98void SelectionDAG::DAGNodeDeletedListener::anchor() {}
99void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101#define DEBUG_TYPE "selectiondag"
105 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
108 cl::desc(
"Number limit for gluing ld/st of memcpy."),
113 cl::desc(
"DAG combiner limit number of steps when searching DAG "
114 "for predecessor nodes"));
152 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
154 N->getValueType(0).getVectorElementType().getSizeInBits();
155 SplatVal = OptAPInt->
trunc(EltSize);
165 unsigned SplatBitSize;
167 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
172 const bool IsBigEndian =
false;
173 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
174 EltSize, IsBigEndian) &&
175 EltSize == SplatBitSize;
184 N =
N->getOperand(0).getNode();
193 unsigned i = 0, e =
N->getNumOperands();
196 while (i != e &&
N->getOperand(i).isUndef())
200 if (i == e)
return false;
212 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
213 if (OptAPInt->countr_one() < EltSize)
221 for (++i; i != e; ++i)
222 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 N =
N->getOperand(0).getNode();
239 bool IsAllUndef =
true;
252 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
253 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
254 if (OptAPInt->countr_zero() < EltSize)
302 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
304 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
305 if (EltSize <= NewEltSize)
309 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
314 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
327 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
328 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
330 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
341 if (
N->getNumOperands() == 0)
347 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
350template <
typename ConstNodeType>
352 std::function<
bool(ConstNodeType *)> Match,
353 bool AllowUndefs,
bool AllowTruncation) {
363 EVT SVT =
Op.getValueType().getScalarType();
364 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
365 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
372 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
387 bool AllowUndefs,
bool AllowTypeMismatch) {
388 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
394 return Match(LHSCst, RHSCst);
397 if (LHS.getOpcode() != RHS.getOpcode() ||
403 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
406 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
407 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
410 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
415 if (!Match(LHSCst, RHSCst))
437 switch (VecReduceOpcode) {
442 case ISD::VP_REDUCE_FADD:
443 case ISD::VP_REDUCE_SEQ_FADD:
447 case ISD::VP_REDUCE_FMUL:
448 case ISD::VP_REDUCE_SEQ_FMUL:
451 case ISD::VP_REDUCE_ADD:
454 case ISD::VP_REDUCE_MUL:
457 case ISD::VP_REDUCE_AND:
460 case ISD::VP_REDUCE_OR:
463 case ISD::VP_REDUCE_XOR:
466 case ISD::VP_REDUCE_SMAX:
469 case ISD::VP_REDUCE_SMIN:
472 case ISD::VP_REDUCE_UMAX:
475 case ISD::VP_REDUCE_UMIN:
478 case ISD::VP_REDUCE_FMAX:
481 case ISD::VP_REDUCE_FMIN:
484 case ISD::VP_REDUCE_FMAXIMUM:
487 case ISD::VP_REDUCE_FMINIMUM:
496#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
499#include "llvm/IR/VPIntrinsics.def"
507#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
508#define VP_PROPERTY_BINARYOP return true;
509#define END_REGISTER_VP_SDNODE(VPSD) break;
510#include "llvm/IR/VPIntrinsics.def"
519 case ISD::VP_REDUCE_ADD:
520 case ISD::VP_REDUCE_MUL:
521 case ISD::VP_REDUCE_AND:
522 case ISD::VP_REDUCE_OR:
523 case ISD::VP_REDUCE_XOR:
524 case ISD::VP_REDUCE_SMAX:
525 case ISD::VP_REDUCE_SMIN:
526 case ISD::VP_REDUCE_UMAX:
527 case ISD::VP_REDUCE_UMIN:
528 case ISD::VP_REDUCE_FMAX:
529 case ISD::VP_REDUCE_FMIN:
530 case ISD::VP_REDUCE_FMAXIMUM:
531 case ISD::VP_REDUCE_FMINIMUM:
532 case ISD::VP_REDUCE_FADD:
533 case ISD::VP_REDUCE_FMUL:
534 case ISD::VP_REDUCE_SEQ_FADD:
535 case ISD::VP_REDUCE_SEQ_FMUL:
545#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
548#include "llvm/IR/VPIntrinsics.def"
557#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
560#include "llvm/IR/VPIntrinsics.def"
570#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
571#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
572#define END_REGISTER_VP_SDNODE(VPOPC) break;
573#include "llvm/IR/VPIntrinsics.def"
582#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
583#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
584#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
585#include "llvm/IR/VPIntrinsics.def"
632 bool isIntegerLike) {
657 bool IsInteger =
Type.isInteger();
662 unsigned Op = Op1 | Op2;
678 bool IsInteger =
Type.isInteger();
713 ID.AddPointer(VTList.
VTs);
719 for (
const auto &
Op :
Ops) {
720 ID.AddPointer(
Op.getNode());
721 ID.AddInteger(
Op.getResNo());
728 for (
const auto &
Op :
Ops) {
729 ID.AddPointer(
Op.getNode());
730 ID.AddInteger(
Op.getResNo());
743 switch (
N->getOpcode()) {
752 ID.AddPointer(
C->getConstantIntValue());
753 ID.AddBoolean(
C->isOpaque());
817 ID.AddInteger(LD->getMemoryVT().getRawBits());
818 ID.AddInteger(LD->getRawSubclassData());
819 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
820 ID.AddInteger(LD->getMemOperand()->getFlags());
825 ID.AddInteger(ST->getMemoryVT().getRawBits());
826 ID.AddInteger(ST->getRawSubclassData());
827 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
828 ID.AddInteger(ST->getMemOperand()->getFlags());
839 case ISD::VP_LOAD_FF: {
841 ID.AddInteger(LD->getMemoryVT().getRawBits());
842 ID.AddInteger(LD->getRawSubclassData());
843 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
844 ID.AddInteger(LD->getMemOperand()->getFlags());
847 case ISD::VP_STORE: {
855 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
862 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
869 case ISD::VP_GATHER: {
877 case ISD::VP_SCATTER: {
976 ID.AddInteger(MN->getRawSubclassData());
977 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
978 ID.AddInteger(MN->getMemOperand()->getFlags());
979 ID.AddInteger(MN->getMemoryVT().getRawBits());
1002 if (
N->getValueType(0) == MVT::Glue)
1005 switch (
N->getOpcode()) {
1013 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1014 if (
N->getValueType(i) == MVT::Glue)
1031 if (
Node.use_empty())
1046 while (!DeadNodes.
empty()) {
1055 DUL->NodeDeleted(
N,
nullptr);
1058 RemoveNodeFromCSEMaps(
N);
1089 RemoveNodeFromCSEMaps(
N);
1093 DeleteNodeNotInCSEMaps(
N);
1096void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1097 assert(
N->getIterator() != AllNodes.begin() &&
1098 "Cannot delete the entry node!");
1099 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1108 assert(!(V->isVariadic() && isParameter));
1110 ByvalParmDbgValues.push_back(V);
1112 DbgValues.push_back(V);
1115 DbgValMap[
Node].push_back(V);
1119 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1120 if (
I == DbgValMap.end())
1122 for (
auto &Val:
I->second)
1123 Val->setIsInvalidated();
1127void SelectionDAG::DeallocateNode(
SDNode *
N) {
1150void SelectionDAG::verifyNode(
SDNode *
N)
const {
1151 switch (
N->getOpcode()) {
1153 if (
N->isTargetOpcode())
1157 EVT VT =
N->getValueType(0);
1158 assert(
N->getNumValues() == 1 &&
"Too many results!");
1160 "Wrong return type!");
1161 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1162 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1163 "Mismatched operand types!");
1165 "Wrong operand type!");
1167 "Wrong return type size");
1171 assert(
N->getNumValues() == 1 &&
"Too many results!");
1172 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1173 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1174 "Wrong number of operands!");
1175 EVT EltVT =
N->getValueType(0).getVectorElementType();
1176 for (
const SDUse &
Op :
N->ops()) {
1177 assert((
Op.getValueType() == EltVT ||
1178 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1179 EltVT.
bitsLE(
Op.getValueType()))) &&
1180 "Wrong operand type!");
1181 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1182 "Operands must all have the same type");
1194void SelectionDAG::InsertNode(SDNode *
N) {
1195 AllNodes.push_back(
N);
1197 N->PersistentId = NextPersistentId++;
1201 DUL->NodeInserted(
N);
1208bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1209 bool Erased =
false;
1210 switch (
N->getOpcode()) {
1214 "Cond code doesn't exist!");
1223 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1229 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1235 Erased = ExtendedValueTypeNodes.erase(VT);
1246 Erased = CSEMap.RemoveNode(
N);
1253 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1268SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1272 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1273 if (Existing !=
N) {
1284 DUL->NodeDeleted(
N, Existing);
1285 DeleteNodeNotInCSEMaps(
N);
1292 DUL->NodeUpdated(
N);
1299SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1305 FoldingSetNodeID
ID;
1308 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1310 Node->intersectFlagsWith(
N->getFlags());
1318SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1325 FoldingSetNodeID
ID;
1328 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1330 Node->intersectFlagsWith(
N->getFlags());
1343 FoldingSetNodeID
ID;
1346 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1348 Node->intersectFlagsWith(
N->getFlags());
1361 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1364 InsertNode(&EntryNode);
1375 SDAGISelPass = PassPtr;
1379 LibInfo = LibraryInfo;
1380 Context = &MF->getFunction().getContext();
1385 FnVarLocs = VarLocs;
1389 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1391 OperandRecycler.clear(OperandAllocator);
1399void SelectionDAG::allnodes_clear() {
1400 assert(&*AllNodes.begin() == &EntryNode);
1401 AllNodes.remove(AllNodes.begin());
1402 while (!AllNodes.empty())
1403 DeallocateNode(&AllNodes.front());
1405 NextPersistentId = 0;
1411 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1413 switch (
N->getOpcode()) {
1418 "debug location. Use another overload.");
1425 const SDLoc &
DL,
void *&InsertPos) {
1426 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1428 switch (
N->getOpcode()) {
1434 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1441 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1442 N->setDebugLoc(
DL.getDebugLoc());
1451 OperandRecycler.clear(OperandAllocator);
1452 OperandAllocator.Reset();
1455 ExtendedValueTypeNodes.clear();
1456 ExternalSymbols.clear();
1457 TargetExternalSymbols.clear();
1463 EntryNode.UseList =
nullptr;
1464 InsertNode(&EntryNode);
1470 return VT.
bitsGT(
Op.getValueType())
1476std::pair<SDValue, SDValue>
1480 "Strict no-op FP extend/round not allowed.");
1487 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1491 return VT.
bitsGT(
Op.getValueType()) ?
1497 return VT.
bitsGT(
Op.getValueType()) ?
1503 return VT.
bitsGT(
Op.getValueType()) ?
1511 auto Type =
Op.getValueType();
1515 auto Size =
Op.getValueSizeInBits();
1526 auto Type =
Op.getValueType();
1530 auto Size =
Op.getValueSizeInBits();
1541 auto Type =
Op.getValueType();
1545 auto Size =
Op.getValueSizeInBits();
1559 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1563 EVT OpVT =
Op.getValueType();
1565 "Cannot getZeroExtendInReg FP types");
1567 "getZeroExtendInReg type should be vector iff the operand "
1571 "Vector element counts must match in getZeroExtendInReg");
1583 EVT OpVT =
Op.getValueType();
1585 "Cannot getVPZeroExtendInReg FP types");
1587 "getVPZeroExtendInReg type and operand type should be vector!");
1589 "Vector element counts must match in getZeroExtendInReg");
1628 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1639 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1641 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1650 switch (TLI->getBooleanContents(OpVT)) {
1661 bool isT,
bool isO) {
1667 bool isT,
bool isO) {
1668 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1672 EVT VT,
bool isT,
bool isO) {
1689 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1695 Elt = ConstantInt::get(*
getContext(), NewVal);
1707 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1714 "Can only handle an even split!");
1718 for (
unsigned i = 0; i != Parts; ++i)
1720 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1721 ViaEltVT, isT, isO));
1726 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1737 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1738 ViaEltVT, isT, isO));
1743 std::reverse(EltParts.
begin(), EltParts.
