LLVM  13.0.0git
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
40 // block.
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/MathExtras.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
119  "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120  cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121  "scopes are not dominating"));
122 
123 namespace llvm {
124 
127  const Module &M;
130  const DataLayout &DL;
132 
133  /// Track the brokenness of the module while recursively visiting.
134  bool Broken = false;
135  /// Broken debug info can be "recovered" from by stripping the debug info.
136  bool BrokenDebugInfo = false;
137  /// Whether to treat broken debug info as an error.
139 
140  explicit VerifierSupport(raw_ostream *OS, const Module &M)
141  : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142  Context(M.getContext()) {}
143 
144 private:
145  void Write(const Module *M) {
146  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147  }
148 
149  void Write(const Value *V) {
150  if (V)
151  Write(*V);
152  }
153 
154  void Write(const Value &V) {
155  if (isa<Instruction>(V)) {
156  V.print(*OS, MST);
157  *OS << '\n';
158  } else {
159  V.printAsOperand(*OS, true, MST);
160  *OS << '\n';
161  }
162  }
163 
164  void Write(const Metadata *MD) {
165  if (!MD)
166  return;
167  MD->print(*OS, MST, &M);
168  *OS << '\n';
169  }
170 
171  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172  Write(MD.get());
173  }
174 
175  void Write(const NamedMDNode *NMD) {
176  if (!NMD)
177  return;
178  NMD->print(*OS, MST);
179  *OS << '\n';
180  }
181 
182  void Write(Type *T) {
183  if (!T)
184  return;
185  *OS << ' ' << *T;
186  }
187 
188  void Write(const Comdat *C) {
189  if (!C)
190  return;
191  *OS << *C;
192  }
193 
194  void Write(const APInt *AI) {
195  if (!AI)
196  return;
197  *OS << *AI << '\n';
198  }
199 
200  void Write(const unsigned i) { *OS << i << '\n'; }
201 
202  // NOLINTNEXTLINE(readability-identifier-naming)
203  void Write(const Attribute *A) {
204  if (!A)
205  return;
206  *OS << A->getAsString() << '\n';
207  }
208 
209  // NOLINTNEXTLINE(readability-identifier-naming)
210  void Write(const AttributeSet *AS) {
211  if (!AS)
212  return;
213  *OS << AS->getAsString() << '\n';
214  }
215 
216  // NOLINTNEXTLINE(readability-identifier-naming)
217  void Write(const AttributeList *AL) {
218  if (!AL)
219  return;
220  AL->print(*OS);
221  }
222 
223  template <typename T> void Write(ArrayRef<T> Vs) {
224  for (const T &V : Vs)
225  Write(V);
226  }
227 
228  template <typename T1, typename... Ts>
229  void WriteTs(const T1 &V1, const Ts &... Vs) {
230  Write(V1);
231  WriteTs(Vs...);
232  }
233 
234  template <typename... Ts> void WriteTs() {}
235 
236 public:
237  /// A check failed, so printout out the condition and the message.
238  ///
239  /// This provides a nice place to put a breakpoint if you want to see why
240  /// something is not correct.
241  void CheckFailed(const Twine &Message) {
242  if (OS)
243  *OS << Message << '\n';
244  Broken = true;
245  }
246 
247  /// A check failed (with values to print).
248  ///
249  /// This calls the Message-only version so that the above is easier to set a
250  /// breakpoint on.
251  template <typename T1, typename... Ts>
252  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253  CheckFailed(Message);
254  if (OS)
255  WriteTs(V1, Vs...);
256  }
257 
258  /// A debug info check failed.
259  void DebugInfoCheckFailed(const Twine &Message) {
260  if (OS)
261  *OS << Message << '\n';
263  BrokenDebugInfo = true;
264  }
265 
266  /// A debug info check failed (with values to print).
267  template <typename T1, typename... Ts>
268  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269  const Ts &... Vs) {
270  DebugInfoCheckFailed(Message);
271  if (OS)
272  WriteTs(V1, Vs...);
273  }
274 };
275 
276 } // namespace llvm
277 
278 namespace {
279 
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281  friend class InstVisitor<Verifier>;
282 
283  DominatorTree DT;
284 
285  /// When verifying a basic block, keep track of all of the
286  /// instructions we have seen so far.
287  ///
288  /// This allows us to do efficient dominance checks for the case when an
289  /// instruction has an operand that is an instruction in the same block.
290  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291 
292  /// Keep track of the metadata nodes that have been checked already.
294 
295  /// Keep track which DISubprogram is attached to which function.
296  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297 
298  /// Track all DICompileUnits visited.
300 
301  /// The result type for a landingpad.
302  Type *LandingPadResultTy;
303 
304  /// Whether we've seen a call to @llvm.localescape in this function
305  /// already.
306  bool SawFrameEscape;
307 
308  /// Whether the current function has a DISubprogram attached to it.
309  bool HasDebugInfo = false;
310 
311  /// The current source language.
312  dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313 
314  /// Whether source was present on the first DIFile encountered in each CU.
315  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316 
317  /// Stores the count of how many objects were passed to llvm.localescape for a
318  /// given function and the largest index passed to llvm.localrecover.
320 
321  // Maps catchswitches and cleanuppads that unwind to siblings to the
322  // terminators that indicate the unwind, used to detect cycles therein.
323  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324 
325  /// Cache of constants visited in search of ConstantExprs.
326  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327 
328  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329  SmallVector<const Function *, 4> DeoptimizeDeclarations;
330 
331  /// Cache of attribute lists verified.
332  SmallPtrSet<const void *, 32> AttributeListsVisited;
333 
334  // Verify that this GlobalValue is only used in this module.
335  // This map is used to avoid visiting uses twice. We can arrive at a user
336  // twice, if they have multiple operands. In particular for very large
337  // constant expressions, we can arrive at a particular user many times.
338  SmallPtrSet<const Value *, 32> GlobalValueVisited;
339 
340  // Keeps track of duplicate function argument debug info.
342 
343  TBAAVerifier TBAAVerifyHelper;
344 
345  SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346 
347  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348 
349 public:
350  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351  const Module &M)
352  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353  SawFrameEscape(false), TBAAVerifyHelper(this) {
354  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355  }
356 
357  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358 
359  bool verify(const Function &F) {
360  assert(F.getParent() == &M &&
361  "An instance of this class only works with a specific module!");
362 
363  // First ensure the function is well-enough formed to compute dominance
364  // information, and directly compute a dominance tree. We don't rely on the
365  // pass manager to provide this as it isolates us from a potentially
366  // out-of-date dominator tree and makes it significantly more complex to run
367  // this code outside of a pass manager.
368  // FIXME: It's really gross that we have to cast away constness here.
369  if (!F.empty())
370  DT.recalculate(const_cast<Function &>(F));
371 
372  for (const BasicBlock &BB : F) {
373  if (!BB.empty() && BB.back().isTerminator())
374  continue;
375 
376  if (OS) {
377  *OS << "Basic Block in function '" << F.getName()
378  << "' does not have terminator!\n";
379  BB.printAsOperand(*OS, true, MST);
380  *OS << "\n";
381  }
382  return false;
383  }
384 
385  Broken = false;
386  // FIXME: We strip const here because the inst visitor strips const.
387  visit(const_cast<Function &>(F));
388  verifySiblingFuncletUnwinds();
389  InstsInThisBlock.clear();
390  DebugFnArgs.clear();
391  LandingPadResultTy = nullptr;
392  SawFrameEscape = false;
393  SiblingFuncletInfo.clear();
394  verifyNoAliasScopeDecl();
395  NoAliasScopeDecls.clear();
396 
397  return !Broken;
398  }
399 
400  /// Verify the module that this instance of \c Verifier was initialized with.
401  bool verify() {
402  Broken = false;
403 
404  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405  for (const Function &F : M)
406  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407  DeoptimizeDeclarations.push_back(&F);
408 
409  // Now that we've visited every function, verify that we never asked to
410  // recover a frame index that wasn't escaped.
411  verifyFrameRecoverIndices();
412  for (const GlobalVariable &GV : M.globals())
413  visitGlobalVariable(GV);
414 
415  for (const GlobalAlias &GA : M.aliases())
416  visitGlobalAlias(GA);
417 
418  for (const NamedMDNode &NMD : M.named_metadata())
419  visitNamedMDNode(NMD);
420 
421  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
422  visitComdat(SMEC.getValue());
423 
424  visitModuleFlags(M);
425  visitModuleIdents(M);
426  visitModuleCommandLines(M);
427 
428  verifyCompileUnits();
429 
430  verifyDeoptimizeCallingConvs();
431  DISubprogramAttachments.clear();
432  return !Broken;
433  }
434 
435 private:
436  /// Whether a metadata node is allowed to be, or contain, a DILocation.
437  enum class AreDebugLocsAllowed { No, Yes };
438 
439  // Verification methods...
440  void visitGlobalValue(const GlobalValue &GV);
441  void visitGlobalVariable(const GlobalVariable &GV);
442  void visitGlobalAlias(const GlobalAlias &GA);
443  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
444  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
445  const GlobalAlias &A, const Constant &C);
446  void visitNamedMDNode(const NamedMDNode &NMD);
447  void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
448  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
449  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
450  void visitComdat(const Comdat &C);
451  void visitModuleIdents(const Module &M);
452  void visitModuleCommandLines(const Module &M);
453  void visitModuleFlags(const Module &M);
454  void visitModuleFlag(const MDNode *Op,
456  SmallVectorImpl<const MDNode *> &Requirements);
457  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
458  void visitFunction(const Function &F);
459  void visitBasicBlock(BasicBlock &BB);
460  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
461  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
462  void visitProfMetadata(Instruction &I, MDNode *MD);
463  void visitAnnotationMetadata(MDNode *Annotation);
464 
465  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
467 #include "llvm/IR/Metadata.def"
468  void visitDIScope(const DIScope &N);
469  void visitDIVariable(const DIVariable &N);
470  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
471  void visitDITemplateParameter(const DITemplateParameter &N);
472 
473  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
474 
475  // InstVisitor overrides...
477  void visit(Instruction &I);
478 
479  void visitTruncInst(TruncInst &I);
480  void visitZExtInst(ZExtInst &I);
481  void visitSExtInst(SExtInst &I);
482  void visitFPTruncInst(FPTruncInst &I);
483  void visitFPExtInst(FPExtInst &I);
484  void visitFPToUIInst(FPToUIInst &I);
485  void visitFPToSIInst(FPToSIInst &I);
486  void visitUIToFPInst(UIToFPInst &I);
487  void visitSIToFPInst(SIToFPInst &I);
488  void visitIntToPtrInst(IntToPtrInst &I);
489  void visitPtrToIntInst(PtrToIntInst &I);
490  void visitBitCastInst(BitCastInst &I);
491  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
492  void visitPHINode(PHINode &PN);
493  void visitCallBase(CallBase &Call);
494  void visitUnaryOperator(UnaryOperator &U);
495  void visitBinaryOperator(BinaryOperator &B);
496  void visitICmpInst(ICmpInst &IC);
497  void visitFCmpInst(FCmpInst &FC);
498  void visitExtractElementInst(ExtractElementInst &EI);
499  void visitInsertElementInst(InsertElementInst &EI);
500  void visitShuffleVectorInst(ShuffleVectorInst &EI);
501  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
502  void visitCallInst(CallInst &CI);
503  void visitInvokeInst(InvokeInst &II);
504  void visitGetElementPtrInst(GetElementPtrInst &GEP);
505  void visitLoadInst(LoadInst &LI);
506  void visitStoreInst(StoreInst &SI);
507  void verifyDominatesUse(Instruction &I, unsigned i);
508  void visitInstruction(Instruction &I);
509  void visitTerminator(Instruction &I);
510  void visitBranchInst(BranchInst &BI);
511  void visitReturnInst(ReturnInst &RI);
512  void visitSwitchInst(SwitchInst &SI);
513  void visitIndirectBrInst(IndirectBrInst &BI);
514  void visitCallBrInst(CallBrInst &CBI);
515  void visitSelectInst(SelectInst &SI);
516  void visitUserOp1(Instruction &I);
517  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
518  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
519  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
520  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
521  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
522  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
523  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
524  void visitFenceInst(FenceInst &FI);
525  void visitAllocaInst(AllocaInst &AI);
526  void visitExtractValueInst(ExtractValueInst &EVI);
527  void visitInsertValueInst(InsertValueInst &IVI);
528  void visitEHPadPredecessors(Instruction &I);
529  void visitLandingPadInst(LandingPadInst &LPI);
530  void visitResumeInst(ResumeInst &RI);
531  void visitCatchPadInst(CatchPadInst &CPI);
532  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
533  void visitCleanupPadInst(CleanupPadInst &CPI);
534  void visitFuncletPadInst(FuncletPadInst &FPI);
535  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
536  void visitCleanupReturnInst(CleanupReturnInst &CRI);
537 
538  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
539  void verifySwiftErrorValue(const Value *SwiftErrorVal);
540  void verifyMustTailCall(CallInst &CI);
541  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
542  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
543  const Value *V);
544  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
545  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
546  const Value *V, bool IsIntrinsic);
547  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
548 
549  void visitConstantExprsRecursively(const Constant *EntryC);
550  void visitConstantExpr(const ConstantExpr *CE);
551  void verifyStatepoint(const CallBase &Call);
552  void verifyFrameRecoverIndices();
553  void verifySiblingFuncletUnwinds();
554 
555  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
556  template <typename ValueOrMetadata>
557  void verifyFragmentExpression(const DIVariable &V,
559  ValueOrMetadata *Desc);
560  void verifyFnArgs(const DbgVariableIntrinsic &I);
561  void verifyNotEntryValue(const DbgVariableIntrinsic &I);
562 
563  /// Module-level debug info verification...
564  void verifyCompileUnits();
565 
566  /// Module-level verification that all @llvm.experimental.deoptimize
567  /// declarations share the same calling convention.
568  void verifyDeoptimizeCallingConvs();
569 
570  /// Verify all-or-nothing property of DIFile source attribute within a CU.
571  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
572 
573  /// Verify the llvm.experimental.noalias.scope.decl declarations
574  void verifyNoAliasScopeDecl();
575 };
576 
577 } // end anonymous namespace
578 
579 /// We know that cond should be true, if not print an error message.
580 #define Assert(C, ...) \
581  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
582 
583 /// We know that a debug info condition should be true, if not print
584 /// an error message.
585 #define AssertDI(C, ...) \
586  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
587 
588 void Verifier::visit(Instruction &I) {
589  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
590  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
592 }
593 
594 // Helper to recursively iterate over indirect users. By
595 // returning false, the callback can ask to stop recursing
596 // further.
597 static void forEachUser(const Value *User,
599  llvm::function_ref<bool(const Value *)> Callback) {
600  if (!Visited.insert(User).second)
601  return;
602  for (const Value *TheNextUser : User->materialized_users())
603  if (Callback(TheNextUser))
604  forEachUser(TheNextUser, Visited, Callback);
605 }
606 
607 void Verifier::visitGlobalValue(const GlobalValue &GV) {
609  "Global is external, but doesn't have external or weak linkage!", &GV);
610 
611  if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
612  Assert(GO->getAlignment() <= Value::MaximumAlignment,
613  "huge alignment values are unsupported", GO);
614  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
615  "Only global variables can have appending linkage!", &GV);
616 
617  if (GV.hasAppendingLinkage()) {
618  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
619  Assert(GVar && GVar->getValueType()->isArrayTy(),
620  "Only global arrays can have appending linkage!", GVar);
621  }
622 
623  if (GV.isDeclarationForLinker())
624  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
625 
626  if (GV.hasDLLImportStorageClass()) {
627  Assert(!GV.isDSOLocal(),
628  "GlobalValue with DLLImport Storage is dso_local!", &GV);
629 
630  Assert((GV.isDeclaration() &&
631  (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
633  "Global is marked as dllimport, but not external", &GV);
634  }
635 
636  if (GV.isImplicitDSOLocal())
637  Assert(GV.isDSOLocal(),
638  "GlobalValue with local linkage or non-default "
639  "visibility must be dso_local!",
640  &GV);
641 
642  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
643  if (const Instruction *I = dyn_cast<Instruction>(V)) {
644  if (!I->getParent() || !I->getParent()->getParent())
645  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
646  I);
647  else if (I->getParent()->getParent()->getParent() != &M)
648  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
649  I->getParent()->getParent(),
650  I->getParent()->getParent()->getParent());
651  return false;
652  } else if (const Function *F = dyn_cast<Function>(V)) {
653  if (F->getParent() != &M)
654  CheckFailed("Global is used by function in a different module", &GV, &M,
655  F, F->getParent());
656  return false;
657  }
658  return true;
659  });
660 }
661 
662 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
663  if (GV.hasInitializer()) {
664  Assert(GV.getInitializer()->getType() == GV.getValueType(),
665  "Global variable initializer type does not match global "
666  "variable type!",
667  &GV);
668  // If the global has common linkage, it must have a zero initializer and
669  // cannot be constant.
670  if (GV.hasCommonLinkage()) {
672  "'common' global must have a zero initializer!", &GV);
673  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
674  &GV);
675  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
676  }
677  }
678 
679  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
680  GV.getName() == "llvm.global_dtors")) {
682  "invalid linkage for intrinsic global variable", &GV);
683  // Don't worry about emitting an error for it not being an array,
684  // visitGlobalValue will complain on appending non-array.
685  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
686  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
687  PointerType *FuncPtrTy =
689  getPointerTo(DL.getProgramAddressSpace());
690  Assert(STy &&
691  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
692  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
693  STy->getTypeAtIndex(1) == FuncPtrTy,
694  "wrong type for intrinsic global variable", &GV);
695  Assert(STy->getNumElements() == 3,
696  "the third field of the element type is mandatory, "
697  "specify i8* null to migrate from the obsoleted 2-field form");
698  Type *ETy = STy->getTypeAtIndex(2);
699  Assert(ETy->isPointerTy() &&
700  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
701  "wrong type for intrinsic global variable", &GV);
702  }
703  }
704 
705  if (GV.hasName() && (GV.getName() == "llvm.used" ||
706  GV.getName() == "llvm.compiler.used")) {
708  "invalid linkage for intrinsic global variable", &GV);
709  Type *GVType = GV.getValueType();
710  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
711  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
712  Assert(PTy, "wrong type for intrinsic global variable", &GV);
713  if (GV.hasInitializer()) {
714  const Constant *Init = GV.getInitializer();
715  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
716  Assert(InitArray, "wrong initalizer for intrinsic global variable",
717  Init);
718  for (Value *Op : InitArray->operands()) {
719  Value *V = Op->stripPointerCasts();
720  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
721  isa<GlobalAlias>(V),
722  "invalid llvm.used member", V);
723  Assert(V->hasName(), "members of llvm.used must be named", V);
724  }
725  }
726  }
727  }
728 
729  // Visit any debug info attachments.
