70#define DEBUG_TYPE "loop-fusion"
73STATISTIC(NumFusionCandidates,
"Number of candidates for loop fusion");
74STATISTIC(InvalidPreheader,
"Loop has invalid preheader");
76STATISTIC(InvalidExitingBlock,
"Loop has invalid exiting blocks");
77STATISTIC(InvalidExitBlock,
"Loop has invalid exit block");
80STATISTIC(AddressTakenBB,
"Basic block has address taken");
81STATISTIC(MayThrowException,
"Loop may throw an exception");
82STATISTIC(ContainsVolatileAccess,
"Loop contains a volatile access");
83STATISTIC(NotSimplifiedForm,
"Loop is not in simplified form");
84STATISTIC(InvalidDependencies,
"Dependencies prevent fusion");
85STATISTIC(UnknownTripCount,
"Loop has unknown trip count");
86STATISTIC(UncomputableTripCount,
"SCEV cannot compute trip count of loop");
87STATISTIC(NonEqualTripCount,
"Loop trip counts are not the same");
91 "Loop has a non-empty preheader with instructions that cannot be moved");
92STATISTIC(FusionNotBeneficial,
"Fusion is not beneficial");
93STATISTIC(NonIdenticalGuards,
"Candidates have different guards");
94STATISTIC(NonEmptyExitBlock,
"Candidate has a non-empty exit block with "
95 "instructions that cannot be moved");
96STATISTIC(NonEmptyGuardBlock,
"Candidate has a non-empty guard block with "
97 "instructions that cannot be moved");
100 "The second candidate is guarded while the first one is not");
101STATISTIC(NumHoistedInsts,
"Number of hoisted preheader instructions.");
102STATISTIC(NumSunkInsts,
"Number of hoisted preheader instructions.");
111 "loop-fusion-dependence-analysis",
112 cl::desc(
"Which dependence analysis should loop fusion use?"),
114 "Use the scalar evolution interface"),
116 "Use the dependence analysis interface"),
118 "Use all available analyses")),
123 cl::desc(
"Max number of iterations to be peeled from a loop, such that "
124 "fusion can take place"));
129 cl::desc(
"Enable verbose debugging for Loop Fusion"),
144struct FusionCandidate {
187 : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
188 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
189 Latch(L->getLoopLatch()), L(L), Valid(
true),
190 GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(
canPeel(L)),
191 Peeled(
false), DT(DT), PDT(PDT), ORE(ORE) {
198 if (BB->hasAddressTaken()) {
200 reportInvalidCandidate(AddressTakenBB);
211 if (
SI->isVolatile()) {
218 if (LI->isVolatile()) {
224 if (
I.mayWriteToMemory())
225 MemWrites.push_back(&
I);
226 if (
I.mayReadFromMemory())
227 MemReads.push_back(&
I);
234 return Preheader && Header && ExitingBlock && ExitBlock && Latch &&
L &&
235 !
L->isInvalid() && Valid;
241 assert(!
L->isInvalid() &&
"Loop is invalid!");
242 assert(Preheader ==
L->getLoopPreheader() &&
"Preheader is out of sync");
243 assert(Header ==
L->getHeader() &&
"Header is out of sync");
244 assert(ExitingBlock ==
L->getExitingBlock() &&
245 "Exiting Blocks is out of sync");
246 assert(ExitBlock ==
L->getExitBlock() &&
"Exit block is out of sync");
247 assert(Latch ==
L->getLoopLatch() &&
"Latch is out of sync");
264 void updateAfterPeeling() {
265 Preheader =
L->getLoopPreheader();
266 Header =
L->getHeader();
267 ExitingBlock =
L->getExitingBlock();
268 ExitBlock =
L->getExitBlock();
269 Latch =
L->getLoopLatch();
281 assert(GuardBranch &&
"Only valid on guarded loops.");
283 "Expecting guard to be a conditional branch.");
291#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
293 dbgs() <<
"\tGuardBranch: ";
295 dbgs() << *GuardBranch;
299 << (GuardBranch ? GuardBranch->
getName() :
"nullptr") <<
"\n"
300 <<
"\tPreheader: " << (Preheader ? Preheader->
getName() :
"nullptr")
302 <<
"\tHeader: " << (Header ? Header->getName() :
"nullptr") <<
"\n"
304 << (ExitingBlock ? ExitingBlock->
getName() :
"nullptr") <<
"\n"
305 <<
"\tExitBB: " << (ExitBlock ? ExitBlock->
getName() :
"nullptr")
307 <<
"\tLatch: " << (Latch ? Latch->
getName() :
"nullptr") <<
"\n"
309 << (getEntryBlock() ? getEntryBlock()->getName() :
"nullptr")
325 ++InvalidExitingBlock;
339 <<
" trip count not computable!\n");
343 if (!