end());
1762 "APInt size does not match type size!");
1771 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1776 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1777 CSEMap.InsertNode(
N, IP);
1789 bool isT,
bool isO) {
1797 IsTarget, IsOpaque);
1829 EVT VT,
bool isTarget) {
1850 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1855 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1856 CSEMap.InsertNode(
N, IP);
1870 if (EltVT == MVT::f32)
1872 if (EltVT == MVT::f64)
1874 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1875 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1886 EVT VT, int64_t
Offset,
bool isTargetGA,
1887 unsigned TargetFlags) {
1888 assert((TargetFlags == 0 || isTargetGA) &&
1889 "Cannot set target flags on target-independent globals");
1907 ID.AddInteger(TargetFlags);
1909 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1912 auto *
N = newSDNode<GlobalAddressSDNode>(
1913 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1914 CSEMap.InsertNode(
N, IP);
1928 auto *
N = newSDNode<DeactivationSymbolSDNode>(GV, VTs);
1929 CSEMap.InsertNode(
N, IP);
1941 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1944 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1945 CSEMap.InsertNode(
N, IP);
1951 unsigned TargetFlags) {
1952 assert((TargetFlags == 0 || isTarget) &&
1953 "Cannot set target flags on target-independent jump tables");
1959 ID.AddInteger(TargetFlags);
1961 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1964 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1965 CSEMap.InsertNode(
N, IP);
1979 bool isTarget,
unsigned TargetFlags) {
1980 assert((TargetFlags == 0 || isTarget) &&
1981 "Cannot set target flags on target-independent globals");
1990 ID.AddInteger(Alignment->value());
1993 ID.AddInteger(TargetFlags);
1995 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1998 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2000 CSEMap.InsertNode(
N, IP);
2009 bool isTarget,
unsigned TargetFlags) {
2010 assert((TargetFlags == 0 || isTarget) &&
2011 "Cannot set target flags on target-independent globals");
2018 ID.AddInteger(Alignment->value());
2020 C->addSelectionDAGCSEId(
ID);
2021 ID.AddInteger(TargetFlags);
2023 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2026 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2028 CSEMap.InsertNode(
N, IP);
2038 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2041 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2042 CSEMap.InsertNode(
N, IP);
2049 ValueTypeNodes.size())
2056 N = newSDNode<VTSDNode>(VT);
2062 SDNode *&
N = ExternalSymbols[Sym];
2064 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2070 StringRef SymName = TLI->getLibcallImplName(Libcall);
2078 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2084 unsigned TargetFlags) {
2086 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2088 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2094 EVT VT,
unsigned TargetFlags) {
2095 StringRef SymName = TLI->getLibcallImplName(Libcall);
2100 if ((
unsigned)
Cond >= CondCodeNodes.size())
2101 CondCodeNodes.resize(
Cond+1);
2103 if (!CondCodeNodes[
Cond]) {
2104 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2105 CondCodeNodes[
Cond] =
N;
2114 "APInt size does not match type size!");
2132template <
typename Ty>
2134 EVT VT, Ty Quantity) {
2135 if (Quantity.isScalable())
2139 return DAG.
getConstant(Quantity.getKnownMinValue(),
DL, VT);
2165 const APInt &StepVal) {
2189 "Must have the same number of vector elements as mask elements!");
2191 "Invalid VECTOR_SHUFFLE");
2199 int NElts = Mask.size();
2201 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2202 "Index out of range");
2210 for (
int i = 0; i != NElts; ++i)
2211 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2218 if (TLI->hasVectorBlend()) {
2227 for (
int i = 0; i < NElts; ++i) {
2228 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2232 if (UndefElements[MaskVec[i] -
Offset]) {
2238 if (!UndefElements[i])
2243 BlendSplat(N1BV, 0);
2245 BlendSplat(N2BV, NElts);
2250 bool AllLHS =
true, AllRHS =
true;
2252 for (
int i = 0; i != NElts; ++i) {
2253 if (MaskVec[i] >= NElts) {
2258 }
else if (MaskVec[i] >= 0) {
2262 if (AllLHS && AllRHS)
2264 if (AllLHS && !N2Undef)
2277 bool Identity =
true, AllSame =
true;
2278 for (
int i = 0; i != NElts; ++i) {
2279 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2280 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2282 if (Identity && NElts)
2315 if (AllSame && SameNumElts) {
2316 EVT BuildVT = BV->getValueType(0);
2333 for (
int i = 0; i != NElts; ++i)
2334 ID.AddInteger(MaskVec[i]);
2337 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2343 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2346 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2348 createOperands(
N,
Ops);
2350 CSEMap.InsertNode(
N, IP);
2371 ID.AddInteger(Reg.id());
2373 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2376 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2377 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2378 CSEMap.InsertNode(
N, IP);
2386 ID.AddPointer(RegMask);
2388 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2391 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2392 CSEMap.InsertNode(
N, IP);
2407 ID.AddPointer(Label);
2409 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2414 createOperands(
N,
Ops);
2416 CSEMap.InsertNode(
N, IP);
2422 int64_t
Offset,
bool isTarget,
2423 unsigned TargetFlags) {
2431 ID.AddInteger(TargetFlags);
2433 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2436 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2437 CSEMap.InsertNode(
N, IP);
2448 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2451 auto *
N = newSDNode<SrcValueSDNode>(V);
2452 CSEMap.InsertNode(
N, IP);
2463 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2466 auto *
N = newSDNode<MDNodeSDNode>(MD);
2467 CSEMap.InsertNode(
N, IP);
2473 if (VT == V.getValueType())
2480 unsigned SrcAS,
unsigned DestAS) {
2485 ID.AddInteger(SrcAS);
2486 ID.AddInteger(DestAS);
2489 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2493 VTs, SrcAS, DestAS);
2494 createOperands(
N,
Ops);
2496 CSEMap.InsertNode(
N, IP);
2508 EVT OpTy =
Op.getValueType();
2510 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2519 EVT VT =
Node->getValueType(0);
2528 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2566 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2568 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2576 if (RedAlign > StackAlign) {
2579 unsigned NumIntermediates;
2580 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2581 NumIntermediates, RegisterVT);
2583 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2584 if (RedAlign2 < RedAlign)
2585 RedAlign = RedAlign2;
2590 RedAlign = std::min(RedAlign, StackAlign);
2605 false,
nullptr, StackID);
2620 "Don't know how to choose the maximum size when creating a stack "
2629 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2637 auto GetUndefBooleanConstant = [&]() {
2639 TLI->getBooleanContents(OpVT) ==
2676 return GetUndefBooleanConstant();
2681 return GetUndefBooleanConstant();
2690 const APInt &C2 = N2C->getAPIntValue();
2692 const APInt &C1 = N1C->getAPIntValue();
2702 if (N1CFP && N2CFP) {
2707 return GetUndefBooleanConstant();
2712 return GetUndefBooleanConstant();
2718 return GetUndefBooleanConstant();
2723 return GetUndefBooleanConstant();
2728 return GetUndefBooleanConstant();
2734 return GetUndefBooleanConstant();
2761 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2763 return getSetCC(dl, VT, N2, N1, SwappedCond);
2764 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2779 return GetUndefBooleanConstant();
2790 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2799 unsigned Opc =
Op.getOpcode();
2808 return (NoFPClass & TestMask) == TestMask;
2815 return Op->getFlags().hasNoNaNs();
2841 unsigned Depth)
const {
2849 const APInt &DemandedElts,
2850 unsigned Depth)
const {
2857 unsigned Depth )
const {
2863 unsigned Depth)
const {
2868 const APInt &DemandedElts,
2869 unsigned Depth)
const {
2870 EVT VT =
Op.getValueType();
2877 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2878 if (!DemandedElts[EltIdx])
2882 KnownZeroElements.
setBit(EltIdx);
2884 return KnownZeroElements;
2894 unsigned Opcode = V.getOpcode();
2895 EVT VT = V.getValueType();
2898 "scalable demanded bits are ignored");
2910 UndefElts = V.getOperand(0).isUndef()
2919 APInt UndefLHS, UndefRHS;
2928 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
2929 UndefElts = UndefLHS | UndefRHS;
2942 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
2959 for (
unsigned i = 0; i != NumElts; ++i) {
2965 if (!DemandedElts[i])
2967 if (Scl && Scl !=
Op)
2978 for (
int i = 0; i != (int)NumElts; ++i) {
2984 if (!DemandedElts[i])
2986 if (M < (
int)NumElts)
2989 DemandedRHS.
setBit(M - NumElts);
3001 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
3003 return (SrcElts.popcount() == 1) ||
3005 (SrcElts & SrcUndefs).
isZero());
3007 if (!DemandedLHS.
isZero())
3008 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3009 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3015 if (Src.getValueType().isScalableVector())
3017 uint64_t Idx = V.getConstantOperandVal(1);
3018 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3020 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3022 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3033 if (Src.getValueType().isScalableVector())
3037 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3039 UndefElts = UndefSrcElts.
trunc(NumElts);
3046 EVT SrcVT = Src.getValueType();
3056 if ((
BitWidth % SrcBitWidth) == 0) {
3058 unsigned Scale =
BitWidth / SrcBitWidth;
3060 APInt ScaledDemandedElts =
3062 for (
unsigned I = 0;
I != Scale; ++
I) {
3066 SubDemandedElts &= ScaledDemandedElts;
3070 if (!SubUndefElts.
isZero())
3084 EVT VT = V.getValueType();
3094 (AllowUndefs || !UndefElts);
3100 EVT VT = V.getValueType();
3101 unsigned Opcode = V.getOpcode();
3122 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3137 if (!SVN->isSplat())
3139 int Idx = SVN->getSplatIndex();
3140 int NumElts = V.getValueType().getVectorNumElements();
3141 SplatIdx = Idx % NumElts;
3142 return V.getOperand(Idx / NumElts);
3154 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3157 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3158 if (LegalSVT.
bitsLT(SVT))
3166std::optional<ConstantRange>
3168 unsigned Depth)
const {
3171 "Unknown shift node");
3173 unsigned BitWidth = V.getScalarValueSizeInBits();
3176 const APInt &ShAmt = Cst->getAPIntValue();
3178 return std::nullopt;
3183 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3184 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3185 if (!DemandedElts[i])
3189 MinAmt = MaxAmt =
nullptr;
3192 const APInt &ShAmt = SA->getAPIntValue();
3194 return std::nullopt;
3195 if (!MinAmt || MinAmt->
ugt(ShAmt))
3197 if (!MaxAmt || MaxAmt->ult(ShAmt))
3200 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3201 "Failed to find matching min/max shift amounts");
3202 if (MinAmt && MaxAmt)
3212 return std::nullopt;
3215std::optional<unsigned>
3217 unsigned Depth)
const {
3220 "Unknown shift node");
3221 if (std::optional<ConstantRange> AmtRange =
3223 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3224 return ShAmt->getZExtValue();
3225 return std::nullopt;
3228std::optional<unsigned>
3230 EVT VT = V.getValueType();
3237std::optional<unsigned>
3239 unsigned Depth)
const {
3242 "Unknown shift node");
3243 if (std::optional<ConstantRange> AmtRange =
3245 return AmtRange->getUnsignedMin().getZExtValue();
3246 return std::nullopt;
3249std::optional<unsigned>
3251 EVT VT = V.getValueType();
3258std::optional<unsigned>
3260 unsigned Depth)
const {
3263 "Unknown shift node");
3264 if (std::optional<ConstantRange> AmtRange =
3266 return AmtRange->getUnsignedMax().getZExtValue();
3267 return std::nullopt;
3270std::optional<unsigned>
3272 EVT VT = V.getValueType();
3283 EVT VT =
Op.getValueType();
3298 unsigned Depth)
const {
3299 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3303 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3313 assert((!
Op.getValueType().isFixedLengthVector() ||
3314 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3315 "Unexpected vector size");
3320 unsigned Opcode =
Op.getOpcode();
3328 "Expected SPLAT_VECTOR implicit truncation");
3335 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3337 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3344 const APInt &Step =
Op.getConstantOperandAPInt(0);
3353 const APInt MinNumElts =
3359 .
umul_ov(MinNumElts, Overflow);
3363 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3371 assert(!
Op.getValueType().isScalableVector());
3374 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3375 if (!DemandedElts[i])
3384 "Expected BUILD_VECTOR implicit truncation");
3408 assert(!
Op.getValueType().isScalableVector());
3411 APInt DemandedLHS, DemandedRHS;
3415 DemandedLHS, DemandedRHS))
3420 if (!!DemandedLHS) {
3428 if (!!DemandedRHS) {
3437 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3442 if (
Op.getValueType().isScalableVector())
3446 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3448 unsigned NumSubVectors =
Op.getNumOperands();
3449 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3451 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3452 if (!!DemandedSub) {
3464 if (
Op.getValueType().isScalableVector())
3471 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3473 APInt DemandedSrcElts = DemandedElts;
3474 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3477 if (!!DemandedSubElts) {
3482 if (!!DemandedSrcElts) {
3492 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3495 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3496 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3501 if (
Op.getValueType().isScalableVector())
3505 if (DemandedElts != 1)
3516 if (
Op.getValueType().isScalableVector())
3536 if ((
BitWidth % SubBitWidth) == 0) {
3543 unsigned SubScale =
BitWidth / SubBitWidth;
3544 APInt SubDemandedElts(NumElts * SubScale, 0);
3545 for (
unsigned i = 0; i != NumElts; ++i)
3546 if (DemandedElts[i])
3547 SubDemandedElts.
setBit(i * SubScale);
3549 for (
unsigned i = 0; i != SubScale; ++i) {
3552 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3553 Known.
insertBits(Known2, SubBitWidth * Shifts);
3558 if ((SubBitWidth %
BitWidth) == 0) {
3559 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3564 unsigned SubScale = SubBitWidth /
BitWidth;
3565 APInt SubDemandedElts =
3570 for (
unsigned i = 0; i != NumElts; ++i)
3571 if (DemandedElts[i]) {
3572 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3603 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3607 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3613 if (
Op->getFlags().hasNoSignedWrap() &&
3614 Op.getOperand(0) ==
Op.getOperand(1) &&
3641 unsigned SignBits1 =
3645 unsigned SignBits0 =
3651 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3654 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3655 if (
Op.getResNo() == 0)
3662 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3665 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3666 if (
Op.getResNo() == 0)
3719 if (
Op.getResNo() != 1)
3725 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3734 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3736 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3746 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3747 bool NSW =
Op->getFlags().hasNoSignedWrap();
3754 if (std::optional<unsigned> ShMinAmt =
3763 Op->getFlags().hasExact());
3766 if (std::optional<unsigned> ShMinAmt =
3774 Op->getFlags().hasExact());
3780 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3795 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3801 DemandedElts,
Depth + 1);
3822 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3825 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3826 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3829 Known = Known2.
concat(Known);
3843 if (
Op.getResNo() == 0)
3900 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3905 !
