LLVM 20.0.0git
Verifier.cpp
Go to the documentation of this file.
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// basic correctness checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15// * Both of a binary operator's parameters are of the same type
16// * Verify that the indices of mem access instructions match other operands
17// * Verify that arithmetic and other things are only performed on first-class
18// types. Verify that shifts & logicals only happen on integrals f.e.
19// * All of the constants in a switch statement are of the correct type
20// * The code is in valid SSA form
21// * It should be illegal to put a label into any other type (like a structure)
22// or to return one. [except constant arrays!]
23// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24// * PHI nodes must have an entry for each predecessor, with no extras.
25// * PHI nodes must be the first thing in a basic block, all grouped together
26// * All basic blocks should only end with terminator insts, not contain them
27// * The entry node to a function must not have predecessors
28// * All Instructions must be embedded into a basic block
29// * Functions cannot take a void-typed parameter
30// * Verify that a function's argument list agrees with it's declared type.
31// * It is illegal to specify a name for a void value.
32// * It is illegal to have a internal global value with no initializer
33// * It is illegal to have a ret instruction that returns a value that does not
34// agree with the function return value type.
35// * Function call argument types match the function prototype
36// * A landing pad is defined by a landingpad instruction, and can be jumped to
37// only by the unwind edge of an invoke instruction.
38// * A landingpad instruction must be the first non-PHI instruction in the
39// block.
40// * Landingpad instructions must be in a function with a personality function.
41// * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42// The applied restrictions are too numerous to list here.
43// * The convergence entry intrinsic and the loop heart must be the first
44// non-PHI instruction in their respective block. This does not conflict with
45// the landing pads, since these two kinds cannot occur in the same block.
46// * All other things that are tested by asserts spread about the code...
47//
48//===----------------------------------------------------------------------===//
49
50#include "llvm/IR/Verifier.h"
51#include "llvm/ADT/APFloat.h"
52#include "llvm/ADT/APInt.h"
53#include "llvm/ADT/ArrayRef.h"
54#include "llvm/ADT/DenseMap.h"
55#include "llvm/ADT/MapVector.h"
56#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallSet.h"
61#include "llvm/ADT/StringRef.h"
62#include "llvm/ADT/Twine.h"
64#include "llvm/IR/Argument.h"
66#include "llvm/IR/Attributes.h"
67#include "llvm/IR/BasicBlock.h"
68#include "llvm/IR/CFG.h"
69#include "llvm/IR/CallingConv.h"
70#include "llvm/IR/Comdat.h"
71#include "llvm/IR/Constant.h"
74#include "llvm/IR/Constants.h"
76#include "llvm/IR/DataLayout.h"
77#include "llvm/IR/DebugInfo.h"
79#include "llvm/IR/DebugLoc.h"
81#include "llvm/IR/Dominators.h"
83#include "llvm/IR/Function.h"
84#include "llvm/IR/GCStrategy.h"
85#include "llvm/IR/GlobalAlias.h"
86#include "llvm/IR/GlobalValue.h"
88#include "llvm/IR/InlineAsm.h"
89#include "llvm/IR/InstVisitor.h"
90#include "llvm/IR/InstrTypes.h"
91#include "llvm/IR/Instruction.h"
94#include "llvm/IR/Intrinsics.h"
95#include "llvm/IR/IntrinsicsAArch64.h"
96#include "llvm/IR/IntrinsicsAMDGPU.h"
97#include "llvm/IR/IntrinsicsARM.h"
98#include "llvm/IR/IntrinsicsNVPTX.h"
99#include "llvm/IR/IntrinsicsWebAssembly.h"
100#include "llvm/IR/LLVMContext.h"
102#include "llvm/IR/Metadata.h"
103#include "llvm/IR/Module.h"
105#include "llvm/IR/PassManager.h"
107#include "llvm/IR/Statepoint.h"
108#include "llvm/IR/Type.h"
109#include "llvm/IR/Use.h"
110#include "llvm/IR/User.h"
112#include "llvm/IR/Value.h"
114#include "llvm/Pass.h"
117#include "llvm/Support/Casting.h"
121#include "llvm/Support/ModRef.h"
123#include <algorithm>
124#include <cassert>
125#include <cstdint>
126#include <memory>
127#include <optional>
128#include <string>
129#include <utility>
130
131using namespace llvm;
132
134 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
135 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
136 "scopes are not dominating"));
137
138namespace llvm {
139
142 const Module &M;
147
148 /// Track the brokenness of the module while recursively visiting.
149 bool Broken = false;
150 /// Broken debug info can be "recovered" from by stripping the debug info.
151 bool BrokenDebugInfo = false;
152 /// Whether to treat broken debug info as an error.
154
156 : OS(OS), M(M), MST(&M), TT(Triple::normalize(M.getTargetTriple())),
157 DL(M.getDataLayout()), Context(M.getContext()) {}
158
159private:
160 void Write(const Module *M) {
161 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
162 }
163
164 void Write(const Value *V) {
165 if (V)
166 Write(*V);
167 }
168
169 void Write(const Value &V) {
170 if (isa<Instruction>(V)) {
171 V.print(*OS, MST);
172 *OS << '\n';
173 } else {
174 V.printAsOperand(*OS, true, MST);
175 *OS << '\n';
176 }
177 }
178
179 void Write(const DbgRecord *DR) {
180 if (DR) {
181 DR->print(*OS, MST, false);
182 *OS << '\n';
183 }
184 }
185
187 switch (Type) {
189 *OS << "value";
190 break;
192 *OS << "declare";
193 break;
195 *OS << "assign";
196 break;
198 *OS << "end";
199 break;
201 *OS << "any";
202 break;
203 };
204 }
205
206 void Write(const Metadata *MD) {
207 if (!MD)
208 return;
209 MD->print(*OS, MST, &M);
210 *OS << '\n';
211 }
212
213 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
214 Write(MD.get());
215 }
216
217 void Write(const NamedMDNode *NMD) {
218 if (!NMD)
219 return;
220 NMD->print(*OS, MST);
221 *OS << '\n';
222 }
223
224 void Write(Type *T) {
225 if (!T)
226 return;
227 *OS << ' ' << *T;
228 }
229
230 void Write(const Comdat *C) {
231 if (!C)
232 return;
233 *OS << *C;
234 }
235
236 void Write(const APInt *AI) {
237 if (!AI)
238 return;
239 *OS << *AI << '\n';
240 }
241
242 void Write(const unsigned i) { *OS << i << '\n'; }
243
244 // NOLINTNEXTLINE(readability-identifier-naming)
245 void Write(const Attribute *A) {
246 if (!A)
247 return;
248 *OS << A->getAsString() << '\n';
249 }
250
251 // NOLINTNEXTLINE(readability-identifier-naming)
252 void Write(const AttributeSet *AS) {
253 if (!AS)
254 return;
255 *OS << AS->getAsString() << '\n';
256 }
257
258 // NOLINTNEXTLINE(readability-identifier-naming)
259 void Write(const AttributeList *AL) {
260 if (!AL)
261 return;
262 AL->print(*OS);
263 }
264
265 void Write(Printable P) { *OS << P << '\n'; }
266
267 template <typename T> void Write(ArrayRef<T> Vs) {
268 for (const T &V : Vs)
269 Write(V);
270 }
271
272 template <typename T1, typename... Ts>
273 void WriteTs(const T1 &V1, const Ts &... Vs) {
274 Write(V1);
275 WriteTs(Vs...);
276 }
277
278 template <typename... Ts> void WriteTs() {}
279
280public:
281 /// A check failed, so printout out the condition and the message.
282 ///
283 /// This provides a nice place to put a breakpoint if you want to see why
284 /// something is not correct.
285 void CheckFailed(const Twine &Message) {
286 if (OS)
287 *OS << Message << '\n';
288 Broken = true;
289 }
290
291 /// A check failed (with values to print).
292 ///
293 /// This calls the Message-only version so that the above is easier to set a
294 /// breakpoint on.
295 template <typename T1, typename... Ts>
296 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
297 CheckFailed(Message);
298 if (OS)
299 WriteTs(V1, Vs...);
300 }
301
302 /// A debug info check failed.
303 void DebugInfoCheckFailed(const Twine &Message) {
304 if (OS)
305 *OS << Message << '\n';
307 BrokenDebugInfo = true;
308 }
309
310 /// A debug info check failed (with values to print).
311 template <typename T1, typename... Ts>
312 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
313 const Ts &... Vs) {
314 DebugInfoCheckFailed(Message);
315 if (OS)
316 WriteTs(V1, Vs...);
317 }
318};
319
320} // namespace llvm
321
322namespace {
323
324class Verifier : public InstVisitor<Verifier>, VerifierSupport {
325 friend class InstVisitor<Verifier>;
326 DominatorTree DT;
327
328 /// When verifying a basic block, keep track of all of the
329 /// instructions we have seen so far.
330 ///
331 /// This allows us to do efficient dominance checks for the case when an
332 /// instruction has an operand that is an instruction in the same block.
333 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
334
335 /// Keep track of the metadata nodes that have been checked already.
337
338 /// Keep track which DISubprogram is attached to which function.
340
341 /// Track all DICompileUnits visited.
343
344 /// The result type for a landingpad.
345 Type *LandingPadResultTy;
346
347 /// Whether we've seen a call to @llvm.localescape in this function
348 /// already.
349 bool SawFrameEscape;
350
351 /// Whether the current function has a DISubprogram attached to it.
352 bool HasDebugInfo = false;
353
354 /// Stores the count of how many objects were passed to llvm.localescape for a
355 /// given function and the largest index passed to llvm.localrecover.
357
358 // Maps catchswitches and cleanuppads that unwind to siblings to the
359 // terminators that indicate the unwind, used to detect cycles therein.
361
362 /// Cache which blocks are in which funclet, if an EH funclet personality is
363 /// in use. Otherwise empty.
364 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
365
366 /// Cache of constants visited in search of ConstantExprs.
367 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
368
369 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
370 SmallVector<const Function *, 4> DeoptimizeDeclarations;
371
372 /// Cache of attribute lists verified.
373 SmallPtrSet<const void *, 32> AttributeListsVisited;
374
375 // Verify that this GlobalValue is only used in this module.
376 // This map is used to avoid visiting uses twice. We can arrive at a user
377 // twice, if they have multiple operands. In particular for very large
378 // constant expressions, we can arrive at a particular user many times.
379 SmallPtrSet<const Value *, 32> GlobalValueVisited;
380
381 // Keeps track of duplicate function argument debug info.
383
384 TBAAVerifier TBAAVerifyHelper;
385 ConvergenceVerifier ConvergenceVerifyHelper;
386
387 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
388
389 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
390
391public:
392 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
393 const Module &M)
394 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
395 SawFrameEscape(false), TBAAVerifyHelper(this) {
396 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
397 }
398
399 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
400
401 bool verify(const Function &F) {
402 assert(F.getParent() == &M &&
403 "An instance of this class only works with a specific module!");
404
405 // First ensure the function is well-enough formed to compute dominance
406 // information, and directly compute a dominance tree. We don't rely on the
407 // pass manager to provide this as it isolates us from a potentially
408 // out-of-date dominator tree and makes it significantly more complex to run
409 // this code outside of a pass manager.
410 // FIXME: It's really gross that we have to cast away constness here.
411 if (!F.empty())
412 DT.recalculate(const_cast<Function &>(F));
413
414 for (const BasicBlock &BB : F) {
415 if (!BB.empty() && BB.back().isTerminator())
416 continue;
417
418 if (OS) {
419 *OS << "Basic Block in function '" << F.getName()
420 << "' does not have terminator!\n";
421 BB.printAsOperand(*OS, true, MST);
422 *OS << "\n";
423 }
424 return false;
425 }
426
427 auto FailureCB = [this](const Twine &Message) {
428 this->CheckFailed(Message);
429 };
430 ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
431
432 Broken = false;
433 // FIXME: We strip const here because the inst visitor strips const.
434 visit(const_cast<Function &>(F));
435 verifySiblingFuncletUnwinds();
436
437 if (ConvergenceVerifyHelper.sawTokens())
438 ConvergenceVerifyHelper.verify(DT);
439
440 InstsInThisBlock.clear();
441 DebugFnArgs.clear();
442 LandingPadResultTy = nullptr;
443 SawFrameEscape = false;
444 SiblingFuncletInfo.clear();
445 verifyNoAliasScopeDecl();
446 NoAliasScopeDecls.clear();
447
448 return !Broken;
449 }
450
451 /// Verify the module that this instance of \c Verifier was initialized with.
452 bool verify() {
453 Broken = false;
454
455 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
456 for (const Function &F : M)
457 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
458 DeoptimizeDeclarations.push_back(&F);
459
460 // Now that we've visited every function, verify that we never asked to
461 // recover a frame index that wasn't escaped.
462 verifyFrameRecoverIndices();
463 for (const GlobalVariable &GV : M.globals())
464 visitGlobalVariable(GV);
465
466 for (const GlobalAlias &GA : M.aliases())
467 visitGlobalAlias(GA);
468
469 for (const GlobalIFunc &GI : M.ifuncs())
470 visitGlobalIFunc(GI);
471
472 for (const NamedMDNode &NMD : M.named_metadata())
473 visitNamedMDNode(NMD);
474
475 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
476 visitComdat(SMEC.getValue());
477
478 visitModuleFlags();
479 visitModuleIdents();
480 visitModuleCommandLines();
481
482 verifyCompileUnits();
483
484 verifyDeoptimizeCallingConvs();
485 DISubprogramAttachments.clear();
486 return !Broken;
487 }
488
489private:
490 /// Whether a metadata node is allowed to be, or contain, a DILocation.
491 enum class AreDebugLocsAllowed { No, Yes };
492
493 /// Metadata that should be treated as a range, with slightly different
494 /// requirements.
495 enum class RangeLikeMetadataKind {
496 Range, // MD_range
497 AbsoluteSymbol, // MD_absolute_symbol
498 NoaliasAddrspace // MD_noalias_addrspace
499 };
500
501 // Verification methods...
502 void visitGlobalValue(const GlobalValue &GV);
503 void visitGlobalVariable(const GlobalVariable &GV);
504 void visitGlobalAlias(const GlobalAlias &GA);
505 void visitGlobalIFunc(const GlobalIFunc &GI);
506 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
507 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
508 const GlobalAlias &A, const Constant &C);
509 void visitNamedMDNode(const NamedMDNode &NMD);
510 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
511 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
512 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
513 void visitDIArgList(const DIArgList &AL, Function *F);
514 void visitComdat(const Comdat &C);
515 void visitModuleIdents();
516 void visitModuleCommandLines();
517 void visitModuleFlags();
518 void visitModuleFlag(const MDNode *Op,
520 SmallVectorImpl<const MDNode *> &Requirements);
521 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
522 void visitFunction(const Function &F);
523 void visitBasicBlock(BasicBlock &BB);
524 void verifyRangeLikeMetadata(const Value &V, const MDNode *Range, Type *Ty,
525 RangeLikeMetadataKind Kind);
526 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
527 void visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range, Type *Ty);
528 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
529 void visitProfMetadata(Instruction &I, MDNode *MD);
530 void visitCallStackMetadata(MDNode *MD);
531 void visitMemProfMetadata(Instruction &I, MDNode *MD);
532 void visitCallsiteMetadata(Instruction &I, MDNode *MD);
533 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
534 void visitMMRAMetadata(Instruction &I, MDNode *MD);
535 void visitAnnotationMetadata(MDNode *Annotation);
536 void visitAliasScopeMetadata(const MDNode *MD);
537 void visitAliasScopeListMetadata(const MDNode *MD);
538 void visitAccessGroupMetadata(const MDNode *MD);
539
540 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
541#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
542#include "llvm/IR/Metadata.def"
543 void visitDIScope(const DIScope &N);
544 void visitDIVariable(const DIVariable &N);
545 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
546 void visitDITemplateParameter(const DITemplateParameter &N);
547
548 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
549
550 void visit(DbgLabelRecord &DLR);
551 void visit(DbgVariableRecord &DVR);
552 // InstVisitor overrides...
554 void visitDbgRecords(Instruction &I);
555 void visit(Instruction &I);
556
557 void visitTruncInst(TruncInst &I);
558 void visitZExtInst(ZExtInst &I);
559 void visitSExtInst(SExtInst &I);
560 void visitFPTruncInst(FPTruncInst &I);
561 void visitFPExtInst(FPExtInst &I);
562 void visitFPToUIInst(FPToUIInst &I);
563 void visitFPToSIInst(FPToSIInst &I);
564 void visitUIToFPInst(UIToFPInst &I);
565 void visitSIToFPInst(SIToFPInst &I);
566 void visitIntToPtrInst(IntToPtrInst &I);
567 void visitPtrToIntInst(PtrToIntInst &I);
568 void visitBitCastInst(BitCastInst &I);
569 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
570 void visitPHINode(PHINode &PN);
571 void visitCallBase(CallBase &Call);
572 void visitUnaryOperator(UnaryOperator &U);
573 void visitBinaryOperator(BinaryOperator &B);
574 void visitICmpInst(ICmpInst &IC);
575 void visitFCmpInst(FCmpInst &FC);
576 void visitExtractElementInst(ExtractElementInst &EI);
577 void visitInsertElementInst(InsertElementInst &EI);
578 void visitShuffleVectorInst(ShuffleVectorInst &EI);
579 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
580 void visitCallInst(CallInst &CI);
581 void visitInvokeInst(InvokeInst &II);
582 void visitGetElementPtrInst(GetElementPtrInst &GEP);
583 void visitLoadInst(LoadInst &LI);
584 void visitStoreInst(StoreInst &SI);
585 void verifyDominatesUse(Instruction &I, unsigned i);
586 void visitInstruction(Instruction &I);
587 void visitTerminator(Instruction &I);
588 void visitBranchInst(BranchInst &BI);
589 void visitReturnInst(ReturnInst &RI);
590 void visitSwitchInst(SwitchInst &SI);
591 void visitIndirectBrInst(IndirectBrInst &BI);
592 void visitCallBrInst(CallBrInst &CBI);
593 void visitSelectInst(SelectInst &SI);
594 void visitUserOp1(Instruction &I);
595 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
596 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
597 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
598 void visitVPIntrinsic(VPIntrinsic &VPI);
599 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
600 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
601 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
602 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
603 void visitFenceInst(FenceInst &FI);
604 void visitAllocaInst(AllocaInst &AI);
605 void visitExtractValueInst(ExtractValueInst &EVI);
606 void visitInsertValueInst(InsertValueInst &IVI);
607 void visitEHPadPredecessors(Instruction &I);
608 void visitLandingPadInst(LandingPadInst &LPI);
609 void visitResumeInst(ResumeInst &RI);
610 void visitCatchPadInst(CatchPadInst &CPI);
611 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
612 void visitCleanupPadInst(CleanupPadInst &CPI);
613 void visitFuncletPadInst(FuncletPadInst &FPI);
614 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
615 void visitCleanupReturnInst(CleanupReturnInst &CRI);
616
617 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
618 void verifySwiftErrorValue(const Value *SwiftErrorVal);
619 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
620 void verifyMustTailCall(CallInst &CI);
621 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
622 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
623 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
624 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
625 const Value *V);
626 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
627 const Value *V, bool IsIntrinsic, bool IsInlineAsm);
628 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
629
630 void visitConstantExprsRecursively(const Constant *EntryC);
631 void visitConstantExpr(const ConstantExpr *CE);
632 void visitConstantPtrAuth(const ConstantPtrAuth *CPA);
633 void verifyInlineAsmCall(const CallBase &Call);
634 void verifyStatepoint(const CallBase &Call);
635 void verifyFrameRecoverIndices();
636 void verifySiblingFuncletUnwinds();
637
638 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
639 void verifyFragmentExpression(const DbgVariableRecord &I);
640 template <typename ValueOrMetadata>
641 void verifyFragmentExpression(const DIVariable &V,
643 ValueOrMetadata *Desc);
644 void verifyFnArgs(const DbgVariableIntrinsic &I);
645 void verifyFnArgs(const DbgVariableRecord &DVR);
646 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
647 void verifyNotEntryValue(const DbgVariableRecord &I);
648
649 /// Module-level debug info verification...