731  GV.getMetadata(LLVMContext::MD_dbg, MDs);
732  for (auto *MD : MDs) {
733  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
734  visitDIGlobalVariableExpression(*GVE);
735  else
736  AssertDI(false, "!dbg attachment of global variable must be a "
737  "DIGlobalVariableExpression");
738  }
739 
740  // Scalable vectors cannot be global variables, since we don't know
741  // the runtime size. If the global is an array containing scalable vectors,
742  // that will be caught by the isValidElementType methods in StructType or
743  // ArrayType instead.
744  Assert(!isa<ScalableVectorType>(GV.getValueType()),
745  "Globals cannot contain scalable vectors", &GV);
746 
747  if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
749  "Globals cannot contain scalable vectors", &GV);
750 
751  if (!GV.hasInitializer()) {
752  visitGlobalValue(GV);
753  return;
754  }
755 
756  // Walk any aggregate initializers looking for bitcasts between address spaces
757  visitConstantExprsRecursively(GV.getInitializer());
758 
759  visitGlobalValue(GV);
760 }
761 
762 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
764  Visited.insert(&GA);
765  visitAliaseeSubExpr(Visited, GA, C);
766 }
767 
768 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
769  const GlobalAlias &GA, const Constant &C) {
770  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
771  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
772  &GA);
773 
774  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
775  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
776 
777  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
778  &GA);
779  } else {
780  // Only continue verifying subexpressions of GlobalAliases.
781  // Do not recurse into global initializers.
782  return;
783  }
784  }
785 
786  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
787  visitConstantExprsRecursively(CE);
788 
789  for (const Use &U : C.operands()) {
790  Value *V = &*U;
791  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
792  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
793  else if (const auto *C2 = dyn_cast<Constant>(V))
794  visitAliaseeSubExpr(Visited, GA, *C2);
795  }
796 }
797 
798 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
800  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
801  "weak_odr, or external linkage!",
802  &GA);
803  const Constant *Aliasee = GA.getAliasee();
804  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
805  Assert(GA.getType() == Aliasee->getType(),
806  "Alias and aliasee types should match!", &GA);
807 
808  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
809  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
810 
811  visitAliaseeSubExpr(GA, *Aliasee);
812 
813  visitGlobalValue(GA);
814 }
815 
816 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
817  // There used to be various other llvm.dbg.* nodes, but we don't support
818  // upgrading them and we want to reserve the namespace for future uses.
819  if (NMD.getName().startswith("llvm.dbg."))
820  AssertDI(NMD.getName() == "llvm.dbg.cu",
821  "unrecognized named metadata node in the llvm.dbg namespace",
822  &NMD);
823  for (const MDNode *MD : NMD.operands()) {
824  if (NMD.getName() == "llvm.dbg.cu")
825  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
826 
827  if (!MD)
828  continue;
829 
830  visitMDNode(*MD, AreDebugLocsAllowed::Yes);
831  }
832 }
833 
834 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
835  // Only visit each node once. Metadata can be mutually recursive, so this
836  // avoids infinite recursion here, as well as being an optimization.
837  if (!MDNodes.insert(&MD).second)
838  return;
839 
840  Assert(&MD.getContext() == &Context,
841  "MDNode context does not match Module context!", &MD);
842 
843  switch (MD.getMetadataID()) {
844  default:
845  llvm_unreachable("Invalid MDNode subclass");
846  case Metadata::MDTupleKind:
847  break;
848 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
849  case Metadata::CLASS##Kind: \
850  visit##CLASS(cast<CLASS>(MD)); \
851  break;
852 #include "llvm/IR/Metadata.def"
853  }
854 
855  for (const Metadata *Op : MD.operands()) {
856  if (!Op)
857  continue;
858  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
859  &MD, Op);
860  AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
861  "DILocation not allowed within this metadata node", &MD, Op);
862  if (auto *N = dyn_cast<MDNode>(Op)) {
863  visitMDNode(*N, AllowLocs);
864  continue;
865  }
866  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
867  visitValueAsMetadata(*V, nullptr);
868  continue;
869  }
870  }
871 
872  // Check these last, so we diagnose problems in operands first.
873  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
874  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
875 }
876 
877 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
878  Assert(MD.getValue(), "Expected valid value", &MD);
879  Assert(!MD.getValue()->getType()->isMetadataTy(),
880  "Unexpected metadata round-trip through values", &MD, MD.getValue());
881 
882  auto *L = dyn_cast<LocalAsMetadata>(&MD);
883  if (!L)
884  return;
885 
886  Assert(F, "function-local metadata used outside a function", L);
887 
888  // If this was an instruction, bb, or argument, verify that it is in the
889  // function that we expect.
890  Function *ActualF = nullptr;
891  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
892  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
893  ActualF = I->getParent()->getParent();
894  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
895  ActualF = BB->getParent();
896  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
897  ActualF = A->getParent();
898  assert(ActualF && "Unimplemented function local metadata case!");
899 
900  Assert(ActualF == F, "function-local metadata used in wrong function", L);
901 }
902 
903 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
904  Metadata *MD = MDV.getMetadata();
905  if (auto *N = dyn_cast<MDNode>(MD)) {
906  visitMDNode(*N, AreDebugLocsAllowed::No);
907  return;
908  }
909 
910  // Only visit each node once. Metadata can be mutually recursive, so this
911  // avoids infinite recursion here, as well as being an optimization.
912  if (!MDNodes.insert(MD).second)
913  return;
914 
915  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
916  visitValueAsMetadata(*V, F);
917 }
918 
919 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
920 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
921 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
922 
923 void Verifier::visitDILocation(const DILocation &N) {
924  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
925  "location requires a valid scope", &N, N.getRawScope());
926  if (auto *IA = N.getRawInlinedAt())
927  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
928  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
929  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
930 }
931 
932 void Verifier::visitGenericDINode(const GenericDINode &N) {
933  AssertDI(N.getTag(), "invalid tag", &N);
934 }
935 
936 void Verifier::visitDIScope(const DIScope &N) {
937  if (auto *F = N.getRawFile())
938  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
939 }
940 
941 void Verifier::visitDISubrange(const DISubrange &N) {
942  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
943  bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
944  AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
945  N.getRawUpperBound(),
946  "Subrange must contain count or upperBound", &N);
947  AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
948  "Subrange can have any one of count or upperBound", &N);
949  auto *CBound = N.getRawCountNode();
950  AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
951  isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
952  "Count must be signed constant or DIVariable or DIExpression", &N);
953  auto Count = N.getCount();
954  AssertDI(!Count || !Count.is<ConstantInt *>() ||
955  Count.get<ConstantInt *>()->getSExtValue() >= -1,
956  "invalid subrange count", &N);
957  auto *LBound = N.getRawLowerBound();
958  AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
959  isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
960  "LowerBound must be signed constant or DIVariable or DIExpression",
961  &N);
962  auto *UBound = N.getRawUpperBound();
963  AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
964  isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
965  "UpperBound must be signed constant or DIVariable or DIExpression",
966  &N);
967  auto *Stride = N.getRawStride();
968  AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
969  isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
970  "Stride must be signed constant or DIVariable or DIExpression", &N);
971 }
972 
973 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
974  AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
975  AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
976  "GenericSubrange must contain count or upperBound", &N);
977  AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
978  "GenericSubrange can have any one of count or upperBound", &N);
979  auto *CBound = N.getRawCountNode();
980  AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
981  "Count must be signed constant or DIVariable or DIExpression", &N);
982  auto *LBound = N.getRawLowerBound();
983  AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
984  AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
985  "LowerBound must be signed constant or DIVariable or DIExpression",
986  &N);
987  auto *UBound = N.getRawUpperBound();
988  AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
989  "UpperBound must be signed constant or DIVariable or DIExpression",
990  &N);
991  auto *Stride = N.getRawStride();
992  AssertDI(Stride, "GenericSubrange must contain stride", &N);
993  AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
994  "Stride must be signed constant or DIVariable or DIExpression", &N);
995 }
996 
997 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
998  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
999 }
1000 
1001 void Verifier::visitDIBasicType(const DIBasicType &N) {
1002  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1003  N.getTag() == dwarf::DW_TAG_unspecified_type ||
1004  N.getTag() == dwarf::DW_TAG_string_type,
1005  "invalid tag", &N);
1006 }
1007 
1008 void Verifier::visitDIStringType(const DIStringType &N) {
1009  AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1010  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1011  "has conflicting flags", &N);
1012 }
1013 
1014 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1015  // Common scope checks.
1016  visitDIScope(N);
1017 
1018  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1019  N.getTag() == dwarf::DW_TAG_pointer_type ||
1020  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1021  N.getTag() == dwarf::DW_TAG_reference_type ||
1022  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1023  N.getTag() == dwarf::DW_TAG_const_type ||
1024  N.getTag() == dwarf::DW_TAG_volatile_type ||
1025  N.getTag() == dwarf::DW_TAG_restrict_type ||
1026  N.getTag() == dwarf::DW_TAG_atomic_type ||
1027  N.getTag() == dwarf::DW_TAG_member ||
1028  N.getTag() == dwarf::DW_TAG_inheritance ||
1029  N.getTag() == dwarf::DW_TAG_friend ||
1030  N.getTag() == dwarf::DW_TAG_set_type,
1031  "invalid tag", &N);
1032  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1033  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1034  N.getRawExtraData());
1035  }
1036 
1037  if (N.getTag() == dwarf::DW_TAG_set_type) {
1038  if (auto *T = N.getRawBaseType()) {
1039  auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1040  auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1041  AssertDI(
1042  (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1043  (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1044  Basic->getEncoding() == dwarf::DW_ATE_signed ||
1045  Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1046  Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1047  Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1048  "invalid set base type", &N, T);
1049  }
1050  }
1051 
1052  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1053  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1054  N.getRawBaseType());
1055 
1056  if (N.getDWARFAddressSpace()) {
1057  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1058  N.getTag() == dwarf::DW_TAG_reference_type ||
1059  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1060  "DWARF address space only applies to pointer or reference types",
1061  &N);
1062  }
1063 }
1064 
1065 /// Detect mutually exclusive flags.
1066 static bool hasConflictingReferenceFlags(unsigned Flags) {
1067  return ((Flags & DINode::FlagLValueReference) &&
1068  (Flags & DINode::FlagRValueReference)) ||
1069  ((Flags & DINode::FlagTypePassByValue) &&
1070  (Flags & DINode::FlagTypePassByReference));
1071 }
1072 
1073 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1074  auto *Params = dyn_cast<MDTuple>(&RawParams);
1075  AssertDI(Params, "invalid template params", &N, &RawParams);
1076  for (Metadata *Op : Params->operands()) {
1077  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1078  &N, Params, Op);
1079  }
1080 }
1081 
1082 void Verifier::visitDICompositeType(const DICompositeType &N) {
1083  // Common scope checks.
1084  visitDIScope(N);
1085 
1086  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1087  N.getTag() == dwarf::DW_TAG_structure_type ||
1088  N.getTag() == dwarf::DW_TAG_union_type ||
1089  N.getTag() == dwarf::DW_TAG_enumeration_type ||
1090  N.getTag() == dwarf::DW_TAG_class_type ||
1091  N.getTag() == dwarf::DW_TAG_variant_part,
1092  "invalid tag", &N);
1093 
1094  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1095  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1096  N.getRawBaseType());
1097 
1098  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1099  "invalid composite elements", &N, N.getRawElements());
1100  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1101  N.getRawVTableHolder());
1103  "invalid reference flags", &N);
1104  unsigned DIBlockByRefStruct = 1 << 4;
1105  AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1106  "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1107 
1108  if (N.isVector()) {
1109  const DINodeArray Elements = N.getElements();
1110  AssertDI(Elements.size() == 1 &&
1111  Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1112  "invalid vector, expected one element of type subrange", &N);
1113  }
1114 
1115  if (auto *Params = N.getRawTemplateParams())
1116  visitTemplateParams(N, *Params);
1117 
1118  if (auto *D = N.getRawDiscriminator()) {
1119  AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1120  "discriminator can only appear on variant part");
1121  }
1122 
1123  if (N.getRawDataLocation()) {
1124  AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1125  "dataLocation can only appear in array type");
1126  }
1127 
1128  if (N.getRawAssociated()) {
1129  AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1130  "associated can only appear in array type");
1131  }
1132 
1133  if (N.getRawAllocated()) {
1134  AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1135  "allocated can only appear in array type");
1136  }
1137 
1138  if (N.getRawRank()) {
1139  AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1140  "rank can only appear in array type");
1141  }
1142 }
1143 
1144 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1145  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1146  if (auto *Types = N.getRawTypeArray()) {
1147  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1148  for (Metadata *Ty : N.getTypeArray()->operands()) {
1149  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1150  }
1151  }
1153  "invalid reference flags", &N);
1154 }
1155 
1156 void Verifier::visitDIFile(const DIFile &N) {
1157  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1158  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1159  if (Checksum) {
1160  AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1161  "invalid checksum kind", &N);
1162  size_t Size;
1163  switch (Checksum->Kind) {
1164  case DIFile::CSK_MD5:
1165  Size = 32;
1166  break;
1167  case DIFile::CSK_SHA1:
1168  Size = 40;
1169  break;
1170  case DIFile::CSK_SHA256:
1171  Size = 64;
1172  break;
1173  }
1174  AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1175  AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1176  "invalid checksum", &N);
1177  }
1178 }
1179 
1180 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1181  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1182  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1183 
1184  // Don't bother verifying the compilation directory or producer string
1185  // as those could be empty.
1186  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1187  N.getRawFile());
1188  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1189  N.getFile());
1190 
1191  CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1192 
1193  verifySourceDebugInfo(N, *N.getFile());
1194 
1195  AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1196  "invalid emission kind", &N);
1197 
1198  if (auto *Array = N.getRawEnumTypes()) {
1199  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1200  for (Metadata *Op : N.getEnumTypes()->operands()) {
1201  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1202  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1203  "invalid enum type", &N, N.getEnumTypes(), Op);
1204  }
1205  }
1206  if (auto *Array = N.getRawRetainedTypes()) {
1207  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1208  for (Metadata *Op : N.getRetainedTypes()->operands()) {
1209  AssertDI(Op && (isa<DIType>(Op) ||
1210  (isa<DISubprogram>(Op) &&
1211  !cast<DISubprogram>(Op)->isDefinition())),
1212  "invalid retained type", &N, Op);
1213  }
1214  }
1215  if (auto *Array = N.getRawGlobalVariables()) {
1216  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1217  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1218  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1219  "invalid global variable ref", &N, Op);
1220  }
1221  }
1222  if (auto *Array = N.getRawImportedEntities()) {
1223  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1224  for (Metadata *Op : N.getImportedEntities()->operands()) {
1225  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1226  &N, Op);
1227  }
1228  }
1229  if (auto *Array = N.getRawMacros()) {
1230  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1231  for (Metadata *Op : N.getMacros()->operands()) {
1232  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1233  }
1234  }
1235  CUVisited.insert(&N);
1236 }
1237 
1238 void Verifier::visitDISubprogram(const DISubprogram &N) {
1239  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1240  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1241  if (auto *F = N.getRawFile())
1242  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1243  else
1244  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1245  if (auto *T = N.getRawType())
1246  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1247  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1248  N.getRawContainingType());
1249  if (auto *Params = N.getRawTemplateParams())
1250  visitTemplateParams(N, *Params);
1251  if (auto *S = N.getRawDeclaration())
1252  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1253  "invalid subprogram declaration", &N, S);
1254  if (auto *RawNode = N.getRawRetainedNodes()) {
1255  auto *Node = dyn_cast<MDTuple>(RawNode);
1256  AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1257  for (Metadata *Op : Node->operands()) {
1258  AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1259  "invalid retained nodes, expected DILocalVariable or DILabel",
1260  &N, Node, Op);
1261  }
1262  }
1264  "invalid reference flags", &N);
1265 
1266  auto *Unit = N.getRawUnit();
1267  if (N.isDefinition()) {
1268  // Subprogram definitions (not part of the type hierarchy).
1269  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1270  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1271  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1272  if (N.getFile())
1273  verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1274  } else {
1275  // Subprogram declarations (part of the type hierarchy).
1276  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1277  }
1278 
1279  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1280  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1281  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1282  for (Metadata *Op : ThrownTypes->operands())
1283  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1284  Op);
1285  }
1286 
1287  if (N.areAllCallsDescribed())
1288  AssertDI(N.isDefinition(),
1289  "DIFlagAllCallsDescribed must be attached to a definition");
1290 }
1291 
1292 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1293  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1294  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1295  "invalid local scope", &N, N.getRawScope());
1296  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1297  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1298 }
1299 
1300 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1301  visitDILexicalBlockBase(N);
1302 
1303  AssertDI(N.getLine() || !N.getColumn(),
1304  "cannot have column info without line info", &N);
1305 }
1306 
1307 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1308  visitDILexicalBlockBase(N);
1309 }
1310 
1311 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1312  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1313  if (auto *S = N.getRawScope())
1314  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1315  if (auto *S = N.getRawDecl())
1316  AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1317 }
1318 
1319 void Verifier::visitDINamespace(const DINamespace &N) {
1320  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1321  if (auto *S = N.getRawScope())
1322  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1323 }
1324 
1325 void Verifier::visitDIMacro(const DIMacro &N) {
1326  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1327  N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1328  "invalid macinfo type", &N);
1329  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1330  if (!N.getValue().empty()) {
1331  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1332  }
1333 }
1334 
1335 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1336  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1337  "invalid macinfo type", &N);
1338  if (auto *F = N.getRawFile())
1339  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1340 
1341  if (auto *Array = N.getRawElements()) {
1342  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1343  for (Metadata *Op : N.getElements()->operands()) {
1344  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1345  }
1346  }
1347 }
1348 
1349 void Verifier::visitDIArgList(const DIArgList &N) {
1350  AssertDI(!N.getNumOperands(),
1351  "DIArgList should have no operands other than a list of "
1352  "ValueAsMetadata",
1353  &N);
1354 }
1355 
1356 void Verifier::visitDIModule(const DIModule &N) {
1357  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1358  AssertDI(!N.getName().empty(), "anonymous module", &N);
1359 }
1360 
1361 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1362  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1363 }
1364 
1365 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1366  visitDITemplateParameter(N);
1367 
1368  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1369  &N);
1370 }
1371 
1372 void Verifier::visitDITemplateValueParameter(
1373  const DITemplateValueParameter &N) {
1374  visitDITemplateParameter(N);
1375 
1376  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1377  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1378  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1379  "invalid tag", &N);
1380 }
1381 
1382 void Verifier::visitDIVariable(const DIVariable &N) {
1383  if (auto *S = N.getRawScope())
1384  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1385  if (auto *F = N.getRawFile())
1386  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1387 }
1388 
1389 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1390  // Checks common to all variables.
1391  visitDIVariable(N);
1392 
1393  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1394  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1395  // Assert only if the global variable is not an extern
1396  if (N.isDefinition())
1397  AssertDI(N.getType(), "missing global variable type", &N);
1398  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1399  AssertDI(isa<DIDerivedType>(Member),
1400  "invalid static data member declaration", &N, Member);
1401  }
1402 }
1403 
1404 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1405  // Checks common to all variables.