Op.getValueType().isScalableVector()) {
3918 for (
unsigned i = 0; i != NumElts; ++i) {
3919 if (!DemandedElts[i])
3929 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3948 }
else if (
Op.getResNo() == 0) {
3949 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
3950 KnownBits KnownScalarMemory(ScalarMemorySize);
3951 if (
const MDNode *MD = LD->getRanges())
3962 Known = KnownScalarMemory;
3969 if (
Op.getValueType().isScalableVector())
3971 EVT InVT =
Op.getOperand(0).getValueType();
3983 if (
Op.getValueType().isScalableVector())
3985 EVT InVT =
Op.getOperand(0).getValueType();
4001 if (
Op.getValueType().isScalableVector())
4003 EVT InVT =
Op.getOperand(0).getValueType();
4023 Known.
Zero |= (~InMask);
4024 Known.
One &= (~Known.Zero);
4044 if ((NoFPClass & NegativeTestMask) == NegativeTestMask) {
4050 if ((NoFPClass & PositiveTestMask) == PositiveTestMask) {
4067 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4068 Flags.hasNoUnsignedWrap(), Known, Known2);
4075 if (
Op.getResNo() == 1) {
4077 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4086 "We only compute knownbits for the difference here.");
4093 Borrow = Borrow.
trunc(1);
4107 if (
Op.getResNo() == 1) {
4109 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4118 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4128 Carry = Carry.
trunc(1);
4164 const unsigned Index =
Op.getConstantOperandVal(1);
4165 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4172 Known = Known.
trunc(EltBitWidth);
4188 Known = Known.
trunc(EltBitWidth);
4194 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4204 if (
Op.getValueType().isScalableVector())
4213 bool DemandedVal =
true;
4214 APInt DemandedVecElts = DemandedElts;
4216 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4217 unsigned EltIdx = CEltNo->getZExtValue();
4218 DemandedVal = !!DemandedElts[EltIdx];
4226 if (!!DemandedVecElts) {
4244 Known = Known2.
abs();
4277 if (CstLow && CstHigh) {
4282 const APInt &ValueHigh = CstHigh->getAPIntValue();
4283 if (ValueLow.
sle(ValueHigh)) {
4286 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4309 if (IsMax && CstLow) {
4339 if (
Op.getResNo() == 0) {
4341 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4342 KnownBits KnownScalarMemory(ScalarMemorySize);
4343 if (
const MDNode *MD = AT->getRanges())
4346 switch (AT->getExtensionType()) {
4354 switch (TLI->getExtendForAtomicOps()) {
4367 Known = KnownScalarMemory;
4375 if (
Op.getResNo() == 1) {
4380 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4401 if (
Op.getResNo() == 0) {
4403 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4425 if (
Op.getValueType().isScalableVector())
4429 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4571 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4579 if (
C &&
C->getAPIntValue() == 1)
4589 if (
C &&
C->getAPIntValue().isSignMask())
4601 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4602 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4610 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4648 return C1->getValueAPF().getExactLog2Abs() >= 0;
4657 EVT VT =
Op.getValueType();
4669 unsigned Depth)
const {
4670 EVT VT =
Op.getValueType();
4675 unsigned FirstAnswer = 1;
4678 const APInt &Val =
C->getAPIntValue();
4688 unsigned Opcode =
Op.getOpcode();
4693 return VTBits-Tmp+1;
4707 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4709 if (NumSrcSignBits > (NumSrcBits - VTBits))
4710 return NumSrcSignBits - (NumSrcBits - VTBits);
4716 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4717 if (!DemandedElts[i])
4724 APInt T =
C->getAPIntValue().trunc(VTBits);
4725 Tmp2 =
T.getNumSignBits();
4729 if (
SrcOp.getValueSizeInBits() != VTBits) {
4731 "Expected BUILD_VECTOR implicit truncation");
4732 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4733 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4736 Tmp = std::min(Tmp, Tmp2);
4747 Tmp = std::min(Tmp, Tmp2);
4754 APInt DemandedLHS, DemandedRHS;
4758 DemandedLHS, DemandedRHS))
4761 Tmp = std::numeric_limits<unsigned>::max();
4764 if (!!DemandedRHS) {
4766 Tmp = std::min(Tmp, Tmp2);
4771 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4787 if (VTBits == SrcBits)
4793 if ((SrcBits % VTBits) == 0) {
4796 unsigned Scale = SrcBits / VTBits;
4797 APInt SrcDemandedElts =
4807 for (
unsigned i = 0; i != NumElts; ++i)
4808 if (DemandedElts[i]) {
4809 unsigned SubOffset = i % Scale;
4810 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4811 SubOffset = SubOffset * VTBits;
4812 if (Tmp <= SubOffset)
4814 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4824 return VTBits - Tmp + 1;
4826 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4833 return std::max(Tmp, Tmp2);
4838 EVT SrcVT = Src.getValueType();
4846 if (std::optional<unsigned> ShAmt =
4848 Tmp = std::min(Tmp + *ShAmt, VTBits);
4851 if (std::optional<ConstantRange> ShAmtRange =
4853 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4854 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4865 unsigned SizeDifference =
4867 if (SizeDifference <= MinShAmt) {
4868 Tmp = SizeDifference +
4871 return Tmp - MaxShAmt;
4877 return Tmp - MaxShAmt;
4887 FirstAnswer = std::min(Tmp, Tmp2);
4897 if (Tmp == 1)
return 1;
4899 return std::min(Tmp, Tmp2);
4902 if (Tmp == 1)
return 1;
4904 return std::min(Tmp, Tmp2);
4916 if (CstLow && CstHigh) {
4921 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4922 return std::min(Tmp, Tmp2);
4931 return std::min(Tmp, Tmp2);
4939 return std::min(Tmp, Tmp2);
4943 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
4954 if (
Op.getResNo() != 1)
4960 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
4968 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
4970 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
4985 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
4989 RotAmt = (VTBits - RotAmt) % VTBits;
4993 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
5000 if (Tmp == 1)
return 1;
5005 if (CRHS->isAllOnes()) {
5011 if ((Known.
Zero | 1).isAllOnes())
5021 if (Tmp2 == 1)
return 1;
5025 return std::min(Tmp, Tmp2) - 1;
5028 if (Tmp2 == 1)
return 1;
5033 if (CLHS->isZero()) {
5038 if ((Known.
Zero | 1).isAllOnes())
5052 if (Tmp == 1)
return 1;
5053 return std::min(Tmp, Tmp2) - 1;
5057 if (SignBitsOp0 == 1)
5060 if (SignBitsOp1 == 1)
5062 unsigned OutValidBits =
5063 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5064 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5072 return std::min(Tmp, Tmp2);
5081 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5083 if (NumSrcSignBits > (NumSrcBits - VTBits))
5084 return NumSrcSignBits - (NumSrcBits - VTBits);
5091 const int BitWidth =
Op.getValueSizeInBits();
5092 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5096 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5111 bool DemandedVal =
true;
5112 APInt DemandedVecElts = DemandedElts;
5114 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5115 unsigned EltIdx = CEltNo->getZExtValue();
5116 DemandedVal = !!DemandedElts[EltIdx];
5119 Tmp = std::numeric_limits<unsigned>::max();
5125 Tmp = std::min(Tmp, Tmp2);
5127 if (!!DemandedVecElts) {
5129 Tmp = std::min(Tmp, Tmp2);
5131 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5142 const unsigned BitWidth =
Op.getValueSizeInBits();
5143 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5156 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5166 if (Src.getValueType().isScalableVector())
5169 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5170 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5178 Tmp = std::numeric_limits<unsigned>::max();
5179 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5181 unsigned NumSubVectors =
Op.getNumOperands();
5182 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5184 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5188 Tmp = std::min(Tmp, Tmp2);
5190 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5201 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5203 APInt DemandedSrcElts = DemandedElts;
5204 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5206 Tmp = std::numeric_limits<unsigned>::max();
5207 if (!!DemandedSubElts) {
5212 if (!!DemandedSrcElts) {
5214 Tmp = std::min(Tmp, Tmp2);
5216 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5221 if (
Op.getResNo() != 0)
5225 if (
const MDNode *Ranges = LD->getRanges()) {
5226 if (DemandedElts != 1)
5231 switch (LD->getExtensionType()) {
5249 unsigned ExtType = LD->getExtensionType();
5254 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5255 return VTBits - Tmp + 1;
5257 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5258 return VTBits - Tmp;
5260 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5263 Type *CstTy = Cst->getType();
5268 for (
unsigned i = 0; i != NumElts; ++i) {
5269 if (!DemandedElts[i])
5274 Tmp = std::min(Tmp,
Value.getNumSignBits());
5278 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5279 Tmp = std::min(Tmp,
Value.getNumSignBits());
5311 if (
Op.getResNo() == 0) {
5312 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5318 switch (AT->getExtensionType()) {
5322 return VTBits - Tmp + 1;
5324 return VTBits - Tmp;
5329 return VTBits - Tmp + 1;
5331 return VTBits - Tmp;
5346 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5348 FirstAnswer = std::max(FirstAnswer, NumBits);
5359 unsigned Depth)
const {
5361 return Op.getScalarValueSizeInBits() - SignBits + 1;
5365 const APInt &DemandedElts,
5366 unsigned Depth)
const {
5368 return Op.getScalarValueSizeInBits() - SignBits + 1;
5372 unsigned Depth)
const {
5377 EVT VT =
Op.getValueType();
5385 const APInt &DemandedElts,
5387 unsigned Depth)
const {
5388 unsigned Opcode =
Op.getOpcode();
5417 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5418 if (!DemandedElts[i])
5428 if (Src.getValueType().isScalableVector())
5431 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5432 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5438 if (
Op.getValueType().isScalableVector())
5443 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5445 APInt DemandedSrcElts = DemandedElts;
5446 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5460 EVT SrcVT = Src.getValueType();
5464 IndexC->getZExtValue());
5479 if (DemandedElts[IndexC->getZExtValue()] &&
5482 APInt InVecDemandedElts = DemandedElts;
5483 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5484 if (!!InVecDemandedElts &&
5509 APInt DemandedLHS, DemandedRHS;
5512 DemandedElts, DemandedLHS, DemandedRHS,
5515 if (!DemandedLHS.
isZero() &&
5519 if (!DemandedRHS.
isZero() &&
5567 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5568 PoisonOnly, Depth + 1);
5580 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5593 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5599 unsigned Depth)
const {
5600 EVT VT =
Op.getValueType();
5610 unsigned Depth)
const {
5611 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5614 unsigned Opcode =
Op.getOpcode();
5695 if (
Op.getOperand(0).getValueType().isInteger())
5702 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5704 return (
unsigned)CCCode & 0x10U;
5750 EVT VecVT =
Op.getOperand(0).getValueType();
5759 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5760 if (Elt < 0 && DemandedElts[Idx])
5772 return TLI->canCreateUndefOrPoisonForTargetNode(
5782 unsigned Opcode =
Op.getOpcode();
5784 return Op->getFlags().hasDisjoint() ||
5797 unsigned Depth)
const {
5798 EVT VT =
Op.getValueType();
5811 bool SNaN,
unsigned Depth)
const {
5812 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5823 return !
C->getValueAPF().isNaN() ||
5824 (SNaN && !
C->getValueAPF().isSignaling());
5827 unsigned Opcode =
Op.getOpcode();
5929 EVT SrcVT = Src.getValueType();
5933 Idx->getZExtValue());
5940 if (Src.getValueType().isFixedLengthVector()) {
5941 unsigned Idx =
Op.getConstantOperandVal(1);
5942 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5943 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5953 unsigned Idx =
Op.getConstantOperandVal(2);
5959 APInt DemandedMask =
5961 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
5964 bool NeverNaN =
true;
5965 if (!DemandedSrcElts.
isZero())
5968 if (NeverNaN && !DemandedSubElts.
isZero())
5977 unsigned NumElts =
Op.getNumOperands();
5978 for (
unsigned I = 0;
I != NumElts; ++
I)
5979 if (DemandedElts[
I] &&
5996 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
6005 assert(
Op.getValueType().isFloatingPoint() &&
6006 "Floating point type expected");
6017 assert(!
Op.getValueType().isFloatingPoint() &&
6018 "Floating point types unsupported - use isKnownNeverZeroFloat");
6027 switch (
Op.getOpcode()) {
6041 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6045 if (ValKnown.
