LLVM 23.0.0git
LoopFuse.cpp
Go to the documentation of this file.
1//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the loop fusion pass.
11/// The implementation is largely based on the following document:
12///
13/// Code Transformations to Augment the Scope of Loop Fusion in a
14/// Production Compiler
15/// Christopher Mark Barton
16/// MSc Thesis
17/// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18///
19/// The general approach taken is to collect sets of control flow equivalent
20/// loops and test whether they can be fused. The necessary conditions for
21/// fusion are:
22/// 1. The loops must be adjacent (there cannot be any statements between
23/// the two loops).
24/// 2. The loops must be conforming (they must execute the same number of
25/// iterations).
26/// 3. The loops must be control flow equivalent (if one loop executes, the
27/// other is guaranteed to execute).
28/// 4. There cannot be any negative distance dependencies between the loops.
29/// If all of these conditions are satisfied, it is safe to fuse the loops.
30///
31/// This implementation creates FusionCandidates that represent the loop and the
32/// necessary information needed by fusion. It then operates on the fusion
33/// candidates, first confirming that the candidate is eligible for fusion. The
34/// candidates are then collected into control flow equivalent sets, sorted in
35/// dominance order. Each set of control flow equivalent candidates is then
36/// traversed, attempting to fuse pairs of candidates in the set. If all
37/// requirements for fusion are met, the two candidates are fused, creating a
38/// new (fused) candidate which is then added back into the set to consider for
39/// additional fusion.
40///
41/// This implementation currently does not make any modifications to remove
42/// conditions for fusion. Code transformations to make loops conform to each of
43/// the conditions for fusion are discussed in more detail in the document
44/// above. These can be added to the current implementation in the future.
45//===----------------------------------------------------------------------===//
46
48#include "llvm/ADT/Statistic.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/Verifier.h"
61#include "llvm/Support/Debug.h"
67#include <list>
68
69using namespace llvm;
70
71#define DEBUG_TYPE "loop-fusion"
72
73STATISTIC(FuseCounter, "Loops fused");
74STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
75STATISTIC(InvalidPreheader, "Loop has invalid preheader");
76STATISTIC(InvalidHeader, "Loop has invalid header");
77STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
78STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
79STATISTIC(InvalidLatch, "Loop has invalid latch");
80STATISTIC(InvalidLoop, "Loop is invalid");
81STATISTIC(AddressTakenBB, "Basic block has address taken");
82STATISTIC(MayThrowException, "Loop may throw an exception");
83STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
84STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
85STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
86STATISTIC(UnknownTripCount, "Loop has unknown trip count");
87STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
88STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
90 NonEmptyPreheader,
91 "Loop has a non-empty preheader with instructions that cannot be moved");
92STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
93STATISTIC(NonIdenticalGuards, "Candidates have different guards");
94STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
95 "instructions that cannot be moved");
96STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
97 "instructions that cannot be moved");
98STATISTIC(NotRotated, "Candidate is not rotated");
99STATISTIC(OnlySecondCandidateIsGuarded,
100 "The second candidate is guarded while the first one is not");
101STATISTIC(NumHoistedInsts, "Number of hoisted preheader instructions.");
102STATISTIC(NumSunkInsts, "Number of hoisted preheader instructions.");
103STATISTIC(NumDA, "DA checks passed");
104
110
112 "loop-fusion-dependence-analysis",
113 cl::desc("Which dependence analysis should loop fusion use?"),
115 "Use the scalar evolution interface"),
117 "Use the dependence analysis interface"),
119 "Use all available analyses")),
121
123 "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
124 cl::desc("Max number of iterations to be peeled from a loop, such that "
125 "fusion can take place"));
126
127#ifndef NDEBUG
128static cl::opt<bool>
129 VerboseFusionDebugging("loop-fusion-verbose-debug",
130 cl::desc("Enable verbose debugging for Loop Fusion"),
131 cl::Hidden, cl::init(false));
132#endif
133
134namespace {
135/// This class is used to represent a candidate for loop fusion. When it is
136/// constructed, it checks the conditions for loop fusion to ensure that it
137/// represents a valid candidate. It caches several parts of a loop that are
138/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
139/// of continually querying the underlying Loop to retrieve these values. It is
140/// assumed these will not change throughout loop fusion.
141///
142/// The invalidate method should be used to indicate that the FusionCandidate is
143/// no longer a valid candidate for fusion. Similarly, the isValid() method can
144/// be used to ensure that the FusionCandidate is still valid for fusion.
145struct FusionCandidate {
146 /// Cache of parts of the loop used throughout loop fusion. These should not
147 /// need to change throughout the analysis and transformation.
148 /// These parts are cached to avoid repeatedly looking up in the Loop class.
149
150 /// Preheader of the loop this candidate represents
151 BasicBlock *Preheader;
152 /// Header of the loop this candidate represents
153 BasicBlock *Header;
154 /// Blocks in the loop that exit the loop
155 BasicBlock *ExitingBlock;
156 /// The successor block of this loop (where the exiting blocks go to)
157 BasicBlock *ExitBlock;
158 /// Latch of the loop
159 BasicBlock *Latch;
160 /// The loop that this fusion candidate represents
161 Loop *L;
162 /// Vector of instructions in this loop that read from memory
164 /// Vector of instructions in this loop that write to memory
166 /// Are all of the members of this fusion candidate still valid
167 bool Valid;
168 /// Guard branch of the loop, if it exists
169 BranchInst *GuardBranch;
170 /// Peeling Paramaters of the Loop.
172 /// Can you Peel this Loop?
173 bool AbleToPeel;
174 /// Has this loop been Peeled
175 bool Peeled;
176
177 DominatorTree &DT;
178 const PostDominatorTree *PDT;
179
181
182 FusionCandidate(Loop *L, DominatorTree &DT, const PostDominatorTree *PDT,
184 : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
185 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
186 Latch(L->getLoopLatch()), L(L), Valid(true),
187 GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
188 Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
189
190 // Walk over all blocks in the loop and check for conditions that may
191 // prevent fusion. For each block, walk over all instructions and collect
192 // the memory reads and writes If any instructions that prevent fusion are
193 // found, invalidate this object and return.
194 for (BasicBlock *BB : L->blocks()) {
195 if (BB->hasAddressTaken()) {
196 invalidate();
197 reportInvalidCandidate(AddressTakenBB);
198 return;
199 }
200
201 for (Instruction &I : *BB) {
202 if (I.mayThrow()) {
203 invalidate();
204 reportInvalidCandidate(MayThrowException);
205 return;
206 }
207 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
208 if (SI->isVolatile()) {
209 invalidate();
210 reportInvalidCandidate(ContainsVolatileAccess);
211 return;
212 }
213 }
214 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
215 if (LI->isVolatile()) {
216 invalidate();
217 reportInvalidCandidate(ContainsVolatileAccess);
218 return;
219 }
220 }
221 if (I.mayWriteToMemory())
222 MemWrites.push_back(&I);
223 if (I.mayReadFromMemory())
224 MemReads.push_back(&I);
225 }
226 }
227 }
228
229 /// Check if all members of the class are valid.
230 bool isValid() const {
231 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
232 !L->isInvalid() && Valid;
233 }
234
235 /// Verify that all members are in sync with the Loop object.
236 void verify() const {
237 assert(isValid() && "Candidate is not valid!!");
238 assert(!L->isInvalid() && "Loop is invalid!");
239 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
240 assert(Header == L->getHeader() && "Header is out of sync");
241 assert(ExitingBlock == L->getExitingBlock() &&
242 "Exiting Blocks is out of sync");
243 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
244 assert(Latch == L->getLoopLatch() && "Latch is out of sync");
245 }
246
247 /// Get the entry block for this fusion candidate.
248 ///
249 /// If this fusion candidate represents a guarded loop, the entry block is the
250 /// loop guard block. If it represents an unguarded loop, the entry block is
251 /// the preheader of the loop.
252 BasicBlock *getEntryBlock() const {
253 if (GuardBranch)
254 return GuardBranch->getParent();
255 else
256 return Preheader;
257 }
258
259 /// After Peeling the loop is modified quite a bit, hence all of the Blocks
260 /// need to be updated accordingly.
261 void updateAfterPeeling() {
262 Preheader = L->getLoopPreheader();
263 Header = L->getHeader();
264 ExitingBlock = L->getExitingBlock();
265 ExitBlock = L->getExitBlock();
266 Latch = L->getLoopLatch();
267 verify();
268 }
269
270 /// Given a guarded loop, get the successor of the guard that is not in the
271 /// loop.
272 ///
273 /// This method returns the successor of the loop guard that is not located
274 /// within the loop (i.e., the successor of the guard that is not the
275 /// preheader).
276 /// This method is only valid for guarded loops.
277 BasicBlock *getNonLoopBlock() const {
278 assert(GuardBranch && "Only valid on guarded loops.");
279 assert(GuardBranch->isConditional() &&
280 "Expecting guard to be a conditional branch.");
281 if (Peeled)
282 return GuardBranch->getSuccessor(1);
283 return (GuardBranch->getSuccessor(0) == Preheader)
284 ? GuardBranch->getSuccessor(1)
285 : GuardBranch->getSuccessor(0);
286 }
287
288#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
289 LLVM_DUMP_METHOD void dump() const {
290 dbgs() << "\tGuardBranch: ";
291 if (GuardBranch)
292 dbgs() << *GuardBranch;
293 else
294 dbgs() << "nullptr";
295 dbgs() << "\n"
296 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
297 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
298 << "\n"
299 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
300 << "\tExitingBB: "
301 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
302 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
303 << "\n"
304 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
305 << "\tEntryBlock: "
306 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
307 << "\n";
308 }
309#endif
310
311 /// Determine if a fusion candidate (representing a loop) is eligible for
312 /// fusion. Note that this only checks whether a single loop can be fused - it
313 /// does not check whether it is *legal* to fuse two loops together.
