LLVM 20.0.0git
TargetLowering.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file describes how to lower LLVM code to machine code. This has two
11/// main components:
12///
13/// 1. Which ValueTypes are natively supported by the target.
14/// 2. Which operations are supported for supported ValueTypes.
15/// 3. Cost thresholds for alternative implementations of certain operations.
16///
17/// In addition it has a few other components, like information about FP
18/// immediates.
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_CODEGEN_TARGETLOWERING_H
23#define LLVM_CODEGEN_TARGETLOWERING_H
24
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/StringRef.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/CallingConv.h"
42#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/InlineAsm.h"
46#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Type.h"
54#include <algorithm>
55#include <cassert>
56#include <climits>
57#include <cstdint>
58#include <iterator>
59#include <map>
60#include <string>
61#include <utility>
62#include <vector>
63
64namespace llvm {
65
66class AssumptionCache;
67class CCState;
68class CCValAssign;
71class Constant;
72class FastISel;
73class FunctionLoweringInfo;
74class GlobalValue;
75class Loop;
76class GISelKnownBits;
77class IntrinsicInst;
78class IRBuilderBase;
79struct KnownBits;
80class LLVMContext;
81class MachineBasicBlock;
82class MachineFunction;
83class MachineInstr;
84class MachineJumpTableInfo;
85class MachineLoop;
86class MachineRegisterInfo;
87class MCContext;
88class MCExpr;
89class Module;
90class ProfileSummaryInfo;
91class TargetLibraryInfo;
92class TargetMachine;
93class TargetRegisterClass;
94class TargetRegisterInfo;
95class TargetTransformInfo;
96class Value;
97
98namespace Sched {
99
100enum Preference : uint8_t {
101 None, // No preference
102 Source, // Follow source order.
103 RegPressure, // Scheduling for lowest register pressure.
104 Hybrid, // Scheduling for both latency and register pressure.
105 ILP, // Scheduling for ILP in low register pressure mode.
106 VLIW, // Scheduling for VLIW targets.
107 Fast, // Fast suboptimal list scheduling
108 Linearize, // Linearize DAG, no scheduling
109 Last = Linearize // Marker for the last Sched::Preference
111
112} // end namespace Sched
113
114// MemOp models a memory operation, either memset or memcpy/memmove.
115struct MemOp {
116private:
117 // Shared
118 uint64_t Size;
119 bool DstAlignCanChange; // true if destination alignment can satisfy any
120 // constraint.
121 Align DstAlign; // Specified alignment of the memory operation.
122
123 bool AllowOverlap;
124 // memset only
125 bool IsMemset; // If setthis memory operation is a memset.
126 bool ZeroMemset; // If set clears out memory with zeros.
127 // memcpy only
128 bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
129 // constant so it does not need to be loaded.
130 Align SrcAlign; // Inferred alignment of the source or default value if the
131 // memory operation does not need to load the value.
132public:
133 static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
134 Align SrcAlign, bool IsVolatile,
135 bool MemcpyStrSrc = false) {
136 MemOp Op;
137 Op.Size = Size;
138 Op.DstAlignCanChange = DstAlignCanChange;
139 Op.DstAlign = DstAlign;
140 Op.AllowOverlap = !IsVolatile;
141 Op.IsMemset = false;
142 Op.ZeroMemset = false;
143 Op.MemcpyStrSrc = MemcpyStrSrc;
144 Op.SrcAlign = SrcAlign;
145 return Op;
146 }
147
148 static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
149 bool IsZeroMemset, bool IsVolatile) {
150 MemOp Op;
151 Op.Size = Size;
152 Op.DstAlignCanChange = DstAlignCanChange;
153 Op.DstAlign = DstAlign;
154 Op.AllowOverlap = !IsVolatile;
155 Op.IsMemset = true;
156 Op.ZeroMemset = IsZeroMemset;
157 Op.MemcpyStrSrc = false;
158 return Op;
159 }
160
161 uint64_t size() const { return Size; }
163 assert(!DstAlignCanChange);
164 return DstAlign;
165 }
166 bool isFixedDstAlign() const { return !DstAlignCanChange; }
167 bool allowOverlap() const { return AllowOverlap; }
168 bool isMemset() const { return IsMemset; }
169 bool isMemcpy() const { return !IsMemset; }
171 return isMemcpy() && !DstAlignCanChange;
172 }
173 bool isZeroMemset() const { return isMemset() && ZeroMemset; }
174 bool isMemcpyStrSrc() const {
175 assert(isMemcpy() && "Must be a memcpy");
176 return MemcpyStrSrc;
177 }
179 assert(isMemcpy() && "Must be a memcpy");
180 return SrcAlign;
181 }
182 bool isSrcAligned(Align AlignCheck) const {
183 return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
184 }
185 bool isDstAligned(Align AlignCheck) const {
186 return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
187 }
188 bool isAligned(Align AlignCheck) const {
189 return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
190 }
191};
192
193/// This base class for TargetLowering contains the SelectionDAG-independent
194/// parts that can be used from the rest of CodeGen.
196public:
197 /// This enum indicates whether operations are valid for a target, and if not,
198 /// what action should be used to make them valid.
199 enum LegalizeAction : uint8_t {
200 Legal, // The target natively supports this operation.
201 Promote, // This operation should be executed in a larger type.
202 Expand, // Try to expand this to other ops, otherwise use a libcall.
203 LibCall, // Don't try to expand this to other ops, always use a libcall.
204 Custom // Use the LowerOperation hook to implement custom lowering.
205 };
206
207 /// This enum indicates whether a types are legal for a target, and if not,
208 /// what action should be used to make them valid.
209 enum LegalizeTypeAction : uint8_t {
210 TypeLegal, // The target natively supports this type.
211 TypePromoteInteger, // Replace this integer with a larger one.
212 TypeExpandInteger, // Split this integer into two of half the size.
213 TypeSoftenFloat, // Convert this float to a same size integer type.
214 TypeExpandFloat, // Split this float into two of half the size.
215 TypeScalarizeVector, // Replace this one-element vector with its element.
216 TypeSplitVector, // Split this vector into two of half the size.
217 TypeWidenVector, // This vector should be widened into a larger vector.
218 TypePromoteFloat, // Replace this float with a larger one.
219 TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
220 TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
221 // While it is theoretically possible to
222 // legalize operations on scalable types with a
223 // loop that handles the vscale * #lanes of the
224 // vector, this is non-trivial at SelectionDAG
225 // level and these types are better to be
226 // widened or promoted.
227 };
228
229 /// LegalizeKind holds the legalization kind that needs to happen to EVT
230 /// in order to type-legalize it.
231 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
232
233 /// Enum that describes how the target represents true/false values.
235 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
236 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
237 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
238 };
239
240 /// Enum that describes what type of support for selects the target has.
242 ScalarValSelect, // The target supports scalar selects (ex: cmov).
243 ScalarCondVectorVal, // The target supports selects with a scalar condition
244 // and vector values (ex: cmov).
245 VectorMaskSelect // The target supports vector selects with a vector
246 // mask (ex: x86 blends).
247 };
248
249 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
250 /// to, if at all. Exists because different targets have different levels of
251 /// support for these atomic instructions, and also have different options
252 /// w.r.t. what they should expand to.
254 None, // Don't expand the instruction.
255 CastToInteger, // Cast the atomic instruction to another type, e.g. from
256 // floating-point to integer type.
257 LLSC, // Expand the instruction into loadlinked/storeconditional; used
258 // by ARM/AArch64.
259 LLOnly, // Expand the (load) instruction into just a load-linked, which has
260 // greater atomic guarantees than a normal load.
261 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
262 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
263 BitTestIntrinsic, // Use a target-specific intrinsic for special bit
264 // operations; used by X86.
265 CmpArithIntrinsic,// Use a target-specific intrinsic for special compare
266 // operations; used by X86.
267 Expand, // Generic expansion in terms of other atomic operations.
268
269 // Rewrite to a non-atomic form for use in a known non-preemptible
270 // environment.
272 };
273
274 /// Enum that specifies when a multiplication should be expanded.
275 enum class MulExpansionKind {
276 Always, // Always expand the instruction.
277 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
278 // or custom.
279 };
280
281 /// Enum that specifies when a float negation is beneficial.
282 enum class NegatibleCost {
283 Cheaper = 0, // Negated expression is cheaper.
284 Neutral = 1, // Negated expression has the same cost.
285 Expensive = 2 // Negated expression is more expensive.
286 };
287
288 /// Enum of different potentially desirable ways to fold (and/or (setcc ...),
289 /// (setcc ...)).
290 enum AndOrSETCCFoldKind : uint8_t {
291 None = 0, // No fold is preferable.
292 AddAnd = 1, // Fold with `Add` op and `And` op is preferable.
293 NotAnd = 2, // Fold with `Not` op and `And` op is preferable.
294 ABS = 4, // Fold with `llvm.abs` op is preferable.
295 };
296
298 public:
299 Value *Val = nullptr;
301 Type *Ty = nullptr;
302 bool IsSExt : 1;
303 bool IsZExt : 1;
304 bool IsInReg : 1;
305 bool IsSRet : 1;
306 bool IsNest : 1;
307 bool IsByVal : 1;
308 bool IsByRef : 1;
309 bool IsInAlloca : 1;
311 bool IsReturned : 1;
312 bool IsSwiftSelf : 1;
313 bool IsSwiftAsync : 1;
314 bool IsSwiftError : 1;
316 MaybeAlign Alignment = std::nullopt;
317 Type *IndirectType = nullptr;
318
324
325 void setAttributes(const CallBase *Call, unsigned ArgIdx);
326 };
327 using ArgListTy = std::vector<ArgListEntry>;
328
329 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
330 ArgListTy &Args) const {};
331
333 switch (Content) {
335 // Extend by adding rubbish bits.
336 return ISD::ANY_EXTEND;
338 // Extend by adding zero bits.
339 return ISD::ZERO_EXTEND;
341 // Extend by copying the sign bit.
342 return ISD::SIGN_EXTEND;
343 }
344 llvm_unreachable("Invalid content kind");
345 }
346
347 explicit TargetLoweringBase(const TargetMachine &TM);
350 virtual ~TargetLoweringBase() = default;
351
352 /// Return true if the target support strict float operation
353 bool isStrictFPEnabled() const {
354 return IsStrictFPEnabled;
355 }
356
357protected:
358 /// Initialize all of the actions to default values.
359 void initActions();
360
361public:
362 const TargetMachine &getTargetMachine() const { return TM; }
363
364 virtual bool useSoftFloat() const { return false; }
365
366 /// Return the pointer type for the given address space, defaults to
367 /// the pointer type from the data layout.
368 /// FIXME: The default needs to be removed once all the code is updated.
369 virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
370 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
371 }
372
373 /// Return the in-memory pointer type for the given address space, defaults to
374 /// the pointer type from the data layout.
375 /// FIXME: The default needs to be removed once all the code is updated.
376 virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
377 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
378 }
379
380 /// Return the type for frame index, which is determined by
381 /// the alloca address space specified through the data layout.
383 return getPointerTy(DL, DL.getAllocaAddrSpace());
384 }
385
386 /// Return the type for code pointers, which is determined by the program
387 /// address space specified through the data layout.
389 return getPointerTy(DL, DL.getProgramAddressSpace());
390 }
391
392 /// Return the type for operands of fence.
393 /// TODO: Let fence operands be of i32 type and remove this.
394 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
395 return getPointerTy(DL);
396 }
397
398 /// Return the type to use for a scalar shift opcode, given the shifted amount
399 /// type. Targets should return a legal type if the input type is legal.
400 /// Targets can return a type that is too small if the input type is illegal.
401 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
402
403 /// Returns the type for the shift amount of a shift opcode. For vectors,
404 /// returns the input type. For scalars, calls getScalarShiftAmountTy.
405 /// If getScalarShiftAmountTy type cannot represent all possible shift
406 /// amounts, returns MVT::i32.
407 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
408
409 /// Return the preferred type to use for a shift opcode, given the shifted
410 /// amount type is \p ShiftValueTy.
412 virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
413 return ShiftValueTy;
414 }
415
416 /// Returns the type to be used for the index operand of:
417 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
418 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
419 virtual MVT getVectorIdxTy(const DataLayout &DL) const {
420 return getPointerTy(DL);
421 }
422
423 /// Returns the type to be used for the EVL/AVL operand of VP nodes:
424 /// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
425 /// and must be at least as large as i32. The EVL is implicitly zero-extended
426 /// to any larger type.
427 virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
428
429 /// This callback is used to inspect load/store instructions and add
430 /// target-specific MachineMemOperand flags to them. The default
431 /// implementation does nothing.
434 }
435
436 /// This callback is used to inspect load/store SDNode.
437 /// The default implementation does nothing.
441 }
442
445 AssumptionCache *AC = nullptr,
446 const TargetLibraryInfo *LibInfo = nullptr) const;
448 const DataLayout &DL) const;
450 const DataLayout &DL) const;
451
452 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
453 return true;
454 }
455
456 /// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
457 /// using generic code in SelectionDAGBuilder.
458 virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
459 return true;
460 }
461
462 virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF,
463 bool IsScalable) const {
464 return true;
465 }
466
467 /// Return true if the @llvm.experimental.cttz.elts intrinsic should be
468 /// expanded using generic code in SelectionDAGBuilder.
469 virtual bool shouldExpandCttzElements(EVT VT) const { return true; }
470
471 /// Return the minimum number of bits required to hold the maximum possible
472 /// number of trailing zero vector elements.
474 bool ZeroIsPoison,
475 const ConstantRange *VScaleRange) const;
476
477 // Return true if op(vecreduce(x), vecreduce(y)) should be reassociated to
478 // vecreduce(op(x, y)) for the reduction opcode RedOpc.
479 virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const {
480 return true;
481 }
482
483 /// Return true if it is profitable to convert a select of FP constants into
484 /// a constant pool load whose address depends on the select condition. The
485 /// parameter may be used to differentiate a select with FP compare from
486 /// integer compare.
487 virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
488 return true;
489 }
490
491 /// Return true if multiple condition registers are available.
493 return HasMultipleConditionRegisters;
494 }
495
496 /// Return true if the target has BitExtract instructions.
497 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
498
499 /// Return the preferred vector type legalization action.
502 // The default action for one element vectors is to scalarize
504 return TypeScalarizeVector;
505 // The default action for an odd-width vector is to widen.
506 if (!VT.isPow2VectorType())
507 return TypeWidenVector;
508 // The default action for other vectors is to promote
509 return TypePromoteInteger;
510 }
511
512 // Return true if the half type should be promoted using soft promotion rules
513 // where each operation is promoted to f32 individually, then converted to
514 // fp16. The default behavior is to promote chains of operations, keeping
515 // intermediate results in f32 precision and range.
516 virtual bool softPromoteHalfType() const { return false; }
517
518 // Return true if, for soft-promoted half, the half type should be passed
519 // passed to and returned from functions as f32. The default behavior is to
520 // pass as i16. If soft-promoted half is not used, this function is ignored
521 // and values are always passed and returned as f32.
522 virtual bool useFPRegsForHalfType() const { return false; }
523
524 // There are two general methods for expanding a BUILD_VECTOR node:
525 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
526 // them together.
527 // 2. Build the vector on the stack and then load it.
528 // If this function returns true, then method (1) will be used, subject to
529 // the constraint that all of the necessary shuffles are legal (as determined
530 // by isShuffleMaskLegal). If this function returns false, then method (2) is
531 // always used. The vector type, and the number of defined values, are
532 // provided.
533 virtual bool
535 unsigned DefinedValues) const {
536 return DefinedValues < 3;
537 }
538
539 /// Return true if integer divide is usually cheaper than a sequence of
540 /// several shifts, adds, and multiplies for this target.
541 /// The definition of "cheaper" may depend on whether we're optimizing
542 /// for speed or for size.
543 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
544
545 /// Return true if the target can handle a standalone remainder operation.
546 virtual bool hasStandaloneRem(EVT VT) const {
547 return true;
548 }
549
550 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
551 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
552 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
553 return false;
554 }
555
556 /// Reciprocal estimate status values used by the functions below.
560 Enabled = 1
561 };
562
563 /// Return a ReciprocalEstimate enum value for a square root of the given type
564 /// based on the function's attributes. If the operation is not overridden by
565 /// the function's attributes, "Unspecified" is returned and target defaults
566 /// are expected to be used for instruction selection.
568
569 /// Return a ReciprocalEstimate enum value for a division of the given type
570 /// based on the function's attributes. If the operation is not overridden by
571 /// the function's attributes, "Unspecified" is returned and target defaults
572 /// are expected to be used for instruction selection.
574
575 /// Return the refinement step count for a square root of the given type based
576 /// on the function's attributes. If the operation is not overridden by
577 /// the function's attributes, "Unspecified" is returned and target defaults
578 /// are expected to be used for instruction selection.
579 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
580
581 /// Return the refinement step count for a division of the given type based
582 /// on the function's attributes. If the operation is not overridden by
583 /// the function's attributes, "Unspecified" is returned and target defaults
584 /// are expected to be used for instruction selection.
585 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
586
587 /// Returns true if target has indicated at least one type should be bypassed.
588 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
589
590 /// Returns map of slow types for division or remainder with corresponding
591 /// fast types
593 return BypassSlowDivWidths;
594 }
595
596 /// Return true only if vscale must be a power of two.
597 virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
598
599 /// Return true if Flow Control is an expensive operation that should be
600 /// avoided.
601 bool isJumpExpensive() const { return JumpIsExpensive; }
602
603 // Costs parameters used by
604 // SelectionDAGBuilder::shouldKeepJumpConditionsTogether.
605 // shouldKeepJumpConditionsTogether will use these parameter value to
606 // determine if two conditions in the form `br (and/or cond1, cond2)` should
607 // be split into two branches or left as one.
608 //
609 // BaseCost is the cost threshold (in latency). If the estimated latency of
610 // computing both `cond1` and `cond2` is below the cost of just computing
611 // `cond1` + BaseCost, the two conditions will be kept together. Otherwise
612 // they will be split.
613 //
614 // LikelyBias increases BaseCost if branch probability info indicates that it
615 // is likely that both `cond1` and `cond2` will be computed.
616 //
617 // UnlikelyBias decreases BaseCost if branch probability info indicates that
618 // it is likely that both `cond1` and `cond2` will be computed.
619 //
620 // Set any field to -1 to make it ignored (setting BaseCost to -1 results in
621 // `shouldKeepJumpConditionsTogether` always returning false).
626 };
627 // Return params for deciding if we should keep two branch conditions merged
628 // or split them into two separate branches.
629 // Arg0: The binary op joining the two conditions (and/or).
630 // Arg1: The first condition (cond1)
631 // Arg2: The second condition (cond2)
632 virtual CondMergingParams
634 const Value *) const {
635 // -1 will always result in splitting.
636 return {-1, -1, -1};
637 }
638
639 /// Return true if selects are only cheaper than branches if the branch is
640 /// unlikely to be predicted right.
643 }
644
645 virtual bool fallBackToDAGISel(const Instruction &Inst) const {
646 return false;
647 }
648
649 /// Return true if the following transform is beneficial:
650 /// fold (conv (load x)) -> (load (conv*)x)
651 /// On architectures that don't natively support some vector loads
652 /// efficiently, casting the load to a smaller vector of larger types and
653 /// loading is more efficient, however, this can be undone by optimizations in
654 /// dag combiner.
655 virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
656 const SelectionDAG &DAG,
657 const MachineMemOperand &MMO) const;
658
659 /// Return true if the following transform is beneficial:
660 /// (store (y (conv x)), y*)) -> (store x, (x*))
661 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
662 const SelectionDAG &DAG,
663 const MachineMemOperand &MMO) const {
664 // Default to the same logic as loads.
665 return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
666 }
667
668 /// Return true if it is expected to be cheaper to do a store of vector
669 /// constant with the given size and type for the address space than to
670 /// store the individual scalar element constants.
671 virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT,
672 unsigned NumElem,
673 unsigned AddrSpace) const {
674 return IsZero;
675 }
676
677 /// Allow store merging for the specified type after legalization in addition
678 /// to before legalization. This may transform stores that do not exist
679 /// earlier (for example, stores created from intrinsics).
680 virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
681 return true;
682 }
683
684 /// Returns if it's reasonable to merge stores to MemVT size.
685 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
686 const MachineFunction &MF) const {
687 return true;
688 }
689
690 /// Return true if it is cheap to speculate a call to intrinsic cttz.
691 virtual bool isCheapToSpeculateCttz(Type *Ty) const {
692 return false;
693 }
694
695 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
696 virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
697 return false;
698 }
699
700 /// Return true if ctlz instruction is fast.
701 virtual bool isCtlzFast() const {
702 return false;
703 }
704
705 /// Return true if ctpop instruction is fast.
706 virtual bool isCtpopFast(EVT VT) const {
707 return isOperationLegal(ISD::CTPOP, VT);
708 }
709
710 /// Return the maximum number of "x & (x - 1)" operations that can be done
711 /// instead of deferring to a custom CTPOP.
712 virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
713 return 1;
714 }
715
716 /// Return true if instruction generated for equality comparison is folded
717 /// with instruction generated for signed comparison.
718 virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
719
720 /// Return true if the heuristic to prefer icmp eq zero should be used in code
721 /// gen prepare.
722 virtual bool preferZeroCompareBranch() const { return false; }
723
724 /// Return true if it is cheaper to split the store of a merged int val
725 /// from a pair of smaller values into multiple stores.
726 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
727 return false;
728 }
729
730 /// Return if the target supports combining a
731 /// chain like:
732 /// \code
733 /// %andResult = and %val1, #mask
734 /// %icmpResult = icmp %andResult, 0
735 /// \endcode
736 /// into a single machine instruction of a form like:
737 /// \code
738 /// cc = test %register, #mask
739 /// \endcode
740 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
741 return false;
742 }
743
744 /// Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
745 virtual bool
747 const MemSDNode &NodeY) const {
748 return true;
749 }
750
751 /// Use bitwise logic to make pairs of compares more efficient. For example:
752 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
753 /// This should be true when it takes more than one instruction to lower
754 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
755 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
756 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
757 return false;
758 }
759
760 /// Return the preferred operand type if the target has a quick way to compare
761 /// integer values of the given size. Assume that any legal integer type can
762 /// be compared efficiently. Targets may override this to allow illegal wide
763 /// types to return a vector type if there is support to compare that type.
764 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
765 MVT VT = MVT::getIntegerVT(NumBits);
767 }
768
769 /// Return true if the target should transform:
770 /// (X & Y) == Y ---> (~X & Y) == 0
771 /// (X & Y) != Y ---> (~X & Y) != 0
772 ///
773 /// This may be profitable if the target has a bitwise and-not operation that
774 /// sets comparison flags. A target may want to limit the transformation based
775 /// on the type of Y or if Y is a constant.
776 ///
777 /// Note that the transform will not occur if Y is known to be a power-of-2
778 /// because a mask and compare of a single bit can be handled by inverting the
779 /// predicate, for example:
780 /// (X & 8) == 8 ---> (X & 8) != 0
781 virtual bool hasAndNotCompare(SDValue Y) const {
782 return false;
783 }
784
785 /// Return true if the target has a bitwise and-not operation:
786 /// X = ~A & B
787 /// This can be used to simplify select or other instructions.
788 virtual bool hasAndNot(SDValue X) const {
789 // If the target has the more complex version of this operation, assume that
790 // it has this operation too.
791 return hasAndNotCompare(X);
792 }
793
794 /// Return true if the target has a bit-test instruction:
795 /// (X & (1 << Y)) ==/!= 0
796 /// This knowledge can be used to prevent breaking the pattern,
797 /// or creating it if it could be recognized.
798 virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
799
800 /// There are two ways to clear extreme bits (either low or high):
801 /// Mask: x & (-1 << y) (the instcombine canonical form)
802 /// Shifts: x >> y << y
803 /// Return true if the variant with 2 variable shifts is preferred.
804 /// Return false if there is no preference.
806 // By default, let's assume that no one prefers shifts.
807 return false;
808 }
809
810 /// Return true if it is profitable to fold a pair of shifts into a mask.
811 /// This is usually true on most targets. But some targets, like Thumb1,
812 /// have immediate shift instructions, but no immediate "and" instruction;
813 /// this makes the fold unprofitable.
815 CombineLevel Level) const {
816 return true;
817 }
818
819 /// Should we tranform the IR-optimal check for whether given truncation
820 /// down into KeptBits would be truncating or not:
821 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
822 /// Into it's more traditional form:
823 /// ((%x << C) a>> C) dstcond %x
824 /// Return true if we should transform.
825 /// Return false if there is no preference.
827 unsigned KeptBits) const {
828 // By default, let's assume that no one prefers shifts.
829 return false;
830 }
831
832 /// Given the pattern
833 /// (X & (C l>>/<< Y)) ==/!= 0
834 /// return true if it should be transformed into:
835 /// ((X <</l>> Y) & C) ==/!= 0
836 /// WARNING: if 'X' is a constant, the fold may deadlock!
837 /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
838 /// here because it can end up being not linked in.
841 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
842 SelectionDAG &DAG) const {
843 if (hasBitTest(X, Y)) {
844 // One interesting pattern that we'd want to form is 'bit test':
845 // ((1 << Y) & C) ==/!= 0
846 // But we also need to be careful not to try to reverse that fold.
847
848 // Is this '1 << Y' ?
849 if (OldShiftOpcode == ISD::SHL && CC->isOne())
850 return false; // Keep the 'bit test' pattern.
851
852 // Will it be '1 << Y' after the transform ?
853 if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
854 return true; // Do form the 'bit test' pattern.