650 void verifyCompileUnits();
651
652 /// Module-level verification that all @llvm.experimental.deoptimize
653 /// declarations share the same calling convention.
654 void verifyDeoptimizeCallingConvs();
655
656 void verifyAttachedCallBundle(const CallBase &Call,
657 const OperandBundleUse &BU);
658
659 /// Verify the llvm.experimental.noalias.scope.decl declarations
660 void verifyNoAliasScopeDecl();
661};
662
663} // end anonymous namespace
664
665/// We know that cond should be true, if not print an error message.
666#define Check(C, ...) \
667 do { \
668 if (!(C)) { \
669 CheckFailed(__VA_ARGS__); \
670 return; \
671 } \
672 } while (false)
673
674/// We know that a debug info condition should be true, if not print
675/// an error message.
676#define CheckDI(C, ...) \
677 do { \
678 if (!(C)) { \
679 DebugInfoCheckFailed(__VA_ARGS__); \
680 return; \
681 } \
682 } while (false)
683
684void Verifier::visitDbgRecords(Instruction &I) {
685 if (!I.DebugMarker)
686 return;
687 CheckDI(I.DebugMarker->MarkedInstr == &I,
688 "Instruction has invalid DebugMarker", &I);
689 CheckDI(!isa<PHINode>(&I) || !I.hasDbgRecords(),
690 "PHI Node must not have any attached DbgRecords", &I);
691 for (DbgRecord &DR : I.getDbgRecordRange()) {
692 CheckDI(DR.getMarker() == I.DebugMarker,
693 "DbgRecord had invalid DebugMarker", &I, &DR);
694 if (auto *Loc =
695 dyn_cast_or_null<DILocation>(DR.getDebugLoc().getAsMDNode()))
696 visitMDNode(*Loc, AreDebugLocsAllowed::Yes);
697 if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR)) {
698 visit(*DVR);
699 // These have to appear after `visit` for consistency with existing
700 // intrinsic behaviour.
701 verifyFragmentExpression(*DVR);
702 verifyNotEntryValue(*DVR);
703 } else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
704 visit(*DLR);
705 }
706 }
707}
708
709void Verifier::visit(Instruction &I) {
710 visitDbgRecords(I);
711 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
712 Check(I.getOperand(i) != nullptr, "Operand is null", &I);
714}
715
716// Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
717static void forEachUser(const Value *User,
719 llvm::function_ref<bool(const Value *)> Callback) {
720 if (!Visited.insert(User).second)
721 return;
722
725 while (!WorkList.empty()) {
726 const Value *Cur = WorkList.pop_back_val();
727 if (!Visited.insert(Cur).second)
728 continue;
729 if (Callback(Cur))
730 append_range(WorkList, Cur->materialized_users());
731 }
732}
733
734void Verifier::visitGlobalValue(const GlobalValue &GV) {
736 "Global is external, but doesn't have external or weak linkage!", &GV);
737
738 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
739
740 if (MaybeAlign A = GO->getAlign()) {
741 Check(A->value() <= Value::MaximumAlignment,
742 "huge alignment values are unsupported", GO);
743 }
744
745 if (const MDNode *Associated =
746 GO->getMetadata(LLVMContext::MD_associated)) {
747 Check(Associated->getNumOperands() == 1,
748 "associated metadata must have one operand", &GV, Associated);
749 const Metadata *Op = Associated->getOperand(0).get();
750 Check(Op, "associated metadata must have a global value", GO, Associated);
751
752 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
753 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
754 if (VM) {
755 Check(isa<PointerType>(VM->getValue()->getType()),
756 "associated value must be pointer typed", GV, Associated);
757
758 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
759 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
760 "associated metadata must point to a GlobalObject", GO, Stripped);
761 Check(Stripped != GO,
762 "global values should not associate to themselves", GO,
763 Associated);
764 }
765 }
766
767 // FIXME: Why is getMetadata on GlobalValue protected?
768 if (const MDNode *AbsoluteSymbol =
769 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
770 verifyRangeLikeMetadata(*GO, AbsoluteSymbol,
771 DL.getIntPtrType(GO->getType()),
772 RangeLikeMetadataKind::AbsoluteSymbol);
773 }
774 }
775
776 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
777 "Only global variables can have appending linkage!", &GV);
778
779 if (GV.hasAppendingLinkage()) {
780 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
781 Check(GVar && GVar->getValueType()->isArrayTy(),
782 "Only global arrays can have appending linkage!", GVar);
783 }
784
785 if (GV.isDeclarationForLinker())
786 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
787
788 if (GV.hasDLLExportStorageClass()) {
790 "dllexport GlobalValue must have default or protected visibility",
791 &GV);
792 }
793 if (GV.hasDLLImportStorageClass()) {
795 "dllimport GlobalValue must have default visibility", &GV);
796 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
797 &GV);
798
799 Check((GV.isDeclaration() &&
802 "Global is marked as dllimport, but not external", &GV);
803 }
804
805 if (GV.isImplicitDSOLocal())
806 Check(GV.isDSOLocal(),
807 "GlobalValue with local linkage or non-default "
808 "visibility must be dso_local!",
809 &GV);
810
811 if (GV.isTagged()) {
812 Check(!GV.hasSection(), "tagged GlobalValue must not be in section.", &GV);
813 }
814
815 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
816 if (const Instruction *I = dyn_cast<Instruction>(V)) {
817 if (!I->getParent() || !I->getParent()->getParent())
818 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
819 I);
820 else if (I->getParent()->getParent()->getParent() != &M)
821 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
822 I->getParent()->getParent(),
823 I->getParent()->getParent()->getParent());
824 return false;
825 } else if (const Function *F = dyn_cast<Function>(V)) {
826 if (F->getParent() != &M)
827 CheckFailed("Global is used by function in a different module", &GV, &M,
828 F, F->getParent());
829 return false;
830 }
831 return true;
832 });
833}
834
835void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
836 Type *GVType = GV.getValueType();
837
838 if (GV.hasInitializer()) {
839 Check(GV.getInitializer()->getType() == GVType,
840 "Global variable initializer type does not match global "
841 "variable type!",
842 &GV);
843 // If the global has common linkage, it must have a zero initializer and
844 // cannot be constant.
845 if (GV.hasCommonLinkage()) {
847 "'common' global must have a zero initializer!", &GV);
848 Check(!GV.isConstant(), "'common' global may not be marked constant!",
849 &GV);
850 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
851 }
852 }
853
854 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
855 GV.getName() == "llvm.global_dtors")) {
857 "invalid linkage for intrinsic global variable", &GV);
859 "invalid uses of intrinsic global variable", &GV);
860
861 // Don't worry about emitting an error for it not being an array,
862 // visitGlobalValue will complain on appending non-array.
863 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
864 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
865 PointerType *FuncPtrTy =
866 PointerType::get(Context, DL.getProgramAddressSpace());
867 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
868 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
869 STy->getTypeAtIndex(1) == FuncPtrTy,
870 "wrong type for intrinsic global variable", &GV);
871 Check(STy->getNumElements() == 3,
872 "the third field of the element type is mandatory, "
873 "specify ptr null to migrate from the obsoleted 2-field form");
874 Type *ETy = STy->getTypeAtIndex(2);
875 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
876 &GV);
877 }
878 }
879
880 if (GV.hasName() && (GV.getName() == "llvm.used" ||
881 GV.getName() == "llvm.compiler.used")) {
883 "invalid linkage for intrinsic global variable", &GV);
885 "invalid uses of intrinsic global variable", &GV);
886
887 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
888 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
889 Check(PTy, "wrong type for intrinsic global variable", &GV);
890 if (GV.hasInitializer()) {
891 const Constant *Init = GV.getInitializer();
892 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
893 Check(InitArray, "wrong initalizer for intrinsic global variable",
894 Init);
895 for (Value *Op : InitArray->operands()) {
896 Value *V = Op->stripPointerCasts();
897 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
898 isa<GlobalAlias>(V),
899 Twine("invalid ") + GV.getName() + " member", V);
900 Check(V->hasName(),
901 Twine("members of ") + GV.getName() + " must be named", V);
902 }
903 }
904 }
905 }
906
907 // Visit any debug info attachments.
909 GV.getMetadata(LLVMContext::MD_dbg, MDs);
910 for (auto *MD : MDs) {
911 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
912 visitDIGlobalVariableExpression(*GVE);
913 else
914 CheckDI(false, "!dbg attachment of global variable must be a "
915 "DIGlobalVariableExpression");
916 }
917
918 // Scalable vectors cannot be global variables, since we don't know
919 // the runtime size.
920 Check(!GVType->isScalableTy(), "Globals cannot contain scalable types", &GV);
921
922 // Check if it is or contains a target extension type that disallows being
923 // used as a global.
925 "Global @" + GV.getName() + " has illegal target extension type",
926 GVType);
927
928 if (!GV.hasInitializer()) {
929 visitGlobalValue(GV);
930 return;
931 }
932
933 // Walk any aggregate initializers looking for bitcasts between address spaces
934 visitConstantExprsRecursively(GV.getInitializer());
935
936 visitGlobalValue(GV);
937}
938
939void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
941 Visited.insert(&GA);
942 visitAliaseeSubExpr(Visited, GA, C);
943}
944
945void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
946 const GlobalAlias &GA, const Constant &C) {
948 Check(isa<GlobalValue>(C) &&
949 cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
950 "available_externally alias must point to available_externally "
951 "global value",
952 &GA);
953 }
954 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
956 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
957 &GA);
958 }
959
960 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
961 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
962
963 Check(!GA2->isInterposable(),
964 "Alias cannot point to an interposable alias", &GA);
965 } else {
966 // Only continue verifying subexpressions of GlobalAliases.
967 // Do not recurse into global initializers.
968 return;
969 }
970 }
971
972 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
973 visitConstantExprsRecursively(CE);
974
975 for (const Use &U : C.operands()) {
976 Value *V = &*U;
977 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
978 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
979 else if (const auto *C2 = dyn_cast<Constant>(V))
980 visitAliaseeSubExpr(Visited, GA, *C2);
981 }
982}
983
984void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
986 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
987 "weak_odr, external, or available_externally linkage!",
988 &GA);
989 const Constant *Aliasee = GA.getAliasee();
990 Check(Aliasee, "Aliasee cannot be NULL!", &GA);
991 Check(GA.getType() == Aliasee->getType(),
992 "Alias and aliasee types should match!", &GA);
993
994 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
995 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
996
997 visitAliaseeSubExpr(GA, *Aliasee);
998
999 visitGlobalValue(GA);
1000}
1001
1002void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
1004 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1005 "weak_odr, or external linkage!",
1006 &GI);
1007 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
1008 // is a Function definition.
1010 Check(Resolver, "IFunc must have a Function resolver", &GI);
1011 Check(!Resolver->isDeclarationForLinker(),
1012 "IFunc resolver must be a definition", &GI);
1013
1014 // Check that the immediate resolver operand (prior to any bitcasts) has the
1015 // correct type.
1016 const Type *ResolverTy = GI.getResolver()->getType();
1017
1018 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
1019 "IFunc resolver must return a pointer", &GI);
1020
1021 Check(ResolverTy == PointerType::get(Context, GI.getAddressSpace()),
1022 "IFunc resolver has incorrect type", &GI);
1023}
1024
1025void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
1026 // There used to be various other llvm.dbg.* nodes, but we don't support
1027 // upgrading them and we want to reserve the namespace for future uses.
1028 if (NMD.getName().starts_with("llvm.dbg."))
1029 CheckDI(NMD.getName() == "llvm.dbg.cu",
1030 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1031 for (const MDNode *MD : NMD.operands()) {
1032 if (NMD.getName() == "llvm.dbg.cu")
1033 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
1034
1035 if (!MD)
1036 continue;
1037
1038 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1039 }
1040}
1041
1042void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1043 // Only visit each node once. Metadata can be mutually recursive, so this
1044 // avoids infinite recursion here, as well as being an optimization.
1045 if (!MDNodes.insert(&MD).second)
1046 return;
1047
1048 Check(&MD.getContext() == &Context,
1049 "MDNode context does not match Module context!", &MD);
1050
1051 switch (MD.getMetadataID()) {
1052 default:
1053 llvm_unreachable("Invalid MDNode subclass");
1054 case Metadata::MDTupleKind:
1055 break;
1056#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1057 case Metadata::CLASS##Kind: \
1058 visit##CLASS(cast<CLASS>(MD)); \
1059 break;
1060#include "llvm/IR/Metadata.def"
1061 }
1062
1063 for (const Metadata *Op : MD.operands()) {
1064 if (!Op)
1065 continue;
1066 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1067 &MD, Op);
1068 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1069 "DILocation not allowed within this metadata node", &MD, Op);
1070 if (auto *N = dyn_cast<MDNode>(Op)) {
1071 visitMDNode(*N, AllowLocs);
1072 continue;
1073 }
1074 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1075 visitValueAsMetadata(*V, nullptr);
1076 continue;
1077 }
1078 }
1079
1080 // Check these last, so we diagnose problems in operands first.
1081 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1082 Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1083}
1084
1085void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1086 Check(MD.getValue(), "Expected valid value", &MD);
1087 Check(!MD.getValue()->getType()->isMetadataTy(),
1088 "Unexpected metadata round-trip through values", &MD, MD.getValue());
1089
1090 auto *L = dyn_cast<LocalAsMetadata>(&MD);
1091 if (!L)
1092 return;
1093
1094 Check(F, "function-local metadata used outside a function", L);
1095
1096 // If this was an instruction, bb, or argument, verify that it is in the
1097 // function that we expect.
1098 Function *ActualF = nullptr;
1099 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1100 Check(I->getParent(), "function-local metadata not in basic block", L, I);
1101 ActualF = I->getParent()->getParent();
1102 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1103 ActualF = BB->getParent();
1104 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1105 ActualF = A->getParent();
1106 assert(ActualF && "Unimplemented function local metadata case!");
1107
1108 Check(ActualF == F, "function-local metadata used in wrong function", L);
1109}
1110
1111void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1112 for (const ValueAsMetadata *VAM : AL.getArgs())
1113 visitValueAsMetadata(*VAM, F);
1114}
1115
1116void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1117 Metadata *MD = MDV.getMetadata();
1118 if (auto *N = dyn_cast<MDNode>(MD)) {
1119 visitMDNode(*N, AreDebugLocsAllowed::No);
1120 return;
1121 }
1122
1123 // Only visit each node once. Metadata can be mutually recursive, so this
1124 // avoids infinite recursion here, as well as being an optimization.
1125 if (!MDNodes.insert(MD).second)
1126 return;
1127
1128 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1129 visitValueAsMetadata(*V, F);
1130
1131 if (auto *AL = dyn_cast<DIArgList>(MD))
1132 visitDIArgList(*AL, F);
1133}
1134
1135static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1136static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1137static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1138
1139void Verifier::visitDILocation(const DILocation &N) {
1140 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1141 "location requires a valid scope", &N, N.getRawScope());
1142 if (auto *IA = N.getRawInlinedAt())
1143 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1144 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1145 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1146}
1147
1148void Verifier::visitGenericDINode(const GenericDINode &N) {
1149 CheckDI(N.getTag(), "invalid tag", &N);
1150}
1151
1152void Verifier::visitDIScope(const DIScope &N) {
1153 if (auto *F = N.getRawFile())
1154 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1155}
1156
1157void Verifier::visitDISubrange(const DISubrange &N) {
1158 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1159 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1160 "Subrange can have any one of count or upperBound", &N);
1161 auto *CBound = N.getRawCountNode();
1162 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1163 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1164 "Count must be signed constant or DIVariable or DIExpression", &N);
1165 auto Count = N.getCount();
1166 CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1167 cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1168 "invalid subrange count", &N);
1169 auto *LBound = N.getRawLowerBound();
1170 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1171 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1172 "LowerBound must be signed constant or DIVariable or DIExpression",
1173 &N);
1174 auto *UBound = N.getRawUpperBound();
1175 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1176 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1177 "UpperBound must be signed constant or DIVariable or DIExpression",
1178 &N);
1179 auto *Stride = N.getRawStride();
1180 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1181 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1182 "Stride must be signed constant or DIVariable or DIExpression", &N);
1183}
1184
1185void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1186 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1187 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1188 "GenericSubrange can have any one of count or upperBound", &N);
1189 auto *CBound = N.getRawCountNode();
1190 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1191 "Count must be signed constant or DIVariable or DIExpression", &N);
1192 auto *LBound = N.getRawLowerBound();
1193 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1194 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1195 "LowerBound must be signed constant or DIVariable or DIExpression",
1196 &N);
1197 auto *UBound = N.getRawUpperBound();
1198 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1199 "UpperBound must be signed constant or DIVariable or DIExpression",
1200 &N);
1201 auto *Stride = N.getRawStride();
1202 CheckDI(Stride, "GenericSubrange must contain stride", &N);
1203 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1204 "Stride must be signed constant or DIVariable or DIExpression", &N);
1205}
1206
1207void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1208 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1209}
1210
1211void Verifier::visitDIBasicType(const DIBasicType &N) {
1212 CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1213 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1214 N.getTag() == dwarf::DW_TAG_string_type,
1215 "invalid tag", &N);
1216}
1217
1218void Verifier::visitDIStringType(const DIStringType &N) {
1219 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1220 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1221 &N);
1222}
1223
1224void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1225 // Common scope checks.