314 bool isEligibleForFusion(ScalarEvolution &SE) const {
315 if (!isValid()) {
316 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
317 if (!Preheader)
318 ++InvalidPreheader;
319 if (!Header)
320 ++InvalidHeader;
321 if (!ExitingBlock)
322 ++InvalidExitingBlock;
323 if (!ExitBlock)
324 ++InvalidExitBlock;
325 if (!Latch)
326 ++InvalidLatch;
327 if (L->isInvalid())
328 ++InvalidLoop;
329
330 return false;
331 }
332
333 // Require ScalarEvolution to be able to determine a trip count.
335 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
336 << " trip count not computable!\n");
337 return reportInvalidCandidate(UnknownTripCount);
338 }
339
340 if (!L->isLoopSimplifyForm()) {
341 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
342 << " is not in simplified form!\n");
343 return reportInvalidCandidate(NotSimplifiedForm);
344 }
345
346 if (!L->isRotatedForm()) {
347 LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
348 return reportInvalidCandidate(NotRotated);
349 }
350
351 return true;
352 }
353
354private:
355 // This is only used internally for now, to clear the MemWrites and MemReads
356 // list and setting Valid to false. I can't envision other uses of this right
357 // now, since once FusionCandidates are put into the FusionCandidateList they
358 // are immutable. Thus, any time we need to change/update a FusionCandidate,
359 // we must create a new one and insert it into the FusionCandidateList to
360 // ensure the FusionCandidateList remains ordered correctly.
361 void invalidate() {
362 MemWrites.clear();
363 MemReads.clear();
364 Valid = false;
365 }
366
367 bool reportInvalidCandidate(Statistic &Stat) const {
368 using namespace ore;
369 assert(L && Preheader && "Fusion candidate not initialized properly!");
370#if LLVM_ENABLE_STATS
371 ++Stat;
372 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
373 L->getStartLoc(), Preheader)
374 << "[" << Preheader->getParent()->getName() << "]: "
375 << "Loop is not a candidate for fusion: " << Stat.getDesc());
376#endif
377 return false;
378 }
379};
380} // namespace
381
383
384// List of adjacent fusion candidates in order. Thus, if FC0 comes *before* FC1
385// in a FusionCandidateList, then FC0 dominates FC1, FC1 post-dominates FC0,
386// and they are adjacent.
387using FusionCandidateList = std::list<FusionCandidate>;
389
390#ifndef NDEBUG
391static void printLoopVector(const LoopVector &LV) {
392 dbgs() << "****************************\n";
393 for (const Loop *L : LV)
394 printLoop(*L, dbgs());
395 dbgs() << "****************************\n";
396}
397
398static raw_ostream &operator<<(raw_ostream &OS, const FusionCandidate &FC) {
399 if (FC.isValid())
400 OS << FC.Preheader->getName();
401 else
402 OS << "<Invalid>";
403
404 return OS;
405}
406
408 const FusionCandidateList &CandList) {
409 for (const FusionCandidate &FC : CandList)
410 OS << FC << '\n';
411
412 return OS;
413}
414
415static void
417 dbgs() << "Fusion Candidates: \n";
418 for (const auto &CandidateList : FusionCandidates) {
419 dbgs() << "*** Fusion Candidate List ***\n";
420 dbgs() << CandidateList;
421 dbgs() << "****************************\n";
422 }
423}
424#endif // NDEBUG
425
426namespace {
427
428/// Collect all loops in function at the same nest level, starting at the
429/// outermost level.
430///
431/// This data structure collects all loops at the same nest level for a
432/// given function (specified by the LoopInfo object). It starts at the
433/// outermost level.
434struct LoopDepthTree {
435 using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
436 using iterator = LoopsOnLevelTy::iterator;
437 using const_iterator = LoopsOnLevelTy::const_iterator;
438
439 LoopDepthTree(LoopInfo &LI) : Depth(1) {
440 if (!LI.empty())
441 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
442 }
443
444 /// Test whether a given loop has been removed from the function, and thus is
445 /// no longer valid.
446 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
447
448 /// Record that a given loop has been removed from the function and is no
449 /// longer valid.
450 void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
451
452 /// Descend the tree to the next (inner) nesting level
453 void descend() {
454 LoopsOnLevelTy LoopsOnNextLevel;
455
456 for (const LoopVector &LV : *this)
457 for (Loop *L : LV)
458 if (!isRemovedLoop(L) && L->begin() != L->end())
459 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
460
461 LoopsOnLevel = LoopsOnNextLevel;
462 RemovedLoops.clear();
463 Depth++;
464 }
465
466 bool empty() const { return size() == 0; }
467 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
468 unsigned getDepth() const { return Depth; }
469
470 iterator begin() { return LoopsOnLevel.begin(); }
471 iterator end() { return LoopsOnLevel.end(); }
472 const_iterator begin() const { return LoopsOnLevel.begin(); }
473 const_iterator end() const { return LoopsOnLevel.end(); }
474
475private:
476 /// Set of loops that have been removed from the function and are no longer
477 /// valid.
478 SmallPtrSet<const Loop *, 8> RemovedLoops;
479
480 /// Depth of the current level, starting at 1 (outermost loops).
481 unsigned Depth;
482
483 /// Vector of loops at the current depth level that have the same parent loop
484 LoopsOnLevelTy LoopsOnLevel;
485};
486
487struct LoopFuser {
488private:
489 // Sets of control flow equivalent fusion candidates for a given nest level.
490 FusionCandidateCollection FusionCandidates;
491
492 LoopDepthTree LDT;
493 DomTreeUpdater DTU;
494
495 LoopInfo &LI;
496 DominatorTree &DT;
497 DependenceInfo &DI;
498 ScalarEvolution &SE;
499 PostDominatorTree &PDT;
500 OptimizationRemarkEmitter &ORE;
501 AssumptionCache &AC;
502 const TargetTransformInfo &TTI;
503
504public:
505 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
506 ScalarEvolution &SE, PostDominatorTree &PDT,
507 OptimizationRemarkEmitter &ORE, const DataLayout &DL,
508 AssumptionCache &AC, const TargetTransformInfo &TTI)
509 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
510 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
511
512 /// This is the main entry point for loop fusion. It will traverse the
513 /// specified function and collect candidate loops to fuse, starting at the
514 /// outermost nesting level and working inwards.
515 bool fuseLoops(Function &F) {
516#ifndef NDEBUG
518 LI.print(dbgs());
519 }
520#endif
521
522 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
523 << "\n");
524 bool Changed = false;
525
526 while (!LDT.empty()) {
527 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
528 << LDT.getDepth() << "\n";);
529
530 for (const LoopVector &LV : LDT) {
531 assert(LV.size() > 0 && "Empty loop set was build!");
532
533 // Skip singleton loop sets as they do not offer fusion opportunities on
534 // this level.
535 if (LV.size() == 1)
536 continue;
537#ifndef NDEBUG
539 LLVM_DEBUG({
540 dbgs() << " Visit loop set (#" << LV.size() << "):\n";
541 printLoopVector(LV);
542 });
543 }
544#endif
545
546 collectFusionCandidates(LV);
547 Changed |= fuseCandidates();
548 }
549
550 // Finished analyzing candidates at this level.
551 // Descend to the next level and clear all of the candidates currently
552 // collected. Note that it will not be possible to fuse any of the
553 // existing candidates with new candidates because the new candidates will
554 // be at a different nest level and thus not be control flow equivalent
555 // with all of the candidates collected so far.
556 LLVM_DEBUG(dbgs() << "Descend one level!\n");
557 LDT.descend();
558 FusionCandidates.clear();
559 }
560
561 if (Changed)
562 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
563
564#ifndef NDEBUG
565 assert(DT.verify());
566 assert(PDT.verify());
567 LI.verify(DT);
568 SE.verify();
569#endif
570
571 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
572 return Changed;
573 }
574
575private:
576 /// Iterate over all loops in the given loop set and identify the loops that
577 /// are eligible for fusion. Place all eligible fusion candidates into Control
578 /// Flow Equivalent sets, sorted by dominance.
579 void collectFusionCandidates(const LoopVector &LV) {
580 for (Loop *L : LV) {
582 gatherPeelingPreferences(L, SE, TTI, std::nullopt, std::nullopt);
583 FusionCandidate CurrCand(L, DT, &PDT, ORE, PP);
584 if (!CurrCand.isEligibleForFusion(SE))
585 continue;
586
587 // Go through each list in FusionCandidates and determine if the first or
588 // last loop in the list is strictly adjacent to L. If it is, append L.
589 // If not, go to the next list.
590 // If no suitable list is found, start another list and add it to
591 // FusionCandidates.
592 bool FoundAdjacent = false;
593 for (auto &CurrCandList : FusionCandidates) {
594 if (isStrictlyAdjacent(CurrCand, CurrCandList.front())) {
595 CurrCandList.push_front(CurrCand);
596 FoundAdjacent = true;
597#ifndef NDEBUG
599 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
600 << " to existing candidate list\n");
601#endif
602 break;
603 } else if (isStrictlyAdjacent(CurrCandList.back(), CurrCand)) {
604 CurrCandList.push_back(CurrCand);
605 FoundAdjacent = true;
606#ifndef NDEBUG
608 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
609 << " to existing candidate list\n");
610#endif
611 break;
612 }
613 }
614 if (!FoundAdjacent) {
615 // No list was found. Create a new list and add to FusionCandidates
616#ifndef NDEBUG
618 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new list\n");
619#endif
620 FusionCandidateList NewCandList;
621 NewCandList.push_back(CurrCand);
622 FusionCandidates.push_back(NewCandList);
623 }
624 NumFusionCandidates++;
625 }
626 }
627
628 /// Determine if it is beneficial to fuse two loops.
