98void SelectionDAG::DAGNodeDeletedListener::anchor() {}
99void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101#define DEBUG_TYPE "selectiondag"
105 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
108 cl::desc(
"Number limit for gluing ld/st of memcpy."),
113 cl::desc(
"DAG combiner limit number of steps when searching DAG "
114 "for predecessor nodes"));
152 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
154 N->getValueType(0).getVectorElementType().getSizeInBits();
155 SplatVal = OptAPInt->
trunc(EltSize);
165 unsigned SplatBitSize;
167 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
172 const bool IsBigEndian =
false;
173 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
174 EltSize, IsBigEndian) &&
175 EltSize == SplatBitSize;
184 N =
N->getOperand(0).getNode();
193 unsigned i = 0, e =
N->getNumOperands();
196 while (i != e &&
N->getOperand(i).isUndef())
200 if (i == e)
return false;
212 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
213 if (OptAPInt->countr_one() < EltSize)
221 for (++i; i != e; ++i)
222 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 N =
N->getOperand(0).getNode();
239 bool IsAllUndef =
true;
252 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
253 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
254 if (OptAPInt->countr_zero() < EltSize)
302 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
304 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
305 if (EltSize <= NewEltSize)
309 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
314 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
327 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
328 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
330 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
341 if (
N->getNumOperands() == 0)
347 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
350template <
typename ConstNodeType>
352 std::function<
bool(ConstNodeType *)> Match,
353 bool AllowUndefs,
bool AllowTruncation) {
363 EVT SVT =
Op.getValueType().getScalarType();
364 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
365 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
372 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
387 bool AllowUndefs,
bool AllowTypeMismatch) {
388 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
394 return Match(LHSCst, RHSCst);
397 if (LHS.getOpcode() != RHS.getOpcode() ||
403 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
406 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
407 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
410 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
415 if (!Match(LHSCst, RHSCst))
437 switch (VecReduceOpcode) {
442 case ISD::VP_REDUCE_FADD:
443 case ISD::VP_REDUCE_SEQ_FADD:
447 case ISD::VP_REDUCE_FMUL:
448 case ISD::VP_REDUCE_SEQ_FMUL:
451 case ISD::VP_REDUCE_ADD:
454 case ISD::VP_REDUCE_MUL:
457 case ISD::VP_REDUCE_AND:
460 case ISD::VP_REDUCE_OR:
463 case ISD::VP_REDUCE_XOR:
466 case ISD::VP_REDUCE_SMAX:
469 case ISD::VP_REDUCE_SMIN:
472 case ISD::VP_REDUCE_UMAX:
475 case ISD::VP_REDUCE_UMIN:
478 case ISD::VP_REDUCE_FMAX:
481 case ISD::VP_REDUCE_FMIN:
484 case ISD::VP_REDUCE_FMAXIMUM:
487 case ISD::VP_REDUCE_FMINIMUM:
496#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
499#include "llvm/IR/VPIntrinsics.def"
507#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
508#define VP_PROPERTY_BINARYOP return true;
509#define END_REGISTER_VP_SDNODE(VPSD) break;
510#include "llvm/IR/VPIntrinsics.def"
519 case ISD::VP_REDUCE_ADD:
520 case ISD::VP_REDUCE_MUL:
521 case ISD::VP_REDUCE_AND:
522 case ISD::VP_REDUCE_OR:
523 case ISD::VP_REDUCE_XOR:
524 case ISD::VP_REDUCE_SMAX:
525 case ISD::VP_REDUCE_SMIN:
526 case ISD::VP_REDUCE_UMAX:
527 case ISD::VP_REDUCE_UMIN:
528 case ISD::VP_REDUCE_FMAX:
529 case ISD::VP_REDUCE_FMIN:
530 case ISD::VP_REDUCE_FMAXIMUM:
531 case ISD::VP_REDUCE_FMINIMUM:
532 case ISD::VP_REDUCE_FADD:
533 case ISD::VP_REDUCE_FMUL:
534 case ISD::VP_REDUCE_SEQ_FADD:
535 case ISD::VP_REDUCE_SEQ_FMUL:
545#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
548#include "llvm/IR/VPIntrinsics.def"
557#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
560#include "llvm/IR/VPIntrinsics.def"
570#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
571#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
572#define END_REGISTER_VP_SDNODE(VPOPC) break;
573#include "llvm/IR/VPIntrinsics.def"
582#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
583#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
584#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
585#include "llvm/IR/VPIntrinsics.def"
632 bool isIntegerLike) {
657 bool IsInteger =
Type.isInteger();
662 unsigned Op = Op1 | Op2;
678 bool IsInteger =
Type.isInteger();
713 ID.AddPointer(VTList.
VTs);
719 for (
const auto &
Op :
Ops) {
720 ID.AddPointer(
Op.getNode());
721 ID.AddInteger(
Op.getResNo());
728 for (
const auto &
Op :
Ops) {
729 ID.AddPointer(
Op.getNode());
730 ID.AddInteger(
Op.getResNo());
743 switch (
N->getOpcode()) {
752 ID.AddPointer(
C->getConstantIntValue());
753 ID.AddBoolean(
C->isOpaque());
799 ID.AddInteger(CP->getAlign().value());
800 ID.AddInteger(CP->getOffset());
801 if (CP->isMachineConstantPoolEntry())
802 CP->getMachineCPVal()->addSelectionDAGCSEId(
ID);
804 ID.AddPointer(CP->getConstVal());
805 ID.AddInteger(CP->getTargetFlags());
817 ID.AddInteger(LD->getMemoryVT().getRawBits());
818 ID.AddInteger(LD->getRawSubclassData());
819 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
820 ID.AddInteger(LD->getMemOperand()->getFlags());
825 ID.AddInteger(ST->getMemoryVT().getRawBits());
826 ID.AddInteger(ST->getRawSubclassData());
827 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
828 ID.AddInteger(ST->getMemOperand()->getFlags());
839 case ISD::VP_LOAD_FF: {
841 ID.AddInteger(LD->getMemoryVT().getRawBits());
842 ID.AddInteger(LD->getRawSubclassData());
843 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
844 ID.AddInteger(LD->getMemOperand()->getFlags());
847 case ISD::VP_STORE: {
855 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
862 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
869 case ISD::VP_GATHER: {
877 case ISD::VP_SCATTER: {
976 ID.AddInteger(MN->getRawSubclassData());
977 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
978 ID.AddInteger(MN->getMemOperand()->getFlags());
979 ID.AddInteger(MN->getMemoryVT().getRawBits());
1002 if (
N->getValueType(0) == MVT::Glue)
1005 switch (
N->getOpcode()) {
1013 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1014 if (
N->getValueType(i) == MVT::Glue)
1031 if (
Node.use_empty())
1046 while (!DeadNodes.
empty()) {
1055 DUL->NodeDeleted(
N,
nullptr);
1058 RemoveNodeFromCSEMaps(
N);
1089 RemoveNodeFromCSEMaps(
N);
1093 DeleteNodeNotInCSEMaps(
N);
1096void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1097 assert(
N->getIterator() != AllNodes.begin() &&
1098 "Cannot delete the entry node!");
1099 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1108 assert(!(V->isVariadic() && isParameter));
1110 ByvalParmDbgValues.push_back(V);
1112 DbgValues.push_back(V);
1115 DbgValMap[
Node].push_back(V);
1119 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1120 if (
I == DbgValMap.end())
1122 for (
auto &Val:
I->second)
1123 Val->setIsInvalidated();
1127void SelectionDAG::DeallocateNode(
SDNode *
N) {
1150void SelectionDAG::verifyNode(
SDNode *
N)
const {
1151 switch (
N->getOpcode()) {
1153 if (
N->isTargetOpcode())
1157 EVT VT =
N->getValueType(0);
1158 assert(
N->getNumValues() == 1 &&
"Too many results!");
1160 "Wrong return type!");
1161 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1162 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1163 "Mismatched operand types!");
1165 "Wrong operand type!");
1167 "Wrong return type size");
1171 assert(
N->getNumValues() == 1 &&
"Too many results!");
1172 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1173 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1174 "Wrong number of operands!");
1175 EVT EltVT =
N->getValueType(0).getVectorElementType();
1176 for (
const SDUse &
Op :
N->ops()) {
1177 assert((
Op.getValueType() == EltVT ||
1178 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1179 EltVT.
bitsLE(
Op.getValueType()))) &&
1180 "Wrong operand type!");
1181 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1182 "Operands must all have the same type");
1194void SelectionDAG::InsertNode(SDNode *
N) {
1195 AllNodes.push_back(
N);
1197 N->PersistentId = NextPersistentId++;
1201 DUL->NodeInserted(
N);
1208bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1209 bool Erased =
false;
1210 switch (
N->getOpcode()) {
1214 "Cond code doesn't exist!");
1223 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1229 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1235 Erased = ExtendedValueTypeNodes.erase(VT);
1246 Erased = CSEMap.RemoveNode(
N);
1253 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1268SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1272 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1273 if (Existing !=
N) {
1284 DUL->NodeDeleted(
N, Existing);
1285 DeleteNodeNotInCSEMaps(
N);
1292 DUL->NodeUpdated(
N);
1299SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1305 FoldingSetNodeID
ID;
1308 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1310 Node->intersectFlagsWith(
N->getFlags());
1318SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1325 FoldingSetNodeID
ID;
1328 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1330 Node->intersectFlagsWith(
N->getFlags());
1343 FoldingSetNodeID
ID;
1346 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1348 Node->intersectFlagsWith(
N->getFlags());
1361 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1364 InsertNode(&EntryNode);
1375 SDAGISelPass = PassPtr;
1379 LibInfo = LibraryInfo;
1380 Context = &MF->getFunction().getContext();
1385 FnVarLocs = VarLocs;
1389 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1391 OperandRecycler.clear(OperandAllocator);
1399void SelectionDAG::allnodes_clear() {
1400 assert(&*AllNodes.begin() == &EntryNode);
1401 AllNodes.remove(AllNodes.begin());
1402 while (!AllNodes.empty())
1403 DeallocateNode(&AllNodes.front());
1405 NextPersistentId = 0;
1411 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1413 switch (
N->getOpcode()) {
1418 "debug location. Use another overload.");
1425 const SDLoc &
DL,
void *&InsertPos) {
1426 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1428 switch (
N->getOpcode()) {
1434 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1441 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1442 N->setDebugLoc(
DL.getDebugLoc());
1451 OperandRecycler.clear(OperandAllocator);
1452 OperandAllocator.Reset();
1455 ExtendedValueTypeNodes.clear();
1456 ExternalSymbols.clear();
1457 TargetExternalSymbols.clear();
1463 EntryNode.UseList =
nullptr;
1464 InsertNode(&EntryNode);
1470 return VT.
bitsGT(
Op.getValueType())
1476std::pair<SDValue, SDValue>
1480 "Strict no-op FP extend/round not allowed.");
1487 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1491 return VT.
bitsGT(
Op.getValueType()) ?
1497 return VT.
bitsGT(
Op.getValueType()) ?
1503 return VT.
bitsGT(
Op.getValueType()) ?
1511 auto Type =
Op.getValueType();
1515 auto Size =
Op.getValueSizeInBits();
1526 auto Type =
Op.getValueType();
1530 auto Size =
Op.getValueSizeInBits();
1541 auto Type =
Op.getValueType();
1545 auto Size =
Op.getValueSizeInBits();
1559 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1563 EVT OpVT =
Op.getValueType();
1565 "Cannot getZeroExtendInReg FP types");
1567 "getZeroExtendInReg type should be vector iff the operand "
1571 "Vector element counts must match in getZeroExtendInReg");
1583 EVT OpVT =
Op.getValueType();
1585 "Cannot getVPZeroExtendInReg FP types");
1587 "getVPZeroExtendInReg type and operand type should be vector!");
1589 "Vector element counts must match in getZeroExtendInReg");
1628 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1639 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1641 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1650 switch (TLI->getBooleanContents(OpVT)) {
1661 bool isT,
bool isO) {
1667 bool isT,
bool isO) {
1668 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1672 EVT VT,
bool isT,
bool isO) {
1689 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1695 Elt = ConstantInt::get(*
getContext(), NewVal);
1707 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1714 "Can only handle an even split!");
1718 for (
unsigned i = 0; i != Parts; ++i)
1720 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1721 ViaEltVT, isT, isO));
1726 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1737 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1738 ViaEltVT, isT, isO));
1743 std::reverse(EltParts.
begin(), EltParts.