1406  visitDIVariable(N);
1407 
1408  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1409  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1410  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1411  "local variable requires a valid scope", &N, N.getRawScope());
1412  if (auto Ty = N.getType())
1413  AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1414 }
1415 
1416 void Verifier::visitDILabel(const DILabel &N) {
1417  if (auto *S = N.getRawScope())
1418  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1419  if (auto *F = N.getRawFile())
1420  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1421 
1422  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1423  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1424  "label requires a valid scope", &N, N.getRawScope());
1425 }
1426 
1427 void Verifier::visitDIExpression(const DIExpression &N) {
1428  AssertDI(N.isValid(), "invalid expression", &N);
1429 }
1430 
1431 void Verifier::visitDIGlobalVariableExpression(
1432  const DIGlobalVariableExpression &GVE) {
1433  AssertDI(GVE.getVariable(), "missing variable");
1434  if (auto *Var = GVE.getVariable())
1435  visitDIGlobalVariable(*Var);
1436  if (auto *Expr = GVE.getExpression()) {
1437  visitDIExpression(*Expr);
1438  if (auto Fragment = Expr->getFragmentInfo())
1439  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1440  }
1441 }
1442 
1443 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1444  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1445  if (auto *T = N.getRawType())
1446  AssertDI(isType(T), "invalid type ref", &N, T);
1447  if (auto *F = N.getRawFile())
1448  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1449 }
1450 
1451 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1452  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1453  N.getTag() == dwarf::DW_TAG_imported_declaration,
1454  "invalid tag", &N);
1455  if (auto *S = N.getRawScope())
1456  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1457  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1458  N.getRawEntity());
1459 }
1460 
1461 void Verifier::visitComdat(const Comdat &C) {
1462  // In COFF the Module is invalid if the GlobalValue has private linkage.
1463  // Entities with private linkage don't have entries in the symbol table.
1464  if (TT.isOSBinFormatCOFF())
1465  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1466  Assert(!GV->hasPrivateLinkage(),
1467  "comdat global value has private linkage", GV);
1468 }
1469 
1470 void Verifier::visitModuleIdents(const Module &M) {
1471  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1472  if (!Idents)
1473  return;
1474 
1475  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1476  // Scan each llvm.ident entry and make sure that this requirement is met.
1477  for (const MDNode *N : Idents->operands()) {
1478  Assert(N->getNumOperands() == 1,
1479  "incorrect number of operands in llvm.ident metadata", N);
1480  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1481  ("invalid value for llvm.ident metadata entry operand"
1482  "(the operand should be a string)"),
1483  N->getOperand(0));
1484  }
1485 }
1486 
1487 void Verifier::visitModuleCommandLines(const Module &M) {
1488  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1489  if (!CommandLines)
1490  return;
1491 
1492  // llvm.commandline takes a list of metadata entry. Each entry has only one
1493  // string. Scan each llvm.commandline entry and make sure that this
1494  // requirement is met.
1495  for (const MDNode *N : CommandLines->operands()) {
1496  Assert(N->getNumOperands() == 1,
1497  "incorrect number of operands in llvm.commandline metadata", N);
1498  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1499  ("invalid value for llvm.commandline metadata entry operand"
1500  "(the operand should be a string)"),
1501  N->getOperand(0));
1502  }
1503 }
1504 
1505 void Verifier::visitModuleFlags(const Module &M) {
1506  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1507  if (!Flags) return;
1508 
1509  // Scan each flag, and track the flags and requirements.
1511  SmallVector<const MDNode*, 16> Requirements;
1512  for (const MDNode *MDN : Flags->operands())
1513  visitModuleFlag(MDN, SeenIDs, Requirements);
1514 
1515  // Validate that the requirements in the module are valid.
1516  for (const MDNode *Requirement : Requirements) {
1517  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1518  const Metadata *ReqValue = Requirement->getOperand(1);
1519 
1520  const MDNode *Op = SeenIDs.lookup(Flag);
1521  if (!Op) {
1522  CheckFailed("invalid requirement on flag, flag is not present in module",
1523  Flag);
1524  continue;
1525  }
1526 
1527  if (Op->getOperand(2) != ReqValue) {
1528  CheckFailed(("invalid requirement on flag, "
1529  "flag does not have the required value"),
1530  Flag);
1531  continue;
1532  }
1533  }
1534 }
1535 
1536 void
1537 Verifier::visitModuleFlag(const MDNode *Op,
1539  SmallVectorImpl<const MDNode *> &Requirements) {
1540  // Each module flag should have three arguments, the merge behavior (a
1541  // constant int), the flag ID (an MDString), and the value.
1542  Assert(Op->getNumOperands() == 3,
1543  "incorrect number of operands in module flag", Op);
1545  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1546  Assert(
1547  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1548  "invalid behavior operand in module flag (expected constant integer)",
1549  Op->getOperand(0));
1550  Assert(false,
1551  "invalid behavior operand in module flag (unexpected constant)",
1552  Op->getOperand(0));
1553  }
1554  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1555  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1556  Op->getOperand(1));
1557 
1558  // Sanity check the values for behaviors with additional requirements.
1559  switch (MFB) {
1560  case Module::Error:
1561  case Module::Warning:
1562  case Module::Override:
1563  // These behavior types accept any value.
1564  break;
1565 
1566  case Module::Max: {
1567  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1568  "invalid value for 'max' module flag (expected constant integer)",
1569  Op->getOperand(2));
1570  break;
1571  }
1572 
1573  case Module::Require: {
1574  // The value should itself be an MDNode with two operands, a flag ID (an
1575  // MDString), and a value.
1576  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1577  Assert(Value && Value->getNumOperands() == 2,
1578  "invalid value for 'require' module flag (expected metadata pair)",
1579  Op->getOperand(2));
1580  Assert(isa<MDString>(Value->getOperand(0)),
1581  ("invalid value for 'require' module flag "
1582  "(first value operand should be a string)"),
1583  Value->getOperand(0));
1584 
1585  // Append it to the list of requirements, to check once all module flags are
1586  // scanned.
1587  Requirements.push_back(Value);
1588  break;
1589  }
1590 
1591  case Module::Append:
1592  case Module::AppendUnique: {
1593  // These behavior types require the operand be an MDNode.
1594  Assert(isa<MDNode>(Op->getOperand(2)),
1595  "invalid value for 'append'-type module flag "
1596  "(expected a metadata node)",
1597  Op->getOperand(2));
1598  break;
1599  }
1600  }
1601 
1602  // Unless this is a "requires" flag, check the ID is unique.
1603  if (MFB != Module::Require) {
1604  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1605  Assert(Inserted,
1606  "module flag identifiers must be unique (or of 'require' type)", ID);
1607  }
1608 
1609  if (ID->getString() == "wchar_size") {
1611  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1612  Assert(Value, "wchar_size metadata requires constant integer argument");
1613  }
1614 
1615  if (ID->getString() == "Linker Options") {
1616  // If the llvm.linker.options named metadata exists, we assume that the
1617  // bitcode reader has upgraded the module flag. Otherwise the flag might
1618  // have been created by a client directly.
1619  Assert(M.getNamedMetadata("llvm.linker.options"),
1620  "'Linker Options' named metadata no longer supported");
1621  }
1622 
1623  if (ID->getString() == "SemanticInterposition") {
1624  ConstantInt *Value =
1625  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1626  Assert(Value,
1627  "SemanticInterposition metadata requires constant integer argument");
1628  }
1629 
1630  if (ID->getString() == "CG Profile") {
1631  for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1632  visitModuleFlagCGProfileEntry(MDO);
1633  }
1634 }
1635 
1636 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1637  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1638  if (!FuncMDO)
1639  return;
1640  auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1641  Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1642  "expected a Function or null", FuncMDO);
1643  };
1644  auto Node = dyn_cast_or_null<MDNode>(MDO);
1645  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1646  CheckFunction(Node->getOperand(0));
1647  CheckFunction(Node->getOperand(1));
1648  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1649  Assert(Count && Count->getType()->isIntegerTy(),
1650  "expected an integer constant", Node->getOperand(2));
1651 }
1652 
1653 /// Return true if this attribute kind only applies to functions.
1655  switch (Kind) {
1656  case Attribute::NoMerge:
1657  case Attribute::NoReturn:
1658  case Attribute::NoSync:
1659  case Attribute::WillReturn:
1660  case Attribute::NoCallback:
1661  case Attribute::NoCfCheck:
1662  case Attribute::NoUnwind:
1663  case Attribute::NoInline:
1664  case Attribute::AlwaysInline:
1665  case Attribute::OptimizeForSize:
1666  case Attribute::StackProtect:
1667  case Attribute::StackProtectReq:
1668  case Attribute::StackProtectStrong:
1669  case Attribute::SafeStack:
1670  case Attribute::ShadowCallStack:
1671  case Attribute::NoRedZone:
1672  case Attribute::NoImplicitFloat:
1673  case Attribute::Naked:
1674  case Attribute::InlineHint:
1675  case Attribute::UWTable:
1676  case Attribute::VScaleRange:
1677  case Attribute::NonLazyBind:
1678  case Attribute::ReturnsTwice:
1679  case Attribute::SanitizeAddress:
1680  case Attribute::SanitizeHWAddress:
1681  case Attribute::SanitizeMemTag:
1682  case Attribute::SanitizeThread:
1683  case Attribute::SanitizeMemory:
1684  case Attribute::MinSize:
1685  case Attribute::NoDuplicate:
1686  case Attribute::Builtin:
1687  case Attribute::NoBuiltin:
1688  case Attribute::Cold:
1689  case Attribute::Hot:
1690  case Attribute::OptForFuzzing:
1691  case Attribute::OptimizeNone:
1692  case Attribute::JumpTable:
1693  case Attribute::Convergent:
1694  case Attribute::ArgMemOnly:
1695  case Attribute::NoRecurse:
1696  case Attribute::InaccessibleMemOnly:
1697  case Attribute::InaccessibleMemOrArgMemOnly:
1698  case Attribute::AllocSize:
1699  case Attribute::SpeculativeLoadHardening:
1700  case Attribute::Speculatable:
1701  case Attribute::StrictFP:
1702  case Attribute::NullPointerIsValid:
1703  case Attribute::MustProgress:
1704  case Attribute::NoProfile:
1705  return true;
1706  default:
1707  break;
1708  }
1709  return false;
1710 }
1711 
1712 /// Return true if this is a function attribute that can also appear on
1713 /// arguments.
1715  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1716  Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
1717  Kind == Attribute::Preallocated || Kind == Attribute::StackAlignment;
1718 }
1719 
1720 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1721  const Value *V) {
1722  for (Attribute A : Attrs) {
1723 
1724  if (A.isStringAttribute()) {
1725 #define GET_ATTR_NAMES
1726 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1727 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1728  if (A.getKindAsString() == #DISPLAY_NAME) { \
1729  auto V = A.getValueAsString(); \
1730  if (!(V.empty() || V == "true" || V == "false")) \
1731  CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1732  ""); \
1733  }
1734 
1735 #include "llvm/IR/Attributes.inc"
1736  continue;
1737  }
1738 
1739  if (A.isIntAttribute() !=
1740  Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1741  CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1742  V);
1743  return;
1744  }
1745 
1746  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1747  if (!IsFunction) {
1748  CheckFailed("Attribute '" + A.getAsString() +
1749  "' only applies to functions!",
1750  V);
1751  return;
1752  }
1753  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1754  CheckFailed("Attribute '" + A.getAsString() +
1755  "' does not apply to functions!",
1756  V);
1757  return;
1758  }
1759  }
1760 }
1761 
1762 // VerifyParameterAttrs - Check the given attributes for an argument or return
1763 // value of the specified type. The value V is printed in error messages.
1764 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1765  const Value *V) {
1766  if (!Attrs.hasAttributes())
1767  return;
1768 
1769  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1770 
1771  if (Attrs.hasAttribute(Attribute::ImmArg)) {
1772  Assert(Attrs.getNumAttributes() == 1,
1773  "Attribute 'immarg' is incompatible with other attributes", V);
1774  }
1775 
1776  // Check for mutually incompatible attributes. Only inreg is compatible with
1777  // sret.
1778  unsigned AttrCount = 0;
1779  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1780  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1781  AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1782  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1783  Attrs.hasAttribute(Attribute::InReg);
1784  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1785  AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1786  Assert(AttrCount <= 1,
1787  "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1788  "'byref', and 'sret' are incompatible!",
1789  V);
1790 
1791  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1793  "Attributes "
1794  "'inalloca and readonly' are incompatible!",
1795  V);
1796 
1797  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1798  Attrs.hasAttribute(Attribute::Returned)),
1799  "Attributes "
1800  "'sret and returned' are incompatible!",
1801  V);
1802 
1803  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1804  Attrs.hasAttribute(Attribute::SExt)),
1805  "Attributes "
1806  "'zeroext and signext' are incompatible!",
1807  V);
1808 
1809  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1811  "Attributes "
1812  "'readnone and readonly' are incompatible!",
1813  V);
1814 
1815  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1816  Attrs.hasAttribute(Attribute::WriteOnly)),
1817  "Attributes "
1818  "'readnone and writeonly' are incompatible!",
1819  V);
1820 
1822  Attrs.hasAttribute(Attribute::WriteOnly)),
1823  "Attributes "
1824  "'readonly and writeonly' are incompatible!",
1825  V);
1826 
1827  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1828  Attrs.hasAttribute(Attribute::AlwaysInline)),
1829  "Attributes "
1830  "'noinline and alwaysinline' are incompatible!",
1831  V);
1832 
1833  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1834  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1835  "Wrong types for attribute: " +
1836  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1837  V);
1838 
1839  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1840  SmallPtrSet<Type*, 4> Visited;
1841  if (!PTy->getElementType()->isSized(&Visited)) {
1842  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1843  !Attrs.hasAttribute(Attribute::ByRef) &&
1844  !Attrs.hasAttribute(Attribute::InAlloca) &&
1845  !Attrs.hasAttribute(Attribute::Preallocated),
1846  "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
1847  "support unsized types!",
1848  V);
1849  }
1850  if (!isa<PointerType>(PTy->getElementType()))
1851  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1852  "Attribute 'swifterror' only applies to parameters "
1853  "with pointer to pointer type!",
1854  V);
1855 
1856  if (Attrs.hasAttribute(Attribute::ByRef)) {
1857  Assert(Attrs.getByRefType() == PTy->getElementType(),
1858  "Attribute 'byref' type does not match parameter!", V);
1859  }
1860 
1861  if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1862  Assert(Attrs.getByValType() == PTy->getElementType(),
1863  "Attribute 'byval' type does not match parameter!", V);
1864  }
1865 
1866  if (Attrs.hasAttribute(Attribute::Preallocated)) {
1867  Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1868  "Attribute 'preallocated' type does not match parameter!", V);
1869  }
1870 
1871  if (Attrs.hasAttribute(Attribute::InAlloca)) {
1872  Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1873  "Attribute 'inalloca' type does not match parameter!", V);
1874  }
1875  } else {
1876  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1877  "Attribute 'byval' only applies to parameters with pointer type!",
1878  V);
1879  Assert(!Attrs.hasAttribute(Attribute::ByRef),
1880  "Attribute 'byref' only applies to parameters with pointer type!",
1881  V);
1882  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1883  "Attribute 'swifterror' only applies to parameters "
1884  "with pointer type!",
1885  V);
1886  }
1887 }
1888 
1889 // Check parameter attributes against a function type.
1890 // The value V is printed in error messages.
1891 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1892  const Value *V, bool IsIntrinsic) {
1893  if (Attrs.isEmpty())
1894  return;
1895 
1896  if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1897  Assert(Attrs.hasParentContext(Context),
1898  "Attribute list does not match Module context!", &Attrs, V);
1899  for (const auto &AttrSet : Attrs) {
1900  Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1901  "Attribute set does not match Module context!", &AttrSet, V);
1902  for (const auto &A : AttrSet) {
1903  Assert(A.hasParentContext(Context),
1904  "Attribute does not match Module context!", &A, V);
1905  }
1906  }
1907  }
1908 
1909  bool SawNest = false;
1910  bool SawReturned = false;
1911  bool SawSRet = false;
1912  bool SawSwiftSelf = false;
1913  bool SawSwiftAsync = false;
1914  bool SawSwiftError = false;
1915 
1916  // Verify return value attributes.
1917  AttributeSet RetAttrs = Attrs.getRetAttributes();
1918  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1919  !RetAttrs.hasAttribute(Attribute::Nest) &&
1920  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1921  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1922  !RetAttrs.hasAttribute(Attribute::NoFree) &&
1923  !RetAttrs.hasAttribute(Attribute::Returned) &&
1924  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1925  !RetAttrs.hasAttribute(Attribute::Preallocated) &&
1926  !RetAttrs.hasAttribute(Attribute::ByRef) &&
1927  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1928  !RetAttrs.hasAttribute(Attribute::SwiftAsync) &&
1929  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1930  "Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
1931  "'nest', 'sret', 'nocapture', 'nofree', "
1932  "'returned', 'swiftself', 'swiftasync', and 'swifterror'"
1933  " do not apply to return values!",
1934  V);
1935  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1936  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1937  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1938  "Attribute '" + RetAttrs.getAsString() +
1939  "' does not apply to function returns",
1940  V);
1941  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1942 
1943  // Verify parameter attributes.