629 ///
630 /// For now, this method simply returns true because we want to fuse as much
631 /// as possible (primarily to test the pass). This method will evolve, over
632 /// time, to add heuristics for profitability of fusion.
633 bool isBeneficialFusion(const FusionCandidate &FC0,
634 const FusionCandidate &FC1) {
635 return true;
636 }
637
638 /// Determine if two fusion candidates have the same trip count (i.e., they
639 /// execute the same number of iterations).
640 ///
641 /// This function will return a pair of values. The first is a boolean,
642 /// stating whether or not the two candidates are known at compile time to
643 /// have the same TripCount. The second is the difference in the two
644 /// TripCounts. This information can be used later to determine whether or not
645 /// peeling can be performed on either one of the candidates.
646 std::pair<bool, std::optional<unsigned>>
647 haveIdenticalTripCounts(const FusionCandidate &FC0,
648 const FusionCandidate &FC1) const {
649 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
650 if (isa<SCEVCouldNotCompute>(TripCount0)) {
651 UncomputableTripCount++;
652 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
653 return {false, std::nullopt};
654 }
655
656 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
657 if (isa<SCEVCouldNotCompute>(TripCount1)) {
658 UncomputableTripCount++;
659 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
660 return {false, std::nullopt};
661 }
662
663 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
664 << *TripCount1 << " are "
665 << (TripCount0 == TripCount1 ? "identical" : "different")
666 << "\n");
667
668 if (TripCount0 == TripCount1)
669 return {true, 0};
670
671 LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
672 "determining the difference between trip counts\n");
673
674 // Currently only considering loops with a single exit point
675 // and a non-constant trip count.
676 const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
677 const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
678
679 // If any of the tripcounts are zero that means that loop(s) do not have
680 // a single exit or a constant tripcount.
681 if (TC0 == 0 || TC1 == 0) {
682 LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
683 "have a constant number of iterations. Peeling "
684 "is not benefical\n");
685 return {false, std::nullopt};
686 }
687
688 std::optional<unsigned> Difference;
689 int Diff = TC0 - TC1;
690
691 if (Diff > 0)
692 Difference = Diff;
693 else {
695 dbgs() << "Difference is less than 0. FC1 (second loop) has more "
696 "iterations than the first one. Currently not supported\n");
697 }
698
699 LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
700 << "\n");
701
702 return {false, Difference};
703 }
704
705 void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
706 unsigned PeelCount) {
707 assert(FC0.AbleToPeel && "Should be able to peel loop");
708
709 LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
710 << " iterations of the first loop. \n");
711
713 peelLoop(FC0.L, PeelCount, false, &LI, &SE, DT, &AC, true, VMap);
714 FC0.Peeled = true;
715 LLVM_DEBUG(dbgs() << "Done Peeling\n");
716
717#ifndef NDEBUG
718 auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
719
720 assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
721 "Loops should have identical trip counts after peeling");
722#endif
723
724 FC0.PP.PeelCount += PeelCount;
725
726 // Peeling does not update the PDT
727 PDT.recalculate(*FC0.Preheader->getParent());
728
729 FC0.updateAfterPeeling();
730
731 // In this case the iterations of the loop are constant, so the first
732 // loop will execute completely (will not jump from one of
733 // the peeled blocks to the second loop). Here we are updating the
734 // branch conditions of each of the peeled blocks, such that it will
735 // branch to its successor which is not the preheader of the second loop
736 // in the case of unguarded loops, or the succesors of the exit block of
737 // the first loop otherwise. Doing this update will ensure that the entry
738 // block of the first loop dominates the entry block of the second loop.
739 BasicBlock *BB =
740 FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
741 if (BB) {
743 SmallVector<Instruction *, 8> WorkList;
744 for (BasicBlock *Pred : predecessors(BB)) {
745 if (Pred != FC0.ExitBlock) {
746 WorkList.emplace_back(Pred->getTerminator());
747 TreeUpdates.emplace_back(
748 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
749 }
750 }
751 // Cannot modify the predecessors inside the above loop as it will cause
752 // the iterators to be nullptrs, causing memory errors.
753 for (Instruction *CurrentBranch : WorkList) {
754 BasicBlock *Succ = CurrentBranch->getSuccessor(0);
755 if (Succ == BB)
756 Succ = CurrentBranch->getSuccessor(1);
757 ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
758 }
759
760 DTU.applyUpdates(TreeUpdates);
761 DTU.flush();
762 }
764 dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
765 << " iterations from the first loop.\n"
766 "Both Loops have the same number of iterations now.\n");
767 }
768
769 /// Walk each set of strictly adjacent fusion candidates and attempt to fuse
770 /// them. This does a single linear traversal of all candidates in the list.
771 /// The conditions for legal fusion are checked at this point. If a pair of
772 /// fusion candidates passes all legality checks, they are fused together and
773 /// a new fusion candidate is created and added to the FusionCandidateList.
774 /// The original fusion candidates are then removed, as they are no longer
775 /// valid.
776 bool fuseCandidates() {
777 bool Fused = false;
778 LLVM_DEBUG(printFusionCandidates(FusionCandidates));
779 for (auto &CandidateList : FusionCandidates) {
780 if (CandidateList.size() < 2)
781 continue;
782
783 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate List:\n"
784 << CandidateList << "\n");
785
786 for (auto It = CandidateList.begin(), NextIt = std::next(It);
787 NextIt != CandidateList.end(); It = NextIt, NextIt = std::next(It)) {
788
789 auto FC0 = *It;
790 auto FC1 = *NextIt;
791
792 assert(!LDT.isRemovedLoop(FC0.L) &&
793 "Should not have removed loops in CandidateList!");
794 assert(!LDT.isRemovedLoop(FC1.L) &&
795 "Should not have removed loops in CandidateList!");
796
797 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0.dump();
798 dbgs() << " with\n"; FC1.dump(); dbgs() << "\n");
799
800 FC0.verify();
801 FC1.verify();
802
803 // Check if the candidates have identical tripcounts (first value of
804 // pair), and if not check the difference in the tripcounts between
805 // the loops (second value of pair). The difference is not equal to
806 // std::nullopt iff the loops iterate a constant number of times, and
807 // have a single exit.
808 std::pair<bool, std::optional<unsigned>> IdenticalTripCountRes =
809 haveIdenticalTripCounts(FC0, FC1);
810 bool SameTripCount = IdenticalTripCountRes.first;
811 std::optional<unsigned> TCDifference = IdenticalTripCountRes.second;
812
813 // Here we are checking that FC0 (the first loop) can be peeled, and
814 // both loops have different tripcounts.
815 if (FC0.AbleToPeel && !SameTripCount && TCDifference) {
816 if (*TCDifference > FusionPeelMaxCount) {
818 << "Difference in loop trip counts: " << *TCDifference
819 << " is greater than maximum peel count specificed: "
820 << FusionPeelMaxCount << "\n");
821 } else {
822 // Dependent on peeling being performed on the first loop, and
823 // assuming all other conditions for fusion return true.
824 SameTripCount = true;
825 }
826 }
827
828 if (!SameTripCount) {
829 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
830 "counts. Not fusing.\n");
831 reportLoopFusion<OptimizationRemarkMissed>(FC0, FC1,
832 NonEqualTripCount);
833 continue;
834 }
835
836 if ((!FC0.GuardBranch && FC1.GuardBranch) ||
837 (FC0.GuardBranch && !FC1.GuardBranch)) {
838 LLVM_DEBUG(dbgs() << "The one of candidate is guarded while the "
839 "another one is not. Not fusing.\n");
840 reportLoopFusion<OptimizationRemarkMissed>(
841 FC0, FC1, OnlySecondCandidateIsGuarded);
842 continue;
843 }
844
845 // Ensure that FC0 and FC1 have identical guards.
846 // If one (or both) are not guarded, this check is not necessary.
847 if (FC0.GuardBranch && FC1.GuardBranch &&
848 !haveIdenticalGuards(FC0, FC1) && !TCDifference) {
849 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
850 "guards. Not Fusing.\n");
851 reportLoopFusion<OptimizationRemarkMissed>(FC0, FC1,
852 NonIdenticalGuards);
853 continue;
854 }
855
856 if (FC0.GuardBranch) {
857 assert(FC1.GuardBranch && "Expecting valid FC1 guard branch");
858
859 if (!isSafeToMoveBefore(*FC0.ExitBlock,
860 *FC1.ExitBlock->getFirstNonPHIOrDbg(), DT,
861 &PDT, &DI)) {
862 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
863 "instructions in exit block. Not fusing.\n");
864 reportLoopFusion<OptimizationRemarkMissed>(FC0, FC1,
865 NonEmptyExitBlock);
866 continue;
867 }
868
870 *FC1.GuardBranch->getParent(),
871 *FC0.GuardBranch->getParent()->getTerminator(), DT, &PDT,
872 &DI)) {
873 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
874 "instructions in guard block. Not fusing.\n");
875 reportLoopFusion<OptimizationRemarkMissed>(FC0, FC1,
876 NonEmptyGuardBlock);
877 continue;
878 }
879 }
880
881 // Check the dependencies across the loops and do not fuse if it would
882 // violate them.