1226 visitDIScope(N);
1227
1228 CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1229 N.getTag() == dwarf::DW_TAG_pointer_type ||
1230 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1231 N.getTag() == dwarf::DW_TAG_reference_type ||
1232 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1233 N.getTag() == dwarf::DW_TAG_const_type ||
1234 N.getTag() == dwarf::DW_TAG_immutable_type ||
1235 N.getTag() == dwarf::DW_TAG_volatile_type ||
1236 N.getTag() == dwarf::DW_TAG_restrict_type ||
1237 N.getTag() == dwarf::DW_TAG_atomic_type ||
1238 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1239 N.getTag() == dwarf::DW_TAG_member ||
1240 (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1241 N.getTag() == dwarf::DW_TAG_inheritance ||
1242 N.getTag() == dwarf::DW_TAG_friend ||
1243 N.getTag() == dwarf::DW_TAG_set_type ||
1244 N.getTag() == dwarf::DW_TAG_template_alias,
1245 "invalid tag", &N);
1246 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1247 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1248 N.getRawExtraData());
1249 }
1250
1251 if (N.getTag() == dwarf::DW_TAG_set_type) {
1252 if (auto *T = N.getRawBaseType()) {
1253 auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1254 auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1255 CheckDI(
1256 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1257 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1258 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1259 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1260 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1261 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1262 "invalid set base type", &N, T);
1263 }
1264 }
1265
1266 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1267 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1268 N.getRawBaseType());
1269
1270 if (N.getDWARFAddressSpace()) {
1271 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1272 N.getTag() == dwarf::DW_TAG_reference_type ||
1273 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1274 "DWARF address space only applies to pointer or reference types",
1275 &N);
1276 }
1277}
1278
1279/// Detect mutually exclusive flags.
1280static bool hasConflictingReferenceFlags(unsigned Flags) {
1281 return ((Flags & DINode::FlagLValueReference) &&
1282 (Flags & DINode::FlagRValueReference)) ||
1283 ((Flags & DINode::FlagTypePassByValue) &&
1284 (Flags & DINode::FlagTypePassByReference));
1285}
1286
1287void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1288 auto *Params = dyn_cast<MDTuple>(&RawParams);
1289 CheckDI(Params, "invalid template params", &N, &RawParams);
1290 for (Metadata *Op : Params->operands()) {
1291 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1292 &N, Params, Op);
1293 }
1294}
1295
1296void Verifier::visitDICompositeType(const DICompositeType &N) {
1297 // Common scope checks.
1298 visitDIScope(N);
1299
1300 CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1301 N.getTag() == dwarf::DW_TAG_structure_type ||
1302 N.getTag() == dwarf::DW_TAG_union_type ||
1303 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1304 N.getTag() == dwarf::DW_TAG_class_type ||
1305 N.getTag() == dwarf::DW_TAG_variant_part ||
1306 N.getTag() == dwarf::DW_TAG_namelist,
1307 "invalid tag", &N);
1308
1309 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1310 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1311 N.getRawBaseType());
1312
1313 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1314 "invalid composite elements", &N, N.getRawElements());
1315 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1316 N.getRawVTableHolder());
1318 "invalid reference flags", &N);
1319 unsigned DIBlockByRefStruct = 1 << 4;
1320 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1321 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1322
1323 if (N.isVector()) {
1324 const DINodeArray Elements = N.getElements();
1325 CheckDI(Elements.size() == 1 &&
1326 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1327 "invalid vector, expected one element of type subrange", &N);
1328 }
1329
1330 if (auto *Params = N.getRawTemplateParams())
1331 visitTemplateParams(N, *Params);
1332
1333 if (auto *D = N.getRawDiscriminator()) {
1334 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1335 "discriminator can only appear on variant part");
1336 }
1337
1338 if (N.getRawDataLocation()) {
1339 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1340 "dataLocation can only appear in array type");
1341 }
1342
1343 if (N.getRawAssociated()) {
1344 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1345 "associated can only appear in array type");
1346 }
1347
1348 if (N.getRawAllocated()) {
1349 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1350 "allocated can only appear in array type");
1351 }
1352
1353 if (N.getRawRank()) {
1354 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1355 "rank can only appear in array type");
1356 }
1357
1358 if (N.getTag() == dwarf::DW_TAG_array_type) {
1359 CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1360 }
1361}
1362
1363void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1364 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1365 if (auto *Types = N.getRawTypeArray()) {
1366 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1367 for (Metadata *Ty : N.getTypeArray()->operands()) {
1368 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1369 }
1370 }
1372 "invalid reference flags", &N);
1373}
1374
1375void Verifier::visitDIFile(const DIFile &N) {
1376 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1377 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1378 if (Checksum) {
1379 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1380 "invalid checksum kind", &N);
1381 size_t Size;
1382 switch (Checksum->Kind) {
1383 case DIFile::CSK_MD5:
1384 Size = 32;
1385 break;
1386 case DIFile::CSK_SHA1:
1387 Size = 40;
1388 break;
1389 case DIFile::CSK_SHA256:
1390 Size = 64;
1391 break;
1392 }
1393 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1394 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1395 "invalid checksum", &N);
1396 }
1397}
1398
1399void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1400 CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1401 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1402
1403 // Don't bother verifying the compilation directory or producer string
1404 // as those could be empty.
1405 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1406 N.getRawFile());
1407 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1408 N.getFile());
1409
1410 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1411 "invalid emission kind", &N);
1412
1413 if (auto *Array = N.getRawEnumTypes()) {
1414 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1415 for (Metadata *Op : N.getEnumTypes()->operands()) {
1416 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1417 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1418 "invalid enum type", &N, N.getEnumTypes(), Op);
1419 }
1420 }
1421 if (auto *Array = N.getRawRetainedTypes()) {
1422 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1423 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1424 CheckDI(
1425 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1426 !cast<DISubprogram>(Op)->isDefinition())),
1427 "invalid retained type", &N, Op);
1428 }
1429 }
1430 if (auto *Array = N.getRawGlobalVariables()) {
1431 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1432 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1433 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1434 "invalid global variable ref", &N, Op);
1435 }
1436 }
1437 if (auto *Array = N.getRawImportedEntities()) {
1438 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1439 for (Metadata *Op : N.getImportedEntities()->operands()) {
1440 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1441 &N, Op);
1442 }
1443 }
1444 if (auto *Array = N.getRawMacros()) {
1445 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1446 for (Metadata *Op : N.getMacros()->operands()) {
1447 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1448 }
1449 }
1450 CUVisited.insert(&N);
1451}
1452
1453void Verifier::visitDISubprogram(const DISubprogram &N) {
1454 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1455 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1456 if (auto *F = N.getRawFile())
1457 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1458 else
1459 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1460 if (auto *T = N.getRawType())
1461 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1462 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1463 N.getRawContainingType());
1464 if (auto *Params = N.getRawTemplateParams())
1465 visitTemplateParams(N, *Params);
1466 if (auto *S = N.getRawDeclaration())
1467 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1468 "invalid subprogram declaration", &N, S);
1469 if (auto *RawNode = N.getRawRetainedNodes()) {
1470 auto *Node = dyn_cast<MDTuple>(RawNode);
1471 CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1472 for (Metadata *Op : Node->operands()) {
1473 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1474 isa<DIImportedEntity>(Op)),
1475 "invalid retained nodes, expected DILocalVariable, DILabel or "
1476 "DIImportedEntity",
1477 &N, Node, Op);
1478 }
1479 }
1481 "invalid reference flags", &N);
1482
1483 auto *Unit = N.getRawUnit();
1484 if (N.isDefinition()) {
1485 // Subprogram definitions (not part of the type hierarchy).
1486 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1487 CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1488 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1489 // There's no good way to cross the CU boundary to insert a nested
1490 // DISubprogram definition in one CU into a type defined in another CU.
1491 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1492 if (CT && CT->getRawIdentifier() &&
1493 M.getContext().isODRUniquingDebugTypes())
1494 CheckDI(N.getDeclaration(),
1495 "definition subprograms cannot be nested within DICompositeType "
1496 "when enabling ODR",
1497 &N);
1498 } else {
1499 // Subprogram declarations (part of the type hierarchy).
1500 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1501 CheckDI(!N.getRawDeclaration(),
1502 "subprogram declaration must not have a declaration field");
1503 }
1504
1505 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1506 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1507 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1508 for (Metadata *Op : ThrownTypes->operands())
1509 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1510 Op);
1511 }
1512
1513 if (N.areAllCallsDescribed())
1514 CheckDI(N.isDefinition(),
1515 "DIFlagAllCallsDescribed must be attached to a definition");
1516}
1517
1518void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1519 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1520 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1521 "invalid local scope", &N, N.getRawScope());
1522 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1523 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1524}
1525
1526void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1527 visitDILexicalBlockBase(N);
1528
1529 CheckDI(N.getLine() || !N.getColumn(),
1530 "cannot have column info without line info", &N);
1531}
1532
1533void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1534 visitDILexicalBlockBase(N);
1535}
1536
1537void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1538 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1539 if (auto *S = N.getRawScope())
1540 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1541 if (auto *S = N.getRawDecl())
1542 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1543}
1544
1545void Verifier::visitDINamespace(const DINamespace &N) {
1546 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1547 if (auto *S = N.getRawScope())
1548 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1549}
1550
1551void Verifier::visitDIMacro(const DIMacro &N) {
1552 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1553 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1554 "invalid macinfo type", &N);
1555 CheckDI(!N.getName().empty(), "anonymous macro", &N);
1556 if (!N.getValue().empty()) {
1557 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1558 }
1559}
1560
1561void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1562 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1563 "invalid macinfo type", &N);
1564 if (auto *F = N.getRawFile())
1565 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1566
1567 if (auto *Array = N.getRawElements()) {
1568 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1569 for (Metadata *Op : N.getElements()->operands()) {
1570 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1571 }
1572 }
1573}
1574
1575void Verifier::visitDIModule(const DIModule &N) {
1576 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1577 CheckDI(!N.getName().empty(), "anonymous module", &N);
1578}
1579
1580void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1581 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1582}
1583
1584void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1585 visitDITemplateParameter(N);
1586
1587 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1588 &N);
1589}
1590
1591void Verifier::visitDITemplateValueParameter(
1592 const DITemplateValueParameter &N) {
1593 visitDITemplateParameter(N);
1594
1595 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1596 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1597 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1598 "invalid tag", &N);
1599}
1600
1601void Verifier::visitDIVariable(const DIVariable &N) {
1602 if (auto *S = N.getRawScope())
1603 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1604 if (auto *F = N.getRawFile())
1605 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1606}
1607
1608void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1609 // Checks common to all variables.
1610 visitDIVariable(N);
1611
1612 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1613 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1614 // Check only if the global variable is not an extern
1615 if (N.isDefinition())
1616 CheckDI(N.getType(), "missing global variable type", &N);
1617 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1618 CheckDI(isa<DIDerivedType>(Member),
1619 "invalid static data member declaration", &N, Member);
1620 }
1621}
1622
1623void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1624 // Checks common to all variables.
1625 visitDIVariable(N);
1626
1627 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1628 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1629 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1630 "local variable requires a valid scope", &N, N.getRawScope());
1631 if (auto Ty = N.getType())
1632 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1633}
1634
1635void Verifier::visitDIAssignID(const DIAssignID &N) {
1636 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1637 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1638}
1639
1640void Verifier::visitDILabel(const DILabel &N) {
1641 if (auto *S = N.getRawScope())
1642 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1643 if (auto *F = N.getRawFile())
1644 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1645
1646 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1647 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1648 "label requires a valid scope", &N, N.getRawScope());
1649}
1650
1651void Verifier::visitDIExpression(const DIExpression &N) {
1652 CheckDI(N.isValid(), "invalid expression", &N);
1653}
1654
1655void Verifier::visitDIGlobalVariableExpression(
1656 const DIGlobalVariableExpression &GVE) {
1657 CheckDI(GVE.getVariable(), "missing variable");
1658 if (auto *Var = GVE.getVariable())
1659 visitDIGlobalVariable(*Var);
1660 if (auto *Expr = GVE.getExpression()) {
1661 visitDIExpression(*Expr);
1662 if (auto Fragment = Expr->getFragmentInfo())
1663 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1664 }
1665}
1666
1667void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1668 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1669 if (auto *T = N.getRawType())
1670 CheckDI(isType(T), "invalid type ref", &N, T);
1671 if (auto *F = N.getRawFile())
1672 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1673}
1674
1675void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1676 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1677 N.getTag() == dwarf::DW_TAG_imported_declaration,
1678 "invalid tag", &N);
1679 if (auto *S = N.getRawScope())
1680 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1681 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1682 N.getRawEntity());
1683}
1684
1685void Verifier::visitComdat(const Comdat &C) {
1686 // In COFF the Module is invalid if the GlobalValue has private linkage.
1687 // Entities with private linkage don't have entries in the symbol table.
1688 if (TT.isOSBinFormatCOFF())
1689 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1690 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1691 GV);
1692}
1693
1694void Verifier::visitModuleIdents() {
1695 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1696 if (!Idents)
1697 return;
1698
1699 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1700 // Scan each llvm.ident entry and make sure that this requirement is met.
1701 for (const MDNode *N : Idents->operands()) {
1702 Check(N->getNumOperands() == 1,
1703 "incorrect number of operands in llvm.ident metadata", N);
1704 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1705 ("invalid value for llvm.ident metadata entry operand"
1706 "(the operand should be a string)"),
1707 N->getOperand(0));
1708 }
1709}
1710
1711void Verifier::visitModuleCommandLines() {
1712 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1713 if (!CommandLines)
1714 return;
1715
1716 // llvm.commandline takes a list of metadata entry. Each entry has only one
1717 // string. Scan each llvm.commandline entry and make sure that this
1718 // requirement is met.
1719 for (const MDNode *N : CommandLines->operands()) {
1720 Check(N->getNumOperands() == 1,
1721 "incorrect number of operands in llvm.commandline metadata", N);
1722 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1723 ("invalid value for llvm.commandline metadata entry operand"
1724 "(the operand should be a string)"),
1725 N->getOperand(0));
1726 }
1727}
1728
1729void Verifier::visitModuleFlags() {
1730 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1731 if (!Flags) return;
1732
1733 // Scan each flag, and track the flags and requirements.
1735 SmallVector<const MDNode*, 16> Requirements;
1736 uint64_t PAuthABIPlatform = -1;
1737 uint64_t PAuthABIVersion = -1;
1738 for (const MDNode *MDN : Flags->operands()) {
1739 visitModuleFlag(MDN, SeenIDs, Requirements);
1740 if (MDN->getNumOperands() != 3)
1741 continue;
1742 if (const auto *FlagName = dyn_cast_or_null<MDString>(MDN->getOperand(1))) {
1743 if (FlagName->getString() == "aarch64-elf-pauthabi-platform") {
1744 if (const auto *PAP =
1745 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1746 PAuthABIPlatform = PAP->getZExtValue();
1747 } else if (FlagName->getString() == "aarch64-elf-pauthabi-version") {
1748 if (const auto *PAV =
1749 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1750 PAuthABIVersion = PAV->getZExtValue();
1751 }
1752 }
1753 }
1754
1755 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1756 CheckFailed("either both or no 'aarch64-elf-pauthabi-platform' and "
1757 "'aarch64-elf-pauthabi-version' module flags must be present");
1758
1759 // Validate that the requirements in the module are valid.
1760 for (const MDNode *Requirement : Requirements) {
1761 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1762 const Metadata *ReqValue = Requirement->getOperand(1);
1763
1764 const MDNode *Op = SeenIDs.lookup(Flag);
1765 if (!Op) {
1766 CheckFailed("invalid requirement on flag, flag is not present in module",
1767 Flag);
1768 continue;
1769 }
1770
1771 if (Op->getOperand(2) != ReqValue) {
1772 CheckFailed(("invalid requirement on flag, "
1773 "flag does not have the required value"),
1774 Flag);
1775 continue;
1776 }
1777 }
1778}
1779
1780void
1781Verifier::visitModuleFlag(const MDNode *Op,
1783 SmallVectorImpl<const MDNode *> &Requirements) {
1784 // Each module flag should have three arguments, the merge behavior (a
1785 // constant int), the flag ID (an MDString), and the value.
1786 Check(Op->getNumOperands() == 3,
1787 "incorrect number of operands in module flag", Op);
1789 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1790 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1791 "invalid behavior operand in module flag (expected constant integer)",
1792 Op->getOperand(0));
1793 Check(false,
1794 "invalid behavior operand in module flag (unexpected constant)",
1795 Op->getOperand(0));
1796 }
1797 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1798 Check(ID, "invalid ID operand in module flag (expected metadata string)",
1799 Op->getOperand(1));
1800
1801 // Check the values for behaviors with additional requirements.
1802 switch (MFB) {
1803 case Module::Error:
1804 case Module::Warning:
1805 case Module::Override:
1806 // These behavior types accept any value.
