 FC0.Latch, FC0.Header));
1710 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1711 FC1.Latch, FC0.Header));
1712 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1713 FC1.Latch, FC1.Header));
1714
1715 // Update DT/PDT
1716 DTU.applyUpdates(TreeUpdates);
1717
1718 LI.removeBlock(FC1.Preheader);
1719 DTU.deleteBB(FC1.Preheader);
1720 if (FC0.Peeled) {
1721 LI.removeBlock(FC0.ExitBlock);
1722 DTU.deleteBB(FC0.ExitBlock);
1723 }
1724
1725 DTU.flush();
1726
1727 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1728 // and rebuild the information in subsequent passes of fusion?
1729 // Note: Need to forget the loops before merging the loop latches, as
1730 // mergeLatch may remove the only block in FC1.
1731 SE.forgetLoop(FC1.L);
1732 SE.forgetLoop(FC0.L);
1734
1735 // Move instructions from FC0.Latch to FC1.Latch.
1736 // Note: mergeLatch requires an updated DT.
1737 mergeLatch(FC0, FC1);
1738
1739 // Merge the loops.
1740 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1741 for (BasicBlock *BB : Blocks) {
1742 FC0.L->addBlockEntry(BB);
1743 FC1.L->removeBlockFromLoop(BB);
1744 if (LI.getLoopFor(BB) != FC1.L)
1745 continue;
1746 LI.changeLoopFor(BB, FC0.L);
1747 }
1748 while (!FC1.L->isInnermost()) {
1749 const auto &ChildLoopIt = FC1.L->begin();
1750 Loop *ChildLoop = *ChildLoopIt;
1751 FC1.L->removeChildLoop(ChildLoopIt);
1752 FC0.L->addChildLoop(ChildLoop);
1753 }
1754
1755 // Delete the now empty loop L1.
1756 LI.erase(FC1.L);
1757
1758#ifndef NDEBUG
1759 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1760 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1761 assert(PDT.verify());
1762 LI.verify(DT);
1763 SE.verify();
1764#endif
1765
1766 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1767
1768 return FC0.L;
1769 }
1770
1771 /// Report details on loop fusion opportunities.
1772 ///
1773 /// This template function can be used to report both successful and missed
1774 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1775 /// be one of:
1776 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1777 /// given two valid fusion candidates.
1778 /// - OptimizationRemark to report successful fusion of two fusion
1779 /// candidates.
1780 /// The remarks will be printed using the form:
1781 /// <path/filename>:<line number>:<column number>: [<function name>]:
1782 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1783 template <typename RemarkKind>
1784 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1785 llvm::Statistic &Stat) {
1786 assert(FC0.Preheader && FC1.Preheader &&
1787 "Expecting valid fusion candidates");
1788 using namespace ore;
1789#if LLVM_ENABLE_STATS
1790 ++Stat;
1791 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1792 FC0.Preheader)
1793 << "[" << FC0.Preheader->getParent()->getName()
1794 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1795 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1796 << ": " << Stat.getDesc());
1797#endif
1798 }
1799
1800 /// Fuse two guarded fusion candidates, creating a new fused loop.
1801 ///
1802 /// Fusing guarded loops is handled much the same way as fusing non-guarded
1803 /// loops. The rewiring of the CFG is slightly different though, because of
1804 /// the presence of the guards around the loops and the exit blocks after the
1805 /// loop body. As such, the new loop is rewired as follows:
1806 /// 1. Keep the guard branch from FC0 and use the non-loop block target
1807 /// from the FC1 guard branch.
1808 /// 2. Remove the exit block from FC0 (this exit block should be empty
1809 /// right now).
1810 /// 3. Remove the guard branch for FC1
1811 /// 4. Remove the preheader for FC1.
1812 /// The exit block successor for the latch of FC0 is updated to be the header
1813 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1814 /// be the header of FC0, thus creating the fused loop.
1815 Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1816 const FusionCandidate &FC1) {
1817 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1818
1819 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1820 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1821 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1822 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1823 BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
1824
1825 // Move instructions from the exit block of FC0 to the beginning of the exit
1826 // block of FC1, in the case that the FC0 loop has not been peeled. In the
1827 // case that FC0 loop is peeled, then move the instructions of the successor
1828 // of the FC0 Exit block to the beginning of the exit block of FC1.
1830 (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1831 DT, PDT, DI);
1832
1833 // Move instructions from the guard block of FC1 to the end of the guard
1834 // block of FC0.
1835 moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1836
1837 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1838
1840
1841 ////////////////////////////////////////////////////////////////////////////
1842 // Update the Loop Guard
1843 ////////////////////////////////////////////////////////////////////////////
1844 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1845 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1846 // Thus, one path from the guard goes to the preheader for FC0 (and thus
1847 // executes the new fused loop) and the other path goes to the NonLoopBlock
1848 // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1849 FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1850 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1851
1852 BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1853 BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
1854
1855 // The guard of FC1 is not necessary anymore.