883 if (!dependencesAllowFusion(FC0, FC1)) {
884 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
885 reportLoopFusion<OptimizationRemarkMissed>(FC0, FC1,
886 InvalidDependencies);
887 continue;
888 }
889
890 // If the second loop has instructions in the pre-header, attempt to
891 // hoist them up to the first loop's pre-header or sink them into the
892 // body of the second loop.
893 SmallVector<Instruction *, 4> SafeToHoist;
894 SmallVector<Instruction *, 4> SafeToSink;
895 // At this point, this is the last remaining legality check.
896 // Which means if we can make this pre-header empty, we can fuse
897 // these loops
898 if (!isEmptyPreheader(FC1)) {
899 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
900 "preheader.\n");
901
902 // If it is not safe to hoist/sink all instructions in the
903 // pre-header, we cannot fuse these loops.
904 if (!collectMovablePreheaderInsts(FC0, FC1, SafeToHoist,
905 SafeToSink)) {
906 LLVM_DEBUG(dbgs() << "Could not hoist/sink all instructions in "
907 "Fusion Candidate Pre-header.\n"
908 << "Not Fusing.\n");
909 reportLoopFusion<OptimizationRemarkMissed>(FC0, FC1,
910 NonEmptyPreheader);
911 continue;
912 }
913 }
914
915 bool BeneficialToFuse = isBeneficialFusion(FC0, FC1);
916 LLVM_DEBUG(dbgs() << "\tFusion appears to be "
917 << (BeneficialToFuse ? "" : "un") << "profitable!\n");
918 if (!BeneficialToFuse) {
919 reportLoopFusion<OptimizationRemarkMissed>(FC0, FC1,
920 FusionNotBeneficial);
921 continue;
922 }
923 // All analysis has completed and has determined that fusion is legal
924 // and profitable. At this point, start transforming the code and
925 // perform fusion.
926
927 // Execute the hoist/sink operations on preheader instructions
928 movePreheaderInsts(FC0, FC1, SafeToHoist, SafeToSink);
929
930 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << FC0 << " and " << FC1
931 << "\n");
932
933 FusionCandidate FC0Copy = FC0;
934 // Peel the loop after determining that fusion is legal. The Loops
935 // will still be safe to fuse after the peeling is performed.
936 bool Peel = TCDifference && *TCDifference > 0;
937 if (Peel)
938 peelFusionCandidate(FC0Copy, FC1, *TCDifference);
939
940 // Report fusion to the Optimization Remarks.
941 // Note this needs to be done *before* performFusion because
942 // performFusion will change the original loops, making it not
943 // possible to identify them after fusion is complete.
944 reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : FC0), FC1,
945 FuseCounter);
946
947 FusionCandidate FusedCand(performFusion((Peel ? FC0Copy : FC0), FC1),
948 DT, &PDT, ORE, FC0Copy.PP);
949 FusedCand.verify();
950 assert(FusedCand.isEligibleForFusion(SE) &&
951 "Fused candidate should be eligible for fusion!");
952
953 // Notify the loop-depth-tree that these loops are not valid objects
954 LDT.removeLoop(FC1.L);
955
956 // Replace FC0 and FC1 with their fused loop
957 It = CandidateList.erase(It);
958 It = CandidateList.erase(It);
959 It = CandidateList.insert(It, FusedCand);
960
961 // Start from FusedCand in the next iteration
962 NextIt = It;
963
964 LLVM_DEBUG(dbgs() << "Candidate List (after fusion): " << CandidateList
965 << "\n");
966
967 Fused = true;
968 }
969 }
970 return Fused;
971 }
972
973 // Returns true if the instruction \p I can be hoisted to the end of the
974 // preheader of \p FC0. \p SafeToHoist contains the instructions that are
975 // known to be safe to hoist. The instructions encountered that cannot be
976 // hoisted are in \p NotHoisting.
977 // TODO: Move functionality into CodeMoverUtils
978 bool canHoistInst(Instruction &I,
979 const SmallVector<Instruction *, 4> &SafeToHoist,
980 const SmallVector<Instruction *, 4> &NotHoisting,
981 const FusionCandidate &FC0) const {
982 const BasicBlock *FC0PreheaderTarget = FC0.Preheader->getSingleSuccessor();
983 assert(FC0PreheaderTarget &&
984 "Expected single successor for loop preheader.");
985
986 for (Use &Op : I.operands()) {
987 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
988 bool OpHoisted = is_contained(SafeToHoist, OpInst);
989 // Check if we have already decided to hoist this operand. In this
990 // case, it does not dominate FC0 *yet*, but will after we hoist it.
991 if (!(OpHoisted || DT.dominates(OpInst, FC0PreheaderTarget))) {
992 return false;
993 }
994 }
995 }
996
997 // PHIs in FC1's header only have FC0 blocks as predecessors. PHIs
998 // cannot be hoisted and should be sunk to the exit of the fused loop.
999 if (isa<PHINode>(I))
1000 return false;
1001
1002 // If this isn't a memory inst, hoisting is safe
1003 if (!I.mayReadOrWriteMemory())
1004 return true;
1005
1006 LLVM_DEBUG(dbgs() << "Checking if this mem inst can be hoisted.\n");
1007 for (Instruction *NotHoistedInst : NotHoisting) {
1008 if (auto D = DI.depends(&I, NotHoistedInst)) {
1009 // Dependency is not read-before-write, write-before-read or
1010 // write-before-write
1011 if (D->isFlow() || D->isAnti() || D->isOutput()) {
1012 LLVM_DEBUG(dbgs() << "Inst depends on an instruction in FC1's "
1013 "preheader that is not being hoisted.\n");
1014 return false;
1015 }
1016 }
1017 }
1018
1019 for (Instruction *ReadInst : FC0.MemReads) {
1020 if (auto D = DI.depends(ReadInst, &I)) {
1021 // Dependency is not read-before-write
1022 if (D->isAnti()) {
1023 LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC0.\n");
1024 return false;
1025 }
1026 }
1027 }
1028
1029 for (Instruction *WriteInst : FC0.MemWrites) {
1030 if (auto D = DI.depends(WriteInst, &I)) {
1031 // Dependency is not write-before-read or write-before-write
1032 if (D->isFlow() || D->isOutput()) {
1033 LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC0.\n");
1034 return false;
1035 }
1036 }
1037 }
1038 return true;
1039 }
1040
1041 // Returns true if the instruction \p I can be sunk to the top of the exit
1042 // block of \p FC1.
1043 // TODO: Move functionality into CodeMoverUtils
1044 bool canSinkInst(Instruction &I, const FusionCandidate &FC1) const {
1045 for (User *U : I.users()) {
1046 if (auto *UI{dyn_cast<Instruction>(U)}) {
1047 // Cannot sink if user in loop
1048 // If FC1 has phi users of this value, we cannot sink it into FC1.
1049 if (FC1.L->contains(UI)) {
1050 // Cannot hoist or sink this instruction. No hoisting/sinking
1051 // should take place, loops should not fuse
1052 return false;
1053 }
1054 }
1055 }
1056
1057 // If this isn't a memory inst, sinking is safe
1058 if (!I.mayReadOrWriteMemory())
1059 return true;
1060
1061 for (Instruction *ReadInst : FC1.MemReads) {
1062 if (auto D = DI.depends(&I, ReadInst)) {
1063 // Dependency is not write-before-read
1064 if (D->isFlow()) {
1065 LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC1.\n");
1066 return false;
1067 }
1068 }
1069 }
1070
1071 for (Instruction *WriteInst : FC1.MemWrites) {
1072 if (auto D = DI.depends(&I, WriteInst)) {
1073 // Dependency is not write-before-write or read-before-write
1074 if (D->isOutput() || D->isAnti()) {
1075 LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC1.\n");
1076 return false;
1077 }
1078 }
1079 }
1080
1081 return true;
1082 }
1083
1084 /// Collect instructions in the \p FC1 Preheader that can be hoisted
1085 /// to the \p FC0 Preheader or sunk into the \p FC1 Body
1086 bool collectMovablePreheaderInsts(
1087 const FusionCandidate &FC0, const FusionCandidate &FC1,
1088 SmallVector<Instruction *, 4> &SafeToHoist,
1089 SmallVector<Instruction *, 4> &SafeToSink) const {
1090 BasicBlock *FC1Preheader = FC1.Preheader;
1091 // Save the instructions that are not being hoisted, so we know not to hoist
1092 // mem insts that they dominate.
1093 SmallVector<Instruction *, 4> NotHoisting;
1094
1095 for (Instruction &I : *FC1Preheader) {
1096 // Can't move a branch
1097 if (&I == FC1Preheader->getTerminator())
1098 continue;
1099 // If the instruction has side-effects, give up.
1100 // TODO: The case of mayReadFromMemory we can handle but requires
1101 // additional work with a dependence analysis so for now we give
1102 // up on memory reads.