L->isLoopSimplifyForm()) {
345 <<
" is not in simplified form!\n");
349 if (!
L->isRotatedForm()) {
372 assert(L && Preheader &&
"Fusion candidate not initialized properly!");
376 L->getStartLoc(), Preheader)
378 <<
"Loop is not a candidate for fusion: " << Stat.getDesc());
384struct FusionCandidateCompare {
395 bool operator()(
const FusionCandidate &
LHS,
396 const FusionCandidate &
RHS)
const {
397 const DominatorTree *DT = &(
LHS.DT);
404 assert(DT &&
LHS.PDT &&
"Expecting valid dominator tree");
407 if (DT->
dominates(RHSEntryBlock, LHSEntryBlock)) {
410 assert(
LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
414 if (DT->
dominates(LHSEntryBlock, RHSEntryBlock)) {
416 assert(
LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
428 if (WrongOrder && RightOrder) {
435 }
else if (WrongOrder)
444 "No dominance relationship between these fusion candidates!");
460using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
465 const FusionCandidate &FC) {
467 OS <<
FC.Preheader->getName();
475 const FusionCandidateSet &CandSet) {
476 for (
const FusionCandidate &FC : CandSet)
483printFusionCandidates(
const FusionCandidateCollection &FusionCandidates) {
484 dbgs() <<
"Fusion Candidates: \n";
485 for (
const auto &CandidateSet : FusionCandidates) {
486 dbgs() <<
"*** Fusion Candidate Set ***\n";
487 dbgs() << CandidateSet;
488 dbgs() <<
"****************************\n";
499struct LoopDepthTree {
500 using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
504 LoopDepthTree(LoopInfo &LI) : Depth(1) {
506 LoopsOnLevel.emplace_back(LoopVector(LI.
rbegin(), LI.
rend()));
511 bool isRemovedLoop(
const Loop *L)
const {
return RemovedLoops.count(L); }
515 void removeLoop(
const Loop *L) { RemovedLoops.insert(L); }
519 LoopsOnLevelTy LoopsOnNextLevel;
521 for (
const LoopVector &LV : *
this)
523 if (!isRemovedLoop(L) &&
L->begin() !=
L->end())
524 LoopsOnNextLevel.emplace_back(LoopVector(
L->begin(),
L->end()));
526 LoopsOnLevel = LoopsOnNextLevel;
527 RemovedLoops.clear();
531 bool empty()
const {
return size() == 0; }
532 size_t size()
const {
return LoopsOnLevel.size() - RemovedLoops.size(); }
533 unsigned getDepth()
const {
return Depth; }
535 iterator
begin() {
return LoopsOnLevel.begin(); }
536 iterator
end() {
return LoopsOnLevel.end(); }
537 const_iterator
begin()
const {
return LoopsOnLevel.begin(); }
538 const_iterator
end()
const {
return LoopsOnLevel.end(); }
543 SmallPtrSet<const Loop *, 8> RemovedLoops;
549 LoopsOnLevelTy LoopsOnLevel;
553static void printLoopVector(
const LoopVector &LV) {
554 dbgs() <<
"****************************\n";
557 dbgs() <<
"****************************\n";
564 FusionCandidateCollection FusionCandidates;
573 PostDominatorTree &PDT;
574 OptimizationRemarkEmitter &ORE;
576 const TargetTransformInfo &TTI;
579 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
580 ScalarEvolution &SE, PostDominatorTree &PDT,
581 OptimizationRemarkEmitter &ORE,
const DataLayout &
DL,
582 AssumptionCache &AC,
const TargetTransformInfo &TTI)
583 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
584 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
589 bool fuseLoops(Function &
F) {
596 LLVM_DEBUG(
dbgs() <<
"Performing Loop Fusion on function " <<
F.getName()
600 while (!LDT.empty()) {
601 LLVM_DEBUG(
dbgs() <<
"Got " << LDT.size() <<
" loop sets for depth "
602 << LDT.getDepth() <<
"\n";);
604 for (
const LoopVector &LV : LDT) {
605 assert(LV.size() > 0 &&
"Empty loop set was build!");
614 dbgs() <<
" Visit loop set (#" << LV.size() <<
"):\n";
620 collectFusionCandidates(LV);
632 FusionCandidates.clear();
657 const FusionCandidate &FC1)
const {
658 assert(FC0.Preheader && FC1.Preheader &&
"Expecting valid preheaders");
660 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
667 void collectFusionCandidates(
const LoopVector &LV) {
671 FusionCandidate CurrCand(L, DT, &PDT, ORE, PP);
672 if (!CurrCand.isEligibleForFusion(SE))
680 bool FoundSet =
false;
682 for (
auto &CurrCandSet : FusionCandidates) {
684 CurrCandSet.insert(CurrCand);
689 <<
" to existing candidate set\n");
700 FusionCandidateSet NewCandSet;
701 NewCandSet.insert(CurrCand);
702 FusionCandidates.push_back(NewCandSet);
704 NumFusionCandidates++;
713 bool isBeneficialFusion(
const FusionCandidate &FC0,
714 const FusionCandidate &FC1) {
726 std::pair<bool, std::optional<unsigned>>
727 haveIdenticalTripCounts(
const FusionCandidate &FC0,
728 const FusionCandidate &FC1)
const {
729 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
731 UncomputableTripCount++;
732 LLVM_DEBUG(
dbgs() <<
"Trip count of first loop could not be computed!");
733 return {
false, std::nullopt};
736 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
738 UncomputableTripCount++;
739 LLVM_DEBUG(
dbgs() <<
"Trip count of second loop could not be computed!");
740 return {
false, std::nullopt};
744 << *TripCount1 <<
" are "
745 << (TripCount0 == TripCount1 ?