855 }
856
857 // If 'X' is a constant, and we transform, then we will immediately
858 // try to undo the fold, thus causing endless combine loop.
859 // So by default, let's assume everyone prefers the fold
860 // iff 'X' is not a constant.
861 return !XC;
862 }
863
864 // Return true if its desirable to perform the following transform:
865 // (fmul C, (uitofp Pow2))
866 // -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
867 // (fdiv C, (uitofp Pow2))
868 // -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
869 //
870 // This is only queried after we have verified the transform will be bitwise
871 // equals.
872 //
873 // SDNode *N : The FDiv/FMul node we want to transform.
874 // SDValue FPConst: The Float constant operand in `N`.
875 // SDValue IntPow2: The Integer power of 2 operand in `N`.
877 SDValue IntPow2) const {
878 // Default to avoiding fdiv which is often very expensive.
879 return N->getOpcode() == ISD::FDIV;
880 }
881
882 // Given:
883 // (icmp eq/ne (and X, C0), (shift X, C1))
884 // or
885 // (icmp eq/ne X, (rotate X, CPow2))
886
887 // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
888 // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
889 // Do we prefer the shift to be shift-right, shift-left, or rotate.
890 // Note: Its only valid to convert the rotate version to the shift version iff
891 // the shift-amt (`C1`) is a power of 2 (including 0).
892 // If ShiftOpc (current Opcode) is returned, do nothing.
894 EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
895 const APInt &ShiftOrRotateAmt,
896 const std::optional<APInt> &AndMask) const {
897 return ShiftOpc;
898 }
899
900 /// These two forms are equivalent:
901 /// sub %y, (xor %x, -1)
902 /// add (add %x, 1), %y
903 /// The variant with two add's is IR-canonical.
904 /// Some targets may prefer one to the other.
905 virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
906 // By default, let's assume that everyone prefers the form with two add's.
907 return true;
908 }
909
910 // By default prefer folding (abs (sub nsw x, y)) -> abds(x, y). Some targets
911 // may want to avoid this to prevent loss of sub_nsw pattern.
912 virtual bool preferABDSToABSWithNSW(EVT VT) const {
913 return true;
914 }
915
916 // Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
917 virtual bool preferScalarizeSplat(SDNode *N) const { return true; }
918
919 // Return true if the target wants to transform:
920 // (TruncVT truncate(sext_in_reg(VT X, ExtVT))
921 // -> (TruncVT sext_in_reg(truncate(VT X), ExtVT))
922 // Some targets might prefer pre-sextinreg to improve truncation/saturation.
923 virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const {
924 return true;
925 }
926
927 /// Return true if the target wants to use the optimization that
928 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
929 /// promotedInst1(...(promotedInstN(ext(load)))).
931
932 /// Return true if the target can combine store(extractelement VectorTy,
933 /// Idx).
934 /// \p Cost[out] gives the cost of that transformation when this is true.
935 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
936 unsigned &Cost) const {
937 return false;
938 }
939
940 /// Return true if the target shall perform extract vector element and store
941 /// given that the vector is known to be splat of constant.
942 /// \p Index[out] gives the index of the vector element to be extracted when
943 /// this is true.
945 Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const {
946 return false;
947 }
948
949 /// Return true if inserting a scalar into a variable element of an undef
950 /// vector is more efficiently handled by splatting the scalar instead.
951 virtual bool shouldSplatInsEltVarIndex(EVT) const {
952 return false;
953 }
954
955 /// Return true if target always benefits from combining into FMA for a
956 /// given value type. This must typically return false on targets where FMA
957 /// takes more cycles to execute than FADD.
958 virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
959
960 /// Return true if target always benefits from combining into FMA for a
961 /// given value type. This must typically return false on targets where FMA
962 /// takes more cycles to execute than FADD.
963 virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
964
965 /// Return the ValueType of the result of SETCC operations.
966 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
967 EVT VT) const;
968
969 /// Return the ValueType for comparison libcalls. Comparison libcalls include
970 /// floating point comparison calls, and Ordered/Unordered check calls on
971 /// floating point numbers.
972 virtual
974
975 /// For targets without i1 registers, this gives the nature of the high-bits
976 /// of boolean values held in types wider than i1.
977 ///
978 /// "Boolean values" are special true/false values produced by nodes like
979 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
980 /// Not to be confused with general values promoted from i1. Some cpus
981 /// distinguish between vectors of boolean and scalars; the isVec parameter
982 /// selects between the two kinds. For example on X86 a scalar boolean should
983 /// be zero extended from i1, while the elements of a vector of booleans
984 /// should be sign extended from i1.
985 ///
986 /// Some cpus also treat floating point types the same way as they treat
987 /// vectors instead of the way they treat scalars.
988 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
989 if (isVec)
990 return BooleanVectorContents;
991 return isFloat ? BooleanFloatContents : BooleanContents;
992 }
993
995 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
996 }
997
998 /// Promote the given target boolean to a target boolean of the given type.
999 /// A target boolean is an integer value, not necessarily of type i1, the bits
1000 /// of which conform to getBooleanContents.
1001 ///
1002 /// ValVT is the type of values that produced the boolean.
1004 EVT ValVT) const {
1005 SDLoc dl(Bool);
1006 EVT BoolVT =
1007 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
1009 return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1010 }
1011
1012 /// Return target scheduling preference.
1014 return SchedPreferenceInfo;
1015 }
1016
1017 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
1018 /// for different nodes. This function returns the preference (or none) for
1019 /// the given node.
1021 return Sched::None;
1022 }
1023
1024 /// Return the register class that should be used for the specified value
1025 /// type.
1026 virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
1027 (void)isDivergent;
1028 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1029 assert(RC && "This value type is not natively supported!");
1030 return RC;
1031 }
1032
1033 /// Allows target to decide about the register class of the
1034 /// specific value that is live outside the defining block.
1035 /// Returns true if the value needs uniform register class.
1037 const Value *) const {
1038 return false;
1039 }
1040
1041 /// Return the 'representative' register class for the specified value
1042 /// type.
1043 ///
1044 /// The 'representative' register class is the largest legal super-reg
1045 /// register class for the register class of the value type. For example, on
1046 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
1047 /// register class is GR64 on x86_64.
1048 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
1049 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
1050 return RC;
1051 }
1052
1053 /// Return the cost of the 'representative' register class for the specified
1054 /// value type.
1055 virtual uint8_t getRepRegClassCostFor(MVT VT) const {
1056 return RepRegClassCostForVT[VT.SimpleTy];
1057 }
1058
1059 /// Return the preferred strategy to legalize tihs SHIFT instruction, with
1060 /// \p ExpansionFactor being the recursion depth - how many expansion needed.
1065 };
1068 unsigned ExpansionFactor) const {
1069 if (ExpansionFactor == 1)
1072 }
1073
1074 /// Return true if the target has native support for the specified value type.
1075 /// This means that it has a register that directly holds it without
1076 /// promotions or expansions.
1077 bool isTypeLegal(EVT VT) const {
1078 assert(!VT.isSimple() ||
1079 (unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
1080 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
1081 }
1082
1084 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
1085 /// that indicates how instruction selection should deal with the type.
1086 LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
1087
1088 public:
1090 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
1091 TypeLegal);
1092 }
1093
1095 return ValueTypeActions[VT.SimpleTy];
1096 }
1097
1099 ValueTypeActions[VT.SimpleTy] = Action;
1100 }
1101 };
1102
1104 return ValueTypeActions;
1105 }
1106
1107 /// Return pair that represents the legalization kind (first) that needs to
1108 /// happen to EVT (second) in order to type-legalize it.
1109 ///
1110 /// First: how we should legalize values of this type, either it is already
1111 /// legal (return 'Legal') or we need to promote it to a larger type (return
1112 /// 'Promote'), or we need to expand it into multiple registers of smaller
1113 /// integer type (return 'Expand'). 'Custom' is not an option.
1114 ///
1115 /// Second: for types supported by the target, this is an identity function.
1116 /// For types that must be promoted to larger types, this returns the larger
1117 /// type to promote to. For integer types that are larger than the largest
1118 /// integer register, this contains one step in the expansion to get to the
1119 /// smaller register. For illegal floating point types, this returns the
1120 /// integer type to transform to.
1121 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1122
1123 /// Return how we should legalize values of this type, either it is already
1124 /// legal (return 'Legal') or we need to promote it to a larger type (return
1125 /// 'Promote'), or we need to expand it into multiple registers of smaller
1126 /// integer type (return 'Expand'). 'Custom' is not an option.
1128 return getTypeConversion(Context, VT).first;
1129 }
1131 return ValueTypeActions.getTypeAction(VT);
1132 }
1133
1134 /// For types supported by the target, this is an identity function. For
1135 /// types that must be promoted to larger types, this returns the larger type
1136 /// to promote to. For integer types that are larger than the largest integer
1137 /// register, this contains one step in the expansion to get to the smaller
1138 /// register. For illegal floating point types, this returns the integer type
1139 /// to transform to.
1140 virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
1141 return getTypeConversion(Context, VT).second;
1142 }
1143
1144 /// For types supported by the target, this is an identity function. For
1145 /// types that must be expanded (i.e. integer types that are larger than the
1146 /// largest integer register or illegal floating point types), this returns
1147 /// the largest legal type it will be expanded to.
1148 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
1149 assert(!VT.isVector());
1150 while (true) {
1151 switch (getTypeAction(Context, VT)) {
1152 case TypeLegal:
1153 return VT;
1154 case TypeExpandInteger:
1155 VT = getTypeToTransformTo(Context, VT);
1156 break;
1157 default:
1158 llvm_unreachable("Type is not legal nor is it to be expanded!");
1159 }
1160 }
1161 }
1162
1163 /// Vector types are broken down into some number of legal first class types.
1164 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
1165 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
1166 /// turns into 4 EVT::i32 values with both PPC and X86.
1167 ///
1168 /// This method returns the number of registers needed, and the VT for each
1169 /// register. It also returns the VT and quantity of the intermediate values
1170 /// before they are promoted/expanded.
1171 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1172 EVT &IntermediateVT,
1173 unsigned &NumIntermediates,
1174 MVT &RegisterVT) const;
1175
1176 /// Certain targets such as MIPS require that some types such as vectors are
1177 /// always broken down into scalars in some contexts. This occurs even if the
1178 /// vector type is legal.
1180 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1181 unsigned &NumIntermediates, MVT &RegisterVT) const {
1182 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
1183 RegisterVT);
1184 }
1185
1187 unsigned opc = 0; // target opcode
1188 EVT memVT; // memory VT
1189
1190 // value representing memory location
1192
1193 // Fallback address space for use if ptrVal is nullptr. std::nullopt means
1194 // unknown address space.
1195 std::optional<unsigned> fallbackAddressSpace;
1196
1197 int offset = 0; // offset off of ptrVal
1198 uint64_t size = 0; // the size of the memory location
1199 // (taken from memVT if zero)
1200 MaybeAlign align = Align(1); // alignment
1201
1203 IntrinsicInfo() = default;
1204 };
1205
1206 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1207 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1208 /// true and store the intrinsic information into the IntrinsicInfo that was
1209 /// passed to the function.
1212 unsigned /*Intrinsic*/) const {
1213 return false;
1214 }
1215
1216 /// Returns true if the target can instruction select the specified FP
1217 /// immediate natively. If false, the legalizer will materialize the FP
1218 /// immediate as a load from a constant pool.
1219 virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1220 bool ForCodeSize = false) const {
1221 return false;
1222 }
1223
1224 /// Targets can use this to indicate that they only support *some*
1225 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1226 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1227 /// legal.
1228 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1229 return true;
1230 }
1231
1232 /// Returns true if the operation can trap for the value type.
1233 ///
1234 /// VT must be a legal type. By default, we optimistically assume most
1235 /// operations don't trap except for integer divide and remainder.
1236 virtual bool canOpTrap(unsigned Op, EVT VT) const;
1237
1238 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1239 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1240 /// constant pool entry.
1242 EVT /*VT*/) const {
1243 return false;
1244 }
1245
1246 /// How to legalize this custom operation?
1248 return Legal;
1249 }
1250
1251 /// Return how this operation should be treated: either it is legal, needs to
1252 /// be promoted to a larger size, needs to be expanded to some other code
1253 /// sequence, or the target has a custom expander for it.
1255 // If a target-specific SDNode requires legalization, require the target
1256 // to provide custom legalization for it.
1257 if (Op >= std::size(OpActions[0]))
1258 return Custom;
1259 if (VT.isExtended())
1260 return Expand;
1261 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1262 }
1263
1264 /// Custom method defined by each target to indicate if an operation which
1265 /// may require a scale is supported natively by the target.
1266 /// If not, the operation is illegal.
1267 virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1268 unsigned Scale) const {
1269 return false;
1270 }
1271
1272 /// Some fixed point operations may be natively supported by the target but
1273 /// only for specific scales. This method allows for checking
1274 /// if the width is supported by the target for a given operation that may
1275 /// depend on scale.
1277 unsigned Scale) const {
1278 auto Action = getOperationAction(Op, VT);
1279 if (Action != Legal)
1280 return Action;
1281
1282 // This operation is supported in this type but may only work on specific
1283 // scales.
1284 bool Supported;
1285 switch (Op) {
1286 default:
1287 llvm_unreachable("Unexpected fixed point operation.");
1288 case ISD::SMULFIX:
1289 case ISD::SMULFIXSAT:
1290 case ISD::UMULFIX:
1291 case ISD::UMULFIXSAT:
1292 case ISD::SDIVFIX:
1293 case ISD::SDIVFIXSAT:
1294 case ISD::UDIVFIX:
1295 case ISD::UDIVFIXSAT:
1296 Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1297 break;
1298 }
1299
1300 return Supported ? Action : Expand;
1301 }
1302
1303 // If Op is a strict floating-point operation, return the result
1304 // of getOperationAction for the equivalent non-strict operation.
1306 unsigned EqOpc;
1307 switch (Op) {
1308 default: llvm_unreachable("Unexpected FP pseudo-opcode");
1309#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1310 case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1311#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1312 case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1313#include "llvm/IR/ConstrainedOps.def"
1314 }
1315
1316 return getOperationAction(EqOpc, VT);
1317 }
1318
1319 /// Return true if the specified operation is legal on this target or can be
1320 /// made legal with custom lowering. This is used to help guide high-level
1321 /// lowering decisions. LegalOnly is an optional convenience for code paths
1322 /// traversed pre and post legalisation.
1324 bool LegalOnly = false) const {
1325 if (LegalOnly)
1326 return isOperationLegal(Op, VT);
1327
1328 return (VT == MVT::Other || isTypeLegal(VT)) &&
1329 (getOperationAction(Op, VT) == Legal ||
1330 getOperationAction(Op, VT) == Custom);
1331 }
1332
1333 /// Return true if the specified operation is legal on this target or can be
1334 /// made legal using promotion. This is used to help guide high-level lowering
1335 /// decisions. LegalOnly is an optional convenience for code paths traversed
1336 /// pre and post legalisation.
1338 bool LegalOnly = false) const {
1339 if (LegalOnly)
1340 return isOperationLegal(Op, VT);
1341
1342 return (VT == MVT::Other || isTypeLegal(VT)) &&
1343 (getOperationAction(Op, VT) == Legal ||
1344 getOperationAction(Op, VT) == Promote);
1345 }
1346
1347 /// Return true if the specified operation is legal on this target or can be
1348 /// made legal with custom lowering or using promotion. This is used to help
1349 /// guide high-level lowering decisions. LegalOnly is an optional convenience
1350 /// for code paths traversed pre and post legalisation.
1352 bool LegalOnly = false) const {
1353 if (LegalOnly)
1354 return isOperationLegal(Op, VT);
1355
1356 return (VT == MVT::Other || isTypeLegal(VT)) &&
1357 (getOperationAction(Op, VT) == Legal ||
1358 getOperationAction(Op, VT) == Custom ||
1359 getOperationAction(Op, VT) == Promote);
1360 }
1361
1362 /// Return true if the operation uses custom lowering, regardless of whether
1363 /// the type is legal or not.
1364 bool isOperationCustom(unsigned Op, EVT VT) const {
1365 return getOperationAction(Op, VT) == Custom;
1366 }
1367
1368 /// Return true if lowering to a jump table is allowed.
1369 virtual bool areJTsAllowed(const Function *Fn) const {
1370 if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
1371 return false;
1372
1373 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1375 }
1376
1377 /// Check whether the range [Low,High] fits in a machine word.
1378 bool rangeFitsInWord(const APInt &Low, const APInt &High,
1379 const DataLayout &DL) const {
1380 // FIXME: Using the pointer type doesn't seem ideal.
1381 uint64_t BW = DL.getIndexSizeInBits(0u);
1382 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1383 return Range <= BW;
1384 }
1385
1386 /// Return true if lowering to a jump table is suitable for a set of case
1387 /// clusters which may contain \p NumCases cases, \p Range range of values.
1388 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1390 BlockFrequencyInfo *BFI) const;
1391
1392 /// Returns preferred type for switch condition.
1394 EVT ConditionVT) const;
1395
1396 /// Return true if lowering to a bit test is suitable for a set of case
1397 /// clusters which contains \p NumDests unique destinations, \p Low and
1398 /// \p High as its lowest and highest case values, and expects \p NumCmps
1399 /// case value comparisons. Check if the number of destinations, comparison
1400 /// metric, and range are all suitable.
1401 bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1402 const APInt &Low, const APInt &High,
1403 const DataLayout &DL) const {
1404 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1405 // range of cases both require only one branch to lower. Just looking at the
1406 // number of clusters and destinations should be enough to decide whether to
1407 // build bit tests.
1408
1409 // To lower a range with bit tests, the range must fit the bitwidth of a
1410 // machine word.
1411 if (!rangeFitsInWord(Low, High, DL))
1412 return false;
1413
1414 // Decide whether it's profitable to lower this range with bit tests. Each
1415 // destination requires a bit test and branch, and there is an overall range
1416 // check branch. For a small number of clusters, separate comparisons might
1417 // be cheaper, and for many destinations, splitting the range might be
1418 // better.
1419 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1420 (NumDests == 3 && NumCmps >= 6);
1421 }
1422
1423 /// Return true if the specified operation is illegal on this target or
1424 /// unlikely to be made legal with custom lowering. This is used to help guide
1425 /// high-level lowering decisions.
1426 bool isOperationExpand(unsigned Op, EVT VT) const {
1427 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1428 }
1429
1430 /// Return true if the specified operation is legal on this target.
1431 bool isOperationLegal(unsigned Op, EVT VT) const {
1432 return (VT == MVT::Other || isTypeLegal(VT)) &&
1433 getOperationAction(Op, VT) == Legal;
1434 }
1435
1436 /// Return how this load with extension should be treated: either it is legal,
1437 /// needs to be promoted to a larger size, needs to be expanded to some other
1438 /// code sequence, or the target has a custom expander for it.
1439 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1440 EVT MemVT) const {
1441 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1442 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1443 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1445 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1446 unsigned Shift = 4 * ExtType;
1447 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1448 }
1449
1450 /// Return true if the specified load with extension is legal on this target.
1451 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1452 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1453 }
1454
1455 /// Return true if the specified load with extension is legal or custom
1456 /// on this target.
1457 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1458 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1459 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1460 }
1461
1462 /// Same as getLoadExtAction, but for atomic loads.
1464 EVT MemVT) const {
1465 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1466 unsigned ValI = (unsigned)ValVT.getSimpleVT().SimpleTy;
1467 unsigned MemI = (unsigned)MemVT.getSimpleVT().SimpleTy;
1469 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1470 unsigned Shift = 4 * ExtType;
1471 LegalizeAction Action =
1472 (LegalizeAction)((AtomicLoadExtActions[ValI][MemI] >> Shift) & 0xf);
1473 assert((Action == Legal || Action == Expand) &&
1474 "Unsupported atomic load extension action.");
1475 return Action;
1476 }
1477
1478 /// Return true if the specified atomic load with extension is legal on
1479 /// this target.
1480 bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1481 return getAtomicLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1482 }
1483
1484 /// Return how this store with truncation should be treated: either it is
1485 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1486 /// other code sequence, or the target has a custom expander for it.
1488 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1489 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1490 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1492 "Table isn't big enough!");
1493 return TruncStoreActions[ValI][MemI];
1494 }
1495
1496 /// Return true if the specified store with truncation is legal on this
1497 /// target.
1498 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1499 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1500 }
1501
1502 /// Return true if the specified store with truncation has solution on this
1503 /// target.
1504 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1505 return isTypeLegal(ValVT) &&
1506 (getTruncStoreAction(ValVT, MemVT) == Legal ||
1507 getTruncStoreAction(ValVT, MemVT) == Custom);
1508 }
1509
1510 virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
1511 bool LegalOnly) const {
1512 if (LegalOnly)
1513 return isTruncStoreLegal(ValVT, MemVT);
1514
1515 return isTruncStoreLegalOrCustom(ValVT, MemVT);
1516 }
1517
1518 /// Return how the indexed load should be treated: either it is legal, needs
1519 /// to be promoted to a larger size, needs to be expanded to some other code
1520 /// sequence, or the target has a custom expander for it.
1521 LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1522 return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1523 }
1524
1525 /// Return true if the specified indexed load is legal on this target.
1526 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1527 return VT.isSimple() &&
1528 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1529 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1530 }
1531
1532 /// Return how the indexed store should be treated: either it is legal, needs
1533 /// to be promoted to a larger size, needs to be expanded to some other code
1534 /// sequence, or the target has a custom expander for it.
1535 LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1536 return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1537 }
1538
1539 /// Return true if the specified indexed load is legal on this target.
1540 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1541 return VT.isSimple() &&
1542 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1543 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1544 }
1545
1546 /// Return how the indexed load should be treated: either it is legal, needs
1547 /// to be promoted to a larger size, needs to be expanded to some other code
1548 /// sequence, or the target has a custom expander for it.
1549 LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1550 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1551 }
1552
1553 /// Return true if the specified indexed load is legal on this target.
1554 bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1555 return VT.isSimple() &&
1556 (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1558 }
1559
1560 /// Return how the indexed store should be treated: either it is legal, needs
1561 /// to be promoted to a larger size, needs to be expanded to some other code
1562 /// sequence, or the target has a custom expander for it.
1563 LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1564 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1565 }
1566
1567 /// Return true if the specified indexed load is legal on this target.
1568 bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1569 return VT.isSimple() &&
1570 (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1572 }
1573
1574 /// Returns true if the index type for a masked gather/scatter requires
1575 /// extending
1576 virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
1577
1578 // Returns true if Extend can be folded into the index of a masked gathers/scatters
1579 // on this target.
1580 virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const {
1581 return false;
1582 }
1583
1584 // Return true if the target supports a scatter/gather instruction with
1585 // indices which are scaled by the particular value. Note that all targets
1586 // must by definition support scale of 1.
1588 uint64_t ElemSize) const {
1589 // MGATHER/MSCATTER are only required to support scaling by one or by the
1590 // element size.
1591 if (Scale != ElemSize && Scale != 1)
1592 return false;
1593 return true;
1594 }
1595
1596 /// Return how the condition code should be treated: either it is legal, needs
1597 /// to be expanded to some other code sequence, or the target has a custom
1598 /// expander for it.
1601 assert((unsigned)CC < std::size(CondCodeActions) &&
1602 ((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
1603 "Table isn't big enough!");
1604 // See setCondCodeAction for how this is encoded.
1605 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1606 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1607 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1608 assert(Action != Promote && "Can't promote condition code!");
1609 return Action;
1610 }
1611
1612 /// Return true if the specified condition code is legal on this target.
1614 return getCondCodeAction(CC, VT) == Legal;
1615 }
1616
1617 /// Return true if the specified condition code is legal or custom on this
1618 /// target.
1620 return getCondCodeAction(CC, VT) == Legal ||
1621 getCondCodeAction(CC, VT) == Custom;
1622 }
1623
1624 /// If the action for this operation is to promote, this method returns the
1625 /// ValueType to promote to.
1626 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1628 "This operation isn't promoted!");
1629
1630 // See if this has an explicit type specified.
1631 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1633 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1634 if (PTTI != PromoteToType.end()) return PTTI->second;
1635
1636 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1637 "Cannot autopromote this type, add it with AddPromotedToType.");
1638
1639 uint64_t VTBits = VT.getScalarSizeInBits();
1640 MVT NVT = VT;
1641 do {
1642 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1643 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1644 "Didn't find type to promote to!");
1645 } while (VTBits >= NVT.getScalarSizeInBits() || !isTypeLegal(NVT) ||
1646 getOperationAction(Op, NVT) == Promote);
1647 return NVT;
1648 }
1649
1651 bool AllowUnknown = false) const {
1652 return getValueType(DL, Ty, AllowUnknown);
1653 }
1654
1655 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1656 /// operations except for the pointer size. If AllowUnknown is true, this
1657 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1658 /// otherwise it will assert.
1660 bool AllowUnknown = false) const {
1661 // Lower scalar pointers to native pointer types.
1662 if (auto *PTy = dyn_cast<PointerType>(Ty))
1663 return getPointerTy(DL, PTy->getAddressSpace());
1664
1665 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1666 Type *EltTy = VTy->getElementType();
1667 // Lower vectors of pointers to native pointer types.
1668 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1669 EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1670 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1671 }
1672 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1673 VTy->getElementCount());
1674 }
1675
1676 return EVT::getEVT(Ty, AllowUnknown);
1677 }
1678
1680 bool AllowUnknown = false) const {
1681 // Lower scalar pointers to native pointer types.
1682 if (auto *PTy = dyn_cast<PointerType>(Ty))
1683 return getPointerMemTy(DL, PTy->getAddressSpace());
1684
1685 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1686 Type *EltTy = VTy->getElementType();
1687 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1688 EVT PointerTy(getPointerMemTy(DL, PTy->getAddressSpace()));
1689 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1690 }
1691 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1692 VTy->getElementCount());
1693 }
1694
1695 return getValueType(DL, Ty, AllowUnknown);
1696 }
1697
1698
1699 /// Return the MVT corresponding to this LLVM type. See getValueType.
1701 bool AllowUnknown = false) const {
1702 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1703 }
1704
1705 /// Return the desired alignment for ByVal or InAlloca aggregate function
1706 /// arguments in the caller parameter area. This is the actual alignment, not
1707 /// its logarithm.
1708 virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1709
1710 /// Return the type of registers that this ValueType will eventually require.
1712 assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
1713 return RegisterTypeForVT[VT.SimpleTy];
1714 }
1715
1716 /// Return the type of registers that this ValueType will eventually require.
1717 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1718 if (VT.isSimple())
1719 return getRegisterType(VT.getSimpleVT());
1720 if (VT.isVector()) {
1721 EVT VT1;
1722 MVT RegisterVT;
1723 unsigned NumIntermediates;
1724 (void)getVectorTypeBreakdown(Context, VT, VT1,
1725 NumIntermediates, RegisterVT);
1726 return RegisterVT;
1727 }
1728 if (VT.isInteger()) {
1729 return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1730 }
1731 llvm_unreachable("Unsupported extended type!");
1732 }
1733
1734 /// Return the number of registers that this ValueType will eventually
1735 /// require.
1736 ///
1737 /// This is one for any types promoted to live in larger registers, but may be
1738 /// more than one for types (like i64) that are split into pieces. For types
1739 /// like i140, which are first promoted then expanded, it is the number of
1740 /// registers needed to hold all the bits of the original type. For an i140
1741 /// on a 32 bit machine this means 5 registers.
1742 ///
1743 /// RegisterVT may be passed as a way to override the default settings, for
1744 /// instance with i128 inline assembly operands on SystemZ.
1745 virtual unsigned
1747 std::optional<MVT> RegisterVT = std::nullopt) const {
1748 if (VT.isSimple()) {
1749 assert((unsigned)VT.getSimpleVT().SimpleTy <
1750 std::size(NumRegistersForVT));
1751 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1752 }
1753 if (VT.isVector()) {
1754 EVT VT1;
1755 MVT VT2;
1756 unsigned NumIntermediates;
1757 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1758 }
1759 if (VT.isInteger()) {
1760 unsigned BitWidth = VT.getSizeInBits();
1761 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1762 return (BitWidth + RegWidth - 1) / RegWidth;
1763 }
1764 llvm_unreachable("Unsupported extended type!");
1765 }
1766
1767 /// Certain combinations of ABIs, Targets and features require that types
1768 /// are legal for some operations and not for other operations.
1769 /// For MIPS all vector types must be passed through the integer register set.
1771 CallingConv::ID CC, EVT VT) const {
1772 return getRegisterType(Context, VT);
1773 }
1774
1775 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1776 /// this occurs when a vector type is used, as vector are passed through the
1777 /// integer register set.
1780 EVT VT) const {
1781 return getNumRegisters(Context, VT);
1782 }
1783
1784 /// Certain targets have context sensitive alignment requirements, where one
1785 /// type has the alignment requirement of another type.
1787 const DataLayout &DL) const {
1788 return DL.getABITypeAlign(ArgTy);
1789 }
1790
1791 /// If true, then instruction selection should seek to shrink the FP constant
1792 /// of the specified type to a smaller type in order to save space and / or
1793 /// reduce runtime.
1794 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1795
1796 /// Return true if it is profitable to reduce a load to a smaller type.
1797 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1799 EVT NewVT) const {
1800 // By default, assume that it is cheaper to extract a subvector from a wide
1801 // vector load rather than creating multiple narrow vector loads.
1802 if (NewVT.isVector() && !Load->hasOneUse())
1803 return false;
1804
1805 return true;
1806 }
1807
1808 /// Return true (the default) if it is profitable to remove a sext_inreg(x)
1809 /// where the sext is redundant, and use x directly.
1810 virtual bool shouldRemoveRedundantExtend(SDValue Op) const { return true; }
1811
1812 /// Indicates if any padding is guaranteed to go at the most significant bits
1813 /// when storing the type to memory and the type size isn't equal to the store
1814 /// size.
1816 return VT.isScalarInteger() && !VT.isByteSized();
1817 }
1818
1819 /// When splitting a value of the specified type into parts, does the Lo
1820 /// or Hi part come first? This usually follows the endianness, except
1821 /// for ppcf128, where the Hi part always comes first.
1823 return DL.isBigEndian() || VT == MVT::ppcf128;
1824 }
1825
1826 /// If true, the target has custom DAG combine transformations that it can
1827 /// perform for the specified node.
1829 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
1830 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1831 }
1832
1835 }
1836
1837 /// Returns the size of the platform's va_list object.
1838 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1839 return getPointerTy(DL).getSizeInBits();
1840 }
1841
1842 /// Get maximum # of store operations permitted for llvm.memset
1843 ///
1844 /// This function returns the maximum number of store operations permitted
1845 /// to replace a call to llvm.memset. The value is set by the target at the
1846 /// performance threshold for such a replacement. If OptSize is true,
1847 /// return the limit for functions that have OptSize attribute.
1848 unsigned getMaxStoresPerMemset(bool OptSize) const {
1850 }
1851
1852 /// Get maximum # of store operations permitted for llvm.memcpy
1853 ///
1854 /// This function returns the maximum number of store operations permitted
1855 /// to replace a call to llvm.memcpy. The value is set by the target at the
1856 /// performance threshold for such a replacement. If OptSize is true,
1857 /// return the limit for functions that have OptSize attribute.
1858 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1860 }
1861
1862 /// \brief Get maximum # of store operations to be glued together
1863 ///
1864 /// This function returns the maximum number of store operations permitted
1865 /// to glue together during lowering of llvm.memcpy. The value is set by
1866 // the target at the performance threshold for such a replacement.
1867 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1869 }
1870
1871 /// Get maximum # of load operations permitted for memcmp
1872 ///
1873 /// This function returns the maximum number of load operations permitted
1874 /// to replace a call to memcmp. The value is set by the target at the
1875 /// performance threshold for such a replacement. If OptSize is true,
1876 /// return the limit for functions that have OptSize attribute.
1877 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1879 }
1880
1881 /// Get maximum # of store operations permitted for llvm.memmove
1882 ///
1883 /// This function returns the maximum number of store operations permitted
1884 /// to replace a call to llvm.memmove. The value is set by the target at the
1885 /// performance threshold for such a replacement. If OptSize is true,
1886 /// return the limit for functions that have OptSize attribute.
1887 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1889 }
1890
1891 /// Determine if the target supports unaligned memory accesses.
1892 ///
1893 /// This function returns true if the target allows unaligned memory accesses
1894 /// of the specified type in the given address space. If true, it also returns
1895 /// a relative speed of the unaligned memory access in the last argument by
1896 /// reference. The higher the speed number the faster the operation comparing
1897 /// to a number returned by another such call. This is used, for example, in
1898 /// situations where an array copy/move/set is converted to a sequence of
1899 /// store operations. Its use helps to ensure that such replacements don't
1900 /// generate code that causes an alignment error (trap) on the target machine.
1902 EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1904 unsigned * /*Fast*/ = nullptr) const {
1905 return false;
1906 }
1907
1908 /// LLT handling variant.
1910 LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1912 unsigned * /*Fast*/ = nullptr) const {
1913 return false;
1914 }
1915
1916 /// This function returns true if the memory access is aligned or if the
1917 /// target allows this specific unaligned memory access. If the access is
1918 /// allowed, the optional final parameter returns a relative speed of the
1919 /// access (as defined by the target).
1921 LLVMContext &Context, const DataLayout &DL, EVT VT,
1922 unsigned AddrSpace = 0, Align Alignment = Align(1),
1924 unsigned *Fast = nullptr) const;
1925
1926 /// Return true if the memory access of this type is aligned or if the target
1927 /// allows this specific unaligned access for the given MachineMemOperand.
1928 /// If the access is allowed, the optional final parameter returns a relative
1929 /// speed of the access (as defined by the target).
1931 const DataLayout &DL, EVT VT,
1932 const MachineMemOperand &MMO,
1933 unsigned *Fast = nullptr) const;
1934
1935 /// Return true if the target supports a memory access of this type for the
1936 /// given address space and alignment. If the access is allowed, the optional
1937 /// final parameter returns the relative speed of the access (as defined by
1938 /// the target).
1939 virtual bool
1940 allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1941 unsigned AddrSpace = 0, Align Alignment = Align(1),
1943 unsigned *Fast = nullptr) const;
1944
1945 /// Return true if the target supports a memory access of this type for the
1946 /// given MachineMemOperand. If the access is allowed, the optional
1947 /// final parameter returns the relative access speed (as defined by the
1948 /// target).
1949 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1950 const MachineMemOperand &MMO,
1951 unsigned *Fast = nullptr) const;
1952
1953 /// LLT handling variant.
1954 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
1955 const MachineMemOperand &MMO,
1956 unsigned *Fast = nullptr) const;
1957
1958 /// Returns the target specific optimal type for load and store operations as
1959 /// a result of memset, memcpy, and memmove lowering.
1960 /// It returns EVT::Other if the type should be determined using generic
1961 /// target-independent logic.
1962 virtual EVT
1964 const AttributeList & /*FuncAttributes*/) const {
1965 return MVT::Other;
1966 }
1967
1968 /// LLT returning variant.
1969 virtual LLT
1971 const AttributeList & /*FuncAttributes*/) const {
1972 return LLT();
1973 }
1974
1975 /// Returns true if it's safe to use load / store of the specified type to
1976 /// expand memcpy / memset inline.
1977 ///
1978 /// This is mostly true for all types except for some special cases. For
1979 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1980 /// fstpl which also does type conversion. Note the specified type doesn't
1981 /// have to be legal as the hook is used before type legalization.
1982 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1983
1984 /// Return lower limit for number of blocks in a jump table.
1985 virtual unsigned getMinimumJumpTableEntries() const;
1986
1987 /// Return lower limit of the density in a jump table.
1988 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1989
1990 /// Return upper limit for number of entries in a jump table.
1991 /// Zero if no limit.
1992 unsigned getMaximumJumpTableSize() const;
1993
1994 virtual bool isJumpTableRelative() const;
1995
1996 /// If a physical register, this specifies the register that
1997 /// llvm.savestack/llvm.restorestack should save and restore.
1999 return StackPointerRegisterToSaveRestore;
2000 }
2001
2002 /// If a physical register, this returns the register that receives the
2003 /// exception address on entry to an EH pad.
2004 virtual Register
2005 getExceptionPointerRegister(const Constant *PersonalityFn) const {
2006 return Register();
2007 }
2008
2009 /// If a physical register, this returns the register that receives the
2010 /// exception typeid on entry to a landing pad.
2011 virtual Register
2012 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
2013 return Register();
2014 }
2015
2016 virtual bool needsFixedCatchObjects() const {
2017 report_fatal_error("Funclet EH is not implemented for this target");
2018 }
2019
2020 /// Return the minimum stack alignment of an argument.
2022 return MinStackArgumentAlignment;
2023 }
2024
2025 /// Return the minimum function alignment.
2026 Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
2027
2028 /// Return the preferred function alignment.
2029 Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
2030
2031 /// Return the preferred loop alignment.
2032 virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
2033
2034 /// Return the maximum amount of bytes allowed to be emitted when padding for
2035 /// alignment
2036 virtual unsigned
2038
2039 /// Should loops be aligned even when the function is marked OptSize (but not
2040 /// MinSize).
2041 virtual bool alignLoopsWithOptSize() const { return false; }
2042
2043 /// If the target has a standard location for the stack protector guard,
2044 /// returns the address of that location. Otherwise, returns nullptr.
2045 /// DEPRECATED: please override useLoadStackGuardNode and customize
2046 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
2047 virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
2048
2049 /// Inserts necessary declarations for SSP (stack protection) purpose.
2050 /// Should be used only when getIRStackGuard returns nullptr.
2051 virtual void insertSSPDeclarations(Module &M) const;
2052
2053 /// Return the variable that's previously inserted by insertSSPDeclarations,
2054 /// if any, otherwise return nullptr. Should be used only when
2055 /// getIRStackGuard returns nullptr.
2056 virtual Value *getSDagStackGuard(const Module &M) const;
2057
2058 /// If this function returns true, stack protection checks should XOR the
2059 /// frame pointer (or whichever pointer is used to address locals) into the
2060 /// stack guard value before checking it. getIRStackGuard must return nullptr
2061 /// if this returns true.
2062 virtual bool useStackGuardXorFP() const { return false; }
2063
2064 /// If the target has a standard stack protection check function that
2065 /// performs validation and error handling, returns the function. Otherwise,
2066 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
2067 /// Should be used only when getIRStackGuard returns nullptr.
2068 virtual Function *getSSPStackGuardCheck(const Module &M) const;
2069
2070protected:
2072 bool UseTLS) const;
2073
2074public:
2075 /// Returns the target-specific address of the unsafe stack pointer.
2076 virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
2077
2078 /// Returns the name of the symbol used to emit stack probes or the empty
2079 /// string if not applicable.
2080 virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
2081
2082 virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
2083
2085 return "";
2086 }
2087
2088 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
2089 /// are happy to sink it into basic blocks. A cast may be free, but not
2090 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
2091 virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
2092
2093 /// Return true if the pointer arguments to CI should be aligned by aligning
2094 /// the object whose address is being passed. If so then MinSize is set to the
2095 /// minimum size the object must be to be aligned and PrefAlign is set to the
2096 /// preferred alignment.
2097 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
2098 Align & /*PrefAlign*/) const {
2099 return false;
2100 }
2101
2102 //===--------------------------------------------------------------------===//
2103 /// \name Helpers for TargetTransformInfo implementations
2104 /// @{
2105
2106 /// Get the ISD node that corresponds to the Instruction class opcode.
2107 int InstructionOpcodeToISD(unsigned Opcode) const;
2108
2109 /// @}
2110
2111 //===--------------------------------------------------------------------===//
2112 /// \name Helpers for atomic expansion.
2113 /// @{
2114
2115 /// Returns the maximum atomic operation size (in bits) supported by
2116 /// the backend. Atomic operations greater than this size (as well
2117 /// as ones that are not naturally aligned), will be expanded by
2118 /// AtomicExpandPass into an __atomic_* library call.
2120 return MaxAtomicSizeInBitsSupported;
2121 }
2122
2123 /// Returns the size in bits of the maximum div/rem the backend supports.
2124 /// Larger operations will be expanded by ExpandLargeDivRem.
2126 return MaxDivRemBitWidthSupported;
2127 }
2128
2129 /// Returns the size in bits of the maximum larget fp convert the backend
2130 /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
2132 return MaxLargeFPConvertBitWidthSupported;
2133 }
2134
2135 /// Returns the size of the smallest cmpxchg or ll/sc instruction
2136 /// the backend supports. Any smaller operations are widened in
2137 /// AtomicExpandPass.
2138 ///
2139 /// Note that *unlike* operations above the maximum size, atomic ops
2140 /// are still natively supported below the minimum; they just
2141 /// require a more complex expansion.
2142 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
2143
2144 /// Whether the target supports unaligned atomic operations.
2145 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
2146
2147 /// Whether AtomicExpandPass should automatically insert fences and reduce
2148 /// ordering for this atomic. This should be true for most architectures with
2149 /// weak memory ordering. Defaults to false.
2150 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
2151 return false;
2152 }
2153
2154 /// Whether AtomicExpandPass should automatically insert a trailing fence
2155 /// without reducing the ordering for this atomic. Defaults to false.
2156 virtual bool
2158 return false;
2159 }
2160
2161 /// Perform a load-linked operation on Addr, returning a "Value *" with the
2162 /// corresponding pointee type. This may entail some non-trivial operations to
2163 /// truncate or reconstruct types that will be illegal in the backend. See
2164 /// ARMISelLowering for an example implementation.
2165 virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
2166 Value *Addr, AtomicOrdering Ord) const {
2167 llvm_unreachable("Load linked unimplemented on this target");
2168 }
2169
2170 /// Perform a store-conditional operation to Addr. Return the status of the
2171 /// store. This should be 0 if the store succeeded, non-zero otherwise.
2173 Value *Addr, AtomicOrdering Ord) const {
2174 llvm_unreachable("Store conditional unimplemented on this target");
2175 }
2176
2177 /// Perform a masked atomicrmw using a target-specific intrinsic. This
2178 /// represents the core LL/SC loop which will be lowered at a late stage by
2179 /// the backend. The target-specific intrinsic returns the loaded value and
2180 /// is not responsible for masking and shifting the result.
2182 AtomicRMWInst *AI,
2183 Value *AlignedAddr, Value *Incr,
2184 Value *Mask, Value *ShiftAmt,
2185 AtomicOrdering Ord) const {
2186 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
2187 }
2188
2189 /// Perform a atomicrmw expansion using a target-specific way. This is
2190 /// expected to be called when masked atomicrmw and bit test atomicrmw don't
2191 /// work, and the target supports another way to lower atomicrmw.
2192 virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
2194 "Generic atomicrmw expansion unimplemented on this target");
2195 }
2196
2197 /// Perform a bit test atomicrmw using a target-specific intrinsic. This
2198 /// represents the combined bit test intrinsic which will be lowered at a late
2199 /// stage by the backend.
2202 "Bit test atomicrmw expansion unimplemented on this target");
2203 }
2204
2205 /// Perform a atomicrmw which the result is only used by comparison, using a
2206 /// target-specific intrinsic. This represents the combined atomic and compare
2207 /// intrinsic which will be lowered at a late stage by the backend.
2210 "Compare arith atomicrmw expansion unimplemented on this target");
2211 }
2212
2213 /// Perform a masked cmpxchg using a target-specific intrinsic. This
2214 /// represents the core LL/SC loop which will be lowered at a late stage by
2215 /// the backend. The target-specific intrinsic returns the loaded value and
2216 /// is not responsible for masking and shifting the result.
2218 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2219 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2220 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
2221 }
2222
2223 //===--------------------------------------------------------------------===//
2224 /// \name KCFI check lowering.
2225 /// @{
2226
2229 const TargetInstrInfo *TII) const {
2230 llvm_unreachable("KCFI is not supported on this target");
2231 }
2232
2233 /// @}
2234
2235 /// Inserts in the IR a target-specific intrinsic specifying a fence.
2236 /// It is called by AtomicExpandPass before expanding an
2237 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
2238 /// if shouldInsertFencesForAtomic returns true.
2239 ///
2240 /// Inst is the original atomic instruction, prior to other expansions that
2241 /// may be performed.
2242 ///
2243 /// This function should either return a nullptr, or a pointer to an IR-level
2244 /// Instruction*. Even complex fence sequences can be represented by a
2245 /// single Instruction* through an intrinsic to be lowered later.
2246 ///
2247 /// The default implementation emits an IR fence before any release (or
2248 /// stronger) operation that stores, and after any acquire (or stronger)
2249 /// operation. This is generally a correct implementation, but backends may
2250 /// override if they wish to use alternative schemes (e.g. the PowerPC
2251 /// standard ABI uses a fence before a seq_cst load instead of after a
2252 /// seq_cst store).
2253 /// @{
2254 virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
2255 Instruction *Inst,
2256 AtomicOrdering Ord) const;
2257
2259 Instruction *Inst,
2260 AtomicOrdering Ord) const;
2261 /// @}
2262
2263 // Emits code that executes when the comparison result in the ll/sc
2264 // expansion of a cmpxchg instruction is such that the store-conditional will
2265 // not execute. This makes it possible to balance out the load-linked with
2266 // a dedicated instruction, if desired.
2267 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
2268 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
2269 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
2270
2271 /// Returns true if arguments should be sign-extended in lib calls.
2272 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
2273 return IsSigned;
2274 }
2275
2276 /// Returns true if arguments should be extended in lib calls.
2277 virtual bool shouldExtendTypeInLibCall(EVT Type) const {
2278 return true;
2279 }
2280
2281 /// Returns how the given (atomic) load should be expanded by the
2282 /// IR-level AtomicExpand pass.
2285 }
2286
2287 /// Returns how the given (atomic) load should be cast by the IR-level
2288 /// AtomicExpand pass.
2290 if (LI->getType()->isFloatingPointTy())
2293 }
2294
2295 /// Returns how the given (atomic) store should be expanded by the IR-level
2296 /// AtomicExpand pass into. For instance AtomicExpansionKind::Expand will try
2297 /// to use an atomicrmw xchg.
2300 }
2301
2302 /// Returns how the given (atomic) store should be cast by the IR-level
2303 /// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
2304 /// will try to cast the operands to integer values.
2306 if (SI->getValueOperand()->getType()->isFloatingPointTy())
2309 }
2310
2311 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
2312 /// AtomicExpand pass.
2313 virtual AtomicExpansionKind
2316 }
2317
2318 /// Returns how the IR-level AtomicExpand pass should expand the given
2319 /// AtomicRMW, if at all. Default is to never expand.
2321 return RMW->isFloatingPointOperation() ?
2323 }
2324
2325 /// Returns how the given atomic atomicrmw should be cast by the IR-level
2326 /// AtomicExpand pass.
2327 virtual AtomicExpansionKind
2329 if (RMWI->getOperation() == AtomicRMWInst::Xchg &&
2330 (RMWI->getValOperand()->getType()->isFloatingPointTy() ||
2331 RMWI->getValOperand()->getType()->isPointerTy()))
2333
2335 }
2336
2337 /// On some platforms, an AtomicRMW that never actually modifies the value
2338 /// (such as fetch_add of 0) can be turned into a fence followed by an
2339 /// atomic load. This may sound useless, but it makes it possible for the
2340 /// processor to keep the cacheline shared, dramatically improving
2341 /// performance. And such idempotent RMWs are useful for implementing some
2342 /// kinds of locks, see for example (justification + benchmarks):
2343 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
2344 /// This method tries doing that transformation, returning the atomic load if
2345 /// it succeeds, and nullptr otherwise.
2346 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2347 /// another round of expansion.
2348 virtual LoadInst *
2350 return nullptr;
2351 }
2352
2353 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2354 /// SIGN_EXTEND, or ANY_EXTEND).
2356 return ISD::ZERO_EXTEND;
2357 }
2358
2359 /// Returns how the platform's atomic compare and swap expects its comparison
2360 /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2361 /// separate from getExtendForAtomicOps, which is concerned with the
2362 /// sign-extension of the instruction's output, whereas here we are concerned
2363 /// with the sign-extension of the input. For targets with compare-and-swap
2364 /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2365 /// the input can be ANY_EXTEND, but the output will still have a specific
2366 /// extension.
2368 return ISD::ANY_EXTEND;
2369 }
2370
2371 /// @}
2372
2373 /// Returns true if we should normalize
2374 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2375 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2376 /// that it saves us from materializing N0 and N1 in an integer register.
2377 /// Targets that are able to perform and/or on flags should return false here.
2379 EVT VT) const {
2380 // If a target has multiple condition registers, then it likely has logical
2381 // operations on those registers.
2383 return false;
2384 // Only do the transform if the value won't be split into multiple
2385 // registers.
2386 LegalizeTypeAction Action = getTypeAction(Context, VT);
2387 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2388 Action != TypeSplitVector;
2389 }
2390
2391 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2392
2393 /// Return true if a select of constants (select Cond, C1, C2) should be
2394 /// transformed into simple math ops with the condition value. For example:
2395 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
2396 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2397 return false;
2398 }
2399
2400 /// Return true if it is profitable to transform an integer
2401 /// multiplication-by-constant into simpler operations like shifts and adds.
2402 /// This may be true if the target does not directly support the
2403 /// multiplication operation for the specified type or the sequence of simpler
2404 /// ops is faster than the multiply.
2406 EVT VT, SDValue C) const {
2407 return false;
2408 }
2409
2410 /// Return true if it may be profitable to transform
2411 /// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
2412 /// This may not be true if c1 and c2 can be represented as immediates but
2413 /// c1*c2 cannot, for example.
2414 /// The target should check if c1, c2 and c1*c2 can be represented as
2415 /// immediates, or have to be materialized into registers. If it is not sure
2416 /// about some cases, a default true can be returned to let the DAGCombiner
2417 /// decide.
2418 /// AddNode is (add x, c1), and ConstNode is c2.
2420 SDValue ConstNode) const {
2421 return true;
2422 }
2423
2424 /// Return true if it is more correct/profitable to use strict FP_TO_INT
2425 /// conversion operations - canonicalizing the FP source value instead of
2426 /// converting all cases and then selecting based on value.
2427 /// This may be true if the target throws exceptions for out of bounds
2428 /// conversions or has fast FP CMOV.
2429 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2430 bool IsSigned) const {
2431 return false;
2432 }
2433
2434 /// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
2435 /// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
2436 /// considered beneficial.
2437 /// If optimizing for size, expansion is only considered beneficial for upto
2438 /// 5 multiplies and a divide (if the exponent is negative).
2439 bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const {
2440 if (Exponent < 0)
2441 Exponent = -Exponent;
2442 uint64_t E = static_cast<uint64_t>(Exponent);
2443 return !OptForSize || (llvm::popcount(E) + Log2_64(E) < 7);
2444 }
2445
2446 //===--------------------------------------------------------------------===//
2447 // TargetLowering Configuration Methods - These methods should be invoked by
2448 // the derived class constructor to configure this object for the target.
2449 //
2450protected:
2451 /// Specify how the target extends the result of integer and floating point
2452 /// boolean values from i1 to a wider type. See getBooleanContents.
