LLVM 17.0.0git
SystemZISelLowering.h
Go to the documentation of this file.
1//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that SystemZ uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17#include "SystemZ.h"
18#include "SystemZInstrInfo.h"
22#include <optional>
23
24namespace llvm {
25namespace SystemZISD {
26enum NodeType : unsigned {
28
29 // Return with a flag operand. Operand 0 is the chain operand.
31
32 // Calls a function. Operand 0 is the chain operand and operand 1
33 // is the target address. The arguments start at operand 2.
34 // There is an optional glue operand at the end.
37
38 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
39 // (The call target is implicitly __tls_get_offset.)
42
43 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
44 // accesses (LARL). Operand 0 is the address.
46
47 // Used in cases where an offset is applied to a TargetGlobalAddress.
48 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
49 // PCREL_WRAPPER for an anchor point. This is used so that we can
50 // cheaply refer to either the full address or the anchor point
51 // as a register base.
53
54 // Integer comparisons. There are three operands: the two values
55 // to compare, and an integer of type SystemZICMP.
57
58 // Floating-point comparisons. The two operands are the values to compare.
60
61 // Test under mask. The first operand is ANDed with the second operand
62 // and the condition codes are set on the result. The third operand is
63 // a boolean that is true if the condition codes need to distinguish
64 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
65 // register forms do but the memory forms don't).
67
68 // Branches if a condition is true. Operand 0 is the chain operand;
69 // operand 1 is the 4-bit condition-code mask, with bit N in
70 // big-endian order meaning "branch if CC=N"; operand 2 is the
71 // target block and operand 3 is the flag operand.
73
74 // Selects between operand 0 and operand 1. Operand 2 is the
75 // mask of condition-code values for which operand 0 should be
76 // chosen over operand 1; it has the same form as BR_CCMASK.
77 // Operand 3 is the flag operand.
79
80 // Evaluates to the gap between the stack pointer and the
81 // base of the dynamically-allocatable area.
83
84 // For allocating stack space when using stack clash protector.
85 // Allocation is performed by block, and each block is probed.
87
88 // Count number of bits set in operand 0 per byte.
90
91 // Wrappers around the ISD opcodes of the same name. The output is GR128.
92 // Input operands may be GR64 or GR32, depending on the instruction.
97
98 // Add/subtract with overflow/carry. These have the same operands as
99 // the corresponding standard operations, except with the carry flag
100 // replaced by a condition code value.
102
103 // Set the condition code from a boolean value in operand 0.
104 // Operand 1 is a mask of all condition-code values that may result of this
105 // operation, operand 2 is a mask of condition-code values that may result
106 // if the boolean is true.
107 // Note that this operation is always optimized away, we will never
108 // generate any code for it.
110
111 // Use a series of MVCs to copy bytes from one memory location to another.
112 // The operands are:
113 // - the target address
114 // - the source address
115 // - the constant length
116 //
117 // This isn't a memory opcode because we'd need to attach two
118 // MachineMemOperands rather than one.
120
121 // Similar to MVC, but for logic operations (AND, OR, XOR).
125
126 // Use CLC to compare two blocks of memory, with the same comments
127 // as for MVC.
129
130 // Use MVC to set a block of memory after storing the first byte.
132
133 // Use an MVST-based sequence to implement stpcpy().
135
136 // Use a CLST-based sequence to implement strcmp(). The two input operands
137 // are the addresses of the strings to compare.
139
140 // Use an SRST-based sequence to search a block of memory. The first
141 // operand is the end address, the second is the start, and the third
142 // is the character to search for. CC is set to 1 on success and 2
143 // on failure.
145
146 // Store the CC value in bits 29 and 28 of an integer.
148
149 // Transaction begin. The first operand is the chain, the second
150 // the TDB pointer, and the third the immediate control field.
151 // Returns CC value and chain.
154
155 // Transaction end. Just the chain operand. Returns CC value and chain.
157
158 // Create a vector constant by filling byte N of the result with bit
159 // 15-N of the single operand.
161
162 // Create a vector constant by replicating an element-sized RISBG-style mask.
163 // The first operand specifies the starting set bit and the second operand
164 // specifies the ending set bit. Both operands count from the MSB of the
165 // element.
167
168 // Replicate a GPR scalar value into all elements of a vector.
170
171 // Create a vector from two i64 GPRs.
173
174 // Replicate one element of a vector into all elements. The first operand
175 // is the vector and the second is the index of the element to replicate.
177
178 // Interleave elements from the high half of operand 0 and the high half
179 // of operand 1.
181
182 // Likewise for the low halves.