"identical" :
"different")
748 if (TripCount0 == TripCount1)
752 "determining the difference between trip counts\n");
756 const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
757 const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
761 if (TC0 == 0 || TC1 == 0) {
762 LLVM_DEBUG(
dbgs() <<
"Loop(s) do not have a single exit point or do not "
763 "have a constant number of iterations. Peeling "
764 "is not benefical\n");
765 return {
false, std::nullopt};
768 std::optional<unsigned> Difference;
769 int Diff = TC0 - TC1;
775 dbgs() <<
"Difference is less than 0. FC1 (second loop) has more "
776 "iterations than the first one. Currently not supported\n");
779 LLVM_DEBUG(
dbgs() <<
"Difference in loop trip count is: " << Difference
782 return {
false, Difference};
785 void peelFusionCandidate(FusionCandidate &FC0,
const FusionCandidate &FC1,
786 unsigned PeelCount) {
787 assert(FC0.AbleToPeel &&
"Should be able to peel loop");
790 <<
" iterations of the first loop. \n");
794 peelLoop(FC0.L, PeelCount,
false, &LI, &SE, DT, &AC,
true, VMap);
799 auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
801 assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
802 "Loops should have identical trip counts after peeling");
808 PDT.recalculate(*FC0.Preheader->
getParent());
810 FC0.updateAfterPeeling();
824 SmallVector<Instruction *, 8> WorkList;
826 if (Pred != FC0.ExitBlock) {
829 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
834 for (Instruction *CurrentBranch : WorkList) {
835 BasicBlock *Succ = CurrentBranch->getSuccessor(0);
837 Succ = CurrentBranch->getSuccessor(1);
841 DTU.applyUpdates(TreeUpdates);
846 <<
" iterations from the first loop.\n"
847 "Both Loops have the same number of iterations now.\n");
858 bool fuseCandidates() {
860 LLVM_DEBUG(printFusionCandidates(FusionCandidates));
861 for (
auto &CandidateSet : FusionCandidates) {
862 if (CandidateSet.size() < 2)
866 << CandidateSet <<
"\n");
868 for (
auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
869 assert(!LDT.isRemovedLoop(FC0->L) &&
870 "Should not have removed loops in CandidateSet!");
872 for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
873 assert(!LDT.isRemovedLoop(FC1->L) &&
874 "Should not have removed loops in CandidateSet!");
876 LLVM_DEBUG(
dbgs() <<
"Attempting to fuse candidate \n"; FC0->dump();
877 dbgs() <<
" with\n"; FC1->dump();
dbgs() <<
"\n");
887 std::pair<bool, std::optional<unsigned>> IdenticalTripCountRes =
888 haveIdenticalTripCounts(*FC0, *FC1);
889 bool SameTripCount = IdenticalTripCountRes.first;
890 std::optional<unsigned> TCDifference = IdenticalTripCountRes.second;
894 if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
897 <<
"Difference in loop trip counts: " << *TCDifference
898 <<
" is greater than maximum peel count specificed: "
903 SameTripCount =
true;
907 if (!SameTripCount) {
908 LLVM_DEBUG(
dbgs() <<
"Fusion candidates do not have identical trip "
909 "counts. Not fusing.\n");
910 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
915 if (!isAdjacent(*FC0, *FC1)) {
917 <<
"Fusion candidates are not adjacent. Not fusing.\n");
918 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
922 if ((!FC0->GuardBranch && FC1->GuardBranch) ||
923 (FC0->GuardBranch && !FC1->GuardBranch)) {
925 "another one is not. Not fusing.\n");
926 reportLoopFusion<OptimizationRemarkMissed>(
927 *FC0, *FC1, OnlySecondCandidateIsGuarded);
933 if (FC0->GuardBranch && FC1->GuardBranch &&
934 !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
936 "guards. Not Fusing.\n");
937 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
942 if (FC0->GuardBranch) {
943 assert(FC1->GuardBranch &&
"Expecting valid FC1 guard branch");
949 "instructions in exit block. Not fusing.\n");
950 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
957 *FC0->GuardBranch->
getParent()->getTerminator(), DT, &PDT,
960 <<
"Fusion candidate contains unsafe "
961 "instructions in guard block. Not fusing.\n");
962 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
970 if (!dependencesAllowFusion(*FC0, *FC1)) {
971 LLVM_DEBUG(
dbgs() <<
"Memory dependencies do not allow fusion!\n");
972 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
973 InvalidDependencies);
980 SmallVector<Instruction *, 4> SafeToHoist;
981 SmallVector<Instruction *, 4> SafeToSink;
985 if (!isEmptyPreheader(*FC1)) {
991 if (!collectMovablePreheaderInsts(*FC0, *FC1, SafeToHoist,
994 "Fusion Candidate Pre-header.\n"
996 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
1002 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
1004 <<
"\tFusion appears to be "
1005 << (BeneficialToFuse ?
"" :
"un") <<
"profitable!\n");
1006 if (!BeneficialToFuse) {
1007 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
1008 FusionNotBeneficial);
1016 movePreheaderInsts(*FC0, *FC1, SafeToHoist, SafeToSink);
1018 LLVM_DEBUG(
dbgs() <<
"\tFusion is performed: " << *FC0 <<
" and "
1021 FusionCandidate FC0Copy = *FC0;
1024 bool Peel = TCDifference && *TCDifference > 0;
1026 peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
1032 reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
1035 FusionCandidate FusedCand(
1036 performFusion((Peel ? FC0Copy : *FC0), *FC1), DT, &PDT, ORE,
1039 assert(FusedCand.isEligibleForFusion(SE) &&
1040 "Fused candidate should be eligible for fusion!");
1043 LDT.removeLoop(FC1->L);
1045 CandidateSet.erase(FC0);
1046 CandidateSet.erase(FC1);
1048 auto InsertPos = CandidateSet.insert(FusedCand);
1050 assert(InsertPos.second &&
1051 "Unable to insert TargetCandidate in CandidateSet!");
1056 FC0 = FC1 = InsertPos.first;
1058 LLVM_DEBUG(
dbgs() <<
"Candidate Set (after fusion): " << CandidateSet
1073 bool canHoistInst(Instruction &
I,
1074 const SmallVector<Instruction *, 4> &SafeToHoist,
1075 const SmallVector<Instruction *, 4> &NotHoisting,
1076 const FusionCandidate &FC0)
const {
1078 assert(FC0PreheaderTarget &&
1079 "Expected single successor for loop preheader.");
1081 for (Use &
Op :
I.operands()) {
1086 if (!(OpHoisted || DT.dominates(OpInst, FC0PreheaderTarget))) {
1098 if (!
I.mayReadOrWriteMemory())
1101 LLVM_DEBUG(
dbgs() <<
"Checking if this mem inst can be hoisted.\n");
1102 for (Instruction *NotHoistedInst : NotHoisting) {
1103 if (
auto D = DI.depends(&
I, NotHoistedInst)) {
1106 if (
D->isFlow() ||
D->isAnti() ||
D->isOutput()) {
1108 "preheader that is not being hoisted.\n");
1114 for (Instruction *ReadInst : FC0.MemReads) {
1115 if (
auto D = DI.depends(ReadInst, &
I)) {
1118 LLVM_DEBUG(
dbgs() <<
"Inst depends on a read instruction in FC0.\n");
1124 for (Instruction *WriteInst : FC0.MemWrites) {
1125 if (
auto D = DI.depends(WriteInst, &
I)) {
1127 if (
D->isFlow() ||
D->isOutput()) {
1128 LLVM_DEBUG(
dbgs() <<
"Inst depends on a write instruction in FC0.\n");
1139 bool canSinkInst(Instruction &
I,
const FusionCandidate &FC1)
const {
1140 for (User *U :
I.users()) {
1153 if (!
I.mayReadOrWriteMemory())
1156 for (Instruction *ReadInst : FC1.MemReads) {
1157 if (
auto D = DI.depends(&
I, ReadInst)) {
1160 LLVM_DEBUG(
dbgs() <<
"Inst depends on a read instruction in FC1.\n");
1166 for (Instruction *WriteInst : FC1.MemWrites) {
1167 if (
auto D = DI.depends(&
I, WriteInst)) {
1169 if (
D->isOutput() ||
D->isAnti()) {
1170 LLVM_DEBUG(
dbgs() <<
"Inst depends on a write instruction in FC1.\n");
1185 const FusionCandidate &FC0,
1186 const FusionCandidate &FC1)
const {
1187 for (Instruction *Inst : SafeToSink) {
1192 for (
unsigned I = 0;
I <
Phi->getNumIncomingValues();
I++) {
1193 if (
Phi->getIncomingBlock(
I) != FC0.Latch)
1195 assert(FC1.Latch &&
"FC1 latch is not set");
1196 Phi->setIncomingBlock(
I, FC1.Latch);
1203 bool collectMovablePreheaderInsts(
1204 const FusionCandidate &FC0,
const FusionCandidate &FC1,
1205 SmallVector<Instruction *, 4> &SafeToHoist,
1206 SmallVector<Instruction *, 4> &SafeToSink)
const {
1210 SmallVector<Instruction *, 4> NotHoisting;
1212 for (Instruction &
I : *FC1Preheader) {
1214 if (&
I == FC1Preheader->getTerminator())
1220 if (
I.mayThrow() || !
I.willReturn()) {
1221 LLVM_DEBUG(
dbgs() <<
"Inst: " <<
I <<
" may throw or won't return.\n");
1227 if (
I.isAtomic() ||
I.isVolatile()) {
1229 dbgs() <<
"\tInstruction is volatile or atomic. Cannot move it.\n");
1233 if (canHoistInst(
I, SafeToHoist, NotHoisting, FC0)) {
1240 if (canSinkInst(
I, FC1)) {
1250 dbgs() <<
"All preheader instructions could be sunk or hoisted!\n");
1255 class AddRecLoopReplacer :
public SCEVRewriteVisitor<AddRecLoopReplacer> {
1257 AddRecLoopReplacer(ScalarEvolution &SE,
const Loop &OldL,
const Loop &NewL,
1259 : SCEVRewriteVisitor(SE), Valid(
true), UseMax(UseMax), OldL(OldL),
1262 const SCEV *visitAddRecExpr(
const SCEVAddRecExpr *Expr) {
1263 const Loop *ExprL = Expr->
getLoop();
1265 if (ExprL == &OldL) {
1270 if (OldL.contains(ExprL)) {
1272 if (!UseMax || !Pos || !Expr->
isAffine()) {
1284 bool wasValidSCEV()
const {
return Valid; }
1288 const Loop &OldL, &NewL;
1293 bool accessDiffIsPositive(
const Loop &L0,
const Loop &L1, Instruction &I0,
1294 Instruction &I1,
bool EqualIsInvalid) {
1300 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1301 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1304 LLVM_DEBUG(
dbgs() <<
" Access function check: " << *SCEVPtr0 <<
" vs "
1305 << *SCEVPtr1 <<
"\n");
1307 AddRecLoopReplacer
Rewriter(SE, L0, L1);
1308 SCEVPtr0 =
Rewriter.visit(SCEVPtr0);
1311 LLVM_DEBUG(
dbgs() <<
" Access function after rewrite: " << *SCEVPtr0
1312 <<
" [Valid: " <<
Rewriter.wasValidSCEV() <<
"]\n");
1322 auto HasNonLinearDominanceRelation = [&](
const SCEV *S) {
1332 ICmpInst::Predicate Pred =
1333 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1334 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1338 << (IsAlwaysGE ?
" >= " :
" may < ") << *SCEVPtr1
1347 bool dependencesAllowFusion(
const FusionCandidate &FC0,
1348 const FusionCandidate &FC1, Instruction &I0,
1349 Instruction &I1,
bool AnyDep,
1353 LLVM_DEBUG(
dbgs() <<
"Check dep: " << I0 <<
" vs " << I1 <<
" : "
1354 << DepChoice <<
"\n");
1357 switch (DepChoice) {
1359 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1361 auto DepResult = DI.depends(&I0, &I1);
1367 dbgs() <<
" [#l: " << DepResult->getLevels() <<
"][Ordered: "
1368 << (DepResult->isOrdered() ?