1856 FC1.GuardBranch->eraseFromParent();
1857 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1858
1860 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1862 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1864 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1866 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1867
1868 if (FC0.Peeled) {
1869 // Remove the Block after the ExitBlock of FC0
1871 DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1872 FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
1873 new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
1874 FC0ExitBlockSuccessor);
1875 }
1876
1877 assert(pred_empty(FC1GuardBlock) &&
1878 "Expecting guard block to have no predecessors");
1879 assert(succ_empty(FC1GuardBlock) &&
1880 "Expecting guard block to have no successors");
1881
1882 // Remember the phi nodes originally in the header of FC0 in order to rewire
1883 // them later. However, this is only necessary if the new loop carried
1884 // values might not dominate the exiting branch. While we do not generally
1885 // test if this is the case but simply insert intermediate phi nodes, we
1886 // need to make sure these intermediate phi nodes have different
1887 // predecessors. To this end, we filter the special case where the exiting
1888 // block is the latch block of the first loop. Nothing needs to be done
1889 // anyway as all loop carried values dominate the latch and thereby also the
1890 // exiting branch.
1891 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1892 // (because the loops are rotated. Thus, nothing will ever be added to
1893 // OriginalFC0PHIs.
1894 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1895 if (FC0.ExitingBlock != FC0.Latch)
1896 for (PHINode &PHI : FC0.Header->phis())
1897 OriginalFC0PHIs.push_back(&PHI);
1898
1899 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1900
1901 // Replace incoming blocks for header PHIs first.
1902 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1903 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1904
1905 // The old exiting block of the first loop (FC0) has to jump to the header
1906 // of the second as we need to execute the code in the second header block
1907 // regardless of the trip count. That is, if the trip count is 0, so the
1908 // back edge is never taken, we still have to execute both loop headers,
1909 // especially (but not only!) if the second is a do-while style loop.
1910 // However, doing so might invalidate the phi nodes of the first loop as
1911 // the new values do only need to dominate their latch and not the exiting
1912 // predicate. To remedy this potential problem we always introduce phi
1913 // nodes in the header of the second loop later that select the loop carried
1914 // value, if the second header was reached through an old latch of the
1915 // first, or undef otherwise. This is sound as exiting the first implies the
1916 // second will exit too, __without__ taking the back-edge (their
1917 // trip-counts are equal after all).
1918 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1919 FC1.Header);
1920
1922 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1924 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1925
1926 // Remove FC0 Exit Block
1927 // The exit block for FC0 is no longer needed since control will flow
1928 // directly to the header of FC1. Since it is an empty block, it can be
1929 // removed at this point.
1930 // TODO: In the future, we can handle non-empty exit blocks my merging any
1931 // instructions from FC0 exit block into FC1 exit block prior to removing
1932 // the block.
1933 assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
1934 FC0.ExitBlock->getTerminator()->eraseFromParent();
1935 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1936
1937 // Remove FC1 Preheader
1938 // The pre-header of L1 is not necessary anymore.
1939 assert(pred_empty(FC1.Preheader));
1940 FC1.Preheader->getTerminator()->eraseFromParent();
1941 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1943 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1944
1945 // Moves the phi nodes from the second to the first loops header block.
1946 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1947 if (SE.isSCEVable(PHI->getType()))
1948 SE.forgetValue(PHI);
1949 if (PHI->hasNUsesOrMore(1))
1950 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1951 else
1952 PHI->eraseFromParent();
1953 }
1954
1955 // Introduce new phi nodes in the second loop header to ensure
1956 // exiting the first and jumping to the header of the second does not break
1957 // the SSA property of the phis originally in the first loop. See also the
1958 // comment above.
1959 Instruction *L1HeaderIP = &FC1.Header->front();
1960 for (PHINode *LCPHI : OriginalFC0PHIs) {
1961 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1962 assert(L1LatchBBIdx >= 0 &&
1963 "Expected loop carried value to be rewired at this point!");
1964
1965 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1966
1967 PHINode *L1HeaderPHI = PHINode::Create(
1968 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1969 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1970 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1971 FC0.ExitingBlock);
1972
1973 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1974 }
1975
1976 // Update the latches
1977
1978 // Replace latch terminator destinations.
1979 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1980 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1981
1982 // Modify the latch branch of FC0 to be unconditional as both successors of
1983 // the branch are the same.
1984 simplifyLatchBranch(FC0);
1985
1986 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1987 // performed the updates above.