One[0])
6105 if (
Op->getFlags().hasExact())
6121 if (
Op->getFlags().hasExact())
6126 if (
Op->getFlags().hasNoUnsignedWrap())
6137 std::optional<bool> ne =
6144 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6155 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6169 return !C1->isNegative();
6171 switch (
Op.getOpcode()) {
6185 assert(
Use.getValueType().isFloatingPoint());
6189 switch (
User->getOpcode()) {
6197 return OperandNo == 0;
6218 if (
Op->use_size() > 2)
6221 [&](
const SDUse &
Use) { return canIgnoreSignBitOfZero(Use); });
6226 if (
A ==
B)
return true;
6231 if (CA->isZero() && CB->isZero())
return true;
6266 NotOperand = NotOperand->getOperand(0);
6268 if (
Other == NotOperand)
6271 return NotOperand ==
Other->getOperand(0) ||
6272 NotOperand ==
Other->getOperand(1);
6278 A =
A->getOperand(0);
6281 B =
B->getOperand(0);
6284 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6285 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6291 assert(
A.getValueType() ==
B.getValueType() &&
6292 "Values must have the same type");
6314 "BUILD_VECTOR cannot be used with scalable types");
6316 "Incorrect element count in BUILD_VECTOR!");
6324 bool IsIdentity =
true;
6325 for (
int i = 0; i !=
NumOps; ++i) {
6328 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6330 Ops[i].getConstantOperandAPInt(1) != i) {
6334 IdentitySrc =
Ops[i].getOperand(0);
6347 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6350 return Ops[0].getValueType() ==
Op.getValueType();
6352 "Concatenation of vectors with inconsistent value types!");
6355 "Incorrect element count in vector concatenation!");
6357 if (
Ops.size() == 1)
6368 bool IsIdentity =
true;
6369 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6371 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6373 Op.getOperand(0).getValueType() != VT ||
6374 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6375 Op.getConstantOperandVal(1) != IdentityIndex) {
6379 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6380 "Unexpected identity source vector for concat of extracts");
6381 IdentitySrc =
Op.getOperand(0);
6384 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6400 EVT OpVT =
Op.getValueType();
6416 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6440 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6443 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6444 CSEMap.InsertNode(
N, IP);
6456 Flags = Inserter->getFlags();
6457 return getNode(Opcode,
DL, VT, N1, Flags);
6508 "STEP_VECTOR can only be used with scalable types");
6511 "Unexpected step operand");
6532 "Invalid FP cast!");
6536 "Vector element count mismatch!");
6554 "Invalid SIGN_EXTEND!");
6556 "SIGN_EXTEND result type type should be vector iff the operand "
6561 "Vector element count mismatch!");
6584 unsigned NumSignExtBits =
6595 "Invalid ZERO_EXTEND!");
6597 "ZERO_EXTEND result type type should be vector iff the operand "
6602 "Vector element count mismatch!");
6640 "Invalid ANY_EXTEND!");
6642 "ANY_EXTEND result type type should be vector iff the operand "
6647 "Vector element count mismatch!");
6672 "Invalid TRUNCATE!");
6674 "TRUNCATE result type type should be vector iff the operand "
6679 "Vector element count mismatch!");
6706 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6708 "The input must be the same size or smaller than the result.");
6711 "The destination vector type must have fewer lanes than the input.");
6721 "BSWAP types must be a multiple of 16 bits!");
6735 "Cannot BITCAST between types of different sizes!");
6748 "Illegal SCALAR_TO_VECTOR node!");
6805 "Wrong operand type!");
6812 if (VT != MVT::Glue) {
6816 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6817 E->intersectFlagsWith(Flags);
6821 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6823 createOperands(
N,
Ops);
6824 CSEMap.InsertNode(
N, IP);
6826 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6827 createOperands(
N,
Ops);
6861 if (!C2.getBoolValue())
6865 if (!C2.getBoolValue())
6869 if (!C2.getBoolValue())
6873 if (!C2.getBoolValue())
6899 return std::nullopt;
6904 bool IsUndef1,
const APInt &C2,
6906 if (!(IsUndef1 || IsUndef2))
6914 return std::nullopt;
6922 if (!TLI->isOffsetFoldingLegal(GA))
6927 int64_t
Offset = C2->getSExtValue();
6947 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6954 [](
SDValue V) { return V.isUndef() ||
6955 isNullConstant(V); });
6993 const APInt &Val =
C->getAPIntValue();
6997 C->isTargetOpcode(),
C->isOpaque());
7004 C->isTargetOpcode(),
C->isOpaque());
7009 C->isTargetOpcode(),
C->isOpaque());
7011 C->isTargetOpcode(),
C->isOpaque());
7057 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7059 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7061 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7063 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7124 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7127 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7130 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7133 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7136 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7137 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7154 if (C1->isOpaque() || C2->isOpaque())
7157 std::optional<APInt> FoldAttempt =
7158 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7164 "Can't fold vectors ops with scalar operands");
7172 if (TLI->isCommutativeBinOp(Opcode))
7188 const APInt &Val = C1->getAPIntValue();
7189 return SignExtendInReg(Val, VT);
7202 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7210 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7221 if (C1 && C2 && C3) {
7222 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7224 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7225 &V3 = C3->getAPIntValue();
7241 if (C1 && C2 && C3) {
7262 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7275 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7276 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7280 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7291 BVEltVT = BV1->getOperand(0).getValueType();
7294 BVEltVT = BV2->getOperand(0).getValueType();
7300 DstBits, RawBits, DstUndefs,
7303 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7321 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7322 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7327 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7328 return !
Op.getValueType().isVector() ||
7329 Op.getValueType().getVectorElementCount() == NumElts;
7332 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7358 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7370 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7373 EVT InSVT =
Op.getValueType().getScalarType();
7416 if (LegalSVT != SVT)
7417 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7431 if (
Ops.size() != 2)
7442 if (N1CFP && N2CFP) {
7497 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7520 if (SrcEltVT == DstEltVT)
7528 if (SrcBitSize == DstBitSize) {
7533 if (
Op.getValueType() != SrcEltVT)
7576 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7577 if (UndefElements[
I])
7598 ID.AddInteger(
A.value());
7601 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7605 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7606 createOperands(
N, {Val});
7608 CSEMap.InsertNode(
N, IP);
7620 Flags = Inserter->getFlags();
7621 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7626 if (!TLI->isCommutativeBinOp(Opcode))
7635 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7649 "Operand is DELETED_NODE!");
7665 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7669 if (N1 == N2)
return N1;
7685 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7687 N1.
getValueType() == VT &&
"Binary operator types must match!");
7690 if (N2CV && N2CV->
isZero())
7700 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7702 N1.
getValueType() == VT &&
"Binary operator types must match!");
7712 if (N2CV && N2CV->
isZero())
7726 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7728 N1.
getValueType() == VT &&
"Binary operator types must match!");
7731 if (N2CV && N2CV->
isZero())
7735 const APInt &N2CImm = N2C->getAPIntValue();
7749 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7751 N1.
getValueType() == VT &&
"Binary operator types must match!");
7764 "Types of operands of UCMP/SCMP must match");
7766 "Operands and return type of must both be scalars or vectors");
7770 "Result and operands must have the same number of elements");
7776 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7778 N1.
getValueType() == VT &&
"Binary operator types must match!");
7782 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7784 N1.
getValueType() == VT &&
"Binary operator types must match!");
7790 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7792 N1.
getValueType() == VT &&
"Binary operator types must match!");
7798 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7800 N1.
getValueType() == VT &&
"Binary operator types must match!");
7811 N1.
getValueType() == VT &&
"Binary operator types must match!");
7819 "Invalid FCOPYSIGN!");
7824 const APInt &ShiftImm = N2C->getAPIntValue();
7838 "Shift operators return type must be the same as their first arg");
7840 "Shifts only work on integers");
7842 "Vector shift amounts must be in the same as their first arg");
7849 "Invalid use of small shift amount with oversized value!");
7856 if (N2CV && N2CV->
isZero())
7862 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7868 "AssertNoFPClass is used for a non-floating type");
7873 "FPClassTest value too large");
7882 "Cannot *_EXTEND_INREG FP types");
7884 "AssertSExt/AssertZExt type should be the vector element type "
7885 "rather than the vector type!");
7894 "Cannot *_EXTEND_INREG FP types");
7896 "SIGN_EXTEND_INREG type should be vector iff the operand "
7900 "Vector element counts must match in SIGN_EXTEND_INREG");
7902 if (
EVT == VT)
return N1;
7910 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7914 "Vector element counts must match in FP_TO_*INT_SAT");
7916 "Type to saturate to must be a scalar.");
7923 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7924 element type of the vector.");
7946 N2C->getZExtValue() % Factor);
7955 "BUILD_VECTOR used for scalable vectors");
7978 if (N1Op2C && N2C) {
8008 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
8012 "Wrong types for EXTRACT_ELEMENT!");
8023 unsigned Shift = ElementSize * N2C->getZExtValue();
8024 const APInt &Val = N1C->getAPIntValue();
8031 "Extract subvector VTs must be vectors!");
8033 "Extract subvector VTs must have the same element type!");
8035 "Cannot extract a scalable vector from a fixed length vector!");
8038 "Extract subvector must be from larger vector to smaller vector!");
8039 assert(N2C &&
"Extract subvector index must be a constant");
8043 "Extract subvector overflow!");
8044 assert(N2C->getAPIntValue().getBitWidth() ==
8046 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8048 "Extract index is not a multiple of the output vector length");
8063 return N1.
getOperand(N2C->getZExtValue() / Factor);
8104 if (TLI->isCommutativeBinOp(Opcode)) {
8183 if (VT != MVT::Glue) {
8187 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8188 E->intersectFlagsWith(Flags);
8192 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8194 createOperands(
N,
Ops);
8195 CSEMap.InsertNode(
N, IP);
8197 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8198 createOperands(
N,
Ops);
8211 Flags = Inserter->getFlags();
8212 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8221 "Operand is DELETED_NODE!");
8240 "SETCC operands must have the same type!");
8242 "SETCC type should be vector iff the operand type is vector!");
8245 "SETCC vector element counts must match!");
8268 "INSERT_VECTOR_ELT vector type mismatch");
8270 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8273 "INSERT_VECTOR_ELT fp scalar type mismatch");
8276 "INSERT_VECTOR_ELT int scalar size mismatch");
8322 "Dest and insert subvector source types must match!");
8324 "Insert subvector VTs must be vectors!");
8326 "Insert subvector VTs must have the same element type!");
8328 "Cannot insert a scalable vector into a fixed length vector!");
8331 "Insert subvector must be from smaller vector to larger vector!");
8333 "Insert subvector index must be constant");
8337 "Insert subvector overflow!");
8340 "Constant index for INSERT_SUBVECTOR has an invalid size");
8384 case ISD::VP_TRUNCATE:
8385 case ISD::VP_SIGN_EXTEND:
8386 case ISD::VP_ZERO_EXTEND:
8395 assert(VT == VecVT &&
"Vector and result type don't match.");
8397 "All inputs must be vectors.");
8398 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8400 "Vector and mask must have same number of elements.");
8415 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8416 "node to have the same type!");
8418 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8419 "the same type as its result!");
8422 "Expected the element count of the second and third operands of the "
8423 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8424 "element count of the first operand and the result!");
8426 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8427 "node to have an element type which is the same as or smaller than "
8428 "the element type of the first operand and result!");
8450 if (VT != MVT::Glue) {
8454 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8455 E->intersectFlagsWith(Flags);
8459 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8461 createOperands(
N,
Ops);
8462 CSEMap.InsertNode(
N, IP);
8464 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8465 createOperands(
N,
Ops);
8485 Flags = Inserter->getFlags();
8486 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8501 Flags = Inserter->getFlags();
8502 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8519 if (FI->getIndex() < 0)
8534 assert(
C->getAPIntValue().getBitWidth() == 8);
8539 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8544 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8560 if (VT !=
Value.getValueType())
8573 if (Slice.Array ==
nullptr) {
8582 unsigned NumVTBytes = NumVTBits / 8;
8583 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8585 APInt Val(NumVTBits, 0);
8587 for (
unsigned i = 0; i != NumBytes; ++i)
8590 for (
unsigned i = 0; i != NumBytes; ++i)
8591 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8614 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8629 else if (Src->isAnyAdd() &&
8633 SrcDelta = Src.getConstantOperandVal(1);
8639 SrcDelta +
G->getOffset());
8655 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8656 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8658 for (
unsigned i = From; i < To; ++i) {
8660 GluedLoadChains.
push_back(OutLoadChains[i]);
8667 for (
unsigned i = From; i < To; ++i) {
8670 ST->getBasePtr(), ST->getMemoryVT(),
8671 ST->getMemOperand());
8693 std::vector<EVT> MemOps;
8694 bool DstAlignCanChange =
false;
8700 DstAlignCanChange =
true;
8702 if (!SrcAlign || Alignment > *SrcAlign)
8703 SrcAlign = Alignment;
8704 assert(SrcAlign &&
"SrcAlign must be set");
8708 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8710 const MemOp Op = isZeroConstant
8714 *SrcAlign, isVol, CopyFromConstant);
8720 if (DstAlignCanChange) {
8721 Type *Ty = MemOps[0].getTypeForEVT(
C);
8722 Align NewAlign =
DL.getABITypeAlign(Ty);
8728 if (!