1103 if (I.mayThrow() || !I.willReturn()) {
1104 LLVM_DEBUG(dbgs() << "Inst: " << I << " may throw or won't return.\n");
1105 return false;
1106 }
1107
1108 LLVM_DEBUG(dbgs() << "Checking Inst: " << I << "\n");
1109
1110 if (I.isAtomic() || I.isVolatile()) {
1111 LLVM_DEBUG(
1112 dbgs() << "\tInstruction is volatile or atomic. Cannot move it.\n");
1113 return false;
1114 }
1115
1116 if (canHoistInst(I, SafeToHoist, NotHoisting, FC0)) {
1117 SafeToHoist.push_back(&I);
1118 LLVM_DEBUG(dbgs() << "\tSafe to hoist.\n");
1119 } else {
1120 LLVM_DEBUG(dbgs() << "\tCould not hoist. Trying to sink...\n");
1121 NotHoisting.push_back(&I);
1122
1123 if (canSinkInst(I, FC1)) {
1124 SafeToSink.push_back(&I);
1125 LLVM_DEBUG(dbgs() << "\tSafe to sink.\n");
1126 } else {
1127 LLVM_DEBUG(dbgs() << "\tCould not sink.\n");
1128 return false;
1129 }
1130 }
1131 }
1132 LLVM_DEBUG(
1133 dbgs() << "All preheader instructions could be sunk or hoisted!\n");
1134 return true;
1135 }
1136
1137 /// Rewrite all additive recurrences in a SCEV to use a new loop.
1138 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
1139 public:
1140 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
1141 bool UseMax = true)
1142 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
1143 NewL(NewL) {}
1144
1145 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
1146 const Loop *ExprL = Expr->getLoop();
1148 if (ExprL == &OldL) {
1149 append_range(Operands, Expr->operands());
1150 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
1151 }
1152
1153 if (OldL.contains(ExprL)) {
1154 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
1155 if (!UseMax || !Pos || !Expr->isAffine()) {
1156 Valid = false;
1157 return Expr;
1158 }
1159 return visit(Expr->getStart());
1160 }
1161
1162 for (const SCEV *Op : Expr->operands())
1163 Operands.push_back(visit(Op));
1164 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
1165 }
1166
1167 bool wasValidSCEV() const { return Valid; }
1168
1169 private:
1170 bool Valid, UseMax;
1171 const Loop &OldL, &NewL;
1172 };
1173
1174 /// Return false if the access functions of \p I0 and \p I1 could cause
1175 /// a negative dependence.
1176 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
1177 Instruction &I1, bool EqualIsInvalid) {
1178 Value *Ptr0 = getLoadStorePointerOperand(&I0);
1179 Value *Ptr1 = getLoadStorePointerOperand(&I1);
1180 if (!Ptr0 || !Ptr1)
1181 return false;
1182
1183 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1184 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1185#ifndef NDEBUG
1187 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
1188 << *SCEVPtr1 << "\n");
1189#endif
1190 AddRecLoopReplacer Rewriter(SE, L0, L1);
1191 SCEVPtr0 = Rewriter.visit(SCEVPtr0);
1192#ifndef NDEBUG
1194 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
1195 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
1196#endif
1197 if (!Rewriter.wasValidSCEV())
1198 return false;
1199
1200 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
1201 // L0) and the other is not. We could check if it is monotone and test
1202 // the beginning and end value instead.
1203
1204 BasicBlock *L0Header = L0.getHeader();
1205 auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
1206 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
1207 if (!AddRec)
1208 return false;
1209 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
1210 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
1211 };
1212 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
1213 return false;
1214
1215 ICmpInst::Predicate Pred =
1216 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1217 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1218#ifndef NDEBUG
1220 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
1221 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
1222 << "\n");
1223#endif
1224 return IsAlwaysGE;
1225 }
1226
1227 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
1228 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
1229 /// specified by @p DepChoice are used to determine this.
1230 bool dependencesAllowFusion(const FusionCandidate &FC0,
1231 const FusionCandidate &FC1, Instruction &I0,
1232 Instruction &I1, bool AnyDep,
1234#ifndef NDEBUG
1236 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
1237 << DepChoice << "\n");
1238 }
1239#endif
1240 switch (DepChoice) {
1242 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1244 auto DepResult = DI.depends(&I0, &I1);
1245 if (!DepResult)
1246 return true;
1247#ifndef NDEBUG
1249 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
1250 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
1251 << (DepResult->isOrdered() ? "true" : "false")
1252 << "]\n");
1253 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
1254 << "\n");
1255 }
1256#endif
1257 unsigned Levels = DepResult->getLevels();
1258 unsigned SameSDLevels = DepResult->getSameSDLevels();
1259 unsigned CurLoopLevel = FC0.L->getLoopDepth();
1260
1261 // Check if DA is missing info regarding the current loop level
1262 if (CurLoopLevel > Levels + SameSDLevels)
1263 return false;
1264
1265 // Iterating over the outer levels.
1266 for (unsigned Level = 1; Level <= std::min(CurLoopLevel - 1, Levels);
1267 ++Level) {
1268 unsigned Direction = DepResult->getDirection(Level, false);
1269
1270 // Check if the direction vector does not include equality. If an outer
1271 // loop has a non-equal direction, outer indicies are different and it
1272 // is safe to fuse.
1274 LLVM_DEBUG(dbgs() << "Safe to fuse due to non-equal acceses in the "
1275 "outer loops\n");
1276 NumDA++;
1277 return true;
1278 }
1279 }
1280
1281 assert(CurLoopLevel > Levels && "Fusion candidates are not separated");
1282
1283 unsigned CurDir = DepResult->getDirection(CurLoopLevel, true);
1284
1285 // Check if the direction vector does not include greater direction. In
1286 // that case, the dependency is not a backward loop-carried and is legal
1287 // to fuse. For example here we have a forward dependency
1288 // for (int i = 0; i < n; i++)
1289 // A[i] = ...;
1290 // for (int i = 0; i < n; i++)
1291 // ... = A[i-1];
1292 if (!(CurDir & Dependence::DVEntry::GT)) {
1293 LLVM_DEBUG(dbgs() << "Safe to fuse with no backward loop-carried "
1294 "dependency\n");
1295 NumDA++;
1296 return true;
1297 }
1298
1299 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1300 LLVM_DEBUG(
1301 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
1302
1303 // TODO: Can we actually use the dependence info analysis here?
1304 return false;
1305 }
1306
1308 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1310 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1312 }
1313
1314 llvm_unreachable("Unknown fusion dependence analysis choice!");
1315 }
1316
1317 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
1318 bool dependencesAllowFusion(const FusionCandidate &FC0,
1319 const FusionCandidate &FC1) {
1320 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
1321 << "\n");
1322 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
1323 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1324
1325 for (Instruction *WriteL0 : FC0.MemWrites) {
1326 for (Instruction *WriteL1 : FC1.MemWrites)
1327 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1328 /* AnyDep */ false,
1330 InvalidDependencies++;
1331 return false;
1332 }
1333 for (Instruction *ReadL1 : FC1.MemReads)
1334 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1335 /* AnyDep */ false,
1337 InvalidDependencies++;
1338 return false;
1339 }
1340 }
1341
1342 for (Instruction *WriteL1 : FC1.MemWrites) {
1343 for (Instruction *WriteL0 : FC0.MemWrites)
1344 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1345 /* AnyDep */ false,
1347 InvalidDependencies++;
1348 return false;
1349 }
1350 for (Instruction *ReadL0 : FC0.MemReads)
1351 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1352 /* AnyDep */ false,
1354 InvalidDependencies++;
1355 return false;
1356 }
1357 }
1358
1359 // Walk through all uses in FC1. For each use, find the reaching def. If the
1360 // def is located in FC0 then it is not safe to fuse.
1361 for (BasicBlock *BB : FC1.L->blocks())
1362 for (Instruction &I : *BB)
1363 for (auto &Op : I.operands())
1364 if (Instruction *Def = dyn_cast<Instruction>(Op))
1365 if (FC0.L->contains(Def->getParent())) {
1366 InvalidDependencies++;
1367 return false;
1368 }
1369
1370 return true;
1371 }
1372
1373 /// Determine if two fusion candidates are strictly adjacent in the CFG.
1374 ///
1375 /// This method will determine if there are additional basic blocks in the CFG
1376 /// between the exit of \p FC0 and the entry of \p FC1.
1377 /// If the two candidates are guarded loops, then it checks whether the
1378 /// exit block of the \p FC0 is the predecessor of the \p FC1 preheader. This
1379 /// implicitly ensures that the non-loop successor of the \p FC0 guard branch
1380 /// is the entry block of \p FC1. If not, then the loops are not adjacent. If
1381 /// the two candidates are not guarded loops, then it checks whether the exit
1382 /// block of \p FC0 is the preheader of \p FC1.
1383 /// Strictly means there is no predecessor for FC1 unless it is from FC0,
1384 /// i.e., FC0 dominates FC1.
1385 bool isStrictlyAdjacent(const FusionCandidate &FC0,
1386 const FusionCandidate &FC1) const {
1387 // If the successor of the guard branch is FC1, then the loops are adjacent
1388 if (FC0.GuardBranch)
1389 return DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()) &&
1390 FC0.ExitBlock->getSingleSuccessor() == FC1.getEntryBlock();
1391 else
1392 return FC0.ExitBlock == FC1.getEntryBlock();
1393 }
1394
1395 bool isEmptyPreheader(const FusionCandidate &FC) const {
1396 return FC.Preheader->size() == 1;
1397 }
1398
1399 /// Hoist \p FC1 Preheader instructions to \p FC0 Preheader
1400 /// and sink others into the body of \p FC1.