2454 BooleanContents = Ty;
2455 BooleanFloatContents = Ty;
2456 }
2457
2458 /// Specify how the target extends the result of integer and floating point
2459 /// boolean values from i1 to a wider type. See getBooleanContents.
2461 BooleanContents = IntTy;
2462 BooleanFloatContents = FloatTy;
2463 }
2464
2465 /// Specify how the target extends the result of a vector boolean value from a
2466 /// vector of i1 to a wider type. See getBooleanContents.
2468 BooleanVectorContents = Ty;
2469 }
2470
2471 /// Specify the target scheduling preference.
2473 SchedPreferenceInfo = Pref;
2474 }
2475
2476 /// Indicate the minimum number of blocks to generate jump tables.
2477 void setMinimumJumpTableEntries(unsigned Val);
2478
2479 /// Indicate the maximum number of entries in jump tables.
2480 /// Set to zero to generate unlimited jump tables.
2481 void setMaximumJumpTableSize(unsigned);
2482
2483 /// If set to a physical register, this specifies the register that
2484 /// llvm.savestack/llvm.restorestack should save and restore.
2486 StackPointerRegisterToSaveRestore = R;
2487 }
2488
2489 /// Tells the code generator that the target has multiple (allocatable)
2490 /// condition registers that can be used to store the results of comparisons
2491 /// for use by selects and conditional branches. With multiple condition
2492 /// registers, the code generator will not aggressively sink comparisons into
2493 /// the blocks of their users.
2494 void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
2495 HasMultipleConditionRegisters = hasManyRegs;
2496 }
2497
2498 /// Tells the code generator that the target has BitExtract instructions.
2499 /// The code generator will aggressively sink "shift"s into the blocks of
2500 /// their users if the users will generate "and" instructions which can be
2501 /// combined with "shift" to BitExtract instructions.
2502 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2503 HasExtractBitsInsn = hasExtractInsn;
2504 }
2505
2506 /// Tells the code generator not to expand logic operations on comparison
2507 /// predicates into separate sequences that increase the amount of flow
2508 /// control.
2509 void setJumpIsExpensive(bool isExpensive = true);
2510
2511 /// Tells the code generator which bitwidths to bypass.
2512 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2513 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2514 }
2515
2516 /// Add the specified register class as an available regclass for the
2517 /// specified value type. This indicates the selector can handle values of
2518 /// that class natively.
2520 assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
2521 RegClassForVT[VT.SimpleTy] = RC;
2522 }
2523
2524 /// Return the largest legal super-reg register class of the register class
2525 /// for the specified type and its associated "cost".
2526 virtual std::pair<const TargetRegisterClass *, uint8_t>
2528
2529 /// Once all of the register classes are added, this allows us to compute
2530 /// derived properties we expose.
2532
2533 /// Indicate that the specified operation does not work with the specified
2534 /// type and indicate what to do about it. Note that VT may refer to either
2535 /// the type of a result or that of an operand of Op.
2536 void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
2537 assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
2538 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2539 }
2541 LegalizeAction Action) {
2542 for (auto Op : Ops)
2543 setOperationAction(Op, VT, Action);
2544 }
2546 LegalizeAction Action) {
2547 for (auto VT : VTs)
2548 setOperationAction(Ops, VT, Action);
2549 }
2550
2551 /// Indicate that the specified load with extension does not work with the
2552 /// specified type and indicate what to do about it.
2553 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2554 LegalizeAction Action) {
2555 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2556 MemVT.isValid() && "Table isn't big enough!");
2557 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2558 unsigned Shift = 4 * ExtType;
2559 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2560 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2561 }
2562 void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
2563 LegalizeAction Action) {
2564 for (auto ExtType : ExtTypes)
2565 setLoadExtAction(ExtType, ValVT, MemVT, Action);
2566 }
2568 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2569 for (auto MemVT : MemVTs)
2570 setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2571 }
2572
2573 /// Let target indicate that an extending atomic load of the specified type
2574 /// is legal.
2575 void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2576 LegalizeAction Action) {
2577 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2578 MemVT.isValid() && "Table isn't big enough!");
2579 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2580 unsigned Shift = 4 * ExtType;
2581 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &=
2582 ~((uint16_t)0xF << Shift);
2583 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |=
2584 ((uint16_t)Action << Shift);
2585 }
2587 LegalizeAction Action) {
2588 for (auto ExtType : ExtTypes)
2589 setAtomicLoadExtAction(ExtType, ValVT, MemVT, Action);
2590 }
2592 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2593 for (auto MemVT : MemVTs)
2594 setAtomicLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2595 }
2596
2597 /// Indicate that the specified truncating store does not work with the
2598 /// specified type and indicate what to do about it.
2599 void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
2600 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2601 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2602 }
2603
2604 /// Indicate that the specified indexed load does or does not work with the
2605 /// specified type and indicate what to do abort it.
2606 ///
2607 /// NOTE: All indexed mode loads are initialized to Expand in
2608 /// TargetLowering.cpp
2610 LegalizeAction Action) {
2611 for (auto IdxMode : IdxModes)
2612 setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2613 }
2614
2616 LegalizeAction Action) {
2617 for (auto VT : VTs)
2618 setIndexedLoadAction(IdxModes, VT, Action);
2619 }
2620
2621 /// Indicate that the specified indexed store does or does not work with the
2622 /// specified type and indicate what to do about it.
2623 ///
2624 /// NOTE: All indexed mode stores are initialized to Expand in
2625 /// TargetLowering.cpp
2627 LegalizeAction Action) {
2628 for (auto IdxMode : IdxModes)
2629 setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2630 }
2631
2633 LegalizeAction Action) {
2634 for (auto VT : VTs)
2635 setIndexedStoreAction(IdxModes, VT, Action);
2636 }
2637
2638 /// Indicate that the specified indexed masked load does or does not work with
2639 /// the specified type and indicate what to do about it.
2640 ///
2641 /// NOTE: All indexed mode masked loads are initialized to Expand in
2642 /// TargetLowering.cpp
2643 void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2644 LegalizeAction Action) {
2645 setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2646 }
2647
2648 /// Indicate that the specified indexed masked store does or does not work
2649 /// with the specified type and indicate what to do about it.
2650 ///
2651 /// NOTE: All indexed mode masked stores are initialized to Expand in
2652 /// TargetLowering.cpp
2653 void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2654 LegalizeAction Action) {
2655 setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2656 }
2657
2658 /// Indicate that the specified condition code is or isn't supported on the
2659 /// target and indicate what to do about it.
2661 LegalizeAction Action) {
2662 for (auto CC : CCs) {
2663 assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
2664 "Table isn't big enough!");
2665 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2666 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
2667 /// 32-bit value and the upper 29 bits index into the second dimension of
2668 /// the array to select what 32-bit value to use.
2669 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2670 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2671 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2672 }
2673 }
2675 LegalizeAction Action) {
2676 for (auto VT : VTs)
2677 setCondCodeAction(CCs, VT, Action);
2678 }
2679
2680 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2681 /// to trying a larger integer/fp until it can find one that works. If that
2682 /// default is insufficient, this method can be used by the target to override
2683 /// the default.
2684 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2685 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2686 }
2687
2688 /// Convenience method to set an operation to Promote and specify the type
2689 /// in a single call.
2690 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2691 setOperationAction(Opc, OrigVT, Promote);
2692 AddPromotedToType(Opc, OrigVT, DestVT);
2693 }
2695 MVT DestVT) {
2696 for (auto Op : Ops) {
2697 setOperationAction(Op, OrigVT, Promote);
2698 AddPromotedToType(Op, OrigVT, DestVT);
2699 }
2700 }
2701
2702 /// Targets should invoke this method for each target independent node that
2703 /// they want to provide a custom DAG combiner for by implementing the
2704 /// PerformDAGCombine virtual method.
2706 for (auto NT : NTs) {
2707 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
2708 TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
2709 }
2710 }
2711
2712 /// Set the target's minimum function alignment.
2714 MinFunctionAlignment = Alignment;
2715 }
2716
2717 /// Set the target's preferred function alignment. This should be set if
2718 /// there is a performance benefit to higher-than-minimum alignment
2720 PrefFunctionAlignment = Alignment;
2721 }
2722
2723 /// Set the target's preferred loop alignment. Default alignment is one, it
2724 /// means the target does not care about loop alignment. The target may also
2725 /// override getPrefLoopAlignment to provide per-loop values.
2726 void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2727 void setMaxBytesForAlignment(unsigned MaxBytes) {
2728 MaxBytesForAlignment = MaxBytes;
2729 }
2730
2731 /// Set the minimum stack alignment of an argument.
2733 MinStackArgumentAlignment = Alignment;
2734 }
2735
2736 /// Set the maximum atomic operation size supported by the
2737 /// backend. Atomic operations greater than this size (as well as
2738 /// ones that are not naturally aligned), will be expanded by
2739 /// AtomicExpandPass into an __atomic_* library call.
2740 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2741 MaxAtomicSizeInBitsSupported = SizeInBits;
2742 }
2743
2744 /// Set the size in bits of the maximum div/rem the backend supports.
2745 /// Larger operations will be expanded by ExpandLargeDivRem.
2746 void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
2747 MaxDivRemBitWidthSupported = SizeInBits;
2748 }
2749
2750 /// Set the size in bits of the maximum fp convert the backend supports.
2751 /// Larger operations will be expanded by ExpandLargeFPConvert.
2752 void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
2753 MaxLargeFPConvertBitWidthSupported = SizeInBits;
2754 }
2755
2756 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2757 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2758 MinCmpXchgSizeInBits = SizeInBits;
2759 }
2760
2761 /// Sets whether unaligned atomic operations are supported.
2762 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2763 SupportsUnalignedAtomics = UnalignedSupported;
2764 }
2765
2766public:
2767 //===--------------------------------------------------------------------===//
2768 // Addressing mode description hooks (used by LSR etc).
2769 //
2770
2771 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2772 /// instructions reading the address. This allows as much computation as
2773 /// possible to be done in the address mode for that operand. This hook lets
2774 /// targets also pass back when this should be done on intrinsics which
2775 /// load/store.
2777 SmallVectorImpl<Value*> &/*Ops*/,
2778 Type *&/*AccessTy*/) const {
2779 return false;
2780 }
2781
2782 /// This represents an addressing mode of:
2783 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*vscale
2784 /// If BaseGV is null, there is no BaseGV.
2785 /// If BaseOffs is zero, there is no base offset.
2786 /// If HasBaseReg is false, there is no base register.
2787 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2788 /// no scale.
2789 /// If ScalableOffset is zero, there is no scalable offset.
2790 struct AddrMode {
2792 int64_t BaseOffs = 0;
2793 bool HasBaseReg = false;
2794 int64_t Scale = 0;
2795 int64_t ScalableOffset = 0;
2796 AddrMode() = default;
2797 };
2798
2799 /// Return true if the addressing mode represented by AM is legal for this
2800 /// target, for a load/store of the specified type.
2801 ///
2802 /// The type may be VoidTy, in which case only return true if the addressing
2803 /// mode is legal for a load/store of any legal type. TODO: Handle
2804 /// pre/postinc as well.
2805 ///
2806 /// If the address space cannot be determined, it will be -1.
2807 ///
2808 /// TODO: Remove default argument
2809 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2810 Type *Ty, unsigned AddrSpace,
2811 Instruction *I = nullptr) const;
2812
2813 /// Returns true if the targets addressing mode can target thread local
2814 /// storage (TLS).
2815 virtual bool addressingModeSupportsTLS(const GlobalValue &) const {
2816 return false;
2817 }
2818
2819 /// Return the prefered common base offset.
2820 virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset,
2821 int64_t MaxOffset) const {
2822 return 0;
2823 }
2824
2825 /// Return true if the specified immediate is legal icmp immediate, that is
2826 /// the target has icmp instructions which can compare a register against the
2827 /// immediate without having to materialize the immediate into a register.
2828 virtual bool isLegalICmpImmediate(int64_t) const {
2829 return true;
2830 }
2831
2832 /// Return true if the specified immediate is legal add immediate, that is the
2833 /// target has add instructions which can add a register with the immediate
2834 /// without having to materialize the immediate into a register.
2835 virtual bool isLegalAddImmediate(int64_t) const {
2836 return true;
2837 }
2838
2839 /// Return true if adding the specified scalable immediate is legal, that is
2840 /// the target has add instructions which can add a register with the
2841 /// immediate (multiplied by vscale) without having to materialize the
2842 /// immediate into a register.
2843 virtual bool isLegalAddScalableImmediate(int64_t) const { return false; }
2844
2845 /// Return true if the specified immediate is legal for the value input of a
2846 /// store instruction.
2847 virtual bool isLegalStoreImmediate(int64_t Value) const {
2848 // Default implementation assumes that at least 0 works since it is likely
2849 // that a zero register exists or a zero immediate is allowed.
2850 return Value == 0;
2851 }
2852
2853 /// Return true if it's significantly cheaper to shift a vector by a uniform
2854 /// scalar than by an amount which will vary across each lane. On x86 before
2855 /// AVX2 for example, there is a "psllw" instruction for the former case, but
2856 /// no simple instruction for a general "a << b" operation on vectors.
2857 /// This should also apply to lowering for vector funnel shifts (rotates).
2858 virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2859 return false;
2860 }
2861
2862 /// Given a shuffle vector SVI representing a vector splat, return a new
2863 /// scalar type of size equal to SVI's scalar type if the new type is more
2864 /// profitable. Returns nullptr otherwise. For example under MVE float splats
2865 /// are converted to integer to prevent the need to move from SPR to GPR
2866 /// registers.
2868 return nullptr;
2869 }
2870
2871 /// Given a set in interconnected phis of type 'From' that are loaded/stored
2872 /// or bitcast to type 'To', return true if the set should be converted to
2873 /// 'To'.
2874 virtual bool shouldConvertPhiType(Type *From, Type *To) const {
2875 return (From->isIntegerTy() || From->isFloatingPointTy()) &&
2876 (To->isIntegerTy() || To->isFloatingPointTy());
2877 }
2878
2879 /// Returns true if the opcode is a commutative binary operation.
2880 virtual bool isCommutativeBinOp(unsigned Opcode) const {
2881 // FIXME: This should get its info from the td file.
2882 switch (Opcode) {
2883 case ISD::ADD:
2884 case ISD::SMIN:
2885 case ISD::SMAX:
2886 case ISD::UMIN:
2887 case ISD::UMAX:
2888 case ISD::MUL:
2889 case ISD::MULHU:
2890 case ISD::MULHS:
2891 case ISD::SMUL_LOHI:
2892 case ISD::UMUL_LOHI:
2893 case ISD::FADD:
2894 case ISD::FMUL:
2895 case ISD::AND:
2896 case ISD::OR:
2897 case ISD::XOR:
2898 case ISD::SADDO:
2899 case ISD::UADDO:
2900 case ISD::ADDC:
2901 case ISD::ADDE:
2902 case ISD::SADDSAT:
2903 case ISD::UADDSAT:
2904 case ISD::FMINNUM:
2905 case ISD::FMAXNUM:
2906 case ISD::FMINNUM_IEEE:
2907 case ISD::FMAXNUM_IEEE:
2908 case ISD::FMINIMUM:
2909 case ISD::FMAXIMUM:
2910 case ISD::AVGFLOORS:
2911 case ISD::AVGFLOORU:
2912 case ISD::AVGCEILS:
2913 case ISD::AVGCEILU:
2914 case ISD::ABDS:
2915 case ISD::ABDU:
2916 return true;
2917 default: return false;
2918 }
2919 }
2920
2921 /// Return true if the node is a math/logic binary operator.
2922 virtual bool isBinOp(unsigned Opcode) const {
2923 // A commutative binop must be a binop.
2924 if (isCommutativeBinOp(Opcode))
2925 return true;
2926 // These are non-commutative binops.
2927 switch (Opcode) {
2928 case ISD::SUB:
2929 case ISD::SHL:
2930 case ISD::SRL:
2931 case ISD::SRA:
2932 case ISD::ROTL:
2933 case ISD::ROTR:
2934 case ISD::SDIV:
2935 case ISD::UDIV:
2936 case ISD::SREM:
2937 case ISD::UREM:
2938 case ISD::SSUBSAT:
2939 case ISD::USUBSAT:
2940 case ISD::FSUB:
2941 case ISD::FDIV:
2942 case ISD::FREM:
2943 return true;
2944 default:
2945 return false;
2946 }
2947 }
2948
2949 /// Return true if it's free to truncate a value of type FromTy to type
2950 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2951 /// by referencing its sub-register AX.
2952 /// Targets must return false when FromTy <= ToTy.
2953 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2954 return false;
2955 }
2956
2957 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2958 /// whether a call is in tail position. Typically this means that both results
2959 /// would be assigned to the same register or stack slot, but it could mean
2960 /// the target performs adequate checks of its own before proceeding with the
2961 /// tail call. Targets must return false when FromTy <= ToTy.
2962 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2963 return false;
2964 }
2965
2966 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
2967 virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
2968 LLVMContext &Ctx) const {
2969 return isTruncateFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
2970 getApproximateEVTForLLT(ToTy, DL, Ctx));
2971 }
2972
2973 /// Return true if truncating the specific node Val to type VT2 is free.
2974 virtual bool isTruncateFree(SDValue Val, EVT VT2) const {
2975 // Fallback to type matching.
2976 return isTruncateFree(Val.getValueType(), VT2);
2977 }
2978
2979 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2980
2981 /// Return true if the extension represented by \p I is free.
2982 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2983 /// this method can use the context provided by \p I to decide
2984 /// whether or not \p I is free.
2985 /// This method extends the behavior of the is[Z|FP]ExtFree family.
2986 /// In other words, if is[Z|FP]Free returns true, then this method
2987 /// returns true as well. The converse is not true.
2988 /// The target can perform the adequate checks by overriding isExtFreeImpl.
2989 /// \pre \p I must be a sign, zero, or fp extension.
2990 bool isExtFree(const Instruction *I) const {
2991 switch (I->getOpcode()) {
2992 case Instruction::FPExt:
2993 if (isFPExtFree(EVT::getEVT(I->getType()),
2994 EVT::getEVT(I->getOperand(0)->getType())))
2995 return true;
2996 break;
2997 case Instruction::ZExt:
2998 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2999 return true;
3000 break;
3001 case Instruction::SExt:
3002 break;
3003 default:
3004 llvm_unreachable("Instruction is not an extension");
3005 }
3006 return isExtFreeImpl(I);
3007 }
3008
3009 /// Return true if \p Load and \p Ext can form an ExtLoad.
3010 /// For example, in AArch64
3011 /// %L = load i8, i8* %ptr
3012 /// %E = zext i8 %L to i32
3013 /// can be lowered into one load instruction
3014 /// ldrb w0, [x0]
3015 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
3016 const DataLayout &DL) const {
3017 EVT VT = getValueType(DL, Ext->getType());
3018 EVT LoadVT = getValueType(DL, Load->getType());
3019
3020 // If the load has other users and the truncate is not free, the ext
3021 // probably isn't free.
3022 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
3023 !isTruncateFree(Ext->getType(), Load->getType()))
3024 return false;
3025
3026 // Check whether the target supports casts folded into loads.
3027 unsigned LType;
3028 if (isa<ZExtInst>(Ext))
3029 LType = ISD::ZEXTLOAD;
3030 else {
3031 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
3032 LType = ISD::SEXTLOAD;
3033 }
3034
3035 return isLoadExtLegal(LType, VT, LoadVT);
3036 }
3037
3038 /// Return true if any actual instruction that defines a value of type FromTy
3039 /// implicitly zero-extends the value to ToTy in the result register.
3040 ///
3041 /// The function should return true when it is likely that the truncate can
3042 /// be freely folded with an instruction defining a value of FromTy. If
3043 /// the defining instruction is unknown (because you're looking at a
3044 /// function argument, PHI, etc.) then the target may require an
3045 /// explicit truncate, which is not necessarily free, but this function
3046 /// does not deal with those cases.
3047 /// Targets must return false when FromTy >= ToTy.
3048 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
3049 return false;
3050 }
3051
3052 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
3053 virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
3054 LLVMContext &Ctx) const {
3055 return isZExtFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
3056 getApproximateEVTForLLT(ToTy, DL, Ctx));
3057 }
3058
3059 /// Return true if zero-extending the specific node Val to type VT2 is free
3060 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
3061 /// because it's folded such as X86 zero-extending loads).
3062 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
3063 return isZExtFree(Val.getValueType(), VT2);
3064 }
3065
3066 /// Return true if sign-extension from FromTy to ToTy is cheaper than
3067 /// zero-extension.
3068 virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
3069 return false;
3070 }
3071
3072 /// Return true if this constant should be sign extended when promoting to
3073 /// a larger type.
3074 virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
3075
3076 /// Return true if sinking I's operands to the same basic block as I is
3077 /// profitable, e.g. because the operands can be folded into a target
3078 /// instruction during instruction selection. After calling the function
3079 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
3080 /// come first).
3082 SmallVectorImpl<Use *> &Ops) const {
3083 return false;
3084 }
3085
3086 /// Try to optimize extending or truncating conversion instructions (like
3087 /// zext, trunc, fptoui, uitofp) for the target.
3088 virtual bool
3090 const TargetTransformInfo &TTI) const {
3091 return false;
3092 }
3093
3094 /// Return true if the target supplies and combines to a paired load
3095 /// two loaded values of type LoadedType next to each other in memory.
3096 /// RequiredAlignment gives the minimal alignment constraints that must be met
3097 /// to be able to select this paired load.
3098 ///
3099 /// This information is *not* used to generate actual paired loads, but it is
3100 /// used to generate a sequence of loads that is easier to combine into a
3101 /// paired load.
3102 /// For instance, something like this:
3103 /// a = load i64* addr
3104 /// b = trunc i64 a to i32
3105 /// c = lshr i64 a, 32
3106 /// d = trunc i64 c to i32
3107 /// will be optimized into:
3108 /// b = load i32* addr1
3109 /// d = load i32* addr2
3110 /// Where addr1 = addr2 +/- sizeof(i32).
3111 ///
3112 /// In other words, unless the target performs a post-isel load combining,
3113 /// this information should not be provided because it will generate more
3114 /// loads.
3115 virtual bool hasPairedLoad(EVT /*LoadedType*/,
3116 Align & /*RequiredAlignment*/) const {
3117 return false;
3118 }
3119
3120 /// Return true if the target has a vector blend instruction.
3121 virtual bool hasVectorBlend() const { return false; }
3122
3123 /// Get the maximum supported factor for interleaved memory accesses.
3124 /// Default to be the minimum interleave factor: 2.
3125 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
3126
3127 /// Lower an interleaved load to target specific intrinsics. Return
3128 /// true on success.
3129 ///
3130 /// \p LI is the vector load instruction.
3131 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
3132 /// \p Indices is the corresponding indices for each shufflevector.
3133 /// \p Factor is the interleave factor.
3136 ArrayRef<unsigned> Indices,
3137 unsigned Factor) const {
3138 return false;
3139 }
3140
3141 /// Lower an interleaved store to target specific intrinsics. Return
3142 /// true on success.
3143 ///
3144 /// \p SI is the vector store instruction.
3145 /// \p SVI is the shufflevector to RE-interleave the stored vector.
3146 /// \p Factor is the interleave factor.
3148 unsigned Factor) const {
3149 return false;
3150 }
3151
3152 /// Lower a deinterleave intrinsic to a target specific load intrinsic.
3153 /// Return true on success. Currently only supports
3154 /// llvm.vector.deinterleave2
3155 ///
3156 /// \p DI is the deinterleave intrinsic.
3157 /// \p LI is the accompanying load instruction
3159 LoadInst *LI) const {
3160 return false;
3161 }
3162
3163 /// Lower an interleave intrinsic to a target specific store intrinsic.
3164 /// Return true on success. Currently only supports
3165 /// llvm.vector.interleave2
3166 ///
3167 /// \p II is the interleave intrinsic.
3168 /// \p SI is the accompanying store instruction
3170 StoreInst *SI) const {
3171 return false;
3172 }
3173
3174 /// Return true if an fpext operation is free (for instance, because
3175 /// single-precision floating-point numbers are implicitly extended to
3176 /// double-precision).
3177 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
3178 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
3179 "invalid fpext types");
3180 return false;
3181 }
3182
3183 /// Return true if an fpext operation input to an \p Opcode operation is free
3184 /// (for instance, because half-precision floating-point numbers are
3185 /// implicitly extended to float-precision) for an FMA instruction.
3186 virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
3187 LLT DestTy, LLT SrcTy) const {
3188 return false;
3189 }
3190
3191 /// Return true if an fpext operation input to an \p Opcode operation is free
3192 /// (for instance, because half-precision floating-point numbers are
3193 /// implicitly extended to float-precision) for an FMA instruction.
3194 virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
3195 EVT DestVT, EVT SrcVT) const {
3196 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
3197 "invalid fpext types");
3198 return isFPExtFree(DestVT, SrcVT);
3199 }
3200
3201 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
3202 /// extend node) is profitable.
3203 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
3204
3205 /// Return true if an fneg operation is free to the point where it is never
3206 /// worthwhile to replace it with a bitwise operation.
3207 virtual bool isFNegFree(EVT VT) const {
3208 assert(VT.isFloatingPoint());
3209 return false;
3210 }
3211
3212 /// Return true if an fabs operation is free to the point where it is never
3213 /// worthwhile to replace it with a bitwise operation.