1944  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1945  Type *Ty = FT->getParamType(i);
1946  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1947 
1948  if (!IsIntrinsic) {
1949  Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1950  "immarg attribute only applies to intrinsics",V);
1951  }
1952 
1953  verifyParameterAttrs(ArgAttrs, Ty, V);
1954 
1955  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1956  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1957  SawNest = true;
1958  }
1959 
1960  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1961  Assert(!SawReturned, "More than one parameter has attribute returned!",
1962  V);
1964  "Incompatible argument and return types for 'returned' attribute",
1965  V);
1966  SawReturned = true;
1967  }
1968 
1969  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1970  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1971  Assert(i == 0 || i == 1,
1972  "Attribute 'sret' is not on first or second parameter!", V);
1973  SawSRet = true;
1974  }
1975 
1976  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1977  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1978  SawSwiftSelf = true;
1979  }
1980 
1981  if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1982  Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1983  SawSwiftAsync = true;
1984  }
1985 
1986  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1987  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1988  V);
1989  SawSwiftError = true;
1990  }
1991 
1992  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1993  Assert(i == FT->getNumParams() - 1,
1994  "inalloca isn't on the last parameter!", V);
1995  }
1996  }
1997 
1998  if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1999  return;
2000 
2001  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
2002 
2003  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2005  "Attributes 'readnone and readonly' are incompatible!", V);
2006 
2007  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2008  Attrs.hasFnAttribute(Attribute::WriteOnly)),
2009  "Attributes 'readnone and writeonly' are incompatible!", V);
2010 
2012  Attrs.hasFnAttribute(Attribute::WriteOnly)),
2013  "Attributes 'readonly and writeonly' are incompatible!", V);
2014 
2015  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2016  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
2017  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
2018  "incompatible!",
2019  V);
2020 
2021  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2022  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
2023  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
2024 
2025  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
2026  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
2027  "Attributes 'noinline and alwaysinline' are incompatible!", V);
2028 
2029  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
2030  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
2031  "Attribute 'optnone' requires 'noinline'!", V);
2032 
2033  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
2034  "Attributes 'optsize and optnone' are incompatible!", V);
2035 
2036  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
2037  "Attributes 'minsize and optnone' are incompatible!", V);
2038  }
2039 
2041  const GlobalValue *GV = cast<GlobalValue>(V);
2043  "Attribute 'jumptable' requires 'unnamed_addr'", V);
2044  }
2045 
2046  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
2047  std::pair<unsigned, Optional<unsigned>> Args =
2048  Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
2049 
2050  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2051  if (ParamNo >= FT->getNumParams()) {
2052  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2053  return false;
2054  }
2055 
2056  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2057  CheckFailed("'allocsize' " + Name +
2058  " argument must refer to an integer parameter",
2059  V);
2060  return false;
2061  }
2062 
2063  return true;
2064  };
2065 
2066  if (!CheckParam("element size", Args.first))
2067  return;
2068 
2069  if (Args.second && !CheckParam("number of elements", *Args.second))
2070  return;
2071  }
2072 
2073  if (Attrs.hasFnAttribute(Attribute::VScaleRange)) {
2074  std::pair<unsigned, unsigned> Args =
2075  Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex);
2076 
2077  if (Args.first > Args.second && Args.second != 0)
2078  CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2079  }
2080 
2081  if (Attrs.hasFnAttribute("frame-pointer")) {
2083  "frame-pointer").getValueAsString();
2084  if (FP != "all" && FP != "non-leaf" && FP != "none")
2085  CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2086  }
2087 
2088  if (Attrs.hasFnAttribute("patchable-function-prefix")) {
2089  StringRef S = Attrs
2091  "patchable-function-prefix")
2092  .getValueAsString();
2093  unsigned N;
2094  if (S.getAsInteger(10, N))
2095  CheckFailed(
2096  "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
2097  }
2098  if (Attrs.hasFnAttribute("patchable-function-entry")) {
2099  StringRef S = Attrs
2101  "patchable-function-entry")
2102  .getValueAsString();
2103  unsigned N;
2104  if (S.getAsInteger(10, N))
2105  CheckFailed(
2106  "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
2107  }
2108 }
2109 
2110 void Verifier::verifyFunctionMetadata(
2111  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2112  for (const auto &Pair : MDs) {
2113  if (Pair.first == LLVMContext::MD_prof) {
2114  MDNode *MD = Pair.second;
2115  Assert(MD->getNumOperands() >= 2,
2116  "!prof annotations should have no less than 2 operands", MD);
2117 
2118  // Check first operand.
2119  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2120  MD);
2121  Assert(isa<MDString>(MD->getOperand(0)),
2122  "expected string with name of the !prof annotation", MD);
2123  MDString *MDS = cast<MDString>(MD->getOperand(0));
2124  StringRef ProfName = MDS->getString();
2125  Assert(ProfName.equals("function_entry_count") ||
2126  ProfName.equals("synthetic_function_entry_count"),
2127  "first operand should be 'function_entry_count'"
2128  " or 'synthetic_function_entry_count'",
2129  MD);
2130 
2131  // Check second operand.
2132  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2133  MD);
2134  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2135  "expected integer argument to function_entry_count", MD);
2136  }
2137  }
2138 }
2139 
2140 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2141  if (!ConstantExprVisited.insert(EntryC).second)
2142  return;
2143 
2145  Stack.push_back(EntryC);
2146 
2147  while (!Stack.empty()) {
2148  const Constant *C = Stack.pop_back_val();
2149 
2150  // Check this constant expression.
2151  if (const auto *CE = dyn_cast<ConstantExpr>(C))
2152  visitConstantExpr(CE);
2153 
2154  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2155  // Global Values get visited separately, but we do need to make sure
2156  // that the global value is in the correct module
2157  Assert(GV->getParent() == &M, "Referencing global in another module!",
2158  EntryC, &M, GV, GV->getParent());
2159  continue;
2160  }
2161 
2162  // Visit all sub-expressions.
2163  for (const Use &U : C->operands()) {
2164  const auto *OpC = dyn_cast<Constant>(U);
2165  if (!OpC)
2166  continue;
2167  if (!ConstantExprVisited.insert(OpC).second)
2168  continue;
2169  Stack.push_back(OpC);
2170  }
2171  }
2172 }
2173 
2174 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2175  if (CE->getOpcode() == Instruction::BitCast)
2176  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2177  CE->getType()),
2178  "Invalid bitcast", CE);
2179 
2180  if (CE->getOpcode() == Instruction::IntToPtr ||
2181  CE->getOpcode() == Instruction::PtrToInt) {
2182  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
2183  ? CE->getType()
2184  : CE->getOperand(0)->getType();
2185  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
2186  ? "inttoptr not supported for non-integral pointers"
2187  : "ptrtoint not supported for non-integral pointers";
2188  Assert(
2189  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
2190  Msg);
2191  }
2192 }
2193 
2194 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2195  // There shouldn't be more attribute sets than there are parameters plus the
2196  // function and return value.
2197  return Attrs.getNumAttrSets() <= Params + 2;
2198 }
2199 
2200 /// Verify that statepoint intrinsic is well formed.
2201 void Verifier::verifyStatepoint(const CallBase &Call) {
2202  assert(Call.getCalledFunction() &&
2203  Call.getCalledFunction()->getIntrinsicID() ==
2204  Intrinsic::experimental_gc_statepoint);
2205 
2206  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2207  !Call.onlyAccessesArgMemory(),
2208  "gc.statepoint must read and write all memory to preserve "
2209  "reordering restrictions required by safepoint semantics",
2210  Call);
2211 
2212  const int64_t NumPatchBytes =
2213  cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2214  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2215  Assert(NumPatchBytes >= 0,
2216  "gc.statepoint number of patchable bytes must be "
2217  "positive",
2218  Call);
2219 
2220  const Value *Target = Call.getArgOperand(2);
2221  auto *PT = dyn_cast<PointerType>(Target->getType());
2222  Assert(PT && PT->getElementType()->isFunctionTy(),
2223  "gc.statepoint callee must be of function pointer type", Call, Target);
2224  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2225 
2226  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2227  Assert(NumCallArgs >= 0,
2228  "gc.statepoint number of arguments to underlying call "
2229  "must be positive",
2230  Call);
2231  const int NumParams = (int)TargetFuncType->getNumParams();
2232  if (TargetFuncType->isVarArg()) {
2233  Assert(NumCallArgs >= NumParams,
2234  "gc.statepoint mismatch in number of vararg call args", Call);
2235 
2236  // TODO: Remove this limitation
2237  Assert(TargetFuncType->getReturnType()->isVoidTy(),
2238  "gc.statepoint doesn't support wrapping non-void "
2239  "vararg functions yet",
2240  Call);
2241  } else
2242  Assert(NumCallArgs == NumParams,
2243  "gc.statepoint mismatch in number of call args", Call);
2244 
2245  const uint64_t Flags
2246  = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2247  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2248  "unknown flag used in gc.statepoint flags argument", Call);
2249 
2250  // Verify that the types of the call parameter arguments match
2251  // the type of the wrapped callee.
2252  AttributeList Attrs = Call.getAttributes();
2253  for (int i = 0; i < NumParams; i++) {
2254  Type *ParamType = TargetFuncType->getParamType(i);
2255  Type *ArgType = Call.getArgOperand(5 + i)->getType();
2256  Assert(ArgType == ParamType,
2257  "gc.statepoint call argument does not match wrapped "
2258  "function type",
2259  Call);
2260 
2261  if (TargetFuncType->isVarArg()) {
2262  AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2263  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2264  "Attribute 'sret' cannot be used for vararg call arguments!",
2265  Call);
2266  }
2267  }
2268 
2269  const int EndCallArgsInx = 4 + NumCallArgs;
2270 
2271  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2272  Assert(isa<ConstantInt>(NumTransitionArgsV),
2273  "gc.statepoint number of transition arguments "
2274  "must be constant integer",
2275  Call);
2276  const int NumTransitionArgs =
2277  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2278  Assert(NumTransitionArgs == 0,
2279  "gc.statepoint w/inline transition bundle is deprecated", Call);
2280  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2281 
2282  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2283  Assert(isa<ConstantInt>(NumDeoptArgsV),
2284  "gc.statepoint number of deoptimization arguments "
2285  "must be constant integer",
2286  Call);
2287  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2288  Assert(NumDeoptArgs == 0,
2289  "gc.statepoint w/inline deopt operands is deprecated", Call);
2290 
2291  const int ExpectedNumArgs = 7 + NumCallArgs;
2292  Assert(ExpectedNumArgs == (int)Call.arg_size(),
2293  "gc.statepoint too many arguments", Call);
2294 
2295  // Check that the only uses of this gc.statepoint are gc.result or
2296  // gc.relocate calls which are tied to this statepoint and thus part
2297  // of the same statepoint sequence
2298  for (const User *U : Call.users()) {
2299  const CallInst *UserCall = dyn_cast<const CallInst>(U);
2300  Assert(UserCall, "illegal use of statepoint token", Call, U);
2301  if (!UserCall)
2302  continue;
2303  Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2304  "gc.result or gc.relocate are the only value uses "
2305  "of a gc.statepoint",
2306  Call, U);
2307  if (isa<GCResultInst>(UserCall)) {
2308  Assert(UserCall->getArgOperand(0) == &Call,
2309  "gc.result connected to wrong gc.statepoint", Call, UserCall);
2310  } else if (isa<GCRelocateInst>(Call)) {
2311  Assert(UserCall->getArgOperand(0) == &Call,
2312  "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2313  }
2314  }
2315 
2316  // Note: It is legal for a single derived pointer to be listed multiple
2317  // times. It's non-optimal, but it is legal. It can also happen after
2318  // insertion if we strip a bitcast away.
2319  // Note: It is really tempting to check that each base is relocated and
2320  // that a derived pointer is never reused as a base pointer. This turns
2321  // out to be problematic since optimizations run after safepoint insertion
2322  // can recognize equality properties that the insertion logic doesn't know
2323  // about. See example statepoint.ll in the verifier subdirectory
2324 }
2325 
2326 void Verifier::verifyFrameRecoverIndices() {
2327  for (auto &Counts : FrameEscapeInfo) {
2328  Function *F = Counts.first;
2329  unsigned EscapedObjectCount = Counts.second.first;
2330  unsigned MaxRecoveredIndex = Counts.second.second;
2331  Assert(MaxRecoveredIndex <= EscapedObjectCount,
2332  "all indices passed to llvm.localrecover must be less than the "
2333  "number of arguments passed to llvm.localescape in the parent "
2334  "function",
2335  F);
2336  }
2337 }
2338 
2340  BasicBlock *UnwindDest;
2341  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2342  UnwindDest = II->getUnwindDest();
2343  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2344  UnwindDest = CSI->getUnwindDest();
2345  else
2346  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2347  return UnwindDest->getFirstNonPHI();
2348 }
2349 
2350 void Verifier::verifySiblingFuncletUnwinds() {
2353  for (const auto &Pair : SiblingFuncletInfo) {
2354  Instruction *PredPad = Pair.first;
2355  if (Visited.count(PredPad))
2356  continue;
2357  Active.insert(PredPad);
2358  Instruction *Terminator = Pair.second;
2359  do {
2360  Instruction *SuccPad = getSuccPad(Terminator);
2361  if (Active.count(SuccPad)) {
2362  // Found a cycle; report error
2363  Instruction *CyclePad = SuccPad;
2364  SmallVector<Instruction *, 8> CycleNodes;
2365  do {
2366  CycleNodes.push_back(CyclePad);
2367  Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2368  if (CycleTerminator != CyclePad)
2369  CycleNodes.push_back(CycleTerminator);
2370  CyclePad = getSuccPad(CycleTerminator);
2371  } while (CyclePad != SuccPad);
2372  Assert(false, "EH pads can't handle each other's exceptions",
2373  ArrayRef<Instruction *>(CycleNodes));
2374  }
2375  // Don't re-walk a node we've already checked
2376  if (!Visited.insert(SuccPad).second)
2377  break;
2378  // Walk to this successor if it has a map entry.
2379  PredPad = SuccPad;
2380  auto TermI = SiblingFuncletInfo.find(PredPad);
2381  if (TermI == SiblingFuncletInfo.end())
2382  break;
2383  Terminator = TermI->second;
2384  Active.insert(PredPad);
2385  } while (true);
2386  // Each node only has one successor, so we've walked all the active
2387  // nodes' successors.
2388  Active.clear();
2389  }
2390 }
2391 
2392 // visitFunction - Verify that a function is ok.
2393 //
2394 void Verifier::visitFunction(const Function &F) {
2395  visitGlobalValue(F);
2396 
2397  // Check function arguments.
2398  FunctionType *FT = F.getFunctionType();
2399  unsigned NumArgs = F.arg_size();
2400 
2401  Assert(&Context == &F.getContext(),
2402  "Function context does not match Module context!", &F);
2403 
2404  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2405  Assert(FT->getNumParams() == NumArgs,
2406  "# formal arguments must match # of arguments for function type!", &F,
2407  FT);
2408  Assert(F.getReturnType()->isFirstClassType() ||
2409  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2410  "Functions cannot return aggregate values!", &F);
2411 
2412  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2413  "Invalid struct return type!", &F);
2414 
2415  AttributeList Attrs = F.getAttributes();
2416 
2417  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2418  "Attribute after last parameter!", &F);
2419 
2420  bool isLLVMdotName = F.getName().size() >= 5 &&
2421  F.getName().substr(0, 5) == "llvm.";
2422 
2423  // Check function attributes.
2424  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2425 
2426  // On function declarations/definitions, we do not support the builtin
2427  // attribute. We do not check this in VerifyFunctionAttrs since that is
2428  // checking for Attributes that can/can not ever be on functions.
2429  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2430  "Attribute 'builtin' can only be applied to a callsite.", &F);
2431 
2432  // Check that this function meets the restrictions on this calling convention.
2433  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2434  // restrictions can be lifted.
2435  switch (F.getCallingConv()) {
2436  default:
2437  case CallingConv::C:
2438  break;
2439  case CallingConv::X86_INTR: {
2440  Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal),
2441  "Calling convention parameter requires byval", &F);
2442  break;
2443  }
2446  Assert(F.getReturnType()->isVoidTy(),
2447  "Calling convention requires void return type", &F);
2454  Assert(!F.hasStructRetAttr(),
2455  "Calling convention does not allow sret", &F);
2456  if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2457  const unsigned StackAS = DL.getAllocaAddrSpace();
2458  unsigned i = 0;
2459  for (const Argument &Arg : F.args()) {
2460  Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),
2461  "Calling convention disallows byval", &F);
2462  Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),
2463  "Calling convention disallows preallocated", &F);
2464  Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),
2465  "Calling convention disallows inalloca", &F);
2466 
2467  if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2468  // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2469  // value here.
2470  Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2471  "Calling convention disallows stack byref", &F);
2472  }
2473 
2474  ++i;
2475  }
2476  }
2477 
2479  case CallingConv::Fast:
2480  case CallingConv::Cold:
2484  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2485  "perfect forwarding!",
2486  &F);
2487  break;
2488  }
2489 
2490  // Check that the argument values match the function type for this function...
2491  unsigned i = 0;
2492  for (const Argument &Arg : F.args()) {
2493  Assert(Arg.getType() == FT->getParamType(i),
2494  "Argument value does not match function argument type!", &Arg,
2495  FT->getParamType(i));
2496  Assert(Arg.getType()->isFirstClassType(),
2497  "Function arguments must have first-class types!", &Arg);
2498  if (!isLLVMdotName) {
2499  Assert(!Arg.getType()->isMetadataTy(),
2500  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2501  Assert(!Arg.getType()->isTokenTy(),
2502  "Function takes token but isn't an intrinsic", &Arg, &F);
2503  Assert(!Arg.getType()->isX86_AMXTy(),
2504  "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2505  }
2506 
2507  // Check that swifterror argument is only used by loads and stores.
2508  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2509  verifySwiftErrorValue(&Arg);
2510  }
2511  ++i;
2512  }
2513 
2514  if (!isLLVMdotName) {
2515  Assert(!F.getReturnType()->isTokenTy(),
2516  "Function returns a token but isn't an intrinsic", &F);
2517  Assert(!F.getReturnType()->isX86_AMXTy(),
2518  "Function returns a x86_amx but isn't an intrinsic", &F);
2519  }
2520 
2521  // Get the function metadata attachments.
2523  F.getAllMetadata(MDs);
2524  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2525  verifyFunctionMetadata(MDs);
2526 
2527  // Check validity of the personality function
2528  if (F.hasPersonalityFn()) {
2529  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2530  if (Per)
2531  Assert(Per->getParent() == F.getParent(),
2532  "Referencing personality function in another module!",
2533  &F, F.getParent(), Per, Per->getParent());
2534  }
2535 
2536  if (F.isMaterializable()) {
2537  // Function has a body somewhere we can't see.
2538  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2539  MDs.empty() ? nullptr : MDs.front().second);
2540  } else if (F.isDeclaration()) {
2541  for (const auto &I : MDs) {
2542  // This is used for call site debug information.
2543  AssertDI(I.first != LLVMContext::MD_dbg ||
2544  !cast<DISubprogram>(I.second)->isDistinct(),
2545  "function declaration may only have a unique !dbg attachment",
2546  &F);
2547  Assert(I.first != LLVMContext::MD_prof,
2548  "function declaration may not have a !prof attachment", &F);
2549 
2550  // Verify the metadata itself.
2551  visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2552  }
2553  Assert(!F.hasPersonalityFn(),
2554  "Function declaration shouldn't have a personality routine", &F);
2555  } else {
2556  // Verify that this function (which has a body) is not named "llvm.*". It
2557  // is not legal to define intrinsics.
2558  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2559 
2560  // Check the entry node
2561  const BasicBlock *Entry = &F.getEntryBlock();
2562  Assert(pred_empty(Entry),
2563  "Entry block to function must not have predecessors!", Entry);
2564 
2565  // The address of the entry block cannot be taken, unless it is dead.
2566  if (Entry->hasAddressTaken()) {
2567  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2568  "blockaddress may not be used with the entry block!", Entry);
2569  }
2570 
2571  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2572  // Visit metadata attachments.
2573  for (const auto &I : MDs) {
2574  // Verify that the attachment is legal.