TRI->hasStackRealignment(MF))
8730 NewAlign = std::min(NewAlign, *StackAlign);
8732 if (NewAlign > Alignment) {
8736 Alignment = NewAlign;
8746 BatchAA && SrcVal &&
8754 unsigned NumMemOps = MemOps.size();
8756 for (
unsigned i = 0; i != NumMemOps; ++i) {
8761 if (VTSize >
Size) {
8764 assert(i == NumMemOps-1 && i != 0);
8765 SrcOff -= VTSize -
Size;
8766 DstOff -= VTSize -
Size;
8769 if (CopyFromConstant &&
8777 if (SrcOff < Slice.Length) {
8779 SubSlice.
move(SrcOff);
8782 SubSlice.
Array =
nullptr;
8784 SubSlice.
Length = VTSize;
8787 if (
Value.getNode()) {
8791 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8796 if (!Store.getNode()) {
8805 bool isDereferenceable =
8808 if (isDereferenceable)
8823 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8833 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8835 if (NumLdStInMemcpy) {
8841 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8847 if (NumLdStInMemcpy <= GluedLdStLimit) {
8849 NumLdStInMemcpy, OutLoadChains,
8852 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8853 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8854 unsigned GlueIter = 0;
8856 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8857 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8858 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8861 OutLoadChains, OutStoreChains);
8862 GlueIter += GluedLdStLimit;
8866 if (RemainingLdStInMemcpy) {
8868 RemainingLdStInMemcpy, OutLoadChains,
8880 bool isVol,
bool AlwaysInline,
8894 std::vector<EVT> MemOps;
8895 bool DstAlignCanChange =
false;
8901 DstAlignCanChange =
true;
8903 if (!SrcAlign || Alignment > *SrcAlign)
8904 SrcAlign = Alignment;
8905 assert(SrcAlign &&
"SrcAlign must be set");
8915 if (DstAlignCanChange) {
8916 Type *Ty = MemOps[0].getTypeForEVT(
C);
8917 Align NewAlign =
DL.getABITypeAlign(Ty);
8923 if (!
TRI->hasStackRealignment(MF))
8925 NewAlign = std::min(NewAlign, *StackAlign);
8927 if (NewAlign > Alignment) {
8931 Alignment = NewAlign;
8945 unsigned NumMemOps = MemOps.size();
8946 for (
unsigned i = 0; i < NumMemOps; i++) {
8951 bool isDereferenceable =
8954 if (isDereferenceable)
8960 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8967 for (
unsigned i = 0; i < NumMemOps; i++) {
8973 Chain, dl, LoadValues[i],
8975 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
9015 std::vector<EVT> MemOps;
9016 bool DstAlignCanChange =
false;
9023 DstAlignCanChange =
true;
9029 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9033 if (DstAlignCanChange) {
9036 Align NewAlign =
DL.getABITypeAlign(Ty);
9042 if (!
TRI->hasStackRealignment(MF))
9044 NewAlign = std::min(NewAlign, *StackAlign);
9046 if (NewAlign > Alignment) {
9050 Alignment = NewAlign;
9056 unsigned NumMemOps = MemOps.size();
9059 EVT LargestVT = MemOps[0];
9060 for (
unsigned i = 1; i < NumMemOps; i++)
9061 if (MemOps[i].bitsGT(LargestVT))
9062 LargestVT = MemOps[i];
9069 for (
unsigned i = 0; i < NumMemOps; i++) {
9072 if (VTSize >
Size) {
9075 assert(i == NumMemOps-1 && i != 0);
9076 DstOff -= VTSize -
Size;
9083 if (VT.
bitsLT(LargestVT)) {
9103 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9130 bool AllowReturnsFirstArg) {
9136 AllowReturnsFirstArg &&
9140std::pair<SDValue, SDValue>
9143 RTLIB::LibcallImpl MemcmpImpl = TLI->getLibcallImpl(RTLIB::MEMCMP);
9144 if (MemcmpImpl == RTLIB::Unsupported)
9160 TLI->getLibcallImplCallingConv(MemcmpImpl),
9166 return TLI->LowerCallTo(CLI);
9173 RTLIB::LibcallImpl StrlenImpl = TLI->getLibcallImpl(RTLIB::STRLEN);
9174 if (StrlenImpl == RTLIB::Unsupported)
9193 return TLI->LowerCallTo(CLI);
9198 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9207 if (ConstantSize->
isZero())
9211 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9212 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9213 if (Result.getNode())
9220 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9221 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9222 DstPtrInfo, SrcPtrInfo);
9223 if (Result.getNode())
9230 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9232 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9233 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9248 Args.emplace_back(Dst, PtrTy);
9249 Args.emplace_back(Src, PtrTy);
9253 bool IsTailCall =
false;
9254 RTLIB::LibcallImpl MemCpyImpl = TLI->getMemcpyImpl();
9256 if (OverrideTailCall.has_value()) {
9257 IsTailCall = *OverrideTailCall;
9259 bool LowersToMemcpy = MemCpyImpl == RTLIB::impl_memcpy;
9266 TLI->getLibcallImplCallingConv(MemCpyImpl),
9267 Dst.getValueType().getTypeForEVT(*
getContext()),
9273 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9274 return CallResult.second;
9279 Type *SizeTy,
unsigned ElemSz,
9286 Args.emplace_back(Dst, ArgTy);
9287 Args.emplace_back(Src, ArgTy);
9288 Args.emplace_back(
Size, SizeTy);
9290 RTLIB::Libcall LibraryCall =
9292 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9293 if (LibcallImpl == RTLIB::Unsupported)
9300 TLI->getLibcallImplCallingConv(LibcallImpl),
9307 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9308 return CallResult.second;
9314 std::optional<bool> OverrideTailCall,
9324 if (ConstantSize->
isZero())
9328 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9329 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9330 if (Result.getNode())
9338 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9339 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9340 if (Result.getNode())
9353 Args.emplace_back(Dst, PtrTy);
9354 Args.emplace_back(Src, PtrTy);
9359 RTLIB::LibcallImpl MemmoveImpl = TLI->getLibcallImpl(RTLIB::MEMMOVE);
9361 bool IsTailCall =
false;
9362 if (OverrideTailCall.has_value()) {
9363 IsTailCall = *OverrideTailCall;
9365 bool LowersToMemmove = MemmoveImpl == RTLIB::impl_memmove;
9372 TLI->getLibcallImplCallingConv(MemmoveImpl),
9373 Dst.getValueType().getTypeForEVT(*
getContext()),
9379 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9380 return CallResult.second;
9385 Type *SizeTy,
unsigned ElemSz,
9392 Args.emplace_back(Dst, IntPtrTy);
9393 Args.emplace_back(Src, IntPtrTy);
9394 Args.emplace_back(
Size, SizeTy);
9396 RTLIB::Libcall LibraryCall =
9398 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9399 if (LibcallImpl == RTLIB::Unsupported)
9406 TLI->getLibcallImplCallingConv(LibcallImpl),
9413 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9414 return CallResult.second;
9419 bool isVol,
bool AlwaysInline,
9428 if (ConstantSize->
isZero())
9433 isVol,
false, DstPtrInfo, AAInfo);
9435 if (Result.getNode())
9442 SDValue Result = TSI->EmitTargetCodeForMemset(
9443 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9444 if (Result.getNode())
9451 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9454 isVol,
true, DstPtrInfo, AAInfo);
9456 "getMemsetStores must return a valid sequence when AlwaysInline");
9470 RTLIB::LibcallImpl BzeroImpl = TLI->getLibcallImpl(RTLIB::BZERO);
9471 bool UseBZero = BzeroImpl != RTLIB::Unsupported &&
isNullConstant(Src);
9477 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9482 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9486 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9487 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9488 CLI.
setLibCallee(TLI->getLibcallImplCallingConv(MemsetImpl),
9489 Dst.getValueType().getTypeForEVT(Ctx),
9494 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9495 bool LowersToMemset = MemsetImpl == RTLIB::impl_memset;
9506 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9507 return CallResult.second;
9512 Type *SizeTy,
unsigned ElemSz,
9519 Args.emplace_back(
Size, SizeTy);
9521 RTLIB::Libcall LibraryCall =
9523 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9524 if (LibcallImpl == RTLIB::Unsupported)
9531 TLI->getLibcallImplCallingConv(LibcallImpl),
9538 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9539 return CallResult.second;
9549 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9550 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9555 E->refineAlignment(MMO);
9556 E->refineRanges(MMO);
9561 VTList, MemVT, MMO, ExtType);
9562 createOperands(
N,
Ops);
9564 CSEMap.InsertNode(
N, IP);
9601 "Invalid Atomic Op");
9621 if (
Ops.size() == 1)
9636 if (
Size.hasValue() && !
Size.getValue())
9641 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9653 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9655 "Opcode is not a memory-accessing opcode!");
9659 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9662 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9663 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9668 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9674 VTList, MemVT, MMO);
9675 createOperands(
N,
Ops);
9677 CSEMap.InsertNode(
N, IP);
9680 VTList, MemVT, MMO);
9681 createOperands(
N,
Ops);
9690 SDValue Chain,
int FrameIndex) {
9701 ID.AddInteger(FrameIndex);
9703 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9708 createOperands(
N,
Ops);
9709 CSEMap.InsertNode(
N, IP);
9725 ID.AddInteger(Index);
9727 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9730 auto *
N = newSDNode<PseudoProbeSDNode>(
9732 createOperands(
N,
Ops);
9733 CSEMap.InsertNode(
N, IP);
9787 "Invalid chain type");
9799 Alignment, AAInfo, Ranges);
9800 return getLoad(AM, ExtType, VT, dl, Chain, Ptr,
Offset, MemVT, MMO);
9810 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9814 "Should only be an extending load, not truncating!");
9816 "Cannot convert from FP to Int or Int -> FP!");
9818 "Cannot use an ext load to convert to or from a vector!");
9821 "Cannot use an ext load to change the number of vector elements!");
9828 "Range metadata and load type must match!");
9839 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9840 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9845 E->refineAlignment(MMO);
9846 E->refineRanges(MMO);
9850 ExtType, MemVT, MMO);
9851 createOperands(
N,
Ops);
9853 CSEMap.InsertNode(
N, IP);
9867 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9885 MemVT, Alignment, MMOFlags, AAInfo);
9900 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9903 LD->getMemOperand()->getFlags() &
9906 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9907 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9926 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9927 return getStore(Chain, dl, Val, Ptr, MMO);
9940 bool IsTruncating) {
9944 IsTruncating =
false;
9945 }
else if (!IsTruncating) {
9946 assert(VT == SVT &&
"No-truncating store from different memory type!");
9949 "Should only be a truncating store, not extending!");
9952 "Cannot use trunc store to convert to or from a vector!");
9955 "Cannot use trunc store to change the number of vector elements!");
9966 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9967 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9971 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9976 IsTruncating, SVT, MMO);
9977 createOperands(
N,
Ops);
9979 CSEMap.InsertNode(
N, IP);
9992 "Invalid chain type");
10002 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10017 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
10019 ST->getMemoryVT(), ST->getMemOperand(), AM,
10020 ST->isTruncatingStore());
10028 const MDNode *Ranges,
bool IsExpanding) {
10039 Alignment, AAInfo, Ranges);
10040 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr,
Offset, Mask, EVL, MemVT,
10049 bool IsExpanding) {
10051 assert(Mask.getValueType().getVectorElementCount() ==
10053 "Vector width mismatch between mask and data");
10064 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10065 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10068 void *IP =
nullptr;
10070 E->refineAlignment(MMO);
10071 E->refineRanges(MMO);
10075 ExtType, IsExpanding, MemVT, MMO);
10076 createOperands(
N,
Ops);
10078 CSEMap.InsertNode(
N, IP);
10091 bool IsExpanding) {
10094 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10103 Mask, EVL, VT, MMO, IsExpanding);
10112 const AAMDNodes &AAInfo,
bool IsExpanding) {
10115 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10125 EVL, MemVT, MMO, IsExpanding);
10132 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10135 LD->getMemOperand()->getFlags() &
10138 LD->getChain(),
Base,
Offset, LD->getMask(),
10139 LD->getVectorLength(), LD->getPointerInfo(),
10140 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10141 nullptr, LD->isExpandingLoad());
10148 bool IsCompressing) {
10150 assert(Mask.getValueType().getVectorElementCount() ==
10152 "Vector width mismatch between mask and data");
10162 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10163 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10166 void *IP =
nullptr;
10167 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10172 IsTruncating, IsCompressing, MemVT, MMO);
10173 createOperands(
N,
Ops);
10175 CSEMap.InsertNode(
N, IP);
10188 bool IsCompressing) {
10199 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10208 bool IsCompressing) {
10215 false, IsCompressing);
10218 "Should only be a truncating store, not extending!");
10221 "Cannot use trunc store to convert to or from a vector!");
10224 "Cannot use trunc store to change the number of vector elements!");
10228 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10232 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10236 void *IP =
nullptr;
10237 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10244 createOperands(
N,
Ops);
10246 CSEMap.InsertNode(
N, IP);
10257 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10260 Offset, ST->getMask(), ST->getVectorLength()};
10263 ID.AddInteger(ST->getMemoryVT().getRawBits());
10264 ID.AddInteger(ST->getRawSubclassData());
10265 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10266 ID.AddInteger(ST->getMemOperand()->getFlags());
10267 void *IP =
nullptr;
10268 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10271 auto *
N = newSDNode<VPStoreSDNode>(
10273 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10274 createOperands(
N,
Ops);
10276 CSEMap.InsertNode(
N, IP);
10296 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10297 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10300 void *IP =
nullptr;
10301 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10307 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10308 ExtType, IsExpanding, MemVT, MMO);
10309 createOperands(
N,
Ops);
10310 CSEMap.InsertNode(
N, IP);
10321 bool IsExpanding) {
10324 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10333 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10342 bool IsTruncating,
bool IsCompressing) {
10352 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10353 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10355 void *IP =
nullptr;
10356 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10360 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10361 VTs, AM, IsTruncating,
10362 IsCompressing, MemVT, MMO);
10363 createOperands(
N,
Ops);
10365 CSEMap.InsertNode(
N, IP);
10377 bool IsCompressing) {
10384 false, IsCompressing);
10387 "Should only be a truncating store, not extending!");
10390 "Cannot use trunc store to convert to or from a vector!");
10393 "Cannot use trunc store to change the number of vector elements!");
10397 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10401 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10404 void *IP =
nullptr;
10405 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10409 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10411 IsCompressing, SVT, MMO);
10412 createOperands(
N,
Ops);
10414 CSEMap.InsertNode(
N, IP);
10424 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10429 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10433 void *IP =
nullptr;
10434 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10440 VT, MMO, IndexType);
10441 createOperands(
N,
Ops);
10443 assert(
N->getMask().getValueType().getVectorElementCount() ==
10444 N->getValueType(0).getVectorElementCount() &&
10445 "Vector width mismatch between mask and data");
10446 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10447 N->getValueType(0).getVectorElementCount().isScalable() &&
10448 "Scalable flags of index and data do not match");
10450 N->getIndex().getValueType().getVectorElementCount(),
10451 N->getValueType(0).getVectorElementCount()) &&
10452 "Vector width mismatch between index and data");
10454 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10455 "Scale should be a constant power of 2");
10457 CSEMap.InsertNode(
N, IP);
10468 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10473 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10477 void *IP =
nullptr;
10478 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10483 VT, MMO, IndexType);
10484 createOperands(
N,
Ops);
10486 assert(
N->getMask().getValueType().getVectorElementCount() ==
10487 N->getValue().getValueType().getVectorElementCount() &&
10488 "Vector width mismatch between mask and data");
10490 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10491 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10492 "Scalable flags of index and data do not match");
10494 N->getIndex().getValueType().getVectorElementCount(),
10495 N->getValue().getValueType().getVectorElementCount()) &&
10496 "Vector width mismatch between index and data");
10498 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10499 "Scale should be a constant power of 2");
10501 CSEMap.InsertNode(
N, IP);
10516 "Unindexed masked load with an offset!");
10523 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10524 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10527 void *IP =
nullptr;
10528 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10533 AM, ExtTy, isExpanding, MemVT, MMO);
10534 createOperands(
N,
Ops);
10536 CSEMap.InsertNode(
N, IP);
10547 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10549 Offset, LD->getMask(), LD->getPassThru(),
10550 LD->getMemoryVT(), LD->getMemOperand(), AM,
10551 LD->getExtensionType(), LD->isExpandingLoad());
10559 bool IsCompressing) {
10561 "Invalid chain type");
10564 "Unindexed masked store with an offset!");
10571 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10572 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10575 void *IP =
nullptr;
10576 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10582 IsTruncating, IsCompressing, MemVT, MMO);
10583 createOperands(
N,
Ops);
10585 CSEMap.InsertNode(
N, IP);
10596 assert(ST->getOffset().isUndef() &&
10597 "Masked store is already a indexed store!");
10599 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10600 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10608 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10613 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10614 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10617 void *IP =
nullptr;
10618 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10624 VTs, MemVT, MMO, IndexType, ExtTy);
10625 createOperands(
N,
Ops);
10627 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10628 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10629 assert(
N->getMask().getValueType().getVectorElementCount() ==
10630 N->getValueType(0).getVectorElementCount() &&
10631 "Vector width mismatch between mask and data");
10632 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10633 N->getValueType(0).getVectorElementCount().isScalable() &&
10634 "Scalable flags of index and data do not match");
10636 N->getIndex().getValueType().getVectorElementCount(),
10637 N->getValueType(0).getVectorElementCount()) &&
10638 "Vector width mismatch between index and data");
10640 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10641 "Scale should be a constant power of 2");
10643 CSEMap.InsertNode(
N, IP);
10655 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10660 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10661 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10664 void *IP =
nullptr;
10665 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10671 VTs, MemVT, MMO, IndexType, IsTrunc);
10672 createOperands(
N,
Ops);
10674 assert(
N->getMask().getValueType().getVectorElementCount() ==
10675 N->getValue().getValueType().getVectorElementCount() &&
10676 "Vector width mismatch between mask and data");
10678 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10679 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10680 "Scalable flags of index and data do not match");
10682 N->getIndex().getValueType().getVectorElementCount(),
10683 N->getValue().getValueType().getVectorElementCount()) &&
10684 "Vector width mismatch between index and data");
10686 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10687 "Scale should be a constant power of 2");
10689 CSEMap.InsertNode(
N, IP);
10700 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10705 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10706 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10709 void *IP =
nullptr;
10710 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10716 VTs, MemVT, MMO, IndexType);
10717 createOperands(
N,
Ops);
10719 assert(
N->getMask().getValueType().getVectorElementCount() ==
10720 N->getIndex().getValueType().getVectorElementCount() &&
10721 "Vector width mismatch between mask and data");
10723 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10724 "Scale should be a constant power of 2");
10725 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10727 CSEMap.InsertNode(
N, IP);
10742 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10746 void *IP =
nullptr;
10747 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10751 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10753 createOperands(
N,
Ops);
10755 CSEMap.InsertNode(
N, IP);
10770 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10774 void *IP =
nullptr;
10775 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10780 createOperands(
N,
Ops);
10782 CSEMap.InsertNode(
N, IP);
10797 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10801 void *IP =
nullptr;
10802 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10807 createOperands(
N,
Ops);
10809 CSEMap.InsertNode(
N, IP);
10820 if (
Cond.isUndef())
10855 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10861 if (
X.getValueType().getScalarType() == MVT::i1)
10874 bool HasNan = (XC && XC->
getValueAPF().isNaN()) ||
10876 bool HasInf = (XC && XC->
getValueAPF().isInfinity()) ||
10879 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10882 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10905 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10920 switch (
Ops.size()) {
10921 case 0:
return getNode(Opcode,
DL, VT);
10931 return getNode(Opcode,
DL, VT, NewOps);
10938 Flags = Inserter->getFlags();
10946 case 0:
return getNode(Opcode,
DL, VT);
10947 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10954 for (
const auto &
Op :
Ops)
10956 "Operand is DELETED_NODE!");
10973 "LHS and RHS of condition must have same type!");
10975 "True and False arms of SelectCC must have same type!");
10977 "select_cc node must be of same type as true and false value!");
10981 "Expected select_cc with vector result to have the same sized "
10982 "comparison type!");
10987 "LHS/RHS of comparison should match types!");
10993 Opcode = ISD::VP_XOR;
10998 Opcode = ISD::VP_AND;
11000 case ISD::VP_REDUCE_MUL:
11003 Opcode = ISD::VP_REDUCE_AND;
11005 case ISD::VP_REDUCE_ADD:
11008 Opcode = ISD::VP_REDUCE_XOR;
11010 case ISD::VP_REDUCE_SMAX:
11011 case ISD::VP_REDUCE_UMIN:
11015 Opcode = ISD::VP_REDUCE_AND;
11017 case ISD::VP_REDUCE_SMIN:
11018 case ISD::VP_REDUCE_UMAX:
11022 Opcode = ISD::VP_REDUCE_OR;
11030 if (VT != MVT::Glue) {
11033 void *IP =
nullptr;
11035 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11036 E->intersectFlagsWith(Flags);
11040 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11041 createOperands(
N,
Ops);
11043 CSEMap.InsertNode(
N, IP);
11045 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11046 createOperands(
N,
Ops);
11049 N->setFlags(Flags);
11060 Flags = Inserter->getFlags();
11074 Flags = Inserter->getFlags();
11084 for (
const auto &
Op :
Ops)
11086 "Operand is DELETED_NODE!");
11095 "Invalid add/sub overflow op!");
11097 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11098 Ops[0].getValueType() == VTList.
VTs[0] &&
11099 "Binary operator types must match!");
11106 if (N2CV && N2CV->
isZero()) {
11137 "Invalid add/sub overflow op!");
11139 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11140 Ops[0].getValueType() == VTList.
VTs[0] &&
11141 Ops[2].getValueType() == VTList.
VTs[1] &&
11142 "Binary operator types must match!");
11146 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11148 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11149 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11150 "Binary operator types must match!");
11156 unsigned OutWidth = Width * 2;
11157 APInt Val = LHS->getAPIntValue();
11160 Val = Val.
sext(OutWidth);
11161 Mul =
Mul.sext(OutWidth);
11163 Val = Val.
zext(OutWidth);
11164 Mul =
Mul.zext(OutWidth);
11176 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11178 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11186 DL, VTList.
VTs[1]);
11194 "Invalid STRICT_FP_EXTEND!");
11196 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11198 "STRICT_FP_EXTEND result type should be vector iff the operand "
11199 "type is vector!");
11202 Ops[1].getValueType().getVectorElementCount()) &&
11203 "Vector element count mismatch!");
11205 "Invalid fpext node, dst <= src!");
11208 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11210 "STRICT_FP_ROUND result type should be vector iff the operand "
11211 "type is vector!");
11214 Ops[1].getValueType().getVectorElementCount()) &&
11215 "Vector element count mismatch!");
11217 Ops[1].getValueType().isFloatingPoint() &&
11220 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11221 "Invalid STRICT_FP_ROUND!");
11227 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11230 void *IP =
nullptr;
11231 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11232 E->intersectFlagsWith(Flags);
11236 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11237 createOperands(
N,
Ops);
11238 CSEMap.InsertNode(
N, IP);
11240 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11241 createOperands(
N,
Ops);
11244 N->setFlags(Flags);
11291 return makeVTList(&(*EVTs.insert(VT).first), 1);
11300 void *IP =
nullptr;
11303 EVT *Array = Allocator.Allocate<
EVT>(2);
11306 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11307 VTListMap.InsertNode(Result, IP);
11309 return Result->getSDVTList();
11319 void *IP =
nullptr;
11322 EVT *Array = Allocator.Allocate<
EVT>(3);
11326 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11327 VTListMap.InsertNode(Result, IP);
11329 return Result->getSDVTList();
11340 void *IP =
nullptr;
11343 EVT *Array = Allocator.Allocate<
EVT>(4);
11348 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11349 VTListMap.InsertNode(Result, IP);
11351 return Result->getSDVTList();
11355 unsigned NumVTs = VTs.
size();
11357 ID.AddInteger(NumVTs);
11358 for (
unsigned index = 0; index < NumVTs; index++) {
11359 ID.AddInteger(VTs[index].getRawBits());
11362 void *IP =
nullptr;
11365 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11367 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11368 VTListMap.InsertNode(Result, IP);
11370 return Result->getSDVTList();
11381 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11384 if (
Op ==
N->getOperand(0))
return N;
11387 void *InsertPos =
nullptr;
11388 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11393 if (!RemoveNodeFromCSEMaps(
N))
11394 InsertPos =
nullptr;
11397 N->OperandList[0].set(
Op);
11401 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11406 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11409 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11413 void *InsertPos =
nullptr;
11414 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11419 if (!RemoveNodeFromCSEMaps(
N))
11420 InsertPos =
nullptr;
11423 if (
N->OperandList[0] != Op1)
11424 N->OperandList[0].set(Op1);
11425 if (
N->OperandList[1] != Op2)
11426 N->OperandList[1].set(Op2);
11430 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11450 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11458 "Update with wrong number of operands");
11461 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11465 void *InsertPos =
nullptr;
11466 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11471 if (!RemoveNodeFromCSEMaps(
N))
11472 InsertPos =
nullptr;
11475 for (
unsigned i = 0; i !=
NumOps; ++i)
11476 if (
N->OperandList[i] !=
Ops[i])
11477 N->OperandList[i].set(
Ops[i]);
11481 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11498 if (NewMemRefs.
empty()) {
11504 if (NewMemRefs.
size() == 1) {
11505 N->MemRefs = NewMemRefs[0];
11511 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11513 N->MemRefs = MemRefsBuffer;
11514 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11586 New->setNodeId(-1);
11606 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11607 N->setIROrder(Order);
11630 void *IP =
nullptr;
11631 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11635 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11638 if (!RemoveNodeFromCSEMaps(
N))
11643 N->ValueList = VTs.
VTs;
11653 if (Used->use_empty())
11654 DeadNodeSet.
insert(Used);
11659 MN->clearMemRefs();
11663 createOperands(
N,
Ops);
11667 if (!DeadNodeSet.
empty()) {
11669 for (
SDNode *
N : DeadNodeSet)
11670 if (
N->use_empty())
11676 CSEMap.InsertNode(
N, IP);
11681 unsigned OrigOpc =
Node->getOpcode();
11686#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11687 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11688#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11689 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11690#include "llvm/IR/ConstrainedOps.def"
11693 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11701 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11702 Ops.push_back(
Node->getOperand(i));
11819 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11821 void *IP =
nullptr;
11827 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11833 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11834 createOperands(
N,
Ops);
11837 CSEMap.InsertNode(
N, IP);
11850 VT, Operand, SRIdxVal);
11860 VT, Operand, Subreg, SRIdxVal);
11868 bool AllowCommute) {
11871 Flags = Inserter->getFlags();
11878 bool AllowCommute) {
11879 if (VTList.
VTs[VTList.
NumVTs - 1] == MVT::Glue)
11885 void *IP =
nullptr;
11886 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP)) {
11887 E->intersectFlagsWith(Flags);
11896 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11905 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11908 void *IP =
nullptr;
11909 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11919 SDNode *
N,
unsigned R,
bool IsIndirect,
11922 "Expected inlined-at fields to agree");
11923 return new (DbgInfo->getAlloc())
11925 {}, IsIndirect,
DL, O,
11935 "Expected inlined-at fields to agree");
11936 return new (DbgInfo->getAlloc())
11949 "Expected inlined-at fields to agree");
11961 "Expected inlined-at fields to agree");
11962 return new (DbgInfo->getAlloc())
11964 Dependencies, IsIndirect,
DL, O,
11973 "Expected inlined-at fields to agree");
11974 return new (DbgInfo->getAlloc())
11976 {}, IsIndirect,
DL, O,
11984 unsigned O,
bool IsVariadic) {
11986 "Expected inlined-at fields to agree");
11987 return new (DbgInfo->getAlloc())
11988 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11989 DL, O, IsVariadic);
11993 unsigned OffsetInBits,
unsigned SizeInBits,
11994 bool InvalidateDbg) {
11997 assert(FromNode && ToNode &&
"Can't modify dbg values");
12002 if (From == To || FromNode == ToNode)
12014 if (Dbg->isInvalidated())
12022 auto NewLocOps = Dbg->copyLocationOps();
12024 NewLocOps.begin(), NewLocOps.end(),
12026 bool Match = Op == FromLocOp;
12036 auto *Expr = Dbg->getExpression();
12042 if (
auto FI = Expr->getFragmentInfo())
12043 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12052 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12055 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12056 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12057 Dbg->isVariadic());
12060 if (InvalidateDbg) {
12062 Dbg->setIsInvalidated();
12063 Dbg->setIsEmitted();
12069 "Transferred DbgValues should depend on the new SDNode");
12075 if (!
N.getHasDebugValue())
12078 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12086 if (DV->isInvalidated())
12088 switch (
N.getOpcode()) {
12098 Offset =
N.getConstantOperandVal(1);
12101 if (!RHSConstant && DV->isIndirect())
12108 auto *DIExpr = DV->getExpression();
12109 auto NewLocOps = DV->copyLocationOps();
12111 size_t OrigLocOpsSize = NewLocOps.size();
12112 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12117 NewLocOps[i].getSDNode() != &
N)
12128 const auto *TmpDIExpr =
12136 NewLocOps.push_back(RHS);
12145 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12147 auto AdditionalDependencies = DV->getAdditionalDependencies();
12149 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12150 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12152 DV->setIsInvalidated();
12153 DV->setIsEmitted();
12155 N0.
getNode()->dumprFull(
this);
12156 dbgs() <<
" into " << *DIExpr <<
'\n');
12163 TypeSize ToSize =
N.getValueSizeInBits(0);
12167 auto NewLocOps = DV->copyLocationOps();
12169 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12171 NewLocOps[i].getSDNode() != &
N)
12183 DV->getAdditionalDependencies(), DV->isIndirect(),
12184 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12187 DV->setIsInvalidated();
12188 DV->setIsEmitted();
12190 dbgs() <<
" into " << *DbgExpression <<
'\n');
12197 assert((!Dbg->getSDNodes().empty() ||
12200 return Op.getKind() == SDDbgOperand::FRAMEIX;
12202 "Salvaged DbgValue should depend on a new SDNode");
12211 "Expected inlined-at fields to agree");
12212 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12227 while (UI != UE &&
N == UI->
getUser())
12235 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12248 "Cannot replace with this method!");
12249 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12264 RAUWUpdateListener Listener(*
this, UI, UE);
12269 RemoveNodeFromCSEMaps(
User);
12284 AddModifiedNodeToCSEMaps(
User);
12300 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12303 "Cannot use this version of ReplaceAllUsesWith!");
12311 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12313 assert((i < To->getNumValues()) &&
"Invalid To location");
12322 RAUWUpdateListener Listener(*
this, UI, UE);
12327 RemoveNodeFromCSEMaps(
User);
12343 AddModifiedNodeToCSEMaps(
User);
12360 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12370 RAUWUpdateListener Listener(*
this, UI, UE);
12375 RemoveNodeFromCSEMaps(
User);
12381 bool To_IsDivergent =
false;
12396 AddModifiedNodeToCSEMaps(
User);
12409 if (From == To)
return;
12425 RAUWUpdateListener Listener(*
this, UI, UE);
12428 bool UserRemovedFromCSEMaps =
false;
12445 if (!UserRemovedFromCSEMaps) {
12446 RemoveNodeFromCSEMaps(
User);
12447 UserRemovedFromCSEMaps =
true;
12457 if (!UserRemovedFromCSEMaps)
12462 AddModifiedNodeToCSEMaps(
User);
12481bool operator<(
const UseMemo &L,
const UseMemo &R) {
12482 return (intptr_t)L.User < (intptr_t)R.User;
12489 SmallVectorImpl<UseMemo> &
Uses;
12491 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12492 for (UseMemo &Memo :
Uses)
12493 if (Memo.User ==
N)
12494 Memo.User =
nullptr;
12498 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12499 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12506 switch (
Node->getOpcode()) {
12518 if (TLI->isSDNodeAlwaysUniform(
N)) {
12519 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12520 "Conflicting divergence information!");
12523 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12525 for (
const auto &
Op :
N->ops()) {
12526 EVT VT =
Op.getValueType();
12529 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12541 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12542 N->SDNodeBits.IsDivergent = IsDivergent;
12545 }
while (!Worklist.
empty());
12548void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12550 Order.reserve(AllNodes.size());
12552 unsigned NOps =
N.getNumOperands();
12555 Order.push_back(&
N);
12557 for (
size_t I = 0;
I != Order.size(); ++
I) {
12559 for (
auto *U :
N->users()) {
12560 unsigned &UnsortedOps = Degree[U];
12561 if (0 == --UnsortedOps)
12562 Order.push_back(U);
12567#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12568void SelectionDAG::VerifyDAGDivergence() {
12569 std::vector<SDNode *> TopoOrder;
12570 CreateTopologicalOrder(TopoOrder);
12571 for (
auto *
N : TopoOrder) {
12573 "Divergence bit inconsistency detected");
12596 for (
unsigned i = 0; i != Num; ++i) {
12597 unsigned FromResNo = From[i].
getResNo();
12600 if (
Use.getResNo() == FromResNo) {
12602 Uses.push_back(Memo);
12609 RAUOVWUpdateListener Listener(*
this,
Uses);
12611 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12612 UseIndex != UseIndexEnd; ) {
12618 if (
User ==
nullptr) {
12624 RemoveNodeFromCSEMaps(
User);
12631 unsigned i =
Uses[UseIndex].Index;
12636 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12640 AddModifiedNodeToCSEMaps(
User);
12648 unsigned DAGSize = 0;
12664 unsigned Degree =
N.getNumOperands();
12667 N.setNodeId(DAGSize++);
12669 if (Q != SortedPos)
12670 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12671 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12675 N.setNodeId(Degree);
12687 unsigned Degree =
P->getNodeId();
12688 assert(Degree != 0 &&
"Invalid node degree");
12692 P->setNodeId(DAGSize++);
12693 if (
P->getIterator() != SortedPos)
12694 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12695 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12699 P->setNodeId(Degree);
12702 if (
Node.getIterator() == SortedPos) {
12706 dbgs() <<
"Overran sorted position:\n";
12708 dbgs() <<
"Checking if this is due to cycles\n";
12715 assert(SortedPos == AllNodes.end() &&
12716 "Topological sort incomplete!");
12718 "First node in topological sort is not the entry token!");
12719 assert(AllNodes.front().getNodeId() == 0 &&
12720 "First node in topological sort has non-zero id!");
12721 assert(AllNodes.front().getNumOperands() == 0 &&
12722 "First node in topological sort has operands!");
12723 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12724 "Last node in topologic sort has unexpected id!");
12725 assert(AllNodes.back().use_empty() &&
12726 "Last node in topologic sort has users!");
12733 SortedNodes.
clear();
12740 unsigned NumOperands =
N.getNumOperands();
12741 if (NumOperands == 0)
12745 RemainingOperands[&
N] = NumOperands;
12750 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12751 const SDNode *
N = SortedNodes[i];
12752 for (
const SDNode *U :
N->users()) {
12757 unsigned &NumRemOperands = RemainingOperands[U];
12758 assert(NumRemOperands &&
"Invalid number of remaining operands");
12760 if (!NumRemOperands)
12765 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12767 "First node in topological sort is not the entry token");
12768 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12769 "First node in topological sort has operands");
12775 for (
SDNode *SD : DB->getSDNodes()) {
12778 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12779 SD->setHasDebugValue(
true);
12781 DbgInfo->add(DB, isParameter);
12794 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12795 return NewMemOpChain;
12798 OldChain, NewMemOpChain);
12801 return TokenFactor;
12820 if (OutFunction !=
nullptr)
12828 std::string ErrorStr;
12830 ErrorFormatter <<
"Undefined external symbol ";
12831 ErrorFormatter <<
'"' << Symbol <<
'"';
12841 return Const !=
nullptr && Const->isZero();
12850 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12855 return Const !=
nullptr && Const->isAllOnes();
12860 return Const !=
nullptr && Const->isOne();
12865 return Const !=
nullptr && Const->isMinSignedValue();
12869 unsigned OperandNo) {
12874 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12880 return Const.isZero();
12882 return Const.isOne();
12885 return Const.isAllOnes();
12887 return Const.isMinSignedValue();
12889 return Const.isMaxSignedValue();
12894 return OperandNo == 1 && Const.isZero();
12897 return OperandNo == 1 && Const.isOne();
12902 return ConstFP->isZero() &&
12903 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12905 return OperandNo == 1 && ConstFP->isZero() &&
12906 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12908 return ConstFP->isExactlyValue(1.0);
12910 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12914 EVT VT = V.getValueType();
12916 APFloat NeutralAF = !Flags.hasNoNaNs()
12918 : !Flags.hasNoInfs()
12924 return ConstFP->isExactlyValue(NeutralAF);
12938 while (V.getOpcode() ==
ISD::BITCAST && V.getOperand(0).hasOneUse())
12957 !DemandedElts[IndexC->getZExtValue()]) {
12976 unsigned NumBits = V.getScalarValueSizeInBits();
12979 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12983 bool AllowTruncation) {
12984 EVT VT =
N.getValueType();
12993 bool AllowTruncation) {
13000 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
13002 EVT CVT = CN->getValueType(0);
13003 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
13004 if (AllowTruncation || CVT == VecEltVT)
13011 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
13016 if (CN && (UndefElements.
none() || AllowUndefs)) {
13018 EVT NSVT =
N.getValueType().getScalarType();
13019 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
13020 if (AllowTruncation || (CVT == NSVT))
13029 EVT VT =
N.getValueType();
13037 const APInt &DemandedElts,
13038 bool AllowUndefs) {
13045 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13047 if (CN && (UndefElements.
none() || AllowUndefs))
13062 return C &&
C->isZero();
13068 return C &&
C->isOne();
13073 return C &&
C->isExactlyValue(1.0);
13078 unsigned BitWidth =
N.getScalarValueSizeInBits();
13080 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13086 APInt(
C->getAPIntValue().getBitWidth(), 1));
13092 return C &&
C->isZero();
13097 return C &&
C->isZero();
13106 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13116 (!
MMO->getType().isValid() ||
13130 std::vector<EVT> VTs;
13143const EVT *SDNode::getValueTypeList(
MVT VT) {
13144 static EVTArray SimpleVTArray;
13147 return &SimpleVTArray.VTs[VT.
SimpleTy];
13156 if (U.getResNo() ==
Value)
13194 return any_of(
N->op_values(),
13195 [
this](
SDValue Op) { return this == Op.getNode(); });
13209 unsigned Depth)
const {
13210 if (*
this == Dest)
return true;
13214 if (
Depth == 0)
return false;
13234 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13240 if (Ld->isUnordered())
13241 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13254 this->Flags &= Flags;
13260 bool AllowPartials) {
13275 unsigned CandidateBinOp =
Op.getOpcode();
13276 if (
Op.getValueType().isFloatingPoint()) {
13278 switch (CandidateBinOp) {
13280 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13290 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13291 if (!AllowPartials || !
Op)
13293 EVT OpVT =
Op.getValueType();
13296 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13315 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13317 for (
unsigned i = 0; i < Stages; ++i) {
13318 unsigned MaskEnd = (1 << i);
13320 if (
Op.getOpcode() != CandidateBinOp)
13321 return PartialReduction(PrevOp, MaskEnd);
13337 return PartialReduction(PrevOp, MaskEnd);
13340 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13341 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13342 return PartialReduction(PrevOp, MaskEnd);
13349 while (
Op.getOpcode() == CandidateBinOp) {
13350 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13359 if (NumSrcElts != (2 * NumElts))
13374 EVT VT =
N->getValueType(0);
13383 else if (NE > ResNE)
13386 if (
N->getNumValues() == 2) {
13389 EVT VT1 =
N->getValueType(1);
13393 for (i = 0; i != NE; ++i) {
13394 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13395 SDValue Operand =
N->getOperand(j);
13403 SDValue EltOp =
getNode(
N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13408 for (; i < ResNE; ++i) {
13420 assert(
N->getNumValues() == 1 &&
13421 "Can't unroll a vector with multiple results!");
13427 for (i= 0; i != NE; ++i) {
13428 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13429 SDValue Operand =
N->getOperand(j);
13437 Operands[j] = Operand;
13441 switch (
N->getOpcode()) {
13469 ASC->getSrcAddressSpace(),
13470 ASC->getDestAddressSpace()));
13476 for (; i < ResNE; ++i)
13485 unsigned Opcode =
N->getOpcode();
13489 "Expected an overflow opcode");
13491 EVT ResVT =
N->getValueType(0);
13492 EVT OvVT =
N->getValueType(1);
13501 else if (NE > ResNE)
13513 for (
unsigned i = 0; i < NE; ++i) {
13514 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13537 if (LD->isVolatile() ||
Base->isVolatile())
13540 if (!LD->isSimple())
13542 if (LD->isIndexed() ||
Base->isIndexed())
13544 if (LD->getChain() !=
Base->getChain())
13546 EVT VT = LD->getMemoryVT();
13554 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13555 return (Dist * (int64_t)Bytes ==
Offset);
13564 int64_t GVOffset = 0;
13565 if (TLI->isGAPlusOffset(Ptr.
getNode(), GV, GVOffset)) {
13576 int FrameIdx = INT_MIN;
13577 int64_t FrameOffset = 0;
13579 FrameIdx = FI->getIndex();
13587 if (FrameIdx != INT_MIN) {
13592 return std::nullopt;
13602 "Split node must be a scalar type");
13607 return std::make_pair(
Lo,
Hi);
13616 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13620 return std::make_pair(LoVT, HiVT);
13628 bool *HiIsEmpty)
const {
13638 "Mixing fixed width and scalable vectors when enveloping a type");
13643 *HiIsEmpty =
false;
13651 return std::make_pair(LoVT, HiVT);
13656std::pair<SDValue, SDValue>
13661 "Splitting vector with an invalid mixture of fixed and scalable "
13664 N.getValueType().getVectorMinNumElements() &&
13665 "More vector elements requested than available!");
13674 return std::make_pair(
Lo,
Hi);
13681 EVT VT =
N.getValueType();
13683 "Expecting the mask to be an evenly-sized vector");
13688 return std::make_pair(
Lo,
Hi);
13693 EVT VT =
N.getValueType();
13701 unsigned Start,
unsigned Count,
13703 EVT VT =
Op.getValueType();
13706 if (EltVT ==
EVT())
13709 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13721 return Val.MachineCPVal->getType();
13722 return Val.ConstVal->getType();
13726 unsigned &SplatBitSize,
13727 bool &HasAnyUndefs,
13728 unsigned MinSplatBits,
13729 bool IsBigEndian)
const {
13733 if (MinSplatBits > VecWidth)
13738 SplatValue =
APInt(VecWidth, 0);
13739 SplatUndef =
APInt(VecWidth, 0);
13746 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13749 for (
unsigned j = 0; j <
NumOps; ++j) {
13750 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13752 unsigned BitPos = j * EltWidth;
13755 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13757 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13759 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13766 HasAnyUndefs = (SplatUndef != 0);
13769 while (VecWidth > 8) {
13774 unsigned HalfSize = VecWidth / 2;
13781 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13782 MinSplatBits > HalfSize)
13785 SplatValue = HighValue | LowValue;
13786 SplatUndef = HighUndef & LowUndef;
13788 VecWidth = HalfSize;
13797 SplatBitSize = VecWidth;
13804 if (UndefElements) {
13805 UndefElements->
clear();
13812 for (
unsigned i = 0; i !=
NumOps; ++i) {
13813 if (!DemandedElts[i])
13816 if (
Op.isUndef()) {
13818 (*UndefElements)[i] =
true;
13819 }
else if (!Splatted) {
13821 }
else if (Splatted !=
Op) {
13827 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13829 "Can only have a splat without a constant for all undefs.");
13846 if (UndefElements) {
13847 UndefElements->
clear();
13858 (*UndefElements)[
I] =
true;
13861 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13862 Sequence.append(SeqLen,
SDValue());
13863 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13864 if (!DemandedElts[
I])
13866 SDValue &SeqOp = Sequence[
I % SeqLen];
13868 if (
Op.isUndef()) {
13873 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13879 if (!Sequence.empty())
13883 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13924 const APFloat &APF = CN->getValueAPF();
13930 return IntVal.exactLogBase2();
13936 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13944 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13945 "Invalid bitcast scale");
13950 BitVector SrcUndeElements(NumSrcOps,
false);
13952 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13954 if (
Op.isUndef()) {
13955 SrcUndeElements.
set(
I);
13960 assert((CInt || CFP) &&
"Unknown constant");
13961 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13962 : CFP->getValueAPF().bitcastToAPInt();
13966 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13967 SrcBitElements, UndefElements, SrcUndeElements);
13972 unsigned DstEltSizeInBits,
13977 unsigned NumSrcOps = SrcBitElements.
size();
13978 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13979 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13980 "Invalid bitcast scale");
13981 assert(NumSrcOps == SrcUndefElements.
size() &&
13982 "Vector size mismatch");
13984 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13985 DstUndefElements.
clear();
13986 DstUndefElements.
resize(NumDstOps,
false);
13990 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13991 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13992 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13993 DstUndefElements.
set(
I);
13994 APInt &DstBits = DstBitElements[
I];
13995 for (
unsigned J = 0; J != Scale; ++J) {
13996 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13997 if (SrcUndefElements[Idx])
13999 DstUndefElements.
reset(
I);
14000 const APInt &SrcBits = SrcBitElements[Idx];
14002 "Illegal constant bitwidths");
14003 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
14010 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
14011 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
14012 if (SrcUndefElements[
I]) {
14013 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
14016 const APInt &SrcBits = SrcBitElements[
I];
14017 for (
unsigned J = 0; J != Scale; ++J) {
14018 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
14019 APInt &DstBits = DstBitElements[Idx];
14020 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
14027 unsigned Opc =
Op.getOpcode();
14034std::optional<std::pair<APInt, APInt>>
14038 return std::nullopt;
14042 return std::nullopt;
14049 return std::nullopt;
14051 for (
unsigned i = 2; i <
NumOps; ++i) {
14053 return std::nullopt;
14056 if (Val != (Start + (Stride * i)))
14057 return std::nullopt;
14060 return std::make_pair(Start, Stride);
14066 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14076 for (
int Idx = Mask[i]; i != e; ++i)
14077 if (Mask[i] >= 0 && Mask[i] != Idx)
14085 SDValue N,
bool AllowOpaques)
const {
14089 return AllowOpaques || !
C->isOpaque();
14098 TLI->isOffsetFoldingLegal(GA))
14126 return std::nullopt;
14128 EVT VT =
N->getValueType(0);
14130 switch (TLI->getBooleanContents(
N.getValueType())) {
14136 return std::nullopt;
14142 return std::nullopt;
14150 assert(!
Node->OperandList &&
"Node already has operands");
14152 "too many operands to fit into SDNode");
14153 SDUse *
Ops = OperandRecycler.allocate(
14156 bool IsDivergent =
false;
14157 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14159 Ops[
I].setInitial(Vals[
I]);
14160 EVT VT =
Ops[
I].getValueType();
14163 if (VT != MVT::Other &&
14166 IsDivergent =
true;
14171 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14172 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14173 Node->SDNodeBits.IsDivergent = IsDivergent;
14181 while (Vals.
size() > Limit) {
14182 unsigned SliceIdx = Vals.
size() - Limit;
14258 const SDLoc &DLoc) {
14262 RTLIB::LibcallImpl LibcallImpl =
14263 TLI->getLibcallImpl(
static_cast<RTLIB::Libcall
>(LibFunc));
14264 if (LibcallImpl == RTLIB::Unsupported)
14271 TLI->getLibcallImplCallingConv(LibcallImpl),
14273 return TLI->LowerCallTo(CLI).second;
14277 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14278 auto I = SDEI.find(From);
14279 if (
I == SDEI.end())
14284 NodeExtraInfo NEI =
I->second;
14293 SDEI[To] = std::move(NEI);
14310 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14311 if (MaxDepth == 0) {
14317 if (!FromReach.
insert(
N).second)
14320 Self(Self,
Op.getNode(), MaxDepth - 1);
14325 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14328 if (!Visited.
insert(
N).second)
14333 if (
N == To &&
Op.getNode() == EntrySDN) {
14338 if (!Self(Self,
Op.getNode()))
14352 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14353 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14358 for (
const SDNode *
N : StartFrom)
14359 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14363 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14371 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14372 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14374 SDEI[To] = std::move(NEI);
14388 if (!Visited.
insert(
N).second) {
14389 errs() <<
"Detected cycle in SelectionDAG\n";
14390 dbgs() <<
"Offending node:\n";
14391 N->dumprFull(DAG);
dbgs() <<
"\n";
14407 bool check = force;
14408#ifdef EXPENSIVE_CHECKS
14412 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getFixedOrScalableQuantity(SelectionDAG &DAG, const SDLoc &DL, EVT VT, Ty Quantity)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardZero
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
MachineConstantPoolValue * getMachineCPVal() const
bool isMachineConstantPoolEntry() const
const Constant * getConstVal() const
LLVM_ABI Type * getType() const
unsigned getTargetFlags() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
virtual void addSelectionDAGCSEId(FoldingSetNodeID &ID)=0
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC)
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI bool canIgnoreSignBitOfZero(const SDUse &Use) const
Check if a use of a float value is insensitive to signed zeros.
LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero, for a floating-point value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getMaskFromElementCount(const SDLoc &DL, EVT VT, ElementCount Len)
Return a vector with the first 'Len' lanes set to true and remaining lanes set to false.
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getDeactivationSymbol(const GlobalValue *GV)
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt clmulr(const APInt &LHS, const APInt &RHS)
Perform a reversed carry-less multiply.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
LLVM_ABI APInt clmul(const APInt &LHS, const APInt &RHS)
Perform a carry-less multiply, also known as XOR multiplication, and return low-bits.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
LLVM_ABI APInt clmulh(const APInt &LHS, const APInt &RHS)
Perform a carry-less multiply, and return high-bits.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ MDNODE_SDNODE
MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to reference metadata in the IR.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ PTRADD
PTRADD represents pointer arithmetic semantics, for targets that opt in using shouldPreservePtrArith(...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ MLOAD
Masked load and store - consecutive vector load and store operations with additional mask operand tha...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ JUMP_TABLE_DEBUG_INFO
JUMP_TABLE_DEBUG_INFO - Jumptable debug info.
@ BSWAP
Byte Swap and Counting operators.
@ DEACTIVATION_SYMBOL
Untyped node storing deactivation symbol reference (DeactivationSymbolSDNode).
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ CLMUL
Carry-less multiplication operations.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SRCVALUE
SRCVALUE - This is a node type that holds a Value* that is used to make reference to a value in the L...
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ CTLS
Count leading redundant sign bits.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ LIFETIME_START
This corresponds to the llvm.lifetime.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ MGATHER
Masked gather and scatter - load and store operations for a vector of random addresses with additiona...
@ HANDLENODE
HANDLENODE node - Used as a handle for various purposes.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ PSEUDO_PROBE
Pseudo probe for AutoFDO, as a place holder in a basic block to improve the sample counts quality.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ EXPERIMENTAL_VECTOR_HISTOGRAM
Experimental vector histogram intrinsic Operands: Input Chain, Inc, Mask, Base, Index,...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant (+/-)0.0 floating-point value or a splatted vector thereof (wi...
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)