184
185 // Concatenate the vectors in the first two operands, shift them left
186 // by the third operand, and take the first half of the result.
188
189 // Take one element of the first v2i64 operand and the one element of
190 // the second v2i64 operand and concatenate them to form a v2i64 result.
191 // The third operand is a 4-bit value of the form 0A0B, where A and B
192 // are the element selectors for the first operand and second operands
193 // respectively.
195
196 // Perform a general vector permute on vector operands 0 and 1.
197 // Each byte of operand 2 controls the corresponding byte of the result,
198 // in the same way as a byte-level VECTOR_SHUFFLE mask.
200
201 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
203
204 // Likewise, but saturate the result and set CC. PACKS_CC does signed
205 // saturation and PACKLS_CC does unsigned saturation.
208
209 // Unpack the first half of vector operand 0 into double-sized elements.
210 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
213
214 // Likewise for the second half.
217
218 // Shift each element of vector operand 0 by the number of bits specified
219 // by scalar operand 1.
223
224 // For each element of the output type, sum across all sub-elements of
225 // operand 0 belonging to the corresponding element, and add in the
226 // rightmost sub-element of the corresponding element of operand 1.
228
229 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
230 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
231 // and VICMPHL for "unsigned greater than".
235
236 // Likewise, but also set the condition codes on the result.
240
241 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
242 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
243 // greater than" and VFCMPHE for "ordered and greater than or equal to".
247
248 // Likewise, but also set the condition codes on the result.
252
253 // Test floating-point data class for vectors.
255
256 // Extend the even f32 elements of vector operand 0 to produce a vector
257 // of f64 elements.
259
260 // Round the f64 elements of vector operand 0 to f32s and store them in the
261 // even elements of the result.
263
264 // AND the two vector operands together and set CC based on the result.
266
267 // String operations that set CC as a side-effect.
279
280 // Test Data Class.
281 //
282 // Operand 0: the value to test
283 // Operand 1: the bit mask
285
286 // Strict variants of scalar floating-point comparisons.
287 // Quiet and signaling versions.
290
291 // Strict variants of vector floating-point comparisons.
292 // Quiet and signaling versions.
299
300 // Strict variants of VEXTEND and VROUND.
303
304 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
305 // ATOMIC_LOAD_<op>.
306 //
307 // Operand 0: the address of the containing 32-bit-aligned field
308 // Operand 1: the second operand of <op>, in the high bits of an i32
309 // for everything except ATOMIC_SWAPW
310 // Operand 2: how many bits to rotate the i32 left to bring the first
311 // operand into the high bits
312 // Operand 3: the negative of operand 2, for rotating the other way
313 // Operand 4: the width of the field in bits (8 or 16)
325
326 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
327 //
328 // Operand 0: the address of the containing 32-bit-aligned field
329 // Operand 1: the compare value, in the low bits of an i32
330 // Operand 2: the swap value, in the low bits of an i32
331 // Operand 3: how many bits to rotate the i32 left to bring the first
332 // operand into the high bits
333 // Operand 4: the negative of operand 2, for rotating the other way
334 // Operand 5: the width of the field in bits (8 or 16)
336
337 // Atomic compare-and-swap returning CC value.
338 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
340
341 // 128-bit atomic load.
342 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
344
345 // 128-bit atomic store.
346 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
348
349 // 128-bit atomic compare-and-swap.
350 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
352
353 // Byte swapping load/store. Same operands as regular load/store.
355
356 // Element swapping load/store. Same operands as regular load/store.
358
359 // Prefetch from the second operand using the 4-bit control code in
360 // the first operand. The code is 1 for a load prefetch and 2 for
361 // a store prefetch.
364
365// Return true if OPCODE is some kind of PC-relative address.
366inline bool isPCREL(unsigned Opcode) {
367 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
368}
369} // end namespace SystemZISD
370
371namespace SystemZICMP {
372// Describes whether an integer comparison needs to be signed or unsigned,
373// or whether either type is OK.
374enum {
379} // end namespace SystemZICMP
380
381class SystemZSubtarget;
382
384public:
385 explicit SystemZTargetLowering(const TargetMachine &TM,
386 const SystemZSubtarget &STI);
387
388 bool useSoftFloat() const override;
389
390 // Override TargetLowering.
391 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
392 return MVT::i32;
393 }
394 MVT getVectorIdxTy(const DataLayout &DL) const override {
395 // Only the lower 12 bits of an element index are used, so we don't
396 // want to clobber the upper 32 bits of a GPR unnecessarily.
397 return MVT::i32;
398 }
400 const override {
401 // Widen subvectors to the full width rather than promoting integer
402 // elements. This is better because:
403 //
404 // (a) it means that we can handle the ABI for passing and returning
405 // sub-128 vectors without having to handle them as legal types.
406 //
407 // (b) we don't have instructions to extend on load and truncate on store,
408 // so promoting the integers is less efficient.
409 //
410 // (c) there are no multiplication instructions for the widest integer
411 // type (v2i64).
412 if (VT.getScalarSizeInBits() % 8 == 0)
413 return TypeWidenVector;
415 }
416 unsigned
418 std::optional<MVT> RegisterVT) const override {
419 // i128 inline assembly operand.
420 if (VT == MVT::i128 && RegisterVT && *RegisterVT == MVT::Untyped)
421 return 1;
423 }
424 bool isCheapToSpeculateCtlz(Type *) const override { return true; }
425 bool preferZeroCompareBranch() const override { return true; }
426 bool hasBitPreservingFPLogic(EVT VT) const override {
427 EVT ScVT = VT.getScalarType();
428 return ScVT == MVT::f32 || ScVT == MVT::f64 || ScVT == MVT::f128;
429 }
430 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override {
431 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
432 return Mask && Mask->getValue().isIntN(16);
433 }
434 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
435 return VT.isScalarInteger();
436 }
438 EVT) const override;
440 EVT VT) const override;
441 bool isFPImmLegal(const APFloat &Imm, EVT VT,
442 bool ForCodeSize) const override;
443 bool ShouldShrinkFPConstant(EVT VT) const override {
444 // Do not shrink 64-bit FP constpool entries since LDEB is slower than
445 // LD, and having the full constant in memory enables reg/mem opcodes.
446 return VT != MVT::f64;
447 }
448 bool hasInlineStackProbe(const MachineFunction &MF) const override;
449 bool isLegalICmpImmediate(int64_t Imm) const override;
450 bool isLegalAddImmediate(int64_t Imm) const override;
451 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
452 unsigned AS,
453 Instruction *I = nullptr) const override;
454 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
456 unsigned *Fast) const override;
457 bool
458 findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
459 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
460 const AttributeList &FuncAttributes) const override;
461 EVT getOptimalMemOpType(const MemOp &Op,
462 const AttributeList &FuncAttributes) const override;
463 bool isTruncateFree(Type *, Type *) const override;
464 bool isTruncateFree(EVT, EVT) const override;
465
466 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
467 bool MathUsed) const override {
468 // Form add and sub with overflow intrinsics regardless of any extra
469 // users of the math result.
470 return VT == MVT::i32 || VT == MVT::i64;
471 }
472
473 bool shouldConsiderGEPOffsetSplit() const override { return true; }
474
475 const char *getTargetNodeName(unsigned Opcode) const override;
476 std::pair<unsigned, const TargetRegisterClass *>
478 StringRef Constraint, MVT VT) const override;
480 getConstraintType(StringRef Constraint) const override;
482 getSingleConstraintMatchWeight(AsmOperandInfo &info,
483 const char *constraint) const override;
485 std::string &Constraint,
486 std::vector<SDValue> &Ops,
487 SelectionDAG &DAG) const override;
488
489 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
490 if (ConstraintCode.size() == 1) {
491 switch(ConstraintCode[0]) {
492 default:
493 break;
494 case 'o':
496 case 'Q':
498 case 'R':
500 case 'S':
502 case 'T':
504 }
505 } else if (ConstraintCode.size() == 2 && ConstraintCode[0] == 'Z') {
506 switch (ConstraintCode[1]) {
507 default:
508 break;
509 case 'Q':
511 case 'R':
513 case 'S':
515 case 'T':
517 }
518 }
519 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
520 }
521
522 Register getRegisterByName(const char *RegName, LLT VT,
523 const MachineFunction &MF) const override;
524
525 /// If a physical register, this returns the register that receives the
526 /// exception address on entry to an EH pad.
528 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
529 return SystemZ::R6D;
530 }
531
532 /// If a physical register, this returns the register that receives the
533 /// exception typeid on entry to a landing pad.
535 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
536 return SystemZ::R7D;
537 }
538
539 /// Override to support customized stack guard loading.