3214 virtual bool isFAbsFree(EVT VT) const {
3215 assert(VT.isFloatingPoint());
3216 return false;
3217 }
3218
3219 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3220 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3221 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3222 ///
3223 /// NOTE: This may be called before legalization on types for which FMAs are
3224 /// not legal, but should return true if those types will eventually legalize
3225 /// to types that support FMAs. After legalization, it will only be called on
3226 /// types that support FMAs (via Legal or Custom actions)
3228 EVT) const {
3229 return false;
3230 }
3231
3232 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3233 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3234 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3235 ///
3236 /// NOTE: This may be called before legalization on types for which FMAs are
3237 /// not legal, but should return true if those types will eventually legalize
3238 /// to types that support FMAs. After legalization, it will only be called on
3239 /// types that support FMAs (via Legal or Custom actions)
3241 LLT) const {
3242 return false;
3243 }
3244
3245 /// IR version
3246 virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
3247 return false;
3248 }
3249
3250 /// Returns true if \p MI can be combined with another instruction to
3251 /// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
3252 /// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
3253 /// distributed into an fadd/fsub.
3254 virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
3255 assert((MI.getOpcode() == TargetOpcode::G_FADD ||
3256 MI.getOpcode() == TargetOpcode::G_FSUB ||
3257 MI.getOpcode() == TargetOpcode::G_FMUL) &&
3258 "unexpected node in FMAD forming combine");
3259 switch (Ty.getScalarSizeInBits()) {
3260 case 16:
3261 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
3262 case 32:
3263 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
3264 case 64:
3265 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
3266 default:
3267 break;
3268 }
3269
3270 return false;
3271 }
3272
3273 /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
3274 /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
3275 /// fadd/fsub.
3276 virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
3277 assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
3278 N->getOpcode() == ISD::FMUL) &&
3279 "unexpected node in FMAD forming combine");
3280 return isOperationLegal(ISD::FMAD, N->getValueType(0));
3281 }
3282
3283 // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
3284 // than FMUL and ADD is delegated to the machine combiner.
3286 CodeGenOptLevel OptLevel) const {
3287 return false;
3288 }
3289
3290 /// Return true if it's profitable to narrow operations of type SrcVT to
3291 /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
3292 /// i32 to i16.
3293 virtual bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
3294 return false;
3295 }
3296
3297 /// Return true if pulling a binary operation into a select with an identity
3298 /// constant is profitable. This is the inverse of an IR transform.
3299 /// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
3300 virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
3301 EVT VT) const {
3302 return false;
3303 }
3304
3305 /// Return true if it is beneficial to convert a load of a constant to
3306 /// just the constant itself.
3307 /// On some targets it might be more efficient to use a combination of
3308 /// arithmetic instructions to materialize the constant instead of loading it
3309 /// from a constant pool.
3311 Type *Ty) const {
3312 return false;
3313 }
3314
3315 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
3316 /// from this source type with this index. This is needed because
3317 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
3318 /// the first element, and only the target knows which lowering is cheap.
3319 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
3320 unsigned Index) const {
3321 return false;
3322 }
3323
3324 /// Try to convert an extract element of a vector binary operation into an
3325 /// extract element followed by a scalar operation.
3326 virtual bool shouldScalarizeBinop(SDValue VecOp) const {
3327 return false;
3328 }
3329
3330 /// Return true if extraction of a scalar element from the given vector type
3331 /// at the given index is cheap. For example, if scalar operations occur on
3332 /// the same register file as vector operations, then an extract element may
3333 /// be a sub-register rename rather than an actual instruction.
3334 virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
3335 return false;
3336 }
3337
3338 /// Try to convert math with an overflow comparison into the corresponding DAG
3339 /// node operation. Targets may want to override this independently of whether
3340 /// the operation is legal/custom for the given type because it may obscure
3341 /// matching of other patterns.
3342 virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
3343 bool MathUsed) const {
3344 // TODO: The default logic is inherited from code in CodeGenPrepare.
3345 // The opcode should not make a difference by default?
3346 if (Opcode != ISD::UADDO)
3347 return false;
3348
3349 // Allow the transform as long as we have an integer type that is not
3350 // obviously illegal and unsupported and if the math result is used
3351 // besides the overflow check. On some targets (e.g. SPARC), it is
3352 // not profitable to form on overflow op if the math result has no
3353 // concrete users.
3354 if (VT.isVector())
3355 return false;
3356 return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
3357 }
3358
3359 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
3360 // even if the vector itself has multiple uses.
3361 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
3362 return false;
3363 }
3364
3365 // Return true if CodeGenPrepare should consider splitting large offset of a
3366 // GEP to make the GEP fit into the addressing mode and can be sunk into the
3367 // same blocks of its users.
3368 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
3369
3370 /// Return true if creating a shift of the type by the given
3371 /// amount is not profitable.
3372 virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
3373 return false;
3374 }
3375
3376 // Should we fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x))
3377 // A) where y has a single bit set?
3379 const APInt &AndMask) const {
3380 unsigned ShCt = AndMask.getBitWidth() - 1;
3381 return !shouldAvoidTransformToShift(VT, ShCt);
3382 }
3383
3384 /// Does this target require the clearing of high-order bits in a register
3385 /// passed to the fp16 to fp conversion library function.
3386 virtual bool shouldKeepZExtForFP16Conv() const { return false; }
3387
3388 /// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
3389 /// from min(max(fptoi)) saturation patterns.
3390 virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
3391 return isOperationLegalOrCustom(Op, VT);
3392 }
3393
3394 /// Should we expand [US]CMP nodes using two selects and two compares, or by
3395 /// doing arithmetic on boolean types
3396 virtual bool shouldExpandCmpUsingSelects() const { return false; }
3397
3398 /// Does this target support complex deinterleaving
3399 virtual bool isComplexDeinterleavingSupported() const { return false; }
3400
3401 /// Does this target support complex deinterleaving with the given operation
3402 /// and type
3405 return false;
3406 }
3407
3408 /// Create the IR node for the given complex deinterleaving operation.
3409 /// If one cannot be created using all the given inputs, nullptr should be
3410 /// returned.
3413 ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
3414 Value *Accumulator = nullptr) const {
3415 return nullptr;
3416 }
3417
3418 /// Rename the default libcall routine name for the specified libcall.
3419 void setLibcallName(RTLIB::Libcall Call, const char *Name) {
3420 Libcalls.setLibcallName(Call, Name);
3421 }
3422
3424 Libcalls.setLibcallName(Calls, Name);
3425 }
3426
3427 /// Get the libcall routine name for the specified libcall.
3428 const char *getLibcallName(RTLIB::Libcall Call) const {
3429 return Libcalls.getLibcallName(Call);
3430 }
3431
3432 /// Override the default CondCode to be used to test the result of the
3433 /// comparison libcall against zero.
3434 /// FIXME: This can't be merged with 'RuntimeLibcallsInfo' because of the ISD.
3436 CmpLibcallCCs[Call] = CC;
3437 }
3438
3439
3440 /// Get the CondCode that's to be used to test the result of the comparison
3441 /// libcall against zero.
3442 /// FIXME: This can't be merged with 'RuntimeLibcallsInfo' because of the ISD.
3444 return CmpLibcallCCs[Call];
3445 }
3446
3447
3448 /// Set the CallingConv that should be used for the specified libcall.
3450 Libcalls.setLibcallCallingConv(Call, CC);
3451 }
3452
3453 /// Get the CallingConv that should be used for the specified libcall.
3455 return Libcalls.getLibcallCallingConv(Call);
3456 }
3457
3458 /// Execute target specific actions to finalize target lowering.
3459 /// This is used to set extra flags in MachineFrameInformation and freezing
3460 /// the set of reserved registers.
3461 /// The default implementation just freezes the set of reserved registers.
3462 virtual void finalizeLowering(MachineFunction &MF) const;
3463
3464 //===----------------------------------------------------------------------===//
3465 // GlobalISel Hooks
3466 //===----------------------------------------------------------------------===//
3467 /// Check whether or not \p MI needs to be moved close to its uses.
3468 virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
3469
3470
3471private:
3472 const TargetMachine &TM;
3473
3474 /// Tells the code generator that the target has multiple (allocatable)
3475 /// condition registers that can be used to store the results of comparisons
3476 /// for use by selects and conditional branches. With multiple condition
3477 /// registers, the code generator will not aggressively sink comparisons into
3478 /// the blocks of their users.
3479 bool HasMultipleConditionRegisters;
3480
3481 /// Tells the code generator that the target has BitExtract instructions.
3482 /// The code generator will aggressively sink "shift"s into the blocks of
3483 /// their users if the users will generate "and" instructions which can be
3484 /// combined with "shift" to BitExtract instructions.
3485 bool HasExtractBitsInsn;
3486
3487 /// Tells the code generator to bypass slow divide or remainder
3488 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
3489 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
3490 /// div/rem when the operands are positive and less than 256.
3491 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
3492
3493 /// Tells the code generator that it shouldn't generate extra flow control
3494 /// instructions and should attempt to combine flow control instructions via
3495 /// predication.
3496 bool JumpIsExpensive;
3497
3498 /// Information about the contents of the high-bits in boolean values held in
3499 /// a type wider than i1. See getBooleanContents.
3500 BooleanContent BooleanContents;
3501
3502 /// Information about the contents of the high-bits in boolean values held in
3503 /// a type wider than i1. See getBooleanContents.
3504 BooleanContent BooleanFloatContents;
3505
3506 /// Information about the contents of the high-bits in boolean vector values
3507 /// when the element type is wider than i1. See getBooleanContents.
3508 BooleanContent BooleanVectorContents;
3509
3510 /// The target scheduling preference: shortest possible total cycles or lowest
3511 /// register usage.
3512 Sched::Preference SchedPreferenceInfo;
3513
3514 /// The minimum alignment that any argument on the stack needs to have.
3515 Align MinStackArgumentAlignment;
3516
3517 /// The minimum function alignment (used when optimizing for size, and to
3518 /// prevent explicitly provided alignment from leading to incorrect code).
3519 Align MinFunctionAlignment;
3520
3521 /// The preferred function alignment (used when alignment unspecified and
3522 /// optimizing for speed).
3523 Align PrefFunctionAlignment;
3524
3525 /// The preferred loop alignment (in log2 bot in bytes).
3526 Align PrefLoopAlignment;
3527 /// The maximum amount of bytes permitted to be emitted for alignment.
3528 unsigned MaxBytesForAlignment;
3529
3530 /// Size in bits of the maximum atomics size the backend supports.
3531 /// Accesses larger than this will be expanded by AtomicExpandPass.
3532 unsigned MaxAtomicSizeInBitsSupported;
3533
3534 /// Size in bits of the maximum div/rem size the backend supports.
3535 /// Larger operations will be expanded by ExpandLargeDivRem.
3536 unsigned MaxDivRemBitWidthSupported;
3537
3538 /// Size in bits of the maximum larget fp convert size the backend
3539 /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
3540 unsigned MaxLargeFPConvertBitWidthSupported;
3541
3542 /// Size in bits of the minimum cmpxchg or ll/sc operation the
3543 /// backend supports.
3544 unsigned MinCmpXchgSizeInBits;
3545
3546 /// This indicates if the target supports unaligned atomic operations.
3547 bool SupportsUnalignedAtomics;
3548
3549 /// If set to a physical register, this specifies the register that
3550 /// llvm.savestack/llvm.restorestack should save and restore.
3551 Register StackPointerRegisterToSaveRestore;
3552
3553 /// This indicates the default register class to use for each ValueType the
3554 /// target supports natively.
3555 const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
3556 uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
3557 MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
3558
3559 /// This indicates the "representative" register class to use for each
3560 /// ValueType the target supports natively. This information is used by the
3561 /// scheduler to track register pressure. By default, the representative
3562 /// register class is the largest legal super-reg register class of the
3563 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
3564 /// representative class would be GR32.
3565 const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE] = {0};
3566
3567 /// This indicates the "cost" of the "representative" register class for each
3568 /// ValueType. The cost is used by the scheduler to approximate register
3569 /// pressure.
3570 uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
3571
3572 /// For any value types we are promoting or expanding, this contains the value
3573 /// type that we are changing to. For Expanded types, this contains one step
3574 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
3575 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
3576 /// the same type (e.g. i32 -> i32).
3577 MVT TransformToType[MVT::VALUETYPE_SIZE];
3578
3579 /// For each operation and each value type, keep a LegalizeAction that
3580 /// indicates how instruction selection should deal with the operation. Most
3581 /// operations are Legal (aka, supported natively by the target), but
3582 /// operations that are not should be described. Note that operations on
3583 /// non-legal value types are not described here.
3585
3586 /// For each load extension type and each value type, keep a LegalizeAction
3587 /// that indicates how instruction selection should deal with a load of a
3588 /// specific value type and extension type. Uses 4-bits to store the action
3589 /// for each of the 4 load ext types.
3591
3592 /// Similar to LoadExtActions, but for atomic loads. Only Legal or Expand
3593 /// (default) values are supported.
3594 uint16_t AtomicLoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3595
3596 /// For each value type pair keep a LegalizeAction that indicates whether a
3597 /// truncating store of a specific value type and truncating type is legal.
3599
3600 /// For each indexed mode and each value type, keep a quad of LegalizeAction
3601 /// that indicates how instruction selection should deal with the load /
3602 /// store / maskedload / maskedstore.
3603 ///
3604 /// The first dimension is the value_type for the reference. The second
3605 /// dimension represents the various modes for load store.
3607
3608 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
3609 /// indicates how instruction selection should deal with the condition code.
3610 ///
3611 /// Because each CC action takes up 4 bits, we need to have the array size be
3612 /// large enough to fit all of the value types. This can be done by rounding
3613 /// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
3614 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
3615
3616 ValueTypeActionImpl ValueTypeActions;
3617
3618private:
3619 /// Targets can specify ISD nodes that they would like PerformDAGCombine
3620 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
3621 /// array.
3622 unsigned char
3623 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3624
3625 /// For operations that must be promoted to a specific type, this holds the
3626 /// destination type. This map should be sparse, so don't hold it as an
3627 /// array.
3628 ///
3629 /// Targets add entries to this map with AddPromotedToType(..), clients access
3630 /// this with getTypeToPromoteTo(..).
3631 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3632 PromoteToType;
3633
3634 /// The list of libcalls that the target will use.
3635 RTLIB::RuntimeLibcallsInfo Libcalls;
3636
3637 /// The ISD::CondCode that should be used to test the result of each of the
3638 /// comparison libcall against zero.
3639 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
3640
3641 /// The bits of IndexedModeActions used to store the legalisation actions
3642 /// We store the data as | ML | MS | L | S | each taking 4 bits.
3643 enum IndexedModeActionsBits {
3644 IMAB_Store = 0,
3645 IMAB_Load = 4,
3646 IMAB_MaskedStore = 8,
3647 IMAB_MaskedLoad = 12
3648 };
3649
3650 void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3651 LegalizeAction Action) {
3652 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3653 (unsigned)Action < 0xf && "Table isn't big enough!");
3654 unsigned Ty = (unsigned)VT.SimpleTy;
3655 IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3656 IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3657 }
3658
3659 LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3660 unsigned Shift) const {
3661 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3662 "Table isn't big enough!");
3663 unsigned Ty = (unsigned)VT.SimpleTy;
3664 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3665 }
3666
3667protected:
3668 /// Return true if the extension represented by \p I is free.
3669 /// \pre \p I is a sign, zero, or fp extension and
3670 /// is[Z|FP]ExtFree of the related types is not true.
3671 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3672
3673 /// Depth that GatherAllAliases should continue looking for chain
3674 /// dependencies when trying to find a more preferable chain. As an
3675 /// approximation, this should be more than the number of consecutive stores
3676 /// expected to be merged.
3678
3679 /// \brief Specify maximum number of store instructions per memset call.
3680 ///
3681 /// When lowering \@llvm.memset this field specifies the maximum number of
3682 /// store operations that may be substituted for the call to memset. Targets
3683 /// must set this value based on the cost threshold for that target. Targets
3684 /// should assume that the memset will be done using as many of the largest
3685 /// store operations first, followed by smaller ones, if necessary, per
3686 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3687 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3688 /// store. This only applies to setting a constant array of a constant size.
3690 /// Likewise for functions with the OptSize attribute.
3692
3693 /// \brief Specify maximum number of store instructions per memcpy call.
3694 ///
3695 /// When lowering \@llvm.memcpy this field specifies the maximum number of
3696 /// store operations that may be substituted for a call to memcpy. Targets
3697 /// must set this value based on the cost threshold for that target. Targets
3698 /// should assume that the memcpy will be done using as many of the largest
3699 /// store operations first, followed by smaller ones, if necessary, per
3700 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3701 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3702 /// and one 1-byte store. This only applies to copying a constant array of
3703 /// constant size.
3705 /// Likewise for functions with the OptSize attribute.
3707 /// \brief Specify max number of store instructions to glue in inlined memcpy.
3708 ///
3709 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3710 /// of store instructions to keep together. This helps in pairing and
3711 // vectorization later on.
3713
3714 /// \brief Specify maximum number of load instructions per memcmp call.
3715 ///
3716 /// When lowering \@llvm.memcmp this field specifies the maximum number of
3717 /// pairs of load operations that may be substituted for a call to memcmp.
3718 /// Targets must set this value based on the cost threshold for that target.
3719 /// Targets should assume that the memcmp will be done using as many of the
3720 /// largest load operations first, followed by smaller ones, if necessary, per
3721 /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3722 /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3723 /// and one 1-byte load. This only applies to copying a constant array of
3724 /// constant size.
3726 /// Likewise for functions with the OptSize attribute.
3728
3729 /// \brief Specify maximum number of store instructions per memmove call.
3730 ///
3731 /// When lowering \@llvm.memmove this field specifies the maximum number of
3732 /// store instructions that may be substituted for a call to memmove. Targets
3733 /// must set this value based on the cost threshold for that target. Targets
3734 /// should assume that the memmove will be done using as many of the largest
3735 /// store operations first, followed by smaller ones, if necessary, per
3736 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3737 /// with 8-bit alignment would result in nine 1-byte stores. This only
3738 /// applies to copying a constant array of constant size.
3740 /// Likewise for functions with the OptSize attribute.
3742
3743 /// Tells the code generator that select is more expensive than a branch if
3744 /// the branch is usually predicted right.
3746
3747 /// \see enableExtLdPromotion.
3749
3750 /// Return true if the value types that can be represented by the specified
3751 /// register class are all legal.
3752 bool isLegalRC(const TargetRegisterInfo &TRI,
3753 const TargetRegisterClass &RC) const;
3754
3755 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3756 /// sequence of memory operands that is recognized by PrologEpilogInserter.
3758 MachineBasicBlock *MBB) const;
3759
3761};
3762
3763/// This class defines information used to lower LLVM code to legal SelectionDAG
3764/// operators that the target instruction selector can accept natively.
3765///
3766/// This class also defines callbacks that targets must implement to lower
3767/// target-specific constructs to SelectionDAG operators.
3769public:
3770 struct DAGCombinerInfo;
3771 struct MakeLibCallOptions;
3772
3775
3776 explicit TargetLowering(const TargetMachine &TM);
3777
3778 bool isPositionIndependent() const;
3779
3782 UniformityInfo *UA) const {
3783 return false;
3784 }
3785
3786 // Lets target to control the following reassociation of operands: (op (op x,
3787 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3788 // default consider profitable any case where N0 has single use. This
3789 // behavior reflects the condition replaced by this target hook call in the
3790 // DAGCombiner. Any particular target can implement its own heuristic to
3791 // restrict common combiner.
3793 SDValue N1) const {
3794 return N0.hasOneUse();
3795 }
3796
3797 // Lets target to control the following reassociation of operands: (op (op x,
3798 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3799 // default consider profitable any case where N0 has single use. This
3800 // behavior reflects the condition replaced by this target hook call in the
3801 // combiner. Any particular target can implement its own heuristic to
3802 // restrict common combiner.
3804 Register N1) const {
3805 return MRI.hasOneNonDBGUse(N0);
3806 }
3807
3808 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
3809 return false;
3810 }
3811
3812 /// Returns true by value, base pointer and offset pointer and addressing mode
3813 /// by reference if the node's address can be legally represented as
3814 /// pre-indexed load / store address.
3815 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
3816 SDValue &/*Offset*/,
3817 ISD::MemIndexedMode &/*AM*/,
3818 SelectionDAG &/*DAG*/) const {
3819 return false;
3820 }
3821
3822 /// Returns true by value, base pointer and offset pointer and addressing mode
3823 /// by reference if this node can be combined with a load / store to form a
3824 /// post-indexed load / store.
3825 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
3826 SDValue &/*Base*/,
3827 SDValue &/*Offset*/,
3828 ISD::MemIndexedMode &/*AM*/,
3829 SelectionDAG &/*DAG*/) const {
3830 return false;
3831 }
3832
3833 /// Returns true if the specified base+offset is a legal indexed addressing
3834 /// mode for this target. \p MI is the load or store instruction that is being
3835 /// considered for transformation.
3837 bool IsPre, MachineRegisterInfo &MRI) const {
3838 return false;
3839 }
3840
3841 /// Return the entry encoding for a jump table in the current function. The
3842 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3843 virtual unsigned getJumpTableEncoding() const;
3844
3845 virtual const MCExpr *
3847 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3848 MCContext &/*Ctx*/) const {
3849 llvm_unreachable("Need to implement this hook if target has custom JTIs");
3850 }
3851
3852 /// Returns relocation base for the given PIC jumptable.
3854 SelectionDAG &DAG) const;
3855
3856 /// This returns the relocation base for the given PIC jumptable, the same as
3857 /// getPICJumpTableRelocBase, but as an MCExpr.
3858 virtual const MCExpr *
3860 unsigned JTI, MCContext &Ctx) const;
3861
3862 /// Return true if folding a constant offset with the given GlobalAddress is
3863 /// legal. It is frequently not legal in PIC relocation models.
3864 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3865
3866 /// On x86, return true if the operand with index OpNo is a CALL or JUMP
3867 /// instruction, which can use either a memory constraint or an address
3868 /// constraint. -fasm-blocks "__asm call foo" lowers to
3869 /// call void asm sideeffect inteldialect "call ${0:P}", "*m..."
3870 ///
3871 /// This function is used by a hack to choose the address constraint,
3872 /// lowering to a direct call.
3873 virtual bool
3875 unsigned OpNo) const {
3876 return false;
3877 }
3878
3880 SDValue &Chain) const;
3881
3882 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3883 SDValue &NewRHS, ISD::CondCode &CCCode,
3884 const SDLoc &DL, const SDValue OldLHS,
3885 const SDValue OldRHS) const;
3886
3887 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3888 SDValue &NewRHS, ISD::CondCode &CCCode,
3889 const SDLoc &DL, const SDValue OldLHS,
3890 const SDValue OldRHS, SDValue &Chain,
3891 bool IsSignaling = false) const;
3892
3894 SDValue Chain, MachineMemOperand *MMO,
3895 SDValue &NewLoad, SDValue Ptr,
3896 SDValue PassThru, SDValue Mask) const {
3897 llvm_unreachable("Not Implemented");
3898 }
3899
3901 SDValue Chain, MachineMemOperand *MMO,
3902 SDValue Ptr, SDValue Val,
3903 SDValue Mask) const {
3904 llvm_unreachable("Not Implemented");
3905 }
3906
3907 /// Returns a pair of (return value, chain).
3908 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3909 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3910 EVT RetVT, ArrayRef<SDValue> Ops,
3911 MakeLibCallOptions CallOptions,
3912 const SDLoc &dl,
3913 SDValue Chain = SDValue()) const;
3914
3915 /// Check whether parameters to a call that are passed in callee saved
3916 /// registers are the same as from the calling function. This needs to be
3917 /// checked for tail call eligibility.
3919 const uint32_t *CallerPreservedMask,
3920 const SmallVectorImpl<CCValAssign> &ArgLocs,
3921 const SmallVectorImpl<SDValue> &OutVals) const;
3922
3923 //===--------------------------------------------------------------------===//
3924 // TargetLowering Optimization Methods
3925 //
3926
3927 /// A convenience struct that encapsulates a DAG, and two SDValues for
3928 /// returning information from TargetLowering to its clients that want to
3929 /// combine.
3936
3938 bool LT, bool LO) :
3939 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3940
3941 bool LegalTypes() const { return LegalTys; }
3942 bool LegalOperations() const { return LegalOps; }
3943
3945 Old = O;
3946 New = N;
3947 return true;
3948 }
3949 };
3950
3951 /// Determines the optimal series of memory ops to replace the memset / memcpy.
3952 /// Return true if the number of memory ops is below the threshold (Limit).
3953 /// Note that this is always the case when Limit is ~0.
3954 /// It returns the types of the sequence of memory ops to perform
3955 /// memset / memcpy by reference.
3956 virtual bool
3957 findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
3958 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
3959 const AttributeList &FuncAttributes) const;
3960
3961 /// Check to see if the specified operand of the specified instruction is a
3962 /// constant integer. If so, check to see if there are any bits set in the
3963 /// constant that are not demanded. If so, shrink the constant and return
3964 /// true.
3966 const APInt &DemandedElts,
3967 TargetLoweringOpt &TLO) const;
3968
3969 /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
3971 TargetLoweringOpt &TLO) const;
3972
3973 // Target hook to do target-specific const optimization, which is called by
3974 // ShrinkDemandedConstant. This function should return true if the target
3975 // doesn't want ShrinkDemandedConstant to further optimize the constant.
3977 const APInt &DemandedBits,
3978 const APInt &DemandedElts,
3979 TargetLoweringOpt &TLO) const {
3980 return false;
3981 }
3982
3983 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
3984 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
3985 /// but it could be generalized for targets with other types of implicit
3986 /// widening casts.