1988 if (FC0.Latch != FC0.ExitingBlock)
1990 DominatorTree::Insert, FC0.Latch, FC1.Header));
1991
1992 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1993 FC0.Latch, FC0.Header));
1994 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1995 FC1.Latch, FC0.Header));
1996 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1997 FC1.Latch, FC1.Header));
1998
1999 // All done
2000 // Apply the updates to the Dominator Tree and cleanup.
2001
2002 assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
2003 assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
2004
2005 // Update DT/PDT
2006 DTU.applyUpdates(TreeUpdates);
2007
2008 LI.removeBlock(FC1GuardBlock);
2009 LI.removeBlock(FC1.Preheader);
2010 LI.removeBlock(FC0.ExitBlock);
2011 if (FC0.Peeled) {
2012 LI.removeBlock(FC0ExitBlockSuccessor);
2013 DTU.deleteBB(FC0ExitBlockSuccessor);
2014 }
2015 DTU.deleteBB(FC1GuardBlock);
2016 DTU.deleteBB(FC1.Preheader);
2017 DTU.deleteBB(FC0.ExitBlock);
2018 DTU.flush();
2019
2020 // Is there a way to keep SE up-to-date so we don't need to forget the loops
2021 // and rebuild the information in subsequent passes of fusion?
2022 // Note: Need to forget the loops before merging the loop latches, as
2023 // mergeLatch may remove the only block in FC1.
2024 SE.forgetLoop(FC1.L);
2025 SE.forgetLoop(FC0.L);
2027
2028 // Move instructions from FC0.Latch to FC1.Latch.
2029 // Note: mergeLatch requires an updated DT.
2030 mergeLatch(FC0, FC1);
2031
2032 // Merge the loops.
2033 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
2034 for (BasicBlock *BB : Blocks) {
2035 FC0.L->addBlockEntry(BB);
2036 FC1.L->removeBlockFromLoop(BB);
2037 if (LI.getLoopFor(BB) != FC1.L)
2038 continue;
2039 LI.changeLoopFor(BB, FC0.L);
2040 }
2041 while (!FC1.L->isInnermost()) {
2042 const auto &ChildLoopIt = FC1.L->begin();
2043 Loop *ChildLoop = *ChildLoopIt;
2044 FC1.L->removeChildLoop(ChildLoopIt);
2045 FC0.L->addChildLoop(ChildLoop);
2046 }
2047
2048 // Delete the now empty loop L1.
2049 LI.erase(FC1.L);
2050
2051#ifndef NDEBUG
2052 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
2053 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2054 assert(PDT.verify());
2055 LI.verify(DT);
2056 SE.verify();
2057#endif
2058
2059 LLVM_DEBUG(dbgs() << "Fusion done:\n");
2060
2061 return FC0.L;
2062 }
2063};
2064} // namespace
2065
2067 auto &LI = AM.getResult<LoopAnalysis>(F);
2068 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2069 auto &DI = AM.getResult<DependenceAnalysis>(F);
2070 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
2071 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2073 auto &AC = AM.getResult<AssumptionAnalysis>(F);
2075 const DataLayout &DL = F.getParent()->getDataLayout();
2076
2077 // Ensure loops are in simplifed form which is a pre-requisite for loop fusion
2078 // pass. Added only for new PM since the legacy PM has already added
2079 // LoopSimplify pass as a dependency.
2080 bool Changed = false;
2081 for (auto &L : LI) {
2082 Changed |=
2083 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
2084 }
2085 if (Changed)
2086 PDT.recalculate(F);
2087
2088 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
2089 Changed |= LF.fuseLoops(F);
2090 if (!Changed)
2091 return PreservedAnalyses::all();
2092
2097 PA.preserve<LoopAnalysis>();
2098 return PA;
2099}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Rewrite undef for PHI
basic Basic Alias true
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static bool reportInvalidCandidate(const Instruction &I, llvm::Statistic &Stat)
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:678
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:492
#define LLVM_DEBUG(X)
Definition: Debug.h:101
static cl::opt< FusionDependenceAnalysisChoice > FusionDependenceAnalysis("loop-fusion-dependence-analysis", cl::desc("Which dependence analysis should loop fusion use?"), cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", "Use the scalar evolution interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", "Use the dependence analysis interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", "Use all available analyses")), cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL))
FusionDependenceAnalysisChoice
Definition: LoopFuse.cpp:108
@ FUSION_DEPENDENCE_ANALYSIS_DA
Definition: LoopFuse.cpp:110
@ FUSION_DEPENDENCE_ANALYSIS_ALL
Definition: LoopFuse.cpp:111
@ FUSION_DEPENDENCE_ANALYSIS_SCEV
Definition: LoopFuse.cpp:109
static cl::opt< bool > VerboseFusionDebugging("loop-fusion-verbose-debug", cl::desc("Enable verbose debugging for Loop Fusion"), cl::Hidden, cl::init(false))
static cl::opt< unsigned > FusionPeelMaxCount("loop-fusion-peel-max-count", cl::init(0), cl::Hidden, cl::desc("Max number of iterations to be peeled from a loop, such that " "fusion can take place"))
#define DEBUG_TYPE
Definition: LoopFuse.cpp:74
This file implements the Loop Fusion pass.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
ppc ctr loops verify
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
@ SI
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
This pass exposes codegen information to IR-level passes.
