LLVM 22.0.0git
TargetLowering.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file describes how to lower LLVM code to machine code. This has two
11/// main components:
12///
13/// 1. Which ValueTypes are natively supported by the target.
14/// 2. Which operations are supported for supported ValueTypes.
15/// 3. Cost thresholds for alternative implementations of certain operations.
16///
17/// In addition it has a few other components, like information about FP
18/// immediates.
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_CODEGEN_TARGETLOWERING_H
23#define LLVM_CODEGEN_TARGETLOWERING_H
24
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/StringRef.h"
41#include "llvm/IR/Attributes.h"
42#include "llvm/IR/CallingConv.h"
43#include "llvm/IR/DataLayout.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InlineAsm.h"
47#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Type.h"
57#include <algorithm>
58#include <cassert>
59#include <climits>
60#include <cstdint>
61#include <map>
62#include <string>
63#include <utility>
64#include <vector>
65
66namespace llvm {
67
68class AssumptionCache;
69class CCState;
70class CCValAssign;
73class Constant;
74class FastISel;
76class GlobalValue;
77class Loop;
79class IntrinsicInst;
80class IRBuilderBase;
81struct KnownBits;
82class LLVMContext;
84class MachineFunction;
85class MachineInstr;
87class MachineLoop;
89class MCContext;
90class MCExpr;
91class Module;
94class TargetMachine;
98class Value;
99class VPIntrinsic;
100
101namespace Sched {
102
104 None, // No preference
105 Source, // Follow source order.
106 RegPressure, // Scheduling for lowest register pressure.
107 Hybrid, // Scheduling for both latency and register pressure.
108 ILP, // Scheduling for ILP in low register pressure mode.
109 VLIW, // Scheduling for VLIW targets.
110 Fast, // Fast suboptimal list scheduling
111 Linearize, // Linearize DAG, no scheduling
112 Last = Linearize // Marker for the last Sched::Preference
113};
114
115} // end namespace Sched
116
117// MemOp models a memory operation, either memset or memcpy/memmove.
118struct MemOp {
119private:
120 // Shared
121 uint64_t Size;
122 bool DstAlignCanChange; // true if destination alignment can satisfy any
123 // constraint.
124 Align DstAlign; // Specified alignment of the memory operation.
125
126 bool AllowOverlap;
127 // memset only
128 bool IsMemset; // If setthis memory operation is a memset.
129 bool ZeroMemset; // If set clears out memory with zeros.
130 // memcpy only
131 bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
132 // constant so it does not need to be loaded.
133 Align SrcAlign; // Inferred alignment of the source or default value if the
134 // memory operation does not need to load the value.
135public:
136 static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
137 Align SrcAlign, bool IsVolatile,
138 bool MemcpyStrSrc = false) {
139 MemOp Op;
140 Op.Size = Size;
141 Op.DstAlignCanChange = DstAlignCanChange;
142 Op.DstAlign = DstAlign;
143 Op.AllowOverlap = !IsVolatile;
144 Op.IsMemset = false;
145 Op.ZeroMemset = false;
146 Op.MemcpyStrSrc = MemcpyStrSrc;
147 Op.SrcAlign = SrcAlign;
148 return Op;
149 }
150
151 static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
152 bool IsZeroMemset, bool IsVolatile) {
153 MemOp Op;
154 Op.Size = Size;
155 Op.DstAlignCanChange = DstAlignCanChange;
156 Op.DstAlign = DstAlign;
157 Op.AllowOverlap = !IsVolatile;
158 Op.IsMemset = true;
159 Op.ZeroMemset = IsZeroMemset;
160 Op.MemcpyStrSrc = false;
161 return Op;
162 }
163
164 uint64_t size() const { return Size; }
166 assert(!DstAlignCanChange);
167 return DstAlign;
168 }
169 bool isFixedDstAlign() const { return !DstAlignCanChange; }
170 bool allowOverlap() const { return AllowOverlap; }
171 bool isMemset() const { return IsMemset; }
172 bool isMemcpy() const { return !IsMemset; }
174 return isMemcpy() && !DstAlignCanChange;
175 }
176 bool isZeroMemset() const { return isMemset() && ZeroMemset; }
177 bool isMemcpyStrSrc() const {
178 assert(isMemcpy() && "Must be a memcpy");
179 return MemcpyStrSrc;
180 }
182 assert(isMemcpy() && "Must be a memcpy");
183 return SrcAlign;
184 }
185 bool isSrcAligned(Align AlignCheck) const {
186 return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
187 }
188 bool isDstAligned(Align AlignCheck) const {
189 return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
190 }
191 bool isAligned(Align AlignCheck) const {
192 return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
193 }
194};
195
196/// This base class for TargetLowering contains the SelectionDAG-independent
197/// parts that can be used from the rest of CodeGen.
199public:
200 /// This enum indicates whether operations are valid for a target, and if not,
201 /// what action should be used to make them valid.
203 Legal, // The target natively supports this operation.
204 Promote, // This operation should be executed in a larger type.
205 Expand, // Try to expand this to other ops, otherwise use a libcall.
206 LibCall, // Don't try to expand this to other ops, always use a libcall.
207 Custom // Use the LowerOperation hook to implement custom lowering.
208 };
209
210 /// This enum indicates whether a types are legal for a target, and if not,
211 /// what action should be used to make them valid.
213 TypeLegal, // The target natively supports this type.
214 TypePromoteInteger, // Replace this integer with a larger one.
215 TypeExpandInteger, // Split this integer into two of half the size.
216 TypeSoftenFloat, // Convert this float to a same size integer type.
217 TypeExpandFloat, // Split this float into two of half the size.
218 TypeScalarizeVector, // Replace this one-element vector with its element.
219 TypeSplitVector, // Split this vector into two of half the size.
220 TypeWidenVector, // This vector should be widened into a larger vector.
221 TypePromoteFloat, // Replace this float with a larger one.
222 TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
223 TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
224 // While it is theoretically possible to
225 // legalize operations on scalable types with a
226 // loop that handles the vscale * #lanes of the
227 // vector, this is non-trivial at SelectionDAG
228 // level and these types are better to be
229 // widened or promoted.
230 };
231
232 /// LegalizeKind holds the legalization kind that needs to happen to EVT
233 /// in order to type-legalize it.
234 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
235
236 /// Enum that describes how the target represents true/false values.
238 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
239 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
240 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
241 };
242
243 /// Enum that describes what type of support for selects the target has.
245 ScalarValSelect, // The target supports scalar selects (ex: cmov).
246 ScalarCondVectorVal, // The target supports selects with a scalar condition
247 // and vector values (ex: cmov).
248 VectorMaskSelect // The target supports vector selects with a vector
249 // mask (ex: x86 blends).
250 };
251
252 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
253 /// to, if at all. Exists because different targets have different levels of
254 /// support for these atomic instructions, and also have different options
255 /// w.r.t. what they should expand to.
257 None, // Don't expand the instruction.
258 CastToInteger, // Cast the atomic instruction to another type, e.g. from
259 // floating-point to integer type.
260 LLSC, // Expand the instruction into loadlinked/storeconditional; used
261 // by ARM/AArch64/PowerPC.
262 LLOnly, // Expand the (load) instruction into just a load-linked, which has
263 // greater atomic guarantees than a normal load.
264 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
265 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
266 BitTestIntrinsic, // Use a target-specific intrinsic for special bit
267 // operations; used by X86.
268 CmpArithIntrinsic, // Use a target-specific intrinsic for special compare
269 // operations; used by X86.
270 Expand, // Generic expansion in terms of other atomic operations.
271 CustomExpand, // Custom target-specific expansion using TLI hooks.
272
273 // Rewrite to a non-atomic form for use in a known non-preemptible
274 // environment.
276 };
277
278 /// Enum that specifies when a multiplication should be expanded.
279 enum class MulExpansionKind {
280 Always, // Always expand the instruction.
281 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
282 // or custom.
283 };
284
285 /// Enum that specifies when a float negation is beneficial.
286 enum class NegatibleCost {
287 Cheaper = 0, // Negated expression is cheaper.
288 Neutral = 1, // Negated expression has the same cost.
289 Expensive = 2 // Negated expression is more expensive.
290 };
291
292 /// Enum of different potentially desirable ways to fold (and/or (setcc ...),
293 /// (setcc ...)).
295 None = 0, // No fold is preferable.
296 AddAnd = 1, // Fold with `Add` op and `And` op is preferable.
297 NotAnd = 2, // Fold with `Not` op and `And` op is preferable.
298 ABS = 4, // Fold with `llvm.abs` op is preferable.
299 };
300
302 public:
305 /// Original unlegalized argument type.
307 /// Same as OrigTy, or partially legalized for soft float libcalls.
309 bool IsSExt : 1;
310 bool IsZExt : 1;
311 bool IsNoExt : 1;
312 bool IsInReg : 1;
313 bool IsSRet : 1;
314 bool IsNest : 1;
315 bool IsByVal : 1;
316 bool IsByRef : 1;
317 bool IsInAlloca : 1;
319 bool IsReturned : 1;
320 bool IsSwiftSelf : 1;
321 bool IsSwiftAsync : 1;
322 bool IsSwiftError : 1;
324 MaybeAlign Alignment = std::nullopt;
325 Type *IndirectType = nullptr;
326
333
336
338
339 LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx);
340 };
341 using ArgListTy = std::vector<ArgListEntry>;
342
344 switch (Content) {
346 // Extend by adding rubbish bits.
347 return ISD::ANY_EXTEND;
349 // Extend by adding zero bits.
350 return ISD::ZERO_EXTEND;
352 // Extend by copying the sign bit.
353 return ISD::SIGN_EXTEND;
354 }
355 llvm_unreachable("Invalid content kind");
356 }
357
358 explicit TargetLoweringBase(const TargetMachine &TM,
359 const TargetSubtargetInfo &STI);
363
364 /// Return true if the target support strict float operation
365 bool isStrictFPEnabled() const {
366 return IsStrictFPEnabled;
367 }
368
369protected:
370 /// Initialize all of the actions to default values.
371 void initActions();
372
373public:
374 const TargetMachine &getTargetMachine() const { return TM; }
375
376 virtual bool useSoftFloat() const { return false; }
377
378 /// Return the pointer type for the given address space, defaults to
379 /// the pointer type from the data layout.
380 /// FIXME: The default needs to be removed once all the code is updated.
381 virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
382 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
383 }
384
385 /// Return the in-memory pointer type for the given address space, defaults to
386 /// the pointer type from the data layout.
387 /// FIXME: The default needs to be removed once all the code is updated.
388 virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
389 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
390 }
391
392 /// Return the type for frame index, which is determined by
393 /// the alloca address space specified through the data layout.
395 return getPointerTy(DL, DL.getAllocaAddrSpace());
396 }
397
398 /// Return the type for code pointers, which is determined by the program
399 /// address space specified through the data layout.
401 return getPointerTy(DL, DL.getProgramAddressSpace());
402 }
403
404 /// Return the type for operands of fence.
405 /// TODO: Let fence operands be of i32 type and remove this.
406 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
407 return getPointerTy(DL);
408 }
409
410 /// Return the type to use for a scalar shift opcode, given the shifted amount
411 /// type. Targets should return a legal type if the input type is legal.
412 /// Targets can return a type that is too small if the input type is illegal.
413 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
414
415 /// Returns the type for the shift amount of a shift opcode. For vectors,
416 /// returns the input type. For scalars, calls getScalarShiftAmountTy.
417 /// If getScalarShiftAmountTy type cannot represent all possible shift
418 /// amounts, returns MVT::i32.
419 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
420
421 /// Return the preferred type to use for a shift opcode, given the shifted
422 /// amount type is \p ShiftValueTy.
424 virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
425 return ShiftValueTy;
426 }
427
428 /// Returns the type to be used for the index operand vector operations. By
429 /// default we assume it will have the same size as an address space 0
430 /// pointer.
431 virtual unsigned getVectorIdxWidth(const DataLayout &DL) const {
432 return DL.getPointerSizeInBits(0);
433 }
434
435 /// Returns the type to be used for the index operand of:
436 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
437 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
441
442 /// Returns the type to be used for the index operand of:
443 /// G_INSERT_VECTOR_ELT, G_EXTRACT_VECTOR_ELT,
444 /// G_INSERT_SUBVECTOR, and G_EXTRACT_SUBVECTOR
447 }
448
449 /// Returns the type to be used for the EVL/AVL operand of VP nodes:
450 /// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
451 /// and must be at least as large as i32. The EVL is implicitly zero-extended
452 /// to any larger type.
453 virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
454
455 /// This callback is used to inspect load/store instructions and add
456 /// target-specific MachineMemOperand flags to them. The default
457 /// implementation does nothing.
461
462 /// This callback is used to inspect load/store SDNode.
463 /// The default implementation does nothing.
468
470 getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL,
471 AssumptionCache *AC = nullptr,
472 const TargetLibraryInfo *LibInfo = nullptr) const;
473 MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
474 const DataLayout &DL) const;
475 MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
476 const DataLayout &DL) const;
478 getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const;
479
480 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
481 return true;
482 }
483
484 /// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
485 /// using generic code in SelectionDAGBuilder.
486 virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
487 return true;
488 }
489
490 virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF,
491 bool IsScalable) const {
492 return true;
493 }
494
495 /// Return true if the @llvm.experimental.cttz.elts intrinsic should be
496 /// expanded using generic code in SelectionDAGBuilder.
497 virtual bool shouldExpandCttzElements(EVT VT) const { return true; }
498
499 /// Return the minimum number of bits required to hold the maximum possible
500 /// number of trailing zero vector elements.
501 unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC,
502 bool ZeroIsPoison,
503 const ConstantRange *VScaleRange) const;
504
505 /// Return true if the @llvm.experimental.vector.match intrinsic should be
506 /// expanded for vector type `VT' and search size `SearchSize' using generic
507 /// code in SelectionDAGBuilder.
508 virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const {
509 return true;
510 }
511
512 // Return true if op(vecreduce(x), vecreduce(y)) should be reassociated to
513 // vecreduce(op(x, y)) for the reduction opcode RedOpc.
514 virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const {
515 return true;
516 }
517
518 /// Return true if it is profitable to convert a select of FP constants into
519 /// a constant pool load whose address depends on the select condition. The
520 /// parameter may be used to differentiate a select with FP compare from
521 /// integer compare.
522 virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
523 return true;
524 }
525
526 /// Does the target have multiple (allocatable) condition registers that
527 /// can be used to store the results of comparisons for use by selects
528 /// and conditional branches. With multiple condition registers, the code
529 /// generator will not aggressively sink comparisons into the blocks of their
530 /// users.
531 virtual bool hasMultipleConditionRegisters(EVT VT) const { return false; }
532
533 /// Return true if the target has BitExtract instructions.
534 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
535
536 /// Return the preferred vector type legalization action.
539 // The default action for one element vectors is to scalarize
541 return TypeScalarizeVector;
542 // The default action for an odd-width vector is to widen.
543 if (!VT.isPow2VectorType())
544 return TypeWidenVector;
545 // The default action for other vectors is to promote
546 return TypePromoteInteger;
547 }
548
549 // Return true if the half type should be promoted using soft promotion rules
550 // where each operation is promoted to f32 individually, then converted to
551 // fp16. The default behavior is to promote chains of operations, keeping
552 // intermediate results in f32 precision and range.
553 virtual bool softPromoteHalfType() const { return false; }
554
555 // Return true if, for soft-promoted half, the half type should be passed to
556 // and returned from functions as f32. The default behavior is to pass as
557 // i16. If soft-promoted half is not used, this function is ignored and
558 // values are always passed and returned as f32.
559 virtual bool useFPRegsForHalfType() const { return false; }
560
561 // There are two general methods for expanding a BUILD_VECTOR node:
562 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
563 // them together.
564 // 2. Build the vector on the stack and then load it.
565 // If this function returns true, then method (1) will be used, subject to
566 // the constraint that all of the necessary shuffles are legal (as determined
567 // by isShuffleMaskLegal). If this function returns false, then method (2) is
568 // always used. The vector type, and the number of defined values, are
569 // provided.
570 virtual bool
572 unsigned DefinedValues) const {
573 return DefinedValues < 3;
574 }
575
576 /// Return true if integer divide is usually cheaper than a sequence of
577 /// several shifts, adds, and multiplies for this target.
578 /// The definition of "cheaper" may depend on whether we're optimizing
579 /// for speed or for size.
580 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
581
582 /// Return true if the target can handle a standalone remainder operation.
583 virtual bool hasStandaloneRem(EVT VT) const {
584 return true;
585 }
586
587 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
588 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
589 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
590 return false;
591 }
592
593 /// Reciprocal estimate status values used by the functions below.
598 };
599
600 /// Return a ReciprocalEstimate enum value for a square root of the given type
601 /// based on the function's attributes. If the operation is not overridden by
602 /// the function's attributes, "Unspecified" is returned and target defaults
603 /// are expected to be used for instruction selection.
604 int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
605
606 /// Return a ReciprocalEstimate enum value for a division of the given type
607 /// based on the function's attributes. If the operation is not overridden by
608 /// the function's attributes, "Unspecified" is returned and target defaults
609 /// are expected to be used for instruction selection.
610 int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
611
612 /// Return the refinement step count for a square root of the given type based
613 /// on the function's attributes. If the operation is not overridden by
614 /// the function's attributes, "Unspecified" is returned and target defaults
615 /// are expected to be used for instruction selection.
616 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
617
618 /// Return the refinement step count for a division of the given type based
619 /// on the function's attributes. If the operation is not overridden by
620 /// the function's attributes, "Unspecified" is returned and target defaults
621 /// are expected to be used for instruction selection.
622 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
623
624 /// Returns true if target has indicated at least one type should be bypassed.
625 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
626
627 /// Returns map of slow types for division or remainder with corresponding
628 /// fast types
630 return BypassSlowDivWidths;
631 }
632
633 /// Return true only if vscale must be a power of two.
634 virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
635
636 /// Return true if Flow Control is an expensive operation that should be
637 /// avoided.
638 bool isJumpExpensive() const { return JumpIsExpensive; }
639
640 // Costs parameters used by
641 // SelectionDAGBuilder::shouldKeepJumpConditionsTogether.
642 // shouldKeepJumpConditionsTogether will use these parameter value to
643 // determine if two conditions in the form `br (and/or cond1, cond2)` should
644 // be split into two branches or left as one.
645 //
646 // BaseCost is the cost threshold (in latency). If the estimated latency of
647 // computing both `cond1` and `cond2` is below the cost of just computing
648 // `cond1` + BaseCost, the two conditions will be kept together. Otherwise
649 // they will be split.
650 //
651 // LikelyBias increases BaseCost if branch probability info indicates that it
652 // is likely that both `cond1` and `cond2` will be computed.
653 //
654 // UnlikelyBias decreases BaseCost if branch probability info indicates that
655 // it is likely that both `cond1` and `cond2` will be computed.
656 //
657 // Set any field to -1 to make it ignored (setting BaseCost to -1 results in
658 // `shouldKeepJumpConditionsTogether` always returning false).
664 // Return params for deciding if we should keep two branch conditions merged
665 // or split them into two separate branches.
666 // Arg0: The binary op joining the two conditions (and/or).
667 // Arg1: The first condition (cond1)
668 // Arg2: The second condition (cond2)
669 virtual CondMergingParams
671 const Value *) const {
672 // -1 will always result in splitting.
673 return {-1, -1, -1};
674 }
675
676 /// Return true if selects are only cheaper than branches if the branch is
677 /// unlikely to be predicted right.
681
682 virtual bool fallBackToDAGISel(const Instruction &Inst) const {
683 return false;
684 }
685
686 /// Return true if the following transform is beneficial:
687 /// fold (conv (load x)) -> (load (conv*)x)
688 /// On architectures that don't natively support some vector loads
689 /// efficiently, casting the load to a smaller vector of larger types and
690 /// loading is more efficient, however, this can be undone by optimizations in
691 /// dag combiner.
692 virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
693 const SelectionDAG &DAG,
694 const MachineMemOperand &MMO) const;
695
696 /// Return true if the following transform is beneficial:
697 /// (store (y (conv x)), y*)) -> (store x, (x*))
698 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
699 const SelectionDAG &DAG,
700 const MachineMemOperand &MMO) const {
701 // Default to the same logic as loads.
702 return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
703 }
704
705 /// Return true if it is expected to be cheaper to do a store of vector
706 /// constant with the given size and type for the address space than to
707 /// store the individual scalar element constants.
708 virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT,
709 unsigned NumElem,
710 unsigned AddrSpace) const {
711 return IsZero;
712 }
713
714 /// Allow store merging for the specified type after legalization in addition
715 /// to before legalization. This may transform stores that do not exist
716 /// earlier (for example, stores created from intrinsics).
717 virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
718 return true;
719 }
720
721 /// Returns if it's reasonable to merge stores to MemVT size.
722 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
723 const MachineFunction &MF) const {
724 return true;
725 }
726
727 /// Return true if it is cheap to speculate a call to intrinsic cttz.
728 virtual bool isCheapToSpeculateCttz(Type *Ty) const {
729 return false;
730 }
731
732 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
733 virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
734 return false;
735 }
736
737 /// Return true if ctlz instruction is fast.
738 virtual bool isCtlzFast() const {
739 return false;
740 }
741
742 /// Return true if ctpop instruction is fast.
743 virtual bool isCtpopFast(EVT VT) const {
744 return isOperationLegal(ISD::CTPOP, VT);
745 }
746
747 /// Return the maximum number of "x & (x - 1)" operations that can be done
748 /// instead of deferring to a custom CTPOP.
749 virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
750 return 1;
751 }
752
753 /// Return true if instruction generated for equality comparison is folded
754 /// with instruction generated for signed comparison.
755 virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
756
757 /// Return true if the heuristic to prefer icmp eq zero should be used in code
758 /// gen prepare.
759 virtual bool preferZeroCompareBranch() const { return false; }
760
761 /// Return true if it is cheaper to split the store of a merged int val
762 /// from a pair of smaller values into multiple stores.
763 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
764 return false;
765 }
766
767 /// Return if the target supports combining a
768 /// chain like:
769 /// \code
770 /// %andResult = and %val1, #mask
771 /// %icmpResult = icmp %andResult, 0
772 /// \endcode
773 /// into a single machine instruction of a form like:
774 /// \code
775 /// cc = test %register, #mask
776 /// \endcode
777 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
778 return false;
779 }
780
781 /// Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
782 virtual bool
784 const MemSDNode &NodeY) const {
785 return true;
786 }
787
788 /// Use bitwise logic to make pairs of compares more efficient. For example:
789 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
790 /// This should be true when it takes more than one instruction to lower
791 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
792 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
793 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
794 return false;
795 }
796
797 /// Return the preferred operand type if the target has a quick way to compare
798 /// integer values of the given size. Assume that any legal integer type can
799 /// be compared efficiently. Targets may override this to allow illegal wide
800 /// types to return a vector type if there is support to compare that type.
801 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
802 MVT VT = MVT::getIntegerVT(NumBits);
804 }
805
806 /// Return true if the target should transform:
807 /// (X & Y) == Y ---> (~X & Y) == 0
808 /// (X & Y) != Y ---> (~X & Y) != 0
809 ///
810 /// This may be profitable if the target has a bitwise and-not operation that
811 /// sets comparison flags. A target may want to limit the transformation based
812 /// on the type of Y or if Y is a constant.
813 ///
814 /// Note that the transform will not occur if Y is known to be a power-of-2
815 /// because a mask and compare of a single bit can be handled by inverting the
816 /// predicate, for example:
817 /// (X & 8) == 8 ---> (X & 8) != 0
818 virtual bool hasAndNotCompare(SDValue Y) const {
819 return false;
820 }
821
822 /// Return true if the target has a bitwise and-not operation:
823 /// X = ~A & B
824 /// This can be used to simplify select or other instructions.
825 virtual bool hasAndNot(SDValue X) const {
826 // If the target has the more complex version of this operation, assume that
827 // it has this operation too.
828 return hasAndNotCompare(X);
829 }
830
831 /// Return true if the target has a bit-test instruction:
832 /// (X & (1 << Y)) ==/!= 0
833 /// This knowledge can be used to prevent breaking the pattern,
834 /// or creating it if it could be recognized.
835 virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
836
837 /// There are two ways to clear extreme bits (either low or high):
838 /// Mask: x & (-1 << y) (the instcombine canonical form)
839 /// Shifts: x >> y << y
840 /// Return true if the variant with 2 variable shifts is preferred.
841 /// Return false if there is no preference.
843 // By default, let's assume that no one prefers shifts.
844 return false;
845 }
846
847 /// Return true if it is profitable to fold a pair of shifts into a mask.
848 /// This is usually true on most targets. But some targets, like Thumb1,
849 /// have immediate shift instructions, but no immediate "and" instruction;
850 /// this makes the fold unprofitable.
851 virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N) const {
852 return true;
853 }
854
855 /// Should we tranform the IR-optimal check for whether given truncation
856 /// down into KeptBits would be truncating or not:
857 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
858 /// Into it's more traditional form:
859 /// ((%x << C) a>> C) dstcond %x
860 /// Return true if we should transform.
861 /// Return false if there is no preference.
863 unsigned KeptBits) const {
864 // By default, let's assume that no one prefers shifts.
865 return false;
866 }
867
868 /// Given the pattern
869 /// (X & (C l>>/<< Y)) ==/!= 0
870 /// return true if it should be transformed into:
871 /// ((X <</l>> Y) & C) ==/!= 0
872 /// WARNING: if 'X' is a constant, the fold may deadlock!
873 /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
874 /// here because it can end up being not linked in.
877 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
878 SelectionDAG &DAG) const {
879 if (hasBitTest(X, Y)) {
880 // One interesting pattern that we'd want to form is 'bit test':
881 // ((1 << Y) & C) ==/!= 0
882 // But we also need to be careful not to try to reverse that fold.
883
884 // Is this '1 << Y' ?
885 if (OldShiftOpcode == ISD::SHL && CC->isOne())
886 return false; // Keep the 'bit test' pattern.
887
888 // Will it be '1 << Y' after the transform ?
889 if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
890 return true; // Do form the 'bit test' pattern.
891 }
892
893 // If 'X' is a constant, and we transform, then we will immediately
894 // try to undo the fold, thus causing endless combine loop.
895 // So by default, let's assume everyone prefers the fold
896 // iff 'X' is not a constant.
897 return !XC;
898 }
899
900 // Return true if its desirable to perform the following transform:
901 // (fmul C, (uitofp Pow2))
902 // -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
903 // (fdiv C, (uitofp Pow2))
904 // -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
905 //
906 // This is only queried after we have verified the transform will be bitwise
907 // equals.
908 //
909 // SDNode *N : The FDiv/FMul node we want to transform.
910 // SDValue FPConst: The Float constant operand in `N`.
911 // SDValue IntPow2: The Integer power of 2 operand in `N`.
913 SDValue IntPow2) const {
914 // Default to avoiding fdiv which is often very expensive.
915 return N->getOpcode() == ISD::FDIV;
916 }
917
918 // Given:
919 // (icmp eq/ne (and X, C0), (shift X, C1))
920 // or
921 // (icmp eq/ne X, (rotate X, CPow2))
922
923 // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
924 // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
925 // Do we prefer the shift to be shift-right, shift-left, or rotate.
926 // Note: Its only valid to convert the rotate version to the shift version iff
927 // the shift-amt (`C1`) is a power of 2 (including 0).
928 // If ShiftOpc (current Opcode) is returned, do nothing.