3987 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
3988 const APInt &DemandedBits,
3989 TargetLoweringOpt &TLO) const;
3990
3991 /// Look at Op. At this point, we know that only the DemandedBits bits of the
3992 /// result of Op are ever used downstream. If we can use this information to
3993 /// simplify Op, create a new simplified DAG node and return true, returning
3994 /// the original and new nodes in Old and New. Otherwise, analyze the
3995 /// expression and return a mask of KnownOne and KnownZero bits for the
3996 /// expression (used to simplify the caller). The KnownZero/One bits may only
3997 /// be accurate for those bits in the Demanded masks.
3998 /// \p AssumeSingleUse When this parameter is true, this function will
3999 /// attempt to simplify \p Op even if there are multiple uses.
4000 /// Callers are responsible for correctly updating the DAG based on the
4001 /// results of this function, because simply replacing TLO.Old
4002 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
4003 /// has multiple uses.
4005 const APInt &DemandedElts, KnownBits &Known,
4006 TargetLoweringOpt &TLO, unsigned Depth = 0,
4007 bool AssumeSingleUse = false) const;
4008
4009 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
4010 /// Adds Op back to the worklist upon success.
4012 KnownBits &Known, TargetLoweringOpt &TLO,
4013 unsigned Depth = 0,
4014 bool AssumeSingleUse = false) const;
4015
4016 /// Helper wrapper around SimplifyDemandedBits.
4017 /// Adds Op back to the worklist upon success.
4019 DAGCombinerInfo &DCI) const;
4020
4021 /// Helper wrapper around SimplifyDemandedBits.
4022 /// Adds Op back to the worklist upon success.
4024 const APInt &DemandedElts,
4025 DAGCombinerInfo &DCI) const;
4026
4027 /// More limited version of SimplifyDemandedBits that can be used to "look
4028 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4029 /// bitwise ops etc.
4031 const APInt &DemandedElts,
4032 SelectionDAG &DAG,
4033 unsigned Depth = 0) const;
4034
4035 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4036 /// elements.
4038 SelectionDAG &DAG,
4039 unsigned Depth = 0) const;
4040
4041 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4042 /// bits from only some vector elements.
4044 const APInt &DemandedElts,
4045 SelectionDAG &DAG,
4046 unsigned Depth = 0) const;
4047
4048 /// Look at Vector Op. At this point, we know that only the DemandedElts
4049 /// elements of the result of Op are ever used downstream. If we can use
4050 /// this information to simplify Op, create a new simplified DAG node and
4051 /// return true, storing the original and new nodes in TLO.
4052 /// Otherwise, analyze the expression and return a mask of KnownUndef and
4053 /// KnownZero elements for the expression (used to simplify the caller).
4054 /// The KnownUndef/Zero elements may only be accurate for those bits
4055 /// in the DemandedMask.
4056 /// \p AssumeSingleUse When this parameter is true, this function will
4057 /// attempt to simplify \p Op even if there are multiple uses.
4058 /// Callers are responsible for correctly updating the DAG based on the
4059 /// results of this function, because simply replacing TLO.Old
4060 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
4061 /// has multiple uses.
4062 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
4063 APInt &KnownUndef, APInt &KnownZero,
4064 TargetLoweringOpt &TLO, unsigned Depth = 0,
4065 bool AssumeSingleUse = false) const;
4066
4067 /// Helper wrapper around SimplifyDemandedVectorElts.
4068 /// Adds Op back to the worklist upon success.
4069 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
4070 DAGCombinerInfo &DCI) const;
4071
4072 /// Return true if the target supports simplifying demanded vector elements by
4073 /// converting them to undefs.
4074 virtual bool
4076 const TargetLoweringOpt &TLO) const {
4077 return true;
4078 }
4079
4080 /// Determine which of the bits specified in Mask are known to be either zero
4081 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4082 /// argument allows us to only collect the known bits that are shared by the
4083 /// requested vector elements.
4084 virtual void computeKnownBitsForTargetNode(const SDValue Op,
4085 KnownBits &Known,
4086 const APInt &DemandedElts,
4087 const SelectionDAG &DAG,
4088 unsigned Depth = 0) const;
4089
4090 /// Determine which of the bits specified in Mask are known to be either zero
4091 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4092 /// argument allows us to only collect the known bits that are shared by the
4093 /// requested vector elements. This is for GISel.
4095 Register R, KnownBits &Known,
4096 const APInt &DemandedElts,
4097 const MachineRegisterInfo &MRI,
4098 unsigned Depth = 0) const;
4099
4100 /// Determine the known alignment for the pointer value \p R. This is can
4101 /// typically be inferred from the number of low known 0 bits. However, for a
4102 /// pointer with a non-integral address space, the alignment value may be
4103 /// independent from the known low bits.
4105 Register R,
4106 const MachineRegisterInfo &MRI,
4107 unsigned Depth = 0) const;
4108
4109 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
4110 /// Default implementation computes low bits based on alignment
4111 /// information. This should preserve known bits passed into it.
4112 virtual void computeKnownBitsForFrameIndex(int FIOp,
4113 KnownBits &Known,
4114 const MachineFunction &MF) const;
4115
4116 /// This method can be implemented by targets that want to expose additional
4117 /// information about sign bits to the DAG Combiner. The DemandedElts
4118 /// argument allows us to only collect the minimum sign bits that are shared
4119 /// by the requested vector elements.
4121 const APInt &DemandedElts,
4122 const SelectionDAG &DAG,
4123 unsigned Depth = 0) const;
4124
4125 /// This method can be implemented by targets that want to expose additional
4126 /// information about sign bits to GlobalISel combiners. The DemandedElts
4127 /// argument allows us to only collect the minimum sign bits that are shared
4128 /// by the requested vector elements.
4130 Register R,
4131 const APInt &DemandedElts,
4132 const MachineRegisterInfo &MRI,
4133 unsigned Depth = 0) const;
4134
4135 /// Attempt to simplify any target nodes based on the demanded vector
4136 /// elements, returning true on success. Otherwise, analyze the expression and
4137 /// return a mask of KnownUndef and KnownZero elements for the expression
4138 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
4139 /// accurate for those bits in the DemandedMask.
4141 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
4142 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
4143
4144 /// Attempt to simplify any target nodes based on the demanded bits/elts,
4145 /// returning true on success. Otherwise, analyze the
4146 /// expression and return a mask of KnownOne and KnownZero bits for the
4147 /// expression (used to simplify the caller). The KnownZero/One bits may only
4148 /// be accurate for those bits in the Demanded masks.
4150 const APInt &DemandedBits,
4151 const APInt &DemandedElts,
4152 KnownBits &Known,
4153 TargetLoweringOpt &TLO,
4154 unsigned Depth = 0) const;
4155
4156 /// More limited version of SimplifyDemandedBits that can be used to "look
4157 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4158 /// bitwise ops etc.
4160 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4161 SelectionDAG &DAG, unsigned Depth) const;
4162
4163 /// Return true if this function can prove that \p Op is never poison
4164 /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
4165 /// argument limits the check to the requested vector elements.
4167 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4168 bool PoisonOnly, unsigned Depth) const;
4169
4170 /// Return true if Op can create undef or poison from non-undef & non-poison
4171 /// operands. The DemandedElts argument limits the check to the requested
4172 /// vector elements.
4173 virtual bool
4175 const SelectionDAG &DAG, bool PoisonOnly,
4176 bool ConsiderFlags, unsigned Depth) const;
4177
4178 /// Tries to build a legal vector shuffle using the provided parameters
4179 /// or equivalent variations. The Mask argument maybe be modified as the
4180 /// function tries different variations.
4181 /// Returns an empty SDValue if the operation fails.
4184 SelectionDAG &DAG) const;
4185
4186 /// This method returns the constant pool value that will be loaded by LD.
4187 /// NOTE: You must check for implicit extensions of the constant by LD.
4188 virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
4189
4190 /// If \p SNaN is false, \returns true if \p Op is known to never be any
4191 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
4192 /// NaN.
4194 const SelectionDAG &DAG,
4195 bool SNaN = false,
4196 unsigned Depth = 0) const;
4197
4198 /// Return true if vector \p Op has the same value across all \p DemandedElts,
4199 /// indicating any elements which may be undef in the output \p UndefElts.
4200 virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
4201 APInt &UndefElts,
4202 const SelectionDAG &DAG,
4203 unsigned Depth = 0) const;
4204
4205 /// Returns true if the given Opc is considered a canonical constant for the
4206 /// target, which should not be transformed back into a BUILD_VECTOR.
4208 return Op.getOpcode() == ISD::SPLAT_VECTOR ||
4209 Op.getOpcode() == ISD::SPLAT_VECTOR_PARTS;
4210 }
4211
4213 void *DC; // The DAG Combiner object.
4216
4217 public:
4219
4220 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
4221 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
4222
4223 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
4224 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
4225 bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
4228
4229 void AddToWorklist(SDNode *N);
4230 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
4231 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
4232 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
4233
4235
4237 };
4238
4239 /// Return if the N is a constant or constant vector equal to the true value
4240 /// from getBooleanContents().
4241 bool isConstTrueVal(SDValue N) const;
4242
4243 /// Return if the N is a constant or constant vector equal to the false value
4244 /// from getBooleanContents().
4245 bool isConstFalseVal(SDValue N) const;
4246
4247 /// Return if \p N is a True value when extended to \p VT.
4248 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
4249
4250 /// Try to simplify a setcc built with the specified operands and cc. If it is
4251 /// unable to simplify it, return a null SDValue.
4253 bool foldBooleans, DAGCombinerInfo &DCI,
4254 const SDLoc &dl) const;
4255
4256 // For targets which wrap address, unwrap for analysis.
4257 virtual SDValue unwrapAddress(SDValue N) const { return N; }
4258
4259 /// Returns true (and the GlobalValue and the offset) if the node is a
4260 /// GlobalAddress + offset.
4261 virtual bool
4262 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
4263
4264 /// This method will be invoked for all target nodes and for any
4265 /// target-independent nodes that the target has registered with invoke it
4266 /// for.
4267 ///
4268 /// The semantics are as follows:
4269 /// Return Value:
4270 /// SDValue.Val == 0 - No change was made
4271 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
4272 /// otherwise - N should be replaced by the returned Operand.
4273 ///
4274 /// In addition, methods provided by DAGCombinerInfo may be used to perform
4275 /// more complex transformations.
4276 ///
4277 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
4278
4279 /// Return true if it is profitable to move this shift by a constant amount
4280 /// through its operand, adjusting any immediate operands as necessary to
4281 /// preserve semantics. This transformation may not be desirable if it
4282 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
4283 /// extraction in AArch64). By default, it returns true.
4284 ///
4285 /// @param N the shift node
4286 /// @param Level the current DAGCombine legalization level.
4288 CombineLevel Level) const {
4289 return true;
4290 }
4291
4292 /// GlobalISel - return true if it is profitable to move this shift by a
4293 /// constant amount through its operand, adjusting any immediate operands as
4294 /// necessary to preserve semantics. This transformation may not be desirable
4295 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4296 /// bitfield extraction in AArch64). By default, it returns true.
4297 ///
4298 /// @param MI the shift instruction
4299 /// @param IsAfterLegal true if running after legalization.
4301 bool IsAfterLegal) const {
4302 return true;
4303 }
4304
4305 /// GlobalISel - return true if it's profitable to perform the combine:
4306 /// shl ([sza]ext x), y => zext (shl x, y)
4307 virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const {
4308 return true;
4309 }
4310
4311 // Return AndOrSETCCFoldKind::{AddAnd, ABS} if its desirable to try and
4312 // optimize LogicOp(SETCC0, SETCC1). An example (what is implemented as of
4313 // writing this) is:
4314 // With C as a power of 2 and C != 0 and C != INT_MIN:
4315 // AddAnd:
4316 // (icmp eq A, C) | (icmp eq A, -C)
4317 // -> (icmp eq and(add(A, C), ~(C + C)), 0)
4318 // (icmp ne A, C) & (icmp ne A, -C)w
4319 // -> (icmp ne and(add(A, C), ~(C + C)), 0)
4320 // ABS:
4321 // (icmp eq A, C) | (icmp eq A, -C)
4322 // -> (icmp eq Abs(A), C)
4323 // (icmp ne A, C) & (icmp ne A, -C)w
4324 // -> (icmp ne Abs(A), C)
4325 //
4326 // @param LogicOp the logic op
4327 // @param SETCC0 the first of the SETCC nodes
4328 // @param SETCC0 the second of the SETCC nodes
4330 const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const {
4332 }
4333
4334 /// Return true if it is profitable to combine an XOR of a logical shift
4335 /// to create a logical shift of NOT. This transformation may not be desirable
4336 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4337 /// BIC on ARM/AArch64). By default, it returns true.
4338 virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
4339 return true;
4340 }
4341
4342 /// Return true if the target has native support for the specified value type
4343 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
4344 /// i16 is legal, but undesirable since i16 instruction encodings are longer
4345 /// and some i16 instructions are slow.
4346 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
4347 // By default, assume all legal types are desirable.
4348 return isTypeLegal(VT);
4349 }
4350
4351 /// Return true if it is profitable for dag combiner to transform a floating
4352 /// point op of specified opcode to a equivalent op of an integer
4353 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
4354 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
4355 EVT /*VT*/) const {
4356 return false;
4357 }
4358
4359 /// This method query the target whether it is beneficial for dag combiner to
4360 /// promote the specified node. If true, it should return the desired
4361 /// promotion type by reference.
4362 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
4363 return false;
4364 }
4365
4366 /// Return true if the target supports swifterror attribute. It optimizes
4367 /// loads and stores to reading and writing a specific register.
4368 virtual bool supportSwiftError() const {
4369 return false;
4370 }
4371
4372 /// Return true if the target supports that a subset of CSRs for the given
4373 /// machine function is handled explicitly via copies.
4374 virtual bool supportSplitCSR(MachineFunction *MF) const {
4375 return false;
4376 }
4377
4378 /// Return true if the target supports kcfi operand bundles.
4379 virtual bool supportKCFIBundles() const { return false; }
4380
4381 /// Return true if the target supports ptrauth operand bundles.
4382 virtual bool supportPtrAuthBundles() const { return false; }
4383
4384 /// Perform necessary initialization to handle a subset of CSRs explicitly
4385 /// via copies. This function is called at the beginning of instruction
4386 /// selection.
4387 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
4388 llvm_unreachable("Not Implemented");
4389 }
4390
4391 /// Insert explicit copies in entry and exit blocks. We copy a subset of
4392 /// CSRs to virtual registers in the entry block, and copy them back to
4393 /// physical registers in the exit blocks. This function is called at the end
4394 /// of instruction selection.
4396 MachineBasicBlock *Entry,
4397 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
4398 llvm_unreachable("Not Implemented");
4399 }
4400
4401 /// Return the newly negated expression if the cost is not expensive and
4402 /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
4403 /// do the negation.
4405 bool LegalOps, bool OptForSize,
4407 unsigned Depth = 0) const;
4408
4410 SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
4412 unsigned Depth = 0) const {
4414 SDValue Neg =
4415 getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4416 if (!Neg)
4417 return SDValue();
4418
4419 if (Cost <= CostThreshold)
4420 return Neg;
4421
4422 // Remove the new created node to avoid the side effect to the DAG.
4423 if (Neg->use_empty())
4424 DAG.RemoveDeadNode(Neg.getNode());
4425 return SDValue();
4426 }
4427
4428 /// This is the helper function to return the newly negated expression only
4429 /// when the cost is cheaper.
4431 bool LegalOps, bool OptForSize,
4432 unsigned Depth = 0) const {
4433 return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
4435 }
4436
4437 /// This is the helper function to return the newly negated expression if
4438 /// the cost is not expensive.
4440 bool OptForSize, unsigned Depth = 0) const {
4442 return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4443 }
4444
4445 //===--------------------------------------------------------------------===//
4446 // Lowering methods - These methods must be implemented by targets so that
4447 // the SelectionDAGBuilder code knows how to lower these.
4448 //
4449
4450 /// Target-specific splitting of values into parts that fit a register
4451 /// storing a legal type
4453 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4454 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4455 return false;
4456 }
4457
4458 /// Allows the target to handle physreg-carried dependency
4459 /// in target-specific way. Used from the ScheduleDAGSDNodes to decide whether
4460 /// to add the edge to the dependency graph.
4461 /// Def - input: Selection DAG node defininfg physical register
4462 /// User - input: Selection DAG node using physical register
4463 /// Op - input: Number of User operand
4464 /// PhysReg - inout: set to the physical register if the edge is
4465 /// necessary, unchanged otherwise
4466 /// Cost - inout: physical register copy cost.
4467 /// Returns 'true' is the edge is necessary, 'false' otherwise
4468 virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
4469 const TargetRegisterInfo *TRI,
4470 const TargetInstrInfo *TII,
4471 unsigned &PhysReg, int &Cost) const {
4472 return false;
4473 }
4474
4475 /// Target-specific combining of register parts into its original value
4476 virtual SDValue
4478 const SDValue *Parts, unsigned NumParts,
4479 MVT PartVT, EVT ValueVT,
4480 std::optional<CallingConv::ID> CC) const {
4481 return SDValue();
4482 }
4483
4484 /// This hook must be implemented to lower the incoming (formal) arguments,
4485 /// described by the Ins array, into the specified DAG. The implementation
4486 /// should fill in the InVals array with legal-type argument values, and
4487 /// return the resulting token chain value.
4489 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
4490 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
4491 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
4492 llvm_unreachable("Not Implemented");
4493 }
4494
4495 /// This structure contains the information necessary for lowering
4496 /// pointer-authenticating indirect calls. It is equivalent to the "ptrauth"
4497 /// operand bundle found on the call instruction, if any.
4501 };
4502
4503 /// This structure contains all information that is necessary for lowering
4504 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
4505 /// needs to lower a call, and targets will see this struct in their LowerCall
4506 /// implementation.
4509 Type *RetTy = nullptr;
4510 bool RetSExt : 1;
4511 bool RetZExt : 1;
4512 bool IsVarArg : 1;
4513 bool IsInReg : 1;
4519 bool NoMerge : 1;
4520
4521 // IsTailCall should be modified by implementations of
4522 // TargetLowering::LowerCall that perform tail call conversions.
4523 bool IsTailCall = false;
4524
4525 // Is Call lowering done post SelectionDAG type legalization.
4527
4528 unsigned NumFixedArgs = -1;
4534 const CallBase *CB = nullptr;
4539 const ConstantInt *CFIType = nullptr;
4541
4542 std::optional<PtrAuthInfo> PAI;
4543
4548 DAG(DAG) {}
4549
4551 DL = dl;
4552 return *this;
4553 }
4554
4556 Chain = InChain;
4557 return *this;
4558 }
4559
4560 // setCallee with target/module-specific attributes
4562 SDValue Target, ArgListTy &&ArgsList) {
4563 RetTy = ResultType;
4564 Callee = Target;
4565 CallConv = CC;
4566 NumFixedArgs = ArgsList.size();
4567 Args = std::move(ArgsList);
4568
4570 &(DAG.getMachineFunction()), CC, Args);
4571 return *this;
4572 }
4573
4575 SDValue Target, ArgListTy &&ArgsList,
4576 AttributeSet ResultAttrs = {}) {
4577 RetTy = ResultType;
4578 IsInReg = ResultAttrs.hasAttribute(Attribute::InReg);
4579 RetSExt = ResultAttrs.hasAttribute(Attribute::SExt);
4580 RetZExt = ResultAttrs.hasAttribute(Attribute::ZExt);
4581 NoMerge = ResultAttrs.hasAttribute(Attribute::NoMerge);
4582
4583 Callee = Target;
4584 CallConv = CC;
4585 NumFixedArgs = ArgsList.size();
4586 Args = std::move(ArgsList);
4587 return *this;
4588 }
4589
4591 SDValue Target, ArgListTy &&ArgsList,
4592 const CallBase &Call) {
4593 RetTy = ResultType;
4594
4595 IsInReg = Call.hasRetAttr(Attribute::InReg);
4597 Call.doesNotReturn() ||
4598 (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
4599 IsVarArg = FTy->isVarArg();
4600 IsReturnValueUsed = !Call.use_empty();
4601 RetSExt = Call.hasRetAttr(Attribute::SExt);
4602 RetZExt = Call.hasRetAttr(Attribute::ZExt);
4603 NoMerge = Call.hasFnAttr(Attribute::NoMerge);
4604
4605 Callee = Target;
4606
4607 CallConv = Call.getCallingConv();
4608 NumFixedArgs = FTy->getNumParams();
4609 Args = std::move(ArgsList);
4610
4611 CB = &Call;
4612
4613 return *this;
4614 }
4615
4617 IsInReg = Value;
4618 return *this;
4619 }
4620
4623 return *this;
4624 }
4625
4627 IsVarArg = Value;
4628 return *this;
4629 }
4630
4632 IsTailCall = Value;
4633 return *this;
4634 }
4635
4638 return *this;
4639 }
4640
4643 return *this;
4644 }
4645
4647 RetSExt = Value;
4648 return *this;
4649 }
4650
4652 RetZExt = Value;
4653 return *this;
4654 }
4655
4658 return *this;
4659 }
4660
4663 return *this;
4664 }
4665
4667 PAI = Value;
4668 return *this;
4669 }
4670
4673 return *this;
4674 }
4675
4677 CFIType = Type;
4678 return *this;
4679 }
4680
4683 return *this;
4684 }
4685
4687 return Args;
4688 }
4689 };
4690
4691 /// This structure is used to pass arguments to makeLibCall function.
4693 // By passing type list before soften to makeLibCall, the target hook
4694 // shouldExtendTypeInLibCall can get the original type before soften.
4697 bool IsSExt : 1;
4701 bool IsSoften : 1;
4702
4706
4708 IsSExt = Value;
4709 return *this;
4710 }
4711
4714 return *this;
4715 }
4716
4719 return *this;
4720 }
4721
4724 return *this;
4725 }
4726
4728 bool Value = true) {
4729 OpsVTBeforeSoften = OpsVT;
4730 RetVTBeforeSoften = RetVT;
4731 IsSoften = Value;
4732 return *this;
4733 }
4734 };
4735
4736 /// This function lowers an abstract call to a function into an actual call.
4737 /// This returns a pair of operands. The first element is the return value
4738 /// for the function (if RetTy is not VoidTy). The second element is the
4739 /// outgoing token chain. It calls LowerCall to do the actual lowering.
4740 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
4741
4742 /// This hook must be implemented to lower calls into the specified
4743 /// DAG. The outgoing arguments to the call are described by the Outs array,
4744 /// and the values to be returned by the call are described by the Ins
4745 /// array. The implementation should fill in the InVals array with legal-type
4746 /// return values from the call, and return the resulting token chain value.
4747 virtual SDValue
4749 SmallVectorImpl<SDValue> &/*InVals*/) const {
4750 llvm_unreachable("Not Implemented");
4751 }
4752
4753 /// Target-specific cleanup for formal ByVal parameters.
4754 virtual void HandleByVal(CCState *, unsigned &, Align) const {}
4755
4756 /// This hook should be implemented to check whether the return values
4757 /// described by the Outs array can fit into the return registers. If false
4758 /// is returned, an sret-demotion is performed.
4759 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
4760 MachineFunction &/*MF*/, bool /*isVarArg*/,
4761 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
4762 LLVMContext &/*Context*/) const
4763 {
4764 // Return true by default to get preexisting behavior.
4765 return true;
4766 }
4767
4768 /// This hook must be implemented to lower outgoing return values, described
4769 /// by the Outs array, into the specified DAG. The implementation should
4770 /// return the resulting token chain value.
4771 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
4772 bool /*isVarArg*/,
4773 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
4774 const SmallVectorImpl<SDValue> & /*OutVals*/,
4775 const SDLoc & /*dl*/,
4776 SelectionDAG & /*DAG*/) const {
4777 llvm_unreachable("Not Implemented");
4778 }
4779
4780 /// Return true if result of the specified node is used by a return node
4781 /// only. It also compute and return the input chain for the tail call.
4782 ///
4783 /// This is used to determine whether it is possible to codegen a libcall as
4784 /// tail call at legalization time.
4785 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
4786 return false;
4787 }
4788
4789 /// Return true if the target may be able emit the call instruction as a tail
4790 /// call. This is used by optimization passes to determine if it's profitable
4791 /// to duplicate return instructions to enable tailcall optimization.
4792 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
4793 return false;
4794 }
4795
4796 /// Return the register ID of the name passed in. Used by named register
4797 /// global variables extension. There is no target-independent behaviour
4798 /// so the default action is to bail.
4799 virtual Register getRegisterByName(const char* RegName, LLT Ty,
4800 const MachineFunction &MF) const {
4801 report_fatal_error("Named registers not implemented for this target");
4802 }
4803
4804 /// Return the type that should be used to zero or sign extend a
4805 /// zeroext/signext integer return value. FIXME: Some C calling conventions
4806 /// require the return type to be promoted, but this is not true all the time,
4807 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
4808 /// conventions. The frontend should handle this and include all of the
4809 /// necessary information.
4811 ISD::NodeType /*ExtendKind*/) const {
4812 EVT MinVT = getRegisterType(MVT::i32);
4813 return VT.bitsLT(MinVT) ? MinVT : VT;
4814 }
4815
4816 /// For some targets, an LLVM struct type must be broken down into multiple
4817 /// simple types, but the calling convention specifies that the entire struct
4818 /// must be passed in a block of consecutive registers.
4819 virtual bool
4821 bool isVarArg,
4822 const DataLayout &DL) const {
4823 return false;
4824 }
4825
4826 /// For most targets, an LLVM type must be broken down into multiple
4827 /// smaller types. Usually the halves are ordered according to the endianness
4828 /// but for some platform that would break. So this method will default to
4829 /// matching the endianness but can be overridden.
4830 virtual bool
4832 return DL.isLittleEndian();
4833 }
4834
4835 /// Returns a 0 terminated array of registers that can be safely used as
4836 /// scratch registers.