1401 void movePreheaderInsts(const FusionCandidate &FC0,
1402 const FusionCandidate &FC1,
1403 SmallVector<Instruction *, 4> &HoistInsts,
1404 SmallVector<Instruction *, 4> &SinkInsts) const {
1405 // All preheader instructions except the branch must be hoisted or sunk
1406 assert(HoistInsts.size() + SinkInsts.size() == FC1.Preheader->size() - 1 &&
1407 "Attempting to sink and hoist preheader instructions, but not all "
1408 "the preheader instructions are accounted for.");
1409
1410 NumHoistedInsts += HoistInsts.size();
1411 NumSunkInsts += SinkInsts.size();
1412
1414 if (!HoistInsts.empty())
1415 dbgs() << "Hoisting: \n";
1416 for (Instruction *I : HoistInsts)
1417 dbgs() << *I << "\n";
1418 if (!SinkInsts.empty())
1419 dbgs() << "Sinking: \n";
1420 for (Instruction *I : SinkInsts)
1421 dbgs() << *I << "\n";
1422 });
1423
1424 for (Instruction *I : HoistInsts) {
1425 assert(I->getParent() == FC1.Preheader);
1426 I->moveBefore(*FC0.Preheader,
1427 FC0.Preheader->getTerminator()->getIterator());
1428 }
1429 // insert instructions in reverse order to maintain dominance relationship
1430 for (Instruction *I : reverse(SinkInsts)) {
1431 assert(I->getParent() == FC1.Preheader);
1432 if (isa<PHINode>(I)) {
1433 // The Phis to be sunk should have only one incoming value, as is
1434 // assured by the condition that the second loop is dominated by the
1435 // first one which is enforced by isStrictlyAdjacent().
1436 // Replace the phi uses with the corresponding incoming value to clean
1437 // up the code.
1438 assert(cast<PHINode>(I)->getNumIncomingValues() == 1 &&
1439 "Expected the sunk PHI node to have 1 incoming value.");
1440 I->replaceAllUsesWith(I->getOperand(0));
1441 I->eraseFromParent();
1442 } else
1443 I->moveBefore(*FC1.ExitBlock, FC1.ExitBlock->getFirstInsertionPt());
1444 }
1445 }
1446
1447 /// Determine if two fusion candidates have identical guards
1448 ///
1449 /// This method will determine if two fusion candidates have the same guards.
1450 /// The guards are considered the same if:
1451 /// 1. The instructions to compute the condition used in the compare are
1452 /// identical.
1453 /// 2. The successors of the guard have the same flow into/around the loop.
1454 /// If the compare instructions are identical, then the first successor of the
1455 /// guard must go to the same place (either the preheader of the loop or the
1456 /// NonLoopBlock). In other words, the first successor of both loops must
1457 /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1458 /// the NonLoopBlock). The same must be true for the second successor.
1459 bool haveIdenticalGuards(const FusionCandidate &FC0,
1460 const FusionCandidate &FC1) const {
1461 assert(FC0.GuardBranch && FC1.GuardBranch &&
1462 "Expecting FC0 and FC1 to be guarded loops.");
1463
1464 if (auto FC0CmpInst =
1465 dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1466 if (auto FC1CmpInst =
1467 dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1468 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1469 return false;
1470
1471 // The compare instructions are identical.
1472 // Now make sure the successor of the guards have the same flow into/around
1473 // the loop
1474 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1475 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1476 else
1477 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1478 }
1479
1480 /// Modify the latch branch of FC to be unconditional since successors of the
1481 /// branch are the same.
1482 void simplifyLatchBranch(const FusionCandidate &FC) const {
1483 BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1484 if (FCLatchBranch) {
1485 assert(FCLatchBranch->isConditional() &&
1486 FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1487 "Expecting the two successors of FCLatchBranch to be the same");
1488 BranchInst *NewBranch =
1489 BranchInst::Create(FCLatchBranch->getSuccessor(0));
1490 ReplaceInstWithInst(FCLatchBranch, NewBranch);
1491 }
1492 }
1493
1494 /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1495 /// successor, then merge FC0.Latch with its unique successor.
1496 void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1497 moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1498 if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1499 MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1500 DTU.flush();
1501 }
1502 }
1503
1504 /// Fuse two fusion candidates, creating a new fused loop.
1505 ///
1506 /// This method contains the mechanics of fusing two loops, represented by \p
1507 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1508 /// postdominates \p FC0 (making them control flow equivalent). It also
1509 /// assumes that the other conditions for fusion have been met: adjacent,
1510 /// identical trip counts, and no negative distance dependencies exist that
1511 /// would prevent fusion. Thus, there is no checking for these conditions in
1512 /// this method.
1513 ///
1514 /// Fusion is performed by rewiring the CFG to update successor blocks of the
1515 /// components of tho loop. Specifically, the following changes are done:
1516 ///
1517 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
1518 /// (because it is currently only a single statement block).
1519 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1520 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1521 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1522 ///
1523 /// All of these modifications are done with dominator tree updates, thus
1524 /// keeping the dominator (and post dominator) information up-to-date.
1525 ///
1526 /// This can be improved in the future by actually merging blocks during
1527 /// fusion. For example, the preheader of \p FC1 can be merged with the
1528 /// preheader of \p FC0. This would allow loops with more than a single
1529 /// statement in the preheader to be fused. Similarly, the latch blocks of the
1530 /// two loops could also be fused into a single block. This will require
1531 /// analysis to prove it is safe to move the contents of the block past
1532 /// existing code, which currently has not been implemented.
1533 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1534 assert(FC0.isValid() && FC1.isValid() &&
1535 "Expecting valid fusion candidates");
1536
1537 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1538 dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1539
1540 // Move instructions from the preheader of FC1 to the end of the preheader
1541 // of FC0.
1542 moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1543
1544 // Fusing guarded loops is handled slightly differently than non-guarded
1545 // loops and has been broken out into a separate method instead of trying to
1546 // intersperse the logic within a single method.
1547 if (FC0.GuardBranch)
1548 return fuseGuardedLoops(FC0, FC1);
1549
1550 assert(FC1.Preheader ==
1551 (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
1552 assert(FC1.Preheader->size() == 1 &&
1553 FC1.Preheader->getSingleSuccessor() == FC1.Header);
1554
1555 // Remember the phi nodes originally in the header of FC0 in order to rewire
1556 // them later. However, this is only necessary if the new loop carried
1557 // values might not dominate the exiting branch. While we do not generally
1558 // test if this is the case but simply insert intermediate phi nodes, we
1559 // need to make sure these intermediate phi nodes have different
1560 // predecessors. To this end, we filter the special case where the exiting
1561 // block is the latch block of the first loop. Nothing needs to be done
1562 // anyway as all loop carried values dominate the latch and thereby also the
1563 // exiting branch.
1564 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1565 if (FC0.ExitingBlock != FC0.Latch)
1566 for (PHINode &PHI : FC0.Header->phis())
1567 OriginalFC0PHIs.push_back(&PHI);
1568
1569 // Replace incoming blocks for header PHIs first.
1570 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1571 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1572
1573 // Then modify the control flow and update DT and PDT.
1575
1576 // The old exiting block of the first loop (FC0) has to jump to the header
1577 // of the second as we need to execute the code in the second header block
1578 // regardless of the trip count. That is, if the trip count is 0, so the
1579 // back edge is never taken, we still have to execute both loop headers,
1580 // especially (but not only!) if the second is a do-while style loop.
1581 // However, doing so might invalidate the phi nodes of the first loop as
1582 // the new values do only need to dominate their latch and not the exiting
1583 // predicate. To remedy this potential problem we always introduce phi
1584 // nodes in the header of the second loop later that select the loop carried
1585 // value, if the second header was reached through an old latch of the
1586 // first, or undef otherwise. This is sound as exiting the first implies the
1587 // second will exit too, __without__ taking the back-edge. [Their
1588 // trip-counts are equal after all.
1589 // KB: Would this sequence be simpler to just make FC0.ExitingBlock go
1590 // to FC1.Header? I think this is basically what the three sequences are
1591 // trying to accomplish; however, doing this directly in the CFG may mean
1592 // the DT/PDT becomes invalid
1593 if (!FC0.Peeled) {
1594 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1595 FC1.Header);
1596 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1597 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1598 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1599 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1600 } else {
1601 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1602 DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1603
1604 // Remove the ExitBlock of the first Loop (also not needed)
1605 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1606 FC1.Header);
1607 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1608 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1609 FC0.ExitBlock->getTerminator()->eraseFromParent();
1610 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1611 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1612 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1613 }
1614
1615 // The pre-header of L1 is not necessary anymore.
1616 assert(pred_empty(FC1.Preheader));
1617 FC1.Preheader->getTerminator()->eraseFromParent();
1618 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1619 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1620 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1621
1622 // Moves the phi nodes from the second to the first loops header block.
1623 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1624 if (SE.isSCEVable(PHI->getType()))
1625 SE.forgetValue(PHI);
1626 if (PHI->hasNUsesOrMore(1))
1627 PHI->moveBefore(FC0.Header->getFirstInsertionPt());
1628 else
1629 PHI->eraseFromParent();
1630 }
1631
1632 // Introduce new phi nodes in the second loop header to ensure
1633 // exiting the first and jumping to the header of the second does not break
1634 // the SSA property of the phis originally in the first loop. See also the
1635 // comment above.
1636 BasicBlock::iterator L1HeaderIP = FC1.Header->begin();
1637 for (PHINode *LCPHI : OriginalFC0PHIs) {
1638 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1639 assert(L1LatchBBIdx >= 0 &&
1640 "Expected loop carried value to be rewired at this point!");
1641
1642 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1643
1644 PHINode *L1HeaderPHI =
1645 PHINode::Create(LCV->getType(), 2, LCPHI->getName() + ".afterFC0");
1646 L1HeaderPHI->insertBefore(L1HeaderIP);
1647 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1648 L1HeaderPHI->addIncoming(PoisonValue::get(LCV->getType()),
1649 FC0.ExitingBlock);
1650
1651 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1652 }
1653
1654 // Replace latch terminator destinations.
1655 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1656 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1657
1658 // Modify the latch branch of FC0 to be unconditional as both successors of
1659 // the branch are the same.
1660 simplifyLatchBranch(FC0);
1661
1662 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1663 // performed the updates above.
1664 if (FC0.Latch != FC0.ExitingBlock)
1665 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1666 DominatorTree::Insert, FC0.Latch, FC1.Header));
1667
1668 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1669 FC0.Latch, FC0.Header));
1670 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1671 FC1.Latch, FC0.Header));
1672 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1673 FC1.Latch, FC1.Header));
1674
1675 // Update DT/PDT
1676 DTU.applyUpdates(TreeUpdates);
1677
1678 LI.removeBlock(FC1.Preheader);
1679 DTU.deleteBB(FC1.Preheader);
1680 if (FC0.Peeled) {
1681 LI.removeBlock(FC0.ExitBlock);
1682 DTU.deleteBB(FC0.ExitBlock);
1683 }
1684
1685 DTU.flush();
1686
1687 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1688 // and rebuild the information in subsequent passes of fusion?
1689 // Note: Need to forget the loops before merging the loop latches, as
1690 // mergeLatch may remove the only block in FC1.
1691 SE.forgetLoop(FC1.L);
1692 SE.forgetLoop(FC0.L);
1693
1694 // Move instructions from FC0.Latch to FC1.Latch.
1695 // Note: mergeLatch requires an updated DT.
1696 mergeLatch(FC0, FC1);
1697
1698 // Forget block dispositions as well, so that there are no dangling
1699 // pointers to erased/free'ed blocks. It should be done after mergeLatch()
1700 // since merging the latches may affect the dispositions.
1701 SE.forgetBlockAndLoopDispositions();
1702
1703 // Forget the cached SCEV values including the induction variable that may
1704 // have changed after the fusion.
1705 SE.forgetLoop(FC0.L);
1706
1707 // Merge the loops.
1708 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1709 for (BasicBlock *BB : Blocks) {
1710 FC0.L->addBlockEntry(BB);
1711 FC1.L->removeBlockFromLoop(BB);
1712 if (LI.getLoopFor(BB) != FC1.L)
1713 continue;
1714 LI.changeLoopFor(BB, FC0.L);
1715 }
1716 while (!FC1.L->isInnermost()) {
1717 const auto &ChildLoopIt = FC1.L->begin();
1718 Loop *ChildLoop = *ChildLoopIt;
1719 FC1.L->removeChildLoop(ChildLoopIt);
1720 FC0.L->addChildLoop(ChildLoop);
1721 }
1722
1723 // Delete the now empty loop L1.
1724 LI.erase(FC1.L);
1725
1726#ifndef NDEBUG
1727 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1728 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1729 assert(PDT.verify());
1730 LI.verify(DT);
1731 SE.verify();
1732#endif
1733
1734 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1735
1736 return FC0.L;
1737 }
1738
1739 /// Report details on loop fusion opportunities.
1740 ///
1741 /// This template function can be used to report both successful and missed
1742 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1743 /// be one of:
1744 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1745 /// given two valid fusion candidates.
1746 /// - OptimizationRemark to report successful fusion of two fusion
1747 /// candidates.
1748 /// The remarks will be printed using the form:
1749 /// <path/filename>:<line number>:<column number>: [<function name>]:
1750 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1751 template <typename RemarkKind>
1752 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1753 Statistic &Stat) {
1754 assert(FC0.Preheader && FC1.Preheader &&
1755 "Expecting valid fusion candidates");
1756 using namespace ore;
1757#if LLVM_ENABLE_STATS
1758 ++Stat;
1759 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1760 FC0.Preheader)
1761 << "[" << FC0.Preheader->getParent()->getName()
1762 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1763 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1764 << ": " << Stat.getDesc());
1765#endif
1766 }
1767
1768 /// Fuse two guarded fusion candidates, creating a new fused loop.
1769 ///
1770 /// Fusing guarded loops is handled much the same way as fusing non-guarded
1771 /// loops. The rewiring of the CFG is slightly different though, because of
1772 /// the presence of the guards around the loops and the exit blocks after the
1773 /// loop body. As such, the new loop is rewired as follows:
1774 /// 1. Keep the guard branch from FC0 and use the non-loop block target
1775 /// from the FC1 guard branch.
1776 /// 2. Remove the exit block from FC0 (this exit block should be empty
1777 /// right now).
1778 /// 3. Remove the guard branch for FC1
1779 /// 4. Remove the preheader for FC1.
1780 /// The exit block successor for the latch of FC0 is updated to be the header
1781 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1782 /// be the header of FC0, thus creating the fused loop.
1783 Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1784 const FusionCandidate &FC1) {
1785 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1786
1787 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1788 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1789 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1790 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1791 BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
1792
1793 // Move instructions from the exit block of FC0 to the beginning of the exit
1794 // block of FC1, in the case that the FC0 loop has not been peeled. In the
1795 // case that FC0 loop is peeled, then move the instructions of the successor
1796 // of the FC0 Exit block to the beginning of the exit block of FC1.
1798 (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1799 DT, PDT, DI);
1800
1801 // Move instructions from the guard block of FC1 to the end of the guard
1802 // block of FC0.
1803 moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1804
1805 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1806
1808
1809 ////////////////////////////////////////////////////////////////////////////
1810 // Update the Loop Guard
1811 ////////////////////////////////////////////////////////////////////////////
1812 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1813 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1814 // Thus, one path from the guard goes to the preheader for FC0 (and thus
1815 // executes the new fused loop) and the other path goes to the NonLoopBlock
1816 // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1817 FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1818 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1819
1820 BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1821 BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
1822
1823 // The guard of FC1 is not necessary anymore.
1824 FC1.GuardBranch->eraseFromParent();
1825 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1826
1827 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1828 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1829 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1830 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1831 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1832 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1833 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1834 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1835
1836 if (FC0.Peeled) {
1837 // Remove the Block after the ExitBlock of FC0
1838 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1839 DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1840 FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
1841 new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
1842 FC0ExitBlockSuccessor);
1843 }
1844
1845 assert(pred_empty(FC1GuardBlock) &&
1846 "Expecting guard block to have no predecessors");
1847 assert(succ_empty(FC1GuardBlock) &&
1848 "Expecting guard block to have no successors");
1849
1850 // Remember the phi nodes originally in the header of FC0 in order to rewire
1851 // them later. However, this is only necessary if the new loop carried
1852 // values might not dominate the exiting branch. While we do not generally
1853 // test if this is the case but simply insert intermediate phi nodes, we
1854 // need to make sure these intermediate phi nodes have different
1855 // predecessors. To this end, we filter the special case where the exiting
1856 // block is the latch block of the first loop. Nothing needs to be done
1857 // anyway as all loop carried values dominate the latch and thereby also the
1858 // exiting branch.
1859 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1860 // (because the loops are rotated. Thus, nothing will ever be added to
1861 // OriginalFC0PHIs.
1862 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1863 if (FC0.ExitingBlock != FC0.Latch)
1864 for (PHINode &PHI : FC0.Header->phis())
1865 OriginalFC0PHIs.push_back(&PHI);
1866
1867 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1868
1869 // Replace incoming blocks for header PHIs first.
1870 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1871 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1872
1873 // The old exiting block of the first loop (FC0) has to jump to the header
1874 // of the second as we need to execute the code in the second header block
1875 // regardless of the trip count. That is, if the trip count is 0, so the
1876 // back edge is never taken, we still have to execute both loop headers,
1877 // especially (but not only!) if the second is a do-while style loop.
1878 // However, doing so might invalidate the phi nodes of the first loop as
1879 // the new values do only need to dominate their latch and not the exiting
1880 // predicate. To remedy this potential problem we always introduce phi
1881 // nodes in the header of the second loop later that select the loop carried
1882 // value, if the second header was reached through an old latch of the
1883 // first, or undef otherwise. This is sound as exiting the first implies the
1884 // second will exit too, __without__ taking the back-edge (their
1885 // trip-counts are equal after all).
1886 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1887 FC1.Header);
1888
1889 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1890 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1891 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1892 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1893
1894 // Remove FC0 Exit Block
1895 // The exit block for FC0 is no longer needed since control will flow
1896 // directly to the header of FC1. Since it is an empty block, it can be
1897 // removed at this point.
1898 // TODO: In the future, we can handle non-empty exit blocks my merging any
1899 // instructions from FC0 exit block into FC1 exit block prior to removing
1900 // the block.
1901 assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
1902 FC0.ExitBlock->getTerminator()->eraseFromParent();
1903 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1904
1905 // Remove FC1 Preheader
1906 // The pre-header of L1 is not necessary anymore.
1907 assert(pred_empty(FC1.Preheader));
1908 FC1.Preheader->getTerminator()->eraseFromParent();
1909 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1910 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1911 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1912
1913 // Moves the phi nodes from the second to the first loops header block.
1914 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1915 if (SE.isSCEVable(PHI->getType()))
1916 SE.forgetValue(PHI);
1917 if (PHI->hasNUsesOrMore(1))
1918 PHI->moveBefore(FC0.Header->getFirstInsertionPt());
1919 else
1920 PHI->eraseFromParent();
1921 }
1922
1923 // Introduce new phi nodes in the second loop header to ensure
1924 // exiting the first and jumping to the header of the second does not break
1925 // the SSA property of the phis originally in the first loop. See also the
1926 // comment above.