1807 break;
1808
1809 case Module::Min: {
1810 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1811 Check(V && V->getValue().isNonNegative(),
1812 "invalid value for 'min' module flag (expected constant non-negative "
1813 "integer)",
1814 Op->getOperand(2));
1815 break;
1816 }
1817
1818 case Module::Max: {
1819 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1820 "invalid value for 'max' module flag (expected constant integer)",
1821 Op->getOperand(2));
1822 break;
1823 }
1824
1825 case Module::Require: {
1826 // The value should itself be an MDNode with two operands, a flag ID (an
1827 // MDString), and a value.
1828 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1829 Check(Value && Value->getNumOperands() == 2,
1830 "invalid value for 'require' module flag (expected metadata pair)",
1831 Op->getOperand(2));
1832 Check(isa<MDString>(Value->getOperand(0)),
1833 ("invalid value for 'require' module flag "
1834 "(first value operand should be a string)"),
1835 Value->getOperand(0));
1836
1837 // Append it to the list of requirements, to check once all module flags are
1838 // scanned.
1839 Requirements.push_back(Value);
1840 break;
1841 }
1842
1843 case Module::Append:
1844 case Module::AppendUnique: {
1845 // These behavior types require the operand be an MDNode.
1846 Check(isa<MDNode>(Op->getOperand(2)),
1847 "invalid value for 'append'-type module flag "
1848 "(expected a metadata node)",
1849 Op->getOperand(2));
1850 break;
1851 }
1852 }
1853
1854 // Unless this is a "requires" flag, check the ID is unique.
1855 if (MFB != Module::Require) {
1856 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1857 Check(Inserted,
1858 "module flag identifiers must be unique (or of 'require' type)", ID);
1859 }
1860
1861 if (ID->getString() == "wchar_size") {
1863 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1864 Check(Value, "wchar_size metadata requires constant integer argument");
1865 }
1866
1867 if (ID->getString() == "Linker Options") {
1868 // If the llvm.linker.options named metadata exists, we assume that the
1869 // bitcode reader has upgraded the module flag. Otherwise the flag might
1870 // have been created by a client directly.
1871 Check(M.getNamedMetadata("llvm.linker.options"),
1872 "'Linker Options' named metadata no longer supported");
1873 }
1874
1875 if (ID->getString() == "SemanticInterposition") {
1877 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1878 Check(Value,
1879 "SemanticInterposition metadata requires constant integer argument");
1880 }
1881
1882 if (ID->getString() == "CG Profile") {
1883 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1884 visitModuleFlagCGProfileEntry(MDO);
1885 }
1886}
1887
1888void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1889 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1890 if (!FuncMDO)
1891 return;
1892 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1893 Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1894 "expected a Function or null", FuncMDO);
1895 };
1896 auto Node = dyn_cast_or_null<MDNode>(MDO);
1897 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1898 CheckFunction(Node->getOperand(0));
1899 CheckFunction(Node->getOperand(1));
1900 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1901 Check(Count && Count->getType()->isIntegerTy(),
1902 "expected an integer constant", Node->getOperand(2));
1903}
1904
1905void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1906 for (Attribute A : Attrs) {
1907
1908 if (A.isStringAttribute()) {
1909#define GET_ATTR_NAMES
1910#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1911#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1912 if (A.getKindAsString() == #DISPLAY_NAME) { \
1913 auto V = A.getValueAsString(); \
1914 if (!(V.empty() || V == "true" || V == "false")) \
1915 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1916 ""); \
1917 }
1918
1919#include "llvm/IR/Attributes.inc"
1920 continue;
1921 }
1922
1923 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1924 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1925 V);
1926 return;
1927 }
1928 }
1929}
1930
1931// VerifyParameterAttrs - Check the given attributes for an argument or return
1932// value of the specified type. The value V is printed in error messages.
1933void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1934 const Value *V) {
1935 if (!Attrs.hasAttributes())
1936 return;
1937
1938 verifyAttributeTypes(Attrs, V);
1939
1940 for (Attribute Attr : Attrs)
1941 Check(Attr.isStringAttribute() ||
1942 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1943 "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1944 V);
1945
1946 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1947 Check(Attrs.getNumAttributes() == 1,
1948 "Attribute 'immarg' is incompatible with other attributes", V);
1949 }
1950
1951 // Check for mutually incompatible attributes. Only inreg is compatible with
1952 // sret.
1953 unsigned AttrCount = 0;
1954 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1955 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1956 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1957 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1958 Attrs.hasAttribute(Attribute::InReg);
1959 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1960 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1961 Check(AttrCount <= 1,
1962 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1963 "'byref', and 'sret' are incompatible!",
1964 V);
1965
1966 Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1967 Attrs.hasAttribute(Attribute::ReadOnly)),
1968 "Attributes "
1969 "'inalloca and readonly' are incompatible!",
1970 V);
1971
1972 Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1973 Attrs.hasAttribute(Attribute::Returned)),
1974 "Attributes "
1975 "'sret and returned' are incompatible!",
1976 V);
1977
1978 Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1979 Attrs.hasAttribute(Attribute::SExt)),
1980 "Attributes "
1981 "'zeroext and signext' are incompatible!",
1982 V);
1983
1984 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1985 Attrs.hasAttribute(Attribute::ReadOnly)),
1986 "Attributes "
1987 "'readnone and readonly' are incompatible!",
1988 V);
1989
1990 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1991 Attrs.hasAttribute(Attribute::WriteOnly)),
1992 "Attributes "
1993 "'readnone and writeonly' are incompatible!",
1994 V);
1995
1996 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1997 Attrs.hasAttribute(Attribute::WriteOnly)),
1998 "Attributes "
1999 "'readonly and writeonly' are incompatible!",
2000 V);
2001
2002 Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
2003 Attrs.hasAttribute(Attribute::AlwaysInline)),
2004 "Attributes "
2005 "'noinline and alwaysinline' are incompatible!",
2006 V);
2007
2008 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2009 Attrs.hasAttribute(Attribute::ReadNone)),
2010 "Attributes writable and readnone are incompatible!", V);
2011
2012 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2013 Attrs.hasAttribute(Attribute::ReadOnly)),
2014 "Attributes writable and readonly are incompatible!", V);
2015
2016 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty, Attrs);
2017 for (Attribute Attr : Attrs) {
2018 if (!Attr.isStringAttribute() &&
2019 IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
2020 CheckFailed("Attribute '" + Attr.getAsString() +
2021 "' applied to incompatible type!", V);
2022 return;
2023 }
2024 }
2025
2026 if (isa<PointerType>(Ty)) {
2027 if (Attrs.hasAttribute(Attribute::Alignment)) {
2028 Align AttrAlign = Attrs.getAlignment().valueOrOne();
2029 Check(AttrAlign.value() <= Value::MaximumAlignment,
2030 "huge alignment values are unsupported", V);
2031 }
2032 if (Attrs.hasAttribute(Attribute::ByVal)) {
2033 Type *ByValTy = Attrs.getByValType();
2034 SmallPtrSet<Type *, 4> Visited;
2035 Check(ByValTy->isSized(&Visited),
2036 "Attribute 'byval' does not support unsized types!", V);
2037 // Check if it is or contains a target extension type that disallows being
2038 // used on the stack.
2040 "'byval' argument has illegal target extension type", V);
2041 Check(DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32),
2042 "huge 'byval' arguments are unsupported", V);
2043 }
2044 if (Attrs.hasAttribute(Attribute::ByRef)) {
2045 SmallPtrSet<Type *, 4> Visited;
2046 Check(Attrs.getByRefType()->isSized(&Visited),
2047 "Attribute 'byref' does not support unsized types!", V);
2048 Check(DL.getTypeAllocSize(Attrs.getByRefType()).getKnownMinValue() <
2049 (1ULL << 32),
2050 "huge 'byref' arguments are unsupported", V);
2051 }
2052 if (Attrs.hasAttribute(Attribute::InAlloca)) {
2053 SmallPtrSet<Type *, 4> Visited;
2054 Check(Attrs.getInAllocaType()->isSized(&Visited),
2055 "Attribute 'inalloca' does not support unsized types!", V);
2056 Check(DL.getTypeAllocSize(Attrs.getInAllocaType()).getKnownMinValue() <
2057 (1ULL << 32),
2058 "huge 'inalloca' arguments are unsupported", V);
2059 }
2060 if (Attrs.hasAttribute(Attribute::Preallocated)) {
2061 SmallPtrSet<Type *, 4> Visited;
2062 Check(Attrs.getPreallocatedType()->isSized(&Visited),
2063 "Attribute 'preallocated' does not support unsized types!", V);
2064 Check(
2065 DL.getTypeAllocSize(Attrs.getPreallocatedType()).getKnownMinValue() <
2066 (1ULL << 32),
2067 "huge 'preallocated' arguments are unsupported", V);
2068 }
2069 }
2070
2071 if (Attrs.hasAttribute(Attribute::Initializes)) {
2072 auto Inits = Attrs.getAttribute(Attribute::Initializes).getInitializes();
2073 Check(!Inits.empty(), "Attribute 'initializes' does not support empty list",
2074 V);
2076 "Attribute 'initializes' does not support unordered ranges", V);
2077 }
2078
2079 if (Attrs.hasAttribute(Attribute::NoFPClass)) {
2080 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2081 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
2082 V);
2083 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
2084 "Invalid value for 'nofpclass' test mask", V);
2085 }
2086 if (Attrs.hasAttribute(Attribute::Range)) {
2087 const ConstantRange &CR =
2088 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2090 "Range bit width must match type bit width!", V);
2091 }
2092}
2093
2094void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2095 const Value *V) {
2096 if (Attrs.hasFnAttr(Attr)) {
2097 StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
2098 unsigned N;
2099 if (S.getAsInteger(10, N))
2100 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
2101 }
2102}
2103
2104// Check parameter attributes against a function type.
2105// The value V is printed in error messages.
2106void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2107 const Value *V, bool IsIntrinsic,
2108 bool IsInlineAsm) {
2109 if (Attrs.isEmpty())
2110 return;
2111
2112 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2113 Check(Attrs.hasParentContext(Context),
2114 "Attribute list does not match Module context!", &Attrs, V);
2115 for (const auto &AttrSet : Attrs) {
2116 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2117 "Attribute set does not match Module context!", &AttrSet, V);
2118 for (const auto &A : AttrSet) {
2119 Check(A.hasParentContext(Context),
2120 "Attribute does not match Module context!", &A, V);
2121 }
2122 }
2123 }
2124
2125 bool SawNest = false;
2126 bool SawReturned = false;
2127 bool SawSRet = false;
2128 bool SawSwiftSelf = false;
2129 bool SawSwiftAsync = false;
2130 bool SawSwiftError = false;
2131
2132 // Verify return value attributes.
2133 AttributeSet RetAttrs = Attrs.getRetAttrs();
2134 for (Attribute RetAttr : RetAttrs)
2135 Check(RetAttr.isStringAttribute() ||
2136 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2137 "Attribute '" + RetAttr.getAsString() +
2138 "' does not apply to function return values",
2139 V);
2140
2141 unsigned MaxParameterWidth = 0;
2142 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2143 if (Ty->isVectorTy()) {
2144 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2145 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2146 if (Size > MaxParameterWidth)
2147 MaxParameterWidth = Size;
2148 }
2149 }
2150 };
2151 GetMaxParameterWidth(FT->getReturnType());
2152 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2153
2154 // Verify parameter attributes.
2155 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2156 Type *Ty = FT->getParamType(i);
2157 AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2158
2159 if (!IsIntrinsic) {
2160 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2161 "immarg attribute only applies to intrinsics", V);
2162 if (!IsInlineAsm)
2163 Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2164 "Attribute 'elementtype' can only be applied to intrinsics"
2165 " and inline asm.",
2166 V);
2167 }
2168
2169 verifyParameterAttrs(ArgAttrs, Ty, V);
2170 GetMaxParameterWidth(Ty);
2171
2172 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2173 Check(!SawNest, "More than one parameter has attribute nest!", V);
2174 SawNest = true;
2175 }
2176
2177 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2178 Check(!SawReturned, "More than one parameter has attribute returned!", V);
2179 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2180 "Incompatible argument and return types for 'returned' attribute",
2181 V);
2182 SawReturned = true;
2183 }
2184
2185 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2186 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2187 Check(i == 0 || i == 1,
2188 "Attribute 'sret' is not on first or second parameter!", V);
2189 SawSRet = true;
2190 }
2191
2192 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2193 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2194 SawSwiftSelf = true;
2195 }
2196
2197 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2198 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2199 SawSwiftAsync = true;
2200 }
2201
2202 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2203 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2204 SawSwiftError = true;
2205 }
2206
2207 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2208 Check(i == FT->getNumParams() - 1,
2209 "inalloca isn't on the last parameter!", V);
2210 }
2211 }
2212
2213 if (!Attrs.hasFnAttrs())
2214 return;
2215
2216 verifyAttributeTypes(Attrs.getFnAttrs(), V);
2217 for (Attribute FnAttr : Attrs.getFnAttrs())
2218 Check(FnAttr.isStringAttribute() ||
2219 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2220 "Attribute '" + FnAttr.getAsString() +
2221 "' does not apply to functions!",
2222 V);
2223
2224 Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2225 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2226 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2227
2228 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2229 Check(Attrs.hasFnAttr(Attribute::NoInline),
2230 "Attribute 'optnone' requires 'noinline'!", V);
2231
2232 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2233 "Attributes 'optsize and optnone' are incompatible!", V);
2234
2235 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2236 "Attributes 'minsize and optnone' are incompatible!", V);
2237
2238 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2239 "Attributes 'optdebug and optnone' are incompatible!", V);
2240 }
2241
2242 Check(!(Attrs.hasFnAttr(Attribute::SanitizeRealtime) &&
2243 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)),
2244 "Attributes "
2245 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2246 V);
2247
2248 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2249 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2250 "Attributes 'optsize and optdebug' are incompatible!", V);
2251
2252 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2253 "Attributes 'minsize and optdebug' are incompatible!", V);
2254 }
2255
2256 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2257 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2258 "Attribute writable and memory without argmem: write are incompatible!",
2259 V);
2260
2261 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2262 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2263 "Attributes 'aarch64_pstate_sm_enabled and "
2264 "aarch64_pstate_sm_compatible' are incompatible!",
2265 V);
2266 }
2267
2268 Check((Attrs.hasFnAttr("aarch64_new_za") + Attrs.hasFnAttr("aarch64_in_za") +
2269 Attrs.hasFnAttr("aarch64_inout_za") +
2270 Attrs.hasFnAttr("aarch64_out_za") +
2271 Attrs.hasFnAttr("aarch64_preserves_za") +
2272 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2273 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2274 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2275 "'aarch64_za_state_agnostic' are mutually exclusive",
2276 V);
2277
2278 Check((Attrs.hasFnAttr("aarch64_new_zt0") +
2279 Attrs.hasFnAttr("aarch64_in_zt0") +
2280 Attrs.hasFnAttr("aarch64_inout_zt0") +
2281 Attrs.hasFnAttr("aarch64_out_zt0") +
2282 Attrs.hasFnAttr("aarch64_preserves_zt0") +
2283 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2284 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2285 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2286 "'aarch64_za_state_agnostic' are mutually exclusive",
2287 V);
2288
2289 if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2290 const GlobalValue *GV = cast<GlobalValue>(V);
2292 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2293 }
2294
2295 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2296 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2297 if (ParamNo >= FT->getNumParams()) {
2298 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2299 return false;
2300 }
2301
2302 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2303 CheckFailed("'allocsize' " + Name +
2304 " argument must refer to an integer parameter",
2305 V);
2306 return false;
2307 }
2308
2309 return true;
2310 };
2311
2312 if (!CheckParam("element size", Args->first))
2313 return;
2314
2315 if (Args->second && !CheckParam("number of elements", *Args->second))
2316 return;
2317 }
2318
2319 if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2320 AllocFnKind K = Attrs.getAllocKind();
2323 if (!is_contained(
2325 Type))
2326 CheckFailed(
2327 "'allockind()' requires exactly one of alloc, realloc, and free");
2328 if ((Type == AllocFnKind::Free) &&
2331 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2332 "or aligned modifiers.");
2334 if ((K & ZeroedUninit) == ZeroedUninit)
2335 CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2336 }
2337
2338 if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2339 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2340 if (VScaleMin == 0)
2341 CheckFailed("'vscale_range' minimum must be greater than 0", V);
2342 else if (!isPowerOf2_32(VScaleMin))
2343 CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2344 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2345 if (VScaleMax && VScaleMin > VScaleMax)
2346 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2347 else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2348 CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2349 }
2350
2351 if (Attrs.hasFnAttr("frame-pointer")) {
2352 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2353 if (FP != "all" && FP != "non-leaf" && FP != "none" && FP != "reserved")
2354 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2355 }
2356
2357 // Check EVEX512 feature.
2358 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
2359 TT.isX86()) {
2360 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2361 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2362 "512-bit vector arguments require 'evex512' for AVX512", V);
2363 }
2364
2365 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2366 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2367 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2368
2369 if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
2370 StringRef S = A.getValueAsString();
2371 if (S != "none" && S != "all" && S != "non-leaf")
2372 CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
2373 }
2374
2375 if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
2376 StringRef S = A.getValueAsString();
2377 if (S != "a_key" && S != "b_key")
2378 CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
2379 V);
2380 if (auto AA = Attrs.getFnAttr("sign-return-address"); !AA.isValid()) {
2381 CheckFailed(
2382 "'sign-return-address-key' present without `sign-return-address`");
2383 }
2384 }
2385
2386 if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
2387 StringRef S = A.getValueAsString();
2388 if (S != "" && S != "true" && S != "false")
2389 CheckFailed(
2390 "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2391 }
2392
2393 if (auto A = Attrs.getFnAttr("branch-protection-pauth-lr"); A.isValid()) {
2394 StringRef S = A.getValueAsString();
2395 if (S != "" && S != "true" && S != "false")
2396 CheckFailed(
2397 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2398 }
2399
2400 if (auto A = Attrs.getFnAttr("guarded-control-stack"); A.isValid()) {
2401 StringRef S = A.getValueAsString();
2402 if (S != "" && S != "true" && S != "false")
2403 CheckFailed("invalid value for 'guarded-control-stack' attribute: " + S,
2404 V);
2405 }
2406
2407 if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) {
2408 StringRef S = A.getValueAsString();
2409 const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT);
2410 if (!Info)
2411 CheckFailed("invalid name for a VFABI variant: " + S, V);
2412 }
2413
2414 if (auto A = Attrs.getFnAttr("denormal-fp-math"); A.isValid()) {
2415 StringRef S = A.getValueAsString();
2417 CheckFailed("invalid value for 'denormal-fp-math' attribute: " + S, V);
2418 }
2419
2420 if (auto A = Attrs.getFnAttr("denormal-fp-math-f32"); A.isValid()) {
2421 StringRef S = A.getValueAsString();
2423 CheckFailed("invalid value for 'denormal-fp-math-f32' attribute: " + S,
2424 V);
2425 }
2426}
2427
2428void Verifier::verifyFunctionMetadata(
2429 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2430 for (const auto &Pair : MDs) {
2431 if (Pair.first == LLVMContext::MD_prof) {
2432 MDNode *MD = Pair.second;
2433 Check(MD->getNumOperands() >= 2,
2434 "!prof annotations should have no less than 2 operands", MD);
2435
2436 // Check first operand.
2437 Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2438 MD);
2439 Check(isa<MDString>(MD->getOperand(0)),
2440 "expected string with name of the !prof annotation", MD);
2441 MDString *MDS = cast<MDString>(MD->getOperand(0));
2442 StringRef ProfName = MDS->getString();
2443 Check(ProfName == "function_entry_count" ||
2444 ProfName == "synthetic_function_entry_count",
2445 "first operand should be 'function_entry_count'"
2446 " or 'synthetic_function_entry_count'",
2447 MD);
2448
2449 // Check second operand.
2450 Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2451 MD);
2452 Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2453 "expected integer argument to function_entry_count", MD);
2454 } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2455 MDNode *MD = Pair.second;
2456 Check(MD->getNumOperands() == 1,
2457 "!kcfi_type must have exactly one operand", MD);
2458 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2459 MD);
2460 Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2461 "expected a constant operand for !kcfi_type", MD);
2462 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2463 Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2464 "expected a constant integer operand for !kcfi_type", MD);
2465 Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2466 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2467 }
2468 }
2469}
2470
2471void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2472 if (!ConstantExprVisited.insert(EntryC).second)
2473 return;
2474
2476 Stack.push_back(EntryC);
2477
2478 while (!Stack.empty()) {
2479 const Constant *C = Stack.pop_back_val();
2480
2481 // Check this constant expression.
2482 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2483 visitConstantExpr(CE);
2484
2485 if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C))
2486 visitConstantPtrAuth(CPA);
2487
2488 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2489 // Global Values get visited separately, but we do need to make sure
2490 // that the global value is in the correct module
2491 Check(GV->getParent() == &M, "Referencing global in another module!",
2492 EntryC, &M, GV, GV->getParent());
2493 continue;
2494 }
2495
2496 // Visit all sub-expressions.
2497 for (const Use &U : C->operands()) {
2498 const auto *OpC = dyn_cast<Constant>(U);
2499 if (!OpC)
2500 continue;
2501 if (!ConstantExprVisited.insert(OpC).second)
2502 continue;
2503 Stack.push_back(OpC);
2504 }
2505 }
2506}
2507
2508void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2509 if (CE->getOpcode() == Instruction::BitCast)
2510 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2511 CE->getType()),
2512 "Invalid bitcast", CE);
2513}
2514
2515void Verifier::visitConstantPtrAuth(const ConstantPtrAuth *CPA) {
2516 Check(CPA->getPointer()->getType()->isPointerTy(),
2517 "signed ptrauth constant base pointer must have pointer type");
2518
2519 Check(CPA->getType() == CPA->getPointer()->getType(),
2520 "signed ptrauth constant must have same type as its base pointer");
2521
2522 Check(CPA->getKey()->getBitWidth() == 32,
2523 "signed ptrauth constant key must be i32 constant integer");
2524
2526 "signed ptrauth constant address discriminator must be a pointer");
2527
2528 Check(CPA->getDiscriminator()->getBitWidth() == 64,
2529 "signed ptrauth constant discriminator must be i64 constant integer");
2530}
2531
2532bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2533 // There shouldn't be more attribute sets than there are parameters plus the
2534 // function and return value.
2535 return Attrs.getNumAttrSets() <= Params + 2;
2536}
2537
2538void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2539 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2540 unsigned ArgNo = 0;
2541 unsigned LabelNo = 0;
2542 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2543 if (CI.Type == InlineAsm::isLabel) {
2544 ++LabelNo;
2545 continue;
2546 }
2547
2548 // Only deal with constraints that correspond to call arguments.
2549 if (!CI.hasArg())
2550 continue;
2551
2552 if (CI.isIndirect) {
2553 const Value *Arg = Call.getArgOperand(ArgNo);
2554 Check(Arg->getType()->isPointerTy(),
2555 "Operand for indirect constraint must have pointer type", &Call);
2556
2557 Check(Call.getParamElementType(ArgNo),
2558 "Operand for indirect constraint must have elementtype attribute",
2559 &Call);
2560 } else {
2561 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2562 "Elementtype attribute can only be applied for indirect "
2563 "constraints",
2564 &Call);
2565 }
2566
2567 ArgNo++;
2568 }
2569
2570 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2571 Check(LabelNo == CallBr->getNumIndirectDests(),
2572 "Number of label constraints does not match number of callbr dests",
2573 &Call);
2574 } else {
2575 Check(LabelNo == 0, "Label constraints can only be used with callbr",
2576 &Call);
2577 }
2578}
2579
2580/// Verify that statepoint intrinsic is well formed.
2581void Verifier::verifyStatepoint(const CallBase &Call) {
2582 assert(Call.getCalledFunction() &&
2583 Call.getCalledFunction()->getIntrinsicID() ==
2584 Intrinsic::experimental_gc_statepoint);
2585
2586 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2587 !Call.onlyAccessesArgMemory(),
2588 "gc.statepoint must read and write all memory to preserve "
2589 "reordering restrictions required by safepoint semantics",
2590 Call);
2591
2592 const int64_t NumPatchBytes =
2593 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2594 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2595 Check(NumPatchBytes >= 0,
2596 "gc.statepoint number of patchable bytes must be "
2597 "positive",
2598 Call);
2599
2600 Type *TargetElemType = Call.getParamElementType(2);
2601 Check(TargetElemType,
2602 "gc.statepoint callee argument must have elementtype attribute", Call);
2603 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2604 Check(TargetFuncType,
2605 "gc.statepoint callee elementtype must be function type", Call);
2606
2607 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2608 Check(NumCallArgs >= 0,
2609 "gc.statepoint number of arguments to underlying call "
2610 "must be positive",
2611 Call);
2612 const int NumParams = (int)TargetFuncType->getNumParams();
2613 if (TargetFuncType->isVarArg()) {
2614 Check(NumCallArgs >= NumParams,
2615 "gc.statepoint mismatch in number of vararg call args", Call);
2616
2617 // TODO: Remove this limitation
2618 Check(TargetFuncType->getReturnType()->isVoidTy(),
2619 "gc.statepoint doesn't support wrapping non-void "
2620 "vararg functions yet",
2621 Call);
2622 } else
2623 Check(NumCallArgs == NumParams,
2624 "gc.statepoint mismatch in number of call args", Call);
2625
2626 const uint64_t Flags
2627 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2628 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2629 "unknown flag used in gc.statepoint flags argument", Call);
2630
2631 // Verify that the types of the call parameter arguments match
2632 // the type of the wrapped callee.
2633 AttributeList Attrs = Call.getAttributes();
2634 for (int i = 0; i < NumParams; i++) {
2635 Type *ParamType = TargetFuncType->getParamType(i);
2636 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2637 Check(ArgType == ParamType,
2638 "gc.statepoint call argument does not match wrapped "
2639 "function type",
2640 Call);
2641
2642 if (TargetFuncType->isVarArg()) {
2643 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2644 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2645 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2646 }
2647 }
2648
2649 const int EndCallArgsInx = 4 + NumCallArgs;
2650
2651 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2652 Check(isa<ConstantInt>(NumTransitionArgsV),
2653 "gc.statepoint number of transition arguments "
2654 "must be constant integer",
2655 Call);
2656 const int NumTransitionArgs =
2657 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2658 Check(NumTransitionArgs == 0,
2659 "gc.statepoint w/inline transition bundle is deprecated", Call);
2660 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2661
2662 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2663 Check(isa<ConstantInt>(NumDeoptArgsV),
2664 "gc.statepoint number of deoptimization arguments "
2665 "must be constant integer",
2666 Call);
2667 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2668 Check(NumDeoptArgs == 0,
2669 "gc.statepoint w/inline deopt operands is deprecated", Call);
2670
2671 const int ExpectedNumArgs = 7 + NumCallArgs;
2672 Check(ExpectedNumArgs == (int)Call.arg_size(),
2673 "gc.statepoint too many arguments", Call);
2674
2675 // Check that the only uses of this gc.statepoint are gc.result or
2676 // gc.relocate calls which are tied to this statepoint and thus part
2677 // of the same statepoint sequence
2678 for (const User *U : Call.users()) {
2679 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2680 Check(UserCall, "illegal use of statepoint token", Call, U);
2681 if (!UserCall)
2682 continue;
2683 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2684 "gc.result or gc.relocate are the only value uses "
2685 "of a gc.statepoint",
2686 Call, U);
2687 if (isa<GCResultInst>(UserCall)) {
2688 Check(UserCall->getArgOperand(0) == &Call,
2689 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2690 } else if (isa<GCRelocateInst>(Call)) {
2691 Check(UserCall->getArgOperand(0) == &Call,
2692 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2693 }
2694 }
2695
2696 // Note: It is legal for a single derived pointer to be listed multiple
2697 // times. It's non-optimal, but it is legal. It can also happen after
2698 // insertion if we strip a bitcast away.
2699 // Note: It is really tempting to check that each base is relocated and
2700 // that a derived pointer is never reused as a base pointer. This turns
2701 // out to be problematic since optimizations run after safepoint insertion
2702 // can recognize equality properties that the insertion logic doesn't know
2703 // about. See example statepoint.ll in the verifier subdirectory
2704}
2705
2706void Verifier::verifyFrameRecoverIndices() {
2707 for (auto &Counts : FrameEscapeInfo) {
2708 Function *F = Counts.first;
2709 unsigned EscapedObjectCount = Counts.second.first;
2710 unsigned MaxRecoveredIndex = Counts.second.second;
2711 Check(MaxRecoveredIndex <= EscapedObjectCount,
2712 "all indices passed to llvm.localrecover must be less than the "
2713 "number of arguments passed to llvm.localescape in the parent "
2714 "function",
2715 F);
2716 }
2717}
2718
2719static Instruction *getSuccPad(Instruction *Terminator) {
2720 BasicBlock *UnwindDest;
2721 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2722 UnwindDest = II->getUnwindDest();
2723 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2724 UnwindDest = CSI->getUnwindDest();
2725 else
2726 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2727 return UnwindDest->getFirstNonPHI();
2728}
2729
2730void Verifier::verifySiblingFuncletUnwinds() {
2733 for (const auto &Pair : SiblingFuncletInfo) {
2734 Instruction *PredPad = Pair.first;
2735 if (Visited.count(PredPad))
2736 continue;
2737 Active.insert(PredPad);
2738 Instruction *Terminator = Pair.second;
2739 do {
2740 Instruction *SuccPad = getSuccPad(Terminator);
2741 if (Active.count(SuccPad)) {
2742 // Found a cycle; report error
2743 Instruction *CyclePad = SuccPad;
2745 do {
2746 CycleNodes.push_back(CyclePad);
2747 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2748 if (CycleTerminator != CyclePad)
2749 CycleNodes.push_back(CycleTerminator);
2750 CyclePad = getSuccPad(CycleTerminator);
2751 } while (CyclePad != SuccPad);
2752 Check(false, "EH pads can't handle each other's exceptions",
2753 ArrayRef<Instruction *>(CycleNodes));
2754 }
2755 // Don't re-walk a node we've already checked
2756 if (!Visited.insert(SuccPad).second)
2757 break;
2758 // Walk to this successor if it has a map entry.
2759 PredPad = SuccPad;
2760 auto TermI = SiblingFuncletInfo.find(PredPad);
2761 if (TermI == SiblingFuncletInfo.end())
2762 break;
2763 Terminator = TermI->second;
2764 Active.insert(PredPad);
2765 } while (true);
2766 // Each node only has one successor, so we've walked all the active
2767 // nodes' successors.
2768 Active.clear();
2769 }
2770}
2771
2772// visitFunction - Verify that a function is ok.
2773//
2774void Verifier::visitFunction(const Function &F) {
2775 visitGlobalValue(F);
2776
2777 // Check function arguments.
2778 FunctionType *FT = F.getFunctionType();
2779 unsigned NumArgs = F.arg_size();
2780
2781 Check(&Context == &F.getContext(),
2782 "Function context does not match Module context!", &F);
2783
2784 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2785 Check(FT->getNumParams() == NumArgs,
2786 "# formal arguments must match # of arguments for function type!", &F,
2787 FT);
2788 Check(F.getReturnType()->isFirstClassType() ||
2789 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2790 "Functions cannot return aggregate values!", &F);
2791
2792 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2793 "Invalid struct return type!", &F);
2794
2795 AttributeList Attrs = F.getAttributes();
2796
2797 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2798 "Attribute after last parameter!", &F);
2799
2800 CheckDI(F.IsNewDbgInfoFormat == F.getParent()->IsNewDbgInfoFormat,
2801 "Function debug format should match parent module", &F,
2802 F.IsNewDbgInfoFormat, F.getParent(),
2803 F.getParent()->IsNewDbgInfoFormat);
2804
2805 bool IsIntrinsic = F.isIntrinsic();
2806
2807 // Check function attributes.
2808 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2809
2810 // On function declarations/definitions, we do not support the builtin
2811 // attribute. We do not check this in VerifyFunctionAttrs since that is
2812 // checking for Attributes that can/can not ever be on functions.
2813 Check(!Attrs.hasFnAttr(Attribute::Builtin),
2814 "Attribute 'builtin' can only be applied to a callsite.", &F);
2815
2816 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2817 "Attribute 'elementtype' can only be applied to a callsite.", &F);
2818
2819 if (Attrs.hasFnAttr(Attribute::Naked))
2820 for (const Argument &Arg : F.args())
2821 Check(Arg.use_empty(), "cannot use argument of naked function", &Arg);
2822
2823 // Check that this function meets the restrictions on this calling convention.
2824 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2825 // restrictions can be lifted.
2826 switch (F.getCallingConv()) {
2827 default:
2828 case CallingConv::C:
2829 break;
2830 case CallingConv::X86_INTR: {
2831 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2832 "Calling convention parameter requires byval", &F);
2833 break;
2834 }
2839 Check(F.getReturnType()->isVoidTy(),
2840 "Calling convention requires void return type", &F);
2841 [[fallthrough]];
2847 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2848 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2849 const unsigned StackAS = DL.getAllocaAddrSpace();
2850 unsigned i = 0;
2851 for (const Argument &Arg : F.args()) {
2852 Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2853 "Calling convention disallows byval", &F);
2854 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2855 "Calling convention disallows preallocated", &F);
2856 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2857 "Calling convention disallows inalloca", &F);
2858
2859 if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2860 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2861 // value here.
2862 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2863 "Calling convention disallows stack byref", &F);
2864 }
2865
2866 ++i;
2867 }
2868 }
2869
2870 [[fallthrough]];
2871 case CallingConv::Fast:
2872 case CallingConv::Cold:
2876 Check(!F.isVarArg(),
2877 "Calling convention does not support varargs or "
2878 "perfect forwarding!",
2879 &F);
2880 break;
2881 }
2882
2883 // Check that the argument values match the function type for this function...
2884 unsigned i = 0;
2885 for (const Argument &Arg : F.args()) {
2886 Check(Arg.getType() == FT->getParamType(i),
2887 "Argument value does not match function argument type!", &Arg,
2888 FT->getParamType(i));
2889 Check(Arg.getType()->isFirstClassType(),
2890 "Function arguments must have first-class types!", &Arg);
2891 if (!IsIntrinsic) {
2892 Check(!Arg.getType()->isMetadataTy(),
2893 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2894 Check(!Arg.getType()->isTokenTy(),
2895 "Function takes token but isn't an intrinsic", &Arg, &F);
2896 Check(!Arg.getType()->isX86_AMXTy(),
2897 "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2898 }
2899
2900 // Check that swifterror argument is only used by loads and stores.
2901 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2902 verifySwiftErrorValue(&Arg);
2903 }
2904 ++i;
2905 }
2906
2907 if (!IsIntrinsic) {
2908 Check(!F.getReturnType()->isTokenTy(),
2909 "Function returns a token but isn't an intrinsic", &F);
2910 Check(!F.getReturnType()->isX86_AMXTy(),
2911 "Function returns a x86_amx but isn't an intrinsic", &F);
2912 }
2913
2914 // Get the function metadata attachments.
2916 F.getAllMetadata(MDs);
2917 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2918 verifyFunctionMetadata(MDs);
2919
2920 // Check validity of the personality function
2921 if (F.hasPersonalityFn()) {
2922 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2923 if (Per)
2924 Check(Per->getParent() == F.getParent(),
2925 "Referencing personality function in another module!", &F,
2926 F.getParent(), Per, Per->getParent());
2927 }
2928
2929 // EH funclet coloring can be expensive, recompute on-demand
2930 BlockEHFuncletColors.clear();
2931
2932 if (F.isMaterializable()) {
2933 // Function has a body somewhere we can't see.
2934 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2935 MDs.empty() ? nullptr : MDs.front().second);
2936 } else if (F.isDeclaration()) {
2937 for (const auto &I : MDs) {
2938 // This is used for call site debug information.
2939 CheckDI(I.first != LLVMContext::MD_dbg ||
2940 !cast<DISubprogram>(I.second)->isDistinct(),
2941 "function declaration may only have a unique !dbg attachment",
2942 &F);
2943 Check(I.first != LLVMContext::MD_prof,
2944 "function declaration may not have a !prof attachment", &F);
2945
2946 // Verify the metadata itself.
2947 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2948 }
2949 Check(!F.hasPersonalityFn(),
2950 "Function declaration shouldn't have a personality routine", &F);
2951 } else {
2952 // Verify that this function (which has a body) is not named "llvm.*". It
2953 // is not legal to define intrinsics.
2954 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2955
2956 // Check the entry node
2957 const BasicBlock *Entry = &F.getEntryBlock();
2958 Check(pred_empty(Entry),
2959 "Entry block to function must not have predecessors!", Entry);
2960
2961 // The address of the entry block cannot be taken, unless it is dead.
2962 if (Entry->hasAddressTaken()) {
2963 Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2964 "blockaddress may not be used with the entry block!", Entry);
2965 }
2966
2967 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2968 NumKCFIAttachments = 0;
2969 // Visit metadata attachments.
2970 for (const auto &I : MDs) {
2971 // Verify that the attachment is legal.
2972 auto AllowLocs = AreDebugLocsAllowed::No;
2973 switch (I.first) {
2974 default:
2975 break;
2976 case LLVMContext::MD_dbg: {
2977 ++NumDebugAttachments;
2978 CheckDI(NumDebugAttachments == 1,
2979 "function must have a single !dbg attachment", &F, I.second);
2980 CheckDI(isa<DISubprogram>(I.second),
2981 "function !dbg attachment must be a subprogram", &F, I.second);
2982 CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2983 "function definition may only have a distinct !dbg attachment",
2984 &F);
2985
2986 auto *SP = cast<DISubprogram>(I.second);
2987 const Function *&AttachedTo = DISubprogramAttachments[SP];
2988 CheckDI(!AttachedTo || AttachedTo == &F,
2989 "DISubprogram attached to more than one function", SP, &F);
2990 AttachedTo = &F;
2991 AllowLocs = AreDebugLocsAllowed::Yes;
2992 break;
2993 }
2994 case LLVMContext::MD_prof:
2995 ++NumProfAttachments;
2996 Check(NumProfAttachments == 1,
2997 "function must have a single !prof attachment", &F, I.second);
2998 break;
2999 case LLVMContext::MD_kcfi_type:
3000 ++NumKCFIAttachments;
3001 Check(NumKCFIAttachments == 1,
3002 "function must have a single !kcfi_type attachment", &F,
3003 I.second);
3004 break;
3005 }
3006
3007 // Verify the metadata itself.
3008 visitMDNode(*I.second, AllowLocs);
3009 }
3010 }
3011
3012 // If this function is actually an intrinsic, verify that it is only used in
3013 // direct call/invokes, never having its "address taken".
3014 // Only do this if the module is materialized, otherwise we don't have all the
3015 // uses.
3016 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
3017 const User *U;
3018 if (F.hasAddressTaken(&U, false, true, false,
3019 /*IgnoreARCAttachedCall=*/true))
3020 Check(false, "Invalid user of intrinsic instruction!", U);
3021 }
3022
3023 // Check intrinsics' signatures.
3024 switch (F.getIntrinsicID()) {
3025 case Intrinsic::experimental_gc_get_pointer_base: {
3026 FunctionType *FT = F.getFunctionType();
3027 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
3028 Check(isa<PointerType>(F.getReturnType()),
3029 "gc.get.pointer.base must return a pointer", F);
3030 Check(FT->getParamType(0) == F.getReturnType(),
3031 "gc.get.pointer.base operand and result must be of the same type", F);
3032 break;
3033 }
3034 case Intrinsic::experimental_gc_get_pointer_offset: {
3035 FunctionType *FT = F.getFunctionType();
3036 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
3037 Check(isa<PointerType>(FT->getParamType(0)),
3038 "gc.get.pointer.offset operand must be a pointer", F);
3039 Check(F.getReturnType()->isIntegerTy(),
3040 "gc.get.pointer.offset must return integer", F);
3041 break;
3042 }
3043 }
3044
3045 auto *N = F.getSubprogram();
3046 HasDebugInfo = (N != nullptr);
3047 if (!HasDebugInfo)
3048 return;
3049
3050 // Check that all !dbg attachments lead to back to N.
3051 //
3052 // FIXME: Check this incrementally while visiting !dbg attachments.
3053 // FIXME: Only check when N is the canonical subprogram for F.
3055 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
3056 // Be careful about using DILocation here since we might be dealing with
3057 // broken code (this is the Verifier after all).
3058 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
3059 if (!DL)
3060 return;
3061 if (!Seen.insert(DL).second)
3062 return;
3063
3064 Metadata *Parent = DL->getRawScope();
3065 CheckDI(Parent && isa<DILocalScope>(Parent),
3066 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
3067
3068 DILocalScope *Scope = DL->getInlinedAtScope();
3069 Check(Scope, "Failed to find DILocalScope", DL);
3070
3071 if (!Seen.insert(Scope).second)
3072 return;
3073
3074 DISubprogram *SP = Scope->getSubprogram();
3075
3076 // Scope and SP could be the same MDNode and we don't want to skip
3077 // validation in that case
3078 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
3079 return;
3080
3081 CheckDI(SP->describes(&F),
3082 "!dbg attachment points at wrong subprogram for function", N, &F,
3083 &I, DL, Scope, SP);
3084 };
3085 for (auto &BB : F)
3086 for (auto &I : BB) {
3087 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
3088 // The llvm.loop annotations also contain two DILocations.
3089 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
3090 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
3091 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
3092 if (BrokenDebugInfo)
3093 return;
3094 }
3095}
3096
3097// verifyBasicBlock - Verify that a basic block is well formed...
3098//
3099void Verifier::visitBasicBlock(BasicBlock &BB) {
3100 InstsInThisBlock.clear();
3101 ConvergenceVerifyHelper.visit(BB);
3102
3103 // Ensure that basic blocks have terminators!
3104 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
3105
3106 // Check constraints that this basic block imposes on all of the PHI nodes in
3107 // it.
3108 if (isa<PHINode>(BB.front())) {
3111 llvm::sort(Preds);
3112 for (const PHINode &PN : BB.phis()) {
3113 Check(PN.getNumIncomingValues() == Preds.size(),
3114 "PHINode should have one entry for each predecessor of its "
3115 "parent basic block!",
3116 &PN);
3117
3118 // Get and sort all incoming values in the PHI node...
3119 Values.clear();
3120 Values.reserve(PN.getNumIncomingValues());
3121 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3122 Values.push_back(
3123 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3124 llvm::sort(Values);
3125
3126 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
3127 // Check to make sure that if there is more than one entry for a
3128 // particular basic block in this PHI node, that the incoming values are
3129 // all identical.
3130 //
3131 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3132 Values[i].second == Values[i - 1].second,
3133 "PHI node has multiple entries for the same basic block with "
3134 "different incoming values!",
3135 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3136
3137 // Check to make sure that the predecessors and PHI node entries are
3138 // matched up.
3139 Check(Values[i].first == Preds[i],
3140 "PHI node entries do not match predecessors!", &PN,
3141 Values[i].first, Preds[i]);
3142 }
3143 }
3144 }
3145
3146 // Check that all instructions have their parent pointers set up correctly.
3147 for (auto &I : BB)
3148 {
3149 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
3150 }
3151
3152 CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat,
3153 "BB debug format should match parent function", &BB,
3154 BB.IsNewDbgInfoFormat, BB.getParent(),
3155 BB.getParent()->IsNewDbgInfoFormat);
3156
3157 // Confirm that no issues arise from the debug program.
3158 if (BB.IsNewDbgInfoFormat)
3159 CheckDI(!BB.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!",
3160 &BB);
3161}
3162
3163void Verifier::visitTerminator(Instruction &I) {
3164 // Ensure that terminators only exist at the end of the basic block.
3165 Check(&I == I.getParent()->getTerminator(),
3166 "Terminator found in the middle of a basic block!", I.getParent());
3168}
3169
3170void Verifier::visitBranchInst(BranchInst &BI) {
3171 if (BI.isConditional()) {
3173 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
3174 }
3175 visitTerminator(BI);
3176}
3177
3178void Verifier::visitReturnInst(ReturnInst &RI) {
3179 Function *F = RI.getParent()->getParent();
3180 unsigned N = RI.getNumOperands();
3181 if (F->getReturnType()->isVoidTy())
3182 Check(N == 0,
3183 "Found return instr that returns non-void in Function of void "
3184 "return type!",
3185 &RI, F->getReturnType());
3186 else
3187 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
3188 "Function return type does not match operand "
3189 "type of return inst!",
3190 &RI, F->getReturnType());
3191
3192 // Check to make sure that the return value has necessary properties for
3193 // terminators...
3194 visitTerminator(RI);
3195}
3196
3197void Verifier::visitSwitchInst(SwitchInst &SI) {
3198 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3199 // Check to make sure that all of the constants in the switch instruction
3200 // have the same type as the switched-on value.
3201 Type *SwitchTy = SI.getCondition()->getType();
3203 for (auto &Case : SI.cases()) {
3204 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3205 "Case value is not a constant integer.", &SI);
3206 Check(Case.getCaseValue()->getType() == SwitchTy,
3207 "Switch constants must all be same type as switch value!", &SI);
3208 Check(Constants.insert(Case.getCaseValue()).second,
3209 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3210 }
3211
3212 visitTerminator(SI);
3213}
3214
3215void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3217 "Indirectbr operand must have pointer type!", &BI);
3218 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3220 "Indirectbr destinations must all have pointer type!", &BI);
3221
3222 visitTerminator(BI);
3223}
3224
3225void Verifier::visitCallBrInst(CallBrInst &CBI) {
3226 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3227 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3228 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3229
3230 verifyInlineAsmCall(CBI);
3231 visitTerminator(CBI);
3232}
3233
3234void Verifier::visitSelectInst(SelectInst &SI) {
3235 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3236 SI.getOperand(2)),
3237 "Invalid operands for select instruction!", &SI);
3238
3239 Check(SI.getTrueValue()->getType() == SI.getType(),
3240 "Select values must have same type as select instruction!", &SI);
3241 visitInstruction(SI);
3242}
3243
3244/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3245/// a pass, if any exist, it's an error.
3246///
3247void Verifier::visitUserOp1(Instruction &I) {
3248 Check(false, "User-defined operators should not live outside of a pass!", &I);
3249}
3250
3251void Verifier::visitTruncInst(TruncInst &I) {
3252 // Get the source and destination types
3253 Type *SrcTy = I.getOperand(0)->getType();
3254 Type *DestTy = I.getType();
3255
3256 // Get the size of the types in bits, we'll need this later
3257 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3258 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3259
3260 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3261 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3262 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3263 "trunc source and destination must both be a vector or neither", &I);
3264 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3265
3267}
3268
3269void Verifier::visitZExtInst(ZExtInst &I) {
3270 // Get the source and destination types
3271 Type *SrcTy = I.getOperand(0)->getType();
3272 Type *DestTy = I.getType();
3273
3274 // Get the size of the types in bits, we'll need this later
3275 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3276 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3277 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3278 "zext source and destination must both be a vector or neither", &I);
3279 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3280 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3281
3282 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3283
3285}
3286
3287void Verifier::visitSExtInst(SExtInst &I) {
3288 // Get the source and destination types
3289 Type *SrcTy = I.getOperand(0)->getType();
3290 Type *DestTy = I.getType();
3291
3292 // Get the size of the types in bits, we'll need this later
3293 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3294 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3295
3296 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3297 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3298 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3299 "sext source and destination must both be a vector or neither", &I);
3300 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3301
3303}
3304
3305void Verifier::visitFPTruncInst(FPTruncInst &I) {
3306 // Get the source and destination types
3307 Type *SrcTy = I.getOperand(0)->getType();
3308 Type *DestTy = I.getType();
3309 // Get the size of the types in bits, we'll need this later
3310 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3311 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3312
3313 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3314 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3315 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3316 "fptrunc source and destination must both be a vector or neither", &I);
3317 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3318
3320}
3321
3322void Verifier::visitFPExtInst(FPExtInst &I) {
3323 // Get the source and destination types
3324 Type *SrcTy = I.getOperand(0)->getType();
3325 Type *DestTy = I.getType();
3326
3327 // Get the size of the types in bits, we'll need this later
3328 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3329 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3330
3331 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3332 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3333 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3334 "fpext source and destination must both be a vector or neither", &I);
3335 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3336
3338}
3339
3340void Verifier::visitUIToFPInst(UIToFPInst &I) {
3341 // Get the source and destination types
3342 Type *SrcTy = I.getOperand(0)->getType();
3343 Type *DestTy = I.getType();
3344
3345 bool SrcVec = SrcTy->isVectorTy();
3346 bool DstVec = DestTy->isVectorTy();
3347
3348 Check(SrcVec == DstVec,
3349 "UIToFP source and dest must both be vector or scalar", &I);
3350 Check(SrcTy->isIntOrIntVectorTy(),
3351 "UIToFP source must be integer or integer vector", &I);
3352 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3353 &I);
3354
3355 if (SrcVec && DstVec)
3356 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3357 cast<VectorType>(DestTy)->getElementCount(),
3358 "UIToFP source and dest vector length mismatch", &I);
3359
3361}
3362
3363void Verifier::visitSIToFPInst(SIToFPInst &I) {
3364 // Get the source and destination types
3365 Type *SrcTy = I.getOperand(0)->getType();
3366 Type *DestTy = I.getType();
3367
3368 bool SrcVec = SrcTy->isVectorTy();
3369 bool DstVec = DestTy->isVectorTy();
3370
3371 Check(SrcVec == DstVec,
3372 "SIToFP source and dest must both be vector or scalar", &I);
3373 Check(SrcTy->isIntOrIntVectorTy(),
3374 "SIToFP source must be integer or integer vector", &I);
3375 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3376 &I);
3377
3378 if (SrcVec && DstVec)
3379 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3380 cast<VectorType>(DestTy)->getElementCount(),
3381 "SIToFP source and dest vector length mismatch", &I);
3382
3384}
3385
3386void Verifier::visitFPToUIInst(FPToUIInst &I) {
3387 // Get the source and destination types
3388 Type *SrcTy = I.getOperand(0)->getType();
3389 Type *DestTy = I.getType();
3390
3391 bool SrcVec = SrcTy->isVectorTy();
3392 bool DstVec = DestTy->isVectorTy();
3393
3394 Check(SrcVec == DstVec,
3395 "FPToUI source and dest must both be vector or scalar", &I);
3396 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3397 Check(DestTy->isIntOrIntVectorTy(),
3398 "FPToUI result must be integer or integer vector", &I);
3399
3400 if (SrcVec && DstVec)
3401 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3402 cast<VectorType>(DestTy)->getElementCount(),
3403 "FPToUI source and dest vector length mismatch", &I);
3404
3406}
3407
3408void Verifier::visitFPToSIInst(FPToSIInst &I) {
3409 // Get the source and destination types
3410 Type *SrcTy = I.getOperand(0)->getType();
3411 Type *DestTy = I.getType();
3412
3413 bool SrcVec = SrcTy->isVectorTy();
3414 bool DstVec = DestTy->isVectorTy();
3415
3416 Check(SrcVec == DstVec,
3417 "FPToSI source and dest must both be vector or scalar", &I);
3418 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3419 Check(DestTy->isIntOrIntVectorTy(),
3420 "FPToSI result must be integer or integer vector", &I);
3421
3422 if (SrcVec && DstVec)
3423 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3424 cast<VectorType>(DestTy)->getElementCount(),
3425 "FPToSI source and dest vector length mismatch", &I);
3426
3428}
3429
3430void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3431 // Get the source and destination types
3432 Type *SrcTy = I.getOperand(0)->getType();
3433 Type *DestTy = I.getType();
3434
3435 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3436
3437 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3438 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3439 &I);
3440
3441 if (SrcTy->isVectorTy()) {
3442 auto *VSrc = cast<VectorType>(SrcTy);
3443 auto *VDest = cast<VectorType>(DestTy);
3444 Check(VSrc->getElementCount() == VDest->getElementCount(),
3445 "PtrToInt Vector width mismatch", &I);
3446 }
3447
3449}
3450
3451void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3452 // Get the source and destination types
3453 Type *SrcTy = I.getOperand(0)->getType();
3454 Type *DestTy = I.getType();
3455
3456 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3457 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3458
3459 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3460 &I);
3461 if (SrcTy->isVectorTy()) {
3462 auto *VSrc = cast<VectorType>(SrcTy);
3463 auto *VDest = cast<VectorType>(DestTy);
3464 Check(VSrc->getElementCount() == VDest->getElementCount(),
3465 "IntToPtr Vector width mismatch", &I);
3466 }
3468}
3469
3470void Verifier::visitBitCastInst(BitCastInst &I) {
3471 Check(
3472 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3473 "Invalid bitcast", &I);
3475}
3476
3477void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3478 Type *SrcTy = I.getOperand(0)->getType();
3479 Type *DestTy = I.getType();
3480
3481 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3482 &I);
3483 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3484 &I);
3486 "AddrSpaceCast must be between different address spaces", &I);
3487 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3488 Check(SrcVTy->getElementCount() ==
3489 cast<VectorType>(DestTy)->getElementCount(),
3490 "AddrSpaceCast vector pointer number of elements mismatch", &I);
3492}
3493
3494/// visitPHINode - Ensure that a PHI node is well formed.
3495///
3496void Verifier::visitPHINode(PHINode &PN) {
3497 // Ensure that the PHI nodes are all grouped together at the top of the block.
3498 // This can be tested by checking whether the instruction before this is
3499 // either nonexistent (because this is begin()) or is a PHI node. If not,
3500 // then there is some other instruction before a PHI.
3501 Check(&PN == &PN.getParent()->front() ||
3502 isa<PHINode>(--BasicBlock::iterator(&PN)),
3503 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3504
3505 // Check that a PHI doesn't yield a Token.
3506 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3507
3508 // Check that all of the values of the PHI node have the same type as the
3509 // result.
3510 for (Value *IncValue : PN.incoming_values()) {
3511 Check(PN.getType() == IncValue->getType(),
3512 "PHI node operands are not the same type as the result!", &PN);
3513 }
3514
3515 // All other PHI node constraints are checked in the visitBasicBlock method.
3516
3517 visitInstruction(PN);
3518}
3519
3520void Verifier::visitCallBase(CallBase &Call) {
3521 Check(Call.getCalledOperand()->getType()->isPointerTy(),
3522 "Called function must be a pointer!", Call);
3523 FunctionType *FTy = Call.getFunctionType();
3524
3525 // Verify that the correct number of arguments are being passed
3526 if (FTy->isVarArg())
3527 Check(Call.arg_size() >= FTy->getNumParams(),
3528 "Called function requires more parameters than were provided!", Call);
3529 else
3530 Check(Call.arg_size() == FTy->getNumParams(),
3531 "Incorrect number of arguments passed to called function!", Call);
3532
3533 // Verify that all arguments to the call match the function type.
3534 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3535 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3536 "Call parameter type does not match function signature!",
3537 Call.getArgOperand(i), FTy->getParamType(i), Call);
3538
3539 AttributeList Attrs = Call.getAttributes();
3540
3541 Check(verifyAttributeCount(Attrs, Call.arg_size()),
3542 "Attribute after last parameter!", Call);
3543
3544 Function *Callee =
3545 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3546 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3547 if (IsIntrinsic)
3548 Check(Callee->getValueType() == FTy,
3549 "Intrinsic called with incompatible signature", Call);
3550
3551 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3552 // convention.
3553 auto CC = Call.getCallingConv();
3556 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3557 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3558 Call);
3559
3560 // Disallow passing/returning values with alignment higher than we can
3561 // represent.
3562 // FIXME: Consider making DataLayout cap the alignment, so this isn't
3563 // necessary.
3564 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3565 if (!Ty->isSized())
3566 return;
3567 Align ABIAlign = DL.getABITypeAlign(Ty);
3568 Check(ABIAlign.value() <= Value::MaximumAlignment,
3569 "Incorrect alignment of " + Message + " to called function!", Call);
3570 };
3571
3572 if (!IsIntrinsic) {
3573 VerifyTypeAlign(FTy->getReturnType(), "return type");
3574 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3575 Type *Ty = FTy->getParamType(i);
3576 VerifyTypeAlign(Ty, "argument passed");
3577 }
3578 }
3579
3580 if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3581 // Don't allow speculatable on call sites, unless the underlying function
3582 // declaration is also speculatable.
3583 Check(Callee && Callee->isSpeculatable(),
3584 "speculatable attribute may not apply to call sites", Call);
3585 }
3586
3587 if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3588 Check(Call.getCalledFunction()->getIntrinsicID() ==
3589 Intrinsic::call_preallocated_arg,
3590 "preallocated as a call site attribute can only be on "
3591 "llvm.call.preallocated.arg");
3592 }
3593
3594 // Verify call attributes.
3595 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3596
3597 // Conservatively check the inalloca argument.
3598 // We have a bug if we can find that there is an underlying alloca without
3599 // inalloca.
3600 if (Call.hasInAllocaArgument()) {
3601 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3602 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3603 Check(AI->isUsedWithInAlloca(),
3604 "inalloca argument for call has mismatched alloca", AI, Call);
3605 }
3606
3607 // For each argument of the callsite, if it has the swifterror argument,
3608 // make sure the underlying alloca/parameter it comes from has a swifterror as
3609 // well.
3610 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3611 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3612 Value *SwiftErrorArg = Call.getArgOperand(i);
3613 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3614 Check(AI->isSwiftError(),
3615 "swifterror argument for call has mismatched alloca", AI, Call);
3616 continue;
3617 }
3618 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3619 Check(ArgI, "swifterror argument should come from an alloca or parameter",
3620 SwiftErrorArg, Call);
3621 Check(ArgI->hasSwiftErrorAttr(),
3622 "swifterror argument for call has mismatched parameter", ArgI,
3623 Call);
3624 }
3625
3626 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3627 // Don't allow immarg on call sites, unless the underlying declaration
3628 // also has the matching immarg.
3629 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3630 "immarg may not apply only to call sites", Call.getArgOperand(i),
3631 Call);
3632 }
3633
3634 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3635 Value *ArgVal = Call.getArgOperand(i);
3636 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3637 "immarg operand has non-immediate parameter", ArgVal, Call);
3638 }
3639
3640 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3641 Value *ArgVal = Call.getArgOperand(i);
3642 bool hasOB =
3643 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3644 bool isMustTail = Call.isMustTailCall();
3645 Check(hasOB != isMustTail,
3646 "preallocated operand either requires a preallocated bundle or "
3647 "the call to be musttail (but not both)",
3648 ArgVal, Call);
3649 }
3650 }
3651
3652 if (FTy->isVarArg()) {
3653 // FIXME? is 'nest' even legal here?
3654 bool SawNest = false;
3655 bool SawReturned = false;
3656
3657 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3658 if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3659 SawNest = true;
3660 if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3661 SawReturned = true;
3662 }
3663
3664 // Check attributes on the varargs part.
3665 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3666 Type *Ty = Call.getArgOperand(Idx)->getType();
3667 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3668 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3669
3670 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3671 Check(!SawNest, "More than one parameter has attribute nest!", Call);
3672 SawNest = true;
3673 }
3674
3675 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3676 Check(!SawReturned, "More than one parameter has attribute returned!",
3677 Call);
3678 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3679 "Incompatible argument and return types for 'returned' "
3680 "attribute",
3681 Call);
3682 SawReturned = true;
3683 }
3684
3685 // Statepoint intrinsic is vararg but the wrapped function may be not.
3686 // Allow sret here and check the wrapped function in verifyStatepoint.
3687 if (!Call.getCalledFunction() ||
3688 Call.getCalledFunction()->getIntrinsicID() !=
3689 Intrinsic::experimental_gc_statepoint)
3690 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3691 "Attribute 'sret' cannot be used for vararg call arguments!",
3692 Call);
3693
3694 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3695 Check(Idx == Call.arg_size() - 1,
3696 "inalloca isn't on the last argument!", Call);
3697 }
3698 }
3699
3700 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3701 if (!IsIntrinsic) {
3702 for (Type *ParamTy : FTy->params()) {
3703 Check(!ParamTy->isMetadataTy(),
3704 "Function has metadata parameter but isn't an intrinsic", Call);
3705 Check(!ParamTy->isTokenTy(),
3706 "Function has token parameter but isn't an intrinsic", Call);
3707 }
3708 }
3709
3710 // Verify that indirect calls don't return tokens.
3711 if (!Call.getCalledFunction()) {
3712 Check(!FTy->getReturnType()->isTokenTy(),
3713 "Return type cannot be token for indirect call!");
3714 Check(!FTy->getReturnType()->isX86_AMXTy(),
3715 "Return type cannot be x86_amx for indirect call!");
3716 }
3717
3718 if (Function *F = Call.getCalledFunction())
3719 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3720 visitIntrinsicCall(ID, Call);
3721
3722 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3723 // most one "gc-transition", at most one "cfguardtarget", at most one
3724 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3725 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3726 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3727 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3728 FoundPtrauthBundle = false, FoundKCFIBundle = false,
3729 FoundAttachedCallBundle = false;
3730 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3731 OperandBundleUse BU = Call.getOperandBundleAt(i);
3732 uint32_t Tag = BU.getTagID();
3733 if (Tag == LLVMContext::OB_deopt) {
3734 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3735 FoundDeoptBundle = true;
3736 } else if (Tag == LLVMContext::OB_gc_transition) {
3737 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3738 Call);
3739 FoundGCTransitionBundle = true;
3740 } else if (Tag == LLVMContext::OB_funclet) {
3741 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3742 FoundFuncletBundle = true;
3743 Check(BU.Inputs.size() == 1,
3744 "Expected exactly one funclet bundle operand", Call);
3745 Check(isa<FuncletPadInst>(BU.Inputs.front()),
3746 "Funclet bundle operands should correspond to a FuncletPadInst",
3747 Call);
3748 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3749 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3750 Call);
3751 FoundCFGuardTargetBundle = true;
3752 Check(BU.Inputs.size() == 1,
3753 "Expected exactly one cfguardtarget bundle operand", Call);
3754 } else if (Tag == LLVMContext::OB_ptrauth) {
3755 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3756 FoundPtrauthBundle = true;
3757 Check(BU.Inputs.size() == 2,
3758 "Expected exactly two ptrauth bundle operands", Call);
3759 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3760 BU.Inputs[0]->getType()->isIntegerTy(32),
3761 "Ptrauth bundle key operand must be an i32 constant", Call);
3762 Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3763 "Ptrauth bundle discriminator operand must be an i64", Call);
3764 } else if (Tag == LLVMContext::OB_kcfi) {
3765 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3766 FoundKCFIBundle = true;
3767 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3768 Call);
3769 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3770 BU.Inputs[0]->getType()->isIntegerTy(32),
3771 "Kcfi bundle operand must be an i32 constant", Call);
3772 } else if (Tag == LLVMContext::OB_preallocated) {
3773 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3774 Call);
3775 FoundPreallocatedBundle = true;
3776 Check(BU.Inputs.size() == 1,
3777 "Expected exactly one preallocated bundle operand", Call);
3778 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3779 Check(Input &&
3780 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3781 "\"preallocated\" argument must be a token from "
3782 "llvm.call.preallocated.setup",
3783 Call);
3784 } else if (Tag == LLVMContext::OB_gc_live) {
3785 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3786 FoundGCLiveBundle = true;
3788 Check(!FoundAttachedCallBundle,
3789 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3790 FoundAttachedCallBundle = true;
3791 verifyAttachedCallBundle(Call, BU);
3792 }
3793 }
3794
3795 // Verify that callee and callsite agree on whether to use pointer auth.
3796 Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3797 "Direct call cannot have a ptrauth bundle", Call);
3798
3799 // Verify that each inlinable callsite of a debug-info-bearing function in a
3800 // debug-info-bearing function has a debug location attached to it. Failure to
3801 // do so causes assertion failures when the inliner sets up inline scope info
3802 // (Interposable functions are not inlinable, neither are functions without
3803 // definitions.)
3804 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3805 !Call.getCalledFunction()->isInterposable() &&
3806 !Call.getCalledFunction()->isDeclaration() &&
3807 Call.getCalledFunction()->getSubprogram())
3808 CheckDI(Call.getDebugLoc(),
3809 "inlinable function call in a function with "
3810 "debug info must have a !dbg location",
3811 Call);
3812
3813 if (Call.isInlineAsm())
3814 verifyInlineAsmCall(Call);
3815
3816 ConvergenceVerifyHelper.visit(Call);
3817
3818 visitInstruction(Call);
3819}
3820
3821void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3822 StringRef Context) {
3823 Check(!Attrs.contains(Attribute::InAlloca),
3824 Twine("inalloca attribute not allowed in ") + Context);
3825 Check(!Attrs.contains(Attribute::InReg),
3826 Twine("inreg attribute not allowed in ") + Context);
3827 Check(!Attrs.contains(Attribute::SwiftError),
3828 Twine("swifterror attribute not allowed in ") + Context);
3829 Check(!Attrs.contains(Attribute::Preallocated),
3830 Twine("preallocated attribute not allowed in ") + Context);
3831 Check(!Attrs.contains(Attribute::ByRef),
3832 Twine("byref attribute not allowed in ") + Context);
3833}
3834
3835/// Two types are "congruent" if they are identical, or if they are both pointer
3836/// types with different pointee types and the same address space.
3837static bool isTypeCongruent(Type *L, Type *R) {
3838 if (L == R)
3839 return true;
3840 PointerType *PL = dyn_cast<PointerType>(L);
3841 PointerType *PR = dyn_cast<PointerType>(R);
3842 if (!PL || !PR)
3843 return false;
3844 return PL->getAddressSpace() == PR->getAddressSpace();
3845}
3846
3848 static const Attribute::AttrKind ABIAttrs[] = {
3849 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3850 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3851 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3852 Attribute::ByRef};
3853 AttrBuilder Copy(C);
3854 for (auto AK : ABIAttrs) {
3855 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3856 if (Attr.isValid())
3857 Copy.addAttribute(Attr);
3858 }
3859
3860 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3861 if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3862 (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3863 Attrs.hasParamAttr(I, Attribute::ByRef)))
3864 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3865 return Copy;
3866}
3867
3868void Verifier::verifyMustTailCall(CallInst &CI) {
3869 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3870
3871 Function *F = CI.getParent()->getParent();
3872 FunctionType *CallerTy = F->getFunctionType();
3873 FunctionType *CalleeTy = CI.getFunctionType();
3874 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3875 "cannot guarantee tail call due to mismatched varargs", &CI);
3876 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3877 "cannot guarantee tail call due to mismatched return types", &CI);
3878
3879 // - The calling conventions of the caller and callee must match.
3880 Check(F->getCallingConv() == CI.getCallingConv(),
3881 "cannot guarantee tail call due to mismatched calling conv", &CI);
3882
3883 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3884 // or a pointer bitcast followed by a ret instruction.
3885 // - The ret instruction must return the (possibly bitcasted) value
3886 // produced by the call or void.
3887 Value *RetVal = &CI;
3888 Instruction *Next = CI.getNextNode();
3889
3890 // Handle the optional bitcast.
3891 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3892 Check(BI->getOperand(0) == RetVal,
3893 "bitcast following musttail call must use the call", BI);
3894 RetVal = BI;
3895 Next = BI->getNextNode();
3896 }
3897
3898 // Check the return.
3899 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3900 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3901 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3902 isa<UndefValue>(Ret->getReturnValue()),
3903 "musttail call result must be returned", Ret);
3904
3905 AttributeList CallerAttrs = F->getAttributes();
3906 AttributeList CalleeAttrs = CI.getAttributes();
3909 StringRef CCName =
3910 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3911
3912 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3913 // are allowed in swifttailcc call
3914 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3915 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3916 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3917 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3918 }
3919 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3920 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3921 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3922 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3923 }
3924 // - Varargs functions are not allowed
3925 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3926 " tail call for varargs function");
3927 return;
3928 }
3929
3930 // - The caller and callee prototypes must match. Pointer types of
3931 // parameters or return types may differ in pointee type, but not
3932 // address space.
3933 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3934 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3935 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3936 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3937 Check(
3938 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3939 "cannot guarantee tail call due to mismatched parameter types", &CI);
3940 }
3941 }
3942
3943 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3944 // returned, preallocated, and inalloca, must match.
3945 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3946 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3947 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3948 Check(CallerABIAttrs == CalleeABIAttrs,
3949 "cannot guarantee tail call due to mismatched ABI impacting "
3950 "function attributes",
3951 &CI, CI.getOperand(I));
3952 }
3953}
3954
3955void Verifier::visitCallInst(CallInst &CI) {
3956 visitCallBase(CI);
3957
3958 if (CI.isMustTailCall())
3959 verifyMustTailCall(CI);
3960}
3961
3962void Verifier::visitInvokeInst(InvokeInst &II) {
3964
3965 // Verify that the first non-PHI instruction of the unwind destination is an
3966 // exception handling instruction.
3967 Check(
3968 II.getUnwindDest()->isEHPad(),
3969 "The unwind destination does not have an exception handling instruction!",
3970 &II);
3971
3973}
3974
3975/// visitUnaryOperator - Check the argument to the unary operator.
3976///
3977void Verifier::visitUnaryOperator(UnaryOperator &U) {
3978 Check(U.getType() == U.getOperand(0)->getType(),
3979 "Unary operators must have same type for"
3980 "operands and result!",
3981 &U);
3982
3983 switch (U.getOpcode()) {
3984 // Check that floating-point arithmetic operators are only used with
3985 // floating-point operands.
3986 case Instruction::FNeg:
3987 Check(U.getType()->isFPOrFPVectorTy(),
3988 "FNeg operator only works with float types!", &U);
3989 break;
3990 default:
3991 llvm_unreachable("Unknown UnaryOperator opcode!");
3992 }
3993
3995}
3996
3997/// visitBinaryOperator - Check that both arguments to the binary operator are
3998/// of the same type!
3999///
4000void Verifier::visitBinaryOperator(BinaryOperator &B) {
4001 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
4002 "Both operands to a binary operator are not of the same type!", &B);
4003
4004 switch (B.getOpcode()) {
4005 // Check that integer arithmetic operators are only used with
4006 // integral operands.
4007 case Instruction::Add:
4008 case Instruction::Sub:
4009 case Instruction::Mul:
4010 case Instruction::SDiv:
4011 case Instruction::UDiv:
4012 case Instruction::SRem:
4013 case Instruction::URem:
4014 Check(B.getType()->isIntOrIntVectorTy(),
4015 "Integer arithmetic operators only work with integral types!", &B);
4016 Check(B.getType() == B.getOperand(0)->getType(),
4017 "Integer arithmetic operators must have same type "
4018 "for operands and result!",
4019 &B);
4020 break;
4021 // Check that floating-point arithmetic operators are only used with
4022 // floating-point operands.
4023 case Instruction::FAdd:
4024 case Instruction::FSub:
4025 case Instruction::FMul:
4026 case Instruction::FDiv:
4027 case Instruction::FRem:
4028 Check(B.getType()->isFPOrFPVectorTy(),
4029 "Floating-point arithmetic operators only work with "
4030 "floating-point types!",
4031 &B);
4032 Check(B.getType() == B.getOperand(0)->getType(),
4033 "Floating-point arithmetic operators must have same type "
4034 "for operands and result!",
4035 &B);
4036 break;
4037 // Check that logical operators are only used with integral operands.
4038 case Instruction::And:
4039 case Instruction::Or:
4040 case Instruction::Xor:
4041 Check(B.getType()->isIntOrIntVectorTy(),
4042 "Logical operators only work with integral types!", &B);
4043 Check(B.getType() == B.getOperand(0)->getType(),
4044 "Logical operators must have same type for operands and result!", &B);
4045 break;
4046 case Instruction::Shl:
4047 case Instruction::LShr:
4048 case Instruction::AShr:
4049 Check(B.getType()->isIntOrIntVectorTy(),
4050 "Shifts only work with integral types!", &B);
4051 Check(B.getType() == B.getOperand(0)->getType(),
4052 "Shift return type must be same as operands!", &B);
4053 break;
4054 default:
4055 llvm_unreachable("Unknown BinaryOperator opcode!");
4056 }
4057
4059}
4060
4061void Verifier::visitICmpInst(ICmpInst &IC) {
4062 // Check that the operands are the same type
4063 Type *Op0Ty = IC.getOperand(0)->getType();
4064 Type *Op1Ty = IC.getOperand(1)->getType();
4065 Check(Op0Ty == Op1Ty,
4066 "Both operands to ICmp instruction are not of the same type!", &IC);
4067 // Check that the operands are the right type
4068 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
4069 "Invalid operand types for ICmp instruction", &IC);
4070 // Check that the predicate is valid.
4071 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
4072
4073 visitInstruction(IC);
4074}
4075
4076void Verifier::visitFCmpInst(FCmpInst &FC) {
4077 // Check that the operands are the same type
4078 Type *Op0Ty = FC.getOperand(0)->getType();
4079 Type *Op1Ty = FC.getOperand(1)->getType();
4080 Check(Op0Ty == Op1Ty,
4081 "Both operands to FCmp instruction are not of the same type!", &FC);
4082 // Check that the operands are the right type
4083 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
4084 &FC);
4085 // Check that the predicate is valid.
4086 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
4087
4088 visitInstruction(FC);
4089}
4090
4091void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4093 "Invalid extractelement operands!", &EI);
4094 visitInstruction(EI);
4095}
4096
4097void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4098 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
4099 IE.getOperand(2)),
4100 "Invalid insertelement operands!", &IE);
4101 visitInstruction(IE);
4102}
4103
4104void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4106 SV.getShuffleMask()),
4107 "Invalid shufflevector operands!", &SV);
4108 visitInstruction(SV);
4109}
4110
4111void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
4112 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
4113
4114 Check(isa<PointerType>(TargetTy),
4115 "GEP base pointer is not a vector or a vector of pointers", &GEP);
4116 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
4117
4118 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
4119 Check(!STy->isScalableTy(),
4120 "getelementptr cannot target structure that contains scalable vector"
4121 "type",
4122 &GEP);
4123 }
4124
4125 SmallVector<Value *, 16> Idxs(GEP.indices());
4126 Check(
4127 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
4128 "GEP indexes must be integers", &GEP);
4129 Type *ElTy =
4130 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
4131 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
4132
4133 PointerType *PtrTy = dyn_cast<PointerType>(GEP.getType()->getScalarType());
4134
4135 Check(PtrTy && GEP.getResultElementType() == ElTy,
4136 "GEP is not of right type for indices!", &GEP, ElTy);
4137
4138 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
4139 // Additional checks for vector GEPs.
4140 ElementCount GEPWidth = GEPVTy->getElementCount();
4141 if (GEP.getPointerOperandType()->isVectorTy())
4142 Check(
4143 GEPWidth ==
4144 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
4145 "Vector GEP result width doesn't match operand's", &GEP);
4146 for (Value *Idx : Idxs) {
4147 Type *IndexTy = Idx->getType();
4148 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
4149 ElementCount IndexWidth = IndexVTy->getElementCount();
4150 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
4151 }
4152 Check(IndexTy->isIntOrIntVectorTy(),
4153 "All GEP indices should be of integer type");
4154 }
4155 }
4156
4157 Check(GEP.getAddressSpace() == PtrTy->getAddressSpace(),
4158 "GEP address space doesn't match type", &GEP);
4159
4161}
4162
4163static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
4164 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
4165}
4166
4167/// Verify !range and !absolute_symbol metadata. These have the same
4168/// restrictions, except !absolute_symbol allows the full set.
4169void Verifier::verifyRangeLikeMetadata(const Value &I, const MDNode *Range,
4170 Type *Ty, RangeLikeMetadataKind Kind) {
4171 unsigned NumOperands = Range->getNumOperands();
4172 Check(NumOperands % 2 == 0, "Unfinished range!", Range);
4173 unsigned NumRanges = NumOperands / 2;
4174 Check(NumRanges >= 1, "It should have at least one range!", Range);
4175
4176 ConstantRange LastRange(1, true); // Dummy initial value
4177 for (unsigned i = 0; i < NumRanges; ++i) {
4178 ConstantInt *Low =
4179 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
4180 Check(Low, "The lower limit must be an integer!", Low);
4181 ConstantInt *High =
4182 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
4183 Check(High, "The upper limit must be an integer!", High);
4184
4185 Check(High->getType() == Low->getType(), "Range pair types must match!",
4186 &I);
4187
4188 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) {
4189 Check(High->getType()->isIntegerTy(32),
4190 "noalias.addrspace type must be i32!", &I);
4191 } else {
4192 Check(High->getType() == Ty->getScalarType(),
4193 "Range types must match instruction type!", &I);
4194 }
4195
4196 APInt HighV = High->getValue();
4197 APInt LowV = Low->getValue();
4198
4199 // ConstantRange asserts if the ranges are the same except for the min/max
4200 // value. Leave the cases it tolerates for the empty range error below.
4201 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
4202 "The upper and lower limits cannot be the same value", &I);
4203
4204 ConstantRange CurRange(LowV, HighV);
4205 Check(!CurRange.isEmptySet() &&
4206 (Kind == RangeLikeMetadataKind::AbsoluteSymbol ||
4207 !CurRange.isFullSet()),
4208 "Range must not be empty!", Range);
4209 if (i != 0) {
4210 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4211 "Intervals are overlapping", Range);
4212 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4213 Range);
4214 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4215 Range);
4216 }
4217 LastRange = ConstantRange(LowV, HighV);
4218 }
4219 if (NumRanges > 2) {
4220 APInt FirstLow =
4221 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
4222 APInt FirstHigh =
4223 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
4224 ConstantRange FirstRange(FirstLow, FirstHigh);
4225 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4226 "Intervals are overlapping", Range);
4227 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4228 Range);
4229 }
4230}
4231
4232void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4233 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4234 "precondition violation");
4235 verifyRangeLikeMetadata(I, Range, Ty, RangeLikeMetadataKind::Range);
4236}
4237
4238void Verifier::visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range,
4239 Type *Ty) {
4240 assert(Range && Range == I.getMetadata(LLVMContext::MD_noalias_addrspace) &&
4241 "precondition violation");
4242 verifyRangeLikeMetadata(I, Range, Ty,
4243 RangeLikeMetadataKind::NoaliasAddrspace);
4244}
4245
4246void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4247 unsigned Size = DL.getTypeSizeInBits(Ty);
4248 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4249 Check(!(Size & (Size - 1)),
4250 "atomic memory access' operand must have a power-of-two size", Ty, I);
4251}
4252
4253void Verifier::visitLoadInst(LoadInst &LI) {
4254 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4255 Check(PTy, "Load operand must be a pointer.", &LI);
4256 Type *ElTy = LI.getType();
4257 if (MaybeAlign A = LI.getAlign()) {
4258 Check(A->value() <= Value::MaximumAlignment,
4259 "huge alignment values are unsupported", &LI);
4260 }
4261 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4262 if (LI.isAtomic()) {
4265 "Load cannot have Release ordering", &LI);
4266 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4267 "atomic load operand must have integer, pointer, or floating point "
4268 "type!",
4269 ElTy, &LI);
4270 checkAtomicMemAccessSize(ElTy, &LI);
4271 } else {
4273 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4274 }
4275
4276 visitInstruction(LI);
4277}
4278
4279void Verifier::visitStoreInst(StoreInst &SI) {
4280 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4281 Check(PTy, "Store operand must be a pointer.", &SI);
4282 Type *ElTy = SI.getOperand(0)->getType();
4283 if (MaybeAlign A = SI.getAlign()) {
4284 Check(A->value() <= Value::MaximumAlignment,
4285 "huge alignment values are unsupported", &SI);
4286 }
4287 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4288 if (SI.isAtomic()) {
4289 Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4290 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4291 "Store cannot have Acquire ordering", &SI);
4292 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4293 "atomic store operand must have integer, pointer, or floating point "
4294 "type!",
4295 ElTy, &SI);
4296 checkAtomicMemAccessSize(ElTy, &SI);
4297 } else {
4298 Check(SI.getSyncScopeID() == SyncScope::System,
4299 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4300 }
4301 visitInstruction(SI);
4302}
4303
4304/// Check that SwiftErrorVal is used as a swifterror argument in CS.
4305void Verifier::verifySwiftErrorCall(CallBase &Call,
4306 const Value *SwiftErrorVal) {
4307 for (const auto &I : llvm::enumerate(Call.args())) {
4308 if (I.value() == SwiftErrorVal) {
4309 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4310 "swifterror value when used in a callsite should be marked "
4311 "with swifterror attribute",
4312 SwiftErrorVal, Call);
4313 }
4314 }
4315}
4316
4317void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4318 // Check that swifterror value is only used by loads, stores, or as
4319 // a swifterror argument.
4320 for (const User *U : SwiftErrorVal->users()) {
4321 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4322 isa<InvokeInst>(U),
4323 "swifterror value can only be loaded and stored from, or "
4324 "as a swifterror argument!",
4325 SwiftErrorVal, U);
4326 // If it is used by a store, check it is the second operand.
4327 if (auto StoreI = dyn_cast<StoreInst>(U))
4328 Check(StoreI->getOperand(1) == SwiftErrorVal,
4329 "swifterror value should be the second operand when used "
4330 "by stores",
4331 SwiftErrorVal, U);
4332 if (auto *Call = dyn_cast<CallBase>(U))
4333 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4334 }
4335}
4336
4337void Verifier::visitAllocaInst(AllocaInst &AI) {
4338 Type *Ty = AI.getAllocatedType();
4339 SmallPtrSet<Type*, 4> Visited;
4340 Check(Ty->isSized(&Visited), "Cannot allocate unsized type", &AI);
4341 // Check if it's a target extension type that disallows being used on the
4342 // stack.
4344 "Alloca has illegal target extension type", &AI);
4346 "Alloca array size must have integer type", &AI);
4347 if (MaybeAlign A = AI.getAlign()) {
4348 Check(A->value() <= Value::MaximumAlignment,
4349 "huge alignment values are unsupported", &AI);
4350 }
4351
4352 if (AI.isSwiftError()) {
4353 Check(Ty->isPointerTy(), "swifterror alloca must have pointer type", &AI);
4355 "swifterror alloca must not be array allocation", &AI);
4356 verifySwiftErrorValue(&AI);
4357 }
4358
4359 visitInstruction(AI);
4360}
4361
4362void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4363 Type *ElTy = CXI.getOperand(1)->getType();
4364 Check(ElTy->isIntOrPtrTy(),
4365 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4366 checkAtomicMemAccessSize(ElTy, &CXI);
4367 visitInstruction(CXI);
4368}
4369
4370void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4372 "atomicrmw instructions cannot be unordered.", &RMWI);
4373 auto Op = RMWI.getOperation();
4374 Type *ElTy = RMWI.getOperand(1)->getType();
4375 if (Op == AtomicRMWInst::Xchg) {
4376 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4377 ElTy->isPointerTy(),
4378 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4379 " operand must have integer or floating point type!",
4380 &RMWI, ElTy);
4381 } else if (AtomicRMWInst::isFPOperation(Op)) {
4382 Check(ElTy->isFPOrFPVectorTy() && !isa<ScalableVectorType>(ElTy),
4383 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4384 " operand must have floating-point or fixed vector of floating-point "
4385 "type!",
4386 &RMWI, ElTy);
4387 } else {
4388 Check(ElTy->isIntegerTy(),
4389 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4390 " operand must have integer type!",
4391 &RMWI, ElTy);
4392 }
4393 checkAtomicMemAccessSize(ElTy, &RMWI);
4395 "Invalid binary operation!", &RMWI);
4396 visitInstruction(RMWI);
4397}
4398
4399void Verifier::visitFenceInst(FenceInst &FI) {
4400 const AtomicOrdering Ordering = FI.getOrdering();
4401 Check(Ordering == AtomicOrdering::Acquire ||
4402 Ordering == AtomicOrdering::Release ||
4403 Ordering == AtomicOrdering::AcquireRelease ||
4405 "fence instructions may only have acquire, release, acq_rel, or "
4406 "seq_cst ordering.",
4407 &FI);
4408 visitInstruction(FI);
4409}
4410
4411void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4413 EVI.getIndices()) == EVI.getType(),
4414 "Invalid ExtractValueInst operands!", &EVI);
4415
4416 visitInstruction(EVI);
4417}
4418
4419void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4421 IVI.getIndices()) ==
4422 IVI.getOperand(1)->getType(),
4423 "Invalid InsertValueInst operands!", &IVI);
4424
4425 visitInstruction(IVI);
4426}
4427
4428static Value *getParentPad(Value *EHPad) {
4429 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4430 return FPI->getParentPad();
4431
4432 return cast<CatchSwitchInst>(EHPad)->getParentPad();
4433}
4434
4435void Verifier::visitEHPadPredecessors(Instruction &I) {
4436 assert(I.isEHPad());
4437
4438 BasicBlock *BB = I.getParent();
4439 Function *F = BB->getParent();
4440
4441 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4442
4443 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4444 // The landingpad instruction defines its parent as a landing pad block. The
4445 // landing pad block may be branched to only by the unwind edge of an
4446 // invoke.
4447 for (BasicBlock *PredBB : predecessors(BB)) {
4448 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4449 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4450 "Block containing LandingPadInst must be jumped to "
4451 "only by the unwind edge of an invoke.",
4452 LPI);
4453 }
4454 return;
4455 }
4456 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4457 if (!pred_empty(BB))
4458 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4459 "Block containg CatchPadInst must be jumped to "
4460 "only by its catchswitch.",
4461 CPI);
4462 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4463 "Catchswitch cannot unwind to one of its catchpads",
4464 CPI->getCatchSwitch(), CPI);
4465 return;
4466 }
4467
4468 // Verify that each pred has a legal terminator with a legal to/from EH
4469 // pad relationship.
4470 Instruction *ToPad = &I;
4471 Value *ToPadParent = getParentPad(ToPad);
4472 for (BasicBlock *PredBB : predecessors(BB)) {
4473 Instruction *TI = PredBB->getTerminator();
4474 Value *FromPad;
4475 if (auto *II = dyn_cast<InvokeInst>(TI)) {
4476 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4477 "EH pad must be jumped to via an unwind edge", ToPad, II);
4478 auto *CalledFn =
4479 dyn_cast<Function>(II->getCalledOperand()->stripPointerCasts());
4480 if (CalledFn && CalledFn->isIntrinsic() && II->doesNotThrow() &&
4481 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
4482 continue;
4483 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4484 FromPad = Bundle->Inputs[0];
4485 else
4486 FromPad = ConstantTokenNone::get(II->getContext());
4487 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4488 FromPad = CRI->getOperand(0);
4489 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4490 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4491 FromPad = CSI;
4492 } else {
4493 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4494 }
4495
4496 // The edge may exit from zero or more nested pads.
4498 for (;; FromPad = getParentPad(FromPad)) {
4499 Check(FromPad != ToPad,
4500 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4501 if (FromPad == ToPadParent) {
4502 // This is a legal unwind edge.
4503 break;
4504 }
4505 Check(!isa<ConstantTokenNone>(FromPad),
4506 "A single unwind edge may only enter one EH pad", TI);
4507 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4508 FromPad);
4509
4510 // This will be diagnosed on the corresponding instruction already. We
4511 // need the extra check here to make sure getParentPad() works.
4512 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4513 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4514 }
4515 }
4516}
4517
4518void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4519 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4520 // isn't a cleanup.
4521 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4522 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4523
4524 visitEHPadPredecessors(LPI);
4525
4526 if (!LandingPadResultTy)
4527 LandingPadResultTy = LPI.getType();
4528 else
4529 Check(LandingPadResultTy == LPI.getType(),
4530 "The landingpad instruction should have a consistent result type "
4531 "inside a function.",
4532 &LPI);
4533
4534 Function *F = LPI.getParent()->getParent();
4535 Check(F->hasPersonalityFn(),
4536 "LandingPadInst needs to be in a function with a personality.", &LPI);
4537
4538 // The landingpad instruction must be the first non-PHI instruction in the
4539 // block.
4540 Check(LPI.getParent()->getLandingPadInst() == &LPI,
4541 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4542
4543 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4544 Constant *Clause = LPI.getClause(i);
4545 if (LPI.isCatch(i)) {
4546 Check(isa<PointerType>(Clause->getType()),
4547 "Catch operand does not have pointer type!", &LPI);
4548 } else {
4549 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4550 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4551 "Filter operand is not an array of constants!", &LPI);
4552 }
4553 }
4554
4555 visitInstruction(LPI);
4556}
4557
4558void Verifier::visitResumeInst(ResumeInst &RI) {
4560 "ResumeInst needs to be in a function with a personality.", &RI);
4561
4562 if (!LandingPadResultTy)
4563 LandingPadResultTy = RI.getValue()->getType();
4564 else
4565 Check(LandingPadResultTy == RI.getValue()->getType(),
4566 "The resume instruction should have a consistent result type "
4567 "inside a function.",
4568 &RI);
4569
4570 visitTerminator(RI);
4571}
4572
4573void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4574 BasicBlock *BB = CPI.getParent();
4575
4576 Function *F = BB->getParent();
4577 Check(F->hasPersonalityFn(),
4578 "CatchPadInst needs to be in a function with a personality.", &CPI);
4579
4580 Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4581 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4582 CPI.getParentPad());
4583
4584 // The catchpad instruction must be the first non-PHI instruction in the
4585 // block.
4586 Check(BB->getFirstNonPHI() == &CPI,
4587 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4588
4589 visitEHPadPredecessors(CPI);
4591}
4592
4593void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4594 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4595 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4596 CatchReturn.getOperand(0));
4597
4598 visitTerminator(CatchReturn);
4599}
4600
4601void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4602 BasicBlock *BB = CPI.getParent();
4603
4604 Function *F = BB->getParent