Virtual Register Rewriter
Definition: VirtRegMap.cpp:237
Value * RHS
Value * LHS
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:620
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:774
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
const BasicBlock * getUniqueSuccessor() const
Return the successor of this block if it has a unique successor.
Definition: BasicBlock.cpp:322
void replacePhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block to refer to basic block New instead of basic block Old.
Definition: BasicBlock.cpp:487
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:314
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:112
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:35
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:127
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:718
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
AnalysisPass to compute dependence information in a function.
DependenceInfo - This class is the main dependence-analysis driver.
std::unique_ptr< Dependence > depends(Instruction *Src, Instruction *Dst, bool PossiblyLoopIndependent)
depends - Tests for a dependence between the Src and Dst instructions.
unsigned getLevel() const
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
void applyUpdates(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
void deleteBB(BasicBlock *DelBB)
Delete DelBB.
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
const BasicBlock * getParent() const
Definition: Instruction.h:90
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:82
An instruction for reading from memory.
Definition: Instructions.h:177
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:1268
BlockT * getHeader() const
Definition: LoopInfo.h:105
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
Definition: LoopInfo.h:412
LoopT * removeChildLoop(iterator I)
This removes the specified child from being a subloop of this loop.
Definition: LoopInfo.h:421
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Definition: LoopFuse.cpp:2066
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
Definition: LoopInfoImpl.h:699
void print(raw_ostream &OS) const
Definition: LoopInfoImpl.h:630
reverse_iterator rend() const
Definition: LoopInfo.h:970
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
Definition: LoopInfo.h:1057
bool empty() const
Definition: LoopInfo.h:971
void changeLoopFor(BlockT *BB, LoopT *L)
Change the top-level loop that contains BB to the specified loop.
Definition: LoopInfo.h:1030
reverse_iterator rbegin() const
Definition: LoopInfo.h:969
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Definition: LoopInfo.h:992
void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Definition: LoopInfo.cpp:876
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:547
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:152
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:158
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:173
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
ArrayRef< const SCEV * > operands() const
This visitor recursively visits a SCEV expression and re-writes it.
This class represents an analyzed expression in the program.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:450
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:941
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
An instruction for storing to memory.
Definition: Instructions.h:301
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Analysis pass providing the TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1731
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:308
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:703
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
DiagnosticInfoOptimizationBase::Argument NV
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:226
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:235
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1777
bool succ_empty(const Instruction *I)
Definition: CFG.h:255
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:6465
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
void append_range(Container &C, Range &&R)
Wrapper function to append a range to a container.
Definition: STLExtras.h:2129
bool canPeel(const Loop *L)
Definition: LoopPeel.cpp:83
void moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB, DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI)
Move instructions, in an order-preserving manner, from FromBB to the end of ToBB when proven safe.
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:511
TargetTransformInfo::PeelingPreferences gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, std::optional< bool > UserAllowPeeling, std::optional< bool > UserAllowProfileBasedPeeling, bool UnrollingSpecficValues=false)
Definition: LoopPeel.cpp:811
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isControlFlowEquivalent(const Instruction &I0, const Instruction &I1, const DominatorTree &DT, const PostDominatorTree &PDT)
Return true if I0 and I1 are control flow equivalent.
bool nonStrictlyPostDominate(const BasicBlock *ThisBlock, const BasicBlock *OtherBlock, const DominatorTree *DT, const PostDominatorTree *PDT)
In case that two BBs ThisBlock and OtherBlock are control flow equivalent but they do not strictly do...
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
void moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB, DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI)
Move instructions, in an order-preserving manner, from FromBB to the beginning of ToBB when proven sa...
bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:292
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1976
bool pred_empty(const BasicBlock *BB)
Definition: CFG.h:118
bool isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint, DominatorTree &DT, const PostDominatorTree *PDT=nullptr, DependenceInfo *DI=nullptr, bool CheckForEntireBlock=false)
Return true if I can be safely moved before InsertPoint.
void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner="")
Function to print a loop's contents as LLVM's text IR assembly.
Definition: LoopInfo.cpp:977
bool peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, bool PreserveLCSSA, ValueToValueMapTy &VMap)
VMap is the value-map that maps instructions from the original loop to instructions in the last peele...
Definition: LoopPeel.cpp:855
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.