4838 return nullptr;
4839 }
4840
4841 /// Returns a 0 terminated array of rounding control registers that can be
4842 /// attached into strict FP call.
4844 return ArrayRef<MCPhysReg>();
4845 }
4846
4847 /// This callback is used to prepare for a volatile or atomic load.
4848 /// It takes a chain node as input and returns the chain for the load itself.
4849 ///
4850 /// Having a callback like this is necessary for targets like SystemZ,
4851 /// which allows a CPU to reuse the result of a previous load indefinitely,
4852 /// even if a cache-coherent store is performed by another CPU. The default
4853 /// implementation does nothing.
4855 SelectionDAG &DAG) const {
4856 return Chain;
4857 }
4858
4859 /// This callback is invoked by the type legalizer to legalize nodes with an
4860 /// illegal operand type but legal result types. It replaces the
4861 /// LowerOperation callback in the type Legalizer. The reason we can not do
4862 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
4863 /// use this callback.
4864 ///
4865 /// TODO: Consider merging with ReplaceNodeResults.
4866 ///
4867 /// The target places new result values for the node in Results (their number
4868 /// and types must exactly match those of the original return values of
4869 /// the node), or leaves Results empty, which indicates that the node is not
4870 /// to be custom lowered after all.
4871 /// The default implementation calls LowerOperation.
4872 virtual void LowerOperationWrapper(SDNode *N,
4874 SelectionDAG &DAG) const;
4875
4876 /// This callback is invoked for operations that are unsupported by the
4877 /// target, which are registered to use 'custom' lowering, and whose defined
4878 /// values are all legal. If the target has no operations that require custom
4879 /// lowering, it need not implement this. The default implementation of this
4880 /// aborts.
4881 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
4882
4883 /// This callback is invoked when a node result type is illegal for the
4884 /// target, and the operation was registered to use 'custom' lowering for that
4885 /// result type. The target places new result values for the node in Results
4886 /// (their number and types must exactly match those of the original return
4887 /// values of the node), or leaves Results empty, which indicates that the
4888 /// node is not to be custom lowered after all.
4889 ///
4890 /// If the target has no operations that require custom lowering, it need not
4891 /// implement this. The default implementation aborts.
4892 virtual void ReplaceNodeResults(SDNode * /*N*/,
4893 SmallVectorImpl<SDValue> &/*Results*/,
4894 SelectionDAG &/*DAG*/) const {
4895 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
4896 }
4897
4898 /// This method returns the name of a target specific DAG node.
4899 virtual const char *getTargetNodeName(unsigned Opcode) const;
4900
4901 /// This method returns a target specific FastISel object, or null if the
4902 /// target does not support "fast" ISel.
4904 const TargetLibraryInfo *) const {
4905 return nullptr;
4906 }
4907
4909 SelectionDAG &DAG) const;
4910
4911#ifndef NDEBUG
4912 /// Check the given SDNode. Aborts if it is invalid.
4913 virtual void verifyTargetSDNode(const SDNode *N) const {};
4914#endif
4915
4916 //===--------------------------------------------------------------------===//
4917 // Inline Asm Support hooks
4918 //
4919
4920 /// This hook allows the target to expand an inline asm call to be explicit
4921 /// llvm code if it wants to. This is useful for turning simple inline asms
4922 /// into LLVM intrinsics, which gives the compiler more information about the
4923 /// behavior of the code.
4924 virtual bool ExpandInlineAsm(CallInst *) const {
4925 return false;
4926 }
4927
4929 C_Register, // Constraint represents specific register(s).
4930 C_RegisterClass, // Constraint represents any of register(s) in class.
4931 C_Memory, // Memory constraint.
4932 C_Address, // Address constraint.
4933 C_Immediate, // Requires an immediate.
4934 C_Other, // Something else.
4935 C_Unknown // Unsupported constraint.
4937
4939 // Generic weights.
4940 CW_Invalid = -1, // No match.
4941 CW_Okay = 0, // Acceptable.
4942 CW_Good = 1, // Good weight.
4943 CW_Better = 2, // Better weight.
4944 CW_Best = 3, // Best weight.
4945
4946 // Well-known weights.
4947 CW_SpecificReg = CW_Okay, // Specific register operands.
4948 CW_Register = CW_Good, // Register operands.
4949 CW_Memory = CW_Better, // Memory operands.
4950 CW_Constant = CW_Best, // Constant operand.
4951 CW_Default = CW_Okay // Default or don't know type.
4953
4954 /// This contains information for each constraint that we are lowering.
4956 /// This contains the actual string for the code, like "m". TargetLowering
4957 /// picks the 'best' code from ConstraintInfo::Codes that most closely
4958 /// matches the operand.
4959 std::string ConstraintCode;
4960
4961 /// Information about the constraint code, e.g. Register, RegisterClass,
4962 /// Memory, Other, Unknown.
4964
4965 /// If this is the result output operand or a clobber, this is null,
4966 /// otherwise it is the incoming operand to the CallInst. This gets
4967 /// modified as the asm is processed.
4969
4970 /// The ValueType for the operand value.
4971 MVT ConstraintVT = MVT::Other;
4972
4973 /// Copy constructor for copying from a ConstraintInfo.
4976
4977 /// Return true of this is an input operand that is a matching constraint
4978 /// like "4".
4979 bool isMatchingInputConstraint() const;
4980
4981 /// If this is an input matching constraint, this method returns the output
4982 /// operand it matches.
4983 unsigned getMatchedOperand() const;
4984 };
4985
4986 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
4987
4988 /// Split up the constraint string from the inline assembly value into the
4989 /// specific constraints and their prefixes, and also tie in the associated
4990 /// operand values. If this returns an empty vector, and if the constraint
4991 /// string itself isn't empty, there was an error parsing.
4993 const TargetRegisterInfo *TRI,
4994 const CallBase &Call) const;
4995
4996 /// Examine constraint type and operand type and determine a weight value.
4997 /// The operand object must already have been set up with the operand type.
4999 AsmOperandInfo &info, int maIndex) const;
5000
5001 /// Examine constraint string and operand type and determine a weight value.
5002 /// The operand object must already have been set up with the operand type.
5004 AsmOperandInfo &info, const char *constraint) const;
5005
5006 /// Determines the constraint code and constraint type to use for the specific
5007 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5008 /// If the actual operand being passed in is available, it can be passed in as
5009 /// Op, otherwise an empty SDValue can be passed.
5010 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5011 SDValue Op,
5012 SelectionDAG *DAG = nullptr) const;
5013
5014 /// Given a constraint, return the type of constraint it is for this target.
5015 virtual ConstraintType getConstraintType(StringRef Constraint) const;
5016
5017 using ConstraintPair = std::pair<StringRef, TargetLowering::ConstraintType>;
5019 /// Given an OpInfo with list of constraints codes as strings, return a
5020 /// sorted Vector of pairs of constraint codes and their types in priority of
5021 /// what we'd prefer to lower them as. This may contain immediates that
5022 /// cannot be lowered, but it is meant to be a machine agnostic order of
5023 /// preferences.
5025
5026 /// Given a physical register constraint (e.g. {edx}), return the register
5027 /// number and the register class for the register.
5028 ///
5029 /// Given a register class constraint, like 'r', if this corresponds directly
5030 /// to an LLVM register class, return a register of 0 and the register class
5031 /// pointer.
5032 ///
5033 /// This should only be used for C_Register constraints. On error, this
5034 /// returns a register number of 0 and a null register class pointer.
5035 virtual std::pair<unsigned, const TargetRegisterClass *>
5037 StringRef Constraint, MVT VT) const;
5038
5040 getInlineAsmMemConstraint(StringRef ConstraintCode) const {
5041 if (ConstraintCode == "m")
5043 if (ConstraintCode == "o")
5045 if (ConstraintCode == "X")
5047 if (ConstraintCode == "p")
5050 }
5051
5052 /// Try to replace an X constraint, which matches anything, with another that
5053 /// has more specific requirements based on the type of the corresponding
5054 /// operand. This returns null if there is no replacement to make.
5055 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
5056
5057 /// Lower the specified operand into the Ops vector. If it is invalid, don't
5058 /// add anything to Ops.
5059 virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
5060 std::vector<SDValue> &Ops,
5061 SelectionDAG &DAG) const;
5062
5063 // Lower custom output constraints. If invalid, return SDValue().
5064 virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue,
5065 const SDLoc &DL,
5066 const AsmOperandInfo &OpInfo,
5067 SelectionDAG &DAG) const;
5068
5069 // Targets may override this function to collect operands from the CallInst
5070 // and for example, lower them into the SelectionDAG operands.
5071 virtual void CollectTargetIntrinsicOperands(const CallInst &I,
5073 SelectionDAG &DAG) const;
5074
5075 //===--------------------------------------------------------------------===//
5076 // Div utility functions
5077 //
5078
5079 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5080 SmallVectorImpl<SDNode *> &Created) const;
5081 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5082 SmallVectorImpl<SDNode *> &Created) const;
5083 // Build sdiv by power-of-2 with conditional move instructions
5084 SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor,
5085 SelectionDAG &DAG,
5086 SmallVectorImpl<SDNode *> &Created) const;
5087
5088 /// Targets may override this function to provide custom SDIV lowering for
5089 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5090 /// assumes SDIV is expensive and replaces it with a series of other integer
5091 /// operations.
5092 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5093 SelectionDAG &DAG,
5094 SmallVectorImpl<SDNode *> &Created) const;
5095
5096 /// Targets may override this function to provide custom SREM lowering for
5097 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5098 /// assumes SREM is expensive and replaces it with a series of other integer
5099 /// operations.
5100 virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
5101 SelectionDAG &DAG,
5102 SmallVectorImpl<SDNode *> &Created) const;
5103
5104 /// Indicate whether this target prefers to combine FDIVs with the same
5105 /// divisor. If the transform should never be done, return zero. If the
5106 /// transform should be done, return the minimum number of divisor uses
5107 /// that must exist.
5108 virtual unsigned combineRepeatedFPDivisors() const {
5109 return 0;
5110 }
5111
5112 /// Hooks for building estimates in place of slower divisions and square
5113 /// roots.
5114
5115 /// Return either a square root or its reciprocal estimate value for the input
5116 /// operand.
5117 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5118 /// 'Enabled' as set by a potential default override attribute.
5119 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5120 /// refinement iterations required to generate a sufficient (though not
5121 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5122 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
5123 /// algorithm implementation that uses either one or two constants.
5124 /// The boolean Reciprocal is used to select whether the estimate is for the
5125 /// square root of the input operand or the reciprocal of its square root.
5126 /// A target may choose to implement its own refinement within this function.
5127 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5128 /// any further refinement of the estimate.
5129 /// An empty SDValue return means no estimate sequence can be created.
5131 int Enabled, int &RefinementSteps,
5132 bool &UseOneConstNR, bool Reciprocal) const {
5133 return SDValue();
5134 }
5135
5136 /// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
5137 /// required for correctness since InstCombine might have canonicalized a
5138 /// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic. If we were to fall
5139 /// through to the default expansion/soften to libcall, we might introduce a
5140 /// link-time dependency on libm into a file that originally did not have one.
5142
5143 /// Return a reciprocal estimate value for the input operand.
5144 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5145 /// 'Enabled' as set by a potential default override attribute.
5146 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5147 /// refinement iterations required to generate a sufficient (though not
5148 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5149 /// A target may choose to implement its own refinement within this function.
5150 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5151 /// any further refinement of the estimate.
5152 /// An empty SDValue return means no estimate sequence can be created.
5154 int Enabled, int &RefinementSteps) const {
5155 return SDValue();
5156 }
5157
5158 /// Return a target-dependent comparison result if the input operand is
5159 /// suitable for use with a square root estimate calculation. For example, the
5160 /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
5161 /// result should be used as the condition operand for a select or branch.
5162 virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
5163 const DenormalMode &Mode) const;
5164
5165 /// Return a target-dependent result if the input operand is not suitable for
5166 /// use with a square root estimate calculation.
5168 SelectionDAG &DAG) const {
5169 return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
5170 }
5171
5172 //===--------------------------------------------------------------------===//
5173 // Legalization utility functions
5174 //
5175
5176 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
5177 /// respectively, each computing an n/2-bit part of the result.
5178 /// \param Result A vector that will be filled with the parts of the result
5179 /// in little-endian order.
5180 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5181 /// if you want to control how low bits are extracted from the LHS.
5182 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5183 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5184 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5185 /// \returns true if the node has been expanded, false if it has not
5186 bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
5187 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
5188 SelectionDAG &DAG, MulExpansionKind Kind,
5189 SDValue LL = SDValue(), SDValue LH = SDValue(),
5190 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5191
5192 /// Expand a MUL into two nodes. One that computes the high bits of
5193 /// the result and one that computes the low bits.
5194 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
5195 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5196 /// if you want to control how low bits are extracted from the LHS.
5197 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5198 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5199 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5200 /// \returns true if the node has been expanded. false if it has not
5201 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5202 SelectionDAG &DAG, MulExpansionKind Kind,
5203 SDValue LL = SDValue(), SDValue LH = SDValue(),
5204 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5205
5206 /// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
5207 /// urem by constant and other arithmetic ops. The n/2-bit urem by constant
5208 /// will be expanded by DAGCombiner. This is not possible for all constant
5209 /// divisors.
5210 /// \param N Node to expand
5211 /// \param Result A vector that will be filled with the lo and high parts of
5212 /// the results. For *DIVREM, this will be the quotient parts followed
5213 /// by the remainder parts.
5214 /// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
5215 /// half of VT.
5216 /// \param LL Low bits of the LHS of the operation. You can use this
5217 /// parameter if you want to control how low bits are extracted from
5218 /// the LHS.
5219 /// \param LH High bits of the LHS of the operation. See LL for meaning.
5220 /// \returns true if the node has been expanded, false if it has not.
5222 EVT HiLoVT, SelectionDAG &DAG,
5223 SDValue LL = SDValue(),
5224 SDValue LH = SDValue()) const;
5225
5226 /// Expand funnel shift.
5227 /// \param N Node to expand
5228 /// \returns The expansion if successful, SDValue() otherwise
5230
5231 /// Expand rotations.
5232 /// \param N Node to expand
5233 /// \param AllowVectorOps expand vector rotate, this should only be performed
5234 /// if the legalization is happening outside of LegalizeVectorOps
5235 /// \returns The expansion if successful, SDValue() otherwise
5236 SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
5237
5238 /// Expand shift-by-parts.
5239 /// \param N Node to expand
5240 /// \param Lo lower-output-part after conversion
5241 /// \param Hi upper-output-part after conversion
5243 SelectionDAG &DAG) const;
5244
5245 /// Expand float(f32) to SINT(i64) conversion
5246 /// \param N Node to expand
5247 /// \param Result output after conversion
5248 /// \returns True, if the expansion was successful, false otherwise
5249 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
5250
5251 /// Expand float to UINT conversion
5252 /// \param N Node to expand
5253 /// \param Result output after conversion
5254 /// \param Chain output chain after conversion
5255 /// \returns True, if the expansion was successful, false otherwise
5256 bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
5257 SelectionDAG &DAG) const;
5258
5259 /// Expand UINT(i64) to double(f64) conversion
5260 /// \param N Node to expand
5261 /// \param Result output after conversion
5262 /// \param Chain output chain after conversion
5263 /// \returns True, if the expansion was successful, false otherwise
5264 bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
5265 SelectionDAG &DAG) const;
5266
5267 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
5269
5270 /// Expand fminimum/fmaximum into multiple comparison with selects.
5272
5273 /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
5274 /// \param N Node to expand
5275 /// \returns The expansion result
5277
5278 /// Truncate Op to ResultVT. If the result is exact, leave it alone. If it is
5279 /// not exact, force the result to be odd.
5280 /// \param ResultVT The type of result.
5281 /// \param Op The value to round.
5282 /// \returns The expansion result
5284 SelectionDAG &DAG) const;
5285
5286 /// Expand round(fp) to fp conversion
5287 /// \param N Node to expand
5288 /// \returns The expansion result
5290
5291 /// Expand check for floating point class.
5292 /// \param ResultVT The type of intrinsic call result.
5293 /// \param Op The tested value.
5294 /// \param Test The test to perform.
5295 /// \param Flags The optimization flags.
5296 /// \returns The expansion result or SDValue() if it fails.
5298 SDNodeFlags Flags, const SDLoc &DL,
5299 SelectionDAG &DAG) const;
5300
5301 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
5302 /// vector nodes can only succeed if all operations are legal/custom.
5303 /// \param N Node to expand
5304 /// \returns The expansion result or SDValue() if it fails.
5305 SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
5306
5307 /// Expand VP_CTPOP nodes.
5308 /// \returns The expansion result or SDValue() if it fails.
5310
5311 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
5312 /// vector nodes can only succeed if all operations are legal/custom.
5313 /// \param N Node to expand
5314 /// \returns The expansion result or SDValue() if it fails.
5315 SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
5316
5317 /// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
5318 /// \param N Node to expand
5319 /// \returns The expansion result or SDValue() if it fails.
5321
5322 /// Expand CTTZ via Table Lookup.
5323 /// \param N Node to expand
5324 /// \returns The expansion result or SDValue() if it fails.
5326 SDValue Op, unsigned NumBitsPerElt) const;
5327
5328 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
5329 /// vector nodes can only succeed if all operations are legal/custom.
5330 /// \param N Node to expand
5331 /// \returns The expansion result or SDValue() if it fails.
5332 SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
5333
5334 /// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
5335 /// \param N Node to expand
5336 /// \returns The expansion result or SDValue() if it fails.
5338
5339 /// Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
5340 /// \param N Node to expand
5341 /// \returns The expansion result or SDValue() if it fails.
5343
5344 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
5345 /// vector nodes can only succeed if all operations are legal/custom.
5346 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
5347 /// \param N Node to expand
5348 /// \param IsNegative indicate negated abs
5349 /// \returns The expansion result or SDValue() if it fails.
5351 bool IsNegative = false) const;
5352
5353 /// Expand ABDS/ABDU nodes. Expands vector/scalar ABDS/ABDU nodes.
5354 /// \param N Node to expand
5355 /// \returns The expansion result or SDValue() if it fails.
5356 SDValue expandABD(SDNode *N, SelectionDAG &DAG) const;
5357
5358 /// Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
5359 /// \param N Node to expand
5360 /// \returns The expansion result or SDValue() if it fails.
5361 SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const;
5362
5363 /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
5364 /// scalar types. Returns SDValue() if expand fails.
5365 /// \param N Node to expand
5366 /// \returns The expansion result or SDValue() if it fails.
5367 SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
5368
5369 /// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
5370 /// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
5371 /// to expand \returns The expansion result or SDValue() if it fails.
5373
5374 /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
5375 /// Returns SDValue() if expand fails.
5376 /// \param N Node to expand
5377 /// \returns The expansion result or SDValue() if it fails.
5379
5380 /// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
5381 /// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
5382 /// expansion result or SDValue() if it fails.
5384
5385 /// Turn load of vector type into a load of the individual elements.
5386 /// \param LD load to expand
5387 /// \returns BUILD_VECTOR and TokenFactor nodes.
5388 std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
5389 SelectionDAG &DAG) const;
5390
5391 // Turn a store of a vector type into stores of the individual elements.
5392 /// \param ST Store with a vector value type
5393 /// \returns TokenFactor of the individual store chains.
5395
5396 /// Expands an unaligned load to 2 half-size loads for an integer, and
5397 /// possibly more for vectors.
5398 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
5399 SelectionDAG &DAG) const;
5400
5401 /// Expands an unaligned store to 2 half-size stores for integer values, and
5402 /// possibly more for vectors.
5404
5405 /// Increments memory address \p Addr according to the type of the value
5406 /// \p DataVT that should be stored. If the data is stored in compressed
5407 /// form, the memory address should be incremented according to the number of
5408 /// the stored elements. This number is equal to the number of '1's bits
5409 /// in the \p Mask.
5410 /// \p DataVT is a vector type. \p Mask is a vector value.
5411 /// \p DataVT and \p Mask have the same number of vector elements.
5413 EVT DataVT, SelectionDAG &DAG,
5414 bool IsCompressedMemory) const;
5415
5416 /// Get a pointer to vector element \p Idx located in memory for a vector of
5417 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5418 /// bounds the returned pointer is unspecified, but will be within the vector
5419 /// bounds.
5421 SDValue Index) const;
5422
5423 /// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
5424 /// in memory for a vector of type \p VecVT starting at a base address of
5425 /// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
5426 /// returned pointer is unspecified, but the value returned will be such that
5427 /// the entire subvector would be within the vector bounds.
5429 EVT SubVecVT, SDValue Index) const;
5430
5431 /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
5432 /// method accepts integers as its arguments.
5434
5435 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
5436 /// method accepts integers as its arguments.
5438
5439 /// Method for building the DAG expansion of ISD::[US]CMP. This
5440 /// method accepts integers as its arguments
5442
5443 /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
5444 /// method accepts integers as its arguments.
5446
5447 /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
5448 /// method accepts integers as its arguments.
5450
5451 /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
5452 /// method accepts integers as its arguments.
5453 /// Note: This method may fail if the division could not be performed
5454 /// within the type. Clients must retry with a wider type if this happens.
5455 SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
5457 unsigned Scale, SelectionDAG &DAG) const;
5458
5459 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
5460 /// always suceeds and populates the Result and Overflow arguments.
5461 void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5462 SelectionDAG &DAG) const;
5463
5464 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
5465 /// always suceeds and populates the Result and Overflow arguments.
5466 void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5467 SelectionDAG &DAG) const;
5468
5469 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
5470 /// expansion was successful and populates the Result and Overflow arguments.
5471 bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5472 SelectionDAG &DAG) const;
5473
5474 /// forceExpandWideMUL - Unconditionally expand a MUL into either a libcall or
5475 /// brute force via a wide multiplication. The expansion works by
5476 /// attempting to do a multiplication on a wider type twice the size of the
5477 /// original operands. LL and LH represent the lower and upper halves of the
5478 /// first operand. RL and RH represent the lower and upper halves of the
5479 /// second operand. The upper and lower halves of the result are stored in Lo
5480 /// and Hi.
5481 void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5482 EVT WideVT, const SDValue LL, const SDValue LH,
5483 const SDValue RL, const SDValue RH, SDValue &Lo,
5484 SDValue &Hi) const;
5485
5486 /// Same as above, but creates the upper halves of each operand by
5487 /// sign/zero-extending the operands.
5488 void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5489 const SDValue LHS, const SDValue RHS, SDValue &Lo,
5490 SDValue &Hi) const;
5491
5492 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
5493 /// only the first Count elements of the vector are used.
5495
5496 /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
5498
5499 /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
5500 /// Returns true if the expansion was successful.
5501 bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
5502
5503 /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
5504 /// method accepts vectors as its arguments.
5506
5507 /// Expand a vector VECTOR_COMPRESS into a sequence of extract element, store
5508 /// temporarily, advance store position, before re-loading the final vector.
5510
5511 /// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
5512 /// on the current target. A VP_SETCC will additionally be given a Mask
5513 /// and/or EVL not equal to SDValue().
5514 ///
5515 /// If the SETCC has been legalized using AND / OR, then the legalized node
5516 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
5517 /// will be set to false. This will also hold if the VP_SETCC has been
5518 /// legalized using VP_AND / VP_OR.
5519 ///
5520 /// If the SETCC / VP_SETCC has been legalized by using
5521 /// getSetCCSwappedOperands(), then the values of LHS and RHS will be
5522 /// swapped, CC will be set to the new condition, and NeedInvert will be set
5523 /// to false.
5524 ///
5525 /// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
5526 /// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
5527 /// and NeedInvert will be set to true. The caller must invert the result of
5528 /// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
5529 /// swap the effect of a true/false result.
5530 ///
5531 /// \returns true if the SETCC / VP_SETCC has been legalized, false if it
5532 /// hasn't.
5534 SDValue &RHS, SDValue &CC, SDValue Mask,
5535 SDValue EVL, bool &NeedInvert, const SDLoc &dl,
5536 SDValue &Chain, bool IsSignaling = false) const;
5537
5538 //===--------------------------------------------------------------------===//
5539 // Instruction Emitting Hooks
5540 //
5541
5542 /// This method should be implemented by targets that mark instructions with
5543 /// the 'usesCustomInserter' flag. These instructions are special in various
5544 /// ways, which require special support to insert. The specified MachineInstr
5545 /// is created but not inserted into any basic blocks, and this method is
5546 /// called to expand it into a sequence of instructions, potentially also
5547 /// creating new basic blocks and control flow.
5548 /// As long as the returned basic block is different (i.e., we created a new
5549 /// one), the custom inserter is free to modify the rest of \p MBB.
5550 virtual MachineBasicBlock *
5552
5553 /// This method should be implemented by targets that mark instructions with
5554 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
5555 /// instruction selection by target hooks. e.g. To fill in optional defs for
5556 /// ARM 's' setting instructions.
5558 SDNode *Node) const;
5559
5560 /// If this function returns true, SelectionDAGBuilder emits a
5561 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
5562 virtual bool useLoadStackGuardNode() const {
5563 return false;
5564 }
5565
5567 const SDLoc &DL) const {
5568 llvm_unreachable("not implemented for this target");
5569 }
5570
5571 /// Lower TLS global address SDNode for target independent emulated TLS model.
5573 SelectionDAG &DAG) const;
5574
5575 /// Expands target specific indirect branch for the case of JumpTable
5576 /// expansion.
5578 SDValue Addr, int JTI,
5579 SelectionDAG &DAG) const;
5580
5581 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
5582 // If we're comparing for equality to zero and isCtlzFast is true, expose the
5583 // fact that this can be implemented as a ctlz/srl pair, so that the dag
5584 // combiner can fold the new nodes.