2575  auto AllowLocs = AreDebugLocsAllowed::No;
2576  switch (I.first) {
2577  default:
2578  break;
2579  case LLVMContext::MD_dbg: {
2580  ++NumDebugAttachments;
2581  AssertDI(NumDebugAttachments == 1,
2582  "function must have a single !dbg attachment", &F, I.second);
2583  AssertDI(isa<DISubprogram>(I.second),
2584  "function !dbg attachment must be a subprogram", &F, I.second);
2585  AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2586  "function definition may only have a distinct !dbg attachment",
2587  &F);
2588 
2589  auto *SP = cast<DISubprogram>(I.second);
2590  const Function *&AttachedTo = DISubprogramAttachments[SP];
2591  AssertDI(!AttachedTo || AttachedTo == &F,
2592  "DISubprogram attached to more than one function", SP, &F);
2593  AttachedTo = &F;
2594  AllowLocs = AreDebugLocsAllowed::Yes;
2595  break;
2596  }
2597  case LLVMContext::MD_prof:
2598  ++NumProfAttachments;
2599  Assert(NumProfAttachments == 1,
2600  "function must have a single !prof attachment", &F, I.second);
2601  break;
2602  }
2603 
2604  // Verify the metadata itself.
2605  visitMDNode(*I.second, AllowLocs);
2606  }
2607  }
2608 
2609  // If this function is actually an intrinsic, verify that it is only used in
2610  // direct call/invokes, never having its "address taken".
2611  // Only do this if the module is materialized, otherwise we don't have all the
2612  // uses.
2613  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2614  const User *U;
2615  if (F.hasAddressTaken(&U))
2616  Assert(false, "Invalid user of intrinsic instruction!", U);
2617  }
2618 
2619  auto *N = F.getSubprogram();
2620  HasDebugInfo = (N != nullptr);
2621  if (!HasDebugInfo)
2622  return;
2623 
2624  // Check that all !dbg attachments lead to back to N.
2625  //
2626  // FIXME: Check this incrementally while visiting !dbg attachments.
2627  // FIXME: Only check when N is the canonical subprogram for F.
2629  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2630  // Be careful about using DILocation here since we might be dealing with
2631  // broken code (this is the Verifier after all).
2632  const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2633  if (!DL)
2634  return;
2635  if (!Seen.insert(DL).second)
2636  return;
2637 
2638  Metadata *Parent = DL->getRawScope();
2639  AssertDI(Parent && isa<DILocalScope>(Parent),
2640  "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2641  Parent);
2642 
2643  DILocalScope *Scope = DL->getInlinedAtScope();
2644  Assert(Scope, "Failed to find DILocalScope", DL);
2645 
2646  if (!Seen.insert(Scope).second)
2647  return;
2648 
2649  DISubprogram *SP = Scope->getSubprogram();
2650 
2651  // Scope and SP could be the same MDNode and we don't want to skip
2652  // validation in that case
2653  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2654  return;
2655 
2656  AssertDI(SP->describes(&F),
2657  "!dbg attachment points at wrong subprogram for function", N, &F,
2658  &I, DL, Scope, SP);
2659  };
2660  for (auto &BB : F)
2661  for (auto &I : BB) {
2662  VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2663  // The llvm.loop annotations also contain two DILocations.
2664  if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2665  for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2666  VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2667  if (BrokenDebugInfo)
2668  return;
2669  }
2670 }
2671 
2672 // verifyBasicBlock - Verify that a basic block is well formed...
2673 //
2674 void Verifier::visitBasicBlock(BasicBlock &BB) {
2675  InstsInThisBlock.clear();
2676 
2677  // Ensure that basic blocks have terminators!
2678  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2679 
2680  // Check constraints that this basic block imposes on all of the PHI nodes in
2681  // it.
2682  if (isa<PHINode>(BB.front())) {
2685  llvm::sort(Preds);
2686  for (const PHINode &PN : BB.phis()) {
2687  Assert(PN.getNumIncomingValues() == Preds.size(),
2688  "PHINode should have one entry for each predecessor of its "
2689  "parent basic block!",
2690  &PN);
2691 
2692  // Get and sort all incoming values in the PHI node...
2693  Values.clear();
2694  Values.reserve(PN.getNumIncomingValues());
2695  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2696  Values.push_back(
2697  std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2698  llvm::sort(Values);
2699 
2700  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2701  // Check to make sure that if there is more than one entry for a
2702  // particular basic block in this PHI node, that the incoming values are
2703  // all identical.
2704  //
2705  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2706  Values[i].second == Values[i - 1].second,
2707  "PHI node has multiple entries for the same basic block with "
2708  "different incoming values!",
2709  &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2710 
2711  // Check to make sure that the predecessors and PHI node entries are
2712  // matched up.
2713  Assert(Values[i].first == Preds[i],
2714  "PHI node entries do not match predecessors!", &PN,
2715  Values[i].first, Preds[i]);
2716  }
2717  }
2718  }
2719 
2720  // Check that all instructions have their parent pointers set up correctly.
2721  for (auto &I : BB)
2722  {
2723  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2724  }
2725 }
2726 
2727 void Verifier::visitTerminator(Instruction &I) {
2728  // Ensure that terminators only exist at the end of the basic block.
2729  Assert(&I == I.getParent()->getTerminator(),
2730  "Terminator found in the middle of a basic block!", I.getParent());
2731  visitInstruction(I);
2732 }
2733 
2734 void Verifier::visitBranchInst(BranchInst &BI) {
2735  if (BI.isConditional()) {
2736  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2737  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2738  }
2739  visitTerminator(BI);
2740 }
2741 
2742 void Verifier::visitReturnInst(ReturnInst &RI) {
2743  Function *F = RI.getParent()->getParent();
2744  unsigned N = RI.getNumOperands();
2745  if (F->getReturnType()->isVoidTy())
2746  Assert(N == 0,
2747  "Found return instr that returns non-void in Function of void "
2748  "return type!",
2749  &RI, F->getReturnType());
2750  else
2751  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2752  "Function return type does not match operand "
2753  "type of return inst!",
2754  &RI, F->getReturnType());
2755 
2756  // Check to make sure that the return value has necessary properties for
2757  // terminators...
2758  visitTerminator(RI);
2759 }
2760 
2761 void Verifier::visitSwitchInst(SwitchInst &SI) {
2762  // Check to make sure that all of the constants in the switch instruction
2763  // have the same type as the switched-on value.
2764  Type *SwitchTy = SI.getCondition()->getType();
2766  for (auto &Case : SI.cases()) {
2767  Assert(Case.getCaseValue()->getType() == SwitchTy,
2768  "Switch constants must all be same type as switch value!", &SI);
2769  Assert(Constants.insert(Case.getCaseValue()).second,
2770  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2771  }
2772 
2773  visitTerminator(SI);
2774 }
2775 
2776 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2777  Assert(BI.getAddress()->getType()->isPointerTy(),
2778  "Indirectbr operand must have pointer type!", &BI);
2779  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2781  "Indirectbr destinations must all have pointer type!", &BI);
2782 
2783  visitTerminator(BI);
2784 }
2785 
2786 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2787  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2788  &CBI);
2789  const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2790  Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2791  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2792  Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2793  "Callbr successors must all have pointer type!", &CBI);
2794  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2795  Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2796  "Using an unescaped label as a callbr argument!", &CBI);
2797  if (isa<BasicBlock>(CBI.getOperand(i)))
2798  for (unsigned j = i + 1; j != e; ++j)
2799  Assert(CBI.getOperand(i) != CBI.getOperand(j),
2800  "Duplicate callbr destination!", &CBI);
2801  }
2802  {
2804  for (Value *V : CBI.args())
2805  if (auto *BA = dyn_cast<BlockAddress>(V))
2806  ArgBBs.insert(BA->getBasicBlock());
2807  for (BasicBlock *BB : CBI.getIndirectDests())
2808  Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2809  }
2810 
2811  visitTerminator(CBI);
2812 }
2813 
2814 void Verifier::visitSelectInst(SelectInst &SI) {
2815  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2816  SI.getOperand(2)),
2817  "Invalid operands for select instruction!", &SI);
2818 
2819  Assert(SI.getTrueValue()->getType() == SI.getType(),
2820  "Select values must have same type as select instruction!", &SI);
2821  visitInstruction(SI);
2822 }
2823 
2824 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2825 /// a pass, if any exist, it's an error.
2826 ///
2827 void Verifier::visitUserOp1(Instruction &I) {
2828  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2829 }
2830 
2831 void Verifier::visitTruncInst(TruncInst &I) {
2832  // Get the source and destination types
2833  Type *SrcTy = I.getOperand(0)->getType();
2834  Type *DestTy = I.getType();
2835 
2836  // Get the size of the types in bits, we'll need this later
2837  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2838  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2839 
2840  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2841  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2842  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2843  "trunc source and destination must both be a vector or neither", &I);
2844  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2845 
2846  visitInstruction(I);
2847 }
2848 
2849 void Verifier::visitZExtInst(ZExtInst &I) {
2850  // Get the source and destination types
2851  Type *SrcTy = I.getOperand(0)->getType();
2852  Type *DestTy = I.getType();
2853 
2854  // Get the size of the types in bits, we'll need this later
2855  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2856  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2857  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2858  "zext source and destination must both be a vector or neither", &I);
2859  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2860  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2861 
2862  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2863 
2864  visitInstruction(I);
2865 }
2866 
2867 void Verifier::visitSExtInst(SExtInst &I) {
2868  // Get the source and destination types
2869  Type *SrcTy = I.getOperand(0)->getType();
2870  Type *DestTy = I.getType();
2871 
2872  // Get the size of the types in bits, we'll need this later
2873  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2874  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2875 
2876  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2877  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2878  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2879  "sext source and destination must both be a vector or neither", &I);
2880  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2881 
2882  visitInstruction(I);
2883 }
2884 
2885 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2886  // Get the source and destination types
2887  Type *SrcTy = I.getOperand(0)->getType();
2888  Type *DestTy = I.getType();
2889  // Get the size of the types in bits, we'll need this later
2890  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2891  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2892 
2893  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2894  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2895  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2896  "fptrunc source and destination must both be a vector or neither", &I);
2897  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2898 
2899  visitInstruction(I);
2900 }
2901 
2902 void Verifier::visitFPExtInst(FPExtInst &I) {
2903  // Get the source and destination types
2904  Type *SrcTy = I.getOperand(0)->getType();
2905  Type *DestTy = I.getType();
2906 
2907  // Get the size of the types in bits, we'll need this later
2908  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2909  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2910 
2911  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2912  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2913  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2914  "fpext source and destination must both be a vector or neither", &I);
2915  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2916 
2917  visitInstruction(I);
2918 }
2919 
2920 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2921  // Get the source and destination types
2922  Type *SrcTy = I.getOperand(0)->getType();
2923  Type *DestTy = I.getType();
2924 
2925  bool SrcVec = SrcTy->isVectorTy();
2926  bool DstVec = DestTy->isVectorTy();
2927 
2928  Assert(SrcVec == DstVec,
2929  "UIToFP source and dest must both be vector or scalar", &I);
2930  Assert(SrcTy->isIntOrIntVectorTy(),
2931  "UIToFP source must be integer or integer vector", &I);
2932  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2933  &I);
2934 
2935  if (SrcVec && DstVec)
2936  Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2937  cast<VectorType>(DestTy)->getElementCount(),
2938  "UIToFP source and dest vector length mismatch", &I);
2939 
2940  visitInstruction(I);
2941 }
2942 
2943 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2944  // Get the source and destination types
2945  Type *SrcTy = I.getOperand(0)->getType();
2946  Type *DestTy = I.getType();
2947 
2948  bool SrcVec = SrcTy->isVectorTy();
2949  bool DstVec = DestTy->isVectorTy();
2950 
2951  Assert(SrcVec == DstVec,
2952  "SIToFP source and dest must both be vector or scalar", &I);
2953  Assert(SrcTy->isIntOrIntVectorTy(),
2954  "SIToFP source must be integer or integer vector", &I);
2955  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2956  &I);
2957 
2958  if (SrcVec && DstVec)
2959  Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2960  cast<VectorType>(DestTy)->getElementCount(),
2961  "SIToFP source and dest vector length mismatch", &I);
2962 
2963  visitInstruction(I);
2964 }
2965 
2966 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2967  // Get the source and destination types
2968  Type *SrcTy = I.getOperand(0)->getType();
2969  Type *DestTy = I.getType();
2970 
2971  bool SrcVec = SrcTy->isVectorTy();
2972  bool DstVec = DestTy->isVectorTy();
2973 
2974  Assert(SrcVec == DstVec,
2975  "FPToUI source and dest must both be vector or scalar", &I);
2976  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2977  &I);
2978  Assert(DestTy->isIntOrIntVectorTy(),
2979  "FPToUI result must be integer or integer vector", &I);
2980 
2981  if (SrcVec && DstVec)
2982  Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2983  cast<VectorType>(DestTy)->getElementCount(),
2984  "FPToUI source and dest vector length mismatch", &I);
2985 
2986  visitInstruction(I);
2987 }
2988 
2989 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2990  // Get the source and destination types
2991  Type *SrcTy = I.getOperand(0)->getType();
2992  Type *DestTy = I.getType();
2993 
2994  bool SrcVec = SrcTy->isVectorTy();
2995  bool DstVec = DestTy->isVectorTy();
2996 
2997  Assert(SrcVec == DstVec,
2998  "FPToSI source and dest must both be vector or scalar", &I);
2999  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
3000  &I);
3001  Assert(DestTy->isIntOrIntVectorTy(),
3002  "FPToSI result must be integer or integer vector", &I);
3003 
3004  if (SrcVec && DstVec)
3005  Assert(cast<VectorType>(SrcTy)->getElementCount() ==
3006  cast<VectorType>(DestTy)->getElementCount(),
3007  "FPToSI source and dest vector length mismatch", &I);
3008 
3009  visitInstruction(I);
3010 }
3011 
3012 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3013  // Get the source and destination types
3014  Type *SrcTy = I.getOperand(0)->getType();
3015  Type *DestTy = I.getType();
3016 
3017  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3018 
3019  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
3020  Assert(!DL.isNonIntegralPointerType(PTy),
3021  "ptrtoint not supported for non-integral pointers");
3022 
3023  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3024  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3025  &I);
3026 
3027  if (SrcTy->isVectorTy()) {
3028  auto *VSrc = cast<VectorType>(SrcTy);
3029  auto *VDest = cast<VectorType>(DestTy);
3030  Assert(VSrc->getElementCount() == VDest->getElementCount(),
3031  "PtrToInt Vector width mismatch", &I);
3032  }
3033 
3034  visitInstruction(I);
3035 }
3036 
3037 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3038  // Get the source and destination types
3039  Type *SrcTy = I.getOperand(0)->getType();
3040  Type *DestTy = I.getType();
3041 
3042  Assert(SrcTy->isIntOrIntVectorTy(),
3043  "IntToPtr source must be an integral", &I);
3044  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3045 
3046  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
3047  Assert(!DL.isNonIntegralPointerType(PTy),
3048  "inttoptr not supported for non-integral pointers");
3049 
3050  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3051  &I);
3052  if (SrcTy->isVectorTy()) {
3053  auto *VSrc = cast<VectorType>(SrcTy);
3054  auto *VDest = cast<VectorType>(DestTy);
3055  Assert(VSrc->getElementCount() == VDest->getElementCount(),
3056  "IntToPtr Vector width mismatch", &I);
3057  }
3058  visitInstruction(I);
3059 }
3060 
3061 void Verifier::visitBitCastInst(BitCastInst &I) {
3062  Assert(
3063  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3064  "Invalid bitcast", &I);
3065  visitInstruction(I);
3066 }
3067 
3068 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3069  Type *SrcTy = I.getOperand(0)->getType();
3070  Type *DestTy = I.getType();
3071 
3072  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3073  &I);
3074  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3075  &I);
3077  "AddrSpaceCast must be between different address spaces", &I);
3078  if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3079  Assert(SrcVTy->getElementCount() ==
3080  cast<VectorType>(DestTy)->getElementCount(),
3081  "AddrSpaceCast vector pointer number of elements mismatch", &I);
3082  visitInstruction(I);
3083 }
3084 
3085 /// visitPHINode - Ensure that a PHI node is well formed.
3086 ///
3087 void Verifier::visitPHINode(PHINode &PN) {
3088  // Ensure that the PHI nodes are all grouped together at the top of the block.
3089  // This can be tested by checking whether the instruction before this is
3090  // either nonexistent (because this is begin()) or is a PHI node. If not,
3091  // then there is some other instruction before a PHI.
3092  Assert(&PN == &PN.getParent()->front() ||
3093  isa<PHINode>(--BasicBlock::iterator(&PN)),
3094  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3095 
3096  // Check that a PHI doesn't yield a Token.
3097  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3098 
3099  // Check that all of the values of the PHI node have the same type as the
3100  // result, and that the incoming blocks are really basic blocks.
3101  for (Value *IncValue : PN.incoming_values()) {
3102  Assert(PN.getType() == IncValue->getType(),
3103  "PHI node operands are not the same type as the result!", &PN);
3104  }
3105 
3106  // All other PHI node constraints are checked in the visitBasicBlock method.
3107 
3108  visitInstruction(PN);
3109 }
3110 
3111 void Verifier::visitCallBase(CallBase &Call) {
3112  Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3113  "Called function must be a pointer!", Call);
3114  PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3115 
3116  Assert(FPTy->getElementType()->isFunctionTy(),
3117  "Called function is not pointer to function type!", Call);
3118 
3119  Assert(FPTy->getElementType() == Call.getFunctionType(),
3120  "Called function is not the same type as the call!", Call);
3121 
3122  FunctionType *FTy = Call.getFunctionType();
3123 
3124  // Verify that the correct number of arguments are being passed
3125  if (FTy->isVarArg())
3126  Assert(Call.arg_size() >= FTy->getNumParams(),
3127  "Called function requires more parameters than were provided!",
3128  Call);
3129  else
3130  Assert(Call.arg_size() == FTy->getNumParams(),
3131  "Incorrect number of arguments passed to called function!", Call);
3132 
3133  // Verify that all arguments to the call match the function type.
3134  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3135  Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3136  "Call parameter type does not match function signature!",
3137  Call.getArgOperand(i), FTy->getParamType(i), Call);
3138 
3139  AttributeList Attrs = Call.getAttributes();
3140 
3141  Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3142  "Attribute after last parameter!", Call);
3143 
3144  bool IsIntrinsic = Call.getCalledFunction() &&
3145  Call.getCalledFunction()->getName().startswith("llvm.");
3146 
3147  Function *Callee =
3148  dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3149 
3150  if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
3151  // Don't allow speculatable on call sites, unless the underlying function
3152  // declaration is also speculatable.
3153  Assert(Callee && Callee->isSpeculatable(),
3154  "speculatable attribute may not apply to call sites", Call);
3155  }
3156 
3157  if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
3158  Assert(Call.getCalledFunction()->getIntrinsicID() ==
3159  Intrinsic::call_preallocated_arg,
3160  "preallocated as a call site attribute can only be on "
3161  "llvm.call.preallocated.arg");
3162  }
3163 
3164  // Verify call attributes.
3165  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3166 
3167  // Conservatively check the inalloca argument.
3168  // We have a bug if we can find that there is an underlying alloca without
3169  // inalloca.
3170  if (Call.hasInAllocaArgument()) {
3171  Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3172  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3173  Assert(AI->isUsedWithInAlloca(),
3174  "inalloca argument for call has mismatched alloca", AI, Call);
3175  }
3176 
3177  // For each argument of the callsite, if it has the swifterror argument,
3178  // make sure the underlying alloca/parameter it comes from has a swifterror as
3179  // well.
3180  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3181  if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3182  Value *SwiftErrorArg = Call.getArgOperand(i);
3183  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3184  Assert(AI->isSwiftError(),
3185  "swifterror argument for call has mismatched alloca", AI, Call);
3186  continue;
3187  }
3188  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3189  Assert(ArgI,
3190  "swifterror argument should come from an alloca or parameter",
3191  SwiftErrorArg, Call);
3192  Assert(ArgI->hasSwiftErrorAttr(),
3193  "swifterror argument for call has mismatched parameter", ArgI,
3194  Call);
3195  }
3196 
3197  if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3198  // Don't allow immarg on call sites, unless the underlying declaration
3199  // also has the matching immarg.
3200  Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3201  "immarg may not apply only to call sites",
3202  Call.getArgOperand(i), Call);
3203  }
3204 
3205  if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3206  Value *ArgVal = Call.getArgOperand(i);
3207  Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3208  "immarg operand has non-immediate parameter", ArgVal, Call);
3209  }
3210 
3211  if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3212  Value *ArgVal = Call.getArgOperand(i);
3213  bool hasOB =
3214  Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3215  bool isMustTail = Call.isMustTailCall();
3216  Assert(hasOB != isMustTail,
3217  "preallocated operand either requires a preallocated bundle or "
3218  "the call to be musttail (but not both)",
3219  ArgVal, Call);
3220  }
3221  }
3222 
3223  if (FTy->isVarArg()) {
3224  // FIXME? is 'nest' even legal here?
3225  bool SawNest = false;
3226  bool SawReturned = false;
3227 
3228  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3229  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3230  SawNest = true;
3231  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3232  SawReturned = true;
3233  }
3234 
3235  // Check attributes on the varargs part.
3236  for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3237  Type *Ty = Call.getArgOperand(Idx)->getType();
3238  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3239  verifyParameterAttrs(ArgAttrs, Ty, &Call);
3240 
3241  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3242  Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3243  SawNest = true;
3244  }
3245 
3246  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3247  Assert(!SawReturned, "More than one parameter has attribute returned!",
3248  Call);
3250  "Incompatible argument and return types for 'returned' "
3251  "attribute",
3252  Call);
3253  SawReturned = true;
3254  }
3255 
3256  // Statepoint intrinsic is vararg but the wrapped function may be not.
3257  // Allow sret here and check the wrapped function in verifyStatepoint.
3258  if (!Call.getCalledFunction() ||
3259  Call.getCalledFunction()->getIntrinsicID() !=
3260  Intrinsic::experimental_gc_statepoint)
3261  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3262  "Attribute 'sret' cannot be used for vararg call arguments!",
3263  Call);
3264 
3265  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3266  Assert(Idx == Call.arg_size() - 1,
3267  "inalloca isn't on the last argument!", Call);
3268  }
3269  }
3270 
3271  // Verify that there's no metadata unless it's a direct call to an intrinsic.
3272  if (!IsIntrinsic) {
3273  for (Type *ParamTy : FTy->params()) {
3274  Assert(!ParamTy->isMetadataTy(),
3275  "Function has metadata parameter but isn't an intrinsic", Call);
3276  Assert(!ParamTy->isTokenTy(),
3277  "Function has token parameter but isn't an intrinsic", Call);
3278  }
3279  }
3280 
3281  // Verify that indirect calls don't return tokens.
3282  if (!Call.getCalledFunction()) {
3283  Assert(!FTy->getReturnType()->isTokenTy(),
3284  "Return type cannot be token for indirect call!");
3285  Assert(!FTy->getReturnType()->isX86_AMXTy(),
3286  "Return type cannot be x86_amx for indirect call!");
3287  }
3288 
3289  if (Function *F = Call.getCalledFunction())
3290  if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3291  visitIntrinsicCall(ID, Call);
3292 
3293  // Verify that a callsite has at most one "deopt", at most one "funclet", at
3294  // most one "gc-transition", at most one "cfguardtarget",
3295  // and at most one "preallocated" operand bundle.
3296  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3297  FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3298  FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3299  FoundAttachedCallBundle = false;
3300  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3301  OperandBundleUse BU = Call.getOperandBundleAt(i);
3302  uint32_t Tag = BU.getTagID();
3303  if (Tag == LLVMContext::OB_deopt) {
3304  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3305  FoundDeoptBundle = true;
3306  } else if (Tag == LLVMContext::OB_gc_transition) {
3307  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3308  Call);
3309  FoundGCTransitionBundle = true;
3310  } else if (Tag == LLVMContext::OB_funclet) {
3311  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3312  FoundFuncletBundle = true;
3313  Assert(BU.Inputs.size() == 1,
3314  "Expected exactly one funclet bundle operand", Call);
3315  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3316  "Funclet bundle operands should correspond to a FuncletPadInst",
3317  Call);
3318  } else if (Tag == LLVMContext::OB_cfguardtarget) {
3319  Assert(!FoundCFGuardTargetBundle,
3320  "Multiple CFGuardTarget operand bundles", Call);
3321  FoundCFGuardTargetBundle = true;
3322  Assert(BU.Inputs.size() == 1,
3323  "Expected exactly one cfguardtarget bundle operand", Call);
3324  } else if (Tag == LLVMContext::OB_preallocated) {
3325  Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3326  Call);
3327  FoundPreallocatedBundle = true;
3328  Assert(BU.Inputs.size() == 1,
3329  "Expected exactly one preallocated bundle operand", Call);
3330  auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3331  Assert(Input &&
3332  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3333  "\"preallocated\" argument must be a token from "
3334  "llvm.call.preallocated.setup",
3335  Call);
3336  } else if (Tag == LLVMContext::OB_gc_live) {
3337  Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3338  Call);
3339  FoundGCLiveBundle = true;
3340  } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3341  Assert(!FoundAttachedCallBundle,
3342  "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3343  FoundAttachedCallBundle = true;
3344  }
3345  }
3346 
3347  if (FoundAttachedCallBundle)
3348  Assert(FTy->getReturnType()->isPointerTy(),
3349  "a call with operand bundle \"clang.arc.attachedcall\" must call a "
3350  "function returning a pointer",
3351  Call);
3352 
3353  // Verify that each inlinable callsite of a debug-info-bearing function in a
3354  // debug-info-bearing function has a debug location attached to it. Failure to
3355  // do so causes assertion failures when the inliner sets up inline scope info.
3356  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3357  Call.getCalledFunction()->getSubprogram())
3358  AssertDI(Call.getDebugLoc(),
3359  "inlinable function call in a function with "
3360  "debug info must have a !dbg location",
3361  Call);
3362 
3363  visitInstruction(Call);
3364 }
3365 
3366 /// Two types are "congruent" if they are identical, or if they are both pointer
3367 /// types with different pointee types and the same address space.
3368 static bool isTypeCongruent(Type *L, Type *R) {
3369  if (L == R)
3370  return true;
3371  PointerType *PL = dyn_cast<PointerType>(L);
3372  PointerType *PR = dyn_cast<PointerType>(R);
3373  if (!PL || !PR)
3374  return false;
3375  return PL->getAddressSpace() == PR->getAddressSpace();
3376 }
3377 
3379  static const Attribute::AttrKind ABIAttrs[] = {
3380  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3381  Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3382  Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3383  Attribute::ByRef};
3384  AttrBuilder Copy;
3385  for (auto AK : ABIAttrs) {
3386  if (Attrs.hasParamAttribute(I, AK))
3387  Copy.addAttribute(AK);
3388  }
3389 
3390  // `align` is ABI-affecting only in combination with `byval` or `byref`.
3391  if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3392  (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3393  Attrs.hasParamAttribute(I, Attribute::ByRef)))
3394  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3395  return Copy;
3396 }
3397 
3398 void Verifier::verifyMustTailCall(CallInst &CI) {
3399  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3400 
3401  // - The caller and callee prototypes must match. Pointer types of
3402  // parameters or return types may differ in pointee type, but not
3403  // address space.
3404  Function *F = CI.getParent()->getParent();
3405  FunctionType *CallerTy = F->getFunctionType();
3406  FunctionType *CalleeTy = CI.getFunctionType();
3407  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3408  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3409  "cannot guarantee tail call due to mismatched parameter counts",
3410  &CI);
3411  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3412  Assert(
3413  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3414  "cannot guarantee tail call due to mismatched parameter types", &CI);
3415  }
3416  }
3417  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3418  "cannot guarantee tail call due to mismatched varargs", &CI);
3419  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3420  "cannot guarantee tail call due to mismatched return types", &CI);
3421 
3422  // - The calling conventions of the caller and callee must match.
3423  Assert(F->getCallingConv() == CI.getCallingConv(),
3424  "cannot guarantee tail call due to mismatched calling conv", &CI);
3425 
3426  // - All ABI-impacting function attributes, such as sret, byval, inreg,
3427  // returned, preallocated, and inalloca, must match.
3428  AttributeList CallerAttrs = F->getAttributes();
3429  AttributeList CalleeAttrs = CI.getAttributes();
3430  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3431  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3432  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3433  Assert(CallerABIAttrs == CalleeABIAttrs,
3434  "cannot guarantee tail call due to mismatched ABI impacting "
3435  "function attributes",
3436  &CI, CI.getOperand(I));
3437  }
3438 
3439  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3440  // or a pointer bitcast followed by a ret instruction.
3441  // - The ret instruction must return the (possibly bitcasted) value
3442  // produced by the call or void.
3443  Value *RetVal = &CI;
3444  Instruction *Next = CI.getNextNode();
3445 
3446  // Handle the optional bitcast.
3447  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3448  Assert(BI->getOperand(0) == RetVal,
3449  "bitcast following musttail call must use the call", BI);
3450  RetVal = BI;
3451  Next = BI->getNextNode();
3452  }
3453 
3454  // Check the return.
3455  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3456  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3457  &CI);
3458  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3459  "musttail call result must be returned", Ret);
3460 }
3461 
3462 void Verifier::visitCallInst(CallInst &CI) {
3463  visitCallBase(CI);
3464 
3465  if (CI.isMustTailCall())
3466  verifyMustTailCall(CI);
3467 }
3468 
3469 void Verifier::visitInvokeInst(InvokeInst &II) {
3470  visitCallBase(II);
3471 
3472  // Verify that the first non-PHI instruction of the unwind destination is an
3473  // exception handling instruction.
3474  Assert(
3475  II.getUnwindDest()->isEHPad(),
3476  "The unwind destination does not have an exception handling instruction!",
3477  &II);
3478 
3479  visitTerminator(II);
3480 }
3481 
3482 /// visitUnaryOperator - Check the argument to the unary operator.
3483 ///
3484 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3485  Assert(U.getType() == U.getOperand(0)->getType(),
3486  "Unary operators must have same type for"
3487  "operands and result!",
3488  &U);
3489 
3490  switch (U.getOpcode()) {
3491  // Check that floating-point arithmetic operators are only used with
3492  // floating-point operands.
3493  case Instruction::FNeg:
3495  "FNeg operator only works with float types!", &U);
3496  break;
3497  default:
3498  llvm_unreachable("Unknown UnaryOperator opcode!");
3499  }
3500 
3501  visitInstruction(U);
3502 }
3503 
3504 /// visitBinaryOperator - Check that both arguments to the binary operator are
3505 /// of the same type!
3506 ///
3507 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3508  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3509  "Both operands to a binary operator are not of the same type!", &B);
3510 
3511  switch (B.getOpcode()) {
3512  // Check that integer arithmetic operators are only used with
3513  // integral operands.
3514  case Instruction::Add:
3515  case Instruction::Sub:
3516  case Instruction::Mul:
3517  case Instruction::SDiv:
3518  case Instruction::UDiv:
3519  case Instruction::SRem:
3520  case Instruction::URem:
3521  Assert(B.getType()->isIntOrIntVectorTy(),
3522  "Integer arithmetic operators only work with integral types!", &B);
3523  Assert(B.getType() == B.getOperand(0)->getType(),
3524  "Integer arithmetic operators must have same type "
3525  "for operands and result!",
3526  &B);
3527  break;
3528  // Check that floating-point arithmetic operators are only used with
3529  // floating-point operands.
3530  case Instruction::FAdd:
3531  case Instruction::FSub:
3532  case Instruction::FMul:
3533  case Instruction::FDiv:
3534  case Instruction::FRem:
3535  Assert(B.getType()->isFPOrFPVectorTy(),
3536  "Floating-point arithmetic operators only work with "
3537  "floating-point types!",
3538  &B);
3539  Assert(B.getType() == B.getOperand(0)->getType(),
3540  "Floating-point arithmetic operators must have same type "
3541  "for operands and result!",
3542  &B);
3543  break;
3544  // Check that logical operators are only used with integral operands.
3545  case Instruction::And:
3546  case Instruction::Or:
3547  case Instruction::Xor:
3548  Assert(B.getType()->isIntOrIntVectorTy(),
3549  "Logical operators only work with integral types!", &B);
3550  Assert(B.getType() == B.getOperand(0)->getType(),
3551  "Logical operators must have same type for operands and result!",
3552  &B);
3553  break;
3554  case Instruction::Shl:
3555  case Instruction::LShr:
3556  case Instruction::AShr:
3557  Assert(B.getType()->isIntOrIntVectorTy(),
3558  "Shifts only work with integral types!", &B);
3559  Assert(B.getType() == B.getOperand(0)->getType(),
3560  "Shift return type must be same as operands!", &B);
3561  break;
3562  default:
3563  llvm_unreachable("Unknown BinaryOperator opcode!");
3564  }
3565 
3566  visitInstruction(B);
3567 }
3568 
3569 void Verifier::visitICmpInst(ICmpInst &IC) {
3570  // Check that the operands are the same type
3571  Type *Op0Ty = IC.getOperand(0)->getType();
3572  Type *Op1Ty = IC.getOperand(1)->getType();
3573  Assert(Op0Ty == Op1Ty,
3574  "Both operands to ICmp instruction are not of the same type!", &IC);
3575  // Check that the operands are the right type
3576  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3577  "Invalid operand types for ICmp instruction", &IC);
3578  // Check that the predicate is valid.
3579  Assert(IC.isIntPredicate(),
3580  "Invalid predicate in ICmp instruction!", &IC);
3581 
3582  visitInstruction(IC);
3583 }
3584 
3585 void Verifier::visitFCmpInst(FCmpInst &FC) {
3586  // Check that the operands are the same type
3587  Type *Op0Ty = FC.getOperand(0)->getType();
3588  Type *Op1Ty = FC.getOperand(1)->getType();
3589  Assert(Op0Ty == Op1Ty,
3590  "Both operands to FCmp instruction are not of the same type!", &FC);
3591  // Check that the operands are the right type
3592  Assert(Op0Ty->isFPOrFPVectorTy(),
3593  "Invalid operand types for FCmp instruction", &FC);
3594  // Check that the predicate is valid.
3595  Assert(FC.isFPPredicate(),
3596  "Invalid predicate in FCmp instruction!", &FC);
3597 
3598  visitInstruction(FC);
3599 }
3600 
3601 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3602  Assert(
3604  "Invalid extractelement operands!", &EI);
3605  visitInstruction(EI);
3606 }
3607 
3608 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3609  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3610  IE.getOperand(2)),
3611  "Invalid insertelement operands!", &IE);
3612  visitInstruction(IE);
3613 }
3614 
3615 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3617  SV.getShuffleMask()),
3618  "Invalid shufflevector operands!", &SV);
3619  visitInstruction(SV);
3620 }
3621 
3622 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3623  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3624 
3625  Assert(isa<PointerType>(TargetTy),
3626  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3627  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3628 
3629  SmallVector<Value *, 16> Idxs(GEP.indices());
3630  Assert(all_of(
3631  Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3632  "GEP indexes must be integers", &GEP);
3633  Type *ElTy =
3634  GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3635  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3636 
3637  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3638  GEP.getResultElementType() == ElTy,
3639  "GEP is not of right type for indices!", &GEP, ElTy);
3640 
3641  if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3642  // Additional checks for vector GEPs.
3643  ElementCount GEPWidth = GEPVTy->getElementCount();
3644  if (GEP.getPointerOperandType()->isVectorTy())
3645  Assert(
3646  GEPWidth ==
3647  cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3648  "Vector GEP result width doesn't match operand's", &GEP);
3649  for (Value *Idx : Idxs) {
3650  Type *IndexTy = Idx->getType();
3651  if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3652  ElementCount IndexWidth = IndexVTy->getElementCount();
3653  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3654  }
3655  Assert(IndexTy->isIntOrIntVectorTy(),
3656  "All GEP indices should be of integer type");
3657  }
3658  }
3659 
3660  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3661  Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3662  "GEP address space doesn't match type", &GEP);
3663  }
3664 
3665  visitInstruction(GEP);
3666 }
3667 
3668 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3669  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3670 }
3671 
3672 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3673  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3674  "precondition violation");
3675 
3676  unsigned NumOperands = Range->getNumOperands();
3677  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3678  unsigned NumRanges = NumOperands / 2;
3679  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3680 
3681  ConstantRange LastRange(1, true); // Dummy initial value
3682  for (unsigned i = 0; i < NumRanges; ++i) {
3683  ConstantInt *Low =
3684  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3685  Assert(Low, "The lower limit must be an integer!", Low);
3686  ConstantInt *High =
3687  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3688  Assert(High, "The upper limit must be an integer!", High);
3689  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3690  "Range types must match instruction type!", &I);
3691 
3692  APInt HighV = High->getValue();
3693  APInt LowV = Low->getValue();
3694  ConstantRange CurRange(LowV, HighV);
3695  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3696  "Range must not be empty!", Range);
3697  if (i != 0) {
3698  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3699  "Intervals are overlapping", Range);
3700  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3701  Range);
3702  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3703  Range);
3704  }
3705  LastRange = ConstantRange(LowV, HighV);
3706  }
3707  if (NumRanges > 2) {
3708  APInt FirstLow =
3709  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3710  APInt FirstHigh =
3711  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3712  ConstantRange FirstRange(FirstLow, FirstHigh);
3713  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3714  "Intervals are overlapping", Range);
3715  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3716  Range);
3717  }
3718 }
3719 
3720 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3721  unsigned Size = DL.getTypeSizeInBits(Ty);
3722  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3723  Assert(!(Size & (Size - 1)),
3724  "atomic memory access' operand must have a power-of-two size", Ty, I);
3725 }
3726 
3727 void Verifier::visitLoadInst(LoadInst &LI) {
3728  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3729  Assert(PTy, "Load operand must be a pointer.", &LI);
3730  Type *ElTy = LI.getType();
3732  "huge alignment values are unsupported", &LI);
3733  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3734  if (LI.isAtomic()) {
3737  "Load cannot have Release ordering", &LI);
3738  Assert(LI.getAlignment() != 0,
3739  "Atomic load must specify explicit alignment", &LI);
3740  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3741  "atomic load operand must have integer, pointer, or floating point "
3742  "type!",
3743  ElTy, &LI);
3744  checkAtomicMemAccessSize(ElTy, &LI);
3745  } else {
3747  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3748  }
3749 
3750  visitInstruction(LI);
3751 }
3752 
3753 void Verifier::visitStoreInst(StoreInst &SI) {
3754  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3755  Assert(PTy, "Store operand must be a pointer.", &SI);
3756  Type *ElTy = PTy->getElementType();
3757  Assert(ElTy == SI.getOperand(0)->getType(),
3758  "Stored value type does not match pointer operand type!", &SI, ElTy);
3759  Assert(SI.getAlignment() <= Value::MaximumAlignment,
3760  "huge alignment values are unsupported", &SI);
3761  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3762  if (SI.isAtomic()) {
3763  Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3764  SI.getOrdering() != AtomicOrdering::AcquireRelease,
3765  "Store cannot have Acquire ordering", &SI);
3766  Assert(SI.getAlignment() != 0,
3767  "Atomic store must specify explicit alignment", &SI);
3768  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3769  "atomic store operand must have integer, pointer, or floating point "
3770  "type!",
3771  ElTy, &SI);
3772  checkAtomicMemAccessSize(ElTy, &SI);
3773  } else {
3774  Assert(SI.getSyncScopeID() == SyncScope::System,
3775  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3776  }
3777  visitInstruction(SI);
3778 }
3779 
3780 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3781 void Verifier::verifySwiftErrorCall(CallBase &Call,
3782  const Value *SwiftErrorVal) {
3783  for (const auto &I : llvm::enumerate(Call.args())) {
3784  if (I.value() == SwiftErrorVal) {
3785  Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3786  "swifterror value when used in a callsite should be marked "
3787  "with swifterror attribute",
3788  SwiftErrorVal, Call);
3789  }
3790  }
3791 }
3792 
3793 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3794  // Check that swifterror value is only used by loads, stores, or as
3795  // a swifterror argument.
3796  for (const User *U : SwiftErrorVal->users()) {
3797  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3798  isa<InvokeInst>(U),
3799  "swifterror value can only be loaded and stored from, or "
3800  "as a swifterror argument!",
3801  SwiftErrorVal, U);
3802  // If it is used by a store, check it is the second operand.
3803  if (auto StoreI = dyn_cast<StoreInst>(U))
3804  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3805  "swifterror value should be the second operand when used "
3806  "by stores", SwiftErrorVal, U);
3807  if (auto *Call = dyn_cast<CallBase>(U))
3808  verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3809  }
3810 }
3811 
3812 void Verifier::visitAllocaInst(AllocaInst &AI) {
3813  SmallPtrSet<Type*, 4> Visited;
3814  PointerType *PTy = AI.getType();
3815  // TODO: Relax this restriction?
3816  Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3817  "Allocation instruction pointer not in the stack address space!",
3818  &AI);
3819  Assert(AI.getAllocatedType()->isSized(&Visited),
3820  "Cannot allocate unsized type", &AI);
3822  "Alloca array size must have integer type", &AI);
3824  "huge alignment values are unsupported", &AI);
3825 
3826  if (AI.isSwiftError()) {
3827  verifySwiftErrorValue(&AI);
3828  }
3829 
3830  visitInstruction(AI);
3831 }
3832 
3833 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3834 
3835  // FIXME: more conditions???
3837  "cmpxchg instructions must be atomic.", &CXI);
3839  "cmpxchg instructions must be atomic.", &CXI);
3841  "cmpxchg instructions cannot be unordered.", &CXI);
3843  "cmpxchg instructions cannot be unordered.", &CXI);
3846  "cmpxchg failure ordering cannot include release semantics", &CXI);
3847 
3848  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3849  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3850  Type *ElTy = PTy->getElementType();
3851  Assert(ElTy->isIntOrPtrTy(),
3852  "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3853  checkAtomicMemAccessSize(ElTy, &CXI);
3854  Assert(ElTy == CXI.getOperand(1)->getType(),
3855  "Expected value type does not match pointer operand type!", &CXI,
3856  ElTy);
3857  Assert(ElTy == CXI.getOperand(2)->getType(),
3858  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3859  visitInstruction(CXI);
3860 }
3861 
3862 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3864  "atomicrmw instructions must be atomic.", &RMWI);
3866  "atomicrmw instructions cannot be unordered.", &RMWI);
3867  auto Op = RMWI.getOperation();
3868  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3869  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3870  Type *ElTy = PTy->getElementType();
3871  if (Op == AtomicRMWInst::Xchg) {
3872  Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3874  " operand must have integer or floating point type!",
3875  &RMWI, ElTy);
3876  } else if (AtomicRMWInst::isFPOperation(Op)) {
3877  Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3879  " operand must have floating point type!",
3880  &RMWI, ElTy);
3881  } else {
3882  Assert(ElTy->isIntegerTy(), "atomicrmw " +
3884  " operand must have integer type!",
3885  &RMWI, ElTy);
3886  }
3887  checkAtomicMemAccessSize(ElTy, &RMWI);
3888  Assert(ElTy == RMWI.getOperand(1)->getType(),
3889  "Argument value type does not match pointer operand type!", &RMWI,
3890  ElTy);
3892  "Invalid binary operation!", &RMWI);
3893  visitInstruction(RMWI);
3894 }
3895 
3896 void Verifier::visitFenceInst(FenceInst &FI) {
3897  const AtomicOrdering Ordering = FI.getOrdering();
3898  Assert(Ordering == AtomicOrdering::Acquire ||
3899  Ordering == AtomicOrdering::Release ||
3900  Ordering == AtomicOrdering::AcquireRelease ||
3902  "fence instructions may only have acquire, release, acq_rel, or "
3903  "seq_cst ordering.",
3904  &FI);
3905  visitInstruction(FI);
3906 }
3907 
3908 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3910  EVI.getIndices()) == EVI.getType(),
3911  "Invalid ExtractValueInst operands!", &EVI);
3912 
3913  visitInstruction(EVI);
3914 }
3915 
3916 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3918  IVI.getIndices()) ==
3919  IVI.getOperand(1)->getType(),
3920  "Invalid InsertValueInst operands!", &IVI);
3921 
3922  visitInstruction(IVI);
3923 }
3924 
3925 static Value *getParentPad(Value *EHPad) {
3926  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3927  return FPI->getParentPad();
3928 
3929  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3930 }
3931 
3932 void Verifier::visitEHPadPredecessors(Instruction &I) {
3933  assert(I.isEHPad());
3934 
3935  BasicBlock *BB = I.getParent();
3936  Function *F = BB->getParent();
3937 
3938  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3939 
3940  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3941  // The landingpad instruction defines its parent as a landing pad block. The
3942  // landing pad block may be branched to only by the unwind edge of an
3943  // invoke.
3944  for (BasicBlock *PredBB : predecessors(BB)) {
3945  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3946  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3947  "Block containing LandingPadInst must be jumped to "
3948  "only by the unwind edge of an invoke.",
3949  LPI);
3950  }
3951  return;
3952  }
3953  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3954  if (!pred_empty(BB))
3955  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3956  "Block containg CatchPadInst must be jumped to "
3957  "only by its catchswitch.",
3958  CPI);
3959  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3960  "Catchswitch cannot unwind to one of its catchpads",
3961  CPI->getCatchSwitch(), CPI);
3962  return;
3963  }
3964 
3965  // Verify that each pred has a legal terminator with a legal to/from EH
3966  // pad relationship.
3967  Instruction *ToPad = &I;
3968  Value *ToPadParent = getParentPad(ToPad);
3969  for (BasicBlock *PredBB : predecessors(BB)) {
3970  Instruction *TI = PredBB->getTerminator();
3971  Value *FromPad;
3972  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3973  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3974  "EH pad must be jumped to via an unwind edge", ToPad, II);
3975  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3976  FromPad = Bundle->Inputs[0];
3977  else
3978  FromPad = ConstantTokenNone::get(II->getContext());
3979  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3980  FromPad = CRI->getOperand(0);
3981  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3982  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3983  FromPad = CSI;
3984  } else {
3985  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3986  }
3987 
3988  // The edge may exit from zero or more nested pads.
3989  SmallSet<Value *, 8> Seen;
3990  for (;; FromPad = getParentPad(FromPad)) {
3991  Assert(FromPad != ToPad,
3992  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3993  if (FromPad == ToPadParent) {
3994  // This is a legal unwind edge.
3995  break;
3996  }
3997  Assert(!isa<ConstantTokenNone>(FromPad),
3998  "A single unwind edge may only enter one EH pad", TI);
3999  Assert(Seen.insert(FromPad).second,
4000  "EH pad jumps through a cycle of pads", FromPad);
4001  }
4002  }
4003 }
4004 
4005 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4006  // The landingpad instruction is ill-formed if it doesn't have any clauses and
4007  // isn't a cleanup.
4008  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4009  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4010 
4011  visitEHPadPredecessors(LPI);
4012 
4013  if (!LandingPadResultTy)
4014  LandingPadResultTy = LPI.getType();
4015  else
4016  Assert(LandingPadResultTy == LPI.getType(),
4017  "The landingpad instruction should have a consistent result type "
4018  "inside a function.",
4019  &LPI);
4020 
4021  Function *F = LPI.getParent()->getParent();
4022  Assert(F->hasPersonalityFn(),
4023  "LandingPadInst needs to be in a function with a personality.", &LPI);
4024 
4025  // The landingpad instruction must be the first non-PHI instruction in the
4026  // block.
4027  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
4028  "LandingPadInst not the first non-PHI instruction in the block.",
4029  &LPI);
4030 
4031  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4032  Constant *Clause = LPI.getClause(i);
4033  if (LPI.isCatch(i)) {
4034  Assert(isa<PointerType>(Clause->getType()),
4035  "Catch operand does not have pointer type!", &LPI);
4036  } else {
4037  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4038  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4039  "Filter operand is not an array of constants!", &LPI);
4040  }
4041  }
4042 
4043  visitInstruction(LPI);
4044 }
4045 
4046 void Verifier::visitResumeInst(ResumeInst &RI) {
4048  "ResumeInst needs to be in a function with a personality.", &RI);
4049 
4050  if (!LandingPadResultTy)
4051  LandingPadResultTy = RI.getValue()->getType();
4052  else
4053  Assert(LandingPadResultTy == RI.getValue()->getType(),
4054  "The resume instruction should have a consistent result type "
4055  "inside a function.",
4056  &RI);
4057 
4058  visitTerminator(RI);
4059 }
4060 
4061 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4062  BasicBlock *BB = CPI.getParent();
4063 
4064  Function *F = BB->getParent();
4065  Assert(F->hasPersonalityFn(),
4066  "CatchPadInst needs to be in a function with a personality.", &CPI);
4067 
4068  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4069  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4070  CPI.getParentPad());
4071 
4072  // The catchpad instruction must be the first non-PHI instruction in the
4073  // block.
4074  Assert(BB->getFirstNonPHI() == &CPI,
4075  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4076 
4077  visitEHPadPredecessors(CPI);
4078  visitFuncletPadInst(CPI);
4079 }
4080 
4081 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4082  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4083  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4084  CatchReturn.getOperand(0));
4085 
4086  visitTerminator(CatchReturn);
4087 }
4088 
4089 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4090  BasicBlock *BB = CPI.getParent();
4091 
4092  Function *F = BB->getParent();
4093  Assert(F->hasPersonalityFn(),
4094  "CleanupPadInst needs to be in a function with a personality.", &CPI);
4095 
4096  // The cleanuppad instruction must be the first non-PHI instruction in the
4097  // block.
4098  Assert(BB->getFirstNonPHI() == &CPI,
4099  "CleanupPadInst not the first non-PHI instruction in the block.",
4100  &CPI);
4101 
4102  auto *ParentPad = CPI.getParentPad();
4103  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4104  "CleanupPadInst has an invalid parent.", &CPI);
4105 
4106  visitEHPadPredecessors(CPI);
4107  visitFuncletPadInst(CPI);
4108 }
4109 
4110 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4111  User *FirstUser = nullptr;
4112  Value *FirstUnwindPad = nullptr;
4113  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4115 
4116  while (!Worklist.empty()) {
4117  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4118  Assert(Seen.insert(CurrentPad).second,
4119  "FuncletPadInst must not be nested within itself", CurrentPad);
4120  Value *UnresolvedAncestorPad = nullptr;
4121  for (User *U : CurrentPad->users()) {
4122  BasicBlock *UnwindDest;
4123  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4124  UnwindDest = CRI->getUnwindDest();
4125  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4126  // We allow catchswitch unwind to caller to nest
4127  // within an outer pad that unwinds somewhere else,
4128  // because catchswitch doesn't have a nounwind variant.
4129  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4130  if (CSI->unwindsToCaller())
4131  continue;
4132  UnwindDest = CSI->getUnwindDest();
4133  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4134  UnwindDest = II->getUnwindDest();
4135  } else if (isa<CallInst>(U)) {
4136  // Calls which don't unwind may be found inside funclet
4137  // pads that unwind somewhere else. We don't *require*
4138  // such calls to be annotated nounwind.
4139  continue;
4140  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4141  // The unwind dest for a cleanup can only be found by
4142  // recursive search. Add it to the worklist, and we'll
4143  // search for its first use that determines where it unwinds.
4144  Worklist.push_back(CPI);
4145  continue;
4146  } else {
4147  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4148  continue;
4149  }
4150 
4151  Value *UnwindPad;
4152  bool ExitsFPI;
4153  if (UnwindDest) {
4154  UnwindPad = UnwindDest->getFirstNonPHI();
4155  if (!cast<Instruction>(UnwindPad)->isEHPad())
4156  continue;
4157  Value *UnwindParent = getParentPad(UnwindPad);
4158  // Ignore unwind edges that don't exit CurrentPad.
4159  if (UnwindParent == CurrentPad)
4160  continue;
4161  // Determine whether the original funclet pad is exited,
4162  // and if we are scanning nested pads determine how many
4163  // of them are exited so we can stop searching their
4164  // children.
4165  Value *ExitedPad = CurrentPad;
4166  ExitsFPI = false;
4167  do {
4168  if (ExitedPad == &FPI) {
4169  ExitsFPI = true;
4170  // Now we can resolve any ancestors of CurrentPad up to
4171  // FPI, but not including FPI since we need to make sure
4172  // to check all direct users of FPI for consistency.
4173  UnresolvedAncestorPad = &FPI;
4174  break;
4175  }
4176  Value *ExitedParent = getParentPad(ExitedPad);
4177  if (ExitedParent == UnwindParent) {
4178  // ExitedPad is the ancestor-most pad which this unwind
4179  // edge exits, so we can resolve up to it, meaning that
4180  // ExitedParent is the first ancestor still unresolved.
4181  UnresolvedAncestorPad = ExitedParent;
4182  break;
4183  }
4184  ExitedPad = ExitedParent;
4185  } while (!isa<ConstantTokenNone>(ExitedPad));
4186  } else {
4187  // Unwinding to caller exits all pads.
4188  UnwindPad = ConstantTokenNone::get(FPI.getContext());
4189  ExitsFPI = true;
4190  UnresolvedAncestorPad = &FPI;
4191  }
4192 
4193  if (ExitsFPI) {
4194  // This unwind edge exits FPI. Make sure it agrees with other
4195  // such edges.
4196  if (FirstUser) {
4197  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4198  "pad must have the same unwind "
4199  "dest",
4200  &FPI, U, FirstUser);
4201  } else {
4202  FirstUser = U;
4203  FirstUnwindPad = UnwindPad;
4204  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4205  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4206  getParentPad(UnwindPad) == getParentPad(&FPI))
4207  SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4208  }
4209  }
4210  // Make sure we visit all uses of FPI, but for nested pads stop as
4211  // soon as we know where they unwind to.
4212  if (CurrentPad != &FPI)
4213  break;
4214  }
4215  if (UnresolvedAncestorPad) {
4216  if (CurrentPad == UnresolvedAncestorPad) {
4217  // When CurrentPad is FPI itself, we don't mark it as resolved even if
4218  // we've found an unwind edge that exits it, because we need to verify
4219  // all direct uses of FPI.
4220  assert(CurrentPad == &FPI);
4221  continue;
4222  }
4223  // Pop off the worklist any nested pads that we've found an unwind
4224  // destination for. The pads on the worklist are the uncles,
4225  // great-uncles, etc. of CurrentPad. We've found an unwind destination
4226  // for all ancestors of CurrentPad up to but not including
4227  // UnresolvedAncestorPad.
4228  Value *ResolvedPad = CurrentPad;
4229  while (!Worklist.empty()) {
4230  Value *UnclePad = Worklist.back();
4231  Value *AncestorPad = getParentPad(UnclePad);
4232  // Walk ResolvedPad up the ancestor list until we either find the
4233  // uncle's parent or the last resolved ancestor.
4234  while (ResolvedPad != AncestorPad) {
4235  Value *ResolvedParent = getParentPad(ResolvedPad);
4236  if (ResolvedParent == UnresolvedAncestorPad) {
4237  break;
4238  }
4239  ResolvedPad = ResolvedParent;
4240  }
4241  // If the resolved ancestor search didn't find the uncle's parent,
4242  // then the uncle is not yet resolved.
4243  if (ResolvedPad != AncestorPad)
4244  break;
4245  // This uncle is resolved, so pop it from the worklist.
4246  Worklist.pop_back();
4247  }
4248  }
4249  }
4250 
4251  if (FirstUnwindPad) {
4252  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4253  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4254  Value *SwitchUnwindPad;
4255  if (SwitchUnwindDest)
4256  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4257  else
4258  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4259  Assert(SwitchUnwindPad == FirstUnwindPad,
4260  "Unwind edges out of a catch must have the same unwind dest as "
4261  "the parent catchswitch",
4262  &FPI, FirstUser, CatchSwitch);
4263  }
4264  }
4265 
4266  visitInstruction(FPI);
4267 }
4268 
4269 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4270  BasicBlock *BB = CatchSwitch.getParent();
4271 
4272  Function *F = BB->getParent();
4273  Assert(F->hasPersonalityFn(),
4274  "CatchSwitchInst needs to be in a function with a personality.",
4275  &CatchSwitch);
4276 
4277  // The catchswitch instruction must be the first non-PHI instruction in the
4278  // block.