930 EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
931 const APInt &ShiftOrRotateAmt,
932 const std::optional<APInt> &AndMask) const {
933 return ShiftOpc;
934 }
935
936 /// These two forms are equivalent:
937 /// sub %y, (xor %x, -1)
938 /// add (add %x, 1), %y
939 /// The variant with two add's is IR-canonical.
940 /// Some targets may prefer one to the other.
941 virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
942 // By default, let's assume that everyone prefers the form with two add's.
943 return true;
944 }
945
946 // By default prefer folding (abs (sub nsw x, y)) -> abds(x, y). Some targets
947 // may want to avoid this to prevent loss of sub_nsw pattern.
948 virtual bool preferABDSToABSWithNSW(EVT VT) const {
949 return true;
950 }
951
952 // Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
953 virtual bool preferScalarizeSplat(SDNode *N) const { return true; }
954
955 // Return true if the target wants to transform:
956 // (TruncVT truncate(sext_in_reg(VT X, ExtVT))
957 // -> (TruncVT sext_in_reg(truncate(VT X), ExtVT))
958 // Some targets might prefer pre-sextinreg to improve truncation/saturation.
959 virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const {
960 return true;
961 }
962
963 /// Return true if the target wants to use the optimization that
964 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
965 /// promotedInst1(...(promotedInstN(ext(load)))).
967
968 /// Return true if the target can combine store(extractelement VectorTy,
969 /// Idx).
970 /// \p Cost[out] gives the cost of that transformation when this is true.
971 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
972 unsigned &Cost) const {
973 return false;
974 }
975
976 /// Return true if the target shall perform extract vector element and store
977 /// given that the vector is known to be splat of constant.
978 /// \p Index[out] gives the index of the vector element to be extracted when
979 /// this is true.
981 Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const {
982 return false;
983 }
984
985 /// Return true if inserting a scalar into a variable element of an undef
986 /// vector is more efficiently handled by splatting the scalar instead.
987 virtual bool shouldSplatInsEltVarIndex(EVT) const {
988 return false;
989 }
990
991 /// Return true if target always benefits from combining into FMA for a
992 /// given value type. This must typically return false on targets where FMA
993 /// takes more cycles to execute than FADD.
994 virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
995
996 /// Return true if target always benefits from combining into FMA for a
997 /// given value type. This must typically return false on targets where FMA
998 /// takes more cycles to execute than FADD.
999 virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
1000
1001 /// Return the ValueType of the result of SETCC operations.
1002 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
1003 EVT VT) const;
1004
1005 /// Return the ValueType for comparison libcalls. Comparison libcalls include
1006 /// floating point comparison calls, and Ordered/Unordered check calls on
1007 /// floating point numbers.
1008 virtual
1009 MVT::SimpleValueType getCmpLibcallReturnType() const;
1010
1011 /// For targets without i1 registers, this gives the nature of the high-bits
1012 /// of boolean values held in types wider than i1.
1013 ///
1014 /// "Boolean values" are special true/false values produced by nodes like
1015 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
1016 /// Not to be confused with general values promoted from i1. Some cpus
1017 /// distinguish between vectors of boolean and scalars; the isVec parameter
1018 /// selects between the two kinds. For example on X86 a scalar boolean should
1019 /// be zero extended from i1, while the elements of a vector of booleans
1020 /// should be sign extended from i1.
1021 ///
1022 /// Some cpus also treat floating point types the same way as they treat
1023 /// vectors instead of the way they treat scalars.
1024 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
1025 if (isVec)
1026 return BooleanVectorContents;
1027 return isFloat ? BooleanFloatContents : BooleanContents;
1028 }
1029
1031 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
1032 }
1033
1034 /// Promote the given target boolean to a target boolean of the given type.
1035 /// A target boolean is an integer value, not necessarily of type i1, the bits
1036 /// of which conform to getBooleanContents.
1037 ///
1038 /// ValVT is the type of values that produced the boolean.
1040 EVT ValVT) const {
1041 SDLoc dl(Bool);
1042 EVT BoolVT =
1043 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
1045 return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1046 }
1047
1048 /// Return target scheduling preference.
1050 return SchedPreferenceInfo;
1051 }
1052
1053 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
1054 /// for different nodes. This function returns the preference (or none) for
1055 /// the given node.
1057 return Sched::None;
1058 }
1059
1060 /// Return the register class that should be used for the specified value
1061 /// type.
1062 virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
1063 (void)isDivergent;
1064 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1065 assert(RC && "This value type is not natively supported!");
1066 return RC;
1067 }
1068
1069 /// Allows target to decide about the register class of the
1070 /// specific value that is live outside the defining block.
1071 /// Returns true if the value needs uniform register class.
1073 const Value *) const {
1074 return false;
1075 }
1076
1077 /// Return the 'representative' register class for the specified value
1078 /// type.
1079 ///
1080 /// The 'representative' register class is the largest legal super-reg
1081 /// register class for the register class of the value type. For example, on
1082 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
1083 /// register class is GR64 on x86_64.
1084 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
1085 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
1086 return RC;
1087 }
1088
1089 /// Return the cost of the 'representative' register class for the specified
1090 /// value type.
1092 return RepRegClassCostForVT[VT.SimpleTy];
1093 }
1094
1095 /// Return the preferred strategy to legalize tihs SHIFT instruction, with
1096 /// \p ExpansionFactor being the recursion depth - how many expansion needed.
1102 virtual ShiftLegalizationStrategy
1104 unsigned ExpansionFactor) const {
1105 if (ExpansionFactor == 1)
1108 }
1109
1110 /// Return true if the target has native support for the specified value type.
1111 /// This means that it has a register that directly holds it without
1112 /// promotions or expansions.
1113 bool isTypeLegal(EVT VT) const {
1114 assert(!VT.isSimple() ||
1115 (unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
1116 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
1117 }
1118
1120 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
1121 /// that indicates how instruction selection should deal with the type.
1122 LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
1123
1124 public:
1125 ValueTypeActionImpl() { llvm::fill(ValueTypeActions, TypeLegal); }
1126
1128 return ValueTypeActions[VT.SimpleTy];
1129 }
1130
1132 ValueTypeActions[VT.SimpleTy] = Action;
1133 }
1134 };
1135
1137 return ValueTypeActions;
1138 }
1139
1140 /// Return pair that represents the legalization kind (first) that needs to
1141 /// happen to EVT (second) in order to type-legalize it.
1142 ///
1143 /// First: how we should legalize values of this type, either it is already
1144 /// legal (return 'Legal') or we need to promote it to a larger type (return
1145 /// 'Promote'), or we need to expand it into multiple registers of smaller
1146 /// integer type (return 'Expand'). 'Custom' is not an option.
1147 ///
1148 /// Second: for types supported by the target, this is an identity function.
1149 /// For types that must be promoted to larger types, this returns the larger
1150 /// type to promote to. For integer types that are larger than the largest
1151 /// integer register, this contains one step in the expansion to get to the
1152 /// smaller register. For illegal floating point types, this returns the
1153 /// integer type to transform to.
1154 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1155
1156 /// Return how we should legalize values of this type, either it is already
1157 /// legal (return 'Legal') or we need to promote it to a larger type (return
1158 /// 'Promote'), or we need to expand it into multiple registers of smaller
1159 /// integer type (return 'Expand'). 'Custom' is not an option.
1161 return getTypeConversion(Context, VT).first;
1162 }
1164 return ValueTypeActions.getTypeAction(VT);
1165 }
1166
1167 /// For types supported by the target, this is an identity function. For
1168 /// types that must be promoted to larger types, this returns the larger type
1169 /// to promote to. For integer types that are larger than the largest integer
1170 /// register, this contains one step in the expansion to get to the smaller
1171 /// register. For illegal floating point types, this returns the integer type
1172 /// to transform to.
1173 virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
1174 return getTypeConversion(Context, VT).second;
1175 }
1176
1177 /// Perform getTypeToTransformTo repeatedly until a legal type is obtained.
1178 /// Useful for vector operations that might take multiple steps to legalize.
1180 EVT LegalVT = getTypeToTransformTo(Context, VT);
1181 while (LegalVT != VT) {
1182 VT = LegalVT;
1183 LegalVT = getTypeToTransformTo(Context, VT);
1184 }
1185 return LegalVT;
1186 }
1187
1188 /// For types supported by the target, this is an identity function. For
1189 /// types that must be expanded (i.e. integer types that are larger than the
1190 /// largest integer register or illegal floating point types), this returns
1191 /// the largest legal type it will be expanded to.
1192 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
1193 assert(!VT.isVector());
1194 while (true) {
1195 switch (getTypeAction(Context, VT)) {
1196 case TypeLegal:
1197 return VT;
1198 case TypeExpandInteger:
1199 VT = getTypeToTransformTo(Context, VT);
1200 break;
1201 default:
1202 llvm_unreachable("Type is not legal nor is it to be expanded!");
1203 }
1204 }
1205 }
1206
1207 /// Vector types are broken down into some number of legal first class types.
1208 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
1209 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
1210 /// turns into 4 EVT::i32 values with both PPC and X86.
1211 ///
1212 /// This method returns the number of registers needed, and the VT for each
1213 /// register. It also returns the VT and quantity of the intermediate values
1214 /// before they are promoted/expanded.
1215 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1216 EVT &IntermediateVT,
1217 unsigned &NumIntermediates,
1218 MVT &RegisterVT) const;
1219
1220 /// Certain targets such as MIPS require that some types such as vectors are
1221 /// always broken down into scalars in some contexts. This occurs even if the
1222 /// vector type is legal.
1224 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1225 unsigned &NumIntermediates, MVT &RegisterVT) const {
1226 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
1227 RegisterVT);
1228 }
1229
1231 unsigned opc = 0; // target opcode
1232 EVT memVT; // memory VT
1233
1234 // value representing memory location
1236
1237 // Fallback address space for use if ptrVal is nullptr. std::nullopt means
1238 // unknown address space.
1239 std::optional<unsigned> fallbackAddressSpace;
1240
1241 int offset = 0; // offset off of ptrVal
1242 uint64_t size = 0; // the size of the memory location
1243 // (taken from memVT if zero)
1244 MaybeAlign align = Align(1); // alignment
1245
1250 IntrinsicInfo() = default;
1251 };
1252
1253 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1254 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1255 /// true and store the intrinsic information into the IntrinsicInfo that was
1256 /// passed to the function.
1259 unsigned /*Intrinsic*/) const {
1260 return false;
1261 }
1262
1263 /// Returns true if the target can instruction select the specified FP
1264 /// immediate natively. If false, the legalizer will materialize the FP
1265 /// immediate as a load from a constant pool.
1266 virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1267 bool ForCodeSize = false) const {
1268 return false;
1269 }
1270
1271 /// Targets can use this to indicate that they only support *some*
1272 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1273 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1274 /// legal.
1275 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1276 return true;
1277 }
1278
1279 /// Returns true if the operation can trap for the value type.
1280 ///
1281 /// VT must be a legal type. By default, we optimistically assume most
1282 /// operations don't trap except for integer divide and remainder.
1283 virtual bool canOpTrap(unsigned Op, EVT VT) const;
1284
1285 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1286 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1287 /// constant pool entry.
1289 EVT /*VT*/) const {
1290 return false;
1291 }
1292
1293 /// How to legalize this custom operation?
1295 return Legal;
1296 }
1297
1298 /// Return how this operation should be treated: either it is legal, needs to
1299 /// be promoted to a larger size, needs to be expanded to some other code
1300 /// sequence, or the target has a custom expander for it.
1302 // If a target-specific SDNode requires legalization, require the target
1303 // to provide custom legalization for it.
1304 if (Op >= std::size(OpActions[0]))
1305 return Custom;
1306 if (VT.isExtended())
1307 return Expand;
1308 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1309 }
1310
1311 /// Custom method defined by each target to indicate if an operation which
1312 /// may require a scale is supported natively by the target.
1313 /// If not, the operation is illegal.
1314 virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1315 unsigned Scale) const {
1316 return false;
1317 }
1318
1319 /// Some fixed point operations may be natively supported by the target but
1320 /// only for specific scales. This method allows for checking
1321 /// if the width is supported by the target for a given operation that may
1322 /// depend on scale.
1324 unsigned Scale) const {
1325 auto Action = getOperationAction(Op, VT);
1326 if (Action != Legal)
1327 return Action;
1328
1329 // This operation is supported in this type but may only work on specific
1330 // scales.
1331 bool Supported;
1332 switch (Op) {
1333 default:
1334 llvm_unreachable("Unexpected fixed point operation.");
1335 case ISD::SMULFIX:
1336 case ISD::SMULFIXSAT:
1337 case ISD::UMULFIX:
1338 case ISD::UMULFIXSAT:
1339 case ISD::SDIVFIX:
1340 case ISD::SDIVFIXSAT:
1341 case ISD::UDIVFIX:
1342 case ISD::UDIVFIXSAT:
1343 Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1344 break;
1345 }
1346
1347 return Supported ? Action : Expand;
1348 }
1349
1350 // If Op is a strict floating-point operation, return the result
1351 // of getOperationAction for the equivalent non-strict operation.
1353 unsigned EqOpc;
1354 switch (Op) {
1355 default: llvm_unreachable("Unexpected FP pseudo-opcode");
1356#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1357 case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1358#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1359 case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1360#include "llvm/IR/ConstrainedOps.def"
1361 }
1362
1363 return getOperationAction(EqOpc, VT);
1364 }
1365
1366 /// Return true if the specified operation is legal on this target or can be
1367 /// made legal with custom lowering. This is used to help guide high-level
1368 /// lowering decisions. LegalOnly is an optional convenience for code paths
1369 /// traversed pre and post legalisation.
1371 bool LegalOnly = false) const {
1372 if (LegalOnly)
1373 return isOperationLegal(Op, VT);
1374
1375 return (VT == MVT::Other || isTypeLegal(VT)) &&
1376 (getOperationAction(Op, VT) == Legal ||
1377 getOperationAction(Op, VT) == Custom);
1378 }
1379
1380 /// Return true if the specified operation is legal on this target or can be
1381 /// made legal using promotion. This is used to help guide high-level lowering
1382 /// decisions. LegalOnly is an optional convenience for code paths traversed
1383 /// pre and post legalisation.
1385 bool LegalOnly = false) const {
1386 if (LegalOnly)
1387 return isOperationLegal(Op, VT);
1388
1389 return (VT == MVT::Other || isTypeLegal(VT)) &&
1390 (getOperationAction(Op, VT) == Legal ||
1391 getOperationAction(Op, VT) == Promote);
1392 }
1393
1394 /// Return true if the specified operation is legal on this target or can be
1395 /// made legal with custom lowering or using promotion. This is used to help
1396 /// guide high-level lowering decisions. LegalOnly is an optional convenience
1397 /// for code paths traversed pre and post legalisation.
1399 bool LegalOnly = false) const {
1400 if (LegalOnly)
1401 return isOperationLegal(Op, VT);
1402
1403 return (VT == MVT::Other || isTypeLegal(VT)) &&
1404 (getOperationAction(Op, VT) == Legal ||
1405 getOperationAction(Op, VT) == Custom ||
1406 getOperationAction(Op, VT) == Promote);
1407 }
1408
1409 /// Return true if the operation uses custom lowering, regardless of whether
1410 /// the type is legal or not.
1411 bool isOperationCustom(unsigned Op, EVT VT) const {
1412 return getOperationAction(Op, VT) == Custom;
1413 }
1414
1415 /// Return true if lowering to a jump table is allowed.
1416 virtual bool areJTsAllowed(const Function *Fn) const {
1417 if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
1418 return false;
1419
1420 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1422 }
1423
1424 /// Check whether the range [Low,High] fits in a machine word.
1425 bool rangeFitsInWord(const APInt &Low, const APInt &High,
1426 const DataLayout &DL) const {
1427 // FIXME: Using the pointer type doesn't seem ideal.
1428 uint64_t BW = DL.getIndexSizeInBits(0u);
1429 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1430 return Range <= BW;
1431 }
1432
1433 /// Return true if lowering to a jump table is suitable for a set of case
1434 /// clusters which may contain \p NumCases cases, \p Range range of values.
1435 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1437 BlockFrequencyInfo *BFI) const;
1438
1439 /// Returns preferred type for switch condition.
1440 virtual MVT getPreferredSwitchConditionType(LLVMContext &Context,
1441 EVT ConditionVT) const;
1442
1443 /// Return true if lowering to a bit test is suitable for a set of case
1444 /// clusters which contains \p NumDests unique destinations, \p Low and
1445 /// \p High as its lowest and highest case values, and expects \p NumCmps
1446 /// case value comparisons. Check if the number of destinations, comparison
1447 /// metric, and range are all suitable.
1450 const APInt &Low, const APInt &High, const DataLayout &DL) const {
1451 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1452 // range of cases both require only one branch to lower. Just looking at the
1453 // number of clusters and destinations should be enough to decide whether to
1454 // build bit tests.
1455
1456 // To lower a range with bit tests, the range must fit the bitwidth of a
1457 // machine word.
1458 if (!rangeFitsInWord(Low, High, DL))
1459 return false;
1460
1461 unsigned NumDests = DestCmps.size();
1462 unsigned NumCmps = 0;
1463 unsigned int MaxBitTestEntry = 0;
1464 for (auto &DestCmp : DestCmps) {
1465 NumCmps += DestCmp.second;
1466 if (DestCmp.second > MaxBitTestEntry)
1467 MaxBitTestEntry = DestCmp.second;
1468 }
1469
1470 // Comparisons might be cheaper for small number of comparisons, which can
1471 // be Arch Target specific.
1472 if (MaxBitTestEntry < getMinimumBitTestCmps())
1473 return false;
1474
1475 // Decide whether it's profitable to lower this range with bit tests. Each
1476 // destination requires a bit test and branch, and there is an overall range
1477 // check branch. For a small number of clusters, separate comparisons might
1478 // be cheaper, and for many destinations, splitting the range might be
1479 // better.
1480 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1481 (NumDests == 3 && NumCmps >= 6);
1482 }
1483
1484 /// Return true if the specified operation is illegal on this target or
1485 /// unlikely to be made legal with custom lowering. This is used to help guide
1486 /// high-level lowering decisions.
1487 bool isOperationExpand(unsigned Op, EVT VT) const {
1488 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1489 }
1490
1491 /// Return true if the specified operation is legal on this target.
1492 bool isOperationLegal(unsigned Op, EVT VT) const {
1493 return (VT == MVT::Other || isTypeLegal(VT)) &&
1494 getOperationAction(Op, VT) == Legal;
1495 }
1496
1497 bool isOperationExpandOrLibCall(unsigned Op, EVT VT) const {
1498 return isOperationExpand(Op, VT) || getOperationAction(Op, VT) == LibCall;
1499 }
1500
1501 /// Return how this load with extension should be treated: either it is legal,
1502 /// needs to be promoted to a larger size, needs to be expanded to some other
1503 /// code sequence, or the target has a custom expander for it.
1504 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1505 EVT MemVT) const {
1506 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1507 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1508 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1510 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1511 unsigned Shift = 4 * ExtType;
1512 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1513 }
1514
1515 /// Return true if the specified load with extension is legal on this target.
1516 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1517 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1518 }
1519
1520 /// Return true if the specified load with extension is legal or custom
1521 /// on this target.
1522 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1523 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1524 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1525 }
1526
1527 /// Same as getLoadExtAction, but for atomic loads.
1529 EVT MemVT) const {
1530 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1531 unsigned ValI = (unsigned)ValVT.getSimpleVT().SimpleTy;
1532 unsigned MemI = (unsigned)MemVT.getSimpleVT().SimpleTy;
1534 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1535 unsigned Shift = 4 * ExtType;
1536 LegalizeAction Action =
1537 (LegalizeAction)((AtomicLoadExtActions[ValI][MemI] >> Shift) & 0xf);
1538 assert((Action == Legal || Action == Expand) &&
1539 "Unsupported atomic load extension action.");
1540 return Action;
1541 }
1542
1543 /// Return true if the specified atomic load with extension is legal on
1544 /// this target.
1545 bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1546 return getAtomicLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1547 }
1548
1549 /// Return how this store with truncation should be treated: either it is
1550 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1551 /// other code sequence, or the target has a custom expander for it.
1553 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1554 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1555 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1557 "Table isn't big enough!");
1558 return TruncStoreActions[ValI][MemI];
1559 }
1560
1561 /// Return true if the specified store with truncation is legal on this
1562 /// target.
1563 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1564 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1565 }
1566
1567 /// Return true if the specified store with truncation has solution on this
1568 /// target.
1569 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1570 return isTypeLegal(ValVT) &&
1571 (getTruncStoreAction(ValVT, MemVT) == Legal ||
1572 getTruncStoreAction(ValVT, MemVT) == Custom);
1573 }
1574
1575 virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
1576 bool LegalOnly) const {
1577 if (LegalOnly)
1578 return isTruncStoreLegal(ValVT, MemVT);
1579
1580 return isTruncStoreLegalOrCustom(ValVT, MemVT);
1581 }
1582
1583 /// Return how the indexed load should be treated: either it is legal, needs
1584 /// to be promoted to a larger size, needs to be expanded to some other code
1585 /// sequence, or the target has a custom expander for it.
1586 LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1587 return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1588 }
1589
1590 /// Return true if the specified indexed load is legal on this target.
1591 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1592 return VT.isSimple() &&
1593 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1594 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1595 }
1596
1597 /// Return how the indexed store should be treated: either it is legal, needs
1598 /// to be promoted to a larger size, needs to be expanded to some other code
1599 /// sequence, or the target has a custom expander for it.
1600 LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1601 return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1602 }
1603
1604 /// Return true if the specified indexed load is legal on this target.
1605 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1606 return VT.isSimple() &&
1607 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1608 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1609 }
1610
1611 /// Return how the indexed load should be treated: either it is legal, needs
1612 /// to be promoted to a larger size, needs to be expanded to some other code
1613 /// sequence, or the target has a custom expander for it.
1614 LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1615 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1616 }
1617
1618 /// Return true if the specified indexed load is legal on this target.
1619 bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1620 return VT.isSimple() &&
1621 (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1623 }
1624
1625 /// Return how the indexed store should be treated: either it is legal, needs
1626 /// to be promoted to a larger size, needs to be expanded to some other code
1627 /// sequence, or the target has a custom expander for it.
1628 LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1629 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1630 }
1631
1632 /// Return true if the specified indexed load is legal on this target.
1633 bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1634 return VT.isSimple() &&
1635 (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1637 }
1638
1639 /// Returns true if the index type for a masked gather/scatter requires
1640 /// extending
1641 virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
1642
1643 // Returns true if Extend can be folded into the index of a masked gathers/scatters
1644 // on this target.
1645 virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const {
1646 return false;
1647 }
1648
1649 // Return true if the target supports a scatter/gather instruction with
1650 // indices which are scaled by the particular value. Note that all targets
1651 // must by definition support scale of 1.
1653 uint64_t ElemSize) const {
1654 // MGATHER/MSCATTER are only required to support scaling by one or by the
1655 // element size.
1656 if (Scale != ElemSize && Scale != 1)
1657 return false;
1658 return true;
1659 }
1660
1661 /// Return how the condition code should be treated: either it is legal, needs
1662 /// to be expanded to some other code sequence, or the target has a custom
1663 /// expander for it.
1666 assert((unsigned)CC < std::size(CondCodeActions) &&
1667 ((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
1668 "Table isn't big enough!");
1669 // See setCondCodeAction for how this is encoded.
1670 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1671 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1672 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1673 assert(Action != Promote && "Can't promote condition code!");
1674 return Action;
1675 }
1676
1677 /// Return true if the specified condition code is legal for a comparison of
1678 /// the specified types on this target.
1679 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1680 return getCondCodeAction(CC, VT) == Legal;
1681 }
1682
1683 /// Return true if the specified condition code is legal or custom for a
1684 /// comparison of the specified types on this target.
1686 return getCondCodeAction(CC, VT) == Legal ||
1687 getCondCodeAction(CC, VT) == Custom;
1688 }
1689
1690 /// Return how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type
1691 /// InputVT should be treated. Either it's legal, needs to be promoted to a
1692 /// larger size, needs to be expanded to some other code sequence, or the
1693 /// target has a custom expander for it.
1695 EVT InputVT) const {
1698 PartialReduceActionTypes Key = {Opc, AccVT.getSimpleVT().SimpleTy,
1699 InputVT.getSimpleVT().SimpleTy};
1700 auto It = PartialReduceMLAActions.find(Key);
1701 return It != PartialReduceMLAActions.end() ? It->second : Expand;
1702 }
1703
1704 /// Return true if a PARTIAL_REDUCE_U/SMLA node with the specified types is
1705 /// legal or custom for this target.
1707 EVT InputVT) const {
1708 LegalizeAction Action = getPartialReduceMLAAction(Opc, AccVT, InputVT);
1709 return Action == Legal || Action == Custom;
1710 }
1711
1712 /// If the action for this operation is to promote, this method returns the
1713 /// ValueType to promote to.
1714 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1716 "This operation isn't promoted!");
1717
1718 // See if this has an explicit type specified.
1719 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1721 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1722 if (PTTI != PromoteToType.end()) return PTTI->second;
1723
1724 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1725 "Cannot autopromote this type, add it with AddPromotedToType.");
1726
1727 uint64_t VTBits = VT.getScalarSizeInBits();
1728 MVT NVT = VT;
1729 do {
1730 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1731 assert(NVT.isInteger() == VT.isInteger() &&
1732 NVT.isFloatingPoint() == VT.isFloatingPoint() &&
1733 "Didn't find type to promote to!");
1734 } while (VTBits >= NVT.getScalarSizeInBits() || !isTypeLegal(NVT) ||
1735 getOperationAction(Op, NVT) == Promote);
1736 return NVT;
1737 }
1738
1740 bool AllowUnknown = false) const {
1741 return getValueType(DL, Ty, AllowUnknown);
1742 }
1743
1744 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1745 /// operations except for the pointer size. If AllowUnknown is true, this
1746 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1747 /// otherwise it will assert.
1749 bool AllowUnknown = false) const {
1750 // Lower scalar pointers to native pointer types.
1751 if (auto *PTy = dyn_cast<PointerType>(Ty))
1752 return getPointerTy(DL, PTy->getAddressSpace());
1753
1754 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1755 Type *EltTy = VTy->getElementType();
1756 // Lower vectors of pointers to native pointer types.
1757 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1758 EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1759 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1760 }
1761 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1762 VTy->getElementCount());
1763 }
1764
1765 return EVT::getEVT(Ty, AllowUnknown);
1766 }
1767
1769 bool AllowUnknown = false) const {
1770 // Lower scalar pointers to native pointer types.
1771 if (auto *PTy = dyn_cast<PointerType>(Ty))
1772 return getPointerMemTy(DL, PTy->getAddressSpace());
1773
1774 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1775 Type *EltTy = VTy->getElementType();
1776 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1777 EVT PointerTy(getPointerMemTy(DL, PTy->getAddressSpace()));
1778 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1779 }
1780 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1781 VTy->getElementCount());
1782 }
1783
1784 return getValueType(DL, Ty, AllowUnknown);
1785 }
1786
1787
1788 /// Return the MVT corresponding to this LLVM type. See getValueType.
1790 bool AllowUnknown = false) const {
1791 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1792 }
1793
1794 /// Returns the desired alignment for ByVal or InAlloca aggregate function
1795 /// arguments in the caller parameter area.
1796 virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1797
1798 /// Return the type of registers that this ValueType will eventually require.
1800 assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
1801 return RegisterTypeForVT[VT.SimpleTy];
1802 }
1803
1804 /// Return the type of registers that this ValueType will eventually require.