"true" :
"false")
1370 LLVM_DEBUG(
dbgs() <<
"DepResult Levels: " << DepResult->getLevels()
1375 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1377 dbgs() <<
"TODO: Implement pred/succ dependence handling!\n");
1384 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1386 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1394 bool dependencesAllowFusion(
const FusionCandidate &FC0,
1395 const FusionCandidate &FC1) {
1396 LLVM_DEBUG(
dbgs() <<
"Check if " << FC0 <<
" can be fused with " << FC1
1399 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1401 for (Instruction *WriteL0 : FC0.MemWrites) {
1402 for (Instruction *WriteL1 : FC1.MemWrites)
1403 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1406 InvalidDependencies++;
1409 for (Instruction *ReadL1 : FC1.MemReads)
1410 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1413 InvalidDependencies++;
1418 for (Instruction *WriteL1 : FC1.MemWrites) {
1419 for (Instruction *WriteL0 : FC0.MemWrites)
1420 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1423 InvalidDependencies++;
1426 for (Instruction *ReadL0 : FC0.MemReads)
1427 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1430 InvalidDependencies++;
1437 for (BasicBlock *BB : FC1.L->
blocks())
1438 for (Instruction &
I : *BB)
1439 for (
auto &
Op :
I.operands())
1442 InvalidDependencies++;
1458 bool isAdjacent(
const FusionCandidate &FC0,
1459 const FusionCandidate &FC1)
const {
1461 if (FC0.GuardBranch)
1462 return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1464 return FC0.ExitBlock == FC1.getEntryBlock();
1467 bool isEmptyPreheader(
const FusionCandidate &FC)
const {
1468 return FC.Preheader->size() == 1;
1473 void movePreheaderInsts(
const FusionCandidate &FC0,
1474 const FusionCandidate &FC1,
1475 SmallVector<Instruction *, 4> &HoistInsts,
1476 SmallVector<Instruction *, 4> &SinkInsts)
const {
1479 "Attempting to sink and hoist preheader instructions, but not all "
1480 "the preheader instructions are accounted for.");
1482 NumHoistedInsts += HoistInsts.
size();
1483 NumSunkInsts += SinkInsts.
size();
1486 if (!HoistInsts.
empty())
1487 dbgs() <<
"Hoisting: \n";
1488 for (Instruction *
I : HoistInsts)
1489 dbgs() << *
I <<
"\n";
1490 if (!SinkInsts.
empty())
1491 dbgs() <<
"Sinking: \n";
1492 for (Instruction *
I : SinkInsts)
1493 dbgs() << *
I <<
"\n";
1496 for (Instruction *
I : HoistInsts) {
1497 assert(
I->getParent() == FC1.Preheader);
1498 I->moveBefore(*FC0.Preheader,
1502 for (Instruction *
I :
reverse(SinkInsts)) {
1503 assert(
I->getParent() == FC1.Preheader);
1508 fixPHINodes(SinkInsts, FC0, FC1);
1523 bool haveIdenticalGuards(
const FusionCandidate &FC0,
1524 const FusionCandidate &FC1)
const {
1525 assert(FC0.GuardBranch && FC1.GuardBranch &&
1526 "Expecting FC0 and FC1 to be guarded loops.");
1528 if (
auto FC0CmpInst =
1530 if (
auto FC1CmpInst =
1532 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1539 return (FC1.GuardBranch->
getSuccessor(0) == FC1.Preheader);
1541 return (FC1.GuardBranch->
getSuccessor(1) == FC1.Preheader);
1546 void simplifyLatchBranch(
const FusionCandidate &FC)
const {
1548 if (FCLatchBranch) {
1551 "Expecting the two successors of FCLatchBranch to be the same");
1552 BranchInst *NewBranch =
1560 void mergeLatch(
const FusionCandidate &FC0,
const FusionCandidate &FC1) {
1597 Loop *performFusion(
const FusionCandidate &FC0,
const FusionCandidate &FC1) {
1598 assert(FC0.isValid() && FC1.isValid() &&
1599 "Expecting valid fusion candidates");
1602 dbgs() <<
"Fusion Candidate 1: \n"; FC1.dump(););
1611 if (FC0.GuardBranch)
1612 return fuseGuardedLoops(FC0, FC1);
1629 if (FC0.ExitingBlock != FC0.Latch)
1630 for (PHINode &
PHI : FC0.Header->
phis())
1661 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1663 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1666 DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1672 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1675 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1676 new UnreachableInst(FC0.ExitBlock->
getContext(), FC0.ExitBlock);
1682 new UnreachableInst(FC1.Preheader->
getContext(), FC1.Preheader);
1684 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1688 if (SE.isSCEVable(
PHI->getType()))
1689 SE.forgetValue(
PHI);
1690 if (
PHI->hasNUsesOrMore(1))
1693 PHI->eraseFromParent();
1701 for (PHINode *LCPHI : OriginalFC0PHIs) {
1702 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1703 assert(L1LatchBBIdx >= 0 &&
1704 "Expected loop carried value to be rewired at this point!");
1706 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1708 PHINode *L1HeaderPHI =
1715 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1724 simplifyLatchBranch(FC0);
1728 if (FC0.Latch != FC0.ExitingBlock)
1730 DominatorTree::Insert, FC0.Latch, FC1.Header));
1732 TreeUpdates.
emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1733 FC0.Latch, FC0.Header));