1927 BasicBlock::iterator L1HeaderIP = FC1.Header->begin();
1928 for (PHINode *LCPHI : OriginalFC0PHIs) {
1929 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1930 assert(L1LatchBBIdx >= 0 &&
1931 "Expected loop carried value to be rewired at this point!");
1932
1933 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1934
1935 PHINode *L1HeaderPHI =
1936 PHINode::Create(LCV->getType(), 2, LCPHI->getName() + ".afterFC0");
1937 L1HeaderPHI->insertBefore(L1HeaderIP);
1938 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1939 L1HeaderPHI->addIncoming(PoisonValue::get(LCV->getType()),
1940 FC0.ExitingBlock);
1941
1942 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1943 }
1944
1945 // Update the latches
1946
1947 // Replace latch terminator destinations.
1948 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1949 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1950
1951 // Modify the latch branch of FC0 to be unconditional as both successors of
1952 // the branch are the same.
1953 simplifyLatchBranch(FC0);
1954
1955 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1956 // performed the updates above.
1957 if (FC0.Latch != FC0.ExitingBlock)
1958 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1959 DominatorTree::Insert, FC0.Latch, FC1.Header));
1960
1961 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1962 FC0.Latch, FC0.Header));
1963 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1964 FC1.Latch, FC0.Header));
1965 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1966 FC1.Latch, FC1.Header));
1967
1968 // All done
1969 // Apply the updates to the Dominator Tree and cleanup.
1970
1971 assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
1972 assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
1973
1974 // Update DT/PDT
1975 DTU.applyUpdates(TreeUpdates);
1976
1977 LI.removeBlock(FC1GuardBlock);
1978 LI.removeBlock(FC1.Preheader);
1979 LI.removeBlock(FC0.ExitBlock);
1980 if (FC0.Peeled) {
1981 LI.removeBlock(FC0ExitBlockSuccessor);
1982 DTU.deleteBB(FC0ExitBlockSuccessor);
1983 }
1984 DTU.deleteBB(FC1GuardBlock);
1985 DTU.deleteBB(FC1.Preheader);
1986 DTU.deleteBB(FC0.ExitBlock);
1987 DTU.flush();
1988
1989 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1990 // and rebuild the information in subsequent passes of fusion?
1991 // Note: Need to forget the loops before merging the loop latches, as
1992 // mergeLatch may remove the only block in FC1.
1993 SE.forgetLoop(FC1.L);
1994 SE.forgetLoop(FC0.L);
1995
1996 // Move instructions from FC0.Latch to FC1.Latch.
1997 // Note: mergeLatch requires an updated DT.
1998 mergeLatch(FC0, FC1);
1999
2000 // Forget block dispositions as well, so that there are no dangling
2001 // pointers to erased/free'ed blocks. It should be done after mergeLatch()
2002 // since merging the latches may affect the dispositions.
2003 SE.forgetBlockAndLoopDispositions();
2004
2005 // Merge the loops.
2006 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
2007 for (BasicBlock *BB : Blocks) {
2008 FC0.L->addBlockEntry(BB);
2009 FC1.L->removeBlockFromLoop(BB);
2010 if (LI.getLoopFor(BB) != FC1.L)
2011 continue;
2012 LI.changeLoopFor(BB, FC0.L);
2013 }
2014 while (!FC1.L->isInnermost()) {
2015 const auto &ChildLoopIt = FC1.L->begin();
2016 Loop *ChildLoop = *ChildLoopIt;
2017 FC1.L->removeChildLoop(ChildLoopIt);
2018 FC0.L->addChildLoop(ChildLoop);
2019 }
2020
2021 // Delete the now empty loop L1.
2022 LI.erase(FC1.L);
2023
2024#ifndef NDEBUG
2025 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
2026 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2027 assert(PDT.verify());
2028 LI.verify(DT);
2029 SE.verify();
2030#endif
2031
2032 LLVM_DEBUG(dbgs() << "Fusion done:\n");
2033
2034 return FC0.L;
2035 }
2036};
2037} // namespace
2038
2040 auto &LI = AM.getResult<LoopAnalysis>(F);
2041 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2042 auto &DI = AM.getResult<DependenceAnalysis>(F);
2043 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
2044 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2046 auto &AC = AM.getResult<AssumptionAnalysis>(F);
2048 const DataLayout &DL = F.getDataLayout();
2049
2050 // Ensure loops are in simplifed form which is a pre-requisite for loop fusion
2051 // pass. Added only for new PM since the legacy PM has already added
2052 // LoopSimplify pass as a dependency.
2053 bool Changed = false;
2054 for (auto &L : LI) {
2055 Changed |=
2056 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
2057 }
2058 if (Changed)
2059 PDT.recalculate(F);
2060
2061 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
2062 Changed |= LF.fuseLoops(F);
2063 if (!Changed)
2064 return PreservedAnalyses::all();
2065
2070 PA.preserve<LoopAnalysis>();
2071 return PA;
2072}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static bool reportInvalidCandidate(const Instruction &I, llvm::Statistic &Stat)
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:661
#define DEBUG_TYPE
static void printFusionCandidates(const FusionCandidateCollection &FusionCandidates)
Definition LoopFuse.cpp:416
static cl::opt< FusionDependenceAnalysisChoice > FusionDependenceAnalysis("loop-fusion-dependence-analysis", cl::desc("Which dependence analysis should loop fusion use?"), cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", "Use the scalar evolution interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", "Use the dependence analysis interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", "Use all available analyses")), cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL))
std::list< FusionCandidate > FusionCandidateList
Definition LoopFuse.cpp:387
SmallVector< FusionCandidateList, 4 > FusionCandidateCollection
Definition LoopFuse.cpp:388
static void printLoopVector(const LoopVector &LV)
Definition LoopFuse.cpp:391
SmallVector< Loop *, 4 > LoopVector
Definition LoopFuse.cpp:382
FusionDependenceAnalysisChoice
Definition LoopFuse.cpp:105
@ FUSION_DEPENDENCE_ANALYSIS_DA
Definition LoopFuse.cpp:107
@ FUSION_DEPENDENCE_ANALYSIS_ALL
Definition LoopFuse.cpp:108
@ FUSION_DEPENDENCE_ANALYSIS_SCEV
Definition LoopFuse.cpp:106
static cl::opt< bool > VerboseFusionDebugging("loop-fusion-verbose-debug", cl::desc("Enable verbose debugging for Loop Fusion"), cl::Hidden, cl::init(false))
static cl::opt< unsigned > FusionPeelMaxCount("loop-fusion-peel-max-count", cl::init(0), cl::Hidden, cl::desc("Max number of iterations to be peeled from a loop, such that " "fusion can take place"))
#define DEBUG_TYPE
Definition LoopFuse.cpp:71
This file implements the Loop Fusion pass.
Loop::LoopBounds::Direction Direction
Definition LoopInfo.cpp:231
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
ppc ctr loops verify
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
Virtual Register Rewriter
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
A function analysis which provides an AssumptionCache.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI void replaceSuccessorsPhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block's successors to refer to basic block New instead of basic bl...
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:470
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:539
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
LLVM_ABI const BasicBlock * getUniqueSuccessor() const
Return the successor of this block if it has a unique successor.
const Instruction & front() const
Definition BasicBlock.h:493
LLVM_ABI void replacePhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block to refer to basic block New instead of basic block Old.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
size_t size() const
Definition BasicBlock.h:491
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
AnalysisPass to compute dependence information in a function.
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void removeBlockFromLoop(BlockT *BB)
This removes the specified basic block from the current loop, updating the Blocks as appropriate.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
iterator_range< block_iterator > blocks() const
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addBlockEntry(BlockT *BB)
This adds a basic block directly to the basic block list.
iterator begin() const
LoopT * removeChildLoop(iterator I)
This removes the specified child from being a subloop of this loop.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
reverse_iterator rend() const
reverse_iterator rbegin() const
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
ArrayRef< const SCEV * > operands() const
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Analysis pass providing the TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:25
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ Valid
The data is already valid.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool empty() const
Definition BasicBlock.h:101
iterator end() const
Definition BasicBlock.h:89
LLVM_ABI iterator begin() const
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
bool succ_empty(const Instruction *I)
Definition CFG.h:257
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
bool canPeel(const Loop *L)
Definition LoopPeel.cpp:95
LLVM_ABI void moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB, DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI)
Move instructions, in an order-preserving manner, from FromBB to the end of ToBB when proven safe.
NoopStatistic Statistic
Definition Statistic.h:162
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
TargetTransformInfo::PeelingPreferences gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, std::optional< bool > UserAllowPeeling, std::optional< bool > UserAllowProfileBasedPeeling, bool UnrollingSpecficValues=false)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
void peelLoop(Loop *L, unsigned PeelCount, bool PeelLast, LoopInfo *LI, ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, bool PreserveLCSSA, ValueToValueMapTy &VMap)
VMap is the value-map that maps instructions from the original loop to instructions in the last peele...
LLVM_ABI void moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB, DominatorTree &DT, const PostDominatorTree &PDT, DependenceInfo &DI)
Move instructions, in an order-preserving manner, from FromBB to the beginning of ToBB when proven sa...
TargetTransformInfo TTI
LLVM_ABI bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
LLVM_ABI void printLoop(const Loop &L, raw_ostream &OS, const std::string &Banner="")
Function to print a loop's contents as LLVM's text IR assembly.
Definition LoopInfo.cpp:989
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint, DominatorTree &DT, const PostDominatorTree *PDT=nullptr, DependenceInfo *DI=nullptr, bool CheckForEntireBlock=false)
Return true if I can be safely moved before InsertPoint.
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...