4279  Assert(BB->getFirstNonPHI() == &CatchSwitch,
4280  "CatchSwitchInst not the first non-PHI instruction in the block.",
4281  &CatchSwitch);
4282 
4283  auto *ParentPad = CatchSwitch.getParentPad();
4284  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4285  "CatchSwitchInst has an invalid parent.", ParentPad);
4286 
4287  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4288  Instruction *I = UnwindDest->getFirstNonPHI();
4289  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4290  "CatchSwitchInst must unwind to an EH block which is not a "
4291  "landingpad.",
4292  &CatchSwitch);
4293 
4294  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4295  if (getParentPad(I) == ParentPad)
4296  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4297  }
4298 
4299  Assert(CatchSwitch.getNumHandlers() != 0,
4300  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4301 
4302  for (BasicBlock *Handler : CatchSwitch.handlers()) {
4303  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4304  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4305  }
4306 
4307  visitEHPadPredecessors(CatchSwitch);
4308  visitTerminator(CatchSwitch);
4309 }
4310 
4311 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4312  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4313  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4314  CRI.getOperand(0));
4315 
4316  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4317  Instruction *I = UnwindDest->getFirstNonPHI();
4318  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4319  "CleanupReturnInst must unwind to an EH block which is not a "
4320  "landingpad.",
4321  &CRI);
4322  }
4323 
4324  visitTerminator(CRI);
4325 }
4326 
4327 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4328  Instruction *Op = cast<Instruction>(I.getOperand(i));
4329  // If the we have an invalid invoke, don't try to compute the dominance.
4330  // We already reject it in the invoke specific checks and the dominance
4331  // computation doesn't handle multiple edges.
4332  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4333  if (II->getNormalDest() == II->getUnwindDest())
4334  return;
4335  }
4336 
4337  // Quick check whether the def has already been encountered in the same block.
4338  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4339  // uses are defined to happen on the incoming edge, not at the instruction.
4340  //
4341  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4342  // wrapping an SSA value, assert that we've already encountered it. See
4343  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4344  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4345  return;
4346 
4347  const Use &U = I.getOperandUse(i);
4348  Assert(DT.dominates(Op, U),
4349  "Instruction does not dominate all uses!", Op, &I);
4350 }
4351 
4352 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4353  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4354  "apply only to pointer types", &I);
4355  Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4356  "dereferenceable, dereferenceable_or_null apply only to load"
4357  " and inttoptr instructions, use attributes for calls or invokes", &I);
4358  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4359  "take one operand!", &I);
4360  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4361  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4362  "dereferenceable_or_null metadata value must be an i64!", &I);
4363 }
4364 
4365 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4366  Assert(MD->getNumOperands() >= 2,
4367  "!prof annotations should have no less than 2 operands", MD);
4368 
4369  // Check first operand.
4370  Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4371  Assert(isa<MDString>(MD->getOperand(0)),
4372  "expected string with name of the !prof annotation", MD);
4373  MDString *MDS = cast<MDString>(MD->getOperand(0));
4374  StringRef ProfName = MDS->getString();
4375 
4376  // Check consistency of !prof branch_weights metadata.
4377  if (ProfName.equals("branch_weights")) {
4378  if (isa<InvokeInst>(&I)) {
4379  Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4380  "Wrong number of InvokeInst branch_weights operands", MD);
4381  } else {
4382  unsigned ExpectedNumOperands = 0;
4383  if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4384  ExpectedNumOperands = BI->getNumSuccessors();
4385  else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4386  ExpectedNumOperands = SI->getNumSuccessors();
4387  else if (isa<CallInst>(&I))
4388  ExpectedNumOperands = 1;
4389  else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4390  ExpectedNumOperands = IBI->getNumDestinations();
4391  else if (isa<SelectInst>(&I))
4392  ExpectedNumOperands = 2;
4393  else
4394  CheckFailed("!prof branch_weights are not allowed for this instruction",
4395  MD);
4396 
4397  Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4398  "Wrong number of operands", MD);
4399  }
4400  for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4401  auto &MDO = MD->getOperand(i);
4402  Assert(MDO, "second operand should not be null", MD);
4403  Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4404  "!prof brunch_weights operand is not a const int");
4405  }
4406  }
4407 }
4408 
4409 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4410  Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4411  Assert(Annotation->getNumOperands() >= 1,
4412  "annotation must have at least one operand");
4413  for (const MDOperand &Op : Annotation->operands())
4414  Assert(isa<MDString>(Op.get()), "operands must be strings");
4415 }
4416 
4417 /// verifyInstruction - Verify that an instruction is well formed.
4418 ///
4419 void Verifier::visitInstruction(Instruction &I) {
4420  BasicBlock *BB = I.getParent();
4421  Assert(BB, "Instruction not embedded in basic block!", &I);
4422 
4423  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4424  for (User *U : I.users()) {
4425  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4426  "Only PHI nodes may reference their own value!", &I);
4427  }
4428  }
4429 
4430  // Check that void typed values don't have names
4431  Assert(!I.getType()->isVoidTy() || !I.hasName(),
4432  "Instruction has a name, but provides a void value!", &I);
4433 
4434  // Check that the return value of the instruction is either void or a legal
4435  // value type.
4436  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4437  "Instruction returns a non-scalar type!", &I);
4438 
4439  // Check that the instruction doesn't produce metadata. Calls are already
4440  // checked against the callee type.
4441  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4442  "Invalid use of metadata!", &I);
4443 
4444  // Check that all uses of the instruction, if they are instructions
4445  // themselves, actually have parent basic blocks. If the use is not an
4446  // instruction, it is an error!
4447  for (Use &U : I.uses()) {
4448  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4449  Assert(Used->getParent() != nullptr,
4450  "Instruction referencing"
4451  " instruction not embedded in a basic block!",
4452  &I, Used);
4453  else {
4454  CheckFailed("Use of instruction is not an instruction!", U);
4455  return;
4456  }
4457  }
4458 
4459  // Get a pointer to the call base of the instruction if it is some form of
4460  // call.
4461  const CallBase *CBI = dyn_cast<CallBase>(&I);
4462 
4463  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4464  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4465 
4466  // Check to make sure that only first-class-values are operands to
4467  // instructions.
4468  if (!I.getOperand(i)->getType()->isFirstClassType()) {
4469  Assert(false, "Instruction operands must be first-class values!", &I);
4470  }
4471 
4472  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4473  // Check to make sure that the "address of" an intrinsic function is never
4474  // taken.
4475  Assert(!F->isIntrinsic() ||
4476  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4477  "Cannot take the address of an intrinsic!", &I);
4478  Assert(
4479  !F->isIntrinsic() || isa<CallInst>(I) ||
4480  F->getIntrinsicID() == Intrinsic::donothing ||
4481  F->getIntrinsicID() == Intrinsic::coro_resume ||
4482  F->getIntrinsicID() == Intrinsic::coro_destroy ||
4483  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4484  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4485  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4486  F->getIntrinsicID() == Intrinsic::wasm_rethrow,
4487  "Cannot invoke an intrinsic other than donothing, patchpoint, "
4488  "statepoint, coro_resume or coro_destroy",
4489  &I);
4490  Assert(F->getParent() == &M, "Referencing function in another module!",
4491  &I, &M, F, F->getParent());
4492  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4493  Assert(OpBB->getParent() == BB->getParent(),
4494  "Referring to a basic block in another function!", &I);
4495  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4496  Assert(OpArg->getParent() == BB->getParent(),
4497  "Referring to an argument in another function!", &I);
4498  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4499  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4500  &M, GV, GV->getParent());
4501  } else if (isa<Instruction>(I.getOperand(i))) {
4502  verifyDominatesUse(I, i);
4503  } else if (isa<InlineAsm>(I.getOperand(i))) {
4504  Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4505  "Cannot take the address of an inline asm!", &I);
4506  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4507  if (CE->getType()->isPtrOrPtrVectorTy() ||
4508  !DL.getNonIntegralAddressSpaces().empty()) {
4509  // If we have a ConstantExpr pointer, we need to see if it came from an
4510  // illegal bitcast. If the datalayout string specifies non-integral
4511  // address spaces then we also need to check for illegal ptrtoint and
4512  // inttoptr expressions.
4513  visitConstantExprsRecursively(CE);
4514  }
4515  }
4516  }
4517 
4518  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4519  Assert(I.getType()->isFPOrFPVectorTy(),
4520  "fpmath requires a floating point result!", &I);
4521  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4522  if (ConstantFP *CFP0 =
4523  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4524  const APFloat &Accuracy = CFP0->getValueAPF();
4525  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4526  "fpmath accuracy must have float type", &I);
4527  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4528  "fpmath accuracy not a positive number!", &I);
4529  } else {
4530  Assert(false, "invalid fpmath accuracy!", &I);
4531  }
4532  }
4533 
4534  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4535  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4536  "Ranges are only for loads, calls and invokes!", &I);
4537  visitRangeMetadata(I, Range, I.getType());
4538  }
4539 
4540  if (I.getMetadata(LLVMContext::MD_nonnull)) {
4541  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4542  &I);
4543  Assert(isa<LoadInst>(I),
4544  "nonnull applies only to load instructions, use attributes"
4545  " for calls or invokes",
4546  &I);
4547  }
4548 
4549  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4550  visitDereferenceableMetadata(I, MD);
4551 
4552  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4553  visitDereferenceableMetadata(I, MD);
4554 
4555  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4556  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4557 
4558  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4559  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4560  &I);
4561  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4562  "use attributes for calls or invokes", &I);
4563  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4564  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4565  Assert(CI && CI->getType()->isIntegerTy(64),
4566  "align metadata value must be an i64!", &I);
4567  uint64_t Align = CI->getZExtValue();
4569  "align metadata value must be a power of 2!", &I);
4571  "alignment is larger that implementation defined limit", &I);
4572  }
4573 
4574  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4575  visitProfMetadata(I, MD);
4576 
4577  if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4578  visitAnnotationMetadata(Annotation);
4579 
4580  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4581  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4582  visitMDNode(*N, AreDebugLocsAllowed::Yes);
4583  }
4584 
4585  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4586  verifyFragmentExpression(*DII);
4587  verifyNotEntryValue(*DII);
4588  }
4589 
4591  I.getAllMetadata(MDs);
4592  for (auto Attachment : MDs) {
4593  unsigned Kind = Attachment.first;
4594  auto AllowLocs =
4595  (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4596  ? AreDebugLocsAllowed::Yes
4597  : AreDebugLocsAllowed::No;
4598  visitMDNode(*Attachment.second, AllowLocs);
4599  }
4600 
4601  InstsInThisBlock.insert(&I);
4602 }
4603 
4604 /// Allow intrinsics to be verified in different ways.
4605 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4606  Function *IF = Call.getCalledFunction();
4607  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4608  IF);
4609 
4610  // Verify that the intrinsic prototype lines up with what the .td files
4611  // describe.
4612  FunctionType *IFTy = IF->getFunctionType();
4613  bool IsVarArg = IFTy->isVarArg();
4614 
4618 
4619  // Walk the descriptors to extract overloaded types.
4620  SmallVector<Type *, 4> ArgTys;
4624  "Intrinsic has incorrect return type!", IF);
4626  "Intrinsic has incorrect argument type!", IF);
4627 
4628  // Verify if the intrinsic call matches the vararg property.
4629  if (IsVarArg)
4631  "Intrinsic was not defined with variable arguments!", IF);
4632  else
4634  "Callsite was not defined with variable arguments!", IF);
4635 
4636  // All descriptors should be absorbed by now.
4637  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4638 
4639  // Now that we have the intrinsic ID and the actual argument types (and we
4640  // know they are legal for the intrinsic!) get the intrinsic name through the
4641  // usual means. This allows us to verify the mangling of argument types into
4642  // the name.
4643  const std::string ExpectedName =
4644  Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4645  Assert(ExpectedName == IF->getName(),
4646  "Intrinsic name not mangled correctly for type arguments! "
4647  "Should be: " +
4648  ExpectedName,
4649  IF);
4650 
4651  // If the intrinsic takes MDNode arguments, verify that they are either global
4652  // or are local to *this* function.
4653  for (Value *V : Call.args()) {
4654  if (auto *MD = dyn_cast<MetadataAsValue>(V))
4655  visitMetadataAsValue(*MD, Call.getCaller());
4656  if (auto *Const = dyn_cast<Constant>(V))
4657  Assert(!Const->getType()->isX86_AMXTy(),
4658  "const x86_amx is not allowed in argument!");
4659  }
4660 
4661  switch (ID) {
4662  default:
4663  break;
4664  case Intrinsic::assume: {
4665  for (auto &Elem : Call.bundle_op_infos()) {
4666  Assert(Elem.Tag->getKey() == "ignore" ||
4667  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4668  "tags must be valid attribute names");
4670  Attribute::getAttrKindFromName(Elem.Tag->getKey());
4671  unsigned ArgCount = Elem.End - Elem.Begin;
4672  if (Kind == Attribute::Alignment) {
4673  Assert(ArgCount <= 3 && ArgCount >= 2,
4674  "alignment assumptions should have 2 or 3 arguments");
4675  Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4676  "first argument should be a pointer");
4677  Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4678  "second argument should be an integer");
4679  if (ArgCount == 3)
4680  Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4681  "third argument should be an integer if present");
4682  return;
4683  }
4684  Assert(ArgCount <= 2, "to many arguments");
4685  if (Kind == Attribute::None)
4686  break;
4688  Assert(ArgCount == 2, "this attribute should have 2 arguments");
4689  Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4690  "the second argument should be a constant integral value");
4691  } else if (isFuncOnlyAttr(Kind)) {
4692  Assert((ArgCount) == 0, "this attribute has no argument");
4693  } else if (!isFuncOrArgAttr(Kind)) {
4694  Assert((ArgCount) == 1, "this attribute should have one argument");
4695  }
4696  }
4697  break;
4698  }
4699  case Intrinsic::coro_id: {
4700  auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4701  if (isa<ConstantPointerNull>(InfoArg))
4702  break;
4703  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4704  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4705  "info argument of llvm.coro.id must refer to an initialized "
4706  "constant");
4707  Constant *Init = GV->getInitializer();
4708  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4709  "info argument of llvm.coro.id must refer to either a struct or "
4710  "an array");
4711  break;
4712  }
4713 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
4714  case Intrinsic::INTRINSIC:
4715 #include "llvm/IR/ConstrainedOps.def"
4716  visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4717  break;
4718  case Intrinsic::dbg_declare: // llvm.dbg.declare
4719  Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4720  "invalid llvm.dbg.declare intrinsic call 1", Call);
4721  visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4722  break;
4723  case Intrinsic::dbg_addr: // llvm.dbg.addr
4724  visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4725  break;
4726  case Intrinsic::dbg_value: // llvm.dbg.value
4727  visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4728  break;
4729  case Intrinsic::dbg_label: // llvm.dbg.label
4730  visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4731  break;
4732  case Intrinsic::memcpy:
4733  case Intrinsic::memcpy_inline:
4734  case Intrinsic::memmove:
4735  case Intrinsic::memset: {
4736  const auto *MI = cast<MemIntrinsic>(&Call);
4737  auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4738  return Alignment == 0 || isPowerOf2_32(Alignment);
4739  };
4740  Assert(IsValidAlignment(MI->getDestAlignment()),
4741  "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4742  Call);
4743  if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4744  Assert(IsValidAlignment(MTI->getSourceAlignment()),
4745  "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4746  Call);
4747  }
4748 
4749  break;
4750  }
4751  case Intrinsic::memcpy_element_unordered_atomic:
4752  case Intrinsic::memmove_element_unordered_atomic:
4753  case Intrinsic::memset_element_unordered_atomic: {
4754  const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4755 
4756  ConstantInt *ElementSizeCI =
4757  cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4758  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4759  Assert(ElementSizeVal.isPowerOf2(),
4760  "element size of the element-wise atomic memory intrinsic "
4761  "must be a power of 2",
4762  Call);
4763 
4764  auto IsValidAlignment = [&](uint64_t Alignment) {
4765  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4766  };
4767  uint64_t DstAlignment = AMI->getDestAlignment();
4768  Assert(IsValidAlignment(DstAlignment),
4769  "incorrect alignment of the destination argument", Call);
4770  if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4771  uint64_t SrcAlignment = AMT->getSourceAlignment();
4772  Assert(IsValidAlignment(SrcAlignment),
4773  "incorrect alignment of the source argument", Call);
4774  }
4775  break;
4776  }
4777  case Intrinsic::call_preallocated_setup: {
4778  auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4779  Assert(NumArgs != nullptr,
4780  "llvm.call.preallocated.setup argument must be a constant");
4781  bool FoundCall = false;
4782  for (User *U : Call.users()) {
4783  auto *UseCall = dyn_cast<CallBase>(U);
4784  Assert(UseCall != nullptr,
4785  "Uses of llvm.call.preallocated.setup must be calls");
4786  const Function *Fn = UseCall->getCalledFunction();
4787  if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4788  auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4789  Assert(AllocArgIndex != nullptr,
4790  "llvm.call.preallocated.alloc arg index must be a constant");
4791  auto AllocArgIndexInt = AllocArgIndex->getValue();
4792  Assert(AllocArgIndexInt.sge(0) &&
4793  AllocArgIndexInt.slt(NumArgs->getValue()),
4794  "llvm.call.preallocated.alloc arg index must be between 0 and "
4795  "corresponding "
4796  "llvm.call.preallocated.setup's argument count");
4797  } else if (Fn && Fn->getIntrinsicID() ==
4798  Intrinsic::call_preallocated_teardown) {
4799  // nothing to do
4800  } else {
4801  Assert(!FoundCall, "Can have at most one call corresponding to a "
4802  "llvm.call.preallocated.setup");
4803  FoundCall = true;
4804  size_t NumPreallocatedArgs = 0;
4805  for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
4806  if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4807  ++NumPreallocatedArgs;
4808  }
4809  }
4810  Assert(NumPreallocatedArgs != 0,
4811  "cannot use preallocated intrinsics on a call without "
4812  "preallocated arguments");
4813  Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4814  "llvm.call.preallocated.setup arg size must be equal to number "
4815  "of preallocated arguments "
4816  "at call site",
4817  Call, *UseCall);
4818  // getOperandBundle() cannot be called if more than one of the operand
4819  // bundle exists. There is already a check elsewhere for this, so skip
4820  // here if we see more than one.
4821  if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4822  1) {
4823  return;
4824  }
4825  auto PreallocatedBundle =
4826  UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4827  Assert(PreallocatedBundle,
4828  "Use of llvm.call.preallocated.setup outside intrinsics "
4829  "must be in \"preallocated\" operand bundle");
4830  Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4831  "preallocated bundle must have token from corresponding "
4832  "llvm.call.preallocated.setup");
4833  }
4834  }
4835  break;
4836  }
4837  case Intrinsic::call_preallocated_arg: {
4838  auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4839  Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4840  Intrinsic::call_preallocated_setup,
4841  "llvm.call.preallocated.arg token argument must be a "
4842  "llvm.call.preallocated.setup");
4843  Assert(Call.hasFnAttr(Attribute::Preallocated),
4844  "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4845  "call site attribute");
4846  break;
4847  }
4848  case Intrinsic::call_preallocated_teardown: {
4849  auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4850  Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4851  Intrinsic::call_preallocated_setup,
4852  "llvm.call.preallocated.teardown token argument must be a "
4853  "llvm.call.preallocated.setup");
4854  break;
4855  }
4856  case Intrinsic::gcroot:
4857  case Intrinsic::gcwrite:
4858  case Intrinsic::gcread:
4859  if (ID == Intrinsic::gcroot) {
4860  AllocaInst *AI =
4861  dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4862  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4863  Assert(isa<Constant>(