1734 TreeUpdates.
emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1735 FC1.Latch, FC0.Header));
1736 TreeUpdates.
emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1737 FC1.Latch, FC1.Header));
1740 DTU.applyUpdates(TreeUpdates);
1742 LI.removeBlock(FC1.Preheader);
1743 DTU.deleteBB(FC1.Preheader);
1745 LI.removeBlock(FC0.ExitBlock);
1746 DTU.deleteBB(FC0.ExitBlock);
1755 SE.forgetLoop(FC1.L);
1756 SE.forgetLoop(FC0.L);
1759 SE.forgetBlockAndLoopDispositions();
1763 mergeLatch(FC0, FC1);
1766 SmallVector<BasicBlock *, 8> Blocks(FC1.L->
blocks());
1767 for (BasicBlock *BB : Blocks) {
1770 if (LI.getLoopFor(BB) != FC1.L)
1772 LI.changeLoopFor(BB, FC0.L);
1775 const auto &ChildLoopIt = FC1.L->
begin();
1776 Loop *ChildLoop = *ChildLoopIt;
1786 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1809 template <
typename RemarkKind>
1810 void reportLoopFusion(
const FusionCandidate &FC0,
const FusionCandidate &FC1,
1812 assert(FC0.Preheader && FC1.Preheader &&
1813 "Expecting valid fusion candidates");
1814 using namespace ore;
1815#if LLVM_ENABLE_STATS
1820 <<
"]: " <<
NV(
"Cand1", StringRef(FC0.Preheader->
getName()))
1821 <<
" and " <<
NV(
"Cand2", StringRef(FC1.Preheader->
getName()))
1822 <<
": " << Stat.getDesc());
1841 Loop *fuseGuardedLoops(
const FusionCandidate &FC0,
1842 const FusionCandidate &FC1) {
1843 assert(FC0.GuardBranch && FC1.GuardBranch &&
"Expecting guarded loops");
1847 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1848 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1856 (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1863 assert(FC0NonLoopBlock == FC1GuardBlock &&
"Loops are not adjacent");
1878 BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1883 new UnreachableInst(FC1GuardBlock->
getContext(), FC1GuardBlock);
1886 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1888 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1890 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1892 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1897 DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1899 new UnreachableInst(FC0ExitBlockSuccessor->
getContext(),
1900 FC0ExitBlockSuccessor);
1904 "Expecting guard block to have no predecessors");
1906 "Expecting guard block to have no successors");
1921 if (FC0.ExitingBlock != FC0.Latch)
1922 for (PHINode &
PHI : FC0.Header->
phis())
1925 assert(OriginalFC0PHIs.
empty() &&
"Expecting OriginalFC0PHIs to be empty!");
1948 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1950 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1961 new UnreachableInst(FC0.ExitBlock->
getContext(), FC0.ExitBlock);
1967 new UnreachableInst(FC1.Preheader->
getContext(), FC1.Preheader);
1969 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1973 if (SE.isSCEVable(
PHI->getType()))
1974 SE.forgetValue(
PHI);
1975 if (
PHI->hasNUsesOrMore(1))
1978 PHI->eraseFromParent();
1986 for (PHINode *LCPHI : OriginalFC0PHIs) {
1987 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1988 assert(L1LatchBBIdx >= 0 &&
1989 "Expected loop carried value to be rewired at this point!");
1991 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1993 PHINode *L1HeaderPHI =
2000 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
2011 simplifyLatchBranch(FC0);
2015 if (FC0.Latch != FC0.ExitingBlock)
2017 DominatorTree::Insert, FC0.Latch, FC1.Header));
2019 TreeUpdates.
emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
2020 FC0.Latch, FC0.Header));
2021 TreeUpdates.
emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
2022 FC1.Latch, FC0.Header));
2023 TreeUpdates.
emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
2024 FC1.Latch, FC1.Header));
2033 DTU.applyUpdates(TreeUpdates);
2035 LI.removeBlock(FC1GuardBlock);
2036 LI.removeBlock(FC1.Preheader);
2037 LI.removeBlock(FC0.ExitBlock);
2039 LI.removeBlock(FC0ExitBlockSuccessor);
2040 DTU.deleteBB(FC0ExitBlockSuccessor);
2042 DTU.deleteBB(FC1GuardBlock);
2043 DTU.deleteBB(FC1.Preheader);
2044 DTU.deleteBB(FC0.ExitBlock);
2051 SE.forgetLoop(FC1.L);
2052 SE.forgetLoop(FC0.L);
2055 SE.forgetBlockAndLoopDispositions();
2059 mergeLatch(FC0, FC1);
2062 SmallVector<BasicBlock *, 8> Blocks(FC1.L->
blocks());
2063 for (BasicBlock *BB : Blocks) {
2066 if (LI.getLoopFor(BB) != FC1.L)
2068 LI.changeLoopFor(BB, FC0.L);
2071 const auto &ChildLoopIt = FC1.L->
begin();
2072 Loop *ChildLoop = *ChildLoopIt;
2082 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2110 for (
auto &L : LI) {
2117 LoopFuser LF(LI, DT, DI, SE, PDT, ORE,
DL, AC,
TTI);
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static bool reportInvalidCandidate(const Instruction &I, llvm::Statistic &Stat)
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
static cl::opt< FusionDependenceAnalysisChoice > FusionDependenceAnalysis("loop-fusion-dependence-analysis", cl::desc("Which dependence analysis should loop fusion use?"), cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", "Use the scalar evolution interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", "Use the dependence analysis interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", "Use all available analyses")), cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL))
FusionDependenceAnalysisChoice
@ FUSION_DEPENDENCE_ANALYSIS_DA
@ FUSION_DEPENDENCE_ANALYSIS_ALL
@ FUSION_DEPENDENCE_ANALYSIS_SCEV
static cl::opt< bool > VerboseFusionDebugging("loop-fusion-verbose-debug", cl::desc("Enable verbose debugging for Loop Fusion"), cl::Hidden, cl::init(false))
static cl::opt< unsigned > FusionPeelMaxCount("loop-fusion-peel-max-count", cl::init(0), cl::Hidden, cl::desc("Max number of iterations to be peeled from a loop, such that " "fusion can take place"))
This file implements the Loop Fusion pass.
mir Rename Register Operands
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Virtual Register Rewriter
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
A function analysis which provides an AssumptionCache.
LLVM Basic Block Representation.
LLVM_ABI void replaceSuccessorsPhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block's successors to refer to basic block New instead of basic bl...
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
LLVM_ABI const BasicBlock * getUniqueSuccessor() const
Return the successor of this block if it has a unique successor.
const Instruction & front() const
LLVM_ABI void replacePhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block to refer to basic block New instead of basic block Old.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
A parsed version of the target data layout string in and methods for querying it.
AnalysisPass to compute dependence information in a function.
unsigned getLevel() const
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void removeBlockFromLoop(BlockT *BB)
This removes the specified basic block from the current loop, updating the Blocks as appropriate.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
iterator_range< block_iterator > blocks() const
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addBlockEntry(BlockT *BB)
This adds a basic block directly to the basic block list.
LoopT * removeChildLoop(iterator I)
This removes the specified child from being a subloop of this loop.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
reverse_iterator rend() const
reverse_iterator rbegin() const
Represents a single loop in the control flow graph.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const Loop * getLoop() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
ArrayRef< const SCEV * > operands() const
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Analysis pass providing the TargetTransformInfo.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ BasicBlock
Various leaf nodes.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< DefNode * > Def
NodeAddr< PhiNode * > Phi
LLVM_ABI iterator begin() const
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
FunctionAddr VTableAddr Value
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
bool succ_empty(const Instruction *I)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
bool canPeel(const Loop *L)
LLVM_ABI void moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB, DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI)
Move instructions, in an order-preserving manner, from FromBB to the end of ToBB when proven safe.
DomTreeNodeBase< BasicBlock > DomTreeNode
auto reverse(ContainerTy &&C)
TargetTransformInfo::PeelingPreferences gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, std::optional< bool > UserAllowPeeling, std::optional< bool > UserAllowProfileBasedPeeling, bool UnrollingSpecficValues=false)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI bool isControlFlowEquivalent(const Instruction &I0, const Instruction &I1, const DominatorTree &DT, const PostDominatorTree &PDT)
Return true if I0 and I1 are control flow equivalent.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI bool nonStrictlyPostDominate(const BasicBlock *ThisBlock, const BasicBlock *OtherBlock, const DominatorTree *DT, const PostDominatorTree *PDT)
In case that two BBs ThisBlock and OtherBlock are control flow equivalent but they do not strictly do...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_ABI void moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB, DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI)
Move instructions, in an order-preserving manner, from FromBB to the beginning of ToBB when proven sa...
LLVM_ABI bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
ArrayRef(const T &OneElt) -> ArrayRef< T >
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint, DominatorTree &DT, const PostDominatorTree *PDT=nullptr, DependenceInfo *DI=nullptr, bool CheckForEntireBlock=false)
Return true if I can be safely moved before InsertPoint.
bool peelLoop(Loop *L, unsigned PeelCount, bool PeelLast, LoopInfo *LI, ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, bool PreserveLCSSA, ValueToValueMapTy &VMap)
VMap is the value-map that maps instructions from the original loop to instructions in the last peele...
LLVM_ABI void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner="")
Function to print a loop's contents as LLVM's text IR assembly.
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.