1805 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1806 if (VT.isSimple())
1807 return getRegisterType(VT.getSimpleVT());
1808 if (VT.isVector()) {
1809 EVT VT1;
1810 MVT RegisterVT;
1811 unsigned NumIntermediates;
1812 (void)getVectorTypeBreakdown(Context, VT, VT1,
1813 NumIntermediates, RegisterVT);
1814 return RegisterVT;
1815 }
1816 if (VT.isInteger()) {
1817 return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1818 }
1819 llvm_unreachable("Unsupported extended type!");
1820 }
1821
1822 /// Return the number of registers that this ValueType will eventually
1823 /// require.
1824 ///
1825 /// This is one for any types promoted to live in larger registers, but may be
1826 /// more than one for types (like i64) that are split into pieces. For types
1827 /// like i140, which are first promoted then expanded, it is the number of
1828 /// registers needed to hold all the bits of the original type. For an i140
1829 /// on a 32 bit machine this means 5 registers.
1830 ///
1831 /// RegisterVT may be passed as a way to override the default settings, for
1832 /// instance with i128 inline assembly operands on SystemZ.
1833 virtual unsigned
1835 std::optional<MVT> RegisterVT = std::nullopt) const {
1836 if (VT.isSimple()) {
1837 assert((unsigned)VT.getSimpleVT().SimpleTy <
1838 std::size(NumRegistersForVT));
1839 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1840 }
1841 if (VT.isVector()) {
1842 EVT VT1;
1843 MVT VT2;
1844 unsigned NumIntermediates;
1845 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1846 }
1847 if (VT.isInteger()) {
1848 unsigned BitWidth = VT.getSizeInBits();
1849 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1850 return (BitWidth + RegWidth - 1) / RegWidth;
1851 }
1852 llvm_unreachable("Unsupported extended type!");
1853 }
1854
1855 /// Certain combinations of ABIs, Targets and features require that types
1856 /// are legal for some operations and not for other operations.
1857 /// For MIPS all vector types must be passed through the integer register set.
1859 CallingConv::ID CC, EVT VT) const {
1860 return getRegisterType(Context, VT);
1861 }
1862
1863 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1864 /// this occurs when a vector type is used, as vector are passed through the
1865 /// integer register set.
1867 CallingConv::ID CC,
1868 EVT VT) const {
1869 return getNumRegisters(Context, VT);
1870 }
1871
1872 /// Certain targets have context sensitive alignment requirements, where one
1873 /// type has the alignment requirement of another type.
1875 const DataLayout &DL) const {
1876 return DL.getABITypeAlign(ArgTy);
1877 }
1878
1879 /// If true, then instruction selection should seek to shrink the FP constant
1880 /// of the specified type to a smaller type in order to save space and / or
1881 /// reduce runtime.
1882 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1883
1884 /// Return true if it is profitable to reduce a load to a smaller type.
1885 /// \p ByteOffset is only set if we know the pointer offset at compile time
1886 /// otherwise we should assume that additional pointer math is required.
1887 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1888 /// Example: (i16 (trunc (srl (i32 (load x)), 16)) -> i16 load x+2
1890 SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT,
1891 std::optional<unsigned> ByteOffset = std::nullopt) const {
1892 // By default, assume that it is cheaper to extract a subvector from a wide
1893 // vector load rather than creating multiple narrow vector loads.
1894 if (NewVT.isVector() && !SDValue(Load, 0).hasOneUse())
1895 return false;
1896
1897 return true;
1898 }
1899
1900 /// Return true (the default) if it is profitable to remove a sext_inreg(x)
1901 /// where the sext is redundant, and use x directly.
1902 virtual bool shouldRemoveRedundantExtend(SDValue Op) const { return true; }
1903
1904 /// Indicates if any padding is guaranteed to go at the most significant bits
1905 /// when storing the type to memory and the type size isn't equal to the store
1906 /// size.
1908 return VT.isScalarInteger() && !VT.isByteSized();
1909 }
1910
1911 /// When splitting a value of the specified type into parts, does the Lo
1912 /// or Hi part come first? This usually follows the endianness, except
1913 /// for ppcf128, where the Hi part always comes first.
1915 return DL.isBigEndian() || VT == MVT::ppcf128;
1916 }
1917
1918 /// If true, the target has custom DAG combine transformations that it can
1919 /// perform for the specified node.
1921 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
1922 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1923 }
1924
1927 }
1928
1929 /// Returns the size of the platform's va_list object.
1930 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1931 return getPointerTy(DL).getSizeInBits();
1932 }
1933
1934 /// Get maximum # of store operations permitted for llvm.memset
1935 ///
1936 /// This function returns the maximum number of store operations permitted
1937 /// to replace a call to llvm.memset. The value is set by the target at the
1938 /// performance threshold for such a replacement. If OptSize is true,
1939 /// return the limit for functions that have OptSize attribute.
1940 unsigned getMaxStoresPerMemset(bool OptSize) const {
1942 }
1943
1944 /// Get maximum # of store operations permitted for llvm.memcpy
1945 ///
1946 /// This function returns the maximum number of store operations permitted
1947 /// to replace a call to llvm.memcpy. The value is set by the target at the
1948 /// performance threshold for such a replacement. If OptSize is true,
1949 /// return the limit for functions that have OptSize attribute.
1950 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1952 }
1953
1954 /// \brief Get maximum # of store operations to be glued together
1955 ///
1956 /// This function returns the maximum number of store operations permitted
1957 /// to glue together during lowering of llvm.memcpy. The value is set by
1958 // the target at the performance threshold for such a replacement.
1959 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1961 }
1962
1963 /// Get maximum # of load operations permitted for memcmp
1964 ///
1965 /// This function returns the maximum number of load operations permitted
1966 /// to replace a call to memcmp. The value is set by the target at the
1967 /// performance threshold for such a replacement. If OptSize is true,
1968 /// return the limit for functions that have OptSize attribute.
1969 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1971 }
1972
1973 /// Get maximum # of store operations permitted for llvm.memmove
1974 ///
1975 /// This function returns the maximum number of store operations permitted
1976 /// to replace a call to llvm.memmove. The value is set by the target at the
1977 /// performance threshold for such a replacement. If OptSize is true,
1978 /// return the limit for functions that have OptSize attribute.
1979 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1981 }
1982
1983 /// Determine if the target supports unaligned memory accesses.
1984 ///
1985 /// This function returns true if the target allows unaligned memory accesses
1986 /// of the specified type in the given address space. If true, it also returns
1987 /// a relative speed of the unaligned memory access in the last argument by
1988 /// reference. The higher the speed number the faster the operation comparing
1989 /// to a number returned by another such call. This is used, for example, in
1990 /// situations where an array copy/move/set is converted to a sequence of
1991 /// store operations. Its use helps to ensure that such replacements don't
1992 /// generate code that causes an alignment error (trap) on the target machine.
1994 EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1996 unsigned * /*Fast*/ = nullptr) const {
1997 return false;
1998 }
1999
2000 /// LLT handling variant.
2002 LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
2004 unsigned * /*Fast*/ = nullptr) const {
2005 return false;
2006 }
2007
2008 /// This function returns true if the memory access is aligned or if the
2009 /// target allows this specific unaligned memory access. If the access is
2010 /// allowed, the optional final parameter returns a relative speed of the
2011 /// access (as defined by the target).
2012 bool allowsMemoryAccessForAlignment(
2013 LLVMContext &Context, const DataLayout &DL, EVT VT,
2014 unsigned AddrSpace = 0, Align Alignment = Align(1),
2016 unsigned *Fast = nullptr) const;
2017
2018 /// Return true if the memory access of this type is aligned or if the target
2019 /// allows this specific unaligned access for the given MachineMemOperand.
2020 /// If the access is allowed, the optional final parameter returns a relative
2021 /// speed of the access (as defined by the target).
2022 bool allowsMemoryAccessForAlignment(LLVMContext &Context,
2023 const DataLayout &DL, EVT VT,
2024 const MachineMemOperand &MMO,
2025 unsigned *Fast = nullptr) const;
2026
2027 /// Return true if the target supports a memory access of this type for the
2028 /// given address space and alignment. If the access is allowed, the optional
2029 /// final parameter returns the relative speed of the access (as defined by
2030 /// the target).
2031 virtual bool
2032 allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
2033 unsigned AddrSpace = 0, Align Alignment = Align(1),
2035 unsigned *Fast = nullptr) const;
2036
2037 /// Return true if the target supports a memory access of this type for the
2038 /// given MachineMemOperand. If the access is allowed, the optional
2039 /// final parameter returns the relative access speed (as defined by the
2040 /// target).
2041 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
2042 const MachineMemOperand &MMO,
2043 unsigned *Fast = nullptr) const;
2044
2045 /// LLT handling variant.
2046 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
2047 const MachineMemOperand &MMO,
2048 unsigned *Fast = nullptr) const;
2049
2050 /// Returns the target specific optimal type for load and store operations as
2051 /// a result of memset, memcpy, and memmove lowering.
2052 /// It returns EVT::Other if the type should be determined using generic
2053 /// target-independent logic.
2054 virtual EVT
2056 const AttributeList & /*FuncAttributes*/) const {
2057 return MVT::Other;
2058 }
2059
2060 /// LLT returning variant.
2061 virtual LLT
2063 const AttributeList & /*FuncAttributes*/) const {
2064 return LLT();
2065 }
2066
2067 /// Returns true if it's safe to use load / store of the specified type to
2068 /// expand memcpy / memset inline.
2069 ///
2070 /// This is mostly true for all types except for some special cases. For
2071 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
2072 /// fstpl which also does type conversion. Note the specified type doesn't
2073 /// have to be legal as the hook is used before type legalization.
2074 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
2075
2076 /// Return lower limit for number of blocks in a jump table.
2077 virtual unsigned getMinimumJumpTableEntries() const;
2078
2079 /// Return lower limit of the density in a jump table.
2080 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
2081
2082 /// Return upper limit for number of entries in a jump table.
2083 /// Zero if no limit.
2084 unsigned getMaximumJumpTableSize() const;
2085
2086 virtual bool isJumpTableRelative() const;
2087
2088 /// Retuen the minimum of largest number of comparisons in BitTest.
2089 unsigned getMinimumBitTestCmps() const;
2090
2091 /// If a physical register, this specifies the register that
2092 /// llvm.savestack/llvm.restorestack should save and restore.
2094 return StackPointerRegisterToSaveRestore;
2095 }
2096
2097 /// If a physical register, this returns the register that receives the
2098 /// exception address on entry to an EH pad.
2099 virtual Register
2100 getExceptionPointerRegister(const Constant *PersonalityFn) const {
2101 return Register();
2102 }
2103
2104 /// If a physical register, this returns the register that receives the
2105 /// exception typeid on entry to a landing pad.
2106 virtual Register
2107 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
2108 return Register();
2109 }
2110
2111 virtual bool needsFixedCatchObjects() const {
2112 report_fatal_error("Funclet EH is not implemented for this target");
2113 }
2114
2115 /// Return the minimum stack alignment of an argument.
2117 return MinStackArgumentAlignment;
2118 }
2119
2120 /// Return the minimum function alignment.
2121 Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
2122
2123 /// Return the preferred function alignment.
2124 Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
2125
2126 /// Return the preferred loop alignment.
2127 virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
2128
2129 /// Return the maximum amount of bytes allowed to be emitted when padding for
2130 /// alignment
2131 virtual unsigned
2132 getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const;
2133
2134 /// Should loops be aligned even when the function is marked OptSize (but not
2135 /// MinSize).
2136 virtual bool alignLoopsWithOptSize() const { return false; }
2137
2138 /// If the target has a standard location for the stack protector guard,
2139 /// returns the address of that location. Otherwise, returns nullptr.
2140 /// DEPRECATED: please override useLoadStackGuardNode and customize
2141 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
2142 virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
2143
2144 /// Inserts necessary declarations for SSP (stack protection) purpose.
2145 /// Should be used only when getIRStackGuard returns nullptr.
2146 virtual void insertSSPDeclarations(Module &M) const;
2147
2148 /// Return the variable that's previously inserted by insertSSPDeclarations,
2149 /// if any, otherwise return nullptr. Should be used only when
2150 /// getIRStackGuard returns nullptr.
2151 virtual Value *getSDagStackGuard(const Module &M) const;
2152
2153 /// If this function returns true, stack protection checks should mix the
2154 /// stack guard value before checking it. getIRStackGuard must return nullptr
2155 /// if this returns true.
2156 virtual bool useStackGuardMixCookie() const { return false; }
2157
2158 /// If the target has a standard stack protection check function that
2159 /// performs validation and error handling, returns the function. Otherwise,
2160 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
2161 /// Should be used only when getIRStackGuard returns nullptr.
2162 Function *getSSPStackGuardCheck(const Module &M) const;
2163
2164protected:
2165 Value *getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
2166 bool UseTLS) const;
2167
2168public:
2169 /// Returns the target-specific address of the unsafe stack pointer.
2170 virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
2171
2172 /// Returns the name of the symbol used to emit stack probes or the empty
2173 /// string if not applicable.
2174 virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
2175
2176 virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
2177
2179 return "";
2180 }
2181
2182 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
2183 /// are happy to sink it into basic blocks. A cast may be free, but not
2184 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
2185 virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
2186
2187 /// Return true if the pointer arguments to CI should be aligned by aligning
2188 /// the object whose address is being passed. If so then MinSize is set to the
2189 /// minimum size the object must be to be aligned and PrefAlign is set to the
2190 /// preferred alignment.
2191 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
2192 Align & /*PrefAlign*/) const {
2193 return false;
2194 }
2195
2196 //===--------------------------------------------------------------------===//
2197 /// \name Helpers for TargetTransformInfo implementations
2198 /// @{
2199
2200 /// Get the ISD node that corresponds to the Instruction class opcode.
2201 int InstructionOpcodeToISD(unsigned Opcode) const;
2202
2203 /// Get the ISD node that corresponds to the Intrinsic ID. Returns
2204 /// ISD::DELETED_NODE by default for an unsupported Intrinsic ID.
2205 int IntrinsicIDToISD(Intrinsic::ID ID) const;
2206
2207 /// @}
2208
2209 //===--------------------------------------------------------------------===//
2210 /// \name Helpers for atomic expansion.
2211 /// @{
2212
2213 /// Returns the maximum atomic operation size (in bits) supported by
2214 /// the backend. Atomic operations greater than this size (as well
2215 /// as ones that are not naturally aligned), will be expanded by
2216 /// AtomicExpandPass into an __atomic_* library call.
2218 return MaxAtomicSizeInBitsSupported;
2219 }
2220
2221 /// Returns the size in bits of the maximum div/rem the backend supports.
2222 /// Larger operations will be expanded by ExpandFp.
2224 return MaxDivRemBitWidthSupported;
2225 }
2226
2227 /// Returns the size in bits of the maximum fp to/from int conversion the
2228 /// backend supports. Larger operations will be expanded by ExpandFp.
2230 return MaxLargeFPConvertBitWidthSupported;
2231 }
2232
2233 /// Returns the size of the smallest cmpxchg or ll/sc instruction
2234 /// the backend supports. Any smaller operations are widened in
2235 /// AtomicExpandPass.
2236 ///
2237 /// Note that *unlike* operations above the maximum size, atomic ops
2238 /// are still natively supported below the minimum; they just
2239 /// require a more complex expansion.
2240 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
2241
2242 /// Whether the target supports unaligned atomic operations.
2243 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
2244
2245 /// Whether AtomicExpandPass should automatically insert fences and reduce
2246 /// ordering for this atomic. This should be true for most architectures with
2247 /// weak memory ordering. Defaults to false.
2248 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
2249 return false;
2250 }
2251
2252 /// Whether AtomicExpandPass should automatically insert a seq_cst trailing
2253 /// fence without reducing the ordering for this atomic store. Defaults to
2254 /// false.
2255 virtual bool
2257 return false;
2258 }
2259
2260 // The memory ordering that AtomicExpandPass should assign to a atomic
2261 // instruction that it has lowered by adding fences. This can be used
2262 // to "fold" one of the fences into the atomic instruction.
2263 virtual AtomicOrdering
2267
2268 /// Perform a load-linked operation on Addr, returning a "Value *" with the
2269 /// corresponding pointee type. This may entail some non-trivial operations to
2270 /// truncate or reconstruct types that will be illegal in the backend. See
2271 /// ARMISelLowering for an example implementation.
2272 virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
2273 Value *Addr, AtomicOrdering Ord) const {
2274 llvm_unreachable("Load linked unimplemented on this target");
2275 }
2276
2277 /// Perform a store-conditional operation to Addr. Return the status of the
2278 /// store. This should be 0 if the store succeeded, non-zero otherwise.
2280 Value *Addr, AtomicOrdering Ord) const {
2281 llvm_unreachable("Store conditional unimplemented on this target");
2282 }
2283
2284 /// Perform a masked atomicrmw using a target-specific intrinsic. This
2285 /// represents the core LL/SC loop which will be lowered at a late stage by
2286 /// the backend. The target-specific intrinsic returns the loaded value and
2287 /// is not responsible for masking and shifting the result.
2289 AtomicRMWInst *AI,
2290 Value *AlignedAddr, Value *Incr,
2291 Value *Mask, Value *ShiftAmt,
2292 AtomicOrdering Ord) const {
2293 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
2294 }
2295
2296 /// Perform a atomicrmw expansion using a target-specific way. This is
2297 /// expected to be called when masked atomicrmw and bit test atomicrmw don't
2298 /// work, and the target supports another way to lower atomicrmw.
2299 virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
2301 "Generic atomicrmw expansion unimplemented on this target");
2302 }
2303
2304 /// Perform a atomic store using a target-specific way.
2305 virtual void emitExpandAtomicStore(StoreInst *SI) const {
2307 "Generic atomic store expansion unimplemented on this target");
2308 }
2309
2310 /// Perform a atomic load using a target-specific way.
2311 virtual void emitExpandAtomicLoad(LoadInst *LI) const {
2313 "Generic atomic load expansion unimplemented on this target");
2314 }
2315
2316 /// Perform a cmpxchg expansion using a target-specific method.
2318 llvm_unreachable("Generic cmpxchg expansion unimplemented on this target");
2319 }
2320
2321 /// Perform a bit test atomicrmw using a target-specific intrinsic. This
2322 /// represents the combined bit test intrinsic which will be lowered at a late
2323 /// stage by the backend.
2326 "Bit test atomicrmw expansion unimplemented on this target");
2327 }
2328
2329 /// Perform a atomicrmw which the result is only used by comparison, using a
2330 /// target-specific intrinsic. This represents the combined atomic and compare
2331 /// intrinsic which will be lowered at a late stage by the backend.
2334 "Compare arith atomicrmw expansion unimplemented on this target");
2335 }
2336
2337 /// Perform a masked cmpxchg using a target-specific intrinsic. This
2338 /// represents the core LL/SC loop which will be lowered at a late stage by
2339 /// the backend. The target-specific intrinsic returns the loaded value and
2340 /// is not responsible for masking and shifting the result.
2342 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2343 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2344 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
2345 }
2346
2347 //===--------------------------------------------------------------------===//
2348 /// \name KCFI check lowering.
2349 /// @{
2350
2353 const TargetInstrInfo *TII) const {
2354 llvm_unreachable("KCFI is not supported on this target");
2355 }
2356
2357 /// @}
2358
2359 /// Inserts in the IR a target-specific intrinsic specifying a fence.
2360 /// It is called by AtomicExpandPass before expanding an
2361 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
2362 /// if shouldInsertFencesForAtomic returns true.
2363 ///
2364 /// Inst is the original atomic instruction, prior to other expansions that
2365 /// may be performed.
2366 ///
2367 /// This function should either return a nullptr, or a pointer to an IR-level
2368 /// Instruction*. Even complex fence sequences can be represented by a
2369 /// single Instruction* through an intrinsic to be lowered later.
2370 ///
2371 /// The default implementation emits an IR fence before any release (or
2372 /// stronger) operation that stores, and after any acquire (or stronger)
2373 /// operation. This is generally a correct implementation, but backends may
2374 /// override if they wish to use alternative schemes (e.g. the PowerPC
2375 /// standard ABI uses a fence before a seq_cst load instead of after a
2376 /// seq_cst store).
2377 /// @{
2378 virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
2379 Instruction *Inst,
2380 AtomicOrdering Ord) const;
2381
2382 virtual Instruction *emitTrailingFence(IRBuilderBase &Builder,
2383 Instruction *Inst,
2384 AtomicOrdering Ord) const;
2385 /// @}
2386
2387 // Emits code that executes when the comparison result in the ll/sc
2388 // expansion of a cmpxchg instruction is such that the store-conditional will
2389 // not execute. This makes it possible to balance out the load-linked with
2390 // a dedicated instruction, if desired.
2391 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
2392 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
2393 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
2394
2395 /// Returns true if arguments should be sign-extended in lib calls.
2396 virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const {
2397 return IsSigned;
2398 }
2399
2400 /// Returns true if arguments should be extended in lib calls.
2401 virtual bool shouldExtendTypeInLibCall(EVT Type) const {
2402 return true;
2403 }
2404
2405 /// Returns how the given (atomic) load should be expanded by the
2406 /// IR-level AtomicExpand pass.
2410
2411 /// Returns how the given (atomic) load should be cast by the IR-level
2412 /// AtomicExpand pass.
2418
2419 /// Returns how the given (atomic) store should be expanded by the IR-level
2420 /// AtomicExpand pass into. For instance AtomicExpansionKind::CustomExpand
2421 /// will try to use an atomicrmw xchg.
2425
2426 /// Returns how the given (atomic) store should be cast by the IR-level
2427 /// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
2428 /// will try to cast the operands to integer values.
2430 if (SI->getValueOperand()->getType()->isFloatingPointTy())
2433 }
2434
2435 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
2436 /// AtomicExpand pass.
2437 virtual AtomicExpansionKind
2441
2442 /// Returns how the IR-level AtomicExpand pass should expand the given
2443 /// AtomicRMW, if at all. Default is to never expand.
2448
2449 /// Returns how the given atomic atomicrmw should be cast by the IR-level
2450 /// AtomicExpand pass.
2451 virtual AtomicExpansionKind
2460
2461 /// On some platforms, an AtomicRMW that never actually modifies the value
2462 /// (such as fetch_add of 0) can be turned into a fence followed by an
2463 /// atomic load. This may sound useless, but it makes it possible for the
2464 /// processor to keep the cacheline shared, dramatically improving
2465 /// performance. And such idempotent RMWs are useful for implementing some
2466 /// kinds of locks, see for example (justification + benchmarks):
2467 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
2468 /// This method tries doing that transformation, returning the atomic load if
2469 /// it succeeds, and nullptr otherwise.
2470 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2471 /// another round of expansion.
2472 virtual LoadInst *
2474 return nullptr;
2475 }
2476
2477 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2478 /// SIGN_EXTEND, or ANY_EXTEND).
2480 return ISD::ZERO_EXTEND;
2481 }
2482
2483 /// Returns how the platform's atomic compare and swap expects its comparison
2484 /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2485 /// separate from getExtendForAtomicOps, which is concerned with the
2486 /// sign-extension of the instruction's output, whereas here we are concerned
2487 /// with the sign-extension of the input. For targets with compare-and-swap
2488 /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2489 /// the input can be ANY_EXTEND, but the output will still have a specific
2490 /// extension.
2492 return ISD::ANY_EXTEND;
2493 }
2494
2495 /// Returns how the platform's atomic rmw operations expect their input
2496 /// argument to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND).
2498 return ISD::ANY_EXTEND;
2499 }
2500
2501 /// @}
2502
2503 /// Returns true if we should normalize
2504 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2505 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2506 /// that it saves us from materializing N0 and N1 in an integer register.
2507 /// Targets that are able to perform and/or on flags should return false here.
2509 EVT VT) const {
2510 // If a target has multiple condition registers, then it likely has logical
2511 // operations on those registers.
2513 return false;
2514 // Only do the transform if the value won't be split into multiple
2515 // registers.
2516 LegalizeTypeAction Action = getTypeAction(Context, VT);
2517 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2518 Action != TypeSplitVector;
2519 }
2520
2521 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2522
2523 /// Return true if a select of constants (select Cond, C1, C2) should be
2524 /// transformed into simple math ops with the condition value. For example:
2525 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
2526 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2527 return false;
2528 }
2529
2530 /// Return true if it is profitable to transform an integer
2531 /// multiplication-by-constant into simpler operations like shifts and adds.
2532 /// This may be true if the target does not directly support the
2533 /// multiplication operation for the specified type or the sequence of simpler
2534 /// ops is faster than the multiply.
2536 EVT VT, SDValue C) const {
2537 return false;
2538 }
2539
2540 /// Return true if it may be profitable to transform
2541 /// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
2542 /// This may not be true if c1 and c2 can be represented as immediates but
2543 /// c1*c2 cannot, for example.
2544 /// The target should check if c1, c2 and c1*c2 can be represented as
2545 /// immediates, or have to be materialized into registers. If it is not sure
2546 /// about some cases, a default true can be returned to let the DAGCombiner
2547 /// decide.
2548 /// AddNode is (add x, c1), and ConstNode is c2.
2550 SDValue ConstNode) const {
2551 return true;
2552 }
2553
2554 /// Return true if it is more correct/profitable to use strict FP_TO_INT
2555 /// conversion operations - canonicalizing the FP source value instead of
2556 /// converting all cases and then selecting based on value.
2557 /// This may be true if the target throws exceptions for out of bounds
2558 /// conversions or has fast FP CMOV.
2559 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2560 bool IsSigned) const {
2561 return false;
2562 }
2563
2564 /// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
2565 /// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
2566 /// considered beneficial.
2567 /// If optimizing for size, expansion is only considered beneficial for upto
2568 /// 5 multiplies and a divide (if the exponent is negative).
2569 bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const {
2570 if (Exponent < 0)
2571 Exponent = -Exponent;
2572 uint64_t E = static_cast<uint64_t>(Exponent);
2573 return !OptForSize || (llvm::popcount(E) + Log2_64(E) < 7);
2574 }
2575
2576 //===--------------------------------------------------------------------===//
2577 // TargetLowering Configuration Methods - These methods should be invoked by
2578 // the derived class constructor to configure this object for the target.
2579 //
2580protected:
2581 /// Specify how the target extends the result of integer and floating point
2582 /// boolean values from i1 to a wider type. See getBooleanContents.
2584 BooleanContents = Ty;
2585 BooleanFloatContents = Ty;
2586 }
2587
2588 /// Specify how the target extends the result of integer and floating point
2589 /// boolean values from i1 to a wider type. See getBooleanContents.
2591 BooleanContents = IntTy;
2592 BooleanFloatContents = FloatTy;
2593 }
2594
2595 /// Specify how the target extends the result of a vector boolean value from a
2596 /// vector of i1 to a wider type. See getBooleanContents.
2598 BooleanVectorContents = Ty;
2599 }
2600
2601 /// Specify the target scheduling preference.
2603 SchedPreferenceInfo = Pref;
2604 }
2605
2606 /// Indicate the minimum number of blocks to generate jump tables.
2607 void setMinimumJumpTableEntries(unsigned Val);
2608
2609 /// Indicate the maximum number of entries in jump tables.
2610 /// Set to zero to generate unlimited jump tables.
2611 void setMaximumJumpTableSize(unsigned);
2612
2613 /// Set the minimum of largest of number of comparisons to generate BitTest.
2614 void setMinimumBitTestCmps(unsigned Val);
2615
2616 /// If set to a physical register, this specifies the register that
2617 /// llvm.savestack/llvm.restorestack should save and restore.
2619 StackPointerRegisterToSaveRestore = R;
2620 }
2621
2622 /// Tells the code generator that the target has BitExtract instructions.
2623 /// The code generator will aggressively sink "shift"s into the blocks of
2624 /// their users if the users will generate "and" instructions which can be
2625 /// combined with "shift" to BitExtract instructions.
2626 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2627 HasExtractBitsInsn = hasExtractInsn;
2628 }
2629
2630 /// Tells the code generator not to expand logic operations on comparison
2631 /// predicates into separate sequences that increase the amount of flow
2632 /// control.
2633 void setJumpIsExpensive(bool isExpensive = true);
2634
2635 /// Tells the code generator which bitwidths to bypass.
2636 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2637 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2638 }
2639
2640 /// Add the specified register class as an available regclass for the
2641 /// specified value type. This indicates the selector can handle values of
2642 /// that class natively.
2644 assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
2645 RegClassForVT[VT.SimpleTy] = RC;
2646 }
2647
2648 /// Return the largest legal super-reg register class of the register class
2649 /// for the specified type and its associated "cost".
2650 virtual std::pair<const TargetRegisterClass *, uint8_t>
2651 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2652
2653 /// Once all of the register classes are added, this allows us to compute
2654 /// derived properties we expose.
2655 void computeRegisterProperties(const TargetRegisterInfo *TRI);
2656
2657 /// Indicate that the specified operation does not work with the specified
2658 /// type and indicate what to do about it. Note that VT may refer to either
2659 /// the type of a result or that of an operand of Op.
2660 void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
2661 assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
2662 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2663 }
2665 LegalizeAction Action) {
2666 for (auto Op : Ops)
2667 setOperationAction(Op, VT, Action);
2668 }
2670 LegalizeAction Action) {
2671 for (auto VT : VTs)
2672 setOperationAction(Ops, VT, Action);
2673 }
2674
2675 /// Indicate that the specified load with extension does not work with the
2676 /// specified type and indicate what to do about it.
2677 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2678 LegalizeAction Action) {
2679 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2680 MemVT.isValid() && "Table isn't big enough!");
2681 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2682 unsigned Shift = 4 * ExtType;
2683 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2684 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2685 }
2686 void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
2687 LegalizeAction Action) {
2688 for (auto ExtType : ExtTypes)
2689 setLoadExtAction(ExtType, ValVT, MemVT, Action);
2690 }
2692 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2693 for (auto MemVT : MemVTs)
2694 setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2695 }
2696
2697 /// Let target indicate that an extending atomic load of the specified type
2698 /// is legal.
2699 void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2700 LegalizeAction Action) {
2701 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2702 MemVT.isValid() && "Table isn't big enough!");
2703 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2704 unsigned Shift = 4 * ExtType;
2705 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &=
2706 ~((uint16_t)0xF << Shift);
2707 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |=
2708 ((uint16_t)Action << Shift);
2709 }
2711 LegalizeAction Action) {
2712 for (auto ExtType : ExtTypes)
2713 setAtomicLoadExtAction(ExtType, ValVT, MemVT, Action);
2714 }
2716 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2717 for (auto MemVT : MemVTs)
2718 setAtomicLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2719 }
2720
2721 /// Indicate that the specified truncating store does not work with the
2722 /// specified type and indicate what to do about it.
2723 void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
2724 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2725 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2726 }
2727
2728 /// Indicate that the specified indexed load does or does not work with the
2729 /// specified type and indicate what to do abort it.
2730 ///
2731 /// NOTE: All indexed mode loads are initialized to Expand in
2732 /// TargetLowering.cpp
2734 LegalizeAction Action) {
2735 for (auto IdxMode : IdxModes)
2736 setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2737 }
2738
2740 LegalizeAction Action) {
2741 for (auto VT : VTs)
2742 setIndexedLoadAction(IdxModes, VT, Action);
2743 }
2744
2745 /// Indicate that the specified indexed store does or does not work with the
2746 /// specified type and indicate what to do about it.
2747 ///
2748 /// NOTE: All indexed mode stores are initialized to Expand in
2749 /// TargetLowering.cpp
2751 LegalizeAction Action) {
2752 for (auto IdxMode : IdxModes)
2753 setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2754 }
2755
2757 LegalizeAction Action) {
2758 for (auto VT : VTs)
2759 setIndexedStoreAction(IdxModes, VT, Action);
2760 }
2761
2762 /// Indicate that the specified indexed masked load does or does not work with
2763 /// the specified type and indicate what to do about it.
2764 ///
2765 /// NOTE: All indexed mode masked loads are initialized to Expand in
2766 /// TargetLowering.cpp
2767 void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2768 LegalizeAction Action) {
2769 setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2770 }
2771
2772 /// Indicate that the specified indexed masked store does or does not work
2773 /// with the specified type and indicate what to do about it.
2774 ///
2775 /// NOTE: All indexed mode masked stores are initialized to Expand in
2776 /// TargetLowering.cpp
2777 void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2778 LegalizeAction Action) {
2779 setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2780 }
2781
2782 /// Indicate that the specified condition code is or isn't supported on the
2783 /// target and indicate what to do about it.
2785 LegalizeAction Action) {
2786 for (auto CC : CCs) {
2787 assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
2788 "Table isn't big enough!");
2789 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2790 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
2791 /// 32-bit value and the upper 29 bits index into the second dimension of
2792 /// the array to select what 32-bit value to use.
2793 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2794 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2795 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2796 }
2797 }
2799 LegalizeAction Action) {
2800 for (auto VT : VTs)
2801 setCondCodeAction(CCs, VT, Action);
2802 }
2803
2804 /// Indicate how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input
2805 /// type InputVT should be treated by the target. Either it's legal, needs to
2806 /// be promoted to a larger size, needs to be expanded to some other code
2807 /// sequence, or the target has a custom expander for it.
2808 void setPartialReduceMLAAction(unsigned Opc, MVT AccVT, MVT InputVT,
2809 LegalizeAction Action) {
2812 assert(AccVT.isValid() && InputVT.isValid() &&
2813 "setPartialReduceMLAAction types aren't valid");
2814 PartialReduceActionTypes Key = {Opc, AccVT.SimpleTy, InputVT.SimpleTy};
2815 PartialReduceMLAActions[Key] = Action;
2816 }
2818 MVT InputVT, LegalizeAction Action) {
2819 for (unsigned Opc : Opcodes)
2820 setPartialReduceMLAAction(Opc, AccVT, InputVT, Action);
2821 }
2822
2823 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2824 /// to trying a larger integer/fp until it can find one that works. If that
2825 /// default is insufficient, this method can be used by the target to override
2826 /// the default.
2827 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2828 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2829 }
2830
2831 /// Convenience method to set an operation to Promote and specify the type
2832 /// in a single call.
2833 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2834 setOperationAction(Opc, OrigVT, Promote);
2835 AddPromotedToType(Opc, OrigVT, DestVT);
2836 }
2838 MVT DestVT) {
2839 for (auto Op : Ops) {
2840 setOperationAction(Op, OrigVT, Promote);
2841 AddPromotedToType(Op, OrigVT, DestVT);
2842 }
2843 }
2844
2845 /// Targets should invoke this method for each target independent node that
2846 /// they want to provide a custom DAG combiner for by implementing the
2847 /// PerformDAGCombine virtual method.
2849 for (auto NT : NTs) {
2850 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
2851 TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
2852 }
2853 }
2854
2855 /// Set the target's minimum function alignment.
2857 MinFunctionAlignment = Alignment;
2858 }
2859
2860 /// Set the target's preferred function alignment. This should be set if
2861 /// there is a performance benefit to higher-than-minimum alignment
2863 PrefFunctionAlignment = Alignment;
2864 }
2865
2866 /// Set the target's preferred loop alignment. Default alignment is one, it
2867 /// means the target does not care about loop alignment. The target may also
2868 /// override getPrefLoopAlignment to provide per-loop values.
2869 void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2870 void setMaxBytesForAlignment(unsigned MaxBytes) {
2871 MaxBytesForAlignment = MaxBytes;
2872 }
2873
2874 /// Set the minimum stack alignment of an argument.
2876 MinStackArgumentAlignment = Alignment;
2877 }
2878
2879 /// Set the maximum atomic operation size supported by the
2880 /// backend. Atomic operations greater than this size (as well as
2881 /// ones that are not naturally aligned), will be expanded by
2882 /// AtomicExpandPass into an __atomic_* library call.
2883 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2884 MaxAtomicSizeInBitsSupported = SizeInBits;
2885 }
2886
2887 /// Set the size in bits of the maximum div/rem the backend supports.
2888 /// Larger operations will be expanded by ExpandFp.
2889 void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
2890 MaxDivRemBitWidthSupported = SizeInBits;
2891 }
2892
2893 /// Set the size in bits of the maximum fp to/from int conversion the backend
2894 /// supports. Larger operations will be expanded by ExpandFp.
2895 void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
2896 MaxLargeFPConvertBitWidthSupported = SizeInBits;
2897 }
2898
2899 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2900 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2901 MinCmpXchgSizeInBits = SizeInBits;
2902 }
2903
2904 /// Sets whether unaligned atomic operations are supported.
2905 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2906 SupportsUnalignedAtomics = UnalignedSupported;
2907 }
2908
2909public:
2910 //===--------------------------------------------------------------------===//
2911 // Addressing mode description hooks (used by LSR etc).
2912 //
2913
2914 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2915 /// instructions reading the address. This allows as much computation as
2916 /// possible to be done in the address mode for that operand. This hook lets
2917 /// targets also pass back when this should be done on intrinsics which
2918 /// load/store.
2919 virtual bool getAddrModeArguments(const IntrinsicInst * /*I*/,
2920 SmallVectorImpl<Value *> & /*Ops*/,
2921 Type *& /*AccessTy*/) const {
2922 return false;
2923 }
2924
2925 /// This represents an addressing mode of:
2926 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*vscale
2927 /// If BaseGV is null, there is no BaseGV.
2928 /// If BaseOffs is zero, there is no base offset.
2929 /// If HasBaseReg is false, there is no base register.
2930 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2931 /// no scale.
2932 /// If ScalableOffset is zero, there is no scalable offset.
2933 struct AddrMode {
2935 int64_t BaseOffs = 0;
2936 bool HasBaseReg = false;
2937 int64_t Scale = 0;
2938 int64_t ScalableOffset = 0;
2939 AddrMode() = default;
2940 };
2941
2942 /// Return true if the addressing mode represented by AM is legal for this
2943 /// target, for a load/store of the specified type.
2944 ///
2945 /// The type may be VoidTy, in which case only return true if the addressing
2946 /// mode is legal for a load/store of any legal type. TODO: Handle
2947 /// pre/postinc as well.
2948 ///
2949 /// If the address space cannot be determined, it will be -1.
2950 ///
2951 /// TODO: Remove default argument
2952 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2953 Type *Ty, unsigned AddrSpace,
2954 Instruction *I = nullptr) const;
2955
2956 /// Returns true if the targets addressing mode can target thread local
2957 /// storage (TLS).
2958 virtual bool addressingModeSupportsTLS(const GlobalValue &) const {
2959 return false;
2960 }
2961
2962 /// Return the prefered common base offset.
2963 virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset,
2964 int64_t MaxOffset) const {
2965 return 0;
2966 }
2967
2968 /// Return true if the specified immediate is legal icmp immediate, that is
2969 /// the target has icmp instructions which can compare a register against the
2970 /// immediate without having to materialize the immediate into a register.
2971 virtual bool isLegalICmpImmediate(int64_t) const {
2972 return true;
2973 }
2974
2975 /// Return true if the specified immediate is legal add immediate, that is the
2976 /// target has add instructions which can add a register with the immediate
2977 /// without having to materialize the immediate into a register.
2978 virtual bool isLegalAddImmediate(int64_t) const {
2979 return true;
2980 }
2981
2982 /// Return true if adding the specified scalable immediate is legal, that is
2983 /// the target has add instructions which can add a register with the
2984 /// immediate (multiplied by vscale) without having to materialize the
2985 /// immediate into a register.
2986 virtual bool isLegalAddScalableImmediate(int64_t) const { return false; }
2987
2988 /// Return true if the specified immediate is legal for the value input of a
2989 /// store instruction.
2990 virtual bool isLegalStoreImmediate(int64_t Value) const {
2991 // Default implementation assumes that at least 0 works since it is likely
2992 // that a zero register exists or a zero immediate is allowed.
2993 return Value == 0;
2994 }
2995
2996 /// Given a shuffle vector SVI representing a vector splat, return a new
2997 /// scalar type of size equal to SVI's scalar type if the new type is more
2998 /// profitable. Returns nullptr otherwise. For example under MVE float splats
2999 /// are converted to integer to prevent the need to move from SPR to GPR
3000 /// registers.
3002 return nullptr;
3003 }
3004
3005 /// Given a set in interconnected phis of type 'From' that are loaded/stored
3006 /// or bitcast to type 'To', return true if the set should be converted to
3007 /// 'To'.
3008 virtual bool shouldConvertPhiType(Type *From, Type *To) const {
3009 return (From->isIntegerTy() || From->isFloatingPointTy()) &&
3010 (To->isIntegerTy() || To->isFloatingPointTy());
3011 }
3012
3013 /// Returns true if the opcode is a commutative binary operation.
3014 virtual bool isCommutativeBinOp(unsigned Opcode) const {
3015 // FIXME: This should get its info from the td file.
3016 switch (Opcode) {
3017 case ISD::ADD:
3018 case ISD::SMIN:
3019 case ISD::SMAX:
3020 case ISD::UMIN:
3021 case ISD::UMAX:
3022 case ISD::MUL:
3023 case ISD::MULHU:
3024 case ISD::MULHS:
3025 case ISD::SMUL_LOHI:
3026 case ISD::UMUL_LOHI:
3027 case ISD::FADD:
3028 case ISD::FMUL:
3029 case ISD::AND:
3030 case ISD::OR:
3031 case ISD::XOR:
3032 case ISD::SADDO:
3033 case ISD::UADDO:
3034 case ISD::ADDC:
3035 case ISD::ADDE:
3036 case ISD::SADDSAT:
3037 case ISD::UADDSAT:
3038 case ISD::FMINNUM:
3039 case ISD::FMAXNUM:
3040 case ISD::FMINNUM_IEEE:
3041 case ISD::FMAXNUM_IEEE:
3042 case ISD::FMINIMUM:
3043 case ISD::FMAXIMUM:
3044 case ISD::FMINIMUMNUM:
3045 case ISD::FMAXIMUMNUM:
3046 case ISD::AVGFLOORS:
3047 case ISD::AVGFLOORU:
3048 case ISD::AVGCEILS:
3049 case ISD::AVGCEILU:
3050 case ISD::ABDS:
3051 case ISD::ABDU:
3052 return true;
3053 default: return false;
3054 }
3055 }
3056
3057 /// Return true if the node is a math/logic binary operator.
3058 virtual bool isBinOp(unsigned Opcode) const {
3059 // A commutative binop must be a binop.
3060 if (isCommutativeBinOp(Opcode))
3061 return true;
3062 // These are non-commutative binops.
3063 switch (Opcode) {
3064 case ISD::SUB:
3065 case ISD::SHL:
3066 case ISD::SRL:
3067 case ISD::SRA:
3068 case ISD::ROTL:
3069 case ISD::ROTR:
3070 case ISD::SDIV:
3071 case ISD::UDIV:
3072 case ISD::SREM:
3073 case ISD::UREM:
3074 case ISD::SSUBSAT:
3075 case ISD::USUBSAT:
3076 case ISD::FSUB:
3077 case ISD::FDIV:
3078 case ISD::FREM:
3079 return true;
3080 default:
3081 return false;
3082 }
3083 }
3084
3085 /// Return true if it's free to truncate a value of type FromTy to type
3086 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
3087 /// by referencing its sub-register AX.
3088 /// Targets must return false when FromTy <= ToTy.
3089 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
3090 return false;
3091 }
3092
3093 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
3094 /// whether a call is in tail position. Typically this means that both results
3095 /// would be assigned to the same register or stack slot, but it could mean
3096 /// the target performs adequate checks of its own before proceeding with the
3097 /// tail call. Targets must return false when FromTy <= ToTy.
3098 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
3099 return false;
3100 }
3101
3102 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
3103 virtual bool isTruncateFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const {
3104 return isTruncateFree(getApproximateEVTForLLT(FromTy, Ctx),
3105 getApproximateEVTForLLT(ToTy, Ctx));
3106 }
3107
3108 /// Return true if truncating the specific node Val to type VT2 is free.
3109 virtual bool isTruncateFree(SDValue Val, EVT VT2) const {
3110 // Fallback to type matching.
3111 return isTruncateFree(Val.getValueType(), VT2);
3112 }
3113
3114 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
3115
3116 /// Return true if the extension represented by \p I is free.
3117 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
3118 /// this method can use the context provided by \p I to decide
3119 /// whether or not \p I is free.
3120 /// This method extends the behavior of the is[Z|FP]ExtFree family.
3121 /// In other words, if is[Z|FP]Free returns true, then this method
3122 /// returns true as well. The converse is not true.
3123 /// The target can perform the adequate checks by overriding isExtFreeImpl.
3124 /// \pre \p I must be a sign, zero, or fp extension.
3125 bool isExtFree(const Instruction *I) const {
3126 switch (I->getOpcode()) {
3127 case Instruction::FPExt:
3128 if (isFPExtFree(EVT::getEVT(I->getType()),
3129 EVT::getEVT(I->getOperand(0)->getType())))
3130 return true;
3131 break;
3132 case Instruction::ZExt:
3133 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
3134 return true;
3135 break;
3136 case Instruction::SExt:
3137 break;
3138 default:
3139 llvm_unreachable("Instruction is not an extension");
3140 }
3141 return isExtFreeImpl(I);
3142 }
3143
3144 /// Return true if \p Load and \p Ext can form an ExtLoad.
3145 /// For example, in AArch64
3146 /// %L = load i8, i8* %ptr
3147 /// %E = zext i8 %L to i32
3148 /// can be lowered into one load instruction
3149 /// ldrb w0, [x0]
3150 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
3151 const DataLayout &DL) const {
3152 EVT VT = getValueType(DL, Ext->getType());
3153 EVT LoadVT = getValueType(DL, Load->getType());
3154
3155 // If the load has other users and the truncate is not free, the ext
3156 // probably isn't free.
3157 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
3158 !isTruncateFree(Ext->getType(), Load->getType()))
3159 return false;
3160
3161 // Check whether the target supports casts folded into loads.
3162 unsigned LType;
3163 if (isa<ZExtInst>(Ext))
3164 LType = ISD::ZEXTLOAD;
3165 else {
3166 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
3167 LType = ISD::SEXTLOAD;
3168 }
3169
3170 return isLoadExtLegal(LType, VT, LoadVT);
3171 }
3172
3173 /// Return true if any actual instruction that defines a value of type FromTy
3174 /// implicitly zero-extends the value to ToTy in the result register.
3175 ///
3176 /// The function should return true when it is likely that the truncate can
3177 /// be freely folded with an instruction defining a value of FromTy. If
3178 /// the defining instruction is unknown (because you're looking at a
3179 /// function argument, PHI, etc.) then the target may require an
3180 /// explicit truncate, which is not necessarily free, but this function
3181 /// does not deal with those cases.
3182 /// Targets must return false when FromTy >= ToTy.
3183 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
3184 return false;
3185 }
3186
3187 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
3188 virtual bool isZExtFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const {
3189 return isZExtFree(getApproximateEVTForLLT(FromTy, Ctx),
3190 getApproximateEVTForLLT(ToTy, Ctx));
3191 }
3192
3193 /// Return true if zero-extending the specific node Val to type VT2 is free
3194 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
3195 /// because it's folded such as X86 zero-extending loads).
3196 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
3197 return isZExtFree(Val.getValueType(), VT2);
3198 }
3199
3200 /// Return true if sign-extension from FromTy to ToTy is cheaper than
3201 /// zero-extension.
3202 virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
3203 return false;
3204 }
3205
3206 /// Return true if this constant should be sign extended when promoting to
3207 /// a larger type.
3208 virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
3209
3210 /// Try to optimize extending or truncating conversion instructions (like
3211 /// zext, trunc, fptoui, uitofp) for the target.
3212 virtual bool
3214 const TargetTransformInfo &TTI) const {
3215 return false;
3216 }
3217
3218 /// Return true if the target supplies and combines to a paired load
3219 /// two loaded values of type LoadedType next to each other in memory.
3220 /// RequiredAlignment gives the minimal alignment constraints that must be met
3221 /// to be able to select this paired load.
3222 ///
3223 /// This information is *not* used to generate actual paired loads, but it is
3224 /// used to generate a sequence of loads that is easier to combine into a
3225 /// paired load.
3226 /// For instance, something like this:
3227 /// a = load i64* addr
3228 /// b = trunc i64 a to i32
3229 /// c = lshr i64 a, 32
3230 /// d = trunc i64 c to i32
3231 /// will be optimized into:
3232 /// b = load i32* addr1
3233 /// d = load i32* addr2
3234 /// Where addr1 = addr2 +/- sizeof(i32).
3235 ///
3236 /// In other words, unless the target performs a post-isel load combining,
3237 /// this information should not be provided because it will generate more
3238 /// loads.
3239 virtual bool hasPairedLoad(EVT /*LoadedType*/,
3240 Align & /*RequiredAlignment*/) const {
3241 return false;
3242 }
3243
3244 /// Return true if the target has a vector blend instruction.
3245 virtual bool hasVectorBlend() const { return false; }
3246
3247 /// Get the maximum supported factor for interleaved memory accesses.
3248 /// Default to be the minimum interleave factor: 2.
3249 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
3250
3251 /// Lower an interleaved load to target specific intrinsics. Return
3252 /// true on success.
3253 ///
3254 /// \p Load is the vector load instruction. Can be either a plain load
3255 /// instruction or a vp.load intrinsic.
3256 /// \p Mask is a per-segment (i.e. number of lanes equal to that of one
3257 /// component being interwoven) mask. Can be nullptr, in which case the
3258 /// result is uncondiitional.
3259 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
3260 /// \p Indices is the corresponding indices for each shufflevector.
3261 /// \p Factor is the interleave factor.
3262 /// \p GapMask is a mask with zeros for components / fields that may not be
3263 /// accessed.
3264 virtual bool lowerInterleavedLoad(Instruction *Load, Value *Mask,
3266 ArrayRef<unsigned> Indices, unsigned Factor,
3267 const APInt &GapMask) const {
3268 return false;
3269 }
3270
3271 /// Lower an interleaved store to target specific intrinsics. Return
3272 /// true on success.
3273 ///
3274 /// \p SI is the vector store instruction. Can be either a plain store
3275 /// or a vp.store.
3276 /// \p Mask is a per-segment (i.e. number of lanes equal to that of one
3277 /// component being interwoven) mask. Can be nullptr, in which case the
3278 /// result is unconditional.
3279 /// \p SVI is the shufflevector to RE-interleave the stored vector.
3280 /// \p Factor is the interleave factor.
3281 /// \p GapMask is a mask with zeros for components / fields that may not be
3282 /// accessed.
3283 virtual bool lowerInterleavedStore(Instruction *Store, Value *Mask,
3284 ShuffleVectorInst *SVI, unsigned Factor,
3285 const APInt &GapMask) const {
3286 return false;
3287 }
3288
3289 /// Lower a deinterleave intrinsic to a target specific load intrinsic.
3290 /// Return true on success. Currently only supports
3291 /// llvm.vector.deinterleave{2,3,5,7}
3292 ///
3293 /// \p Load is the accompanying load instruction. Can be either a plain load
3294 /// instruction or a vp.load intrinsic.
3295 /// \p DI represents the deinterleaveN intrinsic.
3297 IntrinsicInst *DI) const {
3298 return false;
3299 }
3300
3301 /// Lower an interleave intrinsic to a target specific store intrinsic.
3302 /// Return true on success. Currently only supports
3303 /// llvm.vector.interleave{2,3,5,7}
3304 ///
3305 /// \p Store is the accompanying store instruction. Can be either a plain
3306 /// store or a vp.store intrinsic.
3307 /// \p Mask is a per-segment (i.e. number of lanes equal to that of one
3308 /// component being interwoven) mask. Can be nullptr, in which case the
3309 /// result is uncondiitional.
3310 /// \p InterleaveValues contains the interleaved values.
3311 virtual bool
3313 ArrayRef<Value *> InterleaveValues) const {
3314 return false;
3315 }
3316
3317 /// Return true if an fpext operation is free (for instance, because
3318 /// single-precision floating-point numbers are implicitly extended to
3319 /// double-precision).
3320 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
3321 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
3322 "invalid fpext types");
3323 return false;
3324 }
3325
3326 /// Return true if an fpext operation input to an \p Opcode operation is free
3327 /// (for instance, because half-precision floating-point numbers are
3328 /// implicitly extended to float-precision) for an FMA instruction.
3329 virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
3330 LLT DestTy, LLT SrcTy) const {
3331 return false;
3332 }
3333
3334 /// Return true if an fpext operation input to an \p Opcode operation is free
3335 /// (for instance, because half-precision floating-point numbers are
3336 /// implicitly extended to float-precision) for an FMA instruction.
3337 virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
3338 EVT DestVT, EVT SrcVT) const {
3339 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
3340 "invalid fpext types");
3341 return isFPExtFree(DestVT, SrcVT);
3342 }
3343
3344 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
3345 /// extend node) is profitable.
3346 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
3347
3348 /// Return true if an fneg operation is free to the point where it is never
3349 /// worthwhile to replace it with a bitwise operation.
3350 virtual bool isFNegFree(EVT VT) const {
3351 assert(VT.isFloatingPoint());
3352 return false;
3353 }
3354
3355 /// Return true if an fabs operation is free to the point where it is never
3356 /// worthwhile to replace it with a bitwise operation.
3357 virtual bool isFAbsFree(EVT VT) const {
3358 assert(VT.isFloatingPoint());
3359 return false;
3360 }
3361
3362 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3363 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3364 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3365 ///
3366 /// NOTE: This may be called before legalization on types for which FMAs are
3367 /// not legal, but should return true if those types will eventually legalize
3368 /// to types that support FMAs. After legalization, it will only be called on
3369 /// types that support FMAs (via Legal or Custom actions)
3370 ///
3371 /// Targets that care about soft float support should return false when soft
3372 /// float code is being generated (i.e. use-soft-float).
3374 EVT) const {
3375 return false;
3376 }
3377
3378 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3379 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3380 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3381 ///
3382 /// NOTE: This may be called before legalization on types for which FMAs are
3383 /// not legal, but should return true if those types will eventually legalize
3384 /// to types that support FMAs. After legalization, it will only be called on
3385 /// types that support FMAs (via Legal or Custom actions)
3387 LLT) const {
3388 return false;
3389 }
3390
3391 /// IR version
3392 virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
3393 return false;
3394 }
3395
3396 /// Returns true if \p MI can be combined with another instruction to
3397 /// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
3398 /// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
3399 /// distributed into an fadd/fsub.
3400 virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
3401 assert((MI.getOpcode() == TargetOpcode::G_FADD ||
3402 MI.getOpcode() == TargetOpcode::G_FSUB ||
3403 MI.getOpcode() == TargetOpcode::G_FMUL) &&
3404 "unexpected node in FMAD forming combine");
3405 switch (Ty.getScalarSizeInBits()) {
3406 case 16:
3407 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
3408 case 32:
3409 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
3410 case 64:
3411 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
3412 default:
3413 break;
3414 }
3415
3416 return false;
3417 }
3418
3419 /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
3420 /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
3421 /// fadd/fsub.
3422 virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
3423 assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
3424 N->getOpcode() == ISD::FMUL) &&
3425 "unexpected node in FMAD forming combine");
3426 return isOperationLegal(ISD::FMAD, N->getValueType(0));
3427 }
3428
3429 // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
3430 // than FMUL and ADD is delegated to the machine combiner.
3432 CodeGenOptLevel OptLevel) const {
3433 return false;
3434 }
3435
3436 /// Return true if it's profitable to narrow operations of type SrcVT to
3437 /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
3438 /// i32 to i16.
3439 virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const {
3440 return false;
3441 }
3442
3443 /// Return true if pulling a binary operation into a select with an identity
3444 /// constant is profitable. This is the inverse of an IR transform.
3445 /// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
3446 virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT,
3447 unsigned SelectOpcode,
3448 SDValue X,
3449 SDValue Y) const {
3450 return false;
3451 }
3452
3453 /// Return true if it is beneficial to convert a load of a constant to
3454 /// just the constant itself.
3455 /// On some targets it might be more efficient to use a combination of
3456 /// arithmetic instructions to materialize the constant instead of loading it
3457 /// from a constant pool.
3459 Type *Ty) const {
3460 return false;
3461 }
3462
3463 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
3464 /// from this source type with this index. This is needed because
3465 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
3466 /// the first element, and only the target knows which lowering is cheap.
3467 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
3468 unsigned Index) const {
3469 return false;
3470 }
3471
3472 /// Try to convert an extract element of a vector binary operation into an
3473 /// extract element followed by a scalar operation.
3474 virtual bool shouldScalarizeBinop(SDValue VecOp) const {
3475 return false;
3476 }
3477
3478 /// Return true if extraction of a scalar element from the given vector type
3479 /// at the given index is cheap. For example, if scalar operations occur on
3480 /// the same register file as vector operations, then an extract element may
3481 /// be a sub-register rename rather than an actual instruction.
3482 virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
3483 return false;
3484 }
3485
3486 /// Try to convert math with an overflow comparison into the corresponding DAG
3487 /// node operation. Targets may want to override this independently of whether
3488 /// the operation is legal/custom for the given type because it may obscure
3489 /// matching of other patterns.
3490 virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
3491 bool MathUsed) const {
3492 // Form it if it is legal.
3493 if (isOperationLegal(Opcode, VT))
3494 return true;
3495
3496 // TODO: The default logic is inherited from code in CodeGenPrepare.
3497 // The opcode should not make a difference by default?
3498 if (Opcode != ISD::UADDO)
3499 return false;
3500
3501 // Allow the transform as long as we have an integer type that is not
3502 // obviously illegal and unsupported and if the math result is used
3503 // besides the overflow check. On some targets (e.g. SPARC), it is
3504 // not profitable to form on overflow op if the math result has no
3505 // concrete users.
3506 if (VT.isVector())
3507 return false;
3508 return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
3509 }
3510
3511 // Return true if the target wants to optimize the mul overflow intrinsic
3512 // for the given \p VT.
3514 EVT VT) const {
3515 return false;
3516 }
3517
3518 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
3519 // even if the vector itself has multiple uses.
3520 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
3521 return false;
3522 }
3523
3524 // Return true if CodeGenPrepare should consider splitting large offset of a
3525 // GEP to make the GEP fit into the addressing mode and can be sunk into the
3526 // same blocks of its users.
3527 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
3528
3529 /// Return true if creating a shift of the type by the given
3530 /// amount is not profitable.
3531 virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
3532 return false;
3533 }
3534
3535 // Should we fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x))
3536 // A) where y has a single bit set?
3538 const APInt &AndMask) const {
3539 unsigned ShCt = AndMask.getBitWidth() - 1;
3540 return !shouldAvoidTransformToShift(VT, ShCt);
3541 }
3542
3543 /// Does this target require the clearing of high-order bits in a register
3544 /// passed to the fp16 to fp conversion library function.
3545 virtual bool shouldKeepZExtForFP16Conv() const { return false; }
3546
3547 /// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
3548 /// from min(max(fptoi)) saturation patterns.
3549 virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
3550 return isOperationLegalOrCustom(Op, VT);
3551 }
3552
3553 /// Should we prefer selects to doing arithmetic on boolean types
3555 return false;
3556 }
3557
3558 /// True if target has some particular form of dealing with pointer arithmetic
3559 /// semantics for pointers with the given value type. False if pointer
3560 /// arithmetic should not be preserved for passes such as instruction
3561 /// selection, and can fallback to regular arithmetic.
3562 /// This should be removed when PTRADD nodes are widely supported by backends.
3563 virtual bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const {
3564 return false;
3565 }
3566
3567 /// True if the target allows transformations of in-bounds pointer
3568 /// arithmetic that cause out-of-bounds intermediate results.
3570 EVT PtrVT) const {
3571 return false;
3572 }
3573
3574 /// Does this target support complex deinterleaving
3575 virtual bool isComplexDeinterleavingSupported() const { return false; }
3576
3577 /// Does this target support complex deinterleaving with the given operation
3578 /// and type
3581 return false;
3582 }
3583
3584 // Get the preferred opcode for FP_TO_XINT nodes.
3585 // By default, this checks if the provded operation is an illegal FP_TO_UINT
3586 // and if so, checks if FP_TO_SINT is legal or custom for use as a
3587 // replacement. If both UINT and SINT conversions are Custom, we choose SINT
3588 // by default because that's the right thing on PPC.
3589 virtual unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT,
3590 EVT ToVT) const {
3591 if (isOperationLegal(Op, ToVT))
3592 return Op;
3593 switch (Op) {
3594 case ISD::FP_TO_UINT:
3596 return ISD::FP_TO_SINT;
3597 break;
3601 break;
3602 case ISD::VP_FP_TO_UINT:
3603 if (isOperationLegalOrCustom(ISD::VP_FP_TO_SINT, ToVT))
3604 return ISD::VP_FP_TO_SINT;
3605 break;
3606 default:
3607 break;
3608 }
3609 return Op;
3610 }
3611
3612 /// Create the IR node for the given complex deinterleaving operation.
3613 /// If one cannot be created using all the given inputs, nullptr should be
3614 /// returned.
3617 ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
3618 Value *Accumulator = nullptr) const {
3619 return nullptr;
3620 }
3621
3623 return RuntimeLibcallInfo;
3624 }
3625
3626 void setLibcallImpl(RTLIB::Libcall Call, RTLIB::LibcallImpl Impl) {
3627 Libcalls.setLibcallImpl(Call, Impl);
3628 }
3629
3630 /// Get the libcall impl routine name for the specified libcall.
3631 RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const {
3632 return Libcalls.getLibcallImpl(Call);
3633 }
3634
3635 /// Get the libcall routine name for the specified libcall.
3636 // FIXME: This should be removed. Only LibcallImpl should have a name.
3637 const char *getLibcallName(RTLIB::Libcall Call) const {
3638 return Libcalls.getLibcallName(Call);
3639 }
3640
3641 /// Get the libcall routine name for the specified libcall implementation
3645
3646 RTLIB::LibcallImpl getMemcpyImpl() const { return Libcalls.getMemcpyImpl(); }
3647
3648 /// Check if this is valid libcall for the current module, otherwise
3649 /// RTLIB::Unsupported.
3650 RTLIB::LibcallImpl getSupportedLibcallImpl(StringRef FuncName) const {
3651 return RuntimeLibcallInfo.getSupportedLibcallImpl(FuncName);
3652 }
3653
3654 /// Get the comparison predicate that's to be used to test the result of the
3655 /// comparison libcall against zero. This should only be used with
3656 /// floating-point compare libcalls.
3657 ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const;
3658
3659 /// Get the CallingConv that should be used for the specified libcall
3660 /// implementation.
3662 return Libcalls.getLibcallImplCallingConv(Call);
3663 }
3664
3665 /// Get the CallingConv that should be used for the specified libcall.
3666 // FIXME: Remove this wrapper and directly use the used LibcallImpl
3668 return Libcalls.getLibcallCallingConv(Call);
3669 }
3670
3671 /// Execute target specific actions to finalize target lowering.
3672 /// This is used to set extra flags in MachineFrameInformation and freezing
3673 /// the set of reserved registers.
3674 /// The default implementation just freezes the set of reserved registers.
3675 virtual void finalizeLowering(MachineFunction &MF) const;
3676
3677 /// Returns true if it's profitable to allow merging store of loads when there
3678 /// are functions calls between the load and the store.
3679 virtual bool shouldMergeStoreOfLoadsOverCall(EVT, EVT) const { return true; }
3680
3681 //===----------------------------------------------------------------------===//
3682 // GlobalISel Hooks
3683 //===----------------------------------------------------------------------===//
3684 /// Check whether or not \p MI needs to be moved close to its uses.
3685 virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
3686
3687
3688private:
3689 const TargetMachine &TM;
3690
3691 /// Tells the code generator that the target has BitExtract instructions.
3692 /// The code generator will aggressively sink "shift"s into the blocks of
3693 /// their users if the users will generate "and" instructions which can be
3694 /// combined with "shift" to BitExtract instructions.
3695 bool HasExtractBitsInsn;
3696
3697 /// Tells the code generator to bypass slow divide or remainder
3698 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
3699 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
3700 /// div/rem when the operands are positive and less than 256.
3701 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
3702
3703 /// Tells the code generator that it shouldn't generate extra flow control
3704 /// instructions and should attempt to combine flow control instructions via
3705 /// predication.
3706 bool JumpIsExpensive;
3707
3708 /// Information about the contents of the high-bits in boolean values held in
3709 /// a type wider than i1. See getBooleanContents.
3710 BooleanContent BooleanContents;
3711
3712 /// Information about the contents of the high-bits in boolean values held in
3713 /// a type wider than i1. See getBooleanContents.
3714 BooleanContent BooleanFloatContents;
3715
3716 /// Information about the contents of the high-bits in boolean vector values
3717 /// when the element type is wider than i1. See getBooleanContents.
3718 BooleanContent BooleanVectorContents;
3719
3720 /// The target scheduling preference: shortest possible total cycles or lowest
3721 /// register usage.
3722 Sched::Preference SchedPreferenceInfo;
3723
3724 /// The minimum alignment that any argument on the stack needs to have.
3725 Align MinStackArgumentAlignment;
3726
3727 /// The minimum function alignment (used when optimizing for size, and to
3728 /// prevent explicitly provided alignment from leading to incorrect code).
3729 Align MinFunctionAlignment;
3730
3731 /// The preferred function alignment (used when alignment unspecified and
3732 /// optimizing for speed).
3733 Align PrefFunctionAlignment;
3734
3735 /// The preferred loop alignment (in log2 bot in bytes).
3736 Align PrefLoopAlignment;
3737 /// The maximum amount of bytes permitted to be emitted for alignment.
3738 unsigned MaxBytesForAlignment;
3739
3740 /// Size in bits of the maximum atomics size the backend supports.
3741 /// Accesses larger than this will be expanded by AtomicExpandPass.
3742 unsigned MaxAtomicSizeInBitsSupported;
3743
3744 /// Size in bits of the maximum div/rem size the backend supports.
3745 /// Larger operations will be expanded by ExpandFp.
3746 unsigned MaxDivRemBitWidthSupported;
3747
3748 /// Size in bits of the maximum fp to/from int conversion size the
3749 /// backend supports. Larger operations will be expanded by
3750 /// ExpandFp.
3751 unsigned MaxLargeFPConvertBitWidthSupported;
3752
3753 /// Size in bits of the minimum cmpxchg or ll/sc operation the
3754 /// backend supports.
3755 unsigned MinCmpXchgSizeInBits;
3756
3757 /// The minimum of largest number of comparisons to use bit test for switch.
3758 unsigned MinimumBitTestCmps;
3759
3760 /// This indicates if the target supports unaligned atomic operations.
3761 bool SupportsUnalignedAtomics;
3762
3763 /// If set to a physical register, this specifies the register that
3764 /// llvm.savestack/llvm.restorestack should save and restore.
3765 Register StackPointerRegisterToSaveRestore;
3766
3767 /// This indicates the default register class to use for each ValueType the
3768 /// target supports natively.
3769 const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
3770 uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
3771 MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
3772
3773 /// This indicates the "representative" register class to use for each
3774 /// ValueType the target supports natively. This information is used by the
3775 /// scheduler to track register pressure. By default, the representative
3776 /// register class is the largest legal super-reg register class of the
3777 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
3778 /// representative class would be GR32.
3779 const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE] = {nullptr};
3780
3781 /// This indicates the "cost" of the "representative" register class for each
3782 /// ValueType. The cost is used by the scheduler to approximate register
3783 /// pressure.
3784 uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
3785
3786 /// For any value types we are promoting or expanding, this contains the value
3787 /// type that we are changing to. For Expanded types, this contains one step
3788 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
3789 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
3790 /// the same type (e.g. i32 -> i32).
3791 MVT TransformToType[MVT::VALUETYPE_SIZE];
3792
3793 /// For each operation and each value type, keep a LegalizeAction that
3794 /// indicates how instruction selection should deal with the operation. Most
3795 /// operations are Legal (aka, supported natively by the target), but
3796 /// operations that are not should be described. Note that operations on
3797 /// non-legal value types are not described here.
3798 LegalizeAction OpActions[MVT::VALUETYPE_SIZE][ISD::BUILTIN_OP_END];
3799
3800 /// For each load extension type and each value type, keep a LegalizeAction
3801 /// that indicates how instruction selection should deal with a load of a
3802 /// specific value type and extension type. Uses 4-bits to store the action
3803 /// for each of the 4 load ext types.
3804 uint16_t LoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3805
3806 /// Similar to LoadExtActions, but for atomic loads. Only Legal or Expand
3807 /// (default) values are supported.
3808 uint16_t AtomicLoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3809
3810 /// For each value type pair keep a LegalizeAction that indicates whether a
3811 /// truncating store of a specific value type and truncating type is legal.
3812 LegalizeAction TruncStoreActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3813
3814 /// For each indexed mode and each value type, keep a quad of LegalizeAction
3815 /// that indicates how instruction selection should deal with the load /
3816 /// store / maskedload / maskedstore.
3817 ///
3818 /// The first dimension is the value_type for the reference. The second
3819 /// dimension represents the various modes for load store.
3820 uint16_t IndexedModeActions[MVT::VALUETYPE_SIZE][ISD::LAST_INDEXED_MODE];
3821
3822 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
3823 /// indicates how instruction selection should deal with the condition code.
3824 ///
3825 /// Because each CC action takes up 4 bits, we need to have the array size be
3826 /// large enough to fit all of the value types. This can be done by rounding
3827 /// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
3828 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
3829
3830 using PartialReduceActionTypes =
3831 std::tuple<unsigned, MVT::SimpleValueType, MVT::SimpleValueType>;
3832 /// For each partial reduce opcode, result type and input type combination,
3833 /// keep a LegalizeAction which indicates how instruction selection should
3834 /// deal with this operation.
3835 DenseMap<PartialReduceActionTypes, LegalizeAction> PartialReduceMLAActions;
3836
3837 ValueTypeActionImpl ValueTypeActions;
3838
3839private:
3840 /// Targets can specify ISD nodes that they would like PerformDAGCombine
3841 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
3842 /// array.
3843 unsigned char
3844 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3845
3846 /// For operations that must be promoted to a specific type, this holds the
3847 /// destination type. This map should be sparse, so don't hold it as an
3848 /// array.
3849 ///
3850 /// Targets add entries to this map with AddPromotedToType(..), clients access
3851 /// this with getTypeToPromoteTo(..).
3852 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3853 PromoteToType;
3854
3855 /// FIXME: This should not live here; it should come from an analysis.
3856 const RTLIB::RuntimeLibcallsInfo RuntimeLibcallInfo;
3857
3858 /// The list of libcalls that the target will use.
3859 LibcallLoweringInfo Libcalls;
3860
3861 /// The bits of IndexedModeActions used to store the legalisation actions
3862 /// We store the data as | ML | MS | L | S | each taking 4 bits.
3863 enum IndexedModeActionsBits {
3864 IMAB_Store = 0,
3865 IMAB_Load = 4,
3866 IMAB_MaskedStore = 8,
3867 IMAB_MaskedLoad = 12
3868 };
3869
3870 void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3871 LegalizeAction Action) {
3872 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3873 (unsigned)Action < 0xf && "Table isn't big enough!");
3874 unsigned Ty = (unsigned)VT.SimpleTy;
3875 IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3876 IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3877 }
3878
3879 LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3880 unsigned Shift) const {
3881 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3882 "Table isn't big enough!");
3883 unsigned Ty = (unsigned)VT.SimpleTy;
3884 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3885 }
3886
3887protected:
3888 /// Return true if the extension represented by \p I is free.
3889 /// \pre \p I is a sign, zero, or fp extension and
3890 /// is[Z|FP]ExtFree of the related types is not true.
3891 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3892
3893 /// Depth that GatherAllAliases should continue looking for chain
3894 /// dependencies when trying to find a more preferable chain. As an
3895 /// approximation, this should be more than the number of consecutive stores
3896 /// expected to be merged.
3898
3899 /// \brief Specify maximum number of store instructions per memset call.
3900 ///
3901 /// When lowering \@llvm.memset this field specifies the maximum number of
3902 /// store operations that may be substituted for the call to memset. Targets
3903 /// must set this value based on the cost threshold for that target. Targets
3904 /// should assume that the memset will be done using as many of the largest
3905 /// store operations first, followed by smaller ones, if necessary, per
3906 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3907 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3908 /// store. This only applies to setting a constant array of a constant size.
3910 /// Likewise for functions with the OptSize attribute.
3912
3913 /// \brief Specify maximum number of store instructions per memcpy call.
3914 ///
3915 /// When lowering \@llvm.memcpy this field specifies the maximum number of
3916 /// store operations that may be substituted for a call to memcpy. Targets
3917 /// must set this value based on the cost threshold for that target. Targets
3918 /// should assume that the memcpy will be done using as many of the largest
3919 /// store operations first, followed by smaller ones, if necessary, per
3920 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3921 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3922 /// and one 1-byte store. This only applies to copying a constant array of
3923 /// constant size.
3925 /// Likewise for functions with the OptSize attribute.
3927 /// \brief Specify max number of store instructions to glue in inlined memcpy.
3928 ///
3929 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3930 /// of store instructions to keep together. This helps in pairing and
3931 // vectorization later on.
3933
3934 /// \brief Specify maximum number of load instructions per memcmp call.
3935 ///
3936 /// When lowering \@llvm.memcmp this field specifies the maximum number of
3937 /// pairs of load operations that may be substituted for a call to memcmp.
3938 /// Targets must set this value based on the cost threshold for that target.
3939 /// Targets should assume that the memcmp will be done using as many of the
3940 /// largest load operations first, followed by smaller ones, if necessary, per
3941 /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3942 /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3943 /// and one 1-byte load. This only applies to copying a constant array of
3944 /// constant size.
3946 /// Likewise for functions with the OptSize attribute.
3948
3949 /// \brief Specify maximum number of store instructions per memmove call.
3950 ///
3951 /// When lowering \@llvm.memmove this field specifies the maximum number of
3952 /// store instructions that may be substituted for a call to memmove. Targets
3953 /// must set this value based on the cost threshold for that target. Targets
3954 /// should assume that the memmove will be done using as many of the largest
3955 /// store operations first, followed by smaller ones, if necessary, per
3956 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3957 /// with 8-bit alignment would result in nine 1-byte stores. This only
3958 /// applies to copying a constant array of constant size.
3960 /// Likewise for functions with the OptSize attribute.
3962
3963 /// Tells the code generator that select is more expensive than a branch if
3964 /// the branch is usually predicted right.
3966
3967 /// \see enableExtLdPromotion.
3969
3970 /// Return true if the value types that can be represented by the specified
3971 /// register class are all legal.
3972 bool isLegalRC(const TargetRegisterInfo &TRI,
3973 const TargetRegisterClass &RC) const;
3974
3975 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3976 /// sequence of memory operands that is recognized by PrologEpilogInserter.
3978 MachineBasicBlock *MBB) const;
3979
3981};
3982
3983/// This class defines information used to lower LLVM code to legal SelectionDAG
3984/// operators that the target instruction selector can accept natively.
3985///
3986/// This class also defines callbacks that targets must implement to lower
3987/// target-specific constructs to SelectionDAG operators.
3989public:
3990 struct DAGCombinerInfo;
3991 struct MakeLibCallOptions;
3992
3995
3996 explicit TargetLowering(const TargetMachine &TM,
3997 const TargetSubtargetInfo &STI);
3999
4000 bool isPositionIndependent() const;
4001
4004 UniformityInfo *UA) const {
4005 return false;
4006 }
4007
4008 // Lets target to control the following reassociation of operands: (op (op x,
4009 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
4010 // default consider profitable any case where N0 has single use. This
4011 // behavior reflects the condition replaced by this target hook call in the
4012 // DAGCombiner. Any particular target can implement its own heuristic to
4013 // restrict common combiner.
4015 SDValue N1) const {
4016 return N0.hasOneUse();
4017 }
4018
4019 // Lets target to control the following reassociation of operands: (op (op x,
4020 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
4021 // default consider profitable any case where N0 has single use. This
4022 // behavior reflects the condition replaced by this target hook call in the
4023 // combiner. Any particular target can implement its own heuristic to
4024 // restrict common combiner.
4026 Register N1) const {
4027 return MRI.hasOneNonDBGUse(N0);
4028 }
4029
4030 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
4031 return false;
4032 }
4033
4034 /// Returns true by value, base pointer and offset pointer and addressing mode
4035 /// by reference if the node's address can be legally represented as
4036 /// pre-indexed load / store address.
4037 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
4038 SDValue &/*Offset*/,
4039 ISD::MemIndexedMode &/*AM*/,
4040 SelectionDAG &/*DAG*/) const {
4041 return false;
4042 }
4043
4044 /// Returns true by value, base pointer and offset pointer and addressing mode
4045 /// by reference if this node can be combined with a load / store to form a
4046 /// post-indexed load / store.
4047 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
4048 SDValue &/*Base*/,
4049 SDValue &/*Offset*/,
4050 ISD::MemIndexedMode &/*AM*/,
4051 SelectionDAG &/*DAG*/) const {
4052 return false;
4053 }
4054
4055 /// Returns true if the specified base+offset is a legal indexed addressing
4056 /// mode for this target. \p MI is the load or store instruction that is being
4057 /// considered for transformation.
4059 bool IsPre, MachineRegisterInfo &MRI) const {
4060 return false;
4061 }
4062
4063 /// Return the entry encoding for a jump table in the current function. The
4064 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
4065 virtual unsigned getJumpTableEncoding() const;
4066
4067 virtual MVT getJumpTableRegTy(const DataLayout &DL) const {
4068 return getPointerTy(DL);
4069 }
4070
4071 virtual const MCExpr *
4073 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
4074 MCContext &/*Ctx*/) const {
4075 llvm_unreachable("Need to implement this hook if target has custom JTIs");
4076 }
4077
4078 /// Returns relocation base for the given PIC jumptable.
4079 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
4080 SelectionDAG &DAG) const;
4081
4082 /// This returns the relocation base for the given PIC jumptable, the same as
4083 /// getPICJumpTableRelocBase, but as an MCExpr.
4084 virtual const MCExpr *
4085 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
4086 unsigned JTI, MCContext &Ctx) const;
4087
4088 /// Return true if folding a constant offset with the given GlobalAddress is
4089 /// legal. It is frequently not legal in PIC relocation models.
4090 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
4091
4092 /// On x86, return true if the operand with index OpNo is a CALL or JUMP
4093 /// instruction, which can use either a memory constraint or an address
4094 /// constraint. -fasm-blocks "__asm call foo" lowers to
4095 /// call void asm sideeffect inteldialect "call ${0:P}", "*m..."
4096 ///
4097 /// This function is used by a hack to choose the address constraint,
4098 /// lowering to a direct call.
4099 virtual bool
4101 unsigned OpNo) const {
4102 return false;
4103 }
4104
4106 SDValue &Chain) const;
4107
4108 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
4109 SDValue &NewRHS, ISD::CondCode &CCCode,
4110 const SDLoc &DL, const SDValue OldLHS,
4111 const SDValue OldRHS) const;
4112
4113 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
4114 SDValue &NewRHS, ISD::CondCode &CCCode,
4115 const SDLoc &DL, const SDValue OldLHS,
4116 const SDValue OldRHS, SDValue &Chain,
4117 bool IsSignaling = false) const;
4118
4120 SDValue Chain, MachineMemOperand *MMO,
4121 SDValue &NewLoad, SDValue Ptr,
4122 SDValue PassThru, SDValue Mask) const {
4123 llvm_unreachable("Not Implemented");
4124 }
4125
4127 SDValue Chain, MachineMemOperand *MMO,
4128 SDValue Ptr, SDValue Val,
4129 SDValue Mask) const {
4130 llvm_unreachable("Not Implemented");
4131 }
4132
4133 /// Returns a pair of (return value, chain).
4134 /// It is an error to pass RTLIB::Unsupported as \p LibcallImpl
4135 std::pair<SDValue, SDValue>
4136 makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT,
4137 ArrayRef<SDValue> Ops, MakeLibCallOptions CallOptions,
4138 const SDLoc &dl, SDValue Chain = SDValue()) const;
4139
4140 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
4141 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
4142 EVT RetVT, ArrayRef<SDValue> Ops,
4143 MakeLibCallOptions CallOptions,
4144 const SDLoc &dl,
4145 SDValue Chain = SDValue()) const {
4146 return makeLibCall(DAG, getLibcallImpl(LC), RetVT, Ops, CallOptions, dl,
4147 Chain);
4148 }
4149
4150 /// Check whether parameters to a call that are passed in callee saved
4151 /// registers are the same as from the calling function. This needs to be
4152 /// checked for tail call eligibility.
4153 bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
4154 const uint32_t *CallerPreservedMask,
4155 const SmallVectorImpl<CCValAssign> &ArgLocs,
4156 const SmallVectorImpl<SDValue> &OutVals) const;
4157
4158 //===--------------------------------------------------------------------===//
4159 // TargetLowering Optimization Methods
4160 //
4161
4162 /// A convenience struct that encapsulates a DAG, and two SDValues for
4163 /// returning information from TargetLowering to its clients that want to
4164 /// combine.
4171
4173 bool LT, bool LO) :
4174 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
4175
4176 bool LegalTypes() const { return LegalTys; }
4177 bool LegalOperations() const { return LegalOps; }
4178
4180 Old = O;
4181 New = N;
4182 return true;
4183 }
4184 };
4185
4186 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4187 /// Return true if the number of memory ops is below the threshold (Limit).
4188 /// Note that this is always the case when Limit is ~0.
4189 /// It returns the types of the sequence of memory ops to perform
4190 /// memset / memcpy by reference.
4191 virtual bool
4192 findOptimalMemOpLowering(LLVMContext &Context, std::vector<EVT> &MemOps,
4193 unsigned Limit, const MemOp &Op, unsigned DstAS,
4194 unsigned SrcAS,
4195 const AttributeList &FuncAttributes) const;
4196
4197 /// Check to see if the specified operand of the specified instruction is a
4198 /// constant integer. If so, check to see if there are any bits set in the
4199 /// constant that are not demanded. If so, shrink the constant and return
4200 /// true.
4202 const APInt &DemandedElts,
4203 TargetLoweringOpt &TLO) const;
4204
4205 /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
4207 TargetLoweringOpt &TLO) const;
4208
4209 // Target hook to do target-specific const optimization, which is called by
4210 // ShrinkDemandedConstant. This function should return true if the target
4211 // doesn't want ShrinkDemandedConstant to further optimize the constant.
4213 const APInt &DemandedBits,
4214 const APInt &DemandedElts,
4215 TargetLoweringOpt &TLO) const {
4216 return false;
4217 }
4218
4219 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
4220 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
4221 /// but it could be generalized for targets with other types of implicit
4222 /// widening casts.
4223 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
4224 const APInt &DemandedBits,
4225 TargetLoweringOpt &TLO) const;
4226
4227 /// Look at Op. At this point, we know that only the DemandedBits bits of the
4228 /// result of Op are ever used downstream. If we can use this information to
4229 /// simplify Op, create a new simplified DAG node and return true, returning
4230 /// the original and new nodes in Old and New. Otherwise, analyze the
4231 /// expression and return a mask of KnownOne and KnownZero bits for the
4232 /// expression (used to simplify the caller). The KnownZero/One bits may only
4233 /// be accurate for those bits in the Demanded masks.
4234 /// \p AssumeSingleUse When this parameter is true, this function will
4235 /// attempt to simplify \p Op even if there are multiple uses.
4236 /// Callers are responsible for correctly updating the DAG based on the
4237 /// results of this function, because simply replacing TLO.Old
4238 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
4239 /// has multiple uses.
4240 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4241 const APInt &DemandedElts, KnownBits &Known,
4242 TargetLoweringOpt &TLO, unsigned Depth = 0,
4243 bool AssumeSingleUse = false) const;
4244
4245 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
4246 /// Adds Op back to the worklist upon success.
4247 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4248 KnownBits &Known, TargetLoweringOpt &TLO,
4249 unsigned Depth = 0,
4250 bool AssumeSingleUse = false) const;
4251
4252 /// Helper wrapper around SimplifyDemandedBits.
4253 /// Adds Op back to the worklist upon success.
4254 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4255 DAGCombinerInfo &DCI) const;
4256
4257 /// Helper wrapper around SimplifyDemandedBits.
4258 /// Adds Op back to the worklist upon success.
4259 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4260 const APInt &DemandedElts,
4261 DAGCombinerInfo &DCI) const;
4262
4263 /// More limited version of SimplifyDemandedBits that can be used to "look
4264 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4265 /// bitwise ops etc.
4266 SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
4267 const APInt &DemandedElts,
4268 SelectionDAG &DAG,
4269 unsigned Depth = 0) const;
4270
4271 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4272 /// elements.
4273 SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
4274 SelectionDAG &DAG,
4275 unsigned Depth = 0) const;
4276
4277 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4278 /// bits from only some vector elements.
4279 SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
4280 const APInt &DemandedElts,
4281 SelectionDAG &DAG,
4282 unsigned Depth = 0) const;
4283
4284 /// Look at Vector Op. At this point, we know that only the DemandedElts
4285 /// elements of the result of Op are ever used downstream. If we can use
4286 /// this information to simplify Op, create a new simplified DAG node and
4287 /// return true, storing the original and new nodes in TLO.
4288 /// Otherwise, analyze the expression and return a mask of KnownUndef and
4289 /// KnownZero elements for the expression (used to simplify the caller).
4290 /// The KnownUndef/Zero elements may only be accurate for those bits
4291 /// in the DemandedMask.
4292 /// \p AssumeSingleUse When this parameter is true, this function will
4293 /// attempt to simplify \p Op even if there are multiple uses.
4294 /// Callers are responsible for correctly updating the DAG based on the
4295 /// results of this function, because simply replacing TLO.Old
4296 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
4297 /// has multiple uses.
4298 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
4299 APInt &KnownUndef, APInt &KnownZero,
4300 TargetLoweringOpt &TLO, unsigned Depth = 0,
4301 bool AssumeSingleUse = false) const;
4302
4303 /// Helper wrapper around SimplifyDemandedVectorElts.
4304 /// Adds Op back to the worklist upon success.
4305 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
4306 DAGCombinerInfo &DCI) const;
4307
4308 /// Return true if the target supports simplifying demanded vector elements by
4309 /// converting them to undefs.
4310 virtual bool
4312 const TargetLoweringOpt &TLO) const {
4313 return true;
4314 }
4315
4316 /// Determine which of the bits specified in Mask are known to be either zero
4317 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4318 /// argument allows us to only collect the known bits that are shared by the
4319 /// requested vector elements.
4320 virtual void computeKnownBitsForTargetNode(const SDValue Op,
4321 KnownBits &Known,
4322 const APInt &DemandedElts,
4323 const SelectionDAG &DAG,
4324 unsigned Depth = 0) const;
4325
4326 /// Determine which of the bits specified in Mask are known to be either zero
4327 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4328 /// argument allows us to only collect the known bits that are shared by the
4329 /// requested vector elements. This is for GISel.
4330 virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis,
4331 Register R, KnownBits &Known,
4332 const APInt &DemandedElts,
4333 const MachineRegisterInfo &MRI,
4334 unsigned Depth = 0) const;
4335
4336 virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis,
4337 Register R,
4338 KnownFPClass &Known,
4339 const APInt &DemandedElts,
4340 const MachineRegisterInfo &MRI,
4341 unsigned Depth = 0) const;
4342
4343 /// Determine the known alignment for the pointer value \p R. This is can
4344 /// typically be inferred from the number of low known 0 bits. However, for a
4345 /// pointer with a non-integral address space, the alignment value may be
4346 /// independent from the known low bits.
4347 virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis,
4348 Register R,
4349 const MachineRegisterInfo &MRI,
4350 unsigned Depth = 0) const;
4351
4352 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
4353 /// Default implementation computes low bits based on alignment
4354 /// information. This should preserve known bits passed into it.
4355 virtual void computeKnownBitsForFrameIndex(int FIOp,
4356 KnownBits &Known,
4357 const MachineFunction &MF) const;
4358
4359 /// This method can be implemented by targets that want to expose additional
4360 /// information about sign bits to the DAG Combiner. The DemandedElts
4361 /// argument allows us to only collect the minimum sign bits that are shared
4362 /// by the requested vector elements.
4363 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
4364 const APInt &DemandedElts,
4365 const SelectionDAG &DAG,
4366 unsigned Depth = 0) const;
4367
4368 /// This method can be implemented by targets that want to expose additional
4369 /// information about sign bits to GlobalISel combiners. The DemandedElts
4370 /// argument allows us to only collect the minimum sign bits that are shared
4371 /// by the requested vector elements.
4372 virtual unsigned computeNumSignBitsForTargetInstr(
4373 GISelValueTracking &Analysis, Register R, const APInt &DemandedElts,
4374 const MachineRegisterInfo &MRI, unsigned Depth = 0) const;
4375
4376 /// Attempt to simplify any target nodes based on the demanded vector
4377 /// elements, returning true on success. Otherwise, analyze the expression and
4378 /// return a mask of KnownUndef and KnownZero elements for the expression
4379 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
4380 /// accurate for those bits in the DemandedMask.
4381 virtual bool SimplifyDemandedVectorEltsForTargetNode(
4382 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
4383 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
4384
4385 /// Attempt to simplify any target nodes based on the demanded bits/elts,
4386 /// returning true on success. Otherwise, analyze the
4387 /// expression and return a mask of KnownOne and KnownZero bits for the
4388 /// expression (used to simplify the caller). The KnownZero/One bits may only
4389 /// be accurate for those bits in the Demanded masks.
4390 virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
4391 const APInt &DemandedBits,
4392 const APInt &DemandedElts,
4393 KnownBits &Known,
4394 TargetLoweringOpt &TLO,
4395 unsigned Depth = 0) const;
4396
4397 /// More limited version of SimplifyDemandedBits that can be used to "look
4398 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4399 /// bitwise ops etc.
4400 virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
4401 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4402 SelectionDAG &DAG, unsigned Depth) const;
4403
4404 /// Return true if this function can prove that \p Op is never poison
4405 /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
4406 /// argument limits the check to the requested vector elements.
4407 virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4408 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4409 bool PoisonOnly, unsigned Depth) const;
4410
4411 /// Return true if Op can create undef or poison from non-undef & non-poison
4412 /// operands. The DemandedElts argument limits the check to the requested
4413 /// vector elements.
4414 virtual bool
4415 canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts,
4416 const SelectionDAG &DAG, bool PoisonOnly,
4417 bool ConsiderFlags, unsigned Depth) const;
4418
4419 /// Tries to build a legal vector shuffle using the provided parameters
4420 /// or equivalent variations. The Mask argument maybe be modified as the
4421 /// function tries different variations.
4422 /// Returns an empty SDValue if the operation fails.
4423 SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
4425 SelectionDAG &DAG) const;
4426
4427 /// This method returns the constant pool value that will be loaded by LD.
4428 /// NOTE: You must check for implicit extensions of the constant by LD.
4429 virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
4430
4431 /// If \p SNaN is false, \returns true if \p Op is known to never be any
4432 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
4433 /// NaN.
4434 virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
4435 const APInt &DemandedElts,
4436 const SelectionDAG &DAG,
4437 bool SNaN = false,
4438 unsigned Depth = 0) const;
4439
4440 /// Return true if vector \p Op has the same value across all \p DemandedElts,
4441 /// indicating any elements which may be undef in the output \p UndefElts.
4442 virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
4443 APInt &UndefElts,
4444 const SelectionDAG &DAG,
4445 unsigned Depth = 0) const;
4446
4447 /// Returns true if the given Opc is considered a canonical constant for the
4448 /// target, which should not be transformed back into a BUILD_VECTOR.
4450 return Op.getOpcode() == ISD::SPLAT_VECTOR ||
4451 Op.getOpcode() == ISD::SPLAT_VECTOR_PARTS;
4452 }
4453
4454 /// Return true if the given select/vselect should be considered canonical and
4455 /// not be transformed. Currently only used for "vselect (not Cond), N1, N2 ->
4456 /// vselect Cond, N2, N1".
4457 virtual bool isTargetCanonicalSelect(SDNode *N) const { return false; }
4458
4460 void *DC; // The DAG Combiner object.
4463
4464 public:
4466
4467 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
4468 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
4469
4470 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
4472 bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
4475
4476 LLVM_ABI void AddToWorklist(SDNode *N);
4477 LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To,
4478 bool AddTo = true);
4479 LLVM_ABI SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
4480 LLVM_ABI SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
4481 bool AddTo = true);
4482
4483 LLVM_ABI bool recursivelyDeleteUnusedNodes(SDNode *N);
4484
4485 LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
4486 };
4487
4488 /// Return if the N is a constant or constant vector equal to the true value
4489 /// from getBooleanContents().
4490 bool isConstTrueVal(SDValue N) const;
4491
4492 /// Return if the N is a constant or constant vector equal to the false value
4493 /// from getBooleanContents().
4494 bool isConstFalseVal(SDValue N) const;
4495
4496 /// Return if \p N is a True value when extended to \p VT.
4497 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
4498
4499 /// Try to simplify a setcc built with the specified operands and cc. If it is
4500 /// unable to simplify it, return a null SDValue.
4501 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4502 bool foldBooleans, DAGCombinerInfo &DCI,
4503 const SDLoc &dl) const;
4504
4505 // For targets which wrap address, unwrap for analysis.
4506 virtual SDValue unwrapAddress(SDValue N) const { return N; }
4507
4508 /// Returns true (and the GlobalValue and the offset) if the node is a
4509 /// GlobalAddress + offset.
4510 virtual bool
4511 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
4512
4513 /// This method will be invoked for all target nodes and for any
4514 /// target-independent nodes that the target has registered with invoke it
4515 /// for.
4516 ///
4517 /// The semantics are as follows:
4518 /// Return Value:
4519 /// SDValue.Val == 0 - No change was made
4520 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
4521 /// otherwise - N should be replaced by the returned Operand.
4522 ///
4523 /// In addition, methods provided by DAGCombinerInfo may be used to perform
4524 /// more complex transformations.
4525 ///
4526 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
4527
4528 /// Return true if it is profitable to move this shift by a constant amount
4529 /// through its operand, adjusting any immediate operands as necessary to
4530 /// preserve semantics. This transformation may not be desirable if it
4531 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
4532 /// extraction in AArch64). By default, it returns true.
4533 ///
4534 /// @param N the shift node
4535 /// @param Level the current DAGCombine legalization level.
4537 CombineLevel Level) const {
4538 SDValue ShiftLHS = N->getOperand(0);
4539 if (!ShiftLHS->hasOneUse())
4540 return false;
4541 if (ShiftLHS.getOpcode() == ISD::SIGN_EXTEND &&
4542 !ShiftLHS.getOperand(0)->hasOneUse())
4543 return false;
4544 return true;
4545 }
4546
4547 /// GlobalISel - return true if it is profitable to move this shift by a
4548 /// constant amount through its operand, adjusting any immediate operands as
4549 /// necessary to preserve semantics. This transformation may not be desirable
4550 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4551 /// bitfield extraction in AArch64). By default, it returns true.
4552 ///
4553 /// @param MI the shift instruction
4554 /// @param IsAfterLegal true if running after legalization.
4556 bool IsAfterLegal) const {
4557 return true;
4558 }
4559
4560 /// GlobalISel - return true if it's profitable to perform the combine:
4561 /// shl ([sza]ext x), y => zext (shl x, y)
4562 virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const {
4563 return true;
4564 }
4565
4566 // Return AndOrSETCCFoldKind::{AddAnd, ABS} if its desirable to try and
4567 // optimize LogicOp(SETCC0, SETCC1). An example (what is implemented as of
4568 // writing this) is:
4569 // With C as a power of 2 and C != 0 and C != INT_MIN:
4570 // AddAnd:
4571 // (icmp eq A, C) | (icmp eq A, -C)
4572 // -> (icmp eq and(add(A, C), ~(C + C)), 0)
4573 // (icmp ne A, C) & (icmp ne A, -C)w
4574 // -> (icmp ne and(add(A, C), ~(C + C)), 0)
4575 // ABS:
4576 // (icmp eq A, C) | (icmp eq A, -C)
4577 // -> (icmp eq Abs(A), C)
4578 // (icmp ne A, C) & (icmp ne A, -C)w
4579 // -> (icmp ne Abs(A), C)
4580 //
4581 // @param LogicOp the logic op
4582 // @param SETCC0 the first of the SETCC nodes
4583 // @param SETCC0 the second of the SETCC nodes
4585 const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const {
4587 }
4588
4589 /// Return true if it is profitable to combine an XOR of a logical shift
4590 /// to create a logical shift of NOT. This transformation may not be desirable
4591 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4592 /// BIC on ARM/AArch64). By default, it returns true.
4593 virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
4594 return true;
4595 }
4596
4597 /// Return true if the target has native support for the specified value type
4598 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
4599 /// i16 is legal, but undesirable since i16 instruction encodings are longer
4600 /// and some i16 instructions are slow.
4601 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
4602 // By default, assume all legal types are desirable.
4603 return isTypeLegal(VT);
4604 }
4605
4606 /// Return true if it is profitable for dag combiner to transform a floating
4607 /// point op of specified opcode to a equivalent op of an integer
4608 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
4609 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
4610 EVT /*VT*/) const {
4611 return false;
4612 }
4613
4614 /// This method query the target whether it is beneficial for dag combiner to
4615 /// promote the specified node. If true, it should return the desired
4616 /// promotion type by reference.
4617 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
4618 return false;
4619 }
4620
4621 /// Return true if the target supports swifterror attribute. It optimizes
4622 /// loads and stores to reading and writing a specific register.
4623 virtual bool supportSwiftError() const {
4624 return false;
4625 }
4626
4627 /// Return true if the target supports that a subset of CSRs for the given
4628 /// machine function is handled explicitly via copies.
4629 virtual bool supportSplitCSR(MachineFunction *MF) const {
4630 return false;
4631 }
4632
4633 /// Return true if the target supports kcfi operand bundles.
4634 virtual bool supportKCFIBundles() const { return false; }
4635
4636 /// Return true if the target supports ptrauth operand bundles.
4637 virtual bool supportPtrAuthBundles() const { return false; }
4638
4639 /// Perform necessary initialization to handle a subset of CSRs explicitly
4640 /// via copies. This function is called at the beginning of instruction
4641 /// selection.
4642 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
4643 llvm_unreachable("Not Implemented");
4644 }
4645
4646 /// Insert explicit copies in entry and exit blocks. We copy a subset of
4647 /// CSRs to virtual registers in the entry block, and copy them back to
4648 /// physical registers in the exit blocks. This function is called at the end
4649 /// of instruction selection.
4651 MachineBasicBlock *Entry,
4652 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
4653 llvm_unreachable("Not Implemented");
4654 }
4655
4656 /// Return the newly negated expression if the cost is not expensive and
4657 /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
4658 /// do the negation.
4659 virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
4660 bool LegalOps, bool OptForSize,
4661 NegatibleCost &Cost,
4662 unsigned Depth = 0) const;
4663
4665 SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
4667 unsigned Depth = 0) const {
4669 SDValue Neg =
4670 getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4671 if (!Neg)
4672 return SDValue();
4673
4674 if (Cost <= CostThreshold)
4675 return Neg;
4676
4677 // Remove the new created node to avoid the side effect to the DAG.
4678 if (Neg->use_empty())
4679 DAG.RemoveDeadNode(Neg.getNode());
4680 return SDValue();
4681 }
4682
4683 /// This is the helper function to return the newly negated expression only
4684 /// when the cost is cheaper.
4686 bool LegalOps, bool OptForSize,
4687 unsigned Depth = 0) const {
4688 return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
4690 }
4691
4692 /// This is the helper function to return the newly negated expression if
4693 /// the cost is not expensive.
4695 bool OptForSize, unsigned Depth = 0) const {
4697 return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4698 }
4699
4700 //===--------------------------------------------------------------------===//
4701 // Lowering methods - These methods must be implemented by targets so that
4702 // the SelectionDAGBuilder code knows how to lower these.
4703 //
4704
4705 /// Target-specific splitting of values into parts that fit a register
4706 /// storing a legal type
4708 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4709 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4710 return false;
4711 }
4712
4713 /// Target-specific combining of register parts into its original value
4714 virtual SDValue
4716 const SDValue *Parts, unsigned NumParts,
4717 MVT PartVT, EVT ValueVT,
4718 std::optional<CallingConv::ID> CC) const {
4719 return SDValue();
4720 }
4721
4722 /// This hook must be implemented to lower the incoming (formal) arguments,
4723 /// described by the Ins array, into the specified DAG. The implementation
4724 /// should fill in the InVals array with legal-type argument values, and
4725 /// return the resulting token chain value.
4727 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
4728 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
4729 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
4730 llvm_unreachable("Not Implemented");
4731 }
4732
4733 /// Optional target hook to add target-specific actions when entering EH pad
4734 /// blocks. The implementation should return the resulting token chain value.
4735 virtual SDValue lowerEHPadEntry(SDValue Chain, const SDLoc &DL,
4736 SelectionDAG &DAG) const {
4737 return SDValue();
4738 }
4739
4740 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
4741 ArgListTy &Args) const {}
4742
4743 /// This structure contains the information necessary for lowering
4744 /// pointer-authenticating indirect calls. It is equivalent to the "ptrauth"
4745 /// operand bundle found on the call instruction, if any.
4750
4751 /// This structure contains all information that is necessary for lowering
4752 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
4753 /// needs to lower a call, and targets will see this struct in their LowerCall
4754 /// implementation.
4757 /// Original unlegalized return type.
4758 Type *OrigRetTy = nullptr;
4759 /// Same as OrigRetTy, or partially legalized for soft float libcalls.
4760 Type *RetTy = nullptr;
4761 bool RetSExt : 1;
4762 bool RetZExt : 1;
4763 bool IsVarArg : 1;
4764 bool IsInReg : 1;
4770 bool NoMerge : 1;
4771
4772 // IsTailCall should be modified by implementations of
4773 // TargetLowering::LowerCall that perform tail call conversions.
4774 bool IsTailCall = false;
4775
4776 // Is Call lowering done post SelectionDAG type legalization.
4778
4779 unsigned NumFixedArgs = -1;
4785 const CallBase *CB = nullptr;
4790 const ConstantInt *CFIType = nullptr;
4793
4794 std::optional<PtrAuthInfo> PAI;
4795
4801
4803 DL = dl;
4804 return *this;
4805 }
4806
4808 Chain = InChain;
4809 return *this;
4810 }
4811
4812 // setCallee with target/module-specific attributes
4814 SDValue Target, ArgListTy &&ArgsList) {
4815 return setLibCallee(CC, ResultType, ResultType, Target,
4816 std::move(ArgsList));
4817 }
4818
4820 Type *OrigResultType, SDValue Target,
4821 ArgListTy &&ArgsList) {
4822 OrigRetTy = OrigResultType;
4823 RetTy = ResultType;
4824 Callee = Target;
4825 CallConv = CC;
4826 NumFixedArgs = ArgsList.size();
4827 Args = std::move(ArgsList);
4828
4829 DAG.getTargetLoweringInfo().markLibCallAttributes(
4830 &(DAG.getMachineFunction()), CC, Args);
4831 return *this;
4832 }
4833
4835 SDValue Target, ArgListTy &&ArgsList,
4836 AttributeSet ResultAttrs = {}) {
4837 RetTy = OrigRetTy = ResultType;
4838 IsInReg = ResultAttrs.hasAttribute(Attribute::InReg);
4839 RetSExt = ResultAttrs.hasAttribute(Attribute::SExt);
4840 RetZExt = ResultAttrs.hasAttribute(Attribute::ZExt);
4841 NoMerge = ResultAttrs.hasAttribute(Attribute::NoMerge);
4842
4843 Callee = Target;
4844 CallConv = CC;
4845 NumFixedArgs = ArgsList.size();
4846 Args = std::move(ArgsList);
4847 return *this;
4848 }
4849
4851 SDValue Target, ArgListTy &&ArgsList,
4852 const CallBase &Call) {
4853 RetTy = OrigRetTy = ResultType;
4854
4855 IsInReg = Call.hasRetAttr(Attribute::InReg);
4857 Call.doesNotReturn() ||
4858 (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
4859 IsVarArg = FTy->isVarArg();
4860 IsReturnValueUsed = !Call.use_empty();
4861 RetSExt = Call.hasRetAttr(Attribute::SExt);
4862 RetZExt = Call.hasRetAttr(Attribute::ZExt);
4863 NoMerge = Call.hasFnAttr(Attribute::NoMerge);
4864
4865 Callee = Target;
4866
4867 CallConv = Call.getCallingConv();
4868 NumFixedArgs = FTy->getNumParams();
4869 Args = std::move(ArgsList);
4870
4871 CB = &Call;
4872
4873 return *this;
4874 }
4875
4877 IsInReg = Value;
4878 return *this;
4879 }
4880
4883 return *this;
4884 }
4885
4887 IsVarArg = Value;
4888 return *this;
4889 }
4890
4892 IsTailCall = Value;
4893 return *this;
4894 }
4895
4898 return *this;
4899 }
4900
4903 return *this;
4904 }
4905
4907 RetSExt = Value;
4908 return *this;
4909 }
4910
4912 RetZExt = Value;
4913 return *this;
4914 }
4915
4918 return *this;
4919 }
4920
4923 return *this;
4924 }
4925
4927 PAI = Value;
4928 return *this;
4929 }
4930
4933 return *this;
4934 }
4935
4937 CFIType = Type;
4938 return *this;
4939 }
4940
4943 return *this;
4944 }
4945
4947 DeactivationSymbol = Sym;
4948 return *this;
4949 }
4950
4952 return Args;
4953 }
4954 };
4955
4956 /// This structure is used to pass arguments to makeLibCall function.
4958 // By passing type list before soften to makeLibCall, the target hook
4959 // shouldExtendTypeInLibCall can get the original type before soften.
4963
4964 bool IsSigned : 1;
4968 bool IsSoften : 1;
4969
4973
4975 IsSigned = Value;
4976 return *this;
4977 }
4978
4981 return *this;
4982 }
4983
4986 return *this;
4987 }
4988
4991 return *this;
4992 }
4993
4995 OpsVTBeforeSoften = OpsVT;
4996 RetVTBeforeSoften = RetVT;
4997 IsSoften = true;
4998 return *this;
4999 }
5000
5001 /// Override the argument type for an operand. Leave the type as null to use
5002 /// the type from the operand's node.
5004 OpsTypeOverrides = OpsTypes;
5005 return *this;
5006 }
5007 };
5008
5009 /// This function lowers an abstract call to a function into an actual call.
5010 /// This returns a pair of operands. The first element is the return value
5011 /// for the function (if RetTy is not VoidTy). The second element is the
5012 /// outgoing token chain. It calls LowerCall to do the actual lowering.
5013 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
5014
5015 /// This hook must be implemented to lower calls into the specified
5016 /// DAG. The outgoing arguments to the call are described by the Outs array,
5017 /// and the values to be returned by the call are described by the Ins
5018 /// array. The implementation should fill in the InVals array with legal-type
5019 /// return values from the call, and return the resulting token chain value.
5020 virtual SDValue
5022 SmallVectorImpl<SDValue> &/*InVals*/) const {
5023 llvm_unreachable("Not Implemented");
5024 }
5025
5026 /// Target-specific cleanup for formal ByVal parameters.
5027 virtual void HandleByVal(CCState *, unsigned &, Align) const {}
5028
5029 /// This hook should be implemented to check whether the return values
5030 /// described by the Outs array can fit into the return registers. If false
5031 /// is returned, an sret-demotion is performed.
5032 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
5033 MachineFunction &/*MF*/, bool /*isVarArg*/,
5034 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
5035 LLVMContext &/*Context*/, const Type *RetTy) const
5036 {
5037 // Return true by default to get preexisting behavior.
5038 return true;
5039 }
5040
5041 /// This hook must be implemented to lower outgoing return values, described
5042 /// by the Outs array, into the specified DAG. The implementation should
5043 /// return the resulting token chain value.
5044 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
5045 bool /*isVarArg*/,
5046 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
5047 const SmallVectorImpl<SDValue> & /*OutVals*/,
5048 const SDLoc & /*dl*/,
5049 SelectionDAG & /*DAG*/) const {
5050 llvm_unreachable("Not Implemented");
5051 }
5052
5053 /// Return true if result of the specified node is used by a return node
5054 /// only. It also compute and return the input chain for the tail call.
5055 ///
5056 /// This is used to determine whether it is possible to codegen a libcall as
5057 /// tail call at legalization time.
5058 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
5059 return false;
5060 }
5061
5062 /// Return true if the target may be able emit the call instruction as a tail
5063 /// call. This is used by optimization passes to determine if it's profitable
5064 /// to duplicate return instructions to enable tailcall optimization.
5065 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
5066 return false;
5067 }
5068
5069 /// Return the register ID of the name passed in. Used by named register
5070 /// global variables extension. There is no target-independent behaviour
5071 /// so the default action is to bail.
5072 virtual Register getRegisterByName(const char* RegName, LLT Ty,
5073 const MachineFunction &MF) const {
5074 report_fatal_error("Named registers not implemented for this target");
5075 }
5076
5077 /// Return the type that should be used to zero or sign extend a
5078 /// zeroext/signext integer return value. FIXME: Some C calling conventions
5079 /// require the return type to be promoted, but this is not true all the time,
5080 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
5081 /// conventions. The frontend should handle this and include all of the
5082 /// necessary information.
5084 ISD::NodeType /*ExtendKind*/) const {
5085 EVT MinVT = getRegisterType(MVT::i32);
5086 return VT.bitsLT(MinVT) ? MinVT : VT;
5087 }
5088
5089 /// For some targets, an LLVM struct type must be broken down into multiple
5090 /// simple types, but the calling convention specifies that the entire struct
5091 /// must be passed in a block of consecutive registers.
5092 virtual bool
5094 bool isVarArg,
5095 const DataLayout &DL) const {
5096 return false;
5097 }
5098
5099 /// For most targets, an LLVM type must be broken down into multiple
5100 /// smaller types. Usually the halves are ordered according to the endianness
5101 /// but for some platform that would break. So this method will default to
5102 /// matching the endianness but can be overridden.
5103 virtual bool
5105 return DL.isLittleEndian();
5106 }
5107
5108 /// Returns a 0 terminated array of registers that can be safely used as
5109 /// scratch registers.
5111 return nullptr;
5112 }
5113
5114 /// Returns a 0 terminated array of rounding control registers that can be
5115 /// attached into strict FP call.
5119
5120 /// This callback is used to prepare for a volatile or atomic load.
5121 /// It takes a chain node as input and returns the chain for the load itself.
5122 ///
5123 /// Having a callback like this is necessary for targets like SystemZ,
5124 /// which allows a CPU to reuse the result of a previous load indefinitely,
5125 /// even if a cache-coherent store is performed by another CPU. The default
5126 /// implementation does nothing.
5128 SelectionDAG &DAG) const {
5129 return Chain;
5130 }
5131
5132 /// This callback is invoked by the type legalizer to legalize nodes with an
5133 /// illegal operand type but legal result types. It replaces the
5134 /// LowerOperation callback in the type Legalizer. The reason we can not do
5135 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
5136 /// use this callback.
5137 ///
5138 /// TODO: Consider merging with ReplaceNodeResults.
5139 ///
5140 /// The target places new result values for the node in Results (their number
5141 /// and types must exactly match those of the original return values of
5142 /// the node), or leaves Results empty, which indicates that the node is not
5143 /// to be custom lowered after all.
5144 /// The default implementation calls LowerOperation.
5145 virtual void LowerOperationWrapper(SDNode *N,
5147 SelectionDAG &DAG) const;
5148
5149 /// This callback is invoked for operations that are unsupported by the
5150 /// target, which are registered to use 'custom' lowering, and whose defined
5151 /// values are all legal. If the target has no operations that require custom
5152 /// lowering, it need not implement this. The default implementation of this
5153 /// aborts.
5154 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
5155
5156 /// This callback is invoked when a node result type is illegal for the
5157 /// target, and the operation was registered to use 'custom' lowering for that
5158 /// result type. The target places new result values for the node in Results
5159 /// (their number and types must exactly match those of the original return
5160 /// values of the node), or leaves Results empty, which indicates that the
5161 /// node is not to be custom lowered after all.
5162 ///
5163 /// If the target has no operations that require custom lowering, it need not
5164 /// implement this. The default implementation aborts.
5165 virtual void ReplaceNodeResults(SDNode * /*N*/,
5166 SmallVectorImpl<SDValue> &/*Results*/,
5167 SelectionDAG &/*DAG*/) const {
5168 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
5169 }
5170
5171 /// This method returns the name of a target specific DAG node.
5172 virtual const char *getTargetNodeName(unsigned Opcode) const;
5173
5174 /// This method returns a target specific FastISel object, or null if the
5175 /// target does not support "fast" ISel.
5177 const TargetLibraryInfo *) const {
5178 return nullptr;
5179 }
5180
5181 //===--------------------------------------------------------------------===//
5182 // Inline Asm Support hooks
5183 //
5184
5186 C_Register, // Constraint represents specific register(s).
5187 C_RegisterClass, // Constraint represents any of register(s) in class.
5188 C_Memory, // Memory constraint.
5189 C_Address, // Address constraint.
5190 C_Immediate, // Requires an immediate.
5191 C_Other, // Something else.
5192 C_Unknown // Unsupported constraint.
5193 };
5194
5196 // Generic weights.
5197 CW_Invalid = -1, // No match.
5198 CW_Okay = 0, // Acceptable.
5199 CW_Good = 1, // Good weight.
5200 CW_Better = 2, // Better weight.
5201 CW_Best = 3, // Best weight.
5202
5203 // Well-known weights.
5204 CW_SpecificReg = CW_Okay, // Specific register operands.
5205 CW_Register = CW_Good, // Register operands.
5206 CW_Memory = CW_Better, // Memory operands.
5207 CW_Constant = CW_Best, // Constant operand.
5208 CW_Default = CW_Okay // Default or don't know type.
5209 };
5210
5211 /// This contains information for each constraint that we are lowering.
5213 /// This contains the actual string for the code, like "m". TargetLowering
5214 /// picks the 'best' code from ConstraintInfo::Codes that most closely
5215 /// matches the operand.
5216 std::string ConstraintCode;
5217
5218 /// Information about the constraint code, e.g. Register, RegisterClass,
5219 /// Memory, Other, Unknown.
5221
5222 /// If this is the result output operand or a clobber, this is null,
5223 /// otherwise it is the incoming operand to the CallInst. This gets
5224 /// modified as the asm is processed.
5226
5227 /// The ValueType for the operand value.
5228 MVT ConstraintVT = MVT::Other;
5229
5230 /// Copy constructor for copying from a ConstraintInfo.
5233
5234 /// Return true of this is an input operand that is a matching constraint
5235 /// like "4".
5236 LLVM_ABI bool isMatchingInputConstraint() const;
5237
5238 /// If this is an input matching constraint, this method returns the output
5239 /// operand it matches.
5240 LLVM_ABI unsigned getMatchedOperand() const;
5241 };
5242
5243 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
5244
5245 /// Split up the constraint string from the inline assembly value into the
5246 /// specific constraints and their prefixes, and also tie in the associated
5247 /// operand values. If this returns an empty vector, and if the constraint
5248 /// string itself isn't empty, there was an error parsing.
5250 const TargetRegisterInfo *TRI,
5251 const CallBase &Call) const;
5252
5253 /// Examine constraint type and operand type and determine a weight value.
5254 /// The operand object must already have been set up with the operand type.
5256 AsmOperandInfo &info, int maIndex) const;
5257
5258 /// Examine constraint string and operand type and determine a weight value.
5259 /// The operand object must already have been set up with the operand type.
5261 AsmOperandInfo &info, const char *constraint) const;
5262
5263 /// Determines the constraint code and constraint type to use for the specific
5264 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5265 /// If the actual operand being passed in is available, it can be passed in as
5266 /// Op, otherwise an empty SDValue can be passed.
5267 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5268 SDValue Op,
5269 SelectionDAG *DAG = nullptr) const;
5270
5271 /// Given a constraint, return the type of constraint it is for this target.
5272 virtual ConstraintType getConstraintType(StringRef Constraint) const;
5273
5274 using ConstraintPair = std::pair<StringRef, TargetLowering::ConstraintType>;
5276 /// Given an OpInfo with list of constraints codes as strings, return a
5277 /// sorted Vector of pairs of constraint codes and their types in priority of
5278 /// what we'd prefer to lower them as. This may contain immediates that
5279 /// cannot be lowered, but it is meant to be a machine agnostic order of
5280 /// preferences.
5282
5283 /// Given a physical register constraint (e.g. {edx}), return the register
5284 /// number and the register class for the register.
5285 ///
5286 /// Given a register class constraint, like 'r', if this corresponds directly
5287 /// to an LLVM register class, return a register of 0 and the register class
5288 /// pointer.
5289 ///
5290 /// This should only be used for C_Register constraints. On error, this
5291 /// returns a register number of 0 and a null register class pointer.
5292 virtual std::pair<unsigned, const TargetRegisterClass *>
5294 StringRef Constraint, MVT VT) const;
5295
5297 getInlineAsmMemConstraint(StringRef ConstraintCode) const {
5298 if (ConstraintCode == "m")
5300 if (ConstraintCode == "o")
5302 if (ConstraintCode == "X")
5304 if (ConstraintCode == "p")
5307 }
5308
5309 /// Try to replace an X constraint, which matches anything, with another that
5310 /// has more specific requirements based on the type of the corresponding
5311 /// operand. This returns null if there is no replacement to make.
5312 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
5313
5314 /// Lower the specified operand into the Ops vector. If it is invalid, don't
5315 /// add anything to Ops.
5316 virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
5317 std::vector<SDValue> &Ops,
5318 SelectionDAG &DAG) const;
5319
5320 // Lower custom output constraints. If invalid, return SDValue().
5321 virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue,
5322 const SDLoc &DL,
5323 const AsmOperandInfo &OpInfo,
5324 SelectionDAG &DAG) const;
5325
5326 // Targets may override this function to collect operands from the CallInst
5327 // and for example, lower them into the SelectionDAG operands.
5328 virtual void CollectTargetIntrinsicOperands(const CallInst &I,
5330 SelectionDAG &DAG) const;
5331
5332 //===--------------------------------------------------------------------===//
5333 // Div utility functions
5334 //
5335
5336 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5337 bool IsAfterLegalTypes,
5338 SmallVectorImpl<SDNode *> &Created) const;
5339 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5340 bool IsAfterLegalTypes,
5341 SmallVectorImpl<SDNode *> &Created) const;
5342 // Build sdiv by power-of-2 with conditional move instructions
5343 SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor,
5344 SelectionDAG &DAG,
5345 SmallVectorImpl<SDNode *> &Created) const;
5346
5347 /// Targets may override this function to provide custom SDIV lowering for
5348 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5349 /// assumes SDIV is expensive and replaces it with a series of other integer
5350 /// operations.
5351 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5352 SelectionDAG &DAG,
5353 SmallVectorImpl<SDNode *> &Created) const;
5354
5355 /// Targets may override this function to provide custom SREM lowering for
5356 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5357 /// assumes SREM is expensive and replaces it with a series of other integer
5358 /// operations.
5359 virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
5360 SelectionDAG &DAG,
5361 SmallVectorImpl<SDNode *> &Created) const;
5362
5363 /// Indicate whether this target prefers to combine FDIVs with the same
5364 /// divisor. If the transform should never be done, return zero. If the
5365 /// transform should be done, return the minimum number of divisor uses
5366 /// that must exist.
5367 virtual unsigned combineRepeatedFPDivisors() const {
5368 return 0;
5369 }
5370
5371 /// Hooks for building estimates in place of slower divisions and square
5372 /// roots.
5373
5374 /// Return either a square root or its reciprocal estimate value for the input
5375 /// operand.
5376 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5377 /// 'Enabled' as set by a potential default override attribute.
5378 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5379 /// refinement iterations required to generate a sufficient (though not
5380 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5381 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
5382 /// algorithm implementation that uses either one or two constants.
5383 /// The boolean Reciprocal is used to select whether the estimate is for the
5384 /// square root of the input operand or the reciprocal of its square root.
5385 /// A target may choose to implement its own refinement within this function.
5386 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5387 /// any further refinement of the estimate.
5388 /// An empty SDValue return means no estimate sequence can be created.
5390 int Enabled, int &RefinementSteps,
5391 bool &UseOneConstNR, bool Reciprocal) const {
5392 return SDValue();
5393 }
5394
5395 /// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
5396 /// required for correctness since InstCombine might have canonicalized a
5397 /// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic. If we were to fall
5398 /// through to the default expansion/soften to libcall, we might introduce a
5399 /// link-time dependency on libm into a file that originally did not have one.
5400 SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const;
5401
5402 /// Return a reciprocal estimate value for the input operand.
5403 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5404 /// 'Enabled' as set by a potential default override attribute.
5405 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5406 /// refinement iterations required to generate a sufficient (though not
5407 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5408 /// A target may choose to implement its own refinement within this function.
5409 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5410 /// any further refinement of the estimate.
5411 /// An empty SDValue return means no estimate sequence can be created.
5413 int Enabled, int &RefinementSteps) const {
5414 return SDValue();
5415 }
5416
5417 /// Return a target-dependent comparison result if the input operand is
5418 /// suitable for use with a square root estimate calculation. For example, the
5419 /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
5420 /// result should be used as the condition operand for a select or branch.
5421 virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
5422 const DenormalMode &Mode) const;
5423
5424 /// Return a target-dependent result if the input operand is not suitable for
5425 /// use with a square root estimate calculation.
5427 SelectionDAG &DAG) const {
5428 return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
5429 }
5430
5431 //===--------------------------------------------------------------------===//
5432 // Legalization utility functions
5433 //
5434
5435 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
5436 /// respectively, each computing an n/2-bit part of the result.
5437 /// \param Result A vector that will be filled with the parts of the result
5438 /// in little-endian order.
5439 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5440 /// if you want to control how low bits are extracted from the LHS.
5441 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5442 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5443 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5444 /// \returns true if the node has been expanded, false if it has not
5445 bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
5446 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
5447 SelectionDAG &DAG, MulExpansionKind Kind,
5448 SDValue LL = SDValue(), SDValue LH = SDValue(),
5449 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5450
5451 /// Expand a MUL into two nodes. One that computes the high bits of
5452 /// the result and one that computes the low bits.
5453 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
5454 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5455 /// if you want to control how low bits are extracted from the LHS.
5456 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5457 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5458 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5459 /// \returns true if the node has been expanded. false if it has not
5460 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5461 SelectionDAG &DAG, MulExpansionKind Kind,
5462 SDValue LL = SDValue(), SDValue LH = SDValue(),
5463 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5464
5465 /// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
5466 /// urem by constant and other arithmetic ops. The n/2-bit urem by constant
5467 /// will be expanded by DAGCombiner. This is not possible for all constant
5468 /// divisors.
5469 /// \param N Node to expand
5470 /// \param Result A vector that will be filled with the lo and high parts of
5471 /// the results. For *DIVREM, this will be the quotient parts followed
5472 /// by the remainder parts.
5473 /// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
5474 /// half of VT.
5475 /// \param LL Low bits of the LHS of the operation. You can use this
5476 /// parameter if you want to control how low bits are extracted from
5477 /// the LHS.
5478 /// \param LH High bits of the LHS of the operation. See LL for meaning.
5479 /// \returns true if the node has been expanded, false if it has not.
5480 bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl<SDValue> &Result,
5481 EVT HiLoVT, SelectionDAG &DAG,
5482 SDValue LL = SDValue(),
5483 SDValue LH = SDValue()) const;
5484
5485 /// Expand funnel shift.
5486 /// \param N Node to expand
5487 /// \returns The expansion if successful, SDValue() otherwise
5488 SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const;
5489
5490 /// Expand rotations.
5491 /// \param N Node to expand
5492 /// \param AllowVectorOps expand vector rotate, this should only be performed
5493 /// if the legalization is happening outside of LegalizeVectorOps
5494 /// \returns The expansion if successful, SDValue() otherwise
5495 SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
5496
5497 /// Expand shift-by-parts.
5498 /// \param N Node to expand
5499 /// \param Lo lower-output-part after conversion
5500 /// \param Hi upper-output-part after conversion
5501 void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
5502 SelectionDAG &DAG) const;
5503
5504 /// Expand float(f32) to SINT(i64) conversion
5505 /// \param N Node to expand
5506 /// \param Result output after conversion
5507 /// \returns True, if the expansion was successful, false otherwise
5508 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
5509
5510 /// Expand float to UINT conversion
5511 /// \param N Node to expand
5512 /// \param Result output after conversion
5513 /// \param Chain output chain after conversion
5514 /// \returns True, if the expansion was successful, false otherwise
5515 bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
5516 SelectionDAG &DAG) const;
5517
5518 /// Expand UINT(i64) to double(f64) conversion
5519 /// \param N Node to expand
5520 /// \param Result output after conversion
5521 /// \param Chain output chain after conversion
5522 /// \returns True, if the expansion was successful, false otherwise
5523 bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
5524 SelectionDAG &DAG) const;
5525
5526 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
5527 SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
5528
5529 /// Expand fminimum/fmaximum into multiple comparison with selects.
5530 SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const;
5531
5532 /// Expand fminimumnum/fmaximumnum into multiple comparison with selects.
5533 SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const;
5534
5535 /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
5536 /// \param N Node to expand
5537 /// \returns The expansion result
5538 SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
5539
5540 /// Truncate Op to ResultVT. If the result is exact, leave it alone. If it is
5541 /// not exact, force the result to be odd.
5542 /// \param ResultVT The type of result.
5543 /// \param Op The value to round.
5544 /// \returns The expansion result
5545 SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL,
5546 SelectionDAG &DAG) const;
5547
5548 /// Expand round(fp) to fp conversion
5549 /// \param N Node to expand
5550 /// \returns The expansion result
5551 SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const;
5552
5553 /// Expand check for floating point class.
5554 /// \param ResultVT The type of intrinsic call result.
5555 /// \param Op The tested value.
5556 /// \param Test The test to perform.
5557 /// \param Flags The optimization flags.
5558 /// \returns The expansion result or SDValue() if it fails.
5559 SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test,
5560 SDNodeFlags Flags, const SDLoc &DL,
5561 SelectionDAG &DAG) const;
5562
5563 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
5564 /// vector nodes can only succeed if all operations are legal/custom.
5565 /// \param N Node to expand
5566 /// \returns The expansion result or SDValue() if it fails.
5567 SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
5568
5569 /// Expand VP_CTPOP nodes.
5570 /// \returns The expansion result or SDValue() if it fails.
5571 SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const;
5572
5573 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
5574 /// vector nodes can only succeed if all operations are legal/custom.
5575 /// \param N Node to expand
5576 /// \returns The expansion result or SDValue() if it fails.
5577 SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
5578
5579 /// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
5580 /// \param N Node to expand
5581 /// \returns The expansion result or SDValue() if it fails.
5582 SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const;
5583
5584 /// Expand CTTZ via Table Lookup.
5585 /// \param N Node to expand
5586 /// \returns The expansion result or SDValue() if it fails.
5587 SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5588 SDValue Op, unsigned NumBitsPerElt) const;
5589
5590 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
5591 /// vector nodes can only succeed if all operations are legal/custom.
5592 /// \param N Node to expand
5593 /// \returns The expansion result or SDValue() if it fails.
5594 SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
5595
5596 /// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
5597 /// \param N Node to expand
5598 /// \returns The expansion result or SDValue() if it fails.
5599 SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const;
5600
5601 /// Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
5602 /// \param N Node to expand
5603 /// \returns The expansion result or SDValue() if it fails.
5604 SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const;
5605
5606 /// Expand VECTOR_FIND_LAST_ACTIVE nodes
5607 /// \param N Node to expand
5608 /// \returns The expansion result or SDValue() if it fails.
5609 SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const;
5610
5611 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
5612 /// vector nodes can only succeed if all operations are legal/custom.
5613 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
5614 /// \param N Node to expand
5615 /// \param IsNegative indicate negated abs
5616 /// \returns The expansion result or SDValue() if it fails.
5617 SDValue expandABS(SDNode *N, SelectionDAG &DAG,
5618 bool IsNegative = false) const;
5619
5620 /// Expand ABDS/ABDU nodes. Expands vector/scalar ABDS/ABDU nodes.
5621 /// \param N Node to expand
5622 /// \returns The expansion result or SDValue() if it fails.
5623 SDValue expandABD(SDNode *N, SelectionDAG &DAG) const;
5624
5625 /// Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
5626 /// \param N Node to expand
5627 /// \returns The expansion result or SDValue() if it fails.
5628 SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const;
5629
5630 /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
5631 /// scalar types. Returns SDValue() if expand fails.
5632 /// \param N Node to expand
5633 /// \returns The expansion result or SDValue() if it fails.
5634 SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
5635
5636 /// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
5637 /// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
5638 /// to expand \returns The expansion result or SDValue() if it fails.
5639 SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const;
5640
5641 /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
5642 /// Returns SDValue() if expand fails.
5643 /// \param N Node to expand
5644 /// \returns The expansion result or SDValue() if it fails.
5645 SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5646
5647 /// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
5648 /// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
5649 /// expansion result or SDValue() if it fails.
5650 SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5651
5652 /// Turn load of vector type into a load of the individual elements.
5653 /// \param LD load to expand
5654 /// \returns BUILD_VECTOR and TokenFactor nodes.
5655 std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
5656 SelectionDAG &DAG) const;
5657
5658 // Turn a store of a vector type into stores of the individual elements.
5659 /// \param ST Store with a vector value type
5660 /// \returns TokenFactor of the individual store chains.
5662
5663 /// Expands an unaligned load to 2 half-size loads for an integer, and
5664 /// possibly more for vectors.
5665 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
5666 SelectionDAG &DAG) const;
5667
5668 /// Expands an unaligned store to 2 half-size stores for integer values, and
5669 /// possibly more for vectors.
5670 SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
5671
5672 /// Increments memory address \p Addr according to the type of the value
5673 /// \p DataVT that should be stored. If the data is stored in compressed
5674 /// form, the memory address should be incremented according to the number of
5675 /// the stored elements. This number is equal to the number of '1's bits
5676 /// in the \p Mask.
5677 /// \p DataVT is a vector type. \p Mask is a vector value.
5678 /// \p DataVT and \p Mask have the same number of vector elements.
5679 SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
5680 EVT DataVT, SelectionDAG &DAG,
5681 bool IsCompressedMemory) const;
5682
5683 /// Get a pointer to vector element \p Idx located in memory for a vector of
5684 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5685 /// bounds the returned pointer is unspecified, but will be within the vector
5686 /// bounds. \p PtrArithFlags can be used to mark that arithmetic within the
5687 /// vector in memory is known to not wrap or to be inbounds.
5688 SDValue getVectorElementPointer(
5689 SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index,
5690 const SDNodeFlags PtrArithFlags = SDNodeFlags()) const;
5691
5692 /// Get a pointer to vector element \p Idx located in memory for a vector of
5693 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5694 /// bounds the returned pointer is unspecified, but will be within the vector
5695 /// bounds. \p VecPtr is guaranteed to point to the beginning of a memory
5696 /// location large enough for the vector.
5698 EVT VecVT, SDValue Index) const {
5699 return getVectorElementPointer(DAG, VecPtr, VecVT, Index,
5702 }
5703
5704 /// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
5705 /// in memory for a vector of type \p VecVT starting at a base address of
5706 /// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
5707 /// returned pointer is unspecified, but the value returned will be such that
5708 /// the entire subvector would be within the vector bounds. \p PtrArithFlags
5709 /// can be used to mark that arithmetic within the vector in memory is known
5710 /// to not wrap or to be inbounds.
5711 SDValue
5712 getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
5713 EVT SubVecVT, SDValue Index,
5714 const SDNodeFlags PtrArithFlags = SDNodeFlags()) const;
5715
5716 /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
5717 /// method accepts integers as its arguments.
5718 SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
5719
5720 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
5721 /// method accepts integers as its arguments.
5722 SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
5723
5724 /// Method for building the DAG expansion of ISD::[US]CMP. This
5725 /// method accepts integers as its arguments
5726 SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const;
5727
5728 /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
5729 /// method accepts integers as its arguments.
5730 SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
5731
5732 /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
5733 /// method accepts integers as its arguments.
5734 SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
5735
5736 /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
5737 /// method accepts integers as its arguments.
5738 /// Note: This method may fail if the division could not be performed
5739 /// within the type. Clients must retry with a wider type if this happens.
5740 SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
5742 unsigned Scale, SelectionDAG &DAG) const;
5743
5744 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
5745 /// always suceeds and populates the Result and Overflow arguments.
5746 void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5747 SelectionDAG &DAG) const;
5748
5749 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
5750 /// always suceeds and populates the Result and Overflow arguments.
5751 void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5752 SelectionDAG &DAG) const;
5753
5754 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
5755 /// expansion was successful and populates the Result and Overflow arguments.
5756 bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5757 SelectionDAG &DAG) const;
5758
5759 /// Calculate the product twice the width of LHS and RHS. If HiLHS/HiRHS are
5760 /// non-null they will be included in the multiplication. The expansion works
5761 /// by splitting the 2 inputs into 4 pieces that we can multiply and add
5762 /// together without neding MULH or MUL_LOHI.
5763 void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5765 SDValue HiLHS = SDValue(),
5766 SDValue HiRHS = SDValue()) const;
5767
5768 /// Calculate full product of LHS and RHS either via a libcall or through
5769 /// brute force expansion of the multiplication. The expansion works by
5770 /// splitting the 2 inputs into 4 pieces that we can multiply and add together
5771 /// without needing MULH or MUL_LOHI.
5772 void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5773 const SDValue LHS, const SDValue RHS, SDValue &Lo,
5774 SDValue &Hi) const;
5775
5776 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
5777 /// only the first Count elements of the vector are used.
5778 SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
5779
5780 /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
5781 SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
5782
5783 /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
5784 /// Returns true if the expansion was successful.
5785 bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
5786
5787 /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
5788 /// method accepts vectors as its arguments.
5789 SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
5790
5791 /// Expand a vector VECTOR_COMPRESS into a sequence of extract element, store
5792 /// temporarily, advance store position, before re-loading the final vector.
5793 SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const;
5794
5795 /// Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations,
5796 /// consisting of zext/sext, extract_subvector, mul and add operations.
5797 SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const;
5798
5799 /// Expands a node with multiple results to an FP or vector libcall. The
5800 /// libcall is expected to take all the operands of the \p Node followed by
5801 /// output pointers for each of the results. \p CallRetResNo can be optionally
5802 /// set to indicate that one of the results comes from the libcall's return
5803 /// value.
5804 bool expandMultipleResultFPLibCall(
5805 SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node,
5807 std::optional<unsigned> CallRetResNo = {}) const;
5808
5809 /// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
5810 /// on the current target. A VP_SETCC will additionally be given a Mask
5811 /// and/or EVL not equal to SDValue().
5812 ///
5813 /// If the SETCC has been legalized using AND / OR, then the legalized node
5814 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
5815 /// will be set to false. This will also hold if the VP_SETCC has been
5816 /// legalized using VP_AND / VP_OR.
5817 ///
5818 /// If the SETCC / VP_SETCC has been legalized by using
5819 /// getSetCCSwappedOperands(), then the values of LHS and RHS will be
5820 /// swapped, CC will be set to the new condition, and NeedInvert will be set
5821 /// to false.
5822 ///
5823 /// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
5824 /// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
5825 /// and NeedInvert will be set to true. The caller must invert the result of
5826 /// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
5827 /// swap the effect of a true/false result.
5828 ///
5829 /// \returns true if the SETCC / VP_SETCC has been legalized, false if it
5830 /// hasn't.
5831 bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
5832 SDValue &RHS, SDValue &CC, SDValue Mask,
5833 SDValue EVL, bool &NeedInvert, const SDLoc &dl,
5834 SDValue &Chain, bool IsSignaling = false) const;
5835
5836 //===--------------------------------------------------------------------===//
5837 // Instruction Emitting Hooks
5838 //
5839
5840 /// This method should be implemented by targets that mark instructions with
5841 /// the 'usesCustomInserter' flag. These instructions are special in various
5842 /// ways, which require special support to insert. The specified MachineInstr
5843 /// is created but not inserted into any basic blocks, and this method is
5844 /// called to expand it into a sequence of instructions, potentially also
5845 /// creating new basic blocks and control flow.
5846 /// As long as the returned basic block is different (i.e., we created a new
5847 /// one), the custom inserter is free to modify the rest of \p MBB.
5848 virtual MachineBasicBlock *
5849 EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
5850
5851 /// This method should be implemented by targets that mark instructions with
5852 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
5853 /// instruction selection by target hooks. e.g. To fill in optional defs for
5854 /// ARM 's' setting instructions.
5855 virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
5856 SDNode *Node) const;
5857
5858 /// If this function returns true, SelectionDAGBuilder emits a
5859 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
5860 virtual bool useLoadStackGuardNode(const Module &M) const { return false; }
5861
5863 const SDLoc &DL,
5864 bool FailureBB) const {
5865 llvm_unreachable("not implemented for this target");
5866 }
5867
5868 /// Lower TLS global address SDNode for target independent emulated TLS model.
5869 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5870 SelectionDAG &DAG) const;
5871
5872 /// Expands target specific indirect branch for the case of JumpTable
5873 /// expansion.
5874 virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
5875 SDValue Addr, int JTI,
5876 SelectionDAG &DAG) const;
5877
5878 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
5879 // If we're comparing for equality to zero and isCtlzFast is true, expose the
5880 // fact that this can be implemented as a ctlz/srl pair, so that the dag
5881 // combiner can fold the new nodes.
5882 SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
5883
5884 // Return true if `X & Y eq/ne 0` is preferable to `X & Y ne/eq Y`
5886 return true;
5887 }
5888
5889 // Expand vector operation by dividing it into smaller length operations and
5890 // joining their results. SDValue() is returned when expansion did not happen.
5891 SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const;
5892
5893 /// Replace an extraction of a load with a narrowed load.
5894 ///
5895 /// \param ResultVT type of the result extraction.
5896 /// \param InVecVT type of the input vector to with bitcasts resolved.
5897 /// \param EltNo index of the vector element to load.
5898 /// \param OriginalLoad vector load that to be replaced.
5899 /// \returns \p ResultVT Load on success SDValue() on failure.
5900 SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL,
5901 EVT InVecVT, SDValue EltNo,
5902 LoadSDNode *OriginalLoad,
5903 SelectionDAG &DAG) const;
5904
5905private:
5906 SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5907 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5908 SDValue foldSetCCWithOr(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5909 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5910 SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5911 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5912
5913 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
5915 DAGCombinerInfo &DCI,
5916 const SDLoc &DL) const;
5917
5918 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5919 SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
5920 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
5921 DAGCombinerInfo &DCI, const SDLoc &DL) const;
5922
5923 SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5924 SDValue CompTargetNode, ISD::CondCode Cond,
5925 DAGCombinerInfo &DCI, const SDLoc &DL,
5926 SmallVectorImpl<SDNode *> &Created) const;
5927 SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5928 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5929 const SDLoc &DL) const;
5930
5931 SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5932 SDValue CompTargetNode, ISD::CondCode Cond,
5933 DAGCombinerInfo &DCI, const SDLoc &DL,
5934 SmallVectorImpl<SDNode *> &Created) const;
5935 SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5936 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5937 const SDLoc &DL) const;
5938};
5939
5940/// Given an LLVM IR type and return type attributes, compute the return value
5941/// EVTs and flags, and optionally also the offsets, if the return value is
5942/// being lowered to memory.
5943LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
5944 AttributeList attr,
5945 SmallVectorImpl<ISD::OutputArg> &Outs,
5946 const TargetLowering &TLI, const DataLayout &DL);
5947
5948} // end namespace llvm
5949
5950#endif // LLVM_CODEGEN_TARGETLOWERING_H
unsigned const MachineRegisterInfo * MRI
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
block Block Frequency Analysis
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ABI
Definition Compiler.h:213
#define LLVM_READONLY
Definition Compiler.h:322
This file defines the DenseMap class.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
Implement a low-level type suitable for MachineInstr level instruction selection.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
bool isFloatingPointOperation() const
BinOp getOperation() const
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM_ABI bool getValueAsBool() const
Return the attribute's value as a boolean.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
CCState - This class holds information needed while lowering arguments and return values.
CCValAssign - Represent assignment of one arg/retval to a location.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition Constants.h:87
This class represents a range of values.
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
unsigned size() const
Definition DenseMap.h:110
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
bool isVarArg() const
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
A wrapper class for inspecting calls to intrinsic functions.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
This class is used to represent ISD::LOAD nodes.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isInteger() const
Return true if this is an integer or a vector integer type.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
ElementCount getVectorElementCount() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
Instructions::iterator instr_iterator
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This is an abstract virtual class for memory operations.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
A discriminated union of two or more pointer types, with the discriminator in the low bit of the poin...
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool hasOneUse() const
Return true if there is exactly one use of this node.
bool use_empty() const
Return true if there are no uses of this node.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
const DataLayout & getDataLayout() const
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVMContext * getContext() const
This instruction constructs a fixed permutation of two input vectors.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Multiway switch.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
ArgListEntry(Value *Val, SDValue Node=SDValue())
ArgListEntry(Value *Val, SDValue Node, Type *Ty)
Type * Ty
Same as OrigTy, or partially legalized for soft float libcalls.
Type * OrigTy
Original unlegalized argument type.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Value * emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const
Perform a store-conditional operation to Addr.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
virtual bool enableAggressiveFMAFusion(LLT Ty) const
Return true if target always benefits from combining into FMA for a given value type.
virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a bit test atomicrmw using a target-specific intrinsic.
void setOperationAction(ArrayRef< unsigned > Ops, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool requiresUniformRegister(MachineFunction &MF, const Value *) const
Allows target to decide about the register class of the specific value that is live outside the defin...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
virtual unsigned getVaListSizeInBits(const DataLayout &DL) const
Returns the size of the platform's va_list object.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const
virtual bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
virtual bool hasAndNot(SDValue X) const
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
ReciprocalEstimate
Reciprocal estimate status values used by the functions below.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool enableAggressiveFMAFusion(EVT VT) const
Return true if target always benefits from combining into FMA for a given value type.
virtual bool isComplexDeinterleavingOperationSupported(ComplexDeinterleavingOperation Operation, Type *Ty) const
Does this target support complex deinterleaving with the given operation and type.
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool, EVT ValVT) const
Promote the given target boolean to a target boolean of the given type.
virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const
Returns true if be combined with to form an ISD::FMAD.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
virtual bool hasStandaloneRem(EVT VT) const
Return true if the target can handle a standalone remainder operation.
virtual bool isExtFreeImpl(const Instruction *I) const
Return true if the extension represented by I is free.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool shouldExpandBuildVectorWithShuffles(EVT, unsigned DefinedValues) const
LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT, bool LegalOnly) const
virtual bool isSelectSupported(SelectSupportKind) const
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual bool isEqualityCmpFoldedWithSignedCmp() const
Return true if instruction generated for equality comparison is folded with instruction generated for...
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const
Use bitwise logic to make pairs of compares more efficient.
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const
Try to convert math with an overflow comparison into the corresponding DAG node operation.
ShiftLegalizationStrategy
Return the preferred strategy to legalize tihs SHIFT instruction, with ExpansionFactor being the recu...
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const
Return if the target supports combining a chain like:
virtual Value * createComplexDeinterleavingIR(IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, Value *Accumulator=nullptr) const
Create the IR node for the given complex deinterleaving operation.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT, unsigned Scale) const
Custom method defined by each target to indicate if an operation which may require a scale is support...
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual bool shouldOptimizeMulOverflowWithZeroHighBits(LLVMContext &Context, EVT VT) const
virtual Sched::Preference getSchedulingPreference(SDNode *) const
Some scheduler, e.g.
virtual MachineInstr * EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const
void setMinStackArgumentAlignment(Align Alignment)
Set the minimum stack alignment of an argument.
bool isExtLoad(const LoadInst *Load, const Instruction *Ext, const DataLayout &DL) const
Return true if Load and Ext can form an ExtLoad.
LegalizeTypeAction getTypeAction(MVT VT) const
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual bool shouldInsertFencesForAtomic(const Instruction *I) const
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
virtual AtomicOrdering atomicOperationOrderAfterFenceSplit(const Instruction *I) const
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
bool isOperationExpandOrLibCall(unsigned Op, EVT VT) const
virtual bool allowsMisalignedMemoryAccesses(LLT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
LLT handling variant.
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
virtual void emitExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) const
Perform a cmpxchg expansion using a target-specific method.
virtual CondMergingParams getJumpConditionMergingParams(Instruction::BinaryOps, const Value *, const Value *) const
virtual ISD::NodeType getExtendForAtomicRMWArg(unsigned Op) const
Returns how the platform's atomic rmw operations expect their input argument to be extended (ZERO_EXT...
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
bool rangeFitsInWord(const APInt &Low, const APInt &High, const DataLayout &DL) const
Check whether the range [Low,High] fits in a machine word.
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
unsigned getMinCmpXchgSizeInBits() const
Returns the size of the smallest cmpxchg or ll/sc instruction the backend supports.
virtual Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const
Perform a masked atomicrmw using a target-specific intrinsic.
virtual bool areJTsAllowed(const Function *Fn) const
Return true if lowering to a jump table is allowed.
bool enableExtLdPromotion() const
Return true if the target wants to use the optimization that turns ext(promotableInst1(....
virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
void setMaxBytesForAlignment(unsigned MaxBytes)
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual bool hasBitTest(SDValue X, SDValue Y) const
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
MVT getRegisterType(LLVMContext &Context, EVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool needsFixedCatchObjects() const
EVT getLegalTypeToTransformTo(LLVMContext &Context, EVT VT) const
Perform getTypeToTransformTo repeatedly until a legal type is obtained.
virtual Value * emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const
Perform a load-linked operation on Addr, returning a "Value *" with the corresponding pointee type.
void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum fp to/from int conversion the backend supports.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
virtual bool isCheapToSpeculateCttz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic cttz.
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
bool isJumpExpensive() const
Return true if Flow Control is an expensive operation that should be avoided.
virtual bool useFPRegsForHalfType() const
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
bool hasExtractBitsInsn() const
Return true if the target has BitExtract instructions.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation is legal on this target.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
virtual bool softPromoteHalfType() const
virtual bool areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX, const MemSDNode &NodeY) const
Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, EVT ToVT) const
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
void setOperationAction(ArrayRef< unsigned > Ops, MVT VT, LegalizeAction Action)
virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst, SDValue IntPow2) const
SelectSupportKind
Enum that describes what type of support for selects the target has.
RTLIB::LibcallImpl getMemcpyImpl() const
LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, EVT VT) const
Returns true if we should normalize select(N0&N1, X, Y) => select(N0, select(N1, X,...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
virtual bool preferScalarizeSplat(SDNode *N) const
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual ISD::NodeType getExtendForAtomicOps() const
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
virtual LLT getOptimalMemOpLLT(const MemOp &Op, const AttributeList &) const
LLT returning variant.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const
Perform a atomicrmw expansion using a target-specific way.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
virtual bool hasStackProbeSymbol(const MachineFunction &MF) const
Returns the name of the symbol used to emit stack probes or the empty string if not applicable.
bool isSlowDivBypassed() const
Returns true if target has indicated at least one type should be bypassed.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
virtual bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const
Return true if it may be profitable to transform (mul (add x, c1), c2) -> (add (mul x,...
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
bool isPartialReduceMLALegalOrCustom(unsigned Opc, EVT AccVT, EVT InputVT) const
Return true if a PARTIAL_REDUCE_U/SMLA node with the specified types is legal or custom for this targ...
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const
Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
bool isSuitableForBitTests(const DenseMap< const BasicBlock *, unsigned int > &DestCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const
Return true if lowering to a bit test is suitable for a set of case clusters which contains NumDests ...
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool hasMultipleConditionRegisters(EVT VT) const
Does the target have multiple (allocatable) condition registers that can be used to store the results...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
unsigned getMaxExpandSizeMemcmp(bool OptSize) const
Get maximum # of load operations permitted for memcmp.
bool isStrictFPEnabled() const
Return true if the target support strict float operation.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const
True if target has some particular form of dealing with pointer arithmetic semantics for pointers wit...
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual bool lowerInterleavedStore(Instruction *Store, Value *Mask, ShuffleVectorInst *SVI, unsigned Factor, const APInt &GapMask) const
Lower an interleaved store to target specific intrinsics.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual bool shouldFoldSelectWithSingleBitTest(EVT VT, const APInt &AndMask) const
MVT getSimpleValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the MVT corresponding to this LLVM type. See getValueType.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const
Return true if the target can combine store(extractelement VectorTy,Idx).
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
LegalizeAction getAtomicLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Same as getLoadExtAction, but for atomic loads.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N) const
Return true if it is profitable to fold a pair of shifts into a mask.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const
void setSupportsUnalignedAtomics(bool UnalignedSupported)
Sets whether unaligned atomic operations are supported.
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual void emitExpandAtomicStore(StoreInst *SI) const
Perform a atomic store using a target-specific way.
virtual bool preferIncOfAddToSubOfNot(EVT VT) const
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
virtual bool ShouldShrinkFPConstant(EVT) const
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
unsigned getMaxDivRemBitWidthSupported() const
Returns the size in bits of the maximum div/rem the backend supports.
virtual bool isLegalAddImmediate(int64_t) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
virtual unsigned getMaxSupportedInterleaveFactor() const
Get the maximum supported factor for interleaved memory accesses.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
virtual bool shouldKeepZExtForFP16Conv() const
Does this target require the clearing of high-order bits in a register passed to the fp16 to fp conve...
virtual AtomicExpansionKind shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const
Returns how the given atomic atomicrmw should be cast by the IR-level AtomicExpand pass.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
virtual bool canTransformPtrArithOutOfBounds(const Function &F, EVT PtrVT) const
True if the target allows transformations of in-bounds pointer arithmetic that cause out-of-bounds in...
virtual bool shouldConsiderGEPOffsetSplit() const
const ValueTypeActionImpl & getValueTypeActions() const
virtual AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
virtual bool isTruncateFree(SDValue Val, EVT VT2) const
Return true if truncating the specific node Val to type VT2 is free.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
virtual bool shouldInsertTrailingSeqCstFenceForAtomicStore(const Instruction *I) const
Whether AtomicExpandPass should automatically insert a seq_cst trailing fence without reducing the or...
virtual bool isFNegFree(EVT VT) const
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
void setPartialReduceMLAAction(unsigned Opc, MVT AccVT, MVT InputVT, LegalizeAction Action)
Indicate how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treate...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
bool isExtFree(const Instruction *I) const
Return true if the extension represented by I is free.
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const
Perform a masked cmpxchg using a target-specific intrinsic.
virtual bool isZExtFree(EVT FromTy, EVT ToTy) const
virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X, SDValue Y) const
Return true if pulling a binary operation into a select with an identity constant is profitable.
BooleanContent
Enum that describes how the target represents true/false values.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
virtual ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const
virtual uint8_t getRepRegClassCostFor(MVT VT) const
Return the cost of the 'representative' register class for the specified value type.
virtual bool isZExtFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
LegalizeAction getPartialReduceMLAAction(unsigned Opc, EVT AccVT, EVT InputVT) const
Return how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treated.
bool isPredictableSelectExpensive() const
Return true if selects are only cheaper than branches if the branch is unlikely to be predicted right...
virtual bool mergeStoresAfterLegalization(EVT MemVT) const
Allow store merging for the specified type after legalization in addition to before legalization.
virtual bool shouldMergeStoreOfLoadsOverCall(EVT, EVT) const
Returns true if it's profitable to allow merging store of loads when there are functions calls betwee...
RTLIB::LibcallImpl getSupportedLibcallImpl(StringRef FuncName) const
Check if this is valid libcall for the current module, otherwise RTLIB::Unsupported.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual bool isProfitableToHoist(Instruction *I) const
unsigned getGatherAllAliasesMaxDepth() const
virtual LegalizeAction getCustomOperationAction(SDNode &Op) const
How to legalize this custom operation?
virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const
IR version.
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
virtual const TargetRegisterClass * getRepRegClassFor(MVT VT) const
Return the 'representative' register class for the specified value type.
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
TargetLoweringBase(const TargetLoweringBase &)=delete
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified atomic load with extension is legal on this target.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
virtual bool alignLoopsWithOptSize() const
Should loops be aligned even when the function is marked OptSize (but not MinSize).
unsigned getMaxAtomicSizeInBitsSupported() const
Returns the maximum atomic operation size (in bits) supported by the backend.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const
Returns if it's reasonable to merge stores to MemVT size.
void setPartialReduceMLAAction(ArrayRef< unsigned > Opcodes, MVT AccVT, MVT InputVT, LegalizeAction Action)
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
virtual bool preferABDSToABSWithNSW(EVT VT) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
virtual bool getAddrModeArguments(const IntrinsicInst *, SmallVectorImpl< Value * > &, Type *&) const
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
virtual bool hasInlineStackProbe(const MachineFunction &MF) const
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
const DenseMap< unsigned int, unsigned int > & getBypassSlowDivWidths() const
Returns map of slow types for division or remainder with corresponding fast types.
void setOperationPromotedToType(ArrayRef< unsigned > Ops, MVT OrigVT, MVT DestVT)
unsigned getMaxLargeFPConvertBitWidthSupported() const
Returns the size in bits of the maximum fp to/from int conversion the backend supports.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, LLT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const
virtual bool isCheapToSpeculateCtlz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic ctlz.
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
virtual bool lowerInterleaveIntrinsicToStore(Instruction *Store, Value *Mask, ArrayRef< Value * > InterleaveValues) const
Lower an interleave intrinsic to a target specific store intrinsic.
virtual bool isTruncateFree(LLT FromTy, LLT ToTy, LLVMContext &Ctx) const
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
virtual bool shouldScalarizeBinop(SDValue VecOp) const
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
Align getPrefFunctionAlignment() const
Return the preferred function alignment.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual void emitExpandAtomicLoad(LoadInst *LI) const
Perform a atomic load using a target-specific way.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool useSoftFloat() const
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: (store (y (conv x)), y*)) -> (store x,...
BooleanContent getBooleanContents(EVT Type) const
virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) const
Return the prefered common base offset.
virtual bool isVectorClearMaskLegal(ArrayRef< int >, EVT) const
Similar to isShuffleMaskLegal.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
bool hasTargetDAGCombine(ISD::NodeType NT) const
If true, the target has custom DAG combine transformations that it can perform for the specified node...
void setLibcallImpl(RTLIB::Libcall Call, RTLIB::LibcallImpl Impl)
virtual bool fallBackToDAGISel(const Instruction &Inst) const
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
virtual bool shouldSplatInsEltVarIndex(EVT) const
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
NegatibleCost
Enum that specifies when a float negation is beneficial.
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation has solution on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const
virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a atomicrmw which the result is only used by comparison, using a target-specific intrinsic.
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const
Returns true if MI can be combined with another instruction to form TargetOpcode::G_FMAD.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, ArrayRef< MVT > VTs, LegalizeAction Action)
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
virtual bool isLegalAddScalableImmediate(int64_t) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
std::vector< ArgListEntry > ArgListTy
virtual bool shouldAlignPointerArgs(CallInst *, unsigned &, Align &) const
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
virtual bool hasVectorBlend() const
Return true if the target has a vector blend instruction.
virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be cast by the IR-level AtomicExpand pass into.
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool isVScaleKnownToBeAPowerOfTwo() const
Return true only if vscale must be a power of two.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const
virtual MachineMemOperand::Flags getTargetMMOFlags(const MemSDNode &Node) const
This callback is used to inspect load/store SDNode.
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual Type * shouldConvertSplatType(ShuffleVectorInst *SVI) const
Given a shuffle vector SVI representing a vector splat, return a new scalar type of size equal to SVI...
virtual bool isZExtFree(SDValue Val, EVT VT2) const
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual LLVM_READONLY LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
LLT getVectorIdxLLT(const DataLayout &DL) const
Returns the type to be used for the index operand of: G_INSERT_VECTOR_ELT, G_EXTRACT_VECTOR_ELT,...
virtual bool useStackGuardMixCookie() const
If this function returns true, stack protection checks should mix the stack guard value before checki...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be cast by the IR-level AtomicExpand pass.
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
virtual bool isComplexDeinterleavingSupported() const
Does this target support complex deinterleaving.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual bool addressingModeSupportsTLS(const GlobalValue &) const
Returns true if the targets addressing mode can target thread local storage (TLS).
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool shouldConvertPhiType(Type *From, Type *To) const
Given a set in interconnected phis of type 'From' that are loaded/stored or bitcast to type 'To',...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
virtual bool preferZeroCompareBranch() const
Return true if the heuristic to prefer icmp eq zero should be used in code gen prepare.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
virtual bool lowerInterleavedLoad(Instruction *Load, Value *Mask, ArrayRef< ShuffleVectorInst * > Shuffles, ArrayRef< unsigned > Indices, unsigned Factor, const APInt &GapMask) const
Lower an interleaved load to target specific intrinsics.
virtual unsigned getVectorIdxWidth(const DataLayout &DL) const
Returns the type to be used for the index operand vector operations.
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool generateFMAsInMachineCombiner(EVT VT, CodeGenOptLevel OptLevel) const
virtual LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
virtual bool hasPairedLoad(EVT, Align &) const
Return true if the target supplies and combines to a paired load two loaded values of type LoadedType...
virtual bool convertSelectOfConstantsToMath(EVT VT) const
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual bool optimizeExtendOrTruncateConversion(Instruction *I, Loop *L, const TargetTransformInfo &TTI) const
Try to optimize extending or truncating conversion instructions (like zext, trunc,...
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
TargetLoweringBase & operator=(const TargetLoweringBase &)=delete
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
const RTLIB::RuntimeLibcallsInfo & getRuntimeLibcallsInfo() const
virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
virtual bool lowerDeinterleaveIntrinsicToLoad(Instruction *Load, Value *Mask, IntrinsicInst *DI) const
Lower a deinterleave intrinsic to a target specific load intrinsic.
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SmallVector< ConstraintPair > ConstraintGroup
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const
Hooks for building estimates in place of slower divisions and square roots.
virtual bool isDesirableToCommuteWithShift(const MachineInstr &MI, bool IsAfterLegal) const
GlobalISel - return true if it is profitable to move this shift by a constant amount through its oper...
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual void ReplaceNodeResults(SDNode *, SmallVectorImpl< SDValue > &, SelectionDAG &) const
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression if the cost is not expensive.
virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
SDValue getCheaperOrNeutralNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, const NegatibleCost CostThreshold=NegatibleCost::Neutral, unsigned Depth=0) const
virtual Register getRegisterByName(const char *RegName, LLT Ty, const MachineFunction &MF) const
Return the register ID of the name passed in.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
virtual bool isTargetCanonicalSelect(SDNode *N) const
Return true if the given select/vselect should be considered canonical and not be transformed.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual SDValue lowerEHPadEntry(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
Optional target hook to add target-specific actions when entering EH pad blocks.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual bool IsDesirableToPromoteOp(SDValue, EVT &) const
This method query the target whether it is beneficial for dag combiner to promote the specified node.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const
Insert explicit copies in entry and exit blocks.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
~TargetLowering() override
TargetLowering & operator=(const TargetLowering &)=delete
virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const
GlobalISel - return true if it's profitable to perform the combine: shl ([sza]ext x),...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset, bool IsPre, MachineRegisterInfo &MRI) const
Returns true if the specified base+offset is a legal indexed addressing mode for this target.
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
virtual void initializeSplitCSR(MachineBasicBlock *Entry) const
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
virtual bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const
Return a reciprocal estimate value for the input operand.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual bool isSDNodeAlwaysUniform(const SDNode *N) const
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
virtual SDValue emitStackGuardMixCookie(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, bool FailureBB) const
virtual SDValue LowerFormalArguments(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::InputArg > &, const SDLoc &, SelectionDAG &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const
Return a target-dependent result if the input operand is not suitable for use with a square root esti...
virtual bool getPostIndexedAddressParts(SDNode *, SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if this node ...
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
virtual ArrayRef< MCPhysReg > getRoundingControlRegisters() const
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
virtual SDValue LowerReturn(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::OutputArg > &, const SmallVectorImpl< SDValue > &, const SDLoc &, SelectionDAG &) const
This hook must be implemented to lower outgoing return values, described by the Outs array,...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to move this shift by a constant amount through its operand,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *, const MachineBasicBlock *, unsigned, MCContext &) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
It is an error to pass RTLIB::UNKNOWN_LIBCALL as LC.
virtual unsigned combineRepeatedFPDivisors() const
Indicate whether this target prefers to combine FDIVs with the same divisor.
virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const
virtual void HandleByVal(CCState *, unsigned &, Align) const
Target-specific cleanup for formal ByVal parameters.
virtual const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const
Returns a 0 terminated array of registers that can be safely used as scratch registers.
virtual bool getPreIndexedAddressParts(SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if the node's...
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual FastISel * createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const
This method returns a target specific FastISel object, or null if the target does not support "fast" ...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual bool supportSplitCSR(MachineFunction *MF) const
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
virtual bool isReassocProfitable(MachineRegisterInfo &MRI, Register N0, Register N1) const
virtual bool mayBeEmittedAsTailCall(const CallInst *) const
Return true if the target may be able emit the call instruction as a tail call.
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
SDValue getInboundsVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
virtual bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode, EVT) const
virtual bool isDesirableToTransformToIntegerOp(unsigned, EVT) const
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
Primary interface to the complete machine description for the target machine.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
CallInst * Call
#define UINT64_MAX
Definition DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ PARTIAL_REDUCE_FMLA
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:701
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ STRICT_FP_TO_UINT
Definition ISDOpcodes.h:471
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:470
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:678
@ PARTIAL_REDUCE_SUMLA
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
static const int LAST_LOADEXT_TYPE
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
This namespace contains all of the command line option processing machinery.
Definition CommandLine.h:53
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
@ Offset
Definition DWP.cpp:532
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1766
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:134
void * PointerTy
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI bool isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
Returns true if given the TargetLowering's boolean contents information, the value Val contains a tru...
Definition Utils.cpp:1658
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
TargetTransformInfo TTI
CombineLevel
Definition DAGCombine.h:15
@ AfterLegalizeDAG
Definition DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition DAGCombine.h:18
@ BeforeLegalizeTypes
Definition DAGCombine.h:16
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
LLVM_ABI bool isConstFalseVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
Definition Utils.cpp:1671
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1888
static cl::opt< unsigned > CostThreshold("dfa-cost-threshold", cl::desc("Maximum cost accepted for the transformation"), cl::Hidden, cl::init(50))
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Represent subnormal handling kind for floating point instruction inputs and outputs.
Extended Value Type.
Definition ValueTypes.h:35
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
ConstraintInfo()=default
Default constructor.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
bool isDstAligned(Align AlignCheck) const
bool allowOverlap() const
bool isFixedDstAlign() const
uint64_t size() const
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
Align getDstAlign() const
bool isMemcpyStrSrc() const
bool isAligned(Align AlignCheck) const
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
bool isSrcAligned(Align AlignCheck) const
bool isMemset() const
bool isMemcpy() const
bool isMemcpyWithFixedDstAlign() const
bool isZeroMemset() const
Align getSrcAlign() const
A simple container for information about the supported runtime calls.
static StringRef getLibcallImplName(RTLIB::LibcallImpl CallImpl)
Get the libcall routine name for the specified libcall implementation.
These are IR-level optimization flags that may be propagated to SDNodes.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
std::optional< unsigned > fallbackAddressSpace
PointerUnion< const Value *, const PseudoSourceValue * > ptrVal
This contains information for each constraint that we are lowering.
AsmOperandInfo(InlineAsm::ConstraintInfo Info)
Copy constructor for copying from a ConstraintInfo.
MVT ConstraintVT
The ValueType for the operand value.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
std::string ConstraintCode
This contains the actual string for the code, like "m".
Value * CallOperandVal
If this is the result output operand or a clobber, this is null, otherwise it is the incoming operand...
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCallee(Type *ResultType, FunctionType *FTy, SDValue Target, ArgListTy &&ArgsList, const CallBase &Call)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
CallLoweringInfo & setInRegister(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
SmallVector< ISD::InputArg, 32 > Ins
CallLoweringInfo & setVarArg(bool Value=true)
Type * OrigRetTy
Original unlegalized return type.
std::optional< PtrAuthInfo > PAI
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, Type *OrigResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
MakeLibCallOptions & setDiscardResult(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
MakeLibCallOptions & setIsSigned(bool Value=true)
MakeLibCallOptions & setNoReturn(bool Value=true)
MakeLibCallOptions & setOpsTypeOverrides(ArrayRef< Type * > OpsTypes)
Override the argument type for an operand.
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO)