LLVM 20.0.0git
RISCVGatherScatterLowering.cpp
Go to the documentation of this file.
1//===- RISCVGatherScatterLowering.cpp - Gather/Scatter lowering -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass custom lowers llvm.gather and llvm.scatter instructions to
10// RISC-V intrinsics.
11//
12//===----------------------------------------------------------------------===//
13
14#include "RISCV.h"
15#include "RISCVTargetMachine.h"
22#include "llvm/IR/IRBuilder.h"
24#include "llvm/IR/IntrinsicsRISCV.h"
27#include <optional>
28
29using namespace llvm;
30using namespace PatternMatch;
31
32#define DEBUG_TYPE "riscv-gather-scatter-lowering"
33
34namespace {
35
36class RISCVGatherScatterLowering : public FunctionPass {
37 const RISCVSubtarget *ST = nullptr;
38 const RISCVTargetLowering *TLI = nullptr;
39 LoopInfo *LI = nullptr;
40 const DataLayout *DL = nullptr;
41
42 SmallVector<WeakTrackingVH> MaybeDeadPHIs;
43
44 // Cache of the BasePtr and Stride determined from this GEP. When a GEP is
45 // used by multiple gathers/scatters, this allow us to reuse the scalar
46 // instructions we created for the first gather/scatter for the others.
48
49public:
50 static char ID; // Pass identification, replacement for typeid
51
52 RISCVGatherScatterLowering() : FunctionPass(ID) {}
53
54 bool runOnFunction(Function &F) override;
55
56 void getAnalysisUsage(AnalysisUsage &AU) const override {
57 AU.setPreservesCFG();
60 }
61
62 StringRef getPassName() const override {
63 return "RISC-V gather/scatter lowering";
64 }
65
66private:
67 bool tryCreateStridedLoadStore(IntrinsicInst *II, Type *DataType, Value *Ptr,
68 Value *AlignOp);
69
70 std::pair<Value *, Value *> determineBaseAndStride(Instruction *Ptr,
71 IRBuilderBase &Builder);
72
73 bool matchStridedRecurrence(Value *Index, Loop *L, Value *&Stride,
74 PHINode *&BasePtr, BinaryOperator *&Inc,
75 IRBuilderBase &Builder);
76};
77
78} // end anonymous namespace
79
80char RISCVGatherScatterLowering::ID = 0;
81
82INITIALIZE_PASS(RISCVGatherScatterLowering, DEBUG_TYPE,
83 "RISC-V gather/scatter lowering pass", false, false)
84
86 return new RISCVGatherScatterLowering();
87}
88
89// TODO: Should we consider the mask when looking for a stride?
90static std::pair<Value *, Value *> matchStridedConstant(Constant *StartC) {
91 if (!isa<FixedVectorType>(StartC->getType()))
92 return std::make_pair(nullptr, nullptr);
93
94 unsigned NumElts = cast<FixedVectorType>(StartC->getType())->getNumElements();
95
96 // Check that the start value is a strided constant.
97 auto *StartVal =
98 dyn_cast_or_null<ConstantInt>(StartC->getAggregateElement((unsigned)0));
99 if (!StartVal)
100 return std::make_pair(nullptr, nullptr);
101 APInt StrideVal(StartVal->getValue().getBitWidth(), 0);
102 ConstantInt *Prev = StartVal;
103 for (unsigned i = 1; i != NumElts; ++i) {
104 auto *C = dyn_cast_or_null<ConstantInt>(StartC->getAggregateElement(i));
105 if (!C)
106 return std::make_pair(nullptr, nullptr);
107
108 APInt LocalStride = C->getValue() - Prev->getValue();
109 if (i == 1)
110 StrideVal = LocalStride;
111 else if (StrideVal != LocalStride)
112 return std::make_pair(nullptr, nullptr);
113
114 Prev = C;
115 }
116
117 Value *Stride = ConstantInt::get(StartVal->getType(), StrideVal);
118
119 return std::make_pair(StartVal, Stride);
120}
121
122static std::pair<Value *, Value *> matchStridedStart(Value *Start,
123 IRBuilderBase &Builder) {
124 // Base case, start is a strided constant.
125 auto *StartC = dyn_cast<Constant>(Start);
126 if (StartC)
127 return matchStridedConstant(StartC);
128
129 // Base case, start is a stepvector
130 if (match(Start, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
131 auto *Ty = Start->getType()->getScalarType();
132 return std::make_pair(ConstantInt::get(Ty, 0), ConstantInt::get(Ty, 1));
133 }
134
135 // Not a constant, maybe it's a strided constant with a splat added or
136 // multipled.
137 auto *BO = dyn_cast<BinaryOperator>(Start);
138 if (!BO || (BO->getOpcode() != Instruction::Add &&
139 BO->getOpcode() != Instruction::Or &&
140 BO->getOpcode() != Instruction::Shl &&
141 BO->getOpcode() != Instruction::Mul))
142 return std::make_pair(nullptr, nullptr);
143
144 if (BO->getOpcode() == Instruction::Or &&
145 !cast<PossiblyDisjointInst>(BO)->isDisjoint())
146 return std::make_pair(nullptr, nullptr);
147
148 // Look for an operand that is splatted.
149 unsigned OtherIndex = 0;
150 Value *Splat = getSplatValue(BO->getOperand(1));
151 if (!Splat && Instruction::isCommutative(BO->getOpcode())) {
152 Splat = getSplatValue(BO->getOperand(0));
153 OtherIndex = 1;
154 }
155 if (!Splat)
156 return std::make_pair(nullptr, nullptr);
157
158 Value *Stride;
159 std::tie(Start, Stride) = matchStridedStart(BO->getOperand(OtherIndex),
160 Builder);
161 if (!Start)
162 return std::make_pair(nullptr, nullptr);
163
164 Builder.SetInsertPoint(BO);
166 // Add the splat value to the start or multiply the start and stride by the
167 // splat.
168 switch (BO->getOpcode()) {
169 default:
170 llvm_unreachable("Unexpected opcode");
171 case Instruction::Or:
172 // TODO: We'd be better off creating disjoint or here, but we don't yet
173 // have an IRBuilder API for that.
174 [[fallthrough]];
175 case Instruction::Add:
176 Start = Builder.CreateAdd(Start, Splat);
177 break;
178 case Instruction::Mul:
179 Start = Builder.CreateMul(Start, Splat);
180 Stride = Builder.CreateMul(Stride, Splat);
181 break;
182 case Instruction::Shl:
183 Start = Builder.CreateShl(Start, Splat);
184 Stride = Builder.CreateShl(Stride, Splat);
185 break;
186 }
187
188 return std::make_pair(Start, Stride);
189}
190
191// Recursively, walk about the use-def chain until we find a Phi with a strided
192// start value. Build and update a scalar recurrence as we unwind the recursion.
193// We also update the Stride as we unwind. Our goal is to move all of the
194// arithmetic out of the loop.
195bool RISCVGatherScatterLowering::matchStridedRecurrence(Value *Index, Loop *L,
196 Value *&Stride,
197 PHINode *&BasePtr,
198 BinaryOperator *&Inc,
199 IRBuilderBase &Builder) {
200 // Our base case is a Phi.
201 if (auto *Phi = dyn_cast<PHINode>(Index)) {
202 // A phi node we want to perform this function on should be from the
203 // loop header.
204 if (Phi->getParent() != L->getHeader())
205 return false;
206
207 Value *Step, *Start;
208 if (!matchSimpleRecurrence(Phi, Inc, Start, Step) ||
209 Inc->getOpcode() != Instruction::Add)
210 return false;
211 assert(Phi->getNumIncomingValues() == 2 && "Expected 2 operand phi.");
212 unsigned IncrementingBlock = Phi->getIncomingValue(0) == Inc ? 0 : 1;
213 assert(Phi->getIncomingValue(IncrementingBlock) == Inc &&
214 "Expected one operand of phi to be Inc");
215
216 // Only proceed if the step is loop invariant.
217 if (!L->isLoopInvariant(Step))
218 return false;
219
220 // Step should be a splat.
221 Step = getSplatValue(Step);
222 if (!Step)
223 return false;
224
225 std::tie(Start, Stride) = matchStridedStart(Start, Builder);
226 if (!Start)
227 return false;
228 assert(Stride != nullptr);
229
230 // Build scalar phi and increment.
231 BasePtr =
232 PHINode::Create(Start->getType(), 2, Phi->getName() + ".scalar", Phi->getIterator());
233 Inc = BinaryOperator::CreateAdd(BasePtr, Step, Inc->getName() + ".scalar",
234 Inc->getIterator());
235 BasePtr->addIncoming(Start, Phi->getIncomingBlock(1 - IncrementingBlock));
236 BasePtr->addIncoming(Inc, Phi->getIncomingBlock(IncrementingBlock));
237
238 // Note that this Phi might be eligible for removal.
239 MaybeDeadPHIs.push_back(Phi);
240 return true;
241 }
242
243 // Otherwise look for binary operator.
244 auto *BO = dyn_cast<BinaryOperator>(Index);
245 if (!BO)
246 return false;
247
248 switch (BO->getOpcode()) {
249 default:
250 return false;
251 case Instruction::Or:
252 // We need to be able to treat Or as Add.
253 if (!cast<PossiblyDisjointInst>(BO)->isDisjoint())
254 return false;
255 break;
256 case Instruction::Add:
257 break;
258 case Instruction::Shl:
259 break;
260 case Instruction::Mul:
261 break;
262 }
263
264 // We should have one operand in the loop and one splat.
265 Value *OtherOp;
266 if (isa<Instruction>(BO->getOperand(0)) &&
267 L->contains(cast<Instruction>(BO->getOperand(0)))) {
268 Index = cast<Instruction>(BO->getOperand(0));
269 OtherOp = BO->getOperand(1);
270 } else if (isa<Instruction>(BO->getOperand(1)) &&
271 L->contains(cast<Instruction>(BO->getOperand(1))) &&
272 Instruction::isCommutative(BO->getOpcode())) {
273 Index = cast<Instruction>(BO->getOperand(1));
274 OtherOp = BO->getOperand(0);
275 } else {
276 return false;
277 }
278
279 // Make sure other op is loop invariant.
280 if (!L->isLoopInvariant(OtherOp))
281 return false;
282
283 // Make sure we have a splat.
284 Value *SplatOp = getSplatValue(OtherOp);
285 if (!SplatOp)
286 return false;
287
288 // Recurse up the use-def chain.
289 if (!matchStridedRecurrence(Index, L, Stride, BasePtr, Inc, Builder))
290 return false;
291
292 // Locate the Step and Start values from the recurrence.
293 unsigned StepIndex = Inc->getOperand(0) == BasePtr ? 1 : 0;
294 unsigned StartBlock = BasePtr->getOperand(0) == Inc ? 1 : 0;
295 Value *Step = Inc->getOperand(StepIndex);
296 Value *Start = BasePtr->getOperand(StartBlock);
297
298 // We need to adjust the start value in the preheader.
299 Builder.SetInsertPoint(
300 BasePtr->getIncomingBlock(StartBlock)->getTerminator());
302
303 switch (BO->getOpcode()) {
304 default:
305 llvm_unreachable("Unexpected opcode!");
306 case Instruction::Add:
307 case Instruction::Or: {
308 // An add only affects the start value. It's ok to do this for Or because
309 // we already checked that there are no common set bits.
310 Start = Builder.CreateAdd(Start, SplatOp, "start");
311 break;
312 }
313 case Instruction::Mul: {
314 Start = Builder.CreateMul(Start, SplatOp, "start");
315 Step = Builder.CreateMul(Step, SplatOp, "step");
316 Stride = Builder.CreateMul(Stride, SplatOp, "stride");
317 break;
318 }
319 case Instruction::Shl: {
320 Start = Builder.CreateShl(Start, SplatOp, "start");
321 Step = Builder.CreateShl(Step, SplatOp, "step");
322 Stride = Builder.CreateShl(Stride, SplatOp, "stride");
323 break;
324 }
325 }
326
327 Inc->setOperand(StepIndex, Step);
328 BasePtr->setIncomingValue(StartBlock, Start);
329 return true;
330}
331
332std::pair<Value *, Value *>
333RISCVGatherScatterLowering::determineBaseAndStride(Instruction *Ptr,
334 IRBuilderBase &Builder) {
335
336 // A gather/scatter of a splat is a zero strided load/store.
337 if (auto *BasePtr = getSplatValue(Ptr)) {
338 Type *IntPtrTy = DL->getIntPtrType(BasePtr->getType());
339 return std::make_pair(BasePtr, ConstantInt::get(IntPtrTy, 0));
340 }
341
342 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
343 if (!GEP)
344 return std::make_pair(nullptr, nullptr);
345
346 auto I = StridedAddrs.find(GEP);
347 if (I != StridedAddrs.end())
348 return I->second;
349
350 SmallVector<Value *, 2> Ops(GEP->operands());
351
352 // If the base pointer is a vector, check if it's strided.
353 Value *Base = GEP->getPointerOperand();
354 if (auto *BaseInst = dyn_cast<Instruction>(Base);
355 BaseInst && BaseInst->getType()->isVectorTy()) {
356 // If GEP's offset is scalar then we can add it to the base pointer's base.
357 auto IsScalar = [](Value *Idx) { return !Idx->getType()->isVectorTy(); };
358 if (all_of(GEP->indices(), IsScalar)) {
359 auto [BaseBase, Stride] = determineBaseAndStride(BaseInst, Builder);
360 if (BaseBase) {
361 Builder.SetInsertPoint(GEP);
362 SmallVector<Value *> Indices(GEP->indices());
363 Value *OffsetBase =
364 Builder.CreateGEP(GEP->getSourceElementType(), BaseBase, Indices,
365 GEP->getName() + "offset", GEP->isInBounds());
366 return {OffsetBase, Stride};
367 }
368 }
369 }
370
371 // Base pointer needs to be a scalar.
372 Value *ScalarBase = Base;
373 if (ScalarBase->getType()->isVectorTy()) {
374 ScalarBase = getSplatValue(ScalarBase);
375 if (!ScalarBase)
376 return std::make_pair(nullptr, nullptr);
377 }
378
379 std::optional<unsigned> VecOperand;
380 unsigned TypeScale = 0;
381
382 // Look for a vector operand and scale.
384 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
385 if (!Ops[i]->getType()->isVectorTy())
386 continue;
387
388 if (VecOperand)
389 return std::make_pair(nullptr, nullptr);
390
391 VecOperand = i;
392
394 if (TS.isScalable())
395 return std::make_pair(nullptr, nullptr);
396
397 TypeScale = TS.getFixedValue();
398 }
399
400 // We need to find a vector index to simplify.
401 if (!VecOperand)
402 return std::make_pair(nullptr, nullptr);
403
404 // We can't extract the stride if the arithmetic is done at a different size
405 // than the pointer type. Adding the stride later may not wrap correctly.
406 // Technically we could handle wider indices, but I don't expect that in
407 // practice. Handle one special case here - constants. This simplifies
408 // writing test cases.
409 Value *VecIndex = Ops[*VecOperand];
410 Type *VecIntPtrTy = DL->getIntPtrType(GEP->getType());
411 if (VecIndex->getType() != VecIntPtrTy) {
412 auto *VecIndexC = dyn_cast<Constant>(VecIndex);
413 if (!VecIndexC)
414 return std::make_pair(nullptr, nullptr);
415 if (VecIndex->getType()->getScalarSizeInBits() > VecIntPtrTy->getScalarSizeInBits())
416 VecIndex = ConstantFoldCastInstruction(Instruction::Trunc, VecIndexC, VecIntPtrTy);
417 else
418 VecIndex = ConstantFoldCastInstruction(Instruction::SExt, VecIndexC, VecIntPtrTy);
419 }
420
421 // Handle the non-recursive case. This is what we see if the vectorizer
422 // decides to use a scalar IV + vid on demand instead of a vector IV.
423 auto [Start, Stride] = matchStridedStart(VecIndex, Builder);
424 if (Start) {
425 assert(Stride);
426 Builder.SetInsertPoint(GEP);
427
428 // Replace the vector index with the scalar start and build a scalar GEP.
429 Ops[*VecOperand] = Start;
430 Type *SourceTy = GEP->getSourceElementType();
431 Value *BasePtr =
432 Builder.CreateGEP(SourceTy, ScalarBase, ArrayRef(Ops).drop_front());
433
434 // Convert stride to pointer size if needed.
435 Type *IntPtrTy = DL->getIntPtrType(BasePtr->getType());
436 assert(Stride->getType() == IntPtrTy && "Unexpected type");
437
438 // Scale the stride by the size of the indexed type.
439 if (TypeScale != 1)
440 Stride = Builder.CreateMul(Stride, ConstantInt::get(IntPtrTy, TypeScale));
441
442 auto P = std::make_pair(BasePtr, Stride);
443 StridedAddrs[GEP] = P;
444 return P;
445 }
446
447 // Make sure we're in a loop and that has a pre-header and a single latch.
448 Loop *L = LI->getLoopFor(GEP->getParent());
449 if (!L || !L->getLoopPreheader() || !L->getLoopLatch())
450 return std::make_pair(nullptr, nullptr);
451
452 BinaryOperator *Inc;
453 PHINode *BasePhi;
454 if (!matchStridedRecurrence(VecIndex, L, Stride, BasePhi, Inc, Builder))
455 return std::make_pair(nullptr, nullptr);
456
457 assert(BasePhi->getNumIncomingValues() == 2 && "Expected 2 operand phi.");
458 unsigned IncrementingBlock = BasePhi->getOperand(0) == Inc ? 0 : 1;
459 assert(BasePhi->getIncomingValue(IncrementingBlock) == Inc &&
460 "Expected one operand of phi to be Inc");
461
462 Builder.SetInsertPoint(GEP);
463
464 // Replace the vector index with the scalar phi and build a scalar GEP.
465 Ops[*VecOperand] = BasePhi;
466 Type *SourceTy = GEP->getSourceElementType();
467 Value *BasePtr =
468 Builder.CreateGEP(SourceTy, ScalarBase, ArrayRef(Ops).drop_front());
469
470 // Final adjustments to stride should go in the start block.
471 Builder.SetInsertPoint(
472 BasePhi->getIncomingBlock(1 - IncrementingBlock)->getTerminator());
473
474 // Convert stride to pointer size if needed.
475 Type *IntPtrTy = DL->getIntPtrType(BasePtr->getType());
476 assert(Stride->getType() == IntPtrTy && "Unexpected type");
477
478 // Scale the stride by the size of the indexed type.
479 if (TypeScale != 1)
480 Stride = Builder.CreateMul(Stride, ConstantInt::get(IntPtrTy, TypeScale));
481
482 auto P = std::make_pair(BasePtr, Stride);
483 StridedAddrs[GEP] = P;
484 return P;
485}
486
487bool RISCVGatherScatterLowering::tryCreateStridedLoadStore(IntrinsicInst *II,
488 Type *DataType,
489 Value *Ptr,
490 Value *AlignOp) {
491 // Make sure the operation will be supported by the backend.
492 MaybeAlign MA = cast<ConstantInt>(AlignOp)->getMaybeAlignValue();
493 EVT DataTypeVT = TLI->getValueType(*DL, DataType);
494 if (!MA || !TLI->isLegalStridedLoadStore(DataTypeVT, *MA))
495 return false;
496
497 // FIXME: Let the backend type legalize by splitting/widening?
498 if (!TLI->isTypeLegal(DataTypeVT))
499 return false;
500
501 // Pointer should be an instruction.
502 auto *PtrI = dyn_cast<Instruction>(Ptr);
503 if (!PtrI)
504 return false;
505
506 LLVMContext &Ctx = PtrI->getContext();
507 IRBuilder Builder(Ctx, InstSimplifyFolder(*DL));
508 Builder.SetInsertPoint(PtrI);
509
510 Value *BasePtr, *Stride;
511 std::tie(BasePtr, Stride) = determineBaseAndStride(PtrI, Builder);
512 if (!BasePtr)
513 return false;
514 assert(Stride != nullptr);
515
516 Builder.SetInsertPoint(II);
517
518 Value *EVL = Builder.CreateElementCount(
519 IntegerType::get(Ctx, 32), cast<VectorType>(DataType)->getElementCount());
520
521 CallInst *Call;
522 if (II->getIntrinsicID() == Intrinsic::masked_gather) {
523 Call = Builder.CreateIntrinsic(
524 Intrinsic::experimental_vp_strided_load,
525 {DataType, BasePtr->getType(), Stride->getType()},
526 {BasePtr, Stride, II->getArgOperand(2), EVL});
527 Call = Builder.CreateIntrinsic(
528 Intrinsic::vp_select, {DataType},
529 {II->getOperand(2), Call, II->getArgOperand(3), EVL});
530 } else
531 Call = Builder.CreateIntrinsic(
532 Intrinsic::experimental_vp_strided_store,
533 {DataType, BasePtr->getType(), Stride->getType()},
534 {II->getArgOperand(0), BasePtr, Stride, II->getArgOperand(3), EVL});
535
536 Call->takeName(II);
537 II->replaceAllUsesWith(Call);
538 II->eraseFromParent();
539
540 if (PtrI->use_empty())
542
543 return true;
544}
545
546bool RISCVGatherScatterLowering::runOnFunction(Function &F) {
547 if (skipFunction(F))
548 return false;
549
550 auto &TPC = getAnalysis<TargetPassConfig>();
551 auto &TM = TPC.getTM<RISCVTargetMachine>();
552 ST = &TM.getSubtarget<RISCVSubtarget>(F);
553 if (!ST->hasVInstructions() || !ST->useRVVForFixedLengthVectors())
554 return false;
555
556 TLI = ST->getTargetLowering();
557 DL = &F.getDataLayout();
558 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
559
560 StridedAddrs.clear();
561
564
565 bool Changed = false;
566
567 for (BasicBlock &BB : F) {
568 for (Instruction &I : BB) {
569 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
570 if (II && II->getIntrinsicID() == Intrinsic::masked_gather) {
571 Gathers.push_back(II);
572 } else if (II && II->getIntrinsicID() == Intrinsic::masked_scatter) {
573 Scatters.push_back(II);
574 }
575 }
576 }
577
578 // Rewrite gather/scatter to form strided load/store if possible.
579 for (auto *II : Gathers)
580 Changed |= tryCreateStridedLoadStore(
581 II, II->getType(), II->getArgOperand(0), II->getArgOperand(1));
582 for (auto *II : Scatters)
583 Changed |=
584 tryCreateStridedLoadStore(II, II->getArgOperand(0)->getType(),
585 II->getArgOperand(1), II->getArgOperand(2));
586
587 // Remove any dead phis.
588 while (!MaybeDeadPHIs.empty()) {
589 if (auto *Phi = dyn_cast_or_null<PHINode>(MaybeDeadPHIs.pop_back_val()))
591 }
592
593 return Changed;
594}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
Hexagon Common GEP
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
#define P(N)
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
static std::pair< Value *, Value * > matchStridedStart(Value *Start, IRBuilderBase &Builder)
static std::pair< Value *, Value * > matchStridedConstant(Constant *StartC)
#define DEBUG_TYPE
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
Target-Independent Code Generator Pass Configuration Options pass.
Class for arbitrary precision integers.
Definition: APInt.h:78
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
BinaryOps getOpcode() const
Definition: InstrTypes.h:442
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:146
This is an important base class in LLVM.
Definition: Constant.h:42
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:432
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:91
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:933
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:217
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition: IRBuilder.h:1871
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1421
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1332
Value * CreateElementCount(Type *DstType, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
Definition: IRBuilder.cpp:100
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:177
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1366
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2674
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:266
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:598
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
void push_back(const T &Elt)
Definition: SmallVector.h:427
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Target-Independent Code Generator Pass Configuration Options.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:261
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:202
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
TypeSize getSequentialElementStride(const DataLayout &DL) const
self_iterator getIterator()
Definition: ilist_node.h:132
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:540
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
FunctionPass * createRISCVGatherScatterLoweringPass()
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
gep_type_iterator gep_type_begin(const User *GEP)
bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is an effectively dead PHI node, due to being a def-use chain of single-use no...
Definition: Local.cpp:651
Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
Extended Value Type.
Definition: ValueTypes.h:34
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117