end());
1762 "APInt size does not match type size!");
1771 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1776 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1777 CSEMap.InsertNode(
N, IP);
1789 bool isT,
bool isO) {
1797 IsTarget, IsOpaque);
1829 EVT VT,
bool isTarget) {
1850 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1855 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1856 CSEMap.InsertNode(
N, IP);
1870 if (EltVT == MVT::f32)
1872 if (EltVT == MVT::f64)
1874 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1875 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1886 EVT VT, int64_t
Offset,
bool isTargetGA,
1887 unsigned TargetFlags) {
1888 assert((TargetFlags == 0 || isTargetGA) &&
1889 "Cannot set target flags on target-independent globals");
1907 ID.AddInteger(TargetFlags);
1909 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1912 auto *
N = newSDNode<GlobalAddressSDNode>(
1913 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1914 CSEMap.InsertNode(
N, IP);
1928 auto *
N = newSDNode<DeactivationSymbolSDNode>(GV, VTs);
1929 CSEMap.InsertNode(
N, IP);
1941 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1944 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1945 CSEMap.InsertNode(
N, IP);
1951 unsigned TargetFlags) {
1952 assert((TargetFlags == 0 || isTarget) &&
1953 "Cannot set target flags on target-independent jump tables");
1959 ID.AddInteger(TargetFlags);
1961 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1964 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1965 CSEMap.InsertNode(
N, IP);
1979 bool isTarget,
unsigned TargetFlags) {
1980 assert((TargetFlags == 0 || isTarget) &&
1981 "Cannot set target flags on target-independent globals");
1990 ID.AddInteger(Alignment->value());
1993 ID.AddInteger(TargetFlags);
1995 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1998 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2000 CSEMap.InsertNode(
N, IP);
2009 bool isTarget,
unsigned TargetFlags) {
2010 assert((TargetFlags == 0 || isTarget) &&
2011 "Cannot set target flags on target-independent globals");
2018 ID.AddInteger(Alignment->value());
2020 C->addSelectionDAGCSEId(
ID);
2021 ID.AddInteger(TargetFlags);
2023 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2026 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2028 CSEMap.InsertNode(
N, IP);
2038 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2041 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2042 CSEMap.InsertNode(
N, IP);
2049 ValueTypeNodes.size())
2056 N = newSDNode<VTSDNode>(VT);
2062 SDNode *&
N = ExternalSymbols[Sym];
2064 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2070 StringRef SymName = TLI->getLibcallImplName(Libcall);
2078 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2084 unsigned TargetFlags) {
2086 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2088 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2094 EVT VT,
unsigned TargetFlags) {
2095 StringRef SymName = TLI->getLibcallImplName(Libcall);
2100 if ((
unsigned)
Cond >= CondCodeNodes.size())
2101 CondCodeNodes.resize(
Cond+1);
2103 if (!CondCodeNodes[
Cond]) {
2104 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2105 CondCodeNodes[
Cond] =
N;
2114 "APInt size does not match type size!");
2132template <
typename Ty>
2134 EVT VT, Ty Quantity) {
2135 if (Quantity.isScalable())
2139 return DAG.
getConstant(Quantity.getKnownMinValue(),
DL, VT);
2165 const APInt &StepVal) {
2189 "Must have the same number of vector elements as mask elements!");
2191 "Invalid VECTOR_SHUFFLE");
2199 int NElts = Mask.size();
2201 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2202 "Index out of range");
2210 for (
int i = 0; i != NElts; ++i)
2211 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2218 if (TLI->hasVectorBlend()) {
2227 for (
int i = 0; i < NElts; ++i) {
2228 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2232 if (UndefElements[MaskVec[i] -
Offset]) {
2238 if (!UndefElements[i])
2243 BlendSplat(N1BV, 0);
2245 BlendSplat(N2BV, NElts);
2250 bool AllLHS =
true, AllRHS =
true;
2252 for (
int i = 0; i != NElts; ++i) {
2253 if (MaskVec[i] >= NElts) {
2258 }
else if (MaskVec[i] >= 0) {
2262 if (AllLHS && AllRHS)
2264 if (AllLHS && !N2Undef)
2277 bool Identity =
true, AllSame =
true;
2278 for (
int i = 0; i != NElts; ++i) {
2279 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2280 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2282 if (Identity && NElts)
2315 if (AllSame && SameNumElts) {
2316 EVT BuildVT = BV->getValueType(0);
2333 for (
int i = 0; i != NElts; ++i)
2334 ID.AddInteger(MaskVec[i]);
2337 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2343 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2346 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2348 createOperands(
N,
Ops);
2350 CSEMap.InsertNode(
N, IP);
2371 ID.AddInteger(Reg.id());
2373 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2376 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2377 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2378 CSEMap.InsertNode(
N, IP);
2386 ID.AddPointer(RegMask);
2388 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2391 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2392 CSEMap.InsertNode(
N, IP);
2407 ID.AddPointer(Label);
2409 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2414 createOperands(
N,
Ops);
2416 CSEMap.InsertNode(
N, IP);
2422 int64_t
Offset,
bool isTarget,
2423 unsigned TargetFlags) {
2431 ID.AddInteger(TargetFlags);
2433 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2436 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2437 CSEMap.InsertNode(
N, IP);
2448 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2451 auto *
N = newSDNode<SrcValueSDNode>(V);
2452 CSEMap.InsertNode(
N, IP);
2463 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2466 auto *
N = newSDNode<MDNodeSDNode>(MD);
2467 CSEMap.InsertNode(
N, IP);
2473 if (VT == V.getValueType())
2480 unsigned SrcAS,
unsigned DestAS) {
2485 ID.AddInteger(SrcAS);
2486 ID.AddInteger(DestAS);
2489 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2493 VTs, SrcAS, DestAS);
2494 createOperands(
N,
Ops);
2496 CSEMap.InsertNode(
N, IP);
2508 EVT OpTy =
Op.getValueType();
2510 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2519 EVT VT =
Node->getValueType(0);
2528 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2566 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2568 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2576 if (RedAlign > StackAlign) {
2579 unsigned NumIntermediates;
2580 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2581 NumIntermediates, RegisterVT);
2583 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2584 if (RedAlign2 < RedAlign)
2585 RedAlign = RedAlign2;
2590 RedAlign = std::min(RedAlign, StackAlign);
2605 false,
nullptr, StackID);
2620 "Don't know how to choose the maximum size when creating a stack "
2629 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2637 auto GetUndefBooleanConstant = [&]() {
2639 TLI->getBooleanContents(OpVT) ==
2676 return GetUndefBooleanConstant();
2681 return GetUndefBooleanConstant();
2690 const APInt &C2 = N2C->getAPIntValue();
2692 const APInt &C1 = N1C->getAPIntValue();
2702 if (N1CFP && N2CFP) {
2707 return GetUndefBooleanConstant();
2712 return GetUndefBooleanConstant();
2718 return GetUndefBooleanConstant();
2723 return GetUndefBooleanConstant();
2728 return GetUndefBooleanConstant();
2734 return GetUndefBooleanConstant();
2761 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2763 return getSetCC(dl, VT, N2, N1, SwappedCond);
2764 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2779 return GetUndefBooleanConstant();
2790 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2798 unsigned Opc =
Op.getOpcode();
2807 return (NoFPClass & TestMask) == TestMask;
2814 return Op->getFlags().hasNoNaNs();
2826 unsigned Depth)
const {
2834 const APInt &DemandedElts,
2835 unsigned Depth)
const {
2842 unsigned Depth )
const {
2848 unsigned Depth)
const {
2853 const APInt &DemandedElts,
2854 unsigned Depth)
const {
2855 EVT VT =
Op.getValueType();
2862 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2863 if (!DemandedElts[EltIdx])
2867 KnownZeroElements.
setBit(EltIdx);
2869 return KnownZeroElements;
2879 unsigned Opcode = V.getOpcode();
2880 EVT VT = V.getValueType();
2883 "scalable demanded bits are ignored");
2895 UndefElts = V.getOperand(0).isUndef()
2904 APInt UndefLHS, UndefRHS;
2913 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
2914 UndefElts = UndefLHS | UndefRHS;
2927 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
2944 for (
unsigned i = 0; i != NumElts; ++i) {
2950 if (!DemandedElts[i])
2952 if (Scl && Scl !=
Op)
2963 for (
int i = 0; i != (int)NumElts; ++i) {
2969 if (!DemandedElts[i])
2971 if (M < (
int)NumElts)
2974 DemandedRHS.
setBit(M - NumElts);
2986 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
2988 return (SrcElts.popcount() == 1) ||
2990 (SrcElts & SrcUndefs).
isZero());
2992 if (!DemandedLHS.
isZero())
2993 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2994 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3000 if (Src.getValueType().isScalableVector())
3002 uint64_t Idx = V.getConstantOperandVal(1);
3003 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3005 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3007 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3018 if (Src.getValueType().isScalableVector())
3022 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3024 UndefElts = UndefSrcElts.
trunc(NumElts);
3031 EVT SrcVT = Src.getValueType();
3041 if ((
BitWidth % SrcBitWidth) == 0) {
3043 unsigned Scale =
BitWidth / SrcBitWidth;
3045 APInt ScaledDemandedElts =
3047 for (
unsigned I = 0;
I != Scale; ++
I) {
3051 SubDemandedElts &= ScaledDemandedElts;
3055 if (!SubUndefElts.
isZero())
3069 EVT VT = V.getValueType();
3079 (AllowUndefs || !UndefElts);
3085 EVT VT = V.getValueType();
3086 unsigned Opcode = V.getOpcode();
3107 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3122 if (!SVN->isSplat())
3124 int Idx = SVN->getSplatIndex();
3125 int NumElts = V.getValueType().getVectorNumElements();
3126 SplatIdx = Idx % NumElts;
3127 return V.getOperand(Idx / NumElts);
3139 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3142 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3143 if (LegalSVT.
bitsLT(SVT))
3151std::optional<ConstantRange>
3153 unsigned Depth)
const {
3156 "Unknown shift node");
3158 unsigned BitWidth = V.getScalarValueSizeInBits();
3161 const APInt &ShAmt = Cst->getAPIntValue();
3163 return std::nullopt;
3168 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3169 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3170 if (!DemandedElts[i])
3174 MinAmt = MaxAmt =
nullptr;
3177 const APInt &ShAmt = SA->getAPIntValue();
3179 return std::nullopt;
3180 if (!MinAmt || MinAmt->
ugt(ShAmt))
3182 if (!MaxAmt || MaxAmt->ult(ShAmt))
3185 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3186 "Failed to find matching min/max shift amounts");
3187 if (MinAmt && MaxAmt)
3197 return std::nullopt;
3200std::optional<unsigned>
3202 unsigned Depth)
const {
3205 "Unknown shift node");
3206 if (std::optional<ConstantRange> AmtRange =
3208 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3209 return ShAmt->getZExtValue();
3210 return std::nullopt;
3213std::optional<unsigned>
3215 EVT VT = V.getValueType();
3222std::optional<unsigned>
3224 unsigned Depth)
const {
3227 "Unknown shift node");
3228 if (std::optional<ConstantRange> AmtRange =
3230 return AmtRange->getUnsignedMin().getZExtValue();
3231 return std::nullopt;
3234std::optional<unsigned>
3236 EVT VT = V.getValueType();
3243std::optional<unsigned>
3245 unsigned Depth)
const {
3248 "Unknown shift node");
3249 if (std::optional<ConstantRange> AmtRange =
3251 return AmtRange->getUnsignedMax().getZExtValue();
3252 return std::nullopt;
3255std::optional<unsigned>
3257 EVT VT = V.getValueType();
3268 EVT VT =
Op.getValueType();
3283 unsigned Depth)
const {
3284 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3288 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3298 assert((!
Op.getValueType().isFixedLengthVector() ||
3299 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3300 "Unexpected vector size");
3305 unsigned Opcode =
Op.getOpcode();
3313 "Expected SPLAT_VECTOR implicit truncation");
3320 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3322 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3329 const APInt &Step =
Op.getConstantOperandAPInt(0);
3338 const APInt MinNumElts =
3344 .
umul_ov(MinNumElts, Overflow);
3348 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3356 assert(!
Op.getValueType().isScalableVector());
3359 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3360 if (!DemandedElts[i])
3369 "Expected BUILD_VECTOR implicit truncation");
3393 assert(!
Op.getValueType().isScalableVector());
3396 APInt DemandedLHS, DemandedRHS;
3400 DemandedLHS, DemandedRHS))
3405 if (!!DemandedLHS) {
3413 if (!!DemandedRHS) {
3422 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3427 if (
Op.getValueType().isScalableVector())
3431 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3433 unsigned NumSubVectors =
Op.getNumOperands();
3434 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3436 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3437 if (!!DemandedSub) {
3449 if (
Op.getValueType().isScalableVector())
3456 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3458 APInt DemandedSrcElts = DemandedElts;
3459 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3462 if (!!DemandedSubElts) {
3467 if (!!DemandedSrcElts) {
3477 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3480 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3481 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3486 if (
Op.getValueType().isScalableVector())
3490 if (DemandedElts != 1)
3501 if (
Op.getValueType().isScalableVector())
3521 if ((
BitWidth % SubBitWidth) == 0) {
3528 unsigned SubScale =
BitWidth / SubBitWidth;
3529 APInt SubDemandedElts(NumElts * SubScale, 0);
3530 for (
unsigned i = 0; i != NumElts; ++i)
3531 if (DemandedElts[i])
3532 SubDemandedElts.
setBit(i * SubScale);
3534 for (
unsigned i = 0; i != SubScale; ++i) {
3537 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3538 Known.
insertBits(Known2, SubBitWidth * Shifts);
3543 if ((SubBitWidth %
BitWidth) == 0) {
3544 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3549 unsigned SubScale = SubBitWidth /
BitWidth;
3550 APInt SubDemandedElts =
3555 for (
unsigned i = 0; i != NumElts; ++i)
3556 if (DemandedElts[i]) {
3557 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3588 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3592 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3598 if (
Op->getFlags().hasNoSignedWrap() &&
3599 Op.getOperand(0) ==
Op.getOperand(1) &&
3626 unsigned SignBits1 =
3630 unsigned SignBits0 =
3636 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3639 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3640 if (
Op.getResNo() == 0)
3647 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3650 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3651 if (
Op.getResNo() == 0)
3704 if (
Op.getResNo() != 1)
3710 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3719 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3721 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3731 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3732 bool NSW =
Op->getFlags().hasNoSignedWrap();
3739 if (std::optional<unsigned> ShMinAmt =
3748 Op->getFlags().hasExact());
3751 if (std::optional<unsigned> ShMinAmt =
3759 Op->getFlags().hasExact());
3765 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3780 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3786 DemandedElts,
Depth + 1);
3807 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3810 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3811 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3814 Known = Known2.
concat(Known);
3828 if (
Op.getResNo() == 0)
3885 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3890 !
Op.getValueType().isScalableVector()) {
3903 for (
unsigned i = 0; i != NumElts; ++i) {
3904 if (!DemandedElts[i])
3914 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3933 }
else if (
Op.getResNo() == 0) {
3934 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
3935 KnownBits KnownScalarMemory(ScalarMemorySize);
3936 if (
const MDNode *MD = LD->getRanges())
3947 Known = KnownScalarMemory;
3954 if (
Op.getValueType().isScalableVector())
3956 EVT InVT =
Op.getOperand(0).getValueType();
3968 if (
Op.getValueType().isScalableVector())
3970 EVT InVT =
Op.getOperand(0).getValueType();
3986 if (
Op.getValueType().isScalableVector())
3988 EVT InVT =
Op.getOperand(0).getValueType();
4008 Known.
Zero |= (~InMask);
4009 Known.
One &= (~Known.Zero);
4029 if ((NoFPClass & NegativeTestMask) == NegativeTestMask) {
4035 if ((NoFPClass & PositiveTestMask) == PositiveTestMask) {
4052 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4053 Flags.hasNoUnsignedWrap(), Known, Known2);
4060 if (
Op.getResNo() == 1) {
4062 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4071 "We only compute knownbits for the difference here.");
4078 Borrow = Borrow.
trunc(1);
4092 if (
Op.getResNo() == 1) {
4094 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4103 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4113 Carry = Carry.
trunc(1);
4149 const unsigned Index =
Op.getConstantOperandVal(1);
4150 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4157 Known = Known.
trunc(EltBitWidth);
4173 Known = Known.
trunc(EltBitWidth);
4179 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4189 if (
Op.getValueType().isScalableVector())
4198 bool DemandedVal =
true;
4199 APInt DemandedVecElts = DemandedElts;
4201 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4202 unsigned EltIdx = CEltNo->getZExtValue();
4203 DemandedVal = !!DemandedElts[EltIdx];
4211 if (!!DemandedVecElts) {
4229 Known = Known2.
abs();
4262 if (CstLow && CstHigh) {
4267 const APInt &ValueHigh = CstHigh->getAPIntValue();
4268 if (ValueLow.
sle(ValueHigh)) {
4271 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4294 if (IsMax && CstLow) {
4324 if (
Op.getResNo() == 0) {
4326 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4327 KnownBits KnownScalarMemory(ScalarMemorySize);
4328 if (
const MDNode *MD = AT->getRanges())
4331 switch (AT->getExtensionType()) {
4339 switch (TLI->getExtendForAtomicOps()) {
4352 Known = KnownScalarMemory;
4360 if (
Op.getResNo() == 1) {
4365 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4386 if (
Op.getResNo() == 0) {
4388 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4410 if (
Op.getValueType().isScalableVector())
4414 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4556 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4564 if (
C &&
C->getAPIntValue() == 1)
4574 if (
C &&
C->getAPIntValue().isSignMask())
4586 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4587 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4595 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4633 return C1->getValueAPF().getExactLog2Abs() >= 0;
4642 EVT VT =
Op.getValueType();
4654 unsigned Depth)
const {
4655 EVT VT =
Op.getValueType();
4660 unsigned FirstAnswer = 1;
4663 const APInt &Val =
C->getAPIntValue();
4673 unsigned Opcode =
Op.getOpcode();
4678 return VTBits-Tmp+1;
4692 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4694 if (NumSrcSignBits > (NumSrcBits - VTBits))
4695 return NumSrcSignBits - (NumSrcBits - VTBits);
4701 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4702 if (!DemandedElts[i])
4709 APInt T =
C->getAPIntValue().trunc(VTBits);
4710 Tmp2 =
T.getNumSignBits();
4714 if (
SrcOp.getValueSizeInBits() != VTBits) {
4716 "Expected BUILD_VECTOR implicit truncation");
4717 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4718 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4721 Tmp = std::min(Tmp, Tmp2);
4732 Tmp = std::min(Tmp, Tmp2);
4739 APInt DemandedLHS, DemandedRHS;
4743 DemandedLHS, DemandedRHS))
4746 Tmp = std::numeric_limits<unsigned>::max();
4749 if (!!DemandedRHS) {
4751 Tmp = std::min(Tmp, Tmp2);
4756 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4772 if (VTBits == SrcBits)
4778 if ((SrcBits % VTBits) == 0) {
4781 unsigned Scale = SrcBits / VTBits;
4782 APInt SrcDemandedElts =
4792 for (
unsigned i = 0; i != NumElts; ++i)
4793 if (DemandedElts[i]) {
4794 unsigned SubOffset = i % Scale;
4795 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4796 SubOffset = SubOffset * VTBits;
4797 if (Tmp <= SubOffset)
4799 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4809 return VTBits - Tmp + 1;
4811 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4818 return std::max(Tmp, Tmp2);
4823 EVT SrcVT = Src.getValueType();
4831 if (std::optional<unsigned> ShAmt =
4833 Tmp = std::min(Tmp + *ShAmt, VTBits);
4836 if (std::optional<ConstantRange> ShAmtRange =
4838 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4839 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4850 unsigned SizeDifference =
4852 if (SizeDifference <= MinShAmt) {
4853 Tmp = SizeDifference +
4856 return Tmp - MaxShAmt;
4862 return Tmp - MaxShAmt;
4872 FirstAnswer = std::min(Tmp, Tmp2);
4882 if (Tmp == 1)
return 1;
4884 return std::min(Tmp, Tmp2);
4887 if (Tmp == 1)
return 1;
4889 return std::min(Tmp, Tmp2);
4901 if (CstLow && CstHigh) {
4906 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4907 return std::min(Tmp, Tmp2);
4916 return std::min(Tmp, Tmp2);
4924 return std::min(Tmp, Tmp2);
4928 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
4939 if (
Op.getResNo() != 1)
4945 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
4953 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
4955 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
4970 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
4974 RotAmt = (VTBits - RotAmt) % VTBits;
4978 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
4985 if (Tmp == 1)
return 1;
4990 if (CRHS->isAllOnes()) {
4996 if ((Known.
Zero | 1).isAllOnes())
5006 if (Tmp2 == 1)
return 1;
5010 return std::min(Tmp, Tmp2) - 1;
5013 if (Tmp2 == 1)
return 1;
5018 if (CLHS->isZero()) {
5023 if ((Known.
Zero | 1).isAllOnes())
5037 if (Tmp == 1)
return 1;
5038 return std::min(Tmp, Tmp2) - 1;
5042 if (SignBitsOp0 == 1)
5045 if (SignBitsOp1 == 1)
5047 unsigned OutValidBits =
5048 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5049 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5057 return std::min(Tmp, Tmp2);
5066 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5068 if (NumSrcSignBits > (NumSrcBits - VTBits))
5069 return NumSrcSignBits - (NumSrcBits - VTBits);
5076 const int BitWidth =
Op.getValueSizeInBits();
5077 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5081 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5096 bool DemandedVal =
true;
5097 APInt DemandedVecElts = DemandedElts;
5099 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5100 unsigned EltIdx = CEltNo->getZExtValue();
5101 DemandedVal = !!DemandedElts[EltIdx];
5104 Tmp = std::numeric_limits<unsigned>::max();
5110 Tmp = std::min(Tmp, Tmp2);
5112 if (!!DemandedVecElts) {
5114 Tmp = std::min(Tmp, Tmp2);
5116 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5127 const unsigned BitWidth =
Op.getValueSizeInBits();
5128 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5141 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5151 if (Src.getValueType().isScalableVector())
5154 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5155 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5163 Tmp = std::numeric_limits<unsigned>::max();
5164 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5166 unsigned NumSubVectors =
Op.getNumOperands();
5167 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5169 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5173 Tmp = std::min(Tmp, Tmp2);
5175 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5186 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5188 APInt DemandedSrcElts = DemandedElts;
5189 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5191 Tmp = std::numeric_limits<unsigned>::max();
5192 if (!!DemandedSubElts) {
5197 if (!!DemandedSrcElts) {
5199 Tmp = std::min(Tmp, Tmp2);
5201 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5206 if (
const MDNode *Ranges = LD->getRanges()) {
5207 if (DemandedElts != 1)
5212 switch (LD->getExtensionType()) {
5249 if (
Op.getResNo() == 0) {
5250 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5256 switch (AT->getExtensionType()) {
5260 return VTBits - Tmp + 1;
5262 return VTBits - Tmp;
5267 return VTBits - Tmp + 1;
5269 return VTBits - Tmp;
5276 if (
Op.getResNo() == 0) {
5279 unsigned ExtType = LD->getExtensionType();
5283 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5284 return VTBits - Tmp + 1;
5286 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5287 return VTBits - Tmp;
5289 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5292 Type *CstTy = Cst->getType();
5297 for (
unsigned i = 0; i != NumElts; ++i) {
5298 if (!DemandedElts[i])
5303 Tmp = std::min(Tmp,
Value.getNumSignBits());
5307 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5308 Tmp = std::min(Tmp,
Value.getNumSignBits());
5332 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5334 FirstAnswer = std::max(FirstAnswer, NumBits);
5345 unsigned Depth)
const {
5347 return Op.getScalarValueSizeInBits() - SignBits + 1;
5351 const APInt &DemandedElts,
5352 unsigned Depth)
const {
5354 return Op.getScalarValueSizeInBits() - SignBits + 1;
5358 unsigned Depth)
const {
5363 EVT VT =
Op.getValueType();
5371 const APInt &DemandedElts,
5373 unsigned Depth)
const {
5374 unsigned Opcode =
Op.getOpcode();
5403 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5404 if (!DemandedElts[i])
5414 if (Src.getValueType().isScalableVector())
5417 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5418 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5424 if (
Op.getValueType().isScalableVector())
5429 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5431 APInt DemandedSrcElts = DemandedElts;
5432 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5446 EVT SrcVT = Src.getValueType();
5450 IndexC->getZExtValue());
5465 if (DemandedElts[IndexC->getZExtValue()] &&
5468 APInt InVecDemandedElts = DemandedElts;
5469 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5470 if (!!InVecDemandedElts &&
5495 APInt DemandedLHS, DemandedRHS;
5498 DemandedElts, DemandedLHS, DemandedRHS,
5501 if (!DemandedLHS.
isZero() &&
5505 if (!DemandedRHS.
isZero() &&
5553 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5554 PoisonOnly, Depth + 1);
5566 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5579 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5585 unsigned Depth)
const {
5586 EVT VT =
Op.getValueType();
5596 unsigned Depth)
const {
5597 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5600 unsigned Opcode =
Op.getOpcode();
5680 if (
Op.getOperand(0).getValueType().isInteger())
5687 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5689 return (
unsigned)CCCode & 0x10U;
5735 EVT VecVT =
Op.getOperand(0).getValueType();
5744 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5745 if (Elt < 0 && DemandedElts[Idx])
5757 return TLI->canCreateUndefOrPoisonForTargetNode(
5767 unsigned Opcode =
Op.getOpcode();
5769 return Op->getFlags().hasDisjoint() ||
5782 unsigned Depth)
const {
5783 EVT VT =
Op.getValueType();
5796 bool SNaN,
unsigned Depth)
const {
5797 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5808 return !
C->getValueAPF().isNaN() ||
5809 (SNaN && !
C->getValueAPF().isSignaling());
5812 unsigned Opcode =
Op.getOpcode();
5914 EVT SrcVT = Src.getValueType();
5918 Idx->getZExtValue());
5925 if (Src.getValueType().isFixedLengthVector()) {
5926 unsigned Idx =
Op.getConstantOperandVal(1);
5927 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5928 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5938 unsigned Idx =
Op.getConstantOperandVal(2);
5944 APInt DemandedMask =
5946 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
5949 bool NeverNaN =
true;
5950 if (!DemandedSrcElts.
isZero())
5953 if (NeverNaN && !DemandedSubElts.
isZero())
5962 unsigned NumElts =
Op.getNumOperands();
5963 for (
unsigned I = 0;
I != NumElts; ++
I)
5964 if (DemandedElts[
I] &&
5981 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
5990 assert(
Op.getValueType().isFloatingPoint() &&
5991 "Floating point type expected");
6002 assert(!
Op.getValueType().isFloatingPoint() &&
6003 "Floating point types unsupported - use isKnownNeverZeroFloat");
6012 switch (
Op.getOpcode()) {
6026 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6030 if (ValKnown.
One[0])
6090 if (
Op->getFlags().hasExact())
6106 if (
Op->getFlags().hasExact())
6111 if (
Op->getFlags().hasNoUnsignedWrap())
6122 std::optional<bool> ne =
6129 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6140 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6154 return !C1->isNegative();
6156 switch (
Op.getOpcode()) {
6170 assert(
Use.getValueType().isFloatingPoint());
6174 switch (
User->getOpcode()) {
6182 return OperandNo == 0;
6203 if (
Op->use_size() > 2)
6206 [&](
const SDUse &
Use) { return canIgnoreSignBitOfZero(Use); });
6211 if (
A ==
B)
return true;
6216 if (CA->isZero() && CB->isZero())
return true;
6251 NotOperand = NotOperand->getOperand(0);
6253 if (
Other == NotOperand)
6256 return NotOperand ==
Other->getOperand(0) ||
6257 NotOperand ==
Other->getOperand(1);
6263 A =
A->getOperand(0);
6266 B =
B->getOperand(0);
6269 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6270 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6276 assert(
A.getValueType() ==
B.getValueType() &&
6277 "Values must have the same type");
6299 "BUILD_VECTOR cannot be used with scalable types");
6301 "Incorrect element count in BUILD_VECTOR!");
6309 bool IsIdentity =
true;
6310 for (
int i = 0; i !=
NumOps; ++i) {
6313 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6315 Ops[i].getConstantOperandAPInt(1) != i) {
6319 IdentitySrc =
Ops[i].getOperand(0);
6332 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6335 return Ops[0].getValueType() ==
Op.getValueType();
6337 "Concatenation of vectors with inconsistent value types!");
6340 "Incorrect element count in vector concatenation!");
6342 if (
Ops.size() == 1)
6353 bool IsIdentity =
true;
6354 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6356 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6358 Op.getOperand(0).getValueType() != VT ||
6359 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6360 Op.getConstantOperandVal(1) != IdentityIndex) {
6364 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6365 "Unexpected identity source vector for concat of extracts");
6366 IdentitySrc =
Op.getOperand(0);
6369 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6385 EVT OpVT =
Op.getValueType();
6401 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6425 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6428 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6429 CSEMap.InsertNode(
N, IP);
6441 Flags = Inserter->getFlags();
6442 return getNode(Opcode,
DL, VT, N1, Flags);
6493 "STEP_VECTOR can only be used with scalable types");
6496 "Unexpected step operand");
6517 "Invalid FP cast!");
6521 "Vector element count mismatch!");
6539 "Invalid SIGN_EXTEND!");
6541 "SIGN_EXTEND result type type should be vector iff the operand "
6546 "Vector element count mismatch!");
6569 unsigned NumSignExtBits =
6580 "Invalid ZERO_EXTEND!");
6582 "ZERO_EXTEND result type type should be vector iff the operand "
6587 "Vector element count mismatch!");
6625 "Invalid ANY_EXTEND!");
6627 "ANY_EXTEND result type type should be vector iff the operand "
6632 "Vector element count mismatch!");
6657 "Invalid TRUNCATE!");
6659 "TRUNCATE result type type should be vector iff the operand "
6664 "Vector element count mismatch!");
6691 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6693 "The input must be the same size or smaller than the result.");
6696 "The destination vector type must have fewer lanes than the input.");
6706 "BSWAP types must be a multiple of 16 bits!");
6720 "Cannot BITCAST between types of different sizes!");
6733 "Illegal SCALAR_TO_VECTOR node!");
6790 "Wrong operand type!");
6797 if (VT != MVT::Glue) {
6801 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6802 E->intersectFlagsWith(Flags);
6806 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6808 createOperands(
N,
Ops);
6809 CSEMap.InsertNode(
N, IP);
6811 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6812 createOperands(
N,
Ops);
6846 if (!C2.getBoolValue())
6850 if (!C2.getBoolValue())
6854 if (!C2.getBoolValue())
6858 if (!C2.getBoolValue())
6878 return std::nullopt;
6883 bool IsUndef1,
const APInt &C2,
6885 if (!(IsUndef1 || IsUndef2))
6893 return std::nullopt;
6901 if (!TLI->isOffsetFoldingLegal(GA))
6906 int64_t
Offset = C2->getSExtValue();
6926 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6933 [](
SDValue V) { return V.isUndef() ||
6934 isNullConstant(V); });
6972 const APInt &Val =
C->getAPIntValue();
6976 C->isTargetOpcode(),
C->isOpaque());
6983 C->isTargetOpcode(),
C->isOpaque());
6988 C->isTargetOpcode(),
C->isOpaque());
6990 C->isTargetOpcode(),
C->isOpaque());
7036 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7038 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7040 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7042 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7103 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7106 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7109 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7112 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7115 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7116 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7133 if (C1->isOpaque() || C2->isOpaque())
7136 std::optional<APInt> FoldAttempt =
7137 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7143 "Can't fold vectors ops with scalar operands");
7151 if (TLI->isCommutativeBinOp(Opcode))
7167 const APInt &Val = C1->getAPIntValue();
7168 return SignExtendInReg(Val, VT);
7181 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7189 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7200 if (C1 && C2 && C3) {
7201 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7203 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7204 &V3 = C3->getAPIntValue();
7220 if (C1 && C2 && C3) {
7241 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7254 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7255 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7259 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7270 BVEltVT = BV1->getOperand(0).getValueType();
7273 BVEltVT = BV2->getOperand(0).getValueType();
7279 DstBits, RawBits, DstUndefs,
7282 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7300 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7301 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7306 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7307 return !
Op.getValueType().isVector() ||
7308 Op.getValueType().getVectorElementCount() == NumElts;
7311 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7337 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7349 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7352 EVT InSVT =
Op.getValueType().getScalarType();
7395 if (LegalSVT != SVT)
7396 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7410 if (
Ops.size() != 2)
7421 if (N1CFP && N2CFP) {
7476 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7499 if (SrcEltVT == DstEltVT)
7507 if (SrcBitSize == DstBitSize) {
7512 if (
Op.getValueType() != SrcEltVT)
7555 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7556 if (UndefElements[
I])
7577 ID.AddInteger(
A.value());
7580 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7584 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7585 createOperands(
N, {Val});
7587 CSEMap.InsertNode(
N, IP);
7599 Flags = Inserter->getFlags();
7600 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7605 if (!TLI->isCommutativeBinOp(Opcode))
7614 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7628 "Operand is DELETED_NODE!");
7644 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7648 if (N1 == N2)
return N1;
7664 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7666 N1.
getValueType() == VT &&
"Binary operator types must match!");
7669 if (N2CV && N2CV->
isZero())
7679 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7681 N1.
getValueType() == VT &&
"Binary operator types must match!");
7691 if (N2CV && N2CV->
isZero())
7705 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7707 N1.
getValueType() == VT &&
"Binary operator types must match!");
7710 if (N2CV && N2CV->
isZero())
7714 const APInt &N2CImm = N2C->getAPIntValue();
7728 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7730 N1.
getValueType() == VT &&
"Binary operator types must match!");
7743 "Types of operands of UCMP/SCMP must match");
7745 "Operands and return type of must both be scalars or vectors");
7749 "Result and operands must have the same number of elements");
7755 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7757 N1.
getValueType() == VT &&
"Binary operator types must match!");
7761 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7763 N1.
getValueType() == VT &&
"Binary operator types must match!");
7769 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7771 N1.
getValueType() == VT &&
"Binary operator types must match!");
7777 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7779 N1.
getValueType() == VT &&
"Binary operator types must match!");
7790 N1.
getValueType() == VT &&
"Binary operator types must match!");
7798 "Invalid FCOPYSIGN!");
7803 const APInt &ShiftImm = N2C->getAPIntValue();
7815 "Shift operators return type must be the same as their first arg");
7817 "Shifts only work on integers");
7819 "Vector shift amounts must be in the same as their first arg");
7826 "Invalid use of small shift amount with oversized value!");
7833 if (N2CV && N2CV->
isZero())
7839 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7845 "AssertNoFPClass is used for a non-floating type");
7850 "FPClassTest value too large");
7859 "Cannot *_EXTEND_INREG FP types");
7861 "AssertSExt/AssertZExt type should be the vector element type "
7862 "rather than the vector type!");
7871 "Cannot *_EXTEND_INREG FP types");
7873 "SIGN_EXTEND_INREG type should be vector iff the operand "
7877 "Vector element counts must match in SIGN_EXTEND_INREG");
7879 if (
EVT == VT)
return N1;
7887 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7891 "Vector element counts must match in FP_TO_*INT_SAT");
7893 "Type to saturate to must be a scalar.");
7900 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7901 element type of the vector.");
7923 N2C->getZExtValue() % Factor);
7932 "BUILD_VECTOR used for scalable vectors");
7955 if (N1Op2C && N2C) {
7985 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
7989 "Wrong types for EXTRACT_ELEMENT!");
8000 unsigned Shift = ElementSize * N2C->getZExtValue();
8001 const APInt &Val = N1C->getAPIntValue();
8008 "Extract subvector VTs must be vectors!");
8010 "Extract subvector VTs must have the same element type!");
8012 "Cannot extract a scalable vector from a fixed length vector!");
8015 "Extract subvector must be from larger vector to smaller vector!");
8016 assert(N2C &&
"Extract subvector index must be a constant");
8020 "Extract subvector overflow!");
8021 assert(N2C->getAPIntValue().getBitWidth() ==
8023 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8025 "Extract index is not a multiple of the output vector length");
8040 return N1.
getOperand(N2C->getZExtValue() / Factor);
8081 if (TLI->isCommutativeBinOp(Opcode)) {
8160 if (VT != MVT::Glue) {
8164 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8165 E->intersectFlagsWith(Flags);
8169 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8171 createOperands(
N,
Ops);
8172 CSEMap.InsertNode(
N, IP);
8174 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8175 createOperands(
N,
Ops);
8188 Flags = Inserter->getFlags();
8189 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8198 "Operand is DELETED_NODE!");
8217 "SETCC operands must have the same type!");
8219 "SETCC type should be vector iff the operand type is vector!");
8222 "SETCC vector element counts must match!");
8242 "INSERT_VECTOR_ELT vector type mismatch");
8244 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8247 "INSERT_VECTOR_ELT fp scalar type mismatch");
8250 "INSERT_VECTOR_ELT int scalar size mismatch");
8296 "Dest and insert subvector source types must match!");
8298 "Insert subvector VTs must be vectors!");
8300 "Insert subvector VTs must have the same element type!");
8302 "Cannot insert a scalable vector into a fixed length vector!");
8305 "Insert subvector must be from smaller vector to larger vector!");
8307 "Insert subvector index must be constant");
8311 "Insert subvector overflow!");
8314 "Constant index for INSERT_SUBVECTOR has an invalid size");
8358 case ISD::VP_TRUNCATE:
8359 case ISD::VP_SIGN_EXTEND:
8360 case ISD::VP_ZERO_EXTEND:
8369 assert(VT == VecVT &&
"Vector and result type don't match.");
8371 "All inputs must be vectors.");
8372 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8374 "Vector and mask must have same number of elements.");
8389 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8390 "node to have the same type!");
8392 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8393 "the same type as its result!");
8396 "Expected the element count of the second and third operands of the "
8397 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8398 "element count of the first operand and the result!");
8400 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8401 "node to have an element type which is the same as or smaller than "
8402 "the element type of the first operand and result!");
8424 if (VT != MVT::Glue) {
8428 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8429 E->intersectFlagsWith(Flags);
8433 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8435 createOperands(
N,
Ops);
8436 CSEMap.InsertNode(
N, IP);
8438 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8439 createOperands(
N,
Ops);
8459 Flags = Inserter->getFlags();
8460 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8475 Flags = Inserter->getFlags();
8476 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8493 if (FI->getIndex() < 0)
8508 assert(
C->getAPIntValue().getBitWidth() == 8);
8513 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8518 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8534 if (VT !=
Value.getValueType())
8547 if (Slice.Array ==
nullptr) {
8556 unsigned NumVTBytes = NumVTBits / 8;
8557 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8559 APInt Val(NumVTBits, 0);
8561 for (
unsigned i = 0; i != NumBytes; ++i)
8564 for (
unsigned i = 0; i != NumBytes; ++i)
8565 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8588 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8603 else if (Src->isAnyAdd() &&
8607 SrcDelta = Src.getConstantOperandVal(1);
8613 SrcDelta +
G->getOffset());
8629 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8630 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8632 for (
unsigned i = From; i < To; ++i) {
8634 GluedLoadChains.
push_back(OutLoadChains[i]);
8641 for (
unsigned i = From; i < To; ++i) {
8644 ST->getBasePtr(), ST->getMemoryVT(),
8645 ST->getMemOperand());
8667 std::vector<EVT> MemOps;
8668 bool DstAlignCanChange =
false;
8674 DstAlignCanChange =
true;
8676 if (!SrcAlign || Alignment > *SrcAlign)
8677 SrcAlign = Alignment;
8678 assert(SrcAlign &&
"SrcAlign must be set");
8682 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8684 const MemOp Op = isZeroConstant
8688 *SrcAlign, isVol, CopyFromConstant);
8694 if (DstAlignCanChange) {
8695 Type *Ty = MemOps[0].getTypeForEVT(
C);
8696 Align NewAlign =
DL.getABITypeAlign(Ty);
8702 if (!
TRI->hasStackRealignment(MF))
8704 NewAlign = std::min(NewAlign, *StackAlign);
8706 if (NewAlign > Alignment) {
8710 Alignment = NewAlign;
8720 BatchAA && SrcVal &&
8728 unsigned NumMemOps = MemOps.size();
8730 for (
unsigned i = 0; i != NumMemOps; ++i) {
8735 if (VTSize >
Size) {
8738 assert(i == NumMemOps-1 && i != 0);
8739 SrcOff -= VTSize -
Size;
8740 DstOff -= VTSize -
Size;
8743 if (CopyFromConstant &&
8751 if (SrcOff < Slice.Length) {
8753 SubSlice.
move(SrcOff);
8756 SubSlice.
Array =
nullptr;
8758 SubSlice.
Length = VTSize;
8761 if (
Value.getNode()) {
8765 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8770 if (!Store.getNode()) {
8779 bool isDereferenceable =
8782 if (isDereferenceable)
8797 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8807 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8809 if (NumLdStInMemcpy) {
8815 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8821 if (NumLdStInMemcpy <= GluedLdStLimit) {
8823 NumLdStInMemcpy, OutLoadChains,
8826 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8827 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8828 unsigned GlueIter = 0;
8830 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8831 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8832 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8835 OutLoadChains, OutStoreChains);
8836 GlueIter += GluedLdStLimit;
8840 if (RemainingLdStInMemcpy) {
8842 RemainingLdStInMemcpy, OutLoadChains,
8854 bool isVol,
bool AlwaysInline,
8868 std::vector<EVT> MemOps;
8869 bool DstAlignCanChange =
false;
8875 DstAlignCanChange =
true;
8877 if (!SrcAlign || Alignment > *SrcAlign)
8878 SrcAlign = Alignment;
8879 assert(SrcAlign &&
"SrcAlign must be set");
8889 if (DstAlignCanChange) {
8890 Type *Ty = MemOps[0].getTypeForEVT(
C);
8891 Align NewAlign =
DL.getABITypeAlign(Ty);
8897 if (!
TRI->hasStackRealignment(MF))
8899 NewAlign = std::min(NewAlign, *StackAlign);
8901 if (NewAlign > Alignment) {
8905 Alignment = NewAlign;
8919 unsigned NumMemOps = MemOps.size();
8920 for (
unsigned i = 0; i < NumMemOps; i++) {
8925 bool isDereferenceable =
8928 if (isDereferenceable)
8934 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8941 for (
unsigned i = 0; i < NumMemOps; i++) {
8947 Chain, dl, LoadValues[i],
8949 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8989 std::vector<EVT> MemOps;
8990 bool DstAlignCanChange =
false;
8997 DstAlignCanChange =
true;
9003 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9007 if (DstAlignCanChange) {
9010 Align NewAlign =
DL.getABITypeAlign(Ty);
9016 if (!
TRI->hasStackRealignment(MF))
9018 NewAlign = std::min(NewAlign, *StackAlign);
9020 if (NewAlign > Alignment) {
9024 Alignment = NewAlign;
9030 unsigned NumMemOps = MemOps.size();
9033 EVT LargestVT = MemOps[0];
9034 for (
unsigned i = 1; i < NumMemOps; i++)
9035 if (MemOps[i].bitsGT(LargestVT))
9036 LargestVT = MemOps[i];
9043 for (
unsigned i = 0; i < NumMemOps; i++) {
9046 if (VTSize >
Size) {
9049 assert(i == NumMemOps-1 && i != 0);
9050 DstOff -= VTSize -
Size;
9057 if (VT.
bitsLT(LargestVT)) {
9077 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9104 bool AllowReturnsFirstArg) {
9110 AllowReturnsFirstArg &&
9114std::pair<SDValue, SDValue>
9117 RTLIB::LibcallImpl MemcmpImpl = TLI->getLibcallImpl(RTLIB::MEMCMP);
9118 if (MemcmpImpl == RTLIB::Unsupported)
9134 TLI->getLibcallImplCallingConv(MemcmpImpl),
9140 return TLI->LowerCallTo(CLI);
9147 RTLIB::LibcallImpl StrlenImpl = TLI->getLibcallImpl(RTLIB::STRLEN);
9148 if (StrlenImpl == RTLIB::Unsupported)
9167 return TLI->LowerCallTo(CLI);
9172 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9181 if (ConstantSize->
isZero())
9185 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9186 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9187 if (Result.getNode())
9194 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9195 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9196 DstPtrInfo, SrcPtrInfo);
9197 if (Result.getNode())
9204 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9206 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9207 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9222 Args.emplace_back(Dst, PtrTy);
9223 Args.emplace_back(Src, PtrTy);
9227 bool IsTailCall =
false;
9228 RTLIB::LibcallImpl MemCpyImpl = TLI->getMemcpyImpl();
9230 if (OverrideTailCall.has_value()) {
9231 IsTailCall = *OverrideTailCall;
9233 bool LowersToMemcpy = MemCpyImpl == RTLIB::impl_memcpy;
9240 TLI->getLibcallImplCallingConv(MemCpyImpl),
9241 Dst.getValueType().getTypeForEVT(*
getContext()),
9247 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9248 return CallResult.second;
9253 Type *SizeTy,
unsigned ElemSz,
9260 Args.emplace_back(Dst, ArgTy);
9261 Args.emplace_back(Src, ArgTy);
9262 Args.emplace_back(
Size, SizeTy);
9264 RTLIB::Libcall LibraryCall =
9266 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9267 if (LibcallImpl == RTLIB::Unsupported)
9274 TLI->getLibcallImplCallingConv(LibcallImpl),
9281 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9282 return CallResult.second;
9288 std::optional<bool> OverrideTailCall,
9298 if (ConstantSize->
isZero())
9302 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9303 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9304 if (Result.getNode())
9312 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9313 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9314 if (Result.getNode())
9327 Args.emplace_back(Dst, PtrTy);
9328 Args.emplace_back(Src, PtrTy);
9333 RTLIB::LibcallImpl MemmoveImpl = TLI->getLibcallImpl(RTLIB::MEMMOVE);
9335 bool IsTailCall =
false;
9336 if (OverrideTailCall.has_value()) {
9337 IsTailCall = *OverrideTailCall;
9339 bool LowersToMemmove = MemmoveImpl == RTLIB::impl_memmove;
9346 TLI->getLibcallImplCallingConv(MemmoveImpl),
9347 Dst.getValueType().getTypeForEVT(*
getContext()),
9353 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9354 return CallResult.second;
9359 Type *SizeTy,
unsigned ElemSz,
9366 Args.emplace_back(Dst, IntPtrTy);
9367 Args.emplace_back(Src, IntPtrTy);
9368 Args.emplace_back(
Size, SizeTy);
9370 RTLIB::Libcall LibraryCall =
9372 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9373 if (LibcallImpl == RTLIB::Unsupported)
9380 TLI->getLibcallImplCallingConv(LibcallImpl),
9387 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9388 return CallResult.second;
9393 bool isVol,
bool AlwaysInline,
9402 if (ConstantSize->
isZero())
9407 isVol,
false, DstPtrInfo, AAInfo);
9409 if (Result.getNode())
9416 SDValue Result = TSI->EmitTargetCodeForMemset(
9417 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9418 if (Result.getNode())
9425 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9428 isVol,
true, DstPtrInfo, AAInfo);
9430 "getMemsetStores must return a valid sequence when AlwaysInline");
9444 RTLIB::LibcallImpl BzeroImpl = TLI->getLibcallImpl(RTLIB::BZERO);
9445 bool UseBZero = BzeroImpl != RTLIB::Unsupported &&
isNullConstant(Src);
9451 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9456 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9460 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9461 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9462 CLI.
setLibCallee(TLI->getLibcallImplCallingConv(MemsetImpl),
9463 Dst.getValueType().getTypeForEVT(Ctx),
9468 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9469 bool LowersToMemset = MemsetImpl == RTLIB::impl_memset;
9480 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9481 return CallResult.second;
9486 Type *SizeTy,
unsigned ElemSz,
9493 Args.emplace_back(
Size, SizeTy);
9495 RTLIB::Libcall LibraryCall =
9497 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9498 if (LibcallImpl == RTLIB::Unsupported)
9505 TLI->getLibcallImplCallingConv(LibcallImpl),
9512 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9513 return CallResult.second;
9523 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9524 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9529 E->refineAlignment(MMO);
9530 E->refineRanges(MMO);
9535 VTList, MemVT, MMO, ExtType);
9536 createOperands(
N,
Ops);
9538 CSEMap.InsertNode(
N, IP);
9575 "Invalid Atomic Op");
9595 if (
Ops.size() == 1)
9610 if (
Size.hasValue() && !
Size.getValue())
9615 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9627 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9629 "Opcode is not a memory-accessing opcode!");
9633 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9636 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9637 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9642 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9648 VTList, MemVT, MMO);
9649 createOperands(
N,
Ops);
9651 CSEMap.InsertNode(
N, IP);
9654 VTList, MemVT, MMO);
9655 createOperands(
N,
Ops);
9664 SDValue Chain,
int FrameIndex) {
9675 ID.AddInteger(FrameIndex);
9677 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9682 createOperands(
N,
Ops);
9683 CSEMap.InsertNode(
N, IP);
9699 ID.AddInteger(Index);
9701 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9704 auto *
N = newSDNode<PseudoProbeSDNode>(
9706 createOperands(
N,
Ops);
9707 CSEMap.InsertNode(
N, IP);
9761 "Invalid chain type");
9773 Alignment, AAInfo, Ranges);
9774 return getLoad(AM, ExtType, VT, dl, Chain, Ptr,
Offset, MemVT, MMO);
9784 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9788 "Should only be an extending load, not truncating!");
9790 "Cannot convert from FP to Int or Int -> FP!");
9792 "Cannot use an ext load to convert to or from a vector!");
9795 "Cannot use an ext load to change the number of vector elements!");
9802 "Range metadata and load type must match!");
9813 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9814 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9819 E->refineAlignment(MMO);
9820 E->refineRanges(MMO);
9824 ExtType, MemVT, MMO);
9825 createOperands(
N,
Ops);
9827 CSEMap.InsertNode(
N, IP);
9841 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9859 MemVT, Alignment, MMOFlags, AAInfo);
9874 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9877 LD->getMemOperand()->getFlags() &
9880 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9881 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9900 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9901 return getStore(Chain, dl, Val, Ptr, MMO);
9914 bool IsTruncating) {
9918 IsTruncating =
false;
9919 }
else if (!IsTruncating) {
9920 assert(VT == SVT &&
"No-truncating store from different memory type!");
9923 "Should only be a truncating store, not extending!");
9926 "Cannot use trunc store to convert to or from a vector!");
9929 "Cannot use trunc store to change the number of vector elements!");
9940 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9941 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9945 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9950 IsTruncating, SVT, MMO);
9951 createOperands(
N,
Ops);
9953 CSEMap.InsertNode(
N, IP);
9966 "Invalid chain type");
9976 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
9991 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
9993 ST->getMemoryVT(), ST->getMemOperand(), AM,
9994 ST->isTruncatingStore());
10002 const MDNode *Ranges,
bool IsExpanding) {
10013 Alignment, AAInfo, Ranges);
10014 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr,
Offset, Mask, EVL, MemVT,
10023 bool IsExpanding) {
10025 assert(Mask.getValueType().getVectorElementCount() ==
10027 "Vector width mismatch between mask and data");
10038 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10039 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10042 void *IP =
nullptr;
10044 E->refineAlignment(MMO);
10045 E->refineRanges(MMO);
10049 ExtType, IsExpanding, MemVT, MMO);
10050 createOperands(
N,
Ops);
10052 CSEMap.InsertNode(
N, IP);
10065 bool IsExpanding) {
10068 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10077 Mask, EVL, VT, MMO, IsExpanding);
10086 const AAMDNodes &AAInfo,
bool IsExpanding) {
10089 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10099 EVL, MemVT, MMO, IsExpanding);
10106 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10109 LD->getMemOperand()->getFlags() &
10112 LD->getChain(),
Base,
Offset, LD->getMask(),
10113 LD->getVectorLength(), LD->getPointerInfo(),
10114 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10115 nullptr, LD->isExpandingLoad());
10122 bool IsCompressing) {
10124 assert(Mask.getValueType().getVectorElementCount() ==
10126 "Vector width mismatch between mask and data");
10136 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10137 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10140 void *IP =
nullptr;
10141 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10146 IsTruncating, IsCompressing, MemVT, MMO);
10147 createOperands(
N,
Ops);
10149 CSEMap.InsertNode(
N, IP);
10162 bool IsCompressing) {
10173 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10182 bool IsCompressing) {
10189 false, IsCompressing);
10192 "Should only be a truncating store, not extending!");
10195 "Cannot use trunc store to convert to or from a vector!");
10198 "Cannot use trunc store to change the number of vector elements!");
10202 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10206 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10210 void *IP =
nullptr;
10211 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10218 createOperands(
N,
Ops);
10220 CSEMap.InsertNode(
N, IP);
10231 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10234 Offset, ST->getMask(), ST->getVectorLength()};
10237 ID.AddInteger(ST->getMemoryVT().getRawBits());
10238 ID.AddInteger(ST->getRawSubclassData());
10239 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10240 ID.AddInteger(ST->getMemOperand()->getFlags());
10241 void *IP =
nullptr;
10242 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10245 auto *
N = newSDNode<VPStoreSDNode>(
10247 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10248 createOperands(
N,
Ops);
10250 CSEMap.InsertNode(
N, IP);
10270 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10271 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10274 void *IP =
nullptr;
10275 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10281 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10282 ExtType, IsExpanding, MemVT, MMO);
10283 createOperands(
N,
Ops);
10284 CSEMap.InsertNode(
N, IP);
10295 bool IsExpanding) {
10298 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10307 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10316 bool IsTruncating,
bool IsCompressing) {
10326 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10327 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10329 void *IP =
nullptr;
10330 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10334 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10335 VTs, AM, IsTruncating,
10336 IsCompressing, MemVT, MMO);
10337 createOperands(
N,
Ops);
10339 CSEMap.InsertNode(
N, IP);
10351 bool IsCompressing) {
10358 false, IsCompressing);
10361 "Should only be a truncating store, not extending!");
10364 "Cannot use trunc store to convert to or from a vector!");
10367 "Cannot use trunc store to change the number of vector elements!");
10371 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10375 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10378 void *IP =
nullptr;
10379 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10383 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10385 IsCompressing, SVT, MMO);
10386 createOperands(
N,
Ops);
10388 CSEMap.InsertNode(
N, IP);
10398 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10403 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10407 void *IP =
nullptr;
10408 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10414 VT, MMO, IndexType);
10415 createOperands(
N,
Ops);
10417 assert(
N->getMask().getValueType().getVectorElementCount() ==
10418 N->getValueType(0).getVectorElementCount() &&
10419 "Vector width mismatch between mask and data");
10420 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10421 N->getValueType(0).getVectorElementCount().isScalable() &&
10422 "Scalable flags of index and data do not match");
10424 N->getIndex().getValueType().getVectorElementCount(),
10425 N->getValueType(0).getVectorElementCount()) &&
10426 "Vector width mismatch between index and data");
10428 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10429 "Scale should be a constant power of 2");
10431 CSEMap.InsertNode(
N, IP);
10442 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10447 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10451 void *IP =
nullptr;
10452 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10457 VT, MMO, IndexType);
10458 createOperands(
N,
Ops);
10460 assert(
N->getMask().getValueType().getVectorElementCount() ==
10461 N->getValue().getValueType().getVectorElementCount() &&
10462 "Vector width mismatch between mask and data");
10464 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10465 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10466 "Scalable flags of index and data do not match");
10468 N->getIndex().getValueType().getVectorElementCount(),
10469 N->getValue().getValueType().getVectorElementCount()) &&
10470 "Vector width mismatch between index and data");
10472 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10473 "Scale should be a constant power of 2");
10475 CSEMap.InsertNode(
N, IP);
10490 "Unindexed masked load with an offset!");
10497 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10498 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10501 void *IP =
nullptr;
10502 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10507 AM, ExtTy, isExpanding, MemVT, MMO);
10508 createOperands(
N,
Ops);
10510 CSEMap.InsertNode(
N, IP);
10521 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10523 Offset, LD->getMask(), LD->getPassThru(),
10524 LD->getMemoryVT(), LD->getMemOperand(), AM,
10525 LD->getExtensionType(), LD->isExpandingLoad());
10533 bool IsCompressing) {
10535 "Invalid chain type");
10538 "Unindexed masked store with an offset!");
10545 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10546 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10549 void *IP =
nullptr;
10550 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10556 IsTruncating, IsCompressing, MemVT, MMO);
10557 createOperands(
N,
Ops);
10559 CSEMap.InsertNode(
N, IP);
10570 assert(ST->getOffset().isUndef() &&
10571 "Masked store is already a indexed store!");
10573 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10574 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10582 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10587 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10588 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10591 void *IP =
nullptr;
10592 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10598 VTs, MemVT, MMO, IndexType, ExtTy);
10599 createOperands(
N,
Ops);
10601 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10602 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10603 assert(
N->getMask().getValueType().getVectorElementCount() ==
10604 N->getValueType(0).getVectorElementCount() &&
10605 "Vector width mismatch between mask and data");
10606 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10607 N->getValueType(0).getVectorElementCount().isScalable() &&
10608 "Scalable flags of index and data do not match");
10610 N->getIndex().getValueType().getVectorElementCount(),
10611 N->getValueType(0).getVectorElementCount()) &&
10612 "Vector width mismatch between index and data");
10614 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10615 "Scale should be a constant power of 2");
10617 CSEMap.InsertNode(
N, IP);
10629 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10634 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10635 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10638 void *IP =
nullptr;
10639 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10645 VTs, MemVT, MMO, IndexType, IsTrunc);
10646 createOperands(
N,
Ops);
10648 assert(
N->getMask().getValueType().getVectorElementCount() ==
10649 N->getValue().getValueType().getVectorElementCount() &&
10650 "Vector width mismatch between mask and data");
10652 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10653 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10654 "Scalable flags of index and data do not match");
10656 N->getIndex().getValueType().getVectorElementCount(),
10657 N->getValue().getValueType().getVectorElementCount()) &&
10658 "Vector width mismatch between index and data");
10660 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10661 "Scale should be a constant power of 2");
10663 CSEMap.InsertNode(
N, IP);
10674 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10679 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10680 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10683 void *IP =
nullptr;
10684 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10690 VTs, MemVT, MMO, IndexType);
10691 createOperands(
N,
Ops);
10693 assert(
N->getMask().getValueType().getVectorElementCount() ==
10694 N->getIndex().getValueType().getVectorElementCount() &&
10695 "Vector width mismatch between mask and data");
10697 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10698 "Scale should be a constant power of 2");
10699 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10701 CSEMap.InsertNode(
N, IP);
10716 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10720 void *IP =
nullptr;
10721 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10725 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10727 createOperands(
N,
Ops);
10729 CSEMap.InsertNode(
N, IP);
10744 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10748 void *IP =
nullptr;
10749 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10754 createOperands(
N,
Ops);
10756 CSEMap.InsertNode(
N, IP);
10771 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10775 void *IP =
nullptr;
10776 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10781 createOperands(
N,
Ops);
10783 CSEMap.InsertNode(
N, IP);
10794 if (
Cond.isUndef())
10829 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10835 if (
X.getValueType().getScalarType() == MVT::i1)
10848 bool HasNan = (XC && XC->
getValueAPF().isNaN()) ||
10850 bool HasInf = (XC && XC->
getValueAPF().isInfinity()) ||
10853 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10856 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10879 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10894 switch (
Ops.size()) {
10895 case 0:
return getNode(Opcode,
DL, VT);
10905 return getNode(Opcode,
DL, VT, NewOps);
10912 Flags = Inserter->getFlags();
10920 case 0:
return getNode(Opcode,
DL, VT);
10921 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10928 for (
const auto &
Op :
Ops)
10930 "Operand is DELETED_NODE!");
10947 "LHS and RHS of condition must have same type!");
10949 "True and False arms of SelectCC must have same type!");
10951 "select_cc node must be of same type as true and false value!");
10955 "Expected select_cc with vector result to have the same sized "
10956 "comparison type!");
10961 "LHS/RHS of comparison should match types!");
10967 Opcode = ISD::VP_XOR;
10972 Opcode = ISD::VP_AND;
10974 case ISD::VP_REDUCE_MUL:
10977 Opcode = ISD::VP_REDUCE_AND;
10979 case ISD::VP_REDUCE_ADD:
10982 Opcode = ISD::VP_REDUCE_XOR;
10984 case ISD::VP_REDUCE_SMAX:
10985 case ISD::VP_REDUCE_UMIN:
10989 Opcode = ISD::VP_REDUCE_AND;
10991 case ISD::VP_REDUCE_SMIN:
10992 case ISD::VP_REDUCE_UMAX:
10996 Opcode = ISD::VP_REDUCE_OR;
11004 if (VT != MVT::Glue) {
11007 void *IP =
nullptr;
11009 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11010 E->intersectFlagsWith(Flags);
11014 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11015 createOperands(
N,
Ops);
11017 CSEMap.InsertNode(
N, IP);
11019 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11020 createOperands(
N,
Ops);
11023 N->setFlags(Flags);
11034 Flags = Inserter->getFlags();
11048 Flags = Inserter->getFlags();
11058 for (
const auto &
Op :
Ops)
11060 "Operand is DELETED_NODE!");
11069 "Invalid add/sub overflow op!");
11071 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11072 Ops[0].getValueType() == VTList.
VTs[0] &&
11073 "Binary operator types must match!");
11080 if (N2CV && N2CV->
isZero()) {
11111 "Invalid add/sub overflow op!");
11113 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11114 Ops[0].getValueType() == VTList.
VTs[0] &&
11115 Ops[2].getValueType() == VTList.
VTs[1] &&
11116 "Binary operator types must match!");
11120 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11122 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11123 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11124 "Binary operator types must match!");
11130 unsigned OutWidth = Width * 2;
11131 APInt Val = LHS->getAPIntValue();
11134 Val = Val.
sext(OutWidth);
11135 Mul =
Mul.sext(OutWidth);
11137 Val = Val.
zext(OutWidth);
11138 Mul =
Mul.zext(OutWidth);
11150 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11152 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11160 DL, VTList.
VTs[1]);
11168 "Invalid STRICT_FP_EXTEND!");
11170 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11172 "STRICT_FP_EXTEND result type should be vector iff the operand "
11173 "type is vector!");
11176 Ops[1].getValueType().getVectorElementCount()) &&
11177 "Vector element count mismatch!");
11179 "Invalid fpext node, dst <= src!");
11182 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11184 "STRICT_FP_ROUND result type should be vector iff the operand "
11185 "type is vector!");
11188 Ops[1].getValueType().getVectorElementCount()) &&
11189 "Vector element count mismatch!");
11191 Ops[1].getValueType().isFloatingPoint() &&
11194 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11195 "Invalid STRICT_FP_ROUND!");
11201 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11204 void *IP =
nullptr;
11205 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11206 E->intersectFlagsWith(Flags);
11210 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11211 createOperands(
N,
Ops);
11212 CSEMap.InsertNode(
N, IP);
11214 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11215 createOperands(
N,
Ops);
11218 N->setFlags(Flags);
11265 return makeVTList(&(*EVTs.insert(VT).first), 1);
11274 void *IP =
nullptr;
11277 EVT *Array = Allocator.Allocate<
EVT>(2);
11280 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11281 VTListMap.InsertNode(Result, IP);
11283 return Result->getSDVTList();
11293 void *IP =
nullptr;
11296 EVT *Array = Allocator.Allocate<
EVT>(3);
11300 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11301 VTListMap.InsertNode(Result, IP);
11303 return Result->getSDVTList();
11314 void *IP =
nullptr;
11317 EVT *Array = Allocator.Allocate<
EVT>(4);
11322 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11323 VTListMap.InsertNode(Result, IP);
11325 return Result->getSDVTList();
11329 unsigned NumVTs = VTs.
size();
11331 ID.AddInteger(NumVTs);
11332 for (
unsigned index = 0; index < NumVTs; index++) {
11333 ID.AddInteger(VTs[index].getRawBits());
11336 void *IP =
nullptr;
11339 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11341 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11342 VTListMap.InsertNode(Result, IP);
11344 return Result->getSDVTList();
11355 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11358 if (
Op ==
N->getOperand(0))
return N;
11361 void *InsertPos =
nullptr;
11362 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11367 if (!RemoveNodeFromCSEMaps(
N))
11368 InsertPos =
nullptr;
11371 N->OperandList[0].set(
Op);
11375 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11380 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11383 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11387 void *InsertPos =
nullptr;
11388 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11393 if (!RemoveNodeFromCSEMaps(
N))
11394 InsertPos =
nullptr;
11397 if (
N->OperandList[0] != Op1)
11398 N->OperandList[0].set(Op1);
11399 if (
N->OperandList[1] != Op2)
11400 N->OperandList[1].set(Op2);
11404 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11424 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11432 "Update with wrong number of operands");
11435 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11439 void *InsertPos =
nullptr;
11440 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11445 if (!RemoveNodeFromCSEMaps(
N))
11446 InsertPos =
nullptr;
11449 for (
unsigned i = 0; i !=
NumOps; ++i)
11450 if (
N->OperandList[i] !=
Ops[i])
11451 N->OperandList[i].set(
Ops[i]);
11455 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11472 if (NewMemRefs.
empty()) {
11478 if (NewMemRefs.
size() == 1) {
11479 N->MemRefs = NewMemRefs[0];
11485 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11487 N->MemRefs = MemRefsBuffer;
11488 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11560 New->setNodeId(-1);
11580 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11581 N->setIROrder(Order);
11604 void *IP =
nullptr;
11605 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11609 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11612 if (!RemoveNodeFromCSEMaps(
N))
11617 N->ValueList = VTs.
VTs;
11627 if (Used->use_empty())
11628 DeadNodeSet.
insert(Used);
11633 MN->clearMemRefs();
11637 createOperands(
N,
Ops);
11641 if (!DeadNodeSet.
empty()) {
11643 for (
SDNode *
N : DeadNodeSet)
11644 if (
N->use_empty())
11650 CSEMap.InsertNode(
N, IP);
11655 unsigned OrigOpc =
Node->getOpcode();
11660#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11661 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11662#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11663 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11664#include "llvm/IR/ConstrainedOps.def"
11667 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11675 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11676 Ops.push_back(
Node->getOperand(i));
11793 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11795 void *IP =
nullptr;
11801 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11807 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11808 createOperands(
N,
Ops);
11811 CSEMap.InsertNode(
N, IP);
11824 VT, Operand, SRIdxVal);
11834 VT, Operand, Subreg, SRIdxVal);
11842 bool AllowCommute) {
11845 Flags = Inserter->getFlags();
11852 bool AllowCommute) {
11853 if (VTList.
VTs[VTList.
NumVTs - 1] == MVT::Glue)
11859 void *IP =
nullptr;
11860 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP)) {
11861 E->intersectFlagsWith(Flags);
11870 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11879 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11882 void *IP =
nullptr;
11883 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11893 SDNode *
N,
unsigned R,
bool IsIndirect,
11896 "Expected inlined-at fields to agree");
11897 return new (DbgInfo->getAlloc())
11899 {}, IsIndirect,
DL, O,
11909 "Expected inlined-at fields to agree");
11910 return new (DbgInfo->getAlloc())
11923 "Expected inlined-at fields to agree");
11935 "Expected inlined-at fields to agree");
11936 return new (DbgInfo->getAlloc())
11938 Dependencies, IsIndirect,
DL, O,
11947 "Expected inlined-at fields to agree");
11948 return new (DbgInfo->getAlloc())
11950 {}, IsIndirect,
DL, O,
11958 unsigned O,
bool IsVariadic) {
11960 "Expected inlined-at fields to agree");
11961 return new (DbgInfo->getAlloc())
11962 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11963 DL, O, IsVariadic);
11967 unsigned OffsetInBits,
unsigned SizeInBits,
11968 bool InvalidateDbg) {
11971 assert(FromNode && ToNode &&
"Can't modify dbg values");
11976 if (From == To || FromNode == ToNode)
11988 if (Dbg->isInvalidated())
11996 auto NewLocOps = Dbg->copyLocationOps();
11998 NewLocOps.begin(), NewLocOps.end(),
12000 bool Match = Op == FromLocOp;
12010 auto *Expr = Dbg->getExpression();
12016 if (
auto FI = Expr->getFragmentInfo())
12017 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12026 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12029 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12030 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12031 Dbg->isVariadic());
12034 if (InvalidateDbg) {
12036 Dbg->setIsInvalidated();
12037 Dbg->setIsEmitted();
12043 "Transferred DbgValues should depend on the new SDNode");
12049 if (!
N.getHasDebugValue())
12052 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12060 if (DV->isInvalidated())
12062 switch (
N.getOpcode()) {
12072 Offset =
N.getConstantOperandVal(1);
12075 if (!RHSConstant && DV->isIndirect())
12082 auto *DIExpr = DV->getExpression();
12083 auto NewLocOps = DV->copyLocationOps();
12085 size_t OrigLocOpsSize = NewLocOps.size();
12086 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12091 NewLocOps[i].getSDNode() != &
N)
12102 const auto *TmpDIExpr =
12110 NewLocOps.push_back(RHS);
12119 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12121 auto AdditionalDependencies = DV->getAdditionalDependencies();
12123 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12124 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12126 DV->setIsInvalidated();
12127 DV->setIsEmitted();
12129 N0.
getNode()->dumprFull(
this);
12130 dbgs() <<
" into " << *DIExpr <<
'\n');
12137 TypeSize ToSize =
N.getValueSizeInBits(0);
12141 auto NewLocOps = DV->copyLocationOps();
12143 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12145 NewLocOps[i].getSDNode() != &
N)
12157 DV->getAdditionalDependencies(), DV->isIndirect(),
12158 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12161 DV->setIsInvalidated();
12162 DV->setIsEmitted();
12164 dbgs() <<
" into " << *DbgExpression <<
'\n');
12171 assert((!Dbg->getSDNodes().empty() ||
12174 return Op.getKind() == SDDbgOperand::FRAMEIX;
12176 "Salvaged DbgValue should depend on a new SDNode");
12185 "Expected inlined-at fields to agree");
12186 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12201 while (UI != UE &&
N == UI->
getUser())
12209 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12222 "Cannot replace with this method!");
12223 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12238 RAUWUpdateListener Listener(*
this, UI, UE);
12243 RemoveNodeFromCSEMaps(
User);
12258 AddModifiedNodeToCSEMaps(
User);
12274 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12277 "Cannot use this version of ReplaceAllUsesWith!");
12285 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12287 assert((i < To->getNumValues()) &&
"Invalid To location");
12296 RAUWUpdateListener Listener(*
this, UI, UE);
12301 RemoveNodeFromCSEMaps(
User);
12317 AddModifiedNodeToCSEMaps(
User);
12334 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12344 RAUWUpdateListener Listener(*
this, UI, UE);
12349 RemoveNodeFromCSEMaps(
User);
12355 bool To_IsDivergent =
false;
12369 AddModifiedNodeToCSEMaps(
User);
12382 if (From == To)
return;
12398 RAUWUpdateListener Listener(*
this, UI, UE);
12401 bool UserRemovedFromCSEMaps =
false;
12418 if (!UserRemovedFromCSEMaps) {
12419 RemoveNodeFromCSEMaps(
User);
12420 UserRemovedFromCSEMaps =
true;
12430 if (!UserRemovedFromCSEMaps)
12435 AddModifiedNodeToCSEMaps(
User);
12454bool operator<(
const UseMemo &L,
const UseMemo &R) {
12455 return (intptr_t)L.User < (intptr_t)R.User;
12462 SmallVectorImpl<UseMemo> &
Uses;
12464 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12465 for (UseMemo &Memo :
Uses)
12466 if (Memo.User ==
N)
12467 Memo.User =
nullptr;
12471 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12472 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12479 switch (
Node->getOpcode()) {
12491 if (TLI->isSDNodeAlwaysUniform(
N)) {
12492 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12493 "Conflicting divergence information!");
12496 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12498 for (
const auto &
Op :
N->ops()) {
12499 EVT VT =
Op.getValueType();
12502 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12514 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12515 N->SDNodeBits.IsDivergent = IsDivergent;
12518 }
while (!Worklist.
empty());
12521void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12523 Order.reserve(AllNodes.size());
12525 unsigned NOps =
N.getNumOperands();
12528 Order.push_back(&
N);
12530 for (
size_t I = 0;
I != Order.size(); ++
I) {
12532 for (
auto *U :
N->users()) {
12533 unsigned &UnsortedOps = Degree[U];
12534 if (0 == --UnsortedOps)
12535 Order.push_back(U);
12540#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12541void SelectionDAG::VerifyDAGDivergence() {
12542 std::vector<SDNode *> TopoOrder;
12543 CreateTopologicalOrder(TopoOrder);
12544 for (
auto *
N : TopoOrder) {
12546 "Divergence bit inconsistency detected");
12569 for (
unsigned i = 0; i != Num; ++i) {
12570 unsigned FromResNo = From[i].
getResNo();
12573 if (
Use.getResNo() == FromResNo) {
12575 Uses.push_back(Memo);
12582 RAUOVWUpdateListener Listener(*
this,
Uses);
12584 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12585 UseIndex != UseIndexEnd; ) {
12591 if (
User ==
nullptr) {
12597 RemoveNodeFromCSEMaps(
User);
12604 unsigned i =
Uses[UseIndex].Index;
12609 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12613 AddModifiedNodeToCSEMaps(
User);
12621 unsigned DAGSize = 0;
12637 unsigned Degree =
N.getNumOperands();
12640 N.setNodeId(DAGSize++);
12642 if (Q != SortedPos)
12643 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12644 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12648 N.setNodeId(Degree);
12660 unsigned Degree =
P->getNodeId();
12661 assert(Degree != 0 &&
"Invalid node degree");
12665 P->setNodeId(DAGSize++);
12666 if (
P->getIterator() != SortedPos)
12667 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12668 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12672 P->setNodeId(Degree);
12675 if (
Node.getIterator() == SortedPos) {
12679 dbgs() <<
"Overran sorted position:\n";
12681 dbgs() <<
"Checking if this is due to cycles\n";
12688 assert(SortedPos == AllNodes.end() &&
12689 "Topological sort incomplete!");
12691 "First node in topological sort is not the entry token!");
12692 assert(AllNodes.front().getNodeId() == 0 &&
12693 "First node in topological sort has non-zero id!");
12694 assert(AllNodes.front().getNumOperands() == 0 &&
12695 "First node in topological sort has operands!");
12696 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12697 "Last node in topologic sort has unexpected id!");
12698 assert(AllNodes.back().use_empty() &&
12699 "Last node in topologic sort has users!");
12706 SortedNodes.
clear();
12713 unsigned NumOperands =
N.getNumOperands();
12714 if (NumOperands == 0)
12718 RemainingOperands[&
N] = NumOperands;
12723 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12724 const SDNode *
N = SortedNodes[i];
12725 for (
const SDNode *U :
N->users()) {
12730 unsigned &NumRemOperands = RemainingOperands[U];
12731 assert(NumRemOperands &&
"Invalid number of remaining operands");
12733 if (!NumRemOperands)
12738 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12740 "First node in topological sort is not the entry token");
12741 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12742 "First node in topological sort has operands");
12748 for (
SDNode *SD : DB->getSDNodes()) {
12751 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12752 SD->setHasDebugValue(
true);
12754 DbgInfo->add(DB, isParameter);
12767 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12768 return NewMemOpChain;
12771 OldChain, NewMemOpChain);
12774 return TokenFactor;
12793 if (OutFunction !=
nullptr)
12801 std::string ErrorStr;
12803 ErrorFormatter <<
"Undefined external symbol ";
12804 ErrorFormatter <<
'"' << Symbol <<
'"';
12814 return Const !=
nullptr && Const->isZero();
12823 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12828 return Const !=
nullptr && Const->isAllOnes();
12833 return Const !=
nullptr && Const->isOne();
12838 return Const !=
nullptr && Const->isMinSignedValue();
12842 unsigned OperandNo) {
12847 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12853 return Const.isZero();
12855 return Const.isOne();
12858 return Const.isAllOnes();
12860 return Const.isMinSignedValue();
12862 return Const.isMaxSignedValue();
12867 return OperandNo == 1 && Const.isZero();
12870 return OperandNo == 1 && Const.isOne();
12875 return ConstFP->isZero() &&
12876 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12878 return OperandNo == 1 && ConstFP->isZero() &&
12879 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12881 return ConstFP->isExactlyValue(1.0);
12883 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12887 EVT VT = V.getValueType();
12889 APFloat NeutralAF = !Flags.hasNoNaNs()
12891 : !Flags.hasNoInfs()
12897 return ConstFP->isExactlyValue(NeutralAF);
12911 while (V.getOpcode() ==
ISD::BITCAST && V.getOperand(0).hasOneUse())
12930 !DemandedElts[IndexC->getZExtValue()]) {
12949 unsigned NumBits = V.getScalarValueSizeInBits();
12952 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12956 bool AllowTruncation) {
12957 EVT VT =
N.getValueType();
12966 bool AllowTruncation) {
12973 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
12975 EVT CVT = CN->getValueType(0);
12976 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
12977 if (AllowTruncation || CVT == VecEltVT)
12984 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12989 if (CN && (UndefElements.
none() || AllowUndefs)) {
12991 EVT NSVT =
N.getValueType().getScalarType();
12992 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
12993 if (AllowTruncation || (CVT == NSVT))
13002 EVT VT =
N.getValueType();
13010 const APInt &DemandedElts,
13011 bool AllowUndefs) {
13018 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13020 if (CN && (UndefElements.
none() || AllowUndefs))
13035 return C &&
C->isZero();
13041 return C &&
C->isOne();
13046 return C &&
C->isExactlyValue(1.0);
13051 unsigned BitWidth =
N.getScalarValueSizeInBits();
13053 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13059 APInt(
C->getAPIntValue().getBitWidth(), 1));
13065 return C &&
C->isZero();
13070 return C &&
C->isZero();
13079 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13089 (!
MMO->getType().isValid() ||
13103 std::vector<EVT> VTs;
13116const EVT *SDNode::getValueTypeList(
MVT VT) {
13117 static EVTArray SimpleVTArray;
13120 return &SimpleVTArray.VTs[VT.
SimpleTy];
13129 if (U.getResNo() ==
Value)
13167 return any_of(
N->op_values(),
13168 [
this](
SDValue Op) { return this == Op.getNode(); });
13182 unsigned Depth)
const {
13183 if (*
this == Dest)
return true;
13187 if (
Depth == 0)
return false;
13207 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13213 if (Ld->isUnordered())
13214 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13227 this->Flags &= Flags;
13233 bool AllowPartials) {
13248 unsigned CandidateBinOp =
Op.getOpcode();
13249 if (
Op.getValueType().isFloatingPoint()) {
13251 switch (CandidateBinOp) {
13253 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13263 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13264 if (!AllowPartials || !
Op)
13266 EVT OpVT =
Op.getValueType();
13269 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13288 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13290 for (
unsigned i = 0; i < Stages; ++i) {
13291 unsigned MaskEnd = (1 << i);
13293 if (
Op.getOpcode() != CandidateBinOp)
13294 return PartialReduction(PrevOp, MaskEnd);
13310 return PartialReduction(PrevOp, MaskEnd);
13313 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13314 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13315 return PartialReduction(PrevOp, MaskEnd);
13322 while (
Op.getOpcode() == CandidateBinOp) {
13323 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13332 if (NumSrcElts != (2 * NumElts))
13347 EVT VT =
N->getValueType(0);
13356 else if (NE > ResNE)
13359 if (
N->getNumValues() == 2) {
13362 EVT VT1 =
N->getValueType(1);
13366 for (i = 0; i != NE; ++i) {
13367 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13368 SDValue Operand =
N->getOperand(j);
13376 SDValue EltOp =
getNode(
N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13381 for (; i < ResNE; ++i) {
13393 assert(
N->getNumValues() == 1 &&
13394 "Can't unroll a vector with multiple results!");
13400 for (i= 0; i != NE; ++i) {
13401 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13402 SDValue Operand =
N->getOperand(j);
13410 Operands[j] = Operand;
13414 switch (
N->getOpcode()) {
13442 ASC->getSrcAddressSpace(),
13443 ASC->getDestAddressSpace()));
13449 for (; i < ResNE; ++i)
13458 unsigned Opcode =
N->getOpcode();
13462 "Expected an overflow opcode");
13464 EVT ResVT =
N->getValueType(0);
13465 EVT OvVT =
N->getValueType(1);
13474 else if (NE > ResNE)
13486 for (
unsigned i = 0; i < NE; ++i) {
13487 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13510 if (LD->isVolatile() ||
Base->isVolatile())
13513 if (!LD->isSimple())
13515 if (LD->isIndexed() ||
Base->isIndexed())
13517 if (LD->getChain() !=
Base->getChain())
13519 EVT VT = LD->getMemoryVT();
13527 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13528 return (Dist * (int64_t)Bytes ==
Offset);
13537 int64_t GVOffset = 0;
13538 if (TLI->isGAPlusOffset(Ptr.
getNode(), GV, GVOffset)) {
13549 int FrameIdx = INT_MIN;
13550 int64_t FrameOffset = 0;
13552 FrameIdx = FI->getIndex();
13560 if (FrameIdx != INT_MIN) {
13565 return std::nullopt;
13575 "Split node must be a scalar type");
13580 return std::make_pair(
Lo,
Hi);
13589 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13593 return std::make_pair(LoVT, HiVT);
13601 bool *HiIsEmpty)
const {
13611 "Mixing fixed width and scalable vectors when enveloping a type");
13616 *HiIsEmpty =
false;
13624 return std::make_pair(LoVT, HiVT);
13629std::pair<SDValue, SDValue>
13634 "Splitting vector with an invalid mixture of fixed and scalable "
13637 N.getValueType().getVectorMinNumElements() &&
13638 "More vector elements requested than available!");
13647 return std::make_pair(
Lo,
Hi);
13654 EVT VT =
N.getValueType();
13656 "Expecting the mask to be an evenly-sized vector");
13661 return std::make_pair(
Lo,
Hi);
13666 EVT VT =
N.getValueType();
13674 unsigned Start,
unsigned Count,
13676 EVT VT =
Op.getValueType();
13679 if (EltVT ==
EVT())
13682 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13694 return Val.MachineCPVal->getType();
13695 return Val.ConstVal->getType();
13699 unsigned &SplatBitSize,
13700 bool &HasAnyUndefs,
13701 unsigned MinSplatBits,
13702 bool IsBigEndian)
const {
13706 if (MinSplatBits > VecWidth)
13711 SplatValue =
APInt(VecWidth, 0);
13712 SplatUndef =
APInt(VecWidth, 0);
13719 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13722 for (
unsigned j = 0; j <
NumOps; ++j) {
13723 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13725 unsigned BitPos = j * EltWidth;
13728 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13730 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13732 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13739 HasAnyUndefs = (SplatUndef != 0);
13742 while (VecWidth > 8) {
13747 unsigned HalfSize = VecWidth / 2;
13754 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13755 MinSplatBits > HalfSize)
13758 SplatValue = HighValue | LowValue;
13759 SplatUndef = HighUndef & LowUndef;
13761 VecWidth = HalfSize;
13770 SplatBitSize = VecWidth;
13777 if (UndefElements) {
13778 UndefElements->
clear();
13785 for (
unsigned i = 0; i !=
NumOps; ++i) {
13786 if (!DemandedElts[i])
13789 if (
Op.isUndef()) {
13791 (*UndefElements)[i] =
true;
13792 }
else if (!Splatted) {
13794 }
else if (Splatted !=
Op) {
13800 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13802 "Can only have a splat without a constant for all undefs.");
13819 if (UndefElements) {
13820 UndefElements->
clear();
13831 (*UndefElements)[
I] =
true;
13834 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13835 Sequence.append(SeqLen,
SDValue());
13836 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13837 if (!DemandedElts[
I])
13839 SDValue &SeqOp = Sequence[
I % SeqLen];
13841 if (
Op.isUndef()) {
13846 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13852 if (!Sequence.empty())
13856 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13897 const APFloat &APF = CN->getValueAPF();
13903 return IntVal.exactLogBase2();
13909 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13917 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13918 "Invalid bitcast scale");
13923 BitVector SrcUndeElements(NumSrcOps,
false);
13925 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13927 if (
Op.isUndef()) {
13928 SrcUndeElements.
set(
I);
13933 assert((CInt || CFP) &&
"Unknown constant");
13934 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13935 : CFP->getValueAPF().bitcastToAPInt();
13939 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13940 SrcBitElements, UndefElements, SrcUndeElements);
13945 unsigned DstEltSizeInBits,
13950 unsigned NumSrcOps = SrcBitElements.
size();
13951 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13952 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13953 "Invalid bitcast scale");
13954 assert(NumSrcOps == SrcUndefElements.
size() &&
13955 "Vector size mismatch");
13957 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13958 DstUndefElements.
clear();
13959 DstUndefElements.
resize(NumDstOps,
false);
13963 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13964 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13965 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13966 DstUndefElements.
set(
I);
13967 APInt &DstBits = DstBitElements[
I];
13968 for (
unsigned J = 0; J != Scale; ++J) {
13969 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13970 if (SrcUndefElements[Idx])
13972 DstUndefElements.
reset(
I);
13973 const APInt &SrcBits = SrcBitElements[Idx];
13975 "Illegal constant bitwidths");
13976 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
13983 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13984 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13985 if (SrcUndefElements[
I]) {
13986 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
13989 const APInt &SrcBits = SrcBitElements[
I];
13990 for (
unsigned J = 0; J != Scale; ++J) {
13991 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13992 APInt &DstBits = DstBitElements[Idx];
13993 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
14000 unsigned Opc =
Op.getOpcode();
14007std::optional<std::pair<APInt, APInt>>
14011 return std::nullopt;
14015 return std::nullopt;
14022 return std::nullopt;
14024 for (
unsigned i = 2; i <
NumOps; ++i) {
14026 return std::nullopt;
14029 if (Val != (Start + (Stride * i)))
14030 return std::nullopt;
14033 return std::make_pair(Start, Stride);
14039 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14049 for (
int Idx = Mask[i]; i != e; ++i)
14050 if (Mask[i] >= 0 && Mask[i] != Idx)
14058 SDValue N,
bool AllowOpaques)
const {
14062 return AllowOpaques || !
C->isOpaque();
14071 TLI->isOffsetFoldingLegal(GA))
14099 return std::nullopt;
14101 EVT VT =
N->getValueType(0);
14103 switch (TLI->getBooleanContents(
N.getValueType())) {
14109 return std::nullopt;
14115 return std::nullopt;
14123 assert(!
Node->OperandList &&
"Node already has operands");
14125 "too many operands to fit into SDNode");
14126 SDUse *
Ops = OperandRecycler.allocate(
14129 bool IsDivergent =
false;
14130 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14132 Ops[
I].setInitial(Vals[
I]);
14133 EVT VT =
Ops[
I].getValueType();
14136 if (VT != MVT::Other &&
14139 IsDivergent =
true;
14144 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14145 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14146 Node->SDNodeBits.IsDivergent = IsDivergent;
14154 while (Vals.
size() > Limit) {
14155 unsigned SliceIdx = Vals.
size() - Limit;
14231 const SDLoc &DLoc) {
14235 RTLIB::LibcallImpl LibcallImpl =
14236 TLI->getLibcallImpl(
static_cast<RTLIB::Libcall
>(LibFunc));
14237 if (LibcallImpl == RTLIB::Unsupported)
14244 TLI->getLibcallImplCallingConv(LibcallImpl),
14246 return TLI->LowerCallTo(CLI).second;
14250 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14251 auto I = SDEI.find(From);
14252 if (
I == SDEI.end())
14257 NodeExtraInfo NEI =
I->second;
14266 SDEI[To] = std::move(NEI);
14283 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14284 if (MaxDepth == 0) {
14290 if (!FromReach.
insert(
N).second)
14293 Self(Self,
Op.getNode(), MaxDepth - 1);
14298 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14301 if (!Visited.
insert(
N).second)
14306 if (
N == To &&
Op.getNode() == EntrySDN) {
14311 if (!Self(Self,
Op.getNode()))
14325 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14326 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14331 for (
const SDNode *
N : StartFrom)
14332 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14336 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14344 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14345 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14347 SDEI[To] = std::move(NEI);
14361 if (!Visited.
insert(
N).second) {
14362 errs() <<
"Detected cycle in SelectionDAG\n";
14363 dbgs() <<
"Offending node:\n";
14364 N->dumprFull(DAG);
dbgs() <<
"\n";
14380 bool check = force;
14381#ifdef EXPENSIVE_CHECKS
14385 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getFixedOrScalableQuantity(SelectionDAG &DAG, const SDLoc &DL, EVT VT, Ty Quantity)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardZero
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
bool isMachineConstantPoolEntry() const
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC)
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI bool canIgnoreSignBitOfZero(const SDUse &Use) const
Check if a use of a float value is insensitive to signed zeros.
LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero, for a floating-point value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getMaskFromElementCount(const SDLoc &DL, EVT VT, ElementCount Len)
Return a vector with the first 'Len' lanes set to true and remaining lanes set to false.
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getDeactivationSymbol(const GlobalValue *GV)
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ MDNODE_SDNODE
MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to reference metadata in the IR.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ MLOAD
Masked load and store - consecutive vector load and store operations with additional mask operand tha...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ JUMP_TABLE_DEBUG_INFO
JUMP_TABLE_DEBUG_INFO - Jumptable debug info.
@ BSWAP
Byte Swap and Counting operators.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SRCVALUE
SRCVALUE - This is a node type that holds a Value* that is used to make reference to a value in the L...
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ LIFETIME_START
This corresponds to the llvm.lifetime.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ MGATHER
Masked gather and scatter - load and store operations for a vector of random addresses with additiona...
@ HANDLENODE
HANDLENODE node - Used as a handle for various purposes.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ PSEUDO_PROBE
Pseudo probe for AutoFDO, as a place holder in a basic block to improve the sample counts quality.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ EXPERIMENTAL_VECTOR_HISTOGRAM
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant (+/-)0.0 floating-point value or a splatted vector thereof (wi...
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)