540 bool useLoadStackGuardNode() const override {
541 return true;
542 }
543 void insertSSPDeclarations(Module &M) const override {
544 }
545
548 MachineBasicBlock *BB) const override;
549 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
551 SelectionDAG &DAG) const override;
553 SelectionDAG &DAG) const override;
554 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
555 bool allowTruncateForTailCall(Type *, Type *) const override;
556 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
558 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
559 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
560 const override;
562 SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts,
563 unsigned NumParts, MVT PartVT, EVT ValueVT,
564 std::optional<CallingConv::ID> CC) const override;
566 bool isVarArg,
568 const SDLoc &DL, SelectionDAG &DAG,
569 SmallVectorImpl<SDValue> &InVals) const override;
570 SDValue LowerCall(CallLoweringInfo &CLI,
571 SmallVectorImpl<SDValue> &InVals) const override;
572
573 std::pair<SDValue, SDValue>
574 makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName,
575 EVT RetVT, ArrayRef<SDValue> Ops, CallingConv::ID CallConv,
576 bool IsSigned, SDLoc DL, bool DoesNotReturn,
577 bool IsReturnValueUsed) const;
578
580 bool isVarArg,
582 LLVMContext &Context) const override;
583 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
585 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
586 SelectionDAG &DAG) const override;
587 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
588
589 /// Determine which of the bits specified in Mask are known to be either
590 /// zero or one and return them in the KnownZero/KnownOne bitsets.
592 KnownBits &Known,
593 const APInt &DemandedElts,
594 const SelectionDAG &DAG,
595 unsigned Depth = 0) const override;
596
597 /// Determine the number of bits in the operation that are sign bits.
599 const APInt &DemandedElts,
600 const SelectionDAG &DAG,
601 unsigned Depth) const override;
602
604 return ISD::ANY_EXTEND;
605 }
607 return ISD::ZERO_EXTEND;
608 }
609
610 bool supportSwiftError() const override {
611 return true;
612 }
613
614 unsigned getStackProbeSize(const MachineFunction &MF) const;
615
616private:
617 const SystemZSubtarget &Subtarget;
618
619 // Implement LowerOperation for individual opcodes.
620 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
621 const SDLoc &DL, EVT VT,
622 SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
623 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
624 EVT VT, ISD::CondCode CC,
625 SDValue CmpOp0, SDValue CmpOp1,
626 SDValue Chain = SDValue(),
627 bool IsSignaling = false) const;
628 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
629 SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
630 bool IsSignaling) const;
631 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
632 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
633 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
634 SelectionDAG &DAG) const;
635 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
636 SelectionDAG &DAG, unsigned Opcode,
637 SDValue GOTOffset) const;
638 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
639 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
640 SelectionDAG &DAG) const;
641 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
642 SelectionDAG &DAG) const;
643 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
644 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
645 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
646 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
647 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
648 SDValue lowerVASTART_ELF(SDValue Op, SelectionDAG &DAG) const;
649 SDValue lowerVASTART_XPLINK(SDValue Op, SelectionDAG &DAG) const;
650 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
651 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
652 SDValue lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, SelectionDAG &DAG) const;
653 SDValue lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, SelectionDAG &DAG) const;
654 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
655 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
656 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
657 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
658 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
659 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
660 SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
661 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
662 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
663 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
664 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
665 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
666 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
667 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
668 unsigned Opcode) const;
669 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
670 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
671 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
672 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
673 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
674 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
675 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
676 bool isVectorElementLoad(SDValue Op) const;
677 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
678 SmallVectorImpl<SDValue> &Elems) const;
679 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
680 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
681 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
682 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
683 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
684 SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
685 SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
686 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
687 SDValue lowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
688 SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
689
690 bool canTreatAsByteVector(EVT VT) const;
691 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
692 unsigned Index, DAGCombinerInfo &DCI,
693 bool Force) const;
694 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
695 DAGCombinerInfo &DCI) const;
696 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
697 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
698 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
699 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
700 bool canLoadStoreByteSwapped(EVT VT) const;
701 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
702 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
703 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
704 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
705 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
706 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
707 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
708 SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
709 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
710 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
711 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
712 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
713 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
714 SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
715
716 SDValue unwrapAddress(SDValue N) const override;
717
718 // If the last instruction before MBBI in MBB was some form of COMPARE,
719 // try to replace it with a COMPARE AND BRANCH just before MBBI.
720 // CCMask and Target are the BRC-like operands for the branch.
721 // Return true if the change was made.
722 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
724 unsigned CCMask,
726
727 // Implement EmitInstrWithCustomInserter for individual operation types.
728 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
730 unsigned StoreOpcode, unsigned STOCOpcode,
731 bool Invert) const;
732 MachineBasicBlock *emitPair128(MachineInstr &MI,
733 MachineBasicBlock *MBB) const;
735 bool ClearEven) const;
736 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
738 unsigned BinOpcode, unsigned BitSize,
739 bool Invert = false) const;
740 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
742 unsigned CompareOpcode,
743 unsigned KeepOldMask,
744 unsigned BitSize) const;
745 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
746 MachineBasicBlock *BB) const;
747 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
748 unsigned Opcode,
749 bool IsMemset = false) const;
750 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
751 unsigned Opcode) const;
752 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
754 unsigned Opcode, bool NoFloat) const;
755 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
757 unsigned Opcode) const;
758 MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
759 MachineBasicBlock *MBB) const;
760
761 SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const;
762
764 getTargetMMOFlags(const Instruction &I) const override;
765 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
766};
767
769private:
770 APInt IntBits; // The 128 bits as an integer.
771 APInt SplatBits; // Smallest splat value.
772 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
773 unsigned SplatBitSize = 0;
774 bool isFP128 = false;
775public:
776 unsigned Opcode = 0;
781 : SystemZVectorConstantInfo(FPImm.bitcastToAPInt()) {
782 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
783 }
785 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
786};
787
788} // end namespace llvm
789
790#endif
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
IRTranslator LLVM IR MI
#define RegName(no)
lazy value info
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
LLVMContext & Context
const char LLVMTargetMachineRef TM
This file describes how to lower LLVM code to machine code.
const fltSemantics & getSemantics() const
Definition: APFloat.h:1238
Class for arbitrary precision integers.
Definition: APInt.h:75
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A "pseudo-class" with methods for operating on BUILD_VECTORs.
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
This is an important base class in LLVM.
Definition: Constant.h:41
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:114
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Machine Value Type.
uint64_t getScalarSizeInBits() const
Representation of each machine instruction.
Definition: MachineInstr.h:68
Flags
Flags values. These may be or'd together.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:221
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:137
bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const override
Try to convert math with an overflow comparison into the corresponding DAG node operation.
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override
Return if the target supports combining a chain like:
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override
Returns the target specific optimal type for load and store operations as a result of memset,...
ISD::NodeType getExtendForAtomicOps() const override
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
bool hasInlineStackProbe(const MachineFunction &MF) const override
Returns true if stack probing through inline assembly is requested.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override
Use bitwise logic to make pairs of compares more efficient.
MVT getVectorIdxTy(const DataLayout &DL) const override
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT) const override
Return the ValueType of the result of SETCC operations.
bool allowTruncateForTailCall(Type *, Type *) const override
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool preferZeroCompareBranch() const override
Return true if the heuristic to prefer icmp eq zero should be used in code gen prepare.
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
bool findOptimalMemOpLowering(std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const override
Determines the optimal series of memory ops to replace the memset / memcpy.
bool useSoftFloat() const override
std::pair< SDValue, SDValue > makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, ArrayRef< SDValue > Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, bool DoesNotReturn, bool IsReturnValueUsed) const
bool shouldConsiderGEPOffsetSplit() const override
bool supportSwiftError() const override
Return true if the target supports swifterror attribute.
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const override
Target-specific splitting of values into parts that fit a register storing a legal type.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool isCheapToSpeculateCtlz(Type *) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override
TargetLowering::ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override
Examine constraint string and operand type and determine a weight value.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const override
Determine if the target supports unaligned memory accesses.
const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const override
Returns a 0 terminated array of registers that can be safely used as scratch registers.
TargetLowering::ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint, return the type of constraint it is for this target.
bool useLoadStackGuardNode() const override
Override to support customized stack guard loading.
bool ShouldShrinkFPConstant(EVT VT) const override
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const override
Target-specific combining of register parts into its original value.
unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT) const override
Return the number of registers that this ValueType will eventually require.
bool isTruncateFree(Type *, Type *) const override
Return true if it's free to truncate a value of type FromTy to type ToTy.
unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override
Determine the number of bits in the operation that are sign bits.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool hasBitPreservingFPLogic(EVT VT) const override
Return true if it is safe to transform an integer-domain bitwise operation into the equivalent floati...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
unsigned getStackProbeSize(const MachineFunction &MF) const
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:78
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
Value * getOperand(unsigned i) const
Definition: User.h:169
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:766
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1311
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:763
static const int FIRST_TARGET_MEMORY_OPCODE
FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific me...
Definition: ISDOpcodes.h:1323
static const int FIRST_TARGET_STRICTFP_OPCODE
FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions s...
Definition: ISDOpcodes.h:1317
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1428
bool isPCREL(unsigned Opcode)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
#define N
static const fltSemantics & IEEEquad() LLVM_READNONE
Definition: APFloat.cpp:207
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:34
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:295
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:149
SmallVector< unsigned, 2 > OpVals
bool isVectorConstantLegal(const SystemZSubtarget &Subtarget)