5586
5587 // Return true if `X & Y eq/ne 0` is preferable to `X & Y ne/eq Y`
5589 return true;
5590 }
5591
5592private:
5593 SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5594 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5595 SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5596 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5597
5598 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
5600 DAGCombinerInfo &DCI,
5601 const SDLoc &DL) const;
5602
5603 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5604 SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
5605 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
5606 DAGCombinerInfo &DCI, const SDLoc &DL) const;
5607
5608 SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5609 SDValue CompTargetNode, ISD::CondCode Cond,
5610 DAGCombinerInfo &DCI, const SDLoc &DL,
5611 SmallVectorImpl<SDNode *> &Created) const;
5612 SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5613 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5614 const SDLoc &DL) const;
5615
5616 SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5617 SDValue CompTargetNode, ISD::CondCode Cond,
5618 DAGCombinerInfo &DCI, const SDLoc &DL,
5619 SmallVectorImpl<SDNode *> &Created) const;
5620 SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5621 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5622 const SDLoc &DL) const;
5623};
5624
5625/// Given an LLVM IR type and return type attributes, compute the return value
5626/// EVTs and flags, and optionally also the offsets, if the return value is
5627/// being lowered to memory.
5628void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
5629 SmallVectorImpl<ISD::OutputArg> &Outs,
5630 const TargetLowering &TLI, const DataLayout &DL);
5631
5632} // end namespace llvm
5633
5634#endif // LLVM_CODEGEN_TARGETLOWERING_H
unsigned const MachineRegisterInfo * MRI
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
basic Basic Alias true
block Block Frequency Analysis
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
#define LLVM_READONLY
Definition: Compiler.h:227
static cl::opt< unsigned > CostThreshold("dfa-cost-threshold", cl::desc("Maximum cost accepted for the transformation"), cl::Hidden, cl::init(50))
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
T Content
uint64_t Addr
std::string Name
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define RegName(no)
lazy value info
Implement a low-level type suitable for MachineInstr level instruction selection.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Machine Check Debug Module
unsigned const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
PowerPC Reduce CR logical Operation
const char LLVMTargetMachineRef TM
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:78
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1448
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:495
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:696
bool isFloatingPointOperation() const
Definition: Instructions.h:864
BinOp getOperation() const
Definition: Instructions.h:787
Value * getValOperand()
Definition: Instructions.h:856
bool getValueAsBool() const
Return the attribute's value as a boolean.
Definition: Attributes.cpp:377
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
CCState - This class holds information needed while lowering arguments and return values.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1236
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
This class represents a range of values.
Definition: ConstantRange.h:47
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
bool empty() const
Definition: DenseMap.h:98
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Class to represent function types.
Definition: DerivedTypes.h:103
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:142
bool isVarArg() const
Definition: DerivedTypes.h:123
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:745
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:91
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
constexpr unsigned getScalarSizeInBits() const
Definition: LowLevelType.h:267
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:174
This class is used to represent ISD::LOAD nodes.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
@ INVALID_SIMPLE_VALUE_TYPE
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
ElementCount getVectorElementCount() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
Instructions::iterator instr_iterator
Representation of each machine instruction.
Definition: MachineInstr.h:69
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This is an abstract virtual class for memory operations.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:307
A discriminated union of two or more pointer types, with the discriminator in the low bit of the poin...
Definition: PointerUnion.h:118
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool use_empty() const
Return true if there are no uses of this node.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
EVT getValueType() const
Return the ValueType of the referenced return value.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:227
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:494
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:488
void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:483
LLVMContext * getContext() const
Definition: SelectionDAG.h:501
This instruction constructs a fixed permutation of two input vectors.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:290
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Multiway switch.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Value * emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const
Perform a store-conditional operation to Addr.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
virtual bool enableAggressiveFMAFusion(LLT Ty) const
Return true if target always benefits from combining into FMA for a given value type.
virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a bit test atomicrmw using a target-specific intrinsic.
void setOperationAction(ArrayRef< unsigned > Ops, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool requiresUniformRegister(MachineFunction &MF, const Value *) const
Allows target to decide about the register class of the specific value that is live outside the defin...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
virtual unsigned getVaListSizeInBits(const DataLayout &DL) const
Returns the size of the platform's va_list object.
virtual bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const
virtual bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
virtual bool hasAndNot(SDValue X) const
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
void initActions()
Initialize all of the actions to default values.
ReciprocalEstimate
Reciprocal estimate status values used by the functions below.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool enableAggressiveFMAFusion(EVT VT) const
Return true if target always benefits from combining into FMA for a given value type.
virtual bool isComplexDeinterleavingOperationSupported(ComplexDeinterleavingOperation Operation, Type *Ty) const
Does this target support complex deinterleaving with the given operation and type.
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool, EVT ValVT) const
Promote the given target boolean to a target boolean of the given type.
virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const
Returns true if be combined with to form an ISD::FMAD.
virtual bool hasStandaloneRem(EVT VT) const
Return true if the target can handle a standalone remainder operation.
virtual bool isExtFreeImpl(const Instruction *I) const
Return true if the extension represented by I is free.
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC)
Override the default CondCode to be used to test the result of the comparison libcall against zero.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool shouldExpandBuildVectorWithShuffles(EVT, unsigned DefinedValues) const
LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT, bool LegalOnly) const
virtual bool isSelectSupported(SelectSupportKind) const
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual bool isEqualityCmpFoldedWithSignedCmp() const
Return true if instruction generated for equality comparison is folded with instruction generated for...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const
Use bitwise logic to make pairs of compares more efficient.
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const
Try to convert math with an overflow comparison into the corresponding DAG node operation.
ShiftLegalizationStrategy
Return the preferred strategy to legalize tihs SHIFT instruction, with ExpansionFactor being the recu...
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const
Return if the target supports combining a chain like:
virtual Value * createComplexDeinterleavingIR(IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, Value *Accumulator=nullptr) const
Create the IR node for the given complex deinterleaving operation.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT, unsigned Scale) const
Custom method defined by each target to indicate if an operation which may require a scale is support...
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual Sched::Preference getSchedulingPreference(SDNode *) const
Some scheduler, e.g.
virtual MachineInstr * EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const
void setMinStackArgumentAlignment(Align Alignment)
Set the minimum stack alignment of an argument.
bool isExtLoad(const LoadInst *Load, const Instruction *Ext, const DataLayout &DL) const
Return true if Load and Ext can form an ExtLoad.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
LegalizeTypeAction getTypeAction(MVT VT) const
virtual bool lowerInterleavedLoad(LoadInst *LI, ArrayRef< ShuffleVectorInst * > Shuffles, ArrayRef< unsigned > Indices, unsigned Factor) const
Lower an interleaved load to target specific intrinsics.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual bool shouldInsertFencesForAtomic(const Instruction *I) const
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
virtual bool allowsMisalignedMemoryAccesses(LLT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
LLT handling variant.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
virtual CondMergingParams getJumpConditionMergingParams(Instruction::BinaryOps, const Value *, const Value *) const
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
bool rangeFitsInWord(const APInt &Low, const APInt &High, const DataLayout &DL) const
Check whether the range [Low,High] fits in a machine word.
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL, LLVMContext &Ctx) const
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
unsigned getMinCmpXchgSizeInBits() const
Returns the size of the smallest cmpxchg or ll/sc instruction the backend supports.
virtual Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const
Perform a masked atomicrmw using a target-specific intrinsic.
virtual bool areJTsAllowed(const Function *Fn) const
Return true if lowering to a jump table is allowed.
bool enableExtLdPromotion() const
Return true if the target wants to use the optimization that turns ext(promotableInst1(....
virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
void setMaxBytesForAlignment(unsigned MaxBytes)
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual bool hasBitTest(SDValue X, SDValue Y) const
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
MVT getRegisterType(LLVMContext &Context, EVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const
Lower an interleaved store to target specific intrinsics.
virtual bool needsFixedCatchObjects() const
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual Value * emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const
Perform a load-linked operation on Addr, returning a "Value *" with the corresponding pointee type.
void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum fp convert the backend supports.
virtual EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
virtual bool isCheapToSpeculateCttz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isJumpExpensive() const
Return true if Flow Control is an expensive operation that should be avoided.
virtual bool useFPRegsForHalfType() const
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
bool hasExtractBitsInsn() const
Return true if the target has BitExtract instructions.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation is legal on this target.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
virtual bool softPromoteHalfType() const
virtual bool areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX, const MemSDNode &NodeY) const
Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
void setOperationAction(ArrayRef< unsigned > Ops, MVT VT, LegalizeAction Action)
virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst, SDValue IntPow2) const
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
SelectSupportKind
Enum that describes what type of support for selects the target has.
LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, EVT VT) const
Returns true if we should normalize select(N0&N1, X, Y) => select(N0, select(N1, X,...
virtual Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
virtual bool lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *DI, LoadInst *LI) const
Lower a deinterleave intrinsic to a target specific load intrinsic.
virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
virtual bool preferScalarizeSplat(SDNode *N) const
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual ISD::NodeType getExtendForAtomicOps() const
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
virtual LLT getOptimalMemOpLLT(const MemOp &Op, const AttributeList &) const
LLT returning variant.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const
Perform a atomicrmw expansion using a target-specific way.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?...
virtual bool hasStackProbeSymbol(const MachineFunction &MF) const
Returns the name of the symbol used to emit stack probes or the empty string if not applicable.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
bool isSlowDivBypassed() const
Returns true if target has indicated at least one type should be bypassed.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
virtual bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const
Return true if it may be profitable to transform (mul (add x, c1), c2) -> (add (mul x,...
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const
Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to fold a pair of shifts into a mask.
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
unsigned getMaxExpandSizeMemcmp(bool OptSize) const
Get maximum # of load operations permitted for memcmp.
bool isStrictFPEnabled() const
Return true if the target support strict float operation.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool shouldExpandCmpUsingSelects() const
Should we expand [US]CMP nodes using two selects and two compares, or by doing arithmetic on boolean ...
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual bool lowerInterleaveIntrinsicToStore(IntrinsicInst *II, StoreInst *SI) const
Lower an interleave intrinsic to a target specific store intrinsic.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual bool shouldFoldSelectWithSingleBitTest(EVT VT, const APInt &AndMask) const
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
MVT getSimpleValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the MVT corresponding to this LLVM type. See getValueType.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT) const
Return true if pulling a binary operation into a select with an identity constant is profitable.
virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal on this target.
virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const
Return true if the target can combine store(extractelement VectorTy, Idx).
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
LegalizeAction getAtomicLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Same as getLoadExtAction, but for atomic loads.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const
virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL, LLVMContext &Ctx) const
void setSupportsUnalignedAtomics(bool UnalignedSupported)
Sets whether unaligned atomic operations are supported.
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual bool isJumpTableRelative() const
bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const
Return true if lowering to a bit test is suitable for a set of case clusters which contains NumDests ...
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual bool preferIncOfAddToSubOfNot(EVT VT) const
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
virtual bool ShouldShrinkFPConstant(EVT) const
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
virtual bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
unsigned getMaxDivRemBitWidthSupported() const
Returns the size in bits of the maximum div/rem the backend supports.
virtual bool isLegalAddImmediate(int64_t) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
virtual unsigned getMaxSupportedInterleaveFactor() const
Get the maximum supported factor for interleaved memory accesses.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
virtual bool shouldKeepZExtForFP16Conv() const
Does this target require the clearing of high-order bits in a register passed to the fp16 to fp conve...
virtual AtomicExpansionKind shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const
Returns how the given atomic atomicrmw should be cast by the IR-level AtomicExpand pass.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
virtual bool shouldConsiderGEPOffsetSplit() const
const ValueTypeActionImpl & getValueTypeActions() const
virtual AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
virtual bool isTruncateFree(SDValue Val, EVT VT2) const
Return true if truncating the specific node Val to type VT2 is free.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const
Return true if it is profitable to reduce a load to a smaller type.
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
virtual ~TargetLoweringBase()=default
virtual bool isFNegFree(EVT VT) const
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
void setLibcallName(ArrayRef< RTLIB::Libcall > Calls, const char *Name)
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool hasMultipleConditionRegisters() const
Return true if multiple condition registers are available.
virtual bool shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const
Whether AtomicExpandPass should automatically insert a trailing fence without reducing the ordering f...
virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
bool isExtFree(const Instruction *I) const
Return true if the extension represented by I is free.
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool getAddrModeArguments(IntrinsicInst *, SmallVectorImpl< Value * > &, Type *&) const
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
virtual Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const
Perform a masked cmpxchg using a target-specific intrinsic.
virtual bool isZExtFree(EVT FromTy, EVT ToTy) const
virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
BooleanContent
Enum that describes how the target represents true/false values.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
virtual ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const
virtual uint8_t getRepRegClassCostFor(MVT VT) const
Return the cost of the 'representative' register class for the specified value type.
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPredictableSelectExpensive() const
Return true if selects are only cheaper than branches if the branch is unlikely to be predicted right...
virtual bool mergeStoresAfterLegalization(EVT MemVT) const
Allow store merging for the specified type after legalization in addition to before legalization.
virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Return the desired alignment for ByVal or InAlloca aggregate function arguments in the caller paramet...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual bool isProfitableToHoist(Instruction *I) const
unsigned getGatherAllAliasesMaxDepth() const
virtual LegalizeAction getCustomOperationAction(SDNode &Op) const
How to legalize this custom operation?
virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const
IR version.
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
virtual const TargetRegisterClass * getRepRegClassFor(MVT VT) const
Return the 'representative' register class for the specified value type.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
TargetLoweringBase(const TargetLoweringBase &)=delete
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified atomic load with extension is legal on this target.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
virtual bool alignLoopsWithOptSize() const
Should loops be aligned even when the function is marked OptSize (but not MinSize).
unsigned getMaxAtomicSizeInBitsSupported() const
Returns the maximum atomic operation size (in bits) supported by the backend.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const
Returns if it's reasonable to merge stores to MemVT size.
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
virtual bool preferABDSToABSWithNSW(EVT VT) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
virtual bool hasInlineStackProbe(const MachineFunction &MF) const
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
const DenseMap< unsigned int, unsigned int > & getBypassSlowDivWidths() const
Returns map of slow types for division or remainder with corresponding fast types.
void setOperationPromotedToType(ArrayRef< unsigned > Ops, MVT OrigVT, MVT DestVT)
unsigned getMaxLargeFPConvertBitWidthSupported() const
Returns the size in bits of the maximum larget fp convert the backend supports.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, LLT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const
virtual bool isCheapToSpeculateCtlz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic ctlz.
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
virtual bool shouldScalarizeBinop(SDValue VecOp) const
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
Align getPrefFunctionAlignment() const
Return the preferred function alignment.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool useSoftFloat() const
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: (store (y (conv x)), y*)) -> (store x,...
BooleanContent getBooleanContents(EVT Type) const
virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) const
Return the prefered common base offset.
virtual bool isVectorClearMaskLegal(ArrayRef< int >, EVT) const
Similar to isShuffleMaskLegal.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
bool hasTargetDAGCombine(ISD::NodeType NT) const
If true, the target has custom DAG combine transformations that it can perform for the specified node...
virtual bool fallBackToDAGISel(const Instruction &Inst) const
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
virtual bool shouldSplatInsEltVarIndex(EVT) const
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
NegatibleCost
Enum that specifies when a float negation is beneficial.
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation has solution on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const
Get the CondCode that's to be used to test the result of the comparison libcall against zero.
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const
virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a atomicrmw which the result is only used by comparison, using a target-specific intrinsic.
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const
Returns true if MI can be combined with another instruction to form TargetOpcode::G_FMAD.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, ArrayRef< MVT > VTs, LegalizeAction Action)
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
virtual bool isLegalAddScalableImmediate(int64_t) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
std::vector< ArgListEntry > ArgListTy
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual bool shouldAlignPointerArgs(CallInst *, unsigned &, Align &) const
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
virtual bool hasVectorBlend() const
Return true if the target has a vector blend instruction.
virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be cast by the IR-level AtomicExpand pass into.
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool isVScaleKnownToBeAPowerOfTwo() const
Return true only if vscale must be a power of two.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const
virtual MachineMemOperand::Flags getTargetMMOFlags(const MemSDNode &Node) const
This callback is used to inspect load/store SDNode.
virtual Type * shouldConvertSplatType(ShuffleVectorInst *SVI) const
Given a shuffle vector SVI representing a vector splat, return a new scalar type of size equal to SVI...
virtual bool isZExtFree(SDValue Val, EVT VT2) const
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual LLVM_READONLY LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
void setHasMultipleConditionRegisters(bool hasManyRegs=true)
Tells the code generator that the target has multiple (allocatable) condition registers that can be u...
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be cast by the IR-level AtomicExpand pass.
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom on this target.
virtual bool isComplexDeinterleavingSupported() const
Does this target support complex deinterleaving.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual bool addressingModeSupportsTLS(const GlobalValue &) const
Returns true if the targets addressing mode can target thread local storage (TLS).
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
virtual bool shouldConvertPhiType(Type *From, Type *To) const
Given a set in interconnected phis of type 'From' that are loaded/stored or bitcast to type 'To',...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
virtual bool preferZeroCompareBranch() const
Return true if the heuristic to prefer icmp eq zero should be used in code gen prepare.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
virtual bool shouldSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool generateFMAsInMachineCombiner(EVT VT, CodeGenOptLevel OptLevel) const
virtual LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
virtual bool hasPairedLoad(EVT, Align &) const
Return true if the target supplies and combines to a paired load two loaded values of type LoadedType...
virtual bool convertSelectOfConstantsToMath(EVT VT) const
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual bool optimizeExtendOrTruncateConversion(Instruction *I, Loop *L, const TargetTransformInfo &TTI) const
Try to optimize extending or truncating conversion instructions (like zext, trunc,...
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
TargetLoweringBase & operator=(const TargetLoweringBase &)=delete
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const
Hooks for building estimates in place of slower divisions and square roots.
virtual bool isDesirableToCommuteWithShift(const MachineInstr &MI, bool IsAfterLegal) const
GlobalISel - return true if it is profitable to move this shift by a constant amount through its oper...
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual void ReplaceNodeResults(SDNode *, SmallVectorImpl< SDValue > &, SelectionDAG &) const
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression if the cost is not expensive.
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
virtual bool useLoadStackGuardNode() const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
SDValue getCheaperOrNeutralNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, const NegatibleCost CostThreshold=NegatibleCost::Neutral, unsigned Depth=0) const
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
virtual Register getRegisterByName(const char *RegName, LLT Ty, const MachineFunction &MF) const
Return the register ID of the name passed in.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual void verifyTargetSDNode(const SDNode *N) const
Check the given SDNode. Aborts if it is invalid.
virtual bool findOptimalMemOpLowering(std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual bool IsDesirableToPromoteOp(SDValue, EVT &) const
This method query the target whether it is beneficial for dag combiner to promote the specified node.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const
Insert explicit copies in entry and exit blocks.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
TargetLowering & operator=(const TargetLowering &)=delete
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const
GlobalISel - return true if it's profitable to perform the combine: shl ([sza]ext x),...
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset, bool IsPre, MachineRegisterInfo &MRI) const
Returns true if the specified base+offset is a legal indexed addressing mode for this target.
virtual void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const
This method should be implemented by targets that mark instructions with the 'hasPostISelHook' flag.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual void initializeSplitCSR(MachineBasicBlock *Entry) const
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
virtual bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual bool ExpandInlineAsm(CallInst *) const
This hook allows the target to expand an inline asm call to be explicit llvm code if it wants to.
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const
Return a reciprocal estimate value for the input operand.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual bool isSDNodeAlwaysUniform(const SDNode *N) const
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, EVT WideVT, const SDValue LL, const SDValue LH, const SDValue RL, const SDValue RH, SDValue &Lo, SDValue &Hi) const
forceExpandWideMUL - Unconditionally expand a MUL into either a libcall or brute force via a wide mul...
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual SDValue LowerFormalArguments(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::InputArg > &, const SDLoc &, SelectionDAG &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
virtual SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const
Return a target-dependent result if the input operand is not suitable for use with a square root esti...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool getPostIndexedAddressParts(SDNode *, SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if this node ...
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
virtual ArrayRef< MCPhysReg > getRoundingControlRegisters() const
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
virtual SDValue LowerReturn(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::OutputArg > &, const SmallVectorImpl< SDValue > &, const SDLoc &, SelectionDAG &) const
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to move this shift by a constant amount through its operand,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *, const MachineBasicBlock *, unsigned, MCContext &) const
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
virtual unsigned combineRepeatedFPDivisors() const
Indicate whether this target prefers to combine FDIVs with the same divisor.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const
virtual void HandleByVal(CCState *, unsigned &, Align) const
Target-specific cleanup for formal ByVal parameters.
virtual const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const
Returns a 0 terminated array of registers that can be safely used as scratch registers.
virtual bool getPreIndexedAddressParts(SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if the node's...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual FastISel * createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const
This method returns a target specific FastISel object, or null if the target does not support "fast" ...
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const
Allows the target to handle physreg-carried dependency in target-specific way.
virtual bool supportSplitCSR(MachineFunction *MF) const
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
virtual bool isReassocProfitable(MachineRegisterInfo &MRI, Register N0, Register N1) const
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool mayBeEmittedAsTailCall(const CallInst *) const
Return true if the target may be able emit the call instruction as a tail call.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
virtual bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode, EVT) const
virtual bool isDesirableToTransformToIntegerOp(unsigned, EVT) const
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:185
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
#define UINT64_MAX
Definition: DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition: ISDOpcodes.h:257
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition: ISDOpcodes.h:374
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:276
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition: ISDOpcodes.h:501
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:246
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition: ISDOpcodes.h:380
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:813
@ FADD
Simple binary floating point operators.
Definition: ISDOpcodes.h:397
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition: ISDOpcodes.h:387
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1455
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:804
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition: ISDOpcodes.h:684
@ BRIND
BRIND - Indirect branch.
Definition: ISDOpcodes.h:1095
@ BR_JT
BR_JT - Jumptable branch.
Definition: ISDOpcodes.h:1099
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition: ISDOpcodes.h:356
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition: ISDOpcodes.h:641
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition: ISDOpcodes.h:330
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition: ISDOpcodes.h:673
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:734
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
Definition: ISDOpcodes.h:1021
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:810
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
Definition: ISDOpcodes.h:1008
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition: ISDOpcodes.h:696
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition: ISDOpcodes.h:393
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
Definition: ISDOpcodes.h:1027
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:708
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition: ISDOpcodes.h:679
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:286
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition: ISDOpcodes.h:650
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition: ISDOpcodes.h:347
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition: ISDOpcodes.h:691
static const int LAST_LOADEXT_TYPE
Definition: ISDOpcodes.h:1560
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1527
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1578
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1558
static const int LAST_INDEXED_MODE
Definition: ISDOpcodes.h:1529
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:480
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:385
EVT getApproximateEVTForLLT(LLT Ty, const DataLayout &DL, LLVMContext &Ctx)
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition: Alignment.h:145
void * PointerTy
Definition: GenericValue.h:21
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:346
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
CodeGenOptLevel
Code generation optimization level.
Definition: CodeGen.h:54
AtomicOrdering
Atomic ordering for LLVM's memory model.
CombineLevel
Definition: DAGCombine.h:15
@ AfterLegalizeDAG
Definition: DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition: DAGCombine.h:18
@ BeforeLegalizeTypes
Definition: DAGCombine.h:16
DWARFExpression::Operation Op
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
Represent subnormal handling kind for floating point instruction inputs and outputs.
Extended Value Type.
Definition: ValueTypes.h:34
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:136
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition: ValueTypes.h:73
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition: ValueTypes.h:290
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition: ValueTypes.h:146
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:358
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition: ValueTypes.h:233
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
Definition: ValueTypes.cpp:274
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:306
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:167
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition: ValueTypes.h:141
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:156
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:151
ConstraintInfo()=default
Default constructor.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
bool isDstAligned(Align AlignCheck) const
bool allowOverlap() const
bool isFixedDstAlign() const
uint64_t size() const
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
Align getDstAlign() const
bool isMemcpyStrSrc() const
bool isAligned(Align AlignCheck) const
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
bool isSrcAligned(Align AlignCheck) const
bool isMemset() const
bool isMemcpy() const
bool isMemcpyWithFixedDstAlign() const
bool isZeroMemset() const
Align getSrcAlign() const
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
These are IR-level optimization flags that may be propagated to SDNodes.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
std::optional< unsigned > fallbackAddressSpace
PointerUnion< const Value *, const PseudoSourceValue * > ptrVal
This contains information for each constraint that we are lowering.
AsmOperandInfo(InlineAsm::ConstraintInfo Info)
Copy constructor for copying from a ConstraintInfo.
MVT ConstraintVT
The ValueType for the operand value.
std::string ConstraintCode
This contains the actual string for the code, like "m".
Value * CallOperandVal
If this is the result output operand or a clobber, this is null, otherwise it is the incoming operand...
unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setCallee(Type *ResultType, FunctionType *FTy, SDValue Target, ArgListTy &&ArgsList, const CallBase &Call)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
CallLoweringInfo & setInRegister(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
SmallVector< ISD::InputArg, 32 > Ins
CallLoweringInfo & setVarArg(bool Value=true)
std::optional< PtrAuthInfo > PAI
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
MakeLibCallOptions & setDiscardResult(bool Value=true)
MakeLibCallOptions & setSExt(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT, bool Value=true)
MakeLibCallOptions & setNoReturn(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO)