LLVM 22.0.0git
TargetLowering.cpp
Go to the documentation of this file.
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/STLExtras.h"
27#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/MC/MCExpr.h"
38#include <cctype>
39#include <deque>
40using namespace llvm;
41using namespace llvm::SDPatternMatch;
42
43/// NOTE: The TargetMachine owns TLOF.
47
48// Define the virtual destructor out-of-line for build efficiency.
50
51const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
52 return nullptr;
53}
54
58
59/// Check whether a given call node is in tail position within its function. If
60/// so, it sets Chain to the input chain of the tail call.
62 SDValue &Chain) const {
64
65 // First, check if tail calls have been disabled in this function.
66 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
67 return false;
68
69 // Conservatively require the attributes of the call to match those of
70 // the return. Ignore following attributes because they don't affect the
71 // call sequence.
72 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
73 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
74 Attribute::DereferenceableOrNull, Attribute::NoAlias,
75 Attribute::NonNull, Attribute::NoUndef,
76 Attribute::Range, Attribute::NoFPClass})
77 CallerAttrs.removeAttribute(Attr);
78
79 if (CallerAttrs.hasAttributes())
80 return false;
81
82 // It's not safe to eliminate the sign / zero extension of the return value.
83 if (CallerAttrs.contains(Attribute::ZExt) ||
84 CallerAttrs.contains(Attribute::SExt))
85 return false;
86
87 // Check if the only use is a function return node.
88 return isUsedByReturnOnly(Node, Chain);
89}
90
92 const uint32_t *CallerPreservedMask,
93 const SmallVectorImpl<CCValAssign> &ArgLocs,
94 const SmallVectorImpl<SDValue> &OutVals) const {
95 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
96 const CCValAssign &ArgLoc = ArgLocs[I];
97 if (!ArgLoc.isRegLoc())
98 continue;
99 MCRegister Reg = ArgLoc.getLocReg();
100 // Only look at callee saved registers.
101 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
102 continue;
103 // Check that we pass the value used for the caller.
104 // (We look for a CopyFromReg reading a virtual register that is used
105 // for the function live-in value of register Reg)
106 SDValue Value = OutVals[I];
107 if (Value->getOpcode() == ISD::AssertZext)
108 Value = Value.getOperand(0);
109 if (Value->getOpcode() != ISD::CopyFromReg)
110 return false;
111 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
112 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
113 return false;
114 }
115 return true;
116}
117
118/// Set CallLoweringInfo attribute flags based on a call instruction
119/// and called function attributes.
121 unsigned ArgIdx) {
122 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
123 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
124 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
125 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
126 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
127 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
128 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
129 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
130 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
131 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
132 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
133 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
134 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
135 Alignment = Call->getParamStackAlign(ArgIdx);
136 IndirectType = nullptr;
138 "multiple ABI attributes?");
139 if (IsByVal) {
140 IndirectType = Call->getParamByValType(ArgIdx);
141 if (!Alignment)
142 Alignment = Call->getParamAlign(ArgIdx);
143 }
144 if (IsPreallocated)
145 IndirectType = Call->getParamPreallocatedType(ArgIdx);
146 if (IsInAlloca)
147 IndirectType = Call->getParamInAllocaType(ArgIdx);
148 if (IsSRet)
149 IndirectType = Call->getParamStructRetType(ArgIdx);
150}
151
152/// Generate a libcall taking the given operands as arguments and returning a
153/// result of type RetVT.
154std::pair<SDValue, SDValue>
155TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl,
157 MakeLibCallOptions CallOptions, const SDLoc &dl,
158 SDValue InChain) const {
159 if (LibcallImpl == RTLIB::Unsupported)
160 reportFatalInternalError("unsupported library call operation");
161
162 if (!InChain)
163 InChain = DAG.getEntryNode();
164
166 Args.reserve(Ops.size());
167
168 ArrayRef<Type *> OpsTypeOverrides = CallOptions.OpsTypeOverrides;
169 for (unsigned i = 0; i < Ops.size(); ++i) {
170 SDValue NewOp = Ops[i];
171 Type *Ty = i < OpsTypeOverrides.size() && OpsTypeOverrides[i]
172 ? OpsTypeOverrides[i]
173 : NewOp.getValueType().getTypeForEVT(*DAG.getContext());
174 TargetLowering::ArgListEntry Entry(NewOp, Ty);
175 if (CallOptions.IsSoften)
176 Entry.OrigTy =
177 CallOptions.OpsVTBeforeSoften[i].getTypeForEVT(*DAG.getContext());
178
179 Entry.IsSExt =
180 shouldSignExtendTypeInLibCall(Entry.Ty, CallOptions.IsSigned);
181 Entry.IsZExt = !Entry.IsSExt;
182
183 if (CallOptions.IsSoften &&
185 Entry.IsSExt = Entry.IsZExt = false;
186 }
187 Args.push_back(Entry);
188 }
189
190 SDValue Callee =
191 DAG.getExternalSymbol(LibcallImpl, getPointerTy(DAG.getDataLayout()));
192
193 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
194 Type *OrigRetTy = RetTy;
196 bool signExtend = shouldSignExtendTypeInLibCall(RetTy, CallOptions.IsSigned);
197 bool zeroExtend = !signExtend;
198
199 if (CallOptions.IsSoften) {
200 OrigRetTy = CallOptions.RetVTBeforeSoften.getTypeForEVT(*DAG.getContext());
202 signExtend = zeroExtend = false;
203 }
204
205 CLI.setDebugLoc(dl)
206 .setChain(InChain)
207 .setLibCallee(getLibcallImplCallingConv(LibcallImpl), RetTy, OrigRetTy,
208 Callee, std::move(Args))
209 .setNoReturn(CallOptions.DoesNotReturn)
212 .setSExtResult(signExtend)
213 .setZExtResult(zeroExtend);
214 return LowerCallTo(CLI);
215}
216
218 LLVMContext &Context, std::vector<EVT> &MemOps, unsigned Limit,
219 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
220 const AttributeList &FuncAttributes) const {
221 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
222 Op.getSrcAlign() < Op.getDstAlign())
223 return false;
224
225 EVT VT = getOptimalMemOpType(Context, Op, FuncAttributes);
226
227 if (VT == MVT::Other) {
228 // Use the largest integer type whose alignment constraints are satisfied.
229 // We only need to check DstAlign here as SrcAlign is always greater or
230 // equal to DstAlign (or zero).
231 VT = MVT::LAST_INTEGER_VALUETYPE;
232 if (Op.isFixedDstAlign())
233 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
234 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
236 assert(VT.isInteger());
237
238 // Find the largest legal integer type.
239 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
240 while (!isTypeLegal(LVT))
241 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
242 assert(LVT.isInteger());
243
244 // If the type we've chosen is larger than the largest legal integer type
245 // then use that instead.
246 if (VT.bitsGT(LVT))
247 VT = LVT;
248 }
249
250 unsigned NumMemOps = 0;
251 uint64_t Size = Op.size();
252 while (Size) {
253 unsigned VTSize = VT.getSizeInBits() / 8;
254 while (VTSize > Size) {
255 // For now, only use non-vector load / store's for the left-over pieces.
256 EVT NewVT = VT;
257 unsigned NewVTSize;
258
259 bool Found = false;
260 if (VT.isVector() || VT.isFloatingPoint()) {
261 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
264 Found = true;
265 else if (NewVT == MVT::i64 &&
267 isSafeMemOpType(MVT::f64)) {
268 // i64 is usually not legal on 32-bit targets, but f64 may be.
269 NewVT = MVT::f64;
270 Found = true;
271 }
272 }
273
274 if (!Found) {
275 do {
276 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
277 if (NewVT == MVT::i8)
278 break;
279 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
280 }
281 NewVTSize = NewVT.getSizeInBits() / 8;
282
283 // If the new VT cannot cover all of the remaining bits, then consider
284 // issuing a (or a pair of) unaligned and overlapping load / store.
285 unsigned Fast;
286 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
288 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
290 Fast)
291 VTSize = Size;
292 else {
293 VT = NewVT;
294 VTSize = NewVTSize;
295 }
296 }
297
298 if (++NumMemOps > Limit)
299 return false;
300
301 MemOps.push_back(VT);
302 Size -= VTSize;
303 }
304
305 return true;
306}
307
308/// Soften the operands of a comparison. This code is shared among BR_CC,
309/// SELECT_CC, and SETCC handlers.
311 SDValue &NewLHS, SDValue &NewRHS,
312 ISD::CondCode &CCCode,
313 const SDLoc &dl, const SDValue OldLHS,
314 const SDValue OldRHS) const {
315 SDValue Chain;
316 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
317 OldRHS, Chain);
318}
319
321 SDValue &NewLHS, SDValue &NewRHS,
322 ISD::CondCode &CCCode,
323 const SDLoc &dl, const SDValue OldLHS,
324 const SDValue OldRHS,
325 SDValue &Chain,
326 bool IsSignaling) const {
327 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
328 // not supporting it. We can update this code when libgcc provides such
329 // functions.
330
331 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
332 && "Unsupported setcc type!");
333
334 // Expand into one or more soft-fp libcall(s).
335 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
336 bool ShouldInvertCC = false;
337 switch (CCCode) {
338 case ISD::SETEQ:
339 case ISD::SETOEQ:
340 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
341 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
342 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
343 break;
344 case ISD::SETNE:
345 case ISD::SETUNE:
346 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
347 (VT == MVT::f64) ? RTLIB::UNE_F64 :
348 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
349 break;
350 case ISD::SETGE:
351 case ISD::SETOGE:
352 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
353 (VT == MVT::f64) ? RTLIB::OGE_F64 :
354 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
355 break;
356 case ISD::SETLT:
357 case ISD::SETOLT:
358 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
359 (VT == MVT::f64) ? RTLIB::OLT_F64 :
360 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
361 break;
362 case ISD::SETLE:
363 case ISD::SETOLE:
364 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
365 (VT == MVT::f64) ? RTLIB::OLE_F64 :
366 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
367 break;
368 case ISD::SETGT:
369 case ISD::SETOGT:
370 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
371 (VT == MVT::f64) ? RTLIB::OGT_F64 :
372 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
373 break;
374 case ISD::SETO:
375 ShouldInvertCC = true;
376 [[fallthrough]];
377 case ISD::SETUO:
378 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
379 (VT == MVT::f64) ? RTLIB::UO_F64 :
380 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
381 break;
382 case ISD::SETONE:
383 // SETONE = O && UNE
384 ShouldInvertCC = true;
385 [[fallthrough]];
386 case ISD::SETUEQ:
387 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
388 (VT == MVT::f64) ? RTLIB::UO_F64 :
389 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
390 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
391 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
392 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
393 break;
394 default:
395 // Invert CC for unordered comparisons
396 ShouldInvertCC = true;
397 switch (CCCode) {
398 case ISD::SETULT:
399 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
400 (VT == MVT::f64) ? RTLIB::OGE_F64 :
401 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
402 break;
403 case ISD::SETULE:
404 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
405 (VT == MVT::f64) ? RTLIB::OGT_F64 :
406 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
407 break;
408 case ISD::SETUGT:
409 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
410 (VT == MVT::f64) ? RTLIB::OLE_F64 :
411 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
412 break;
413 case ISD::SETUGE:
414 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
415 (VT == MVT::f64) ? RTLIB::OLT_F64 :
416 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
417 break;
418 default: llvm_unreachable("Do not know how to soften this setcc!");
419 }
420 }
421
422 // Use the target specific return value for comparison lib calls.
424 SDValue Ops[2] = {NewLHS, NewRHS};
426 EVT OpsVT[2] = { OldLHS.getValueType(),
427 OldRHS.getValueType() };
428 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT);
429 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
430 NewLHS = Call.first;
431 NewRHS = DAG.getConstant(0, dl, RetVT);
432
433 RTLIB::LibcallImpl LC1Impl = getLibcallImpl(LC1);
434 if (LC1Impl == RTLIB::Unsupported) {
436 "no libcall available to soften floating-point compare");
437 }
438
439 CCCode = getSoftFloatCmpLibcallPredicate(LC1Impl);
440 if (ShouldInvertCC) {
441 assert(RetVT.isInteger());
442 CCCode = getSetCCInverse(CCCode, RetVT);
443 }
444
445 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
446 // Update Chain.
447 Chain = Call.second;
448 } else {
449 RTLIB::LibcallImpl LC2Impl = getLibcallImpl(LC2);
450 if (LC2Impl == RTLIB::Unsupported) {
452 "no libcall available to soften floating-point compare");
453 }
454
455 assert(CCCode == (ShouldInvertCC ? ISD::SETEQ : ISD::SETNE) &&
456 "unordered call should be simple boolean");
457
458 EVT SetCCVT =
459 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
461 NewLHS = DAG.getNode(ISD::AssertZext, dl, RetVT, Call.first,
462 DAG.getValueType(MVT::i1));
463 }
464
465 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
466 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
467 CCCode = getSoftFloatCmpLibcallPredicate(LC2Impl);
468 if (ShouldInvertCC)
469 CCCode = getSetCCInverse(CCCode, RetVT);
470 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
471 if (Chain)
472 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
473 Call2.second);
474 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
475 Tmp.getValueType(), Tmp, NewLHS);
476 NewRHS = SDValue();
477 }
478}
479
480/// Return the entry encoding for a jump table in the current function. The
481/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
483 // In non-pic modes, just use the address of a block.
486
487 // Otherwise, use a label difference.
489}
490
492 SelectionDAG &DAG) const {
493 return Table;
494}
495
496/// This returns the relocation base for the given PIC jumptable, the same as
497/// getPICJumpTableRelocBase, but as an MCExpr.
498const MCExpr *
500 unsigned JTI,MCContext &Ctx) const{
501 // The normal PIC reloc base is the label at the start of the jump table.
502 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
503}
504
506 SDValue Addr, int JTI,
507 SelectionDAG &DAG) const {
508 SDValue Chain = Value;
509 // Jump table debug info is only needed if CodeView is enabled.
511 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
512 }
513 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
514}
515
516bool
518 const TargetMachine &TM = getTargetMachine();
519 const GlobalValue *GV = GA->getGlobal();
520
521 // If the address is not even local to this DSO we will have to load it from
522 // a got and then add the offset.
523 if (!TM.shouldAssumeDSOLocal(GV))
524 return false;
525
526 // If the code is position independent we will have to add a base register.
528 return false;
529
530 // Otherwise we can do it.
531 return true;
532}
533
534//===----------------------------------------------------------------------===//
535// Optimization Methods
536//===----------------------------------------------------------------------===//
537
538/// If the specified instruction has a constant integer operand and there are
539/// bits set in that constant that are not demanded, then clear those bits and
540/// return true.
542 const APInt &DemandedBits,
543 const APInt &DemandedElts,
544 TargetLoweringOpt &TLO) const {
545 SDLoc DL(Op);
546 unsigned Opcode = Op.getOpcode();
547
548 // Early-out if we've ended up calling an undemanded node, leave this to
549 // constant folding.
550 if (DemandedBits.isZero() || DemandedElts.isZero())
551 return false;
552
553 // Do target-specific constant optimization.
554 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
555 return TLO.New.getNode();
556
557 // FIXME: ISD::SELECT, ISD::SELECT_CC
558 switch (Opcode) {
559 default:
560 break;
561 case ISD::XOR:
562 case ISD::AND:
563 case ISD::OR: {
564 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
565 if (!Op1C || Op1C->isOpaque())
566 return false;
567
568 // If this is a 'not' op, don't touch it because that's a canonical form.
569 const APInt &C = Op1C->getAPIntValue();
570 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
571 return false;
572
573 if (!C.isSubsetOf(DemandedBits)) {
574 EVT VT = Op.getValueType();
575 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
576 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
577 Op->getFlags());
578 return TLO.CombineTo(Op, NewOp);
579 }
580
581 break;
582 }
583 }
584
585 return false;
586}
587
589 const APInt &DemandedBits,
590 TargetLoweringOpt &TLO) const {
591 EVT VT = Op.getValueType();
592 APInt DemandedElts = VT.isVector()
594 : APInt(1, 1);
595 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
596}
597
598/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
599/// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
600/// but it could be generalized for targets with other types of implicit
601/// widening casts.
603 const APInt &DemandedBits,
604 TargetLoweringOpt &TLO) const {
605 assert(Op.getNumOperands() == 2 &&
606 "ShrinkDemandedOp only supports binary operators!");
607 assert(Op.getNode()->getNumValues() == 1 &&
608 "ShrinkDemandedOp only supports nodes with one result!");
609
610 EVT VT = Op.getValueType();
611 SelectionDAG &DAG = TLO.DAG;
612 SDLoc dl(Op);
613
614 // Early return, as this function cannot handle vector types.
615 if (VT.isVector())
616 return false;
617
618 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
619 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
620 "ShrinkDemandedOp only supports operands that have the same size!");
621
622 // Don't do this if the node has another user, which may require the
623 // full value.
624 if (!Op.getNode()->hasOneUse())
625 return false;
626
627 // Search for the smallest integer type with free casts to and from
628 // Op's type. For expedience, just check power-of-2 integer types.
629 unsigned DemandedSize = DemandedBits.getActiveBits();
630 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
631 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
632 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
633 if (isTruncateFree(Op, SmallVT) && isZExtFree(SmallVT, VT)) {
634 // We found a type with free casts.
635
636 // If the operation has the 'disjoint' flag, then the
637 // operands on the new node are also disjoint.
638 SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint
640 unsigned Opcode = Op.getOpcode();
641 if (Opcode == ISD::PTRADD) {
642 // It isn't a ptradd anymore if it doesn't operate on the entire
643 // pointer.
644 Opcode = ISD::ADD;
645 }
646 SDValue X = DAG.getNode(
647 Opcode, dl, SmallVT,
648 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
649 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags);
650 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
651 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
652 return TLO.CombineTo(Op, Z);
653 }
654 }
655 return false;
656}
657
659 DAGCombinerInfo &DCI) const {
660 SelectionDAG &DAG = DCI.DAG;
661 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
662 !DCI.isBeforeLegalizeOps());
663 KnownBits Known;
664
665 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
666 if (Simplified) {
667 DCI.AddToWorklist(Op.getNode());
669 }
670 return Simplified;
671}
672
674 const APInt &DemandedElts,
675 DAGCombinerInfo &DCI) const {
676 SelectionDAG &DAG = DCI.DAG;
677 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
678 !DCI.isBeforeLegalizeOps());
679 KnownBits Known;
680
681 bool Simplified =
682 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
683 if (Simplified) {
684 DCI.AddToWorklist(Op.getNode());
686 }
687 return Simplified;
688}
689
691 KnownBits &Known,
693 unsigned Depth,
694 bool AssumeSingleUse) const {
695 EVT VT = Op.getValueType();
696
697 // Since the number of lanes in a scalable vector is unknown at compile time,
698 // we track one bit which is implicitly broadcast to all lanes. This means
699 // that all lanes in a scalable vector are considered demanded.
700 APInt DemandedElts = VT.isFixedLengthVector()
702 : APInt(1, 1);
703 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
704 AssumeSingleUse);
705}
706
707// TODO: Under what circumstances can we create nodes? Constant folding?
709 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
710 SelectionDAG &DAG, unsigned Depth) const {
711 EVT VT = Op.getValueType();
712
713 // Limit search depth.
715 return SDValue();
716
717 // Ignore UNDEFs.
718 if (Op.isUndef())
719 return SDValue();
720
721 // Not demanding any bits/elts from Op.
722 if (DemandedBits == 0 || DemandedElts == 0)
723 return DAG.getUNDEF(VT);
724
725 bool IsLE = DAG.getDataLayout().isLittleEndian();
726 unsigned NumElts = DemandedElts.getBitWidth();
727 unsigned BitWidth = DemandedBits.getBitWidth();
728 KnownBits LHSKnown, RHSKnown;
729 switch (Op.getOpcode()) {
730 case ISD::BITCAST: {
731 if (VT.isScalableVector())
732 return SDValue();
733
734 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
735 EVT SrcVT = Src.getValueType();
736 EVT DstVT = Op.getValueType();
737 if (SrcVT == DstVT)
738 return Src;
739
740 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
741 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
742 if (NumSrcEltBits == NumDstEltBits)
744 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
745 return DAG.getBitcast(DstVT, V);
746
747 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
748 unsigned Scale = NumDstEltBits / NumSrcEltBits;
749 unsigned NumSrcElts = SrcVT.getVectorNumElements();
750 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
751 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
752 for (unsigned i = 0; i != Scale; ++i) {
753 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
754 unsigned BitOffset = EltOffset * NumSrcEltBits;
755 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
756 if (!Sub.isZero()) {
757 DemandedSrcBits |= Sub;
758 for (unsigned j = 0; j != NumElts; ++j)
759 if (DemandedElts[j])
760 DemandedSrcElts.setBit((j * Scale) + i);
761 }
762 }
763
765 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
766 return DAG.getBitcast(DstVT, V);
767 }
768
769 // TODO - bigendian once we have test coverage.
770 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
771 unsigned Scale = NumSrcEltBits / NumDstEltBits;
772 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
773 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
774 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
775 for (unsigned i = 0; i != NumElts; ++i)
776 if (DemandedElts[i]) {
777 unsigned Offset = (i % Scale) * NumDstEltBits;
778 DemandedSrcBits.insertBits(DemandedBits, Offset);
779 DemandedSrcElts.setBit(i / Scale);
780 }
781
783 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
784 return DAG.getBitcast(DstVT, V);
785 }
786
787 break;
788 }
789 case ISD::AND: {
790 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
791 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
792
793 // If all of the demanded bits are known 1 on one side, return the other.
794 // These bits cannot contribute to the result of the 'and' in this
795 // context.
796 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
797 return Op.getOperand(0);
798 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
799 return Op.getOperand(1);
800 break;
801 }
802 case ISD::OR: {
803 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
804 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
805
806 // If all of the demanded bits are known zero on one side, return the
807 // other. These bits cannot contribute to the result of the 'or' in this
808 // context.
809 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
810 return Op.getOperand(0);
811 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
812 return Op.getOperand(1);
813 break;
814 }
815 case ISD::XOR: {
816 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
817 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
818
819 // If all of the demanded bits are known zero on one side, return the
820 // other.
821 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
822 return Op.getOperand(0);
823 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
824 return Op.getOperand(1);
825 break;
826 }
827 case ISD::ADD: {
828 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
829 if (RHSKnown.isZero())
830 return Op.getOperand(0);
831
832 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
833 if (LHSKnown.isZero())
834 return Op.getOperand(1);
835 break;
836 }
837 case ISD::SHL: {
838 // If we are only demanding sign bits then we can use the shift source
839 // directly.
840 if (std::optional<unsigned> MaxSA =
841 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
842 SDValue Op0 = Op.getOperand(0);
843 unsigned ShAmt = *MaxSA;
844 unsigned NumSignBits =
845 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
846 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
847 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
848 return Op0;
849 }
850 break;
851 }
852 case ISD::SRL: {
853 // If we are only demanding sign bits then we can use the shift source
854 // directly.
855 if (std::optional<unsigned> MaxSA =
856 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
857 SDValue Op0 = Op.getOperand(0);
858 unsigned ShAmt = *MaxSA;
859 // Must already be signbits in DemandedBits bounds, and can't demand any
860 // shifted in zeroes.
861 if (DemandedBits.countl_zero() >= ShAmt) {
862 unsigned NumSignBits =
863 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
864 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
865 return Op0;
866 }
867 }
868 break;
869 }
870 case ISD::SETCC: {
871 SDValue Op0 = Op.getOperand(0);
872 SDValue Op1 = Op.getOperand(1);
873 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
874 // If (1) we only need the sign-bit, (2) the setcc operands are the same
875 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
876 // -1, we may be able to bypass the setcc.
877 if (DemandedBits.isSignMask() &&
881 // If we're testing X < 0, then this compare isn't needed - just use X!
882 // FIXME: We're limiting to integer types here, but this should also work
883 // if we don't care about FP signed-zero. The use of SETLT with FP means
884 // that we don't care about NaNs.
885 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
887 return Op0;
888 }
889 break;
890 }
892 // If none of the extended bits are demanded, eliminate the sextinreg.
893 SDValue Op0 = Op.getOperand(0);
894 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
895 unsigned ExBits = ExVT.getScalarSizeInBits();
896 if (DemandedBits.getActiveBits() <= ExBits &&
898 return Op0;
899 // If the input is already sign extended, just drop the extension.
900 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
901 if (NumSignBits >= (BitWidth - ExBits + 1))
902 return Op0;
903 break;
904 }
908 if (VT.isScalableVector())
909 return SDValue();
910
911 // If we only want the lowest element and none of extended bits, then we can
912 // return the bitcasted source vector.
913 SDValue Src = Op.getOperand(0);
914 EVT SrcVT = Src.getValueType();
915 EVT DstVT = Op.getValueType();
916 if (IsLE && DemandedElts == 1 &&
917 DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
918 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
919 return DAG.getBitcast(DstVT, Src);
920 }
921 break;
922 }
924 if (VT.isScalableVector())
925 return SDValue();
926
927 // If we don't demand the inserted element, return the base vector.
928 SDValue Vec = Op.getOperand(0);
929 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
930 EVT VecVT = Vec.getValueType();
931 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
932 !DemandedElts[CIdx->getZExtValue()])
933 return Vec;
934 break;
935 }
937 if (VT.isScalableVector())
938 return SDValue();
939
940 SDValue Vec = Op.getOperand(0);
941 SDValue Sub = Op.getOperand(1);
942 uint64_t Idx = Op.getConstantOperandVal(2);
943 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
944 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
945 // If we don't demand the inserted subvector, return the base vector.
946 if (DemandedSubElts == 0)
947 return Vec;
948 break;
949 }
950 case ISD::VECTOR_SHUFFLE: {
952 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
953
954 // If all the demanded elts are from one operand and are inline,
955 // then we can use the operand directly.
956 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
957 for (unsigned i = 0; i != NumElts; ++i) {
958 int M = ShuffleMask[i];
959 if (M < 0 || !DemandedElts[i])
960 continue;
961 AllUndef = false;
962 IdentityLHS &= (M == (int)i);
963 IdentityRHS &= ((M - NumElts) == i);
964 }
965
966 if (AllUndef)
967 return DAG.getUNDEF(Op.getValueType());
968 if (IdentityLHS)
969 return Op.getOperand(0);
970 if (IdentityRHS)
971 return Op.getOperand(1);
972 break;
973 }
974 default:
975 // TODO: Probably okay to remove after audit; here to reduce change size
976 // in initial enablement patch for scalable vectors
977 if (VT.isScalableVector())
978 return SDValue();
979
980 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
982 Op, DemandedBits, DemandedElts, DAG, Depth))
983 return V;
984 break;
985 }
986 return SDValue();
987}
988
991 unsigned Depth) const {
992 EVT VT = Op.getValueType();
993 // Since the number of lanes in a scalable vector is unknown at compile time,
994 // we track one bit which is implicitly broadcast to all lanes. This means
995 // that all lanes in a scalable vector are considered demanded.
996 APInt DemandedElts = VT.isFixedLengthVector()
998 : APInt(1, 1);
999 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
1000 Depth);
1001}
1002
1004 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
1005 unsigned Depth) const {
1006 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
1007 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
1008 Depth);
1009}
1010
1011// Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
1012// or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
1015 const TargetLowering &TLI,
1016 const APInt &DemandedBits,
1017 const APInt &DemandedElts, unsigned Depth) {
1018 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
1019 "SRL or SRA node is required here!");
1020 // Is the right shift using an immediate value of 1?
1021 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
1022 if (!N1C || !N1C->isOne())
1023 return SDValue();
1024
1025 // We are looking for an avgfloor
1026 // add(ext, ext)
1027 // or one of these as a avgceil
1028 // add(add(ext, ext), 1)
1029 // add(add(ext, 1), ext)
1030 // add(ext, add(ext, 1))
1031 SDValue Add = Op.getOperand(0);
1032 if (Add.getOpcode() != ISD::ADD)
1033 return SDValue();
1034
1035 SDValue ExtOpA = Add.getOperand(0);
1036 SDValue ExtOpB = Add.getOperand(1);
1037 SDValue Add2;
1038 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
1039 ConstantSDNode *ConstOp;
1040 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
1041 ConstOp->isOne()) {
1042 ExtOpA = Op1;
1043 ExtOpB = Op3;
1044 Add2 = A;
1045 return true;
1046 }
1047 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1048 ConstOp->isOne()) {
1049 ExtOpA = Op1;
1050 ExtOpB = Op2;
1051 Add2 = A;
1052 return true;
1053 }
1054 return false;
1055 };
1056 bool IsCeil =
1057 (ExtOpA.getOpcode() == ISD::ADD &&
1058 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1059 (ExtOpB.getOpcode() == ISD::ADD &&
1060 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1061
1062 // If the shift is signed (sra):
1063 // - Needs >= 2 sign bit for both operands.
1064 // - Needs >= 2 zero bits.
1065 // If the shift is unsigned (srl):
1066 // - Needs >= 1 zero bit for both operands.
1067 // - Needs 1 demanded bit zero and >= 2 sign bits.
1068 SelectionDAG &DAG = TLO.DAG;
1069 unsigned ShiftOpc = Op.getOpcode();
1070 bool IsSigned = false;
1071 unsigned KnownBits;
1072 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1073 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1074 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1075 unsigned NumZeroA =
1076 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1077 unsigned NumZeroB =
1078 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1079 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1080
1081 switch (ShiftOpc) {
1082 default:
1083 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1084 case ISD::SRA: {
1085 if (NumZero >= 2 && NumSigned < NumZero) {
1086 IsSigned = false;
1087 KnownBits = NumZero;
1088 break;
1089 }
1090 if (NumSigned >= 1) {
1091 IsSigned = true;
1092 KnownBits = NumSigned;
1093 break;
1094 }
1095 return SDValue();
1096 }
1097 case ISD::SRL: {
1098 if (NumZero >= 1 && NumSigned < NumZero) {
1099 IsSigned = false;
1100 KnownBits = NumZero;
1101 break;
1102 }
1103 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1104 IsSigned = true;
1105 KnownBits = NumSigned;
1106 break;
1107 }
1108 return SDValue();
1109 }
1110 }
1111
1112 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1113 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1114
1115 // Find the smallest power-2 type that is legal for this vector size and
1116 // operation, given the original type size and the number of known sign/zero
1117 // bits.
1118 EVT VT = Op.getValueType();
1119 unsigned MinWidth =
1120 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1121 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1123 return SDValue();
1124 if (VT.isVector())
1125 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1126 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1127 // If we could not transform, and (both) adds are nuw/nsw, we can use the
1128 // larger type size to do the transform.
1129 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1130 return SDValue();
1131 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1132 Add.getOperand(1)) &&
1133 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1134 Add2.getOperand(1))))
1135 NVT = VT;
1136 else
1137 return SDValue();
1138 }
1139
1140 // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1141 // this is likely to stop other folds (reassociation, value tracking etc.)
1142 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1143 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1144 return SDValue();
1145
1146 SDLoc DL(Op);
1147 SDValue ResultAVG =
1148 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1149 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1150 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1151}
1152
1153/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1154/// result of Op are ever used downstream. If we can use this information to
1155/// simplify Op, create a new simplified DAG node and return true, returning the
1156/// original and new nodes in Old and New. Otherwise, analyze the expression and
1157/// return a mask of Known bits for the expression (used to simplify the
1158/// caller). The Known bits may only be accurate for those bits in the
1159/// OriginalDemandedBits and OriginalDemandedElts.
1161 SDValue Op, const APInt &OriginalDemandedBits,
1162 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1163 unsigned Depth, bool AssumeSingleUse) const {
1164 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1165 assert(Op.getScalarValueSizeInBits() == BitWidth &&
1166 "Mask size mismatches value type size!");
1167
1168 // Don't know anything.
1169 Known = KnownBits(BitWidth);
1170
1171 EVT VT = Op.getValueType();
1172 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1173 unsigned NumElts = OriginalDemandedElts.getBitWidth();
1174 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1175 "Unexpected vector size");
1176
1177 APInt DemandedBits = OriginalDemandedBits;
1178 APInt DemandedElts = OriginalDemandedElts;
1179 SDLoc dl(Op);
1180
1181 // Undef operand.
1182 if (Op.isUndef())
1183 return false;
1184
1185 // We can't simplify target constants.
1186 if (Op.getOpcode() == ISD::TargetConstant)
1187 return false;
1188
1189 if (Op.getOpcode() == ISD::Constant) {
1190 // We know all of the bits for a constant!
1191 Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1192 return false;
1193 }
1194
1195 if (Op.getOpcode() == ISD::ConstantFP) {
1196 // We know all of the bits for a floating point constant!
1198 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1199 return false;
1200 }
1201
1202 // Other users may use these bits.
1203 bool HasMultiUse = false;
1204 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1206 // Limit search depth.
1207 return false;
1208 }
1209 // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1211 DemandedElts = APInt::getAllOnes(NumElts);
1212 HasMultiUse = true;
1213 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1214 // Not demanding any bits/elts from Op.
1215 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1216 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1217 // Limit search depth.
1218 return false;
1219 }
1220
1221 KnownBits Known2;
1222 switch (Op.getOpcode()) {
1223 case ISD::SCALAR_TO_VECTOR: {
1224 if (VT.isScalableVector())
1225 return false;
1226 if (!DemandedElts[0])
1227 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1228
1229 KnownBits SrcKnown;
1230 SDValue Src = Op.getOperand(0);
1231 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1232 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1233 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1234 return true;
1235
1236 // Upper elements are undef, so only get the knownbits if we just demand
1237 // the bottom element.
1238 if (DemandedElts == 1)
1239 Known = SrcKnown.anyextOrTrunc(BitWidth);
1240 break;
1241 }
1242 case ISD::BUILD_VECTOR:
1243 // Collect the known bits that are shared by every demanded element.
1244 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1245 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1246 return false; // Don't fall through, will infinitely loop.
1247 case ISD::SPLAT_VECTOR: {
1248 SDValue Scl = Op.getOperand(0);
1249 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1250 KnownBits KnownScl;
1251 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1252 return true;
1253
1254 // Implicitly truncate the bits to match the official semantics of
1255 // SPLAT_VECTOR.
1256 Known = KnownScl.trunc(BitWidth);
1257 break;
1258 }
1259 case ISD::LOAD: {
1260 auto *LD = cast<LoadSDNode>(Op);
1261 if (getTargetConstantFromLoad(LD)) {
1262 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1263 return false; // Don't fall through, will infinitely loop.
1264 }
1265 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1266 // If this is a ZEXTLoad and we are looking at the loaded value.
1267 EVT MemVT = LD->getMemoryVT();
1268 unsigned MemBits = MemVT.getScalarSizeInBits();
1269 Known.Zero.setBitsFrom(MemBits);
1270 return false; // Don't fall through, will infinitely loop.
1271 }
1272 break;
1273 }
1275 if (VT.isScalableVector())
1276 return false;
1277 SDValue Vec = Op.getOperand(0);
1278 SDValue Scl = Op.getOperand(1);
1279 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1280 EVT VecVT = Vec.getValueType();
1281
1282 // If index isn't constant, assume we need all vector elements AND the
1283 // inserted element.
1284 APInt DemandedVecElts(DemandedElts);
1285 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1286 unsigned Idx = CIdx->getZExtValue();
1287 DemandedVecElts.clearBit(Idx);
1288
1289 // Inserted element is not required.
1290 if (!DemandedElts[Idx])
1291 return TLO.CombineTo(Op, Vec);
1292 }
1293
1294 KnownBits KnownScl;
1295 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1296 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1297 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1298 return true;
1299
1300 Known = KnownScl.anyextOrTrunc(BitWidth);
1301
1302 KnownBits KnownVec;
1303 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1304 Depth + 1))
1305 return true;
1306
1307 if (!!DemandedVecElts)
1308 Known = Known.intersectWith(KnownVec);
1309
1310 return false;
1311 }
1312 case ISD::INSERT_SUBVECTOR: {
1313 if (VT.isScalableVector())
1314 return false;
1315 // Demand any elements from the subvector and the remainder from the src its
1316 // inserted into.
1317 SDValue Src = Op.getOperand(0);
1318 SDValue Sub = Op.getOperand(1);
1319 uint64_t Idx = Op.getConstantOperandVal(2);
1320 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1321 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1322 APInt DemandedSrcElts = DemandedElts;
1323 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
1324
1325 KnownBits KnownSub, KnownSrc;
1326 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1327 Depth + 1))
1328 return true;
1329 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1330 Depth + 1))
1331 return true;
1332
1333 Known.setAllConflict();
1334 if (!!DemandedSubElts)
1335 Known = Known.intersectWith(KnownSub);
1336 if (!!DemandedSrcElts)
1337 Known = Known.intersectWith(KnownSrc);
1338
1339 // Attempt to avoid multi-use src if we don't need anything from it.
1340 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1341 !DemandedSrcElts.isAllOnes()) {
1343 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1345 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1346 if (NewSub || NewSrc) {
1347 NewSub = NewSub ? NewSub : Sub;
1348 NewSrc = NewSrc ? NewSrc : Src;
1349 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1350 Op.getOperand(2));
1351 return TLO.CombineTo(Op, NewOp);
1352 }
1353 }
1354 break;
1355 }
1357 if (VT.isScalableVector())
1358 return false;
1359 // Offset the demanded elts by the subvector index.
1360 SDValue Src = Op.getOperand(0);
1361 if (Src.getValueType().isScalableVector())
1362 break;
1363 uint64_t Idx = Op.getConstantOperandVal(1);
1364 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1365 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1366
1367 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1368 Depth + 1))
1369 return true;
1370
1371 // Attempt to avoid multi-use src if we don't need anything from it.
1372 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1374 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1375 if (DemandedSrc) {
1376 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1377 Op.getOperand(1));
1378 return TLO.CombineTo(Op, NewOp);
1379 }
1380 }
1381 break;
1382 }
1383 case ISD::CONCAT_VECTORS: {
1384 if (VT.isScalableVector())
1385 return false;
1386 Known.setAllConflict();
1387 EVT SubVT = Op.getOperand(0).getValueType();
1388 unsigned NumSubVecs = Op.getNumOperands();
1389 unsigned NumSubElts = SubVT.getVectorNumElements();
1390 for (unsigned i = 0; i != NumSubVecs; ++i) {
1391 APInt DemandedSubElts =
1392 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1393 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1394 Known2, TLO, Depth + 1))
1395 return true;
1396 // Known bits are shared by every demanded subvector element.
1397 if (!!DemandedSubElts)
1398 Known = Known.intersectWith(Known2);
1399 }
1400 break;
1401 }
1402 case ISD::VECTOR_SHUFFLE: {
1403 assert(!VT.isScalableVector());
1404 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1405
1406 // Collect demanded elements from shuffle operands..
1407 APInt DemandedLHS, DemandedRHS;
1408 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1409 DemandedRHS))
1410 break;
1411
1412 if (!!DemandedLHS || !!DemandedRHS) {
1413 SDValue Op0 = Op.getOperand(0);
1414 SDValue Op1 = Op.getOperand(1);
1415
1416 Known.setAllConflict();
1417 if (!!DemandedLHS) {
1418 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1419 Depth + 1))
1420 return true;
1421 Known = Known.intersectWith(Known2);
1422 }
1423 if (!!DemandedRHS) {
1424 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1425 Depth + 1))
1426 return true;
1427 Known = Known.intersectWith(Known2);
1428 }
1429
1430 // Attempt to avoid multi-use ops if we don't need anything from them.
1432 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1434 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1435 if (DemandedOp0 || DemandedOp1) {
1436 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1437 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1438 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1439 return TLO.CombineTo(Op, NewOp);
1440 }
1441 }
1442 break;
1443 }
1444 case ISD::AND: {
1445 SDValue Op0 = Op.getOperand(0);
1446 SDValue Op1 = Op.getOperand(1);
1447
1448 // If the RHS is a constant, check to see if the LHS would be zero without
1449 // using the bits from the RHS. Below, we use knowledge about the RHS to
1450 // simplify the LHS, here we're using information from the LHS to simplify
1451 // the RHS.
1452 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1453 // Do not increment Depth here; that can cause an infinite loop.
1454 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1455 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1456 if ((LHSKnown.Zero & DemandedBits) ==
1457 (~RHSC->getAPIntValue() & DemandedBits))
1458 return TLO.CombineTo(Op, Op0);
1459
1460 // If any of the set bits in the RHS are known zero on the LHS, shrink
1461 // the constant.
1462 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1463 DemandedElts, TLO))
1464 return true;
1465
1466 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1467 // constant, but if this 'and' is only clearing bits that were just set by
1468 // the xor, then this 'and' can be eliminated by shrinking the mask of
1469 // the xor. For example, for a 32-bit X:
1470 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1471 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1472 LHSKnown.One == ~RHSC->getAPIntValue()) {
1473 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1474 return TLO.CombineTo(Op, Xor);
1475 }
1476 }
1477
1478 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1479 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1480 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1481 (Op0.getOperand(0).isUndef() ||
1483 Op0->hasOneUse()) {
1484 unsigned NumSubElts =
1486 unsigned SubIdx = Op0.getConstantOperandVal(2);
1487 APInt DemandedSub =
1488 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1489 KnownBits KnownSubMask =
1490 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1491 if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1492 SDValue NewAnd =
1493 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1494 SDValue NewInsert =
1495 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1496 Op0.getOperand(1), Op0.getOperand(2));
1497 return TLO.CombineTo(Op, NewInsert);
1498 }
1499 }
1500
1501 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1502 Depth + 1))
1503 return true;
1504 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1505 Known2, TLO, Depth + 1))
1506 return true;
1507
1508 // If all of the demanded bits are known one on one side, return the other.
1509 // These bits cannot contribute to the result of the 'and'.
1510 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1511 return TLO.CombineTo(Op, Op0);
1512 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1513 return TLO.CombineTo(Op, Op1);
1514 // If all of the demanded bits in the inputs are known zeros, return zero.
1515 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1516 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1517 // If the RHS is a constant, see if we can simplify it.
1518 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1519 TLO))
1520 return true;
1521 // If the operation can be done in a smaller type, do so.
1523 return true;
1524
1525 // Attempt to avoid multi-use ops if we don't need anything from them.
1526 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1528 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1530 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1531 if (DemandedOp0 || DemandedOp1) {
1532 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1533 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1534 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1535 return TLO.CombineTo(Op, NewOp);
1536 }
1537 }
1538
1539 Known &= Known2;
1540 break;
1541 }
1542 case ISD::OR: {
1543 SDValue Op0 = Op.getOperand(0);
1544 SDValue Op1 = Op.getOperand(1);
1545 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1546 Depth + 1)) {
1547 Op->dropFlags(SDNodeFlags::Disjoint);
1548 return true;
1549 }
1550
1551 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1552 Known2, TLO, Depth + 1)) {
1553 Op->dropFlags(SDNodeFlags::Disjoint);
1554 return true;
1555 }
1556
1557 // If all of the demanded bits are known zero on one side, return the other.
1558 // These bits cannot contribute to the result of the 'or'.
1559 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1560 return TLO.CombineTo(Op, Op0);
1561 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1562 return TLO.CombineTo(Op, Op1);
1563 // If the RHS is a constant, see if we can simplify it.
1564 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1565 return true;
1566 // If the operation can be done in a smaller type, do so.
1568 return true;
1569
1570 // Attempt to avoid multi-use ops if we don't need anything from them.
1571 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1573 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1575 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1576 if (DemandedOp0 || DemandedOp1) {
1577 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1578 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1579 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1580 return TLO.CombineTo(Op, NewOp);
1581 }
1582 }
1583
1584 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1585 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1586 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1587 Op0->hasOneUse() && Op1->hasOneUse()) {
1588 // Attempt to match all commutations - m_c_Or would've been useful!
1589 for (int I = 0; I != 2; ++I) {
1590 SDValue X = Op.getOperand(I).getOperand(0);
1591 SDValue C1 = Op.getOperand(I).getOperand(1);
1592 SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1593 SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1594 if (Alt.getOpcode() == ISD::OR) {
1595 for (int J = 0; J != 2; ++J) {
1596 if (X == Alt.getOperand(J)) {
1597 SDValue Y = Alt.getOperand(1 - J);
1598 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1599 {C1, C2})) {
1600 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1601 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1602 return TLO.CombineTo(
1603 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1604 }
1605 }
1606 }
1607 }
1608 }
1609 }
1610
1611 Known |= Known2;
1612 break;
1613 }
1614 case ISD::XOR: {
1615 SDValue Op0 = Op.getOperand(0);
1616 SDValue Op1 = Op.getOperand(1);
1617
1618 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1619 Depth + 1))
1620 return true;
1621 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1622 Depth + 1))
1623 return true;
1624
1625 // If all of the demanded bits are known zero on one side, return the other.
1626 // These bits cannot contribute to the result of the 'xor'.
1627 if (DemandedBits.isSubsetOf(Known.Zero))
1628 return TLO.CombineTo(Op, Op0);
1629 if (DemandedBits.isSubsetOf(Known2.Zero))
1630 return TLO.CombineTo(Op, Op1);
1631 // If the operation can be done in a smaller type, do so.
1633 return true;
1634
1635 // If all of the unknown bits are known to be zero on one side or the other
1636 // turn this into an *inclusive* or.
1637 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1638 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1639 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1640
1641 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1642 if (C) {
1643 // If one side is a constant, and all of the set bits in the constant are
1644 // also known set on the other side, turn this into an AND, as we know
1645 // the bits will be cleared.
1646 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1647 // NB: it is okay if more bits are known than are requested
1648 if (C->getAPIntValue() == Known2.One) {
1649 SDValue ANDC =
1650 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1651 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1652 }
1653
1654 // If the RHS is a constant, see if we can change it. Don't alter a -1
1655 // constant because that's a 'not' op, and that is better for combining
1656 // and codegen.
1657 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1658 // We're flipping all demanded bits. Flip the undemanded bits too.
1659 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1660 return TLO.CombineTo(Op, New);
1661 }
1662
1663 unsigned Op0Opcode = Op0.getOpcode();
1664 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1665 if (ConstantSDNode *ShiftC =
1666 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1667 // Don't crash on an oversized shift. We can not guarantee that a
1668 // bogus shift has been simplified to undef.
1669 if (ShiftC->getAPIntValue().ult(BitWidth)) {
1670 uint64_t ShiftAmt = ShiftC->getZExtValue();
1672 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1673 : Ones.lshr(ShiftAmt);
1674 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1676 // If the xor constant is a demanded mask, do a 'not' before the
1677 // shift:
1678 // xor (X << ShiftC), XorC --> (not X) << ShiftC
1679 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1680 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1681 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1682 Op0.getOperand(1)));
1683 }
1684 }
1685 }
1686 }
1687 }
1688
1689 // If we can't turn this into a 'not', try to shrink the constant.
1690 if (!C || !C->isAllOnes())
1691 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1692 return true;
1693
1694 // Attempt to avoid multi-use ops if we don't need anything from them.
1695 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1697 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1699 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1700 if (DemandedOp0 || DemandedOp1) {
1701 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1702 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1703 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1704 return TLO.CombineTo(Op, NewOp);
1705 }
1706 }
1707
1708 Known ^= Known2;
1709 break;
1710 }
1711 case ISD::SELECT:
1712 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1713 Known, TLO, Depth + 1))
1714 return true;
1715 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1716 Known2, TLO, Depth + 1))
1717 return true;
1718
1719 // If the operands are constants, see if we can simplify them.
1720 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1721 return true;
1722
1723 // Only known if known in both the LHS and RHS.
1724 Known = Known.intersectWith(Known2);
1725 break;
1726 case ISD::VSELECT:
1727 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1728 Known, TLO, Depth + 1))
1729 return true;
1730 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1731 Known2, TLO, Depth + 1))
1732 return true;
1733
1734 // Only known if known in both the LHS and RHS.
1735 Known = Known.intersectWith(Known2);
1736 break;
1737 case ISD::SELECT_CC:
1738 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1739 Known, TLO, Depth + 1))
1740 return true;
1741 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1742 Known2, TLO, Depth + 1))
1743 return true;
1744
1745 // If the operands are constants, see if we can simplify them.
1746 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1747 return true;
1748
1749 // Only known if known in both the LHS and RHS.
1750 Known = Known.intersectWith(Known2);
1751 break;
1752 case ISD::SETCC: {
1753 SDValue Op0 = Op.getOperand(0);
1754 SDValue Op1 = Op.getOperand(1);
1755 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1756 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1757 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1758 // -1, we may be able to bypass the setcc.
1759 if (DemandedBits.isSignMask() &&
1763 // If we're testing X < 0, then this compare isn't needed - just use X!
1764 // FIXME: We're limiting to integer types here, but this should also work
1765 // if we don't care about FP signed-zero. The use of SETLT with FP means
1766 // that we don't care about NaNs.
1767 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1769 return TLO.CombineTo(Op, Op0);
1770
1771 // TODO: Should we check for other forms of sign-bit comparisons?
1772 // Examples: X <= -1, X >= 0
1773 }
1774 if (getBooleanContents(Op0.getValueType()) ==
1776 BitWidth > 1)
1777 Known.Zero.setBitsFrom(1);
1778 break;
1779 }
1780 case ISD::SHL: {
1781 SDValue Op0 = Op.getOperand(0);
1782 SDValue Op1 = Op.getOperand(1);
1783 EVT ShiftVT = Op1.getValueType();
1784
1785 if (std::optional<unsigned> KnownSA =
1786 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1787 unsigned ShAmt = *KnownSA;
1788 if (ShAmt == 0)
1789 return TLO.CombineTo(Op, Op0);
1790
1791 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1792 // single shift. We can do this if the bottom bits (which are shifted
1793 // out) are never demanded.
1794 // TODO - support non-uniform vector amounts.
1795 if (Op0.getOpcode() == ISD::SRL) {
1796 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1797 if (std::optional<unsigned> InnerSA =
1798 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1799 unsigned C1 = *InnerSA;
1800 unsigned Opc = ISD::SHL;
1801 int Diff = ShAmt - C1;
1802 if (Diff < 0) {
1803 Diff = -Diff;
1804 Opc = ISD::SRL;
1805 }
1806 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1807 return TLO.CombineTo(
1808 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1809 }
1810 }
1811 }
1812
1813 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1814 // are not demanded. This will likely allow the anyext to be folded away.
1815 // TODO - support non-uniform vector amounts.
1816 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1817 SDValue InnerOp = Op0.getOperand(0);
1818 EVT InnerVT = InnerOp.getValueType();
1819 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1820 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1821 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1822 SDValue NarrowShl = TLO.DAG.getNode(
1823 ISD::SHL, dl, InnerVT, InnerOp,
1824 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1825 return TLO.CombineTo(
1826 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1827 }
1828
1829 // Repeat the SHL optimization above in cases where an extension
1830 // intervenes: (shl (anyext (shr x, c1)), c2) to
1831 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1832 // aren't demanded (as above) and that the shifted upper c1 bits of
1833 // x aren't demanded.
1834 // TODO - support non-uniform vector amounts.
1835 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1836 InnerOp.hasOneUse()) {
1837 if (std::optional<unsigned> SA2 = TLO.DAG.getValidShiftAmount(
1838 InnerOp, DemandedElts, Depth + 2)) {
1839 unsigned InnerShAmt = *SA2;
1840 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1841 DemandedBits.getActiveBits() <=
1842 (InnerBits - InnerShAmt + ShAmt) &&
1843 DemandedBits.countr_zero() >= ShAmt) {
1844 SDValue NewSA =
1845 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1846 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1847 InnerOp.getOperand(0));
1848 return TLO.CombineTo(
1849 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1850 }
1851 }
1852 }
1853 }
1854
1855 APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1856 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1857 Depth + 1)) {
1858 // Disable the nsw and nuw flags. We can no longer guarantee that we
1859 // won't wrap after simplification.
1860 Op->dropFlags(SDNodeFlags::NoWrap);
1861 return true;
1862 }
1863 Known <<= ShAmt;
1864 // low bits known zero.
1865 Known.Zero.setLowBits(ShAmt);
1866
1867 // Attempt to avoid multi-use ops if we don't need anything from them.
1868 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1870 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1871 if (DemandedOp0) {
1872 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1873 return TLO.CombineTo(Op, NewOp);
1874 }
1875 }
1876
1877 // TODO: Can we merge this fold with the one below?
1878 // Try shrinking the operation as long as the shift amount will still be
1879 // in range.
1880 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1881 Op.getNode()->hasOneUse()) {
1882 // Search for the smallest integer type with free casts to and from
1883 // Op's type. For expedience, just check power-of-2 integer types.
1884 unsigned DemandedSize = DemandedBits.getActiveBits();
1885 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1886 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1887 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1888 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1889 isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1890 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1891 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1892 assert(DemandedSize <= SmallVTBits &&
1893 "Narrowed below demanded bits?");
1894 // We found a type with free casts.
1895 SDValue NarrowShl = TLO.DAG.getNode(
1896 ISD::SHL, dl, SmallVT,
1897 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1898 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1899 return TLO.CombineTo(
1900 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1901 }
1902 }
1903 }
1904
1905 // Narrow shift to lower half - similar to ShrinkDemandedOp.
1906 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1907 // Only do this if we demand the upper half so the knownbits are correct.
1908 unsigned HalfWidth = BitWidth / 2;
1909 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1910 DemandedBits.countLeadingOnes() >= HalfWidth) {
1911 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1912 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1913 isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1914 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1915 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1916 // If we're demanding the upper bits at all, we must ensure
1917 // that the upper bits of the shift result are known to be zero,
1918 // which is equivalent to the narrow shift being NUW.
1919 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1920 bool IsNSW = Known.countMinSignBits() > HalfWidth;
1921 SDNodeFlags Flags;
1922 Flags.setNoSignedWrap(IsNSW);
1923 Flags.setNoUnsignedWrap(IsNUW);
1924 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1925 SDValue NewShiftAmt =
1926 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1927 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1928 NewShiftAmt, Flags);
1929 SDValue NewExt =
1930 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1931 return TLO.CombineTo(Op, NewExt);
1932 }
1933 }
1934 }
1935 } else {
1936 // This is a variable shift, so we can't shift the demand mask by a known
1937 // amount. But if we are not demanding high bits, then we are not
1938 // demanding those bits from the pre-shifted operand either.
1939 if (unsigned CTLZ = DemandedBits.countl_zero()) {
1940 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1941 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1942 Depth + 1)) {
1943 // Disable the nsw and nuw flags. We can no longer guarantee that we
1944 // won't wrap after simplification.
1945 Op->dropFlags(SDNodeFlags::NoWrap);
1946 return true;
1947 }
1948 Known.resetAll();
1949 }
1950 }
1951
1952 // If we are only demanding sign bits then we can use the shift source
1953 // directly.
1954 if (std::optional<unsigned> MaxSA =
1955 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1956 unsigned ShAmt = *MaxSA;
1957 unsigned NumSignBits =
1958 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1959 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1960 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1961 return TLO.CombineTo(Op, Op0);
1962 }
1963 break;
1964 }
1965 case ISD::SRL: {
1966 SDValue Op0 = Op.getOperand(0);
1967 SDValue Op1 = Op.getOperand(1);
1968 EVT ShiftVT = Op1.getValueType();
1969
1970 if (std::optional<unsigned> KnownSA =
1971 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1972 unsigned ShAmt = *KnownSA;
1973 if (ShAmt == 0)
1974 return TLO.CombineTo(Op, Op0);
1975
1976 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1977 // single shift. We can do this if the top bits (which are shifted out)
1978 // are never demanded.
1979 // TODO - support non-uniform vector amounts.
1980 if (Op0.getOpcode() == ISD::SHL) {
1981 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1982 if (std::optional<unsigned> InnerSA =
1983 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1984 unsigned C1 = *InnerSA;
1985 unsigned Opc = ISD::SRL;
1986 int Diff = ShAmt - C1;
1987 if (Diff < 0) {
1988 Diff = -Diff;
1989 Opc = ISD::SHL;
1990 }
1991 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1992 return TLO.CombineTo(
1993 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1994 }
1995 }
1996 }
1997
1998 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1999 // single sra. We can do this if the top bits are never demanded.
2000 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
2001 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
2002 if (std::optional<unsigned> InnerSA =
2003 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2004 unsigned C1 = *InnerSA;
2005 // Clamp the combined shift amount if it exceeds the bit width.
2006 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
2007 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
2008 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
2009 Op0.getOperand(0), NewSA));
2010 }
2011 }
2012 }
2013
2014 APInt InDemandedMask = (DemandedBits << ShAmt);
2015
2016 // If the shift is exact, then it does demand the low bits (and knows that
2017 // they are zero).
2018 if (Op->getFlags().hasExact())
2019 InDemandedMask.setLowBits(ShAmt);
2020
2021 // Narrow shift to lower half - similar to ShrinkDemandedOp.
2022 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
2023 if ((BitWidth % 2) == 0 && !VT.isVector()) {
2025 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
2026 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
2027 isTypeDesirableForOp(ISD::SRL, HalfVT) &&
2028 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
2029 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
2030 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
2031 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
2032 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
2033 SDValue NewShiftAmt =
2034 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
2035 SDValue NewShift =
2036 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
2037 return TLO.CombineTo(
2038 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2039 }
2040 }
2041
2042 // Compute the new bits that are at the top now.
2043 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2044 Depth + 1))
2045 return true;
2046 Known >>= ShAmt;
2047 // High bits known zero.
2048 Known.Zero.setHighBits(ShAmt);
2049
2050 // Attempt to avoid multi-use ops if we don't need anything from them.
2051 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2053 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2054 if (DemandedOp0) {
2055 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2056 return TLO.CombineTo(Op, NewOp);
2057 }
2058 }
2059 } else {
2060 // Use generic knownbits computation as it has support for non-uniform
2061 // shift amounts.
2062 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2063 }
2064
2065 // If we are only demanding sign bits then we can use the shift source
2066 // directly.
2067 if (std::optional<unsigned> MaxSA =
2068 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
2069 unsigned ShAmt = *MaxSA;
2070 // Must already be signbits in DemandedBits bounds, and can't demand any
2071 // shifted in zeroes.
2072 if (DemandedBits.countl_zero() >= ShAmt) {
2073 unsigned NumSignBits =
2074 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
2075 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
2076 return TLO.CombineTo(Op, Op0);
2077 }
2078 }
2079
2080 // Try to match AVG patterns (after shift simplification).
2081 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2082 DemandedElts, Depth + 1))
2083 return TLO.CombineTo(Op, AVG);
2084
2085 break;
2086 }
2087 case ISD::SRA: {
2088 SDValue Op0 = Op.getOperand(0);
2089 SDValue Op1 = Op.getOperand(1);
2090 EVT ShiftVT = Op1.getValueType();
2091
2092 // If we only want bits that already match the signbit then we don't need
2093 // to shift.
2094 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2095 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2096 NumHiDemandedBits)
2097 return TLO.CombineTo(Op, Op0);
2098
2099 // If this is an arithmetic shift right and only the low-bit is set, we can
2100 // always convert this into a logical shr, even if the shift amount is
2101 // variable. The low bit of the shift cannot be an input sign bit unless
2102 // the shift amount is >= the size of the datatype, which is undefined.
2103 if (DemandedBits.isOne())
2104 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2105
2106 if (std::optional<unsigned> KnownSA =
2107 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2108 unsigned ShAmt = *KnownSA;
2109 if (ShAmt == 0)
2110 return TLO.CombineTo(Op, Op0);
2111
2112 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2113 // supports sext_inreg.
2114 if (Op0.getOpcode() == ISD::SHL) {
2115 if (std::optional<unsigned> InnerSA =
2116 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2117 unsigned LowBits = BitWidth - ShAmt;
2118 EVT ExtVT = VT.changeElementType(
2119 *TLO.DAG.getContext(),
2120 EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits));
2121
2122 if (*InnerSA == ShAmt) {
2123 if (!TLO.LegalOperations() ||
2125 return TLO.CombineTo(
2126 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2127 Op0.getOperand(0),
2128 TLO.DAG.getValueType(ExtVT)));
2129
2130 // Even if we can't convert to sext_inreg, we might be able to
2131 // remove this shift pair if the input is already sign extended.
2132 unsigned NumSignBits =
2133 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2134 if (NumSignBits > ShAmt)
2135 return TLO.CombineTo(Op, Op0.getOperand(0));
2136 }
2137 }
2138 }
2139
2140 APInt InDemandedMask = (DemandedBits << ShAmt);
2141
2142 // If the shift is exact, then it does demand the low bits (and knows that
2143 // they are zero).
2144 if (Op->getFlags().hasExact())
2145 InDemandedMask.setLowBits(ShAmt);
2146
2147 // If any of the demanded bits are produced by the sign extension, we also
2148 // demand the input sign bit.
2149 if (DemandedBits.countl_zero() < ShAmt)
2150 InDemandedMask.setSignBit();
2151
2152 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2153 Depth + 1))
2154 return true;
2155 Known >>= ShAmt;
2156
2157 // If the input sign bit is known to be zero, or if none of the top bits
2158 // are demanded, turn this into an unsigned shift right.
2159 if (Known.Zero[BitWidth - ShAmt - 1] ||
2160 DemandedBits.countl_zero() >= ShAmt) {
2161 SDNodeFlags Flags;
2162 Flags.setExact(Op->getFlags().hasExact());
2163 return TLO.CombineTo(
2164 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2165 }
2166
2167 int Log2 = DemandedBits.exactLogBase2();
2168 if (Log2 >= 0) {
2169 // The bit must come from the sign.
2170 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2171 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2172 }
2173
2174 if (Known.One[BitWidth - ShAmt - 1])
2175 // New bits are known one.
2176 Known.One.setHighBits(ShAmt);
2177
2178 // Attempt to avoid multi-use ops if we don't need anything from them.
2179 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2181 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2182 if (DemandedOp0) {
2183 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2184 return TLO.CombineTo(Op, NewOp);
2185 }
2186 }
2187 }
2188
2189 // Try to match AVG patterns (after shift simplification).
2190 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2191 DemandedElts, Depth + 1))
2192 return TLO.CombineTo(Op, AVG);
2193
2194 break;
2195 }
2196 case ISD::FSHL:
2197 case ISD::FSHR: {
2198 SDValue Op0 = Op.getOperand(0);
2199 SDValue Op1 = Op.getOperand(1);
2200 SDValue Op2 = Op.getOperand(2);
2201 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2202
2203 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2204 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2205
2206 // For fshl, 0-shift returns the 1st arg.
2207 // For fshr, 0-shift returns the 2nd arg.
2208 if (Amt == 0) {
2209 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2210 Known, TLO, Depth + 1))
2211 return true;
2212 break;
2213 }
2214
2215 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2216 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2217 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2218 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2219 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2220 Depth + 1))
2221 return true;
2222 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2223 Depth + 1))
2224 return true;
2225
2226 Known2 <<= (IsFSHL ? Amt : (BitWidth - Amt));
2227 Known >>= (IsFSHL ? (BitWidth - Amt) : Amt);
2228 Known = Known.unionWith(Known2);
2229
2230 // Attempt to avoid multi-use ops if we don't need anything from them.
2231 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2232 !DemandedElts.isAllOnes()) {
2234 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2236 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2237 if (DemandedOp0 || DemandedOp1) {
2238 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2239 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2240 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2241 DemandedOp1, Op2);
2242 return TLO.CombineTo(Op, NewOp);
2243 }
2244 }
2245 }
2246
2247 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2248 if (isPowerOf2_32(BitWidth)) {
2249 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2250 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2251 Known2, TLO, Depth + 1))
2252 return true;
2253 }
2254 break;
2255 }
2256 case ISD::ROTL:
2257 case ISD::ROTR: {
2258 SDValue Op0 = Op.getOperand(0);
2259 SDValue Op1 = Op.getOperand(1);
2260 bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2261
2262 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2263 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2264 return TLO.CombineTo(Op, Op0);
2265
2266 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2267 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2268 unsigned RevAmt = BitWidth - Amt;
2269
2270 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2271 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2272 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2273 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2274 Depth + 1))
2275 return true;
2276
2277 // rot*(x, 0) --> x
2278 if (Amt == 0)
2279 return TLO.CombineTo(Op, Op0);
2280
2281 // See if we don't demand either half of the rotated bits.
2282 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2283 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2284 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2285 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2286 }
2287 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2288 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2289 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2290 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2291 }
2292 }
2293
2294 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2295 if (isPowerOf2_32(BitWidth)) {
2296 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2297 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2298 Depth + 1))
2299 return true;
2300 }
2301 break;
2302 }
2303 case ISD::SMIN:
2304 case ISD::SMAX:
2305 case ISD::UMIN:
2306 case ISD::UMAX: {
2307 unsigned Opc = Op.getOpcode();
2308 SDValue Op0 = Op.getOperand(0);
2309 SDValue Op1 = Op.getOperand(1);
2310
2311 // If we're only demanding signbits, then we can simplify to OR/AND node.
2312 unsigned BitOp =
2313 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2314 unsigned NumSignBits =
2315 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2316 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2317 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2318 if (NumSignBits >= NumDemandedUpperBits)
2319 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2320
2321 // Check if one arg is always less/greater than (or equal) to the other arg.
2322 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2323 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2324 switch (Opc) {
2325 case ISD::SMIN:
2326 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2327 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2328 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2329 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2330 Known = KnownBits::smin(Known0, Known1);
2331 break;
2332 case ISD::SMAX:
2333 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2334 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2335 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2336 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2337 Known = KnownBits::smax(Known0, Known1);
2338 break;
2339 case ISD::UMIN:
2340 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2341 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2342 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2343 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2344 Known = KnownBits::umin(Known0, Known1);
2345 break;
2346 case ISD::UMAX:
2347 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2348 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2349 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2350 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2351 Known = KnownBits::umax(Known0, Known1);
2352 break;
2353 }
2354 break;
2355 }
2356 case ISD::BITREVERSE: {
2357 SDValue Src = Op.getOperand(0);
2358 APInt DemandedSrcBits = DemandedBits.reverseBits();
2359 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2360 Depth + 1))
2361 return true;
2362 Known = Known2.reverseBits();
2363 break;
2364 }
2365 case ISD::BSWAP: {
2366 SDValue Src = Op.getOperand(0);
2367
2368 // If the only bits demanded come from one byte of the bswap result,
2369 // just shift the input byte into position to eliminate the bswap.
2370 unsigned NLZ = DemandedBits.countl_zero();
2371 unsigned NTZ = DemandedBits.countr_zero();
2372
2373 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
2374 // we need all the bits down to bit 8. Likewise, round NLZ. If we
2375 // have 14 leading zeros, round to 8.
2376 NLZ = alignDown(NLZ, 8);
2377 NTZ = alignDown(NTZ, 8);
2378 // If we need exactly one byte, we can do this transformation.
2379 if (BitWidth - NLZ - NTZ == 8) {
2380 // Replace this with either a left or right shift to get the byte into
2381 // the right place.
2382 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2383 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2384 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2385 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2386 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2387 return TLO.CombineTo(Op, NewOp);
2388 }
2389 }
2390
2391 APInt DemandedSrcBits = DemandedBits.byteSwap();
2392 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2393 Depth + 1))
2394 return true;
2395 Known = Known2.byteSwap();
2396 break;
2397 }
2398 case ISD::CTPOP: {
2399 // If only 1 bit is demanded, replace with PARITY as long as we're before
2400 // op legalization.
2401 // FIXME: Limit to scalars for now.
2402 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2403 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2404 Op.getOperand(0)));
2405
2406 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2407 break;
2408 }
2410 SDValue Op0 = Op.getOperand(0);
2411 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2412 unsigned ExVTBits = ExVT.getScalarSizeInBits();
2413
2414 // If we only care about the highest bit, don't bother shifting right.
2415 if (DemandedBits.isSignMask()) {
2416 unsigned MinSignedBits =
2417 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2418 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2419 // However if the input is already sign extended we expect the sign
2420 // extension to be dropped altogether later and do not simplify.
2421 if (!AlreadySignExtended) {
2422 // Compute the correct shift amount type, which must be getShiftAmountTy
2423 // for scalar types after legalization.
2424 SDValue ShiftAmt =
2425 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2426 return TLO.CombineTo(Op,
2427 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2428 }
2429 }
2430
2431 // If none of the extended bits are demanded, eliminate the sextinreg.
2432 if (DemandedBits.getActiveBits() <= ExVTBits)
2433 return TLO.CombineTo(Op, Op0);
2434
2435 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2436
2437 // Since the sign extended bits are demanded, we know that the sign
2438 // bit is demanded.
2439 InputDemandedBits.setBit(ExVTBits - 1);
2440
2441 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2442 Depth + 1))
2443 return true;
2444
2445 // If the sign bit of the input is known set or clear, then we know the
2446 // top bits of the result.
2447
2448 // If the input sign bit is known zero, convert this into a zero extension.
2449 if (Known.Zero[ExVTBits - 1])
2450 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2451
2452 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2453 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2454 Known.One.setBitsFrom(ExVTBits);
2455 Known.Zero &= Mask;
2456 } else { // Input sign bit unknown
2457 Known.Zero &= Mask;
2458 Known.One &= Mask;
2459 }
2460 break;
2461 }
2462 case ISD::BUILD_PAIR: {
2463 EVT HalfVT = Op.getOperand(0).getValueType();
2464 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2465
2466 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2467 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2468
2469 KnownBits KnownLo, KnownHi;
2470
2471 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2472 return true;
2473
2474 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2475 return true;
2476
2477 Known = KnownHi.concat(KnownLo);
2478 break;
2479 }
2481 if (VT.isScalableVector())
2482 return false;
2483 [[fallthrough]];
2484 case ISD::ZERO_EXTEND: {
2485 SDValue Src = Op.getOperand(0);
2486 EVT SrcVT = Src.getValueType();
2487 unsigned InBits = SrcVT.getScalarSizeInBits();
2488 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2489 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2490
2491 // If none of the top bits are demanded, convert this into an any_extend.
2492 if (DemandedBits.getActiveBits() <= InBits) {
2493 // If we only need the non-extended bits of the bottom element
2494 // then we can just bitcast to the result.
2495 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2496 VT.getSizeInBits() == SrcVT.getSizeInBits())
2497 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2498
2499 unsigned Opc =
2501 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2502 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2503 }
2504
2505 APInt InDemandedBits = DemandedBits.trunc(InBits);
2506 APInt InDemandedElts = DemandedElts.zext(InElts);
2507 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2508 Depth + 1)) {
2509 Op->dropFlags(SDNodeFlags::NonNeg);
2510 return true;
2511 }
2512 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2513 Known = Known.zext(BitWidth);
2514
2515 // Attempt to avoid multi-use ops if we don't need anything from them.
2517 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2518 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2519 break;
2520 }
2522 if (VT.isScalableVector())
2523 return false;
2524 [[fallthrough]];
2525 case ISD::SIGN_EXTEND: {
2526 SDValue Src = Op.getOperand(0);
2527 EVT SrcVT = Src.getValueType();
2528 unsigned InBits = SrcVT.getScalarSizeInBits();
2529 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2530 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2531
2532 APInt InDemandedElts = DemandedElts.zext(InElts);
2533 APInt InDemandedBits = DemandedBits.trunc(InBits);
2534
2535 // Since some of the sign extended bits are demanded, we know that the sign
2536 // bit is demanded.
2537 InDemandedBits.setBit(InBits - 1);
2538
2539 // If none of the top bits are demanded, convert this into an any_extend.
2540 if (DemandedBits.getActiveBits() <= InBits) {
2541 // If we only need the non-extended bits of the bottom element
2542 // then we can just bitcast to the result.
2543 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2544 VT.getSizeInBits() == SrcVT.getSizeInBits())
2545 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2546
2547 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2549 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2550 InBits) {
2551 unsigned Opc =
2553 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2554 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2555 }
2556 }
2557
2558 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2559 Depth + 1))
2560 return true;
2561 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2562
2563 // If the sign bit is known one, the top bits match.
2564 Known = Known.sext(BitWidth);
2565
2566 // If the sign bit is known zero, convert this to a zero extend.
2567 if (Known.isNonNegative()) {
2568 unsigned Opc =
2570 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2571 SDNodeFlags Flags;
2572 if (!IsVecInReg)
2573 Flags |= SDNodeFlags::NonNeg;
2574 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2575 }
2576 }
2577
2578 // Attempt to avoid multi-use ops if we don't need anything from them.
2580 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2581 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2582 break;
2583 }
2585 if (VT.isScalableVector())
2586 return false;
2587 [[fallthrough]];
2588 case ISD::ANY_EXTEND: {
2589 SDValue Src = Op.getOperand(0);
2590 EVT SrcVT = Src.getValueType();
2591 unsigned InBits = SrcVT.getScalarSizeInBits();
2592 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2593 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2594
2595 // If we only need the bottom element then we can just bitcast.
2596 // TODO: Handle ANY_EXTEND?
2597 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2598 VT.getSizeInBits() == SrcVT.getSizeInBits())
2599 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2600
2601 APInt InDemandedBits = DemandedBits.trunc(InBits);
2602 APInt InDemandedElts = DemandedElts.zext(InElts);
2603 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2604 Depth + 1))
2605 return true;
2606 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2607 Known = Known.anyext(BitWidth);
2608
2609 // Attempt to avoid multi-use ops if we don't need anything from them.
2611 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2612 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2613 break;
2614 }
2615 case ISD::TRUNCATE: {
2616 SDValue Src = Op.getOperand(0);
2617
2618 // Simplify the input, using demanded bit information, and compute the known
2619 // zero/one bits live out.
2620 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2621 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2622 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2623 Depth + 1)) {
2624 // Disable the nsw and nuw flags. We can no longer guarantee that we
2625 // won't wrap after simplification.
2626 Op->dropFlags(SDNodeFlags::NoWrap);
2627 return true;
2628 }
2629 Known = Known.trunc(BitWidth);
2630
2631 // Attempt to avoid multi-use ops if we don't need anything from them.
2633 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2634 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2635
2636 // If the input is only used by this truncate, see if we can shrink it based
2637 // on the known demanded bits.
2638 switch (Src.getOpcode()) {
2639 default:
2640 break;
2641 case ISD::SRL:
2642 // Shrink SRL by a constant if none of the high bits shifted in are
2643 // demanded.
2644 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2645 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2646 // undesirable.
2647 break;
2648
2649 if (Src.getNode()->hasOneUse()) {
2650 if (isTruncateFree(Src, VT) &&
2651 !isTruncateFree(Src.getValueType(), VT)) {
2652 // If truncate is only free at trunc(srl), do not turn it into
2653 // srl(trunc). The check is done by first check the truncate is free
2654 // at Src's opcode(srl), then check the truncate is not done by
2655 // referencing sub-register. In test, if both trunc(srl) and
2656 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2657 // trunc(srl)'s trunc is free, trunc(srl) is better.
2658 break;
2659 }
2660
2661 std::optional<unsigned> ShAmtC =
2662 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2663 if (!ShAmtC || *ShAmtC >= BitWidth)
2664 break;
2665 unsigned ShVal = *ShAmtC;
2666
2667 APInt HighBits =
2668 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2669 HighBits.lshrInPlace(ShVal);
2670 HighBits = HighBits.trunc(BitWidth);
2671 if (!(HighBits & DemandedBits)) {
2672 // None of the shifted in bits are needed. Add a truncate of the
2673 // shift input, then shift it.
2674 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2675 SDValue NewTrunc =
2676 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2677 return TLO.CombineTo(
2678 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2679 }
2680 }
2681 break;
2682 }
2683
2684 break;
2685 }
2686 case ISD::AssertZext: {
2687 // AssertZext demands all of the high bits, plus any of the low bits
2688 // demanded by its users.
2689 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2691 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2692 TLO, Depth + 1))
2693 return true;
2694
2695 Known.Zero |= ~InMask;
2696 Known.One &= (~Known.Zero);
2697 break;
2698 }
2700 SDValue Src = Op.getOperand(0);
2701 SDValue Idx = Op.getOperand(1);
2702 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2703 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2704
2705 if (SrcEltCnt.isScalable())
2706 return false;
2707
2708 // Demand the bits from every vector element without a constant index.
2709 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2710 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2711 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2712 if (CIdx->getAPIntValue().ult(NumSrcElts))
2713 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2714
2715 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2716 // anything about the extended bits.
2717 APInt DemandedSrcBits = DemandedBits;
2718 if (BitWidth > EltBitWidth)
2719 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2720
2721 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2722 Depth + 1))
2723 return true;
2724
2725 // Attempt to avoid multi-use ops if we don't need anything from them.
2726 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2727 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2728 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2729 SDValue NewOp =
2730 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2731 return TLO.CombineTo(Op, NewOp);
2732 }
2733 }
2734
2735 Known = Known2;
2736 if (BitWidth > EltBitWidth)
2737 Known = Known.anyext(BitWidth);
2738 break;
2739 }
2740 case ISD::BITCAST: {
2741 if (VT.isScalableVector())
2742 return false;
2743 SDValue Src = Op.getOperand(0);
2744 EVT SrcVT = Src.getValueType();
2745 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2746
2747 // If this is an FP->Int bitcast and if the sign bit is the only
2748 // thing demanded, turn this into a FGETSIGN.
2749 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2750 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2751 SrcVT.isFloatingPoint()) {
2752 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2753 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2754 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2755 SrcVT != MVT::f128) {
2756 // Cannot eliminate/lower SHL for f128 yet.
2757 EVT Ty = OpVTLegal ? VT : MVT::i32;
2758 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2759 // place. We expect the SHL to be eliminated by other optimizations.
2760 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2761 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2762 if (!OpVTLegal && OpVTSizeInBits > 32)
2763 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2764 unsigned ShVal = Op.getValueSizeInBits() - 1;
2765 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2766 return TLO.CombineTo(Op,
2767 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2768 }
2769 }
2770
2771 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2772 // Demand the elt/bit if any of the original elts/bits are demanded.
2773 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2774 unsigned Scale = BitWidth / NumSrcEltBits;
2775 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2776 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2777 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2778 for (unsigned i = 0; i != Scale; ++i) {
2779 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2780 unsigned BitOffset = EltOffset * NumSrcEltBits;
2781 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2782 if (!Sub.isZero()) {
2783 DemandedSrcBits |= Sub;
2784 for (unsigned j = 0; j != NumElts; ++j)
2785 if (DemandedElts[j])
2786 DemandedSrcElts.setBit((j * Scale) + i);
2787 }
2788 }
2789
2790 APInt KnownSrcUndef, KnownSrcZero;
2791 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2792 KnownSrcZero, TLO, Depth + 1))
2793 return true;
2794
2795 KnownBits KnownSrcBits;
2796 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2797 KnownSrcBits, TLO, Depth + 1))
2798 return true;
2799 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2800 // TODO - bigendian once we have test coverage.
2801 unsigned Scale = NumSrcEltBits / BitWidth;
2802 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2803 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2804 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2805 for (unsigned i = 0; i != NumElts; ++i)
2806 if (DemandedElts[i]) {
2807 unsigned Offset = (i % Scale) * BitWidth;
2808 DemandedSrcBits.insertBits(DemandedBits, Offset);
2809 DemandedSrcElts.setBit(i / Scale);
2810 }
2811
2812 if (SrcVT.isVector()) {
2813 APInt KnownSrcUndef, KnownSrcZero;
2814 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2815 KnownSrcZero, TLO, Depth + 1))
2816 return true;
2817 }
2818
2819 KnownBits KnownSrcBits;
2820 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2821 KnownSrcBits, TLO, Depth + 1))
2822 return true;
2823
2824 // Attempt to avoid multi-use ops if we don't need anything from them.
2825 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2826 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2827 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2828 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2829 return TLO.CombineTo(Op, NewOp);
2830 }
2831 }
2832 }
2833
2834 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
2835 // recursive call where Known may be useful to the caller.
2836 if (Depth > 0) {
2837 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2838 return false;
2839 }
2840 break;
2841 }
2842 case ISD::MUL:
2843 if (DemandedBits.isPowerOf2()) {
2844 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2845 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2846 // odd (has LSB set), then the left-shifted low bit of X is the answer.
2847 unsigned CTZ = DemandedBits.countr_zero();
2848 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2849 if (C && C->getAPIntValue().countr_zero() == CTZ) {
2850 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2851 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2852 return TLO.CombineTo(Op, Shl);
2853 }
2854 }
2855 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2856 // X * X is odd iff X is odd.
2857 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2858 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2859 SDValue One = TLO.DAG.getConstant(1, dl, VT);
2860 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2861 return TLO.CombineTo(Op, And1);
2862 }
2863 [[fallthrough]];
2864 case ISD::PTRADD:
2865 if (Op.getOperand(0).getValueType() != Op.getOperand(1).getValueType())
2866 break;
2867 // PTRADD behaves like ADD if pointers are represented as integers.
2868 [[fallthrough]];
2869 case ISD::ADD:
2870 case ISD::SUB: {
2871 // Add, Sub, and Mul don't demand any bits in positions beyond that
2872 // of the highest bit demanded of them.
2873 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2874 SDNodeFlags Flags = Op.getNode()->getFlags();
2875 unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2876 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2877 KnownBits KnownOp0, KnownOp1;
2878 auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2879 const KnownBits &KnownRHS) {
2880 if (Op.getOpcode() == ISD::MUL)
2881 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2882 return Demanded;
2883 };
2884 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2885 Depth + 1) ||
2886 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2887 DemandedElts, KnownOp0, TLO, Depth + 1) ||
2888 // See if the operation should be performed at a smaller bit width.
2890 // Disable the nsw and nuw flags. We can no longer guarantee that we
2891 // won't wrap after simplification.
2892 Op->dropFlags(SDNodeFlags::NoWrap);
2893 return true;
2894 }
2895
2896 // neg x with only low bit demanded is simply x.
2897 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2898 isNullConstant(Op0))
2899 return TLO.CombineTo(Op, Op1);
2900
2901 // Attempt to avoid multi-use ops if we don't need anything from them.
2902 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2904 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2906 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2907 if (DemandedOp0 || DemandedOp1) {
2908 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2909 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2910 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2911 Flags & ~SDNodeFlags::NoWrap);
2912 return TLO.CombineTo(Op, NewOp);
2913 }
2914 }
2915
2916 // If we have a constant operand, we may be able to turn it into -1 if we
2917 // do not demand the high bits. This can make the constant smaller to
2918 // encode, allow more general folding, or match specialized instruction
2919 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2920 // is probably not useful (and could be detrimental).
2922 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2923 if (C && !C->isAllOnes() && !C->isOne() &&
2924 (C->getAPIntValue() | HighMask).isAllOnes()) {
2925 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2926 // Disable the nsw and nuw flags. We can no longer guarantee that we
2927 // won't wrap after simplification.
2928 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2929 Flags & ~SDNodeFlags::NoWrap);
2930 return TLO.CombineTo(Op, NewOp);
2931 }
2932
2933 // Match a multiply with a disguised negated-power-of-2 and convert to a
2934 // an equivalent shift-left amount.
2935 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2936 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2937 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2938 return 0;
2939
2940 // Don't touch opaque constants. Also, ignore zero and power-of-2
2941 // multiplies. Those will get folded later.
2942 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2943 if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2944 !MulC->getAPIntValue().isPowerOf2()) {
2945 APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2946 if (UnmaskedC.isNegatedPowerOf2())
2947 return (-UnmaskedC).logBase2();
2948 }
2949 return 0;
2950 };
2951
2952 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2953 unsigned ShlAmt) {
2954 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2955 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2956 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2957 return TLO.CombineTo(Op, Res);
2958 };
2959
2961 if (Op.getOpcode() == ISD::ADD) {
2962 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2963 if (unsigned ShAmt = getShiftLeftAmt(Op0))
2964 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2965 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2966 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2967 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2968 }
2969 if (Op.getOpcode() == ISD::SUB) {
2970 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2971 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2972 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2973 }
2974 }
2975
2976 if (Op.getOpcode() == ISD::MUL) {
2977 Known = KnownBits::mul(KnownOp0, KnownOp1);
2978 } else { // Op.getOpcode() is either ISD::ADD, ISD::PTRADD, or ISD::SUB.
2980 Op.getOpcode() != ISD::SUB, Flags.hasNoSignedWrap(),
2981 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2982 }
2983 break;
2984 }
2985 case ISD::FABS: {
2986 SDValue Op0 = Op.getOperand(0);
2987 APInt SignMask = APInt::getSignMask(BitWidth);
2988
2989 if (!DemandedBits.intersects(SignMask))
2990 return TLO.CombineTo(Op, Op0);
2991
2992 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known, TLO,
2993 Depth + 1))
2994 return true;
2995
2996 if (Known.isNonNegative())
2997 return TLO.CombineTo(Op, Op0);
2998 if (Known.isNegative())
2999 return TLO.CombineTo(
3000 Op, TLO.DAG.getNode(ISD::FNEG, dl, VT, Op0, Op->getFlags()));
3001
3002 Known.Zero |= SignMask;
3003 Known.One &= ~SignMask;
3004
3005 break;
3006 }
3007 case ISD::FCOPYSIGN: {
3008 SDValue Op0 = Op.getOperand(0);
3009 SDValue Op1 = Op.getOperand(1);
3010
3011 unsigned BitWidth0 = Op0.getScalarValueSizeInBits();
3012 unsigned BitWidth1 = Op1.getScalarValueSizeInBits();
3013 APInt SignMask0 = APInt::getSignMask(BitWidth0);
3014 APInt SignMask1 = APInt::getSignMask(BitWidth1);
3015
3016 if (!DemandedBits.intersects(SignMask0))
3017 return TLO.CombineTo(Op, Op0);
3018
3019 if (SimplifyDemandedBits(Op0, ~SignMask0 & DemandedBits, DemandedElts,
3020 Known, TLO, Depth + 1) ||
3021 SimplifyDemandedBits(Op1, SignMask1, DemandedElts, Known2, TLO,
3022 Depth + 1))
3023 return true;
3024
3025 if (Known2.isNonNegative())
3026 return TLO.CombineTo(
3027 Op, TLO.DAG.getNode(ISD::FABS, dl, VT, Op0, Op->getFlags()));
3028
3029 if (Known2.isNegative())
3030 return TLO.CombineTo(
3031 Op, TLO.DAG.getNode(ISD::FNEG, dl, VT,
3032 TLO.DAG.getNode(ISD::FABS, SDLoc(Op0), VT, Op0)));
3033
3034 Known.Zero &= ~SignMask0;
3035 Known.One &= ~SignMask0;
3036 break;
3037 }
3038 case ISD::FNEG: {
3039 SDValue Op0 = Op.getOperand(0);
3040 APInt SignMask = APInt::getSignMask(BitWidth);
3041
3042 if (!DemandedBits.intersects(SignMask))
3043 return TLO.CombineTo(Op, Op0);
3044
3045 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known, TLO,
3046 Depth + 1))
3047 return true;
3048
3049 if (!Known.isSignUnknown()) {
3050 Known.Zero ^= SignMask;
3051 Known.One ^= SignMask;
3052 }
3053
3054 break;
3055 }
3056 default:
3057 // We also ask the target about intrinsics (which could be specific to it).
3058 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3059 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
3060 // TODO: Probably okay to remove after audit; here to reduce change size
3061 // in initial enablement patch for scalable vectors
3062 if (Op.getValueType().isScalableVector())
3063 break;
3065 Known, TLO, Depth))
3066 return true;
3067 break;
3068 }
3069
3070 // Just use computeKnownBits to compute output bits.
3071 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
3072 break;
3073 }
3074
3075 // If we know the value of all of the demanded bits, return this as a
3076 // constant.
3078 DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
3079 // Avoid folding to a constant if any OpaqueConstant is involved.
3080 if (llvm::any_of(Op->ops(), [](SDValue V) {
3081 auto *C = dyn_cast<ConstantSDNode>(V);
3082 return C && C->isOpaque();
3083 }))
3084 return false;
3085 if (VT.isInteger())
3086 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
3087 if (VT.isFloatingPoint())
3088 return TLO.CombineTo(
3089 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
3090 dl, VT));
3091 }
3092
3093 // A multi use 'all demanded elts' simplify failed to find any knownbits.
3094 // Try again just for the original demanded elts.
3095 // Ensure we do this AFTER constant folding above.
3096 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
3097 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
3098
3099 return false;
3100}
3101
3103 const APInt &DemandedElts,
3104 DAGCombinerInfo &DCI) const {
3105 SelectionDAG &DAG = DCI.DAG;
3106 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3107 !DCI.isBeforeLegalizeOps());
3108
3109 APInt KnownUndef, KnownZero;
3110 bool Simplified =
3111 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
3112 if (Simplified) {
3113 DCI.AddToWorklist(Op.getNode());
3114 DCI.CommitTargetLoweringOpt(TLO);
3115 }
3116
3117 return Simplified;
3118}
3119
3120/// Given a vector binary operation and known undefined elements for each input
3121/// operand, compute whether each element of the output is undefined.
3123 const APInt &UndefOp0,
3124 const APInt &UndefOp1) {
3125 EVT VT = BO.getValueType();
3127 "Vector binop only");
3128
3129 EVT EltVT = VT.getVectorElementType();
3130 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3131 assert(UndefOp0.getBitWidth() == NumElts &&
3132 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3133
3134 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3135 const APInt &UndefVals) {
3136 if (UndefVals[Index])
3137 return DAG.getUNDEF(EltVT);
3138
3139 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3140 // Try hard to make sure that the getNode() call is not creating temporary
3141 // nodes. Ignore opaque integers because they do not constant fold.
3142 SDValue Elt = BV->getOperand(Index);
3143 auto *C = dyn_cast<ConstantSDNode>(Elt);
3144 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3145 return Elt;
3146 }
3147
3148 return SDValue();
3149 };
3150
3151 APInt KnownUndef = APInt::getZero(NumElts);
3152 for (unsigned i = 0; i != NumElts; ++i) {
3153 // If both inputs for this element are either constant or undef and match
3154 // the element type, compute the constant/undef result for this element of
3155 // the vector.
3156 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3157 // not handle FP constants. The code within getNode() should be refactored
3158 // to avoid the danger of creating a bogus temporary node here.
3159 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3160 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3161 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3162 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3163 KnownUndef.setBit(i);
3164 }
3165 return KnownUndef;
3166}
3167
3169 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3170 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3171 bool AssumeSingleUse) const {
3172 EVT VT = Op.getValueType();
3173 unsigned Opcode = Op.getOpcode();
3174 APInt DemandedElts = OriginalDemandedElts;
3175 unsigned NumElts = DemandedElts.getBitWidth();
3176 assert(VT.isVector() && "Expected vector op");
3177
3178 KnownUndef = KnownZero = APInt::getZero(NumElts);
3179
3181 return false;
3182
3183 // TODO: For now we assume we know nothing about scalable vectors.
3184 if (VT.isScalableVector())
3185 return false;
3186
3187 assert(VT.getVectorNumElements() == NumElts &&
3188 "Mask size mismatches value type element count!");
3189
3190 // Undef operand.
3191 if (Op.isUndef()) {
3192 KnownUndef.setAllBits();
3193 return false;
3194 }
3195
3196 // If Op has other users, assume that all elements are needed.
3197 if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3198 DemandedElts.setAllBits();
3199
3200 // Not demanding any elements from Op.
3201 if (DemandedElts == 0) {
3202 KnownUndef.setAllBits();
3203 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3204 }
3205
3206 // Limit search depth.
3208 return false;
3209
3210 SDLoc DL(Op);
3211 unsigned EltSizeInBits = VT.getScalarSizeInBits();
3212 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3213
3214 // Helper for demanding the specified elements and all the bits of both binary
3215 // operands.
3216 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3217 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3218 TLO.DAG, Depth + 1);
3219 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3220 TLO.DAG, Depth + 1);
3221 if (NewOp0 || NewOp1) {
3222 SDValue NewOp =
3223 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3224 NewOp1 ? NewOp1 : Op1, Op->getFlags());
3225 return TLO.CombineTo(Op, NewOp);
3226 }
3227 return false;
3228 };
3229
3230 switch (Opcode) {
3231 case ISD::SCALAR_TO_VECTOR: {
3232 if (!DemandedElts[0]) {
3233 KnownUndef.setAllBits();
3234 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3235 }
3236 KnownUndef.setHighBits(NumElts - 1);
3237 break;
3238 }
3239 case ISD::BITCAST: {
3240 SDValue Src = Op.getOperand(0);
3241 EVT SrcVT = Src.getValueType();
3242
3243 if (!SrcVT.isVector()) {
3244 // TODO - bigendian once we have test coverage.
3245 if (IsLE) {
3246 APInt DemandedSrcBits = APInt::getZero(SrcVT.getSizeInBits());
3247 unsigned EltSize = VT.getScalarSizeInBits();
3248 for (unsigned I = 0; I != NumElts; ++I) {
3249 if (DemandedElts[I]) {
3250 unsigned Offset = I * EltSize;
3251 DemandedSrcBits.setBits(Offset, Offset + EltSize);
3252 }
3253 }
3254 KnownBits Known;
3255 if (SimplifyDemandedBits(Src, DemandedSrcBits, Known, TLO, Depth + 1))
3256 return true;
3257 }
3258 break;
3259 }
3260
3261 // Fast handling of 'identity' bitcasts.
3262 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3263 if (NumSrcElts == NumElts)
3264 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3265 KnownZero, TLO, Depth + 1);
3266
3267 APInt SrcDemandedElts, SrcZero, SrcUndef;
3268
3269 // Bitcast from 'large element' src vector to 'small element' vector, we
3270 // must demand a source element if any DemandedElt maps to it.
3271 if ((NumElts % NumSrcElts) == 0) {
3272 unsigned Scale = NumElts / NumSrcElts;
3273 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3274 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3275 TLO, Depth + 1))
3276 return true;
3277
3278 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3279 // of the large element.
3280 // TODO - bigendian once we have test coverage.
3281 if (IsLE) {
3282 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3283 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3284 for (unsigned i = 0; i != NumElts; ++i)
3285 if (DemandedElts[i]) {
3286 unsigned Ofs = (i % Scale) * EltSizeInBits;
3287 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3288 }
3289
3290 KnownBits Known;
3291 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3292 TLO, Depth + 1))
3293 return true;
3294
3295 // The bitcast has split each wide element into a number of
3296 // narrow subelements. We have just computed the Known bits
3297 // for wide elements. See if element splitting results in
3298 // some subelements being zero. Only for demanded elements!
3299 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3300 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3301 .isAllOnes())
3302 continue;
3303 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3304 unsigned Elt = Scale * SrcElt + SubElt;
3305 if (DemandedElts[Elt])
3306 KnownZero.setBit(Elt);
3307 }
3308 }
3309 }
3310
3311 // If the src element is zero/undef then all the output elements will be -
3312 // only demanded elements are guaranteed to be correct.
3313 for (unsigned i = 0; i != NumSrcElts; ++i) {
3314 if (SrcDemandedElts[i]) {
3315 if (SrcZero[i])
3316 KnownZero.setBits(i * Scale, (i + 1) * Scale);
3317 if (SrcUndef[i])
3318 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3319 }
3320 }
3321 }
3322
3323 // Bitcast from 'small element' src vector to 'large element' vector, we
3324 // demand all smaller source elements covered by the larger demanded element
3325 // of this vector.
3326 if ((NumSrcElts % NumElts) == 0) {
3327 unsigned Scale = NumSrcElts / NumElts;
3328 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3329 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3330 TLO, Depth + 1))
3331 return true;
3332
3333 // If all the src elements covering an output element are zero/undef, then
3334 // the output element will be as well, assuming it was demanded.
3335 for (unsigned i = 0; i != NumElts; ++i) {
3336 if (DemandedElts[i]) {
3337 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3338 KnownZero.setBit(i);
3339 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3340 KnownUndef.setBit(i);
3341 }
3342 }
3343 }
3344 break;
3345 }
3346 case ISD::FREEZE: {
3347 SDValue N0 = Op.getOperand(0);
3348 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3349 /*PoisonOnly=*/false,
3350 Depth + 1))
3351 return TLO.CombineTo(Op, N0);
3352
3353 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3354 // freeze(op(x, ...)) -> op(freeze(x), ...).
3355 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3356 return TLO.CombineTo(
3358 TLO.DAG.getFreeze(N0.getOperand(0))));
3359 break;
3360 }
3361 case ISD::BUILD_VECTOR: {
3362 // Check all elements and simplify any unused elements with UNDEF.
3363 if (!DemandedElts.isAllOnes()) {
3364 // Don't simplify BROADCASTS.
3365 if (llvm::any_of(Op->op_values(),
3366 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3368 bool Updated = false;
3369 for (unsigned i = 0; i != NumElts; ++i) {
3370 if (!DemandedElts[i] && !Ops[i].isUndef()) {
3371 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3372 KnownUndef.setBit(i);
3373 Updated = true;
3374 }
3375 }
3376 if (Updated)
3377 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3378 }
3379 }
3380 for (unsigned i = 0; i != NumElts; ++i) {
3381 SDValue SrcOp = Op.getOperand(i);
3382 if (SrcOp.isUndef()) {
3383 KnownUndef.setBit(i);
3384 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3386 KnownZero.setBit(i);
3387 }
3388 }
3389 break;
3390 }
3391 case ISD::CONCAT_VECTORS: {
3392 EVT SubVT = Op.getOperand(0).getValueType();
3393 unsigned NumSubVecs = Op.getNumOperands();
3394 unsigned NumSubElts = SubVT.getVectorNumElements();
3395 for (unsigned i = 0; i != NumSubVecs; ++i) {
3396 SDValue SubOp = Op.getOperand(i);
3397 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3398 APInt SubUndef, SubZero;
3399 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3400 Depth + 1))
3401 return true;
3402 KnownUndef.insertBits(SubUndef, i * NumSubElts);
3403 KnownZero.insertBits(SubZero, i * NumSubElts);
3404 }
3405
3406 // Attempt to avoid multi-use ops if we don't need anything from them.
3407 if (!DemandedElts.isAllOnes()) {
3408 bool FoundNewSub = false;
3409 SmallVector<SDValue, 2> DemandedSubOps;
3410 for (unsigned i = 0; i != NumSubVecs; ++i) {
3411 SDValue SubOp = Op.getOperand(i);
3412 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3414 SubOp, SubElts, TLO.DAG, Depth + 1);
3415 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3416 FoundNewSub = NewSubOp ? true : FoundNewSub;
3417 }
3418 if (FoundNewSub) {
3419 SDValue NewOp =
3420 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3421 return TLO.CombineTo(Op, NewOp);
3422 }
3423 }
3424 break;
3425 }
3426 case ISD::INSERT_SUBVECTOR: {
3427 // Demand any elements from the subvector and the remainder from the src it
3428 // is inserted into.
3429 SDValue Src = Op.getOperand(0);
3430 SDValue Sub = Op.getOperand(1);
3431 uint64_t Idx = Op.getConstantOperandVal(2);
3432 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3433 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3434 APInt DemandedSrcElts = DemandedElts;
3435 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3436
3437 // If none of the sub operand elements are demanded, bypass the insert.
3438 if (!DemandedSubElts)
3439 return TLO.CombineTo(Op, Src);
3440
3441 APInt SubUndef, SubZero;
3442 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3443 Depth + 1))
3444 return true;
3445
3446 // If none of the src operand elements are demanded, replace it with undef.
3447 if (!DemandedSrcElts && !Src.isUndef())
3448 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3449 TLO.DAG.getUNDEF(VT), Sub,
3450 Op.getOperand(2)));
3451
3452 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3453 TLO, Depth + 1))
3454 return true;
3455 KnownUndef.insertBits(SubUndef, Idx);
3456 KnownZero.insertBits(SubZero, Idx);
3457
3458 // Attempt to avoid multi-use ops if we don't need anything from them.
3459 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3461 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3463 Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3464 if (NewSrc || NewSub) {
3465 NewSrc = NewSrc ? NewSrc : Src;
3466 NewSub = NewSub ? NewSub : Sub;
3467 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3468 NewSub, Op.getOperand(2));
3469 return TLO.CombineTo(Op, NewOp);
3470 }
3471 }
3472 break;
3473 }
3475 // Offset the demanded elts by the subvector index.
3476 SDValue Src = Op.getOperand(0);
3477 if (Src.getValueType().isScalableVector())
3478 break;
3479 uint64_t Idx = Op.getConstantOperandVal(1);
3480 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3481 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3482
3483 APInt SrcUndef, SrcZero;
3484 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3485 Depth + 1))
3486 return true;
3487 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3488 KnownZero = SrcZero.extractBits(NumElts, Idx);
3489
3490 // Attempt to avoid multi-use ops if we don't need anything from them.
3491 if (!DemandedElts.isAllOnes()) {
3493 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3494 if (NewSrc) {
3495 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3496 Op.getOperand(1));
3497 return TLO.CombineTo(Op, NewOp);
3498 }
3499 }
3500 break;
3501 }
3503 SDValue Vec = Op.getOperand(0);
3504 SDValue Scl = Op.getOperand(1);
3505 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3506
3507 // For a legal, constant insertion index, if we don't need this insertion
3508 // then strip it, else remove it from the demanded elts.
3509 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3510 unsigned Idx = CIdx->getZExtValue();
3511 if (!DemandedElts[Idx])
3512 return TLO.CombineTo(Op, Vec);
3513
3514 APInt DemandedVecElts(DemandedElts);
3515 DemandedVecElts.clearBit(Idx);
3516 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3517 KnownZero, TLO, Depth + 1))
3518 return true;
3519
3520 KnownUndef.setBitVal(Idx, Scl.isUndef());
3521
3522 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3523 break;
3524 }
3525
3526 APInt VecUndef, VecZero;
3527 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3528 Depth + 1))
3529 return true;
3530 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3531 break;
3532 }
3533 case ISD::VSELECT: {
3534 SDValue Sel = Op.getOperand(0);
3535 SDValue LHS = Op.getOperand(1);
3536 SDValue RHS = Op.getOperand(2);
3537
3538 // Try to transform the select condition based on the current demanded
3539 // elements.
3540 APInt UndefSel, ZeroSel;
3541 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3542 Depth + 1))
3543 return true;
3544
3545 // See if we can simplify either vselect operand.
3546 APInt DemandedLHS(DemandedElts);
3547 APInt DemandedRHS(DemandedElts);
3548 APInt UndefLHS, ZeroLHS;
3549 APInt UndefRHS, ZeroRHS;
3550 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3551 Depth + 1))
3552 return true;
3553 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3554 Depth + 1))
3555 return true;
3556
3557 KnownUndef = UndefLHS & UndefRHS;
3558 KnownZero = ZeroLHS & ZeroRHS;
3559
3560 // If we know that the selected element is always zero, we don't need the
3561 // select value element.
3562 APInt DemandedSel = DemandedElts & ~KnownZero;
3563 if (DemandedSel != DemandedElts)
3564 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3565 Depth + 1))
3566 return true;
3567
3568 break;
3569 }
3570 case ISD::VECTOR_SHUFFLE: {
3571 SDValue LHS = Op.getOperand(0);
3572 SDValue RHS = Op.getOperand(1);
3573 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3574
3575 // Collect demanded elements from shuffle operands..
3576 APInt DemandedLHS(NumElts, 0);
3577 APInt DemandedRHS(NumElts, 0);
3578 for (unsigned i = 0; i != NumElts; ++i) {
3579 int M = ShuffleMask[i];
3580 if (M < 0 || !DemandedElts[i])
3581 continue;
3582 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3583 if (M < (int)NumElts)
3584 DemandedLHS.setBit(M);
3585 else
3586 DemandedRHS.setBit(M - NumElts);
3587 }
3588
3589 // If either side isn't demanded, replace it by UNDEF. We handle this
3590 // explicitly here to also simplify in case of multiple uses (on the
3591 // contrary to the SimplifyDemandedVectorElts calls below).
3592 bool FoldLHS = !DemandedLHS && !LHS.isUndef();
3593 bool FoldRHS = !DemandedRHS && !RHS.isUndef();
3594 if (FoldLHS || FoldRHS) {
3595 LHS = FoldLHS ? TLO.DAG.getUNDEF(LHS.getValueType()) : LHS;
3596 RHS = FoldRHS ? TLO.DAG.getUNDEF(RHS.getValueType()) : RHS;
3597 SDValue NewOp =
3598 TLO.DAG.getVectorShuffle(VT, SDLoc(Op), LHS, RHS, ShuffleMask);
3599 return TLO.CombineTo(Op, NewOp);
3600 }
3601
3602 // See if we can simplify either shuffle operand.
3603 APInt UndefLHS, ZeroLHS;
3604 APInt UndefRHS, ZeroRHS;
3605 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3606 Depth + 1))
3607 return true;
3608 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3609 Depth + 1))
3610 return true;
3611
3612 // Simplify mask using undef elements from LHS/RHS.
3613 bool Updated = false;
3614 bool IdentityLHS = true, IdentityRHS = true;
3615 SmallVector<int, 32> NewMask(ShuffleMask);
3616 for (unsigned i = 0; i != NumElts; ++i) {
3617 int &M = NewMask[i];
3618 if (M < 0)
3619 continue;
3620 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3621 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3622 Updated = true;
3623 M = -1;
3624 }
3625 IdentityLHS &= (M < 0) || (M == (int)i);
3626 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3627 }
3628
3629 // Update legal shuffle masks based on demanded elements if it won't reduce
3630 // to Identity which can cause premature removal of the shuffle mask.
3631 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3632 SDValue LegalShuffle =
3633 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3634 if (LegalShuffle)
3635 return TLO.CombineTo(Op, LegalShuffle);
3636 }
3637
3638 // Propagate undef/zero elements from LHS/RHS.
3639 for (unsigned i = 0; i != NumElts; ++i) {
3640 int M = ShuffleMask[i];
3641 if (M < 0) {
3642 KnownUndef.setBit(i);
3643 } else if (M < (int)NumElts) {
3644 if (UndefLHS[M])
3645 KnownUndef.setBit(i);
3646 if (ZeroLHS[M])
3647 KnownZero.setBit(i);
3648 } else {
3649 if (UndefRHS[M - NumElts])
3650 KnownUndef.setBit(i);
3651 if (ZeroRHS[M - NumElts])
3652 KnownZero.setBit(i);
3653 }
3654 }
3655 break;
3656 }
3660 APInt SrcUndef, SrcZero;
3661 SDValue Src = Op.getOperand(0);
3662 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3663 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3664 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3665 Depth + 1))
3666 return true;
3667 KnownZero = SrcZero.zextOrTrunc(NumElts);
3668 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3669
3670 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3671 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3672 DemandedSrcElts == 1) {
3673 // aext - if we just need the bottom element then we can bitcast.
3674 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3675 }
3676
3677 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3678 // zext(undef) upper bits are guaranteed to be zero.
3679 if (DemandedElts.isSubsetOf(KnownUndef))
3680 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3681 KnownUndef.clearAllBits();
3682
3683 // zext - if we just need the bottom element then we can mask:
3684 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3685 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3686 Op->isOnlyUserOf(Src.getNode()) &&
3687 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3688 SDLoc DL(Op);
3689 EVT SrcVT = Src.getValueType();
3690 EVT SrcSVT = SrcVT.getScalarType();
3691 SmallVector<SDValue> MaskElts;
3692 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3693 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3694 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3695 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3696 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3697 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3698 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3699 }
3700 }
3701 }
3702 break;
3703 }
3704
3705 // TODO: There are more binop opcodes that could be handled here - MIN,
3706 // MAX, saturated math, etc.
3707 case ISD::ADD: {
3708 SDValue Op0 = Op.getOperand(0);
3709 SDValue Op1 = Op.getOperand(1);
3710 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3711 APInt UndefLHS, ZeroLHS;
3712 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3713 Depth + 1, /*AssumeSingleUse*/ true))
3714 return true;
3715 }
3716 [[fallthrough]];
3717 }
3718 case ISD::AVGCEILS:
3719 case ISD::AVGCEILU:
3720 case ISD::AVGFLOORS:
3721 case ISD::AVGFLOORU:
3722 case ISD::OR:
3723 case ISD::XOR:
3724 case ISD::SUB:
3725 case ISD::FADD:
3726 case ISD::FSUB:
3727 case ISD::FMUL:
3728 case ISD::FDIV:
3729 case ISD::FREM: {
3730 SDValue Op0 = Op.getOperand(0);
3731 SDValue Op1 = Op.getOperand(1);
3732
3733 APInt UndefRHS, ZeroRHS;
3734 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3735 Depth + 1))
3736 return true;
3737 APInt UndefLHS, ZeroLHS;
3738 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3739 Depth + 1))
3740 return true;
3741
3742 KnownZero = ZeroLHS & ZeroRHS;
3743 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3744
3745 // Attempt to avoid multi-use ops if we don't need anything from them.
3746 // TODO - use KnownUndef to relax the demandedelts?
3747 if (!DemandedElts.isAllOnes())
3748 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3749 return true;
3750 break;
3751 }
3752 case ISD::SHL:
3753 case ISD::SRL:
3754 case ISD::SRA:
3755 case ISD::ROTL:
3756 case ISD::ROTR: {
3757 SDValue Op0 = Op.getOperand(0);
3758 SDValue Op1 = Op.getOperand(1);
3759
3760 APInt UndefRHS, ZeroRHS;
3761 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3762 Depth + 1))
3763 return true;
3764 APInt UndefLHS, ZeroLHS;
3765 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3766 Depth + 1))
3767 return true;
3768
3769 KnownZero = ZeroLHS;
3770 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3771
3772 // Attempt to avoid multi-use ops if we don't need anything from them.
3773 // TODO - use KnownUndef to relax the demandedelts?
3774 if (!DemandedElts.isAllOnes())
3775 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3776 return true;
3777 break;
3778 }
3779 case ISD::MUL:
3780 case ISD::MULHU:
3781 case ISD::MULHS:
3782 case ISD::AND: {
3783 SDValue Op0 = Op.getOperand(0);
3784 SDValue Op1 = Op.getOperand(1);
3785
3786 APInt SrcUndef, SrcZero;
3787 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3788 Depth + 1))
3789 return true;
3790 // If we know that a demanded element was zero in Op1 we don't need to
3791 // demand it in Op0 - its guaranteed to be zero.
3792 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3793 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3794 TLO, Depth + 1))
3795 return true;
3796
3797 KnownUndef &= DemandedElts0;
3798 KnownZero &= DemandedElts0;
3799
3800 // If every element pair has a zero/undef then just fold to zero.
3801 // fold (and x, undef) -> 0 / (and x, 0) -> 0
3802 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0
3803 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3804 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3805
3806 // If either side has a zero element, then the result element is zero, even
3807 // if the other is an UNDEF.
3808 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3809 // and then handle 'and' nodes with the rest of the binop opcodes.
3810 KnownZero |= SrcZero;
3811 KnownUndef &= SrcUndef;
3812 KnownUndef &= ~KnownZero;
3813
3814 // Attempt to avoid multi-use ops if we don't need anything from them.
3815 if (!DemandedElts.isAllOnes())
3816 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3817 return true;
3818 break;
3819 }
3820 case ISD::TRUNCATE:
3821 case ISD::SIGN_EXTEND:
3822 case ISD::ZERO_EXTEND:
3823 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3824 KnownZero, TLO, Depth + 1))
3825 return true;
3826
3827 if (!DemandedElts.isAllOnes())
3829 Op.getOperand(0), DemandedElts, TLO.DAG, Depth + 1))
3830 return TLO.CombineTo(Op, TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp));
3831
3832 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3833 // zext(undef) upper bits are guaranteed to be zero.
3834 if (DemandedElts.isSubsetOf(KnownUndef))
3835 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3836 KnownUndef.clearAllBits();
3837 }
3838 break;
3839 case ISD::SINT_TO_FP:
3840 case ISD::UINT_TO_FP:
3841 case ISD::FP_TO_SINT:
3842 case ISD::FP_TO_UINT:
3843 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3844 KnownZero, TLO, Depth + 1))
3845 return true;
3846 // Don't fall through to generic undef -> undef handling.
3847 return false;
3848 default: {
3849 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3850 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3851 KnownZero, TLO, Depth))
3852 return true;
3853 } else {
3854 KnownBits Known;
3855 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3856 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3857 TLO, Depth, AssumeSingleUse))
3858 return true;
3859 }
3860 break;
3861 }
3862 }
3863 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3864
3865 // Constant fold all undef cases.
3866 // TODO: Handle zero cases as well.
3867 if (DemandedElts.isSubsetOf(KnownUndef))
3868 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3869
3870 return false;
3871}
3872
3873/// Determine which of the bits specified in Mask are known to be either zero or
3874/// one and return them in the Known.
3876 KnownBits &Known,
3877 const APInt &DemandedElts,
3878 const SelectionDAG &DAG,
3879 unsigned Depth) const {
3880 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3881 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3882 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3883 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3884 "Should use MaskedValueIsZero if you don't know whether Op"
3885 " is a target node!");
3886 Known.resetAll();
3887}
3888
3891 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3892 unsigned Depth) const {
3893 Known.resetAll();
3894}
3895
3898 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3899 unsigned Depth) const {
3900 Known.resetAll();
3901}
3902
3904 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3905 // The low bits are known zero if the pointer is aligned.
3906 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3907}
3908
3914
3915/// This method can be implemented by targets that want to expose additional
3916/// information about sign bits to the DAG Combiner.
3918 const APInt &,
3919 const SelectionDAG &,
3920 unsigned Depth) const {
3921 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3922 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3923 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3924 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3925 "Should use ComputeNumSignBits if you don't know whether Op"
3926 " is a target node!");
3927 return 1;
3928}
3929
3931 GISelValueTracking &Analysis, Register R, const APInt &DemandedElts,
3932 const MachineRegisterInfo &MRI, unsigned Depth) const {
3933 return 1;
3934}
3935
3937 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3938 TargetLoweringOpt &TLO, unsigned Depth) const {
3939 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3940 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3941 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3942 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3943 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3944 " is a target node!");
3945 return false;
3946}
3947
3949 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3950 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3951 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3952 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3953 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3954 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3955 "Should use SimplifyDemandedBits if you don't know whether Op"
3956 " is a target node!");
3957 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3958 return false;
3959}
3960
3962 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3963 SelectionDAG &DAG, unsigned Depth) const {
3964 assert(
3965 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3966 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3967 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3968 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3969 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3970 " is a target node!");
3971 return SDValue();
3972}
3973
3974SDValue
3977 SelectionDAG &DAG) const {
3978 bool LegalMask = isShuffleMaskLegal(Mask, VT);
3979 if (!LegalMask) {
3980 std::swap(N0, N1);
3982 LegalMask = isShuffleMaskLegal(Mask, VT);
3983 }
3984
3985 if (!LegalMask)
3986 return SDValue();
3987
3988 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3989}
3990
3992 return nullptr;
3993}
3994
3996 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3997 bool PoisonOnly, unsigned Depth) const {
3998 assert(
3999 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4000 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4001 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4002 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4003 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
4004 " is a target node!");
4005
4006 // If Op can't create undef/poison and none of its operands are undef/poison
4007 // then Op is never undef/poison.
4008 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
4009 /*ConsiderFlags*/ true, Depth) &&
4010 all_of(Op->ops(), [&](SDValue V) {
4011 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
4012 Depth + 1);
4013 });
4014}
4015
4017 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4018 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
4019 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4020 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4021 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4022 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4023 "Should use canCreateUndefOrPoison if you don't know whether Op"
4024 " is a target node!");
4025 // Be conservative and return true.
4026 return true;
4027}
4028
4030 const APInt &DemandedElts,
4031 const SelectionDAG &DAG,
4032 bool SNaN,
4033 unsigned Depth) const {
4034 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4035 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4036 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4037 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4038 "Should use isKnownNeverNaN if you don't know whether Op"
4039 " is a target node!");
4040 return false;
4041}
4042
4044 const APInt &DemandedElts,
4045 APInt &UndefElts,
4046 const SelectionDAG &DAG,
4047 unsigned Depth) const {
4048 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
4049 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4050 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
4051 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
4052 "Should use isSplatValue if you don't know whether Op"
4053 " is a target node!");
4054 return false;
4055}
4056
4057// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
4058// work with truncating build vectors and vectors with elements of less than
4059// 8 bits.
4061 if (!N)
4062 return false;
4063
4064 unsigned EltWidth;
4065 APInt CVal;
4066 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
4067 /*AllowTruncation=*/true)) {
4068 CVal = CN->getAPIntValue();
4069 EltWidth = N.getValueType().getScalarSizeInBits();
4070 } else
4071 return false;
4072
4073 // If this is a truncating splat, truncate the splat value.
4074 // Otherwise, we may fail to match the expected values below.
4075 if (EltWidth < CVal.getBitWidth())
4076 CVal = CVal.trunc(EltWidth);
4077
4078 switch (getBooleanContents(N.getValueType())) {
4080 return CVal[0];
4082 return CVal.isOne();
4084 return CVal.isAllOnes();
4085 }
4086
4087 llvm_unreachable("Invalid boolean contents");
4088}
4089
4091 if (!N)
4092 return false;
4093
4095 if (!CN) {
4097 if (!BV)
4098 return false;
4099
4100 // Only interested in constant splats, we don't care about undef
4101 // elements in identifying boolean constants and getConstantSplatNode
4102 // returns NULL if all ops are undef;
4103 CN = BV->getConstantSplatNode();
4104 if (!CN)
4105 return false;
4106 }
4107
4108 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
4109 return !CN->getAPIntValue()[0];
4110
4111 return CN->isZero();
4112}
4113
4115 bool SExt) const {
4116 if (VT == MVT::i1)
4117 return N->isOne();
4118
4120 switch (Cnt) {
4122 // An extended value of 1 is always true, unless its original type is i1,
4123 // in which case it will be sign extended to -1.
4124 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
4127 return N->isAllOnes() && SExt;
4128 }
4129 llvm_unreachable("Unexpected enumeration.");
4130}
4131
4132/// This helper function of SimplifySetCC tries to optimize the comparison when
4133/// either operand of the SetCC node is a bitwise-and instruction.
4134SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
4135 ISD::CondCode Cond, const SDLoc &DL,
4136 DAGCombinerInfo &DCI) const {
4137 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
4138 std::swap(N0, N1);
4139
4140 SelectionDAG &DAG = DCI.DAG;
4141 EVT OpVT = N0.getValueType();
4142 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
4143 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4144 return SDValue();
4145
4146 // (X & Y) != 0 --> zextOrTrunc(X & Y)
4147 // iff everything but LSB is known zero:
4148 if (Cond == ISD::SETNE && isNullConstant(N1) &&
4151 unsigned NumEltBits = OpVT.getScalarSizeInBits();
4152 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
4153 if (DAG.MaskedValueIsZero(N0, UpperBits))
4154 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
4155 }
4156
4157 // Try to eliminate a power-of-2 mask constant by converting to a signbit
4158 // test in a narrow type that we can truncate to with no cost. Examples:
4159 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4160 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4161 // TODO: This conservatively checks for type legality on the source and
4162 // destination types. That may inhibit optimizations, but it also
4163 // allows setcc->shift transforms that may be more beneficial.
4164 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4165 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4166 isTypeLegal(OpVT) && N0.hasOneUse()) {
4167 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4168 AndC->getAPIntValue().getActiveBits());
4169 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4170 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4171 SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4172 return DAG.getSetCC(DL, VT, Trunc, Zero,
4174 }
4175 }
4176
4177 // Match these patterns in any of their permutations:
4178 // (X & Y) == Y
4179 // (X & Y) != Y
4180 SDValue X, Y;
4181 if (N0.getOperand(0) == N1) {
4182 X = N0.getOperand(1);
4183 Y = N0.getOperand(0);
4184 } else if (N0.getOperand(1) == N1) {
4185 X = N0.getOperand(0);
4186 Y = N0.getOperand(1);
4187 } else {
4188 return SDValue();
4189 }
4190
4191 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4192 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4193 // its liable to create and infinite loop.
4194 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4195 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4197 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4198 // Note that where Y is variable and is known to have at most one bit set
4199 // (for example, if it is Z & 1) we cannot do this; the expressions are not
4200 // equivalent when Y == 0.
4201 assert(OpVT.isInteger());
4203 if (DCI.isBeforeLegalizeOps() ||
4205 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4206 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4207 // If the target supports an 'and-not' or 'and-complement' logic operation,
4208 // try to use that to make a comparison operation more efficient.
4209 // But don't do this transform if the mask is a single bit because there are
4210 // more efficient ways to deal with that case (for example, 'bt' on x86 or
4211 // 'rlwinm' on PPC).
4212
4213 // Bail out if the compare operand that we want to turn into a zero is
4214 // already a zero (otherwise, infinite loop).
4215 if (isNullConstant(Y))
4216 return SDValue();
4217
4218 // Transform this into: ~X & Y == 0.
4219 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4220 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4221 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4222 }
4223
4224 return SDValue();
4225}
4226
4227/// This helper function of SimplifySetCC tries to optimize the comparison when
4228/// either operand of the SetCC node is a bitwise-or instruction.
4229/// For now, this just transforms (X | Y) ==/!= Y into X & ~Y ==/!= 0.
4230SDValue TargetLowering::foldSetCCWithOr(EVT VT, SDValue N0, SDValue N1,
4231 ISD::CondCode Cond, const SDLoc &DL,
4232 DAGCombinerInfo &DCI) const {
4233 if (N1.getOpcode() == ISD::OR && N0.getOpcode() != ISD::OR)
4234 std::swap(N0, N1);
4235
4236 SelectionDAG &DAG = DCI.DAG;
4237 EVT OpVT = N0.getValueType();
4238 if (!N0.hasOneUse() || !OpVT.isInteger() ||
4239 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4240 return SDValue();
4241
4242 // (X | Y) == Y
4243 // (X | Y) != Y
4244 SDValue X;
4245 if (sd_match(N0, m_Or(m_Value(X), m_Specific(N1))) && hasAndNotCompare(X)) {
4246 // If the target supports an 'and-not' or 'and-complement' logic operation,
4247 // try to use that to make a comparison operation more efficient.
4248
4249 // Bail out if the compare operand that we want to turn into a zero is
4250 // already a zero (otherwise, infinite loop).
4251 if (isNullConstant(N1))
4252 return SDValue();
4253
4254 // Transform this into: X & ~Y ==/!= 0.
4255 SDValue NotY = DAG.getNOT(SDLoc(N1), N1, OpVT);
4256 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, X, NotY);
4257 return DAG.getSetCC(DL, VT, NewAnd, DAG.getConstant(0, DL, OpVT), Cond);
4258 }
4259
4260 return SDValue();
4261}
4262
4263/// There are multiple IR patterns that could be checking whether certain
4264/// truncation of a signed number would be lossy or not. The pattern which is
4265/// best at IR level, may not lower optimally. Thus, we want to unfold it.
4266/// We are looking for the following pattern: (KeptBits is a constant)
4267/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4268/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4269/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
4270/// We will unfold it into the natural trunc+sext pattern:
4271/// ((%x << C) a>> C) dstcond %x
4272/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
4273SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4274 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4275 const SDLoc &DL) const {
4276 // We must be comparing with a constant.
4277 ConstantSDNode *C1;
4278 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4279 return SDValue();
4280
4281 // N0 should be: add %x, (1 << (KeptBits-1))
4282 if (N0->getOpcode() != ISD::ADD)
4283 return SDValue();
4284
4285 // And we must be 'add'ing a constant.
4286 ConstantSDNode *C01;
4287 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4288 return SDValue();
4289
4290 SDValue X = N0->getOperand(0);
4291 EVT XVT = X.getValueType();
4292
4293 // Validate constants ...
4294
4295 APInt I1 = C1->getAPIntValue();
4296
4297 ISD::CondCode NewCond;
4298 if (Cond == ISD::CondCode::SETULT) {
4299 NewCond = ISD::CondCode::SETEQ;
4300 } else if (Cond == ISD::CondCode::SETULE) {
4301 NewCond = ISD::CondCode::SETEQ;
4302 // But need to 'canonicalize' the constant.
4303 I1 += 1;
4304 } else if (Cond == ISD::CondCode::SETUGT) {
4305 NewCond = ISD::CondCode::SETNE;
4306 // But need to 'canonicalize' the constant.
4307 I1 += 1;
4308 } else if (Cond == ISD::CondCode::SETUGE) {
4309 NewCond = ISD::CondCode::SETNE;
4310 } else
4311 return SDValue();
4312
4313 APInt I01 = C01->getAPIntValue();
4314
4315 auto checkConstants = [&I1, &I01]() -> bool {
4316 // Both of them must be power-of-two, and the constant from setcc is bigger.
4317 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4318 };
4319
4320 if (checkConstants()) {
4321 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
4322 } else {
4323 // What if we invert constants? (and the target predicate)
4324 I1.negate();
4325 I01.negate();
4326 assert(XVT.isInteger());
4327 NewCond = getSetCCInverse(NewCond, XVT);
4328 if (!checkConstants())
4329 return SDValue();
4330 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
4331 }
4332
4333 // They are power-of-two, so which bit is set?
4334 const unsigned KeptBits = I1.logBase2();
4335 const unsigned KeptBitsMinusOne = I01.logBase2();
4336
4337 // Magic!
4338 if (KeptBits != (KeptBitsMinusOne + 1))
4339 return SDValue();
4340 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4341
4342 // We don't want to do this in every single case.
4343 SelectionDAG &DAG = DCI.DAG;
4344 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4345 return SDValue();
4346
4347 // Unfold into: sext_inreg(%x) cond %x
4348 // Where 'cond' will be either 'eq' or 'ne'.
4349 SDValue SExtInReg = DAG.getNode(
4351 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4352 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4353}
4354
4355// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4356SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4357 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4358 DAGCombinerInfo &DCI, const SDLoc &DL) const {
4360 "Should be a comparison with 0.");
4361 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4362 "Valid only for [in]equality comparisons.");
4363
4364 unsigned NewShiftOpcode;
4365 SDValue X, C, Y;
4366
4367 SelectionDAG &DAG = DCI.DAG;
4368
4369 // Look for '(C l>>/<< Y)'.
4370 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4371 // The shift should be one-use.
4372 if (!V.hasOneUse())
4373 return false;
4374 unsigned OldShiftOpcode = V.getOpcode();
4375 switch (OldShiftOpcode) {
4376 case ISD::SHL:
4377 NewShiftOpcode = ISD::SRL;
4378 break;
4379 case ISD::SRL:
4380 NewShiftOpcode = ISD::SHL;
4381 break;
4382 default:
4383 return false; // must be a logical shift.
4384 }
4385 // We should be shifting a constant.
4386 // FIXME: best to use isConstantOrConstantVector().
4387 C = V.getOperand(0);
4388 ConstantSDNode *CC =
4389 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4390 if (!CC)
4391 return false;
4392 Y = V.getOperand(1);
4393
4394 ConstantSDNode *XC =
4395 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4397 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4398 };
4399
4400 // LHS of comparison should be an one-use 'and'.
4401 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4402 return SDValue();
4403
4404 X = N0.getOperand(0);
4405 SDValue Mask = N0.getOperand(1);
4406
4407 // 'and' is commutative!
4408 if (!Match(Mask)) {
4409 std::swap(X, Mask);
4410 if (!Match(Mask))
4411 return SDValue();
4412 }
4413
4414 EVT VT = X.getValueType();
4415
4416 // Produce:
4417 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4418 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4419 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4420 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4421 return T2;
4422}
4423
4424/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4425/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4426/// handle the commuted versions of these patterns.
4427SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4428 ISD::CondCode Cond, const SDLoc &DL,
4429 DAGCombinerInfo &DCI) const {
4430 unsigned BOpcode = N0.getOpcode();
4431 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4432 "Unexpected binop");
4433 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4434
4435 // (X + Y) == X --> Y == 0
4436 // (X - Y) == X --> Y == 0
4437 // (X ^ Y) == X --> Y == 0
4438 SelectionDAG &DAG = DCI.DAG;
4439 EVT OpVT = N0.getValueType();
4440 SDValue X = N0.getOperand(0);
4441 SDValue Y = N0.getOperand(1);
4442 if (X == N1)
4443 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4444
4445 if (Y != N1)
4446 return SDValue();
4447
4448 // (X + Y) == Y --> X == 0
4449 // (X ^ Y) == Y --> X == 0
4450 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4451 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4452
4453 // The shift would not be valid if the operands are boolean (i1).
4454 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4455 return SDValue();
4456
4457 // (X - Y) == Y --> X == Y << 1
4458 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4459 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4460 if (!DCI.isCalledByLegalizer())
4461 DCI.AddToWorklist(YShl1.getNode());
4462 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4463}
4464
4466 SDValue N0, const APInt &C1,
4467 ISD::CondCode Cond, const SDLoc &dl,
4468 SelectionDAG &DAG) {
4469 // Look through truncs that don't change the value of a ctpop.
4470 // FIXME: Add vector support? Need to be careful with setcc result type below.
4471 SDValue CTPOP = N0;
4472 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4474 CTPOP = N0.getOperand(0);
4475
4476 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4477 return SDValue();
4478
4479 EVT CTVT = CTPOP.getValueType();
4480 SDValue CTOp = CTPOP.getOperand(0);
4481
4482 // Expand a power-of-2-or-zero comparison based on ctpop:
4483 // (ctpop x) u< 2 -> (x & x-1) == 0
4484 // (ctpop x) u> 1 -> (x & x-1) != 0
4485 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4486 // Keep the CTPOP if it is a cheap vector op.
4487 if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4488 return SDValue();
4489
4490 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4491 if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4492 return SDValue();
4493 if (C1 == 0 && (Cond == ISD::SETULT))
4494 return SDValue(); // This is handled elsewhere.
4495
4496 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4497
4498 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4499 SDValue Result = CTOp;
4500 for (unsigned i = 0; i < Passes; i++) {
4501 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4502 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4503 }
4505 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4506 }
4507
4508 // Expand a power-of-2 comparison based on ctpop
4509 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4510 // Keep the CTPOP if it is cheap.
4511 if (TLI.isCtpopFast(CTVT))
4512 return SDValue();
4513
4514 SDValue Zero = DAG.getConstant(0, dl, CTVT);
4515 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4516 assert(CTVT.isInteger());
4517 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4518
4519 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4520 // check before emitting a potentially unnecessary op.
4521 if (DAG.isKnownNeverZero(CTOp)) {
4522 // (ctpop x) == 1 --> (x & x-1) == 0
4523 // (ctpop x) != 1 --> (x & x-1) != 0
4524 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4525 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4526 return RHS;
4527 }
4528
4529 // (ctpop x) == 1 --> (x ^ x-1) > x-1
4530 // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4531 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4533 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4534 }
4535
4536 return SDValue();
4537}
4538
4540 ISD::CondCode Cond, const SDLoc &dl,
4541 SelectionDAG &DAG) {
4542 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4543 return SDValue();
4544
4545 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4546 if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4547 return SDValue();
4548
4549 auto getRotateSource = [](SDValue X) {
4550 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4551 return X.getOperand(0);
4552 return SDValue();
4553 };
4554
4555 // Peek through a rotated value compared against 0 or -1:
4556 // (rot X, Y) == 0/-1 --> X == 0/-1
4557 // (rot X, Y) != 0/-1 --> X != 0/-1
4558 if (SDValue R = getRotateSource(N0))
4559 return DAG.getSetCC(dl, VT, R, N1, Cond);
4560
4561 // Peek through an 'or' of a rotated value compared against 0:
4562 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4563 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4564 //
4565 // TODO: Add the 'and' with -1 sibling.
4566 // TODO: Recurse through a series of 'or' ops to find the rotate.
4567 EVT OpVT = N0.getValueType();
4568 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4569 if (SDValue R = getRotateSource(N0.getOperand(0))) {
4570 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4571 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4572 }
4573 if (SDValue R = getRotateSource(N0.getOperand(1))) {
4574 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4575 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4576 }
4577 }
4578
4579 return SDValue();
4580}
4581
4583 ISD::CondCode Cond, const SDLoc &dl,
4584 SelectionDAG &DAG) {
4585 // If we are testing for all-bits-clear, we might be able to do that with
4586 // less shifting since bit-order does not matter.
4587 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4588 return SDValue();
4589
4590 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4591 if (!C1 || !C1->isZero())
4592 return SDValue();
4593
4594 if (!N0.hasOneUse() ||
4595 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4596 return SDValue();
4597
4598 unsigned BitWidth = N0.getScalarValueSizeInBits();
4599 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4600 if (!ShAmtC)
4601 return SDValue();
4602
4603 uint64_t ShAmt = ShAmtC->getAPIntValue().urem(BitWidth);
4604 if (ShAmt == 0)
4605 return SDValue();
4606
4607 // Canonicalize fshr as fshl to reduce pattern-matching.
4608 if (N0.getOpcode() == ISD::FSHR)
4609 ShAmt = BitWidth - ShAmt;
4610
4611 // Match an 'or' with a specific operand 'Other' in either commuted variant.
4612 SDValue X, Y;
4613 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4614 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4615 return false;
4616 if (Or.getOperand(0) == Other) {
4617 X = Or.getOperand(0);
4618 Y = Or.getOperand(1);
4619 return true;
4620 }
4621 if (Or.getOperand(1) == Other) {
4622 X = Or.getOperand(1);
4623 Y = Or.getOperand(0);
4624 return true;
4625 }
4626 return false;
4627 };
4628
4629 EVT OpVT = N0.getValueType();
4630 EVT ShAmtVT = N0.getOperand(2).getValueType();
4631 SDValue F0 = N0.getOperand(0);
4632 SDValue F1 = N0.getOperand(1);
4633 if (matchOr(F0, F1)) {
4634 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4635 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4636 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4637 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4638 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4639 }
4640 if (matchOr(F1, F0)) {
4641 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4642 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4643 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4644 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4645 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4646 }
4647
4648 return SDValue();
4649}
4650
4651/// Try to simplify a setcc built with the specified operands and cc. If it is
4652/// unable to simplify it, return a null SDValue.
4654 ISD::CondCode Cond, bool foldBooleans,
4655 DAGCombinerInfo &DCI,
4656 const SDLoc &dl) const {
4657 SelectionDAG &DAG = DCI.DAG;
4658 const DataLayout &Layout = DAG.getDataLayout();
4659 EVT OpVT = N0.getValueType();
4660 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4661
4662 // Constant fold or commute setcc.
4663 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4664 return Fold;
4665
4666 bool N0ConstOrSplat =
4667 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4668 bool N1ConstOrSplat =
4669 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4670
4671 // Canonicalize toward having the constant on the RHS.
4672 // TODO: Handle non-splat vector constants. All undef causes trouble.
4673 // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4674 // infinite loop here when we encounter one.
4676 if (N0ConstOrSplat && !N1ConstOrSplat &&
4677 (DCI.isBeforeLegalizeOps() ||
4678 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4679 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4680
4681 // If we have a subtract with the same 2 non-constant operands as this setcc
4682 // -- but in reverse order -- then try to commute the operands of this setcc
4683 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4684 // instruction on some targets.
4685 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4686 (DCI.isBeforeLegalizeOps() ||
4687 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4688 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4689 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4690 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4691
4692 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4693 return V;
4694
4695 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4696 return V;
4697
4698 if (auto *N1C = isConstOrConstSplat(N1)) {
4699 const APInt &C1 = N1C->getAPIntValue();
4700
4701 // Optimize some CTPOP cases.
4702 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4703 return V;
4704
4705 // For equality to 0 of a no-wrap multiply, decompose and test each op:
4706 // X * Y == 0 --> (X == 0) || (Y == 0)
4707 // X * Y != 0 --> (X != 0) && (Y != 0)
4708 // TODO: This bails out if minsize is set, but if the target doesn't have a
4709 // single instruction multiply for this type, it would likely be
4710 // smaller to decompose.
4711 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4712 N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4713 (N0->getFlags().hasNoUnsignedWrap() ||
4714 N0->getFlags().hasNoSignedWrap()) &&
4715 !Attr.hasFnAttr(Attribute::MinSize)) {
4716 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4717 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4718 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4719 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4720 }
4721
4722 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4723 // equality comparison, then we're just comparing whether X itself is
4724 // zero.
4725 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4726 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4728 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4729 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4730 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4731 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4732 // (srl (ctlz x), 5) == 0 -> X != 0
4733 // (srl (ctlz x), 5) != 1 -> X != 0
4734 Cond = ISD::SETNE;
4735 } else {
4736 // (srl (ctlz x), 5) != 0 -> X == 0
4737 // (srl (ctlz x), 5) == 1 -> X == 0
4738 Cond = ISD::SETEQ;
4739 }
4740 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4741 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4742 Cond);
4743 }
4744 }
4745 }
4746 }
4747
4748 // FIXME: Support vectors.
4749 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4750 const APInt &C1 = N1C->getAPIntValue();
4751
4752 // (zext x) == C --> x == (trunc C)
4753 // (sext x) == C --> x == (trunc C)
4754 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4755 DCI.isBeforeLegalize() && N0->hasOneUse()) {
4756 unsigned MinBits = N0.getValueSizeInBits();
4757 SDValue PreExt;
4758 bool Signed = false;
4759 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4760 // ZExt
4761 MinBits = N0->getOperand(0).getValueSizeInBits();
4762 PreExt = N0->getOperand(0);
4763 } else if (N0->getOpcode() == ISD::AND) {
4764 // DAGCombine turns costly ZExts into ANDs
4765 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4766 if ((C->getAPIntValue()+1).isPowerOf2()) {
4767 MinBits = C->getAPIntValue().countr_one();
4768 PreExt = N0->getOperand(0);
4769 }
4770 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4771 // SExt
4772 MinBits = N0->getOperand(0).getValueSizeInBits();
4773 PreExt = N0->getOperand(0);
4774 Signed = true;
4775 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4776 // ZEXTLOAD / SEXTLOAD
4777 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4778 MinBits = LN0->getMemoryVT().getSizeInBits();
4779 PreExt = N0;
4780 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4781 Signed = true;
4782 MinBits = LN0->getMemoryVT().getSizeInBits();
4783 PreExt = N0;
4784 }
4785 }
4786
4787 // Figure out how many bits we need to preserve this constant.
4788 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4789
4790 // Make sure we're not losing bits from the constant.
4791 if (MinBits > 0 &&
4792 MinBits < C1.getBitWidth() &&
4793 MinBits >= ReqdBits) {
4794 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4795 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4796 // Will get folded away.
4797 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4798 if (MinBits == 1 && C1 == 1)
4799 // Invert the condition.
4800 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4802 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4803 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4804 }
4805
4806 // If truncating the setcc operands is not desirable, we can still
4807 // simplify the expression in some cases:
4808 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4809 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4810 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4811 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4812 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4813 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4814 SDValue TopSetCC = N0->getOperand(0);
4815 unsigned N0Opc = N0->getOpcode();
4816 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4817 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4818 TopSetCC.getOpcode() == ISD::SETCC &&
4819 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4820 (isConstFalseVal(N1) ||
4821 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4822
4823 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4824 (!N1C->isZero() && Cond == ISD::SETNE);
4825
4826 if (!Inverse)
4827 return TopSetCC;
4828
4830 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4831 TopSetCC.getOperand(0).getValueType());
4832 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4833 TopSetCC.getOperand(1),
4834 InvCond);
4835 }
4836 }
4837 }
4838
4839 // If the LHS is '(and load, const)', the RHS is 0, the test is for
4840 // equality or unsigned, and all 1 bits of the const are in the same
4841 // partial word, see if we can shorten the load.
4842 if (DCI.isBeforeLegalize() &&
4844 N0.getOpcode() == ISD::AND && C1 == 0 &&
4845 N0.getNode()->hasOneUse() &&
4846 isa<LoadSDNode>(N0.getOperand(0)) &&
4847 N0.getOperand(0).getNode()->hasOneUse() &&
4849 auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4850 APInt bestMask;
4851 unsigned bestWidth = 0, bestOffset = 0;
4852 if (Lod->isSimple() && Lod->isUnindexed() &&
4853 (Lod->getMemoryVT().isByteSized() ||
4854 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4855 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4856 unsigned origWidth = N0.getValueSizeInBits();
4857 unsigned maskWidth = origWidth;
4858 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4859 // 8 bits, but have to be careful...
4860 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4861 origWidth = Lod->getMemoryVT().getSizeInBits();
4862 const APInt &Mask = N0.getConstantOperandAPInt(1);
4863 // Only consider power-of-2 widths (and at least one byte) as candiates
4864 // for the narrowed load.
4865 for (unsigned width = 8; width < origWidth; width *= 2) {
4866 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4867 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4868 // Avoid accessing any padding here for now (we could use memWidth
4869 // instead of origWidth here otherwise).
4870 unsigned maxOffset = origWidth - width;
4871 for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4872 if (Mask.isSubsetOf(newMask)) {
4873 unsigned ptrOffset =
4874 Layout.isLittleEndian() ? offset : memWidth - width - offset;
4875 unsigned IsFast = 0;
4876 assert((ptrOffset % 8) == 0 && "Non-Bytealigned pointer offset");
4877 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4879 ptrOffset / 8) &&
4881 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4882 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4883 IsFast) {
4884 bestOffset = ptrOffset / 8;
4885 bestMask = Mask.lshr(offset);
4886 bestWidth = width;
4887 break;
4888 }
4889 }
4890 newMask <<= 8;
4891 }
4892 if (bestWidth)
4893 break;
4894 }
4895 }
4896 if (bestWidth) {
4897 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4898 SDValue Ptr = Lod->getBasePtr();
4899 if (bestOffset != 0)
4900 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4901 SDValue NewLoad =
4902 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4903 Lod->getPointerInfo().getWithOffset(bestOffset),
4904 Lod->getBaseAlign());
4905 SDValue And =
4906 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4907 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4908 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4909 }
4910 }
4911
4912 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4913 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4914 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4915
4916 // If the comparison constant has bits in the upper part, the
4917 // zero-extended value could never match.
4919 C1.getBitWidth() - InSize))) {
4920 switch (Cond) {
4921 case ISD::SETUGT:
4922 case ISD::SETUGE:
4923 case ISD::SETEQ:
4924 return DAG.getConstant(0, dl, VT);
4925 case ISD::SETULT:
4926 case ISD::SETULE:
4927 case ISD::SETNE:
4928 return DAG.getConstant(1, dl, VT);
4929 case ISD::SETGT:
4930 case ISD::SETGE:
4931 // True if the sign bit of C1 is set.
4932 return DAG.getConstant(C1.isNegative(), dl, VT);
4933 case ISD::SETLT:
4934 case ISD::SETLE:
4935 // True if the sign bit of C1 isn't set.
4936 return DAG.getConstant(C1.isNonNegative(), dl, VT);
4937 default:
4938 break;
4939 }
4940 }
4941
4942 // Otherwise, we can perform the comparison with the low bits.
4943 switch (Cond) {
4944 case ISD::SETEQ:
4945 case ISD::SETNE:
4946 case ISD::SETUGT:
4947 case ISD::SETUGE:
4948 case ISD::SETULT:
4949 case ISD::SETULE: {
4950 EVT newVT = N0.getOperand(0).getValueType();
4951 // FIXME: Should use isNarrowingProfitable.
4952 if (DCI.isBeforeLegalizeOps() ||
4953 (isOperationLegal(ISD::SETCC, newVT) &&
4954 isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4956 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4957 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4958
4959 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4960 NewConst, Cond);
4961 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4962 }
4963 break;
4964 }
4965 default:
4966 break; // todo, be more careful with signed comparisons
4967 }
4968 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4969 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4971 OpVT)) {
4972 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4973 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4974 EVT ExtDstTy = N0.getValueType();
4975 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4976
4977 // If the constant doesn't fit into the number of bits for the source of
4978 // the sign extension, it is impossible for both sides to be equal.
4979 if (C1.getSignificantBits() > ExtSrcTyBits)
4980 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4981
4982 assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4983 ExtDstTy != ExtSrcTy && "Unexpected types!");
4984 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4985 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4986 DAG.getConstant(Imm, dl, ExtDstTy));
4987 if (!DCI.isCalledByLegalizer())
4988 DCI.AddToWorklist(ZextOp.getNode());
4989 // Otherwise, make this a use of a zext.
4990 return DAG.getSetCC(dl, VT, ZextOp,
4991 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4992 } else if ((N1C->isZero() || N1C->isOne()) &&
4993 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4994 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are
4995 // excluded as they are handled below whilst checking for foldBooleans.
4996 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4997 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4998 (N0.getValueType() == MVT::i1 ||
5002 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
5003 if (TrueWhenTrue)
5004 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
5005 // Invert the condition.
5006 if (N0.getOpcode() == ISD::SETCC) {
5009 if (DCI.isBeforeLegalizeOps() ||
5011 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
5012 }
5013 }
5014
5015 if ((N0.getOpcode() == ISD::XOR ||
5016 (N0.getOpcode() == ISD::AND &&
5017 N0.getOperand(0).getOpcode() == ISD::XOR &&
5018 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
5019 isOneConstant(N0.getOperand(1))) {
5020 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
5021 // can only do this if the top bits are known zero.
5022 unsigned BitWidth = N0.getValueSizeInBits();
5023 if (DAG.MaskedValueIsZero(N0,
5025 BitWidth-1))) {
5026 // Okay, get the un-inverted input value.
5027 SDValue Val;
5028 if (N0.getOpcode() == ISD::XOR) {
5029 Val = N0.getOperand(0);
5030 } else {
5031 assert(N0.getOpcode() == ISD::AND &&
5032 N0.getOperand(0).getOpcode() == ISD::XOR);
5033 // ((X^1)&1)^1 -> X & 1
5034 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
5035 N0.getOperand(0).getOperand(0),
5036 N0.getOperand(1));
5037 }
5038
5039 return DAG.getSetCC(dl, VT, Val, N1,
5041 }
5042 } else if (N1C->isOne()) {
5043 SDValue Op0 = N0;
5044 if (Op0.getOpcode() == ISD::TRUNCATE)
5045 Op0 = Op0.getOperand(0);
5046
5047 if ((Op0.getOpcode() == ISD::XOR) &&
5048 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
5049 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
5050 SDValue XorLHS = Op0.getOperand(0);
5051 SDValue XorRHS = Op0.getOperand(1);
5052 // Ensure that the input setccs return an i1 type or 0/1 value.
5053 if (Op0.getValueType() == MVT::i1 ||
5058 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
5060 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
5061 }
5062 }
5063 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
5064 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
5065 if (Op0.getValueType().bitsGT(VT))
5066 Op0 = DAG.getNode(ISD::AND, dl, VT,
5067 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
5068 DAG.getConstant(1, dl, VT));
5069 else if (Op0.getValueType().bitsLT(VT))
5070 Op0 = DAG.getNode(ISD::AND, dl, VT,
5071 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
5072 DAG.getConstant(1, dl, VT));
5073
5074 return DAG.getSetCC(dl, VT, Op0,
5075 DAG.getConstant(0, dl, Op0.getValueType()),
5077 }
5078 if (Op0.getOpcode() == ISD::AssertZext &&
5079 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
5080 return DAG.getSetCC(dl, VT, Op0,
5081 DAG.getConstant(0, dl, Op0.getValueType()),
5083 }
5084 }
5085
5086 // Given:
5087 // icmp eq/ne (urem %x, %y), 0
5088 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
5089 // icmp eq/ne %x, 0
5090 if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
5091 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5092 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
5093 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
5094 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
5095 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
5096 }
5097
5098 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
5099 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
5100 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5102 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
5103 N1C->isAllOnes()) {
5104 return DAG.getSetCC(dl, VT, N0.getOperand(0),
5105 DAG.getConstant(0, dl, OpVT),
5107 }
5108
5109 // fold (setcc (trunc x) c) -> (setcc x c)
5110 if (N0.getOpcode() == ISD::TRUNCATE &&
5112 (N0->getFlags().hasNoSignedWrap() &&
5115 EVT NewVT = N0.getOperand(0).getValueType();
5116 SDValue NewConst = DAG.getConstant(
5118 ? C1.sext(NewVT.getSizeInBits())
5119 : C1.zext(NewVT.getSizeInBits()),
5120 dl, NewVT);
5121 return DAG.getSetCC(dl, VT, N0.getOperand(0), NewConst, Cond);
5122 }
5123
5124 if (SDValue V =
5125 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
5126 return V;
5127 }
5128
5129 // These simplifications apply to splat vectors as well.
5130 // TODO: Handle more splat vector cases.
5131 if (auto *N1C = isConstOrConstSplat(N1)) {
5132 const APInt &C1 = N1C->getAPIntValue();
5133
5134 APInt MinVal, MaxVal;
5135 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
5137 MinVal = APInt::getSignedMinValue(OperandBitSize);
5138 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
5139 } else {
5140 MinVal = APInt::getMinValue(OperandBitSize);
5141 MaxVal = APInt::getMaxValue(OperandBitSize);
5142 }
5143
5144 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
5145 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
5146 // X >= MIN --> true
5147 if (C1 == MinVal)
5148 return DAG.getBoolConstant(true, dl, VT, OpVT);
5149
5150 if (!VT.isVector()) { // TODO: Support this for vectors.
5151 // X >= C0 --> X > (C0 - 1)
5152 APInt C = C1 - 1;
5154 if ((DCI.isBeforeLegalizeOps() ||
5155 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5156 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5157 isLegalICmpImmediate(C.getSExtValue())))) {
5158 return DAG.getSetCC(dl, VT, N0,
5159 DAG.getConstant(C, dl, N1.getValueType()),
5160 NewCC);
5161 }
5162 }
5163 }
5164
5165 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
5166 // X <= MAX --> true
5167 if (C1 == MaxVal)
5168 return DAG.getBoolConstant(true, dl, VT, OpVT);
5169
5170 // X <= C0 --> X < (C0 + 1)
5171 if (!VT.isVector()) { // TODO: Support this for vectors.
5172 APInt C = C1 + 1;
5174 if ((DCI.isBeforeLegalizeOps() ||
5175 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5176 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5177 isLegalICmpImmediate(C.getSExtValue())))) {
5178 return DAG.getSetCC(dl, VT, N0,
5179 DAG.getConstant(C, dl, N1.getValueType()),
5180 NewCC);
5181 }
5182 }
5183 }
5184
5185 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
5186 if (C1 == MinVal)
5187 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
5188
5189 // TODO: Support this for vectors after legalize ops.
5190 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5191 // Canonicalize setlt X, Max --> setne X, Max
5192 if (C1 == MaxVal)
5193 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5194
5195 // If we have setult X, 1, turn it into seteq X, 0
5196 if (C1 == MinVal+1)
5197 return DAG.getSetCC(dl, VT, N0,
5198 DAG.getConstant(MinVal, dl, N0.getValueType()),
5199 ISD::SETEQ);
5200 }
5201 }
5202
5203 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
5204 if (C1 == MaxVal)
5205 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
5206
5207 // TODO: Support this for vectors after legalize ops.
5208 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5209 // Canonicalize setgt X, Min --> setne X, Min
5210 if (C1 == MinVal)
5211 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5212
5213 // If we have setugt X, Max-1, turn it into seteq X, Max
5214 if (C1 == MaxVal-1)
5215 return DAG.getSetCC(dl, VT, N0,
5216 DAG.getConstant(MaxVal, dl, N0.getValueType()),
5217 ISD::SETEQ);
5218 }
5219 }
5220
5221 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5222 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5223 if (C1.isZero())
5224 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5225 VT, N0, N1, Cond, DCI, dl))
5226 return CC;
5227
5228 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5229 // For example, when high 32-bits of i64 X are known clear:
5230 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
5231 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
5232 bool CmpZero = N1C->isZero();
5233 bool CmpNegOne = N1C->isAllOnes();
5234 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5235 // Match or(lo,shl(hi,bw/2)) pattern.
5236 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5237 unsigned EltBits = V.getScalarValueSizeInBits();
5238 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5239 return false;
5240 SDValue LHS = V.getOperand(0);
5241 SDValue RHS = V.getOperand(1);
5242 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5243 // Unshifted element must have zero upperbits.
5244 if (RHS.getOpcode() == ISD::SHL &&
5245 isa<ConstantSDNode>(RHS.getOperand(1)) &&
5246 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5247 DAG.MaskedValueIsZero(LHS, HiBits)) {
5248 Lo = LHS;
5249 Hi = RHS.getOperand(0);
5250 return true;
5251 }
5252 if (LHS.getOpcode() == ISD::SHL &&
5253 isa<ConstantSDNode>(LHS.getOperand(1)) &&
5254 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5255 DAG.MaskedValueIsZero(RHS, HiBits)) {
5256 Lo = RHS;
5257 Hi = LHS.getOperand(0);
5258 return true;
5259 }
5260 return false;
5261 };
5262
5263 auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5264 unsigned EltBits = N0.getScalarValueSizeInBits();
5265 unsigned HalfBits = EltBits / 2;
5266 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5267 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5268 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5269 SDValue NewN0 =
5270 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5271 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5272 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5273 };
5274
5275 SDValue Lo, Hi;
5276 if (IsConcat(N0, Lo, Hi))
5277 return MergeConcat(Lo, Hi);
5278
5279 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5280 SDValue Lo0, Lo1, Hi0, Hi1;
5281 if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5282 IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5283 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5284 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5285 }
5286 }
5287 }
5288 }
5289
5290 // If we have "setcc X, C0", check to see if we can shrink the immediate
5291 // by changing cc.
5292 // TODO: Support this for vectors after legalize ops.
5293 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5294 // SETUGT X, SINTMAX -> SETLT X, 0
5295 // SETUGE X, SINTMIN -> SETLT X, 0
5296 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5297 (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5298 return DAG.getSetCC(dl, VT, N0,
5299 DAG.getConstant(0, dl, N1.getValueType()),
5300 ISD::SETLT);
5301
5302 // SETULT X, SINTMIN -> SETGT X, -1
5303 // SETULE X, SINTMAX -> SETGT X, -1
5304 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5305 (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5306 return DAG.getSetCC(dl, VT, N0,
5307 DAG.getAllOnesConstant(dl, N1.getValueType()),
5308 ISD::SETGT);
5309 }
5310 }
5311
5312 // Back to non-vector simplifications.
5313 // TODO: Can we do these for vector splats?
5314 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5315 const APInt &C1 = N1C->getAPIntValue();
5316 EVT ShValTy = N0.getValueType();
5317
5318 // Fold bit comparisons when we can. This will result in an
5319 // incorrect value when boolean false is negative one, unless
5320 // the bitsize is 1 in which case the false value is the same
5321 // in practice regardless of the representation.
5322 if ((VT.getSizeInBits() == 1 ||
5324 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5325 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5326 N0.getOpcode() == ISD::AND) {
5327 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5328 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
5329 // Perform the xform if the AND RHS is a single bit.
5330 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5331 if (AndRHS->getAPIntValue().isPowerOf2() &&
5332 !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5333 return DAG.getNode(
5334 ISD::TRUNCATE, dl, VT,
5335 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5336 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5337 }
5338 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5339 // (X & 8) == 8 --> (X & 8) >> 3
5340 // Perform the xform if C1 is a single bit.
5341 unsigned ShCt = C1.logBase2();
5342 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5343 return DAG.getNode(
5344 ISD::TRUNCATE, dl, VT,
5345 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5346 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5347 }
5348 }
5349 }
5350 }
5351
5352 if (C1.getSignificantBits() <= 64 &&
5354 // (X & -256) == 256 -> (X >> 8) == 1
5355 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5356 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5357 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5358 const APInt &AndRHSC = AndRHS->getAPIntValue();
5359 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5360 unsigned ShiftBits = AndRHSC.countr_zero();
5361 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5362 // If using an unsigned shift doesn't yield a legal compare
5363 // immediate, try using sra instead.
5364 APInt NewC = C1.lshr(ShiftBits);
5365 if (NewC.getSignificantBits() <= 64 &&
5367 APInt SignedC = C1.ashr(ShiftBits);
5368 if (SignedC.getSignificantBits() <= 64 &&
5370 SDValue Shift = DAG.getNode(
5371 ISD::SRA, dl, ShValTy, N0.getOperand(0),
5372 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5373 SDValue CmpRHS = DAG.getConstant(SignedC, dl, ShValTy);
5374 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5375 }
5376 }
5377 SDValue Shift = DAG.getNode(
5378 ISD::SRL, dl, ShValTy, N0.getOperand(0),
5379 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5380 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5381 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5382 }
5383 }
5384 }
5385 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5386 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5387 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5388 // X < 0x100000000 -> (X >> 32) < 1
5389 // X >= 0x100000000 -> (X >> 32) >= 1
5390 // X <= 0x0ffffffff -> (X >> 32) < 1
5391 // X > 0x0ffffffff -> (X >> 32) >= 1
5392 unsigned ShiftBits;
5393 APInt NewC = C1;
5394 ISD::CondCode NewCond = Cond;
5395 if (AdjOne) {
5396 ShiftBits = C1.countr_one();
5397 NewC = NewC + 1;
5398 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5399 } else {
5400 ShiftBits = C1.countr_zero();
5401 }
5402 NewC.lshrInPlace(ShiftBits);
5403 if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5405 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5406 SDValue Shift =
5407 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5408 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5409 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5410 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5411 }
5412 }
5413 }
5414 }
5415
5417 auto *CFP = cast<ConstantFPSDNode>(N1);
5418 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5419
5420 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
5421 // constant if knowing that the operand is non-nan is enough. We prefer to
5422 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5423 // materialize 0.0.
5424 if (Cond == ISD::SETO || Cond == ISD::SETUO)
5425 return DAG.getSetCC(dl, VT, N0, N0, Cond);
5426
5427 // setcc (fneg x), C -> setcc swap(pred) x, -C
5428 if (N0.getOpcode() == ISD::FNEG) {
5430 if (DCI.isBeforeLegalizeOps() ||
5431 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5432 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5433 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5434 }
5435 }
5436
5437 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5439 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5440 bool IsFabs = N0.getOpcode() == ISD::FABS;
5441 SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5442 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5443 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5444 : (IsFabs ? fcInf : fcPosInf);
5445 if (Cond == ISD::SETUEQ)
5446 Flag |= fcNan;
5447 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5448 DAG.getTargetConstant(Flag, dl, MVT::i32));
5449 }
5450 }
5451
5452 // If the condition is not legal, see if we can find an equivalent one
5453 // which is legal.
5455 // If the comparison was an awkward floating-point == or != and one of
5456 // the comparison operands is infinity or negative infinity, convert the
5457 // condition to a less-awkward <= or >=.
5458 if (CFP->getValueAPF().isInfinity()) {
5459 bool IsNegInf = CFP->getValueAPF().isNegative();
5461 switch (Cond) {
5462 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5463 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5464 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5465 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5466 default: break;
5467 }
5468 if (NewCond != ISD::SETCC_INVALID &&
5469 isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5470 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5471 }
5472 }
5473 }
5474
5475 if (N0 == N1) {
5476 // The sext(setcc()) => setcc() optimization relies on the appropriate
5477 // constant being emitted.
5478 assert(!N0.getValueType().isInteger() &&
5479 "Integer types should be handled by FoldSetCC");
5480
5481 bool EqTrue = ISD::isTrueWhenEqual(Cond);
5482 unsigned UOF = ISD::getUnorderedFlavor(Cond);
5483 if (UOF == 2) // FP operators that are undefined on NaNs.
5484 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5485 if (UOF == unsigned(EqTrue))
5486 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5487 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
5488 // if it is not already.
5489 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5490 if (NewCond != Cond &&
5491 (DCI.isBeforeLegalizeOps() ||
5492 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5493 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5494 }
5495
5496 // ~X > ~Y --> Y > X
5497 // ~X < ~Y --> Y < X
5498 // ~X < C --> X > ~C
5499 // ~X > C --> X < ~C
5500 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5501 N0.getValueType().isInteger()) {
5502 if (isBitwiseNot(N0)) {
5503 if (isBitwiseNot(N1))
5504 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5505
5508 SDValue Not = DAG.getNOT(dl, N1, OpVT);
5509 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5510 }
5511 }
5512 }
5513
5514 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5515 N0.getValueType().isInteger()) {
5516 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5517 N0.getOpcode() == ISD::XOR) {
5518 // Simplify (X+Y) == (X+Z) --> Y == Z
5519 if (N0.getOpcode() == N1.getOpcode()) {
5520 if (N0.getOperand(0) == N1.getOperand(0))
5521 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5522 if (N0.getOperand(1) == N1.getOperand(1))
5523 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5524 if (isCommutativeBinOp(N0.getOpcode())) {
5525 // If X op Y == Y op X, try other combinations.
5526 if (N0.getOperand(0) == N1.getOperand(1))
5527 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5528 Cond);
5529 if (N0.getOperand(1) == N1.getOperand(0))
5530 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5531 Cond);
5532 }
5533 }
5534
5535 // If RHS is a legal immediate value for a compare instruction, we need
5536 // to be careful about increasing register pressure needlessly.
5537 bool LegalRHSImm = false;
5538
5539 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5540 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5541 // Turn (X+C1) == C2 --> X == C2-C1
5542 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5543 return DAG.getSetCC(
5544 dl, VT, N0.getOperand(0),
5545 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5546 dl, N0.getValueType()),
5547 Cond);
5548
5549 // Turn (X^C1) == C2 --> X == C1^C2
5550 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5551 return DAG.getSetCC(
5552 dl, VT, N0.getOperand(0),
5553 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5554 dl, N0.getValueType()),
5555 Cond);
5556 }
5557
5558 // Turn (C1-X) == C2 --> X == C1-C2
5559 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5560 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5561 return DAG.getSetCC(
5562 dl, VT, N0.getOperand(1),
5563 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5564 dl, N0.getValueType()),
5565 Cond);
5566
5567 // Could RHSC fold directly into a compare?
5568 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5569 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5570 }
5571
5572 // (X+Y) == X --> Y == 0 and similar folds.
5573 // Don't do this if X is an immediate that can fold into a cmp
5574 // instruction and X+Y has other uses. It could be an induction variable
5575 // chain, and the transform would increase register pressure.
5576 if (!LegalRHSImm || N0.hasOneUse())
5577 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5578 return V;
5579 }
5580
5581 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5582 N1.getOpcode() == ISD::XOR)
5583 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5584 return V;
5585
5586 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5587 return V;
5588
5589 if (SDValue V = foldSetCCWithOr(VT, N0, N1, Cond, dl, DCI))
5590 return V;
5591 }
5592
5593 // Fold remainder of division by a constant.
5594 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5595 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5596 // When division is cheap or optimizing for minimum size,
5597 // fall through to DIVREM creation by skipping this fold.
5598 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5599 if (N0.getOpcode() == ISD::UREM) {
5600 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5601 return Folded;
5602 } else if (N0.getOpcode() == ISD::SREM) {
5603 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5604 return Folded;
5605 }
5606 }
5607 }
5608
5609 // Fold away ALL boolean setcc's.
5610 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5611 SDValue Temp;
5612 switch (Cond) {
5613 default: llvm_unreachable("Unknown integer setcc!");
5614 case ISD::SETEQ: // X == Y -> ~(X^Y)
5615 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5616 N0 = DAG.getNOT(dl, Temp, OpVT);
5617 if (!DCI.isCalledByLegalizer())
5618 DCI.AddToWorklist(Temp.getNode());
5619 break;
5620 case ISD::SETNE: // X != Y --> (X^Y)
5621 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5622 break;
5623 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
5624 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
5625 Temp = DAG.getNOT(dl, N0, OpVT);
5626 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5627 if (!DCI.isCalledByLegalizer())
5628 DCI.AddToWorklist(Temp.getNode());
5629 break;
5630 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
5631 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
5632 Temp = DAG.getNOT(dl, N1, OpVT);
5633 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5634 if (!DCI.isCalledByLegalizer())
5635 DCI.AddToWorklist(Temp.getNode());
5636 break;
5637 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
5638 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
5639 Temp = DAG.getNOT(dl, N0, OpVT);
5640 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5641 if (!DCI.isCalledByLegalizer())
5642 DCI.AddToWorklist(Temp.getNode());
5643 break;
5644 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
5645 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
5646 Temp = DAG.getNOT(dl, N1, OpVT);
5647 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5648 break;
5649 }
5650 if (VT.getScalarType() != MVT::i1) {
5651 if (!DCI.isCalledByLegalizer())
5652 DCI.AddToWorklist(N0.getNode());
5653 // FIXME: If running after legalize, we probably can't do this.
5655 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5656 }
5657 return N0;
5658 }
5659
5660 // Fold (setcc (trunc x) (trunc y)) -> (setcc x y)
5661 if (N0.getOpcode() == ISD::TRUNCATE && N1.getOpcode() == ISD::TRUNCATE &&
5662 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
5664 N1->getFlags().hasNoUnsignedWrap()) ||
5666 N1->getFlags().hasNoSignedWrap())) &&
5668 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5669 }
5670
5671 // Could not fold it.
5672 return SDValue();
5673}
5674
5675/// Returns true (and the GlobalValue and the offset) if the node is a
5676/// GlobalAddress + offset.
5678 int64_t &Offset) const {
5679
5680 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5681
5682 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5683 GA = GASD->getGlobal();
5684 Offset += GASD->getOffset();
5685 return true;
5686 }
5687
5688 if (N->isAnyAdd()) {
5689 SDValue N1 = N->getOperand(0);
5690 SDValue N2 = N->getOperand(1);
5691 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5692 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5693 Offset += V->getSExtValue();
5694 return true;
5695 }
5696 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5697 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5698 Offset += V->getSExtValue();
5699 return true;
5700 }
5701 }
5702 }
5703
5704 return false;
5705}
5706
5708 DAGCombinerInfo &DCI) const {
5709 // Default implementation: no optimization.
5710 return SDValue();
5711}
5712
5713//===----------------------------------------------------------------------===//
5714// Inline Assembler Implementation Methods
5715//===----------------------------------------------------------------------===//
5716
5719 unsigned S = Constraint.size();
5720
5721 if (S == 1) {
5722 switch (Constraint[0]) {
5723 default: break;
5724 case 'r':
5725 return C_RegisterClass;
5726 case 'm': // memory
5727 case 'o': // offsetable
5728 case 'V': // not offsetable
5729 return C_Memory;
5730 case 'p': // Address.
5731 return C_Address;
5732 case 'n': // Simple Integer
5733 case 'E': // Floating Point Constant
5734 case 'F': // Floating Point Constant
5735 return C_Immediate;
5736 case 'i': // Simple Integer or Relocatable Constant
5737 case 's': // Relocatable Constant
5738 case 'X': // Allow ANY value.
5739 case 'I': // Target registers.
5740 case 'J':
5741 case 'K':
5742 case 'L':
5743 case 'M':
5744 case 'N':
5745 case 'O':
5746 case 'P':
5747 case '<':
5748 case '>':
5749 return C_Other;
5750 }
5751 }
5752
5753 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5754 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5755 return C_Memory;
5756 return C_Register;
5757 }
5758 return C_Unknown;
5759}
5760
5761/// Try to replace an X constraint, which matches anything, with another that
5762/// has more specific requirements based on the type of the corresponding
5763/// operand.
5764const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5765 if (ConstraintVT.isInteger())
5766 return "r";
5767 if (ConstraintVT.isFloatingPoint())
5768 return "f"; // works for many targets
5769 return nullptr;
5770}
5771
5773 SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5774 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5775 return SDValue();
5776}
5777
5778/// Lower the specified operand into the Ops vector.
5779/// If it is invalid, don't add anything to Ops.
5781 StringRef Constraint,
5782 std::vector<SDValue> &Ops,
5783 SelectionDAG &DAG) const {
5784
5785 if (Constraint.size() > 1)
5786 return;
5787
5788 char ConstraintLetter = Constraint[0];
5789 switch (ConstraintLetter) {
5790 default: break;
5791 case 'X': // Allows any operand
5792 case 'i': // Simple Integer or Relocatable Constant
5793 case 'n': // Simple Integer
5794 case 's': { // Relocatable Constant
5795
5797 uint64_t Offset = 0;
5798
5799 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5800 // etc., since getelementpointer is variadic. We can't use
5801 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5802 // while in this case the GA may be furthest from the root node which is
5803 // likely an ISD::ADD.
5804 while (true) {
5805 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5806 // gcc prints these as sign extended. Sign extend value to 64 bits
5807 // now; without this it would get ZExt'd later in
5808 // ScheduleDAGSDNodes::EmitNode, which is very generic.
5809 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5810 BooleanContent BCont = getBooleanContents(MVT::i64);
5811 ISD::NodeType ExtOpc =
5812 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5813 int64_t ExtVal =
5814 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5815 Ops.push_back(
5816 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5817 return;
5818 }
5819 if (ConstraintLetter != 'n') {
5820 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5821 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5822 GA->getValueType(0),
5823 Offset + GA->getOffset()));
5824 return;
5825 }
5826 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5827 Ops.push_back(DAG.getTargetBlockAddress(
5828 BA->getBlockAddress(), BA->getValueType(0),
5829 Offset + BA->getOffset(), BA->getTargetFlags()));
5830 return;
5831 }
5833 Ops.push_back(Op);
5834 return;
5835 }
5836 }
5837 const unsigned OpCode = Op.getOpcode();
5838 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5839 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5840 Op = Op.getOperand(1);
5841 // Subtraction is not commutative.
5842 else if (OpCode == ISD::ADD &&
5843 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5844 Op = Op.getOperand(0);
5845 else
5846 return;
5847 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5848 continue;
5849 }
5850 return;
5851 }
5852 break;
5853 }
5854 }
5855}
5856
5860
5861std::pair<unsigned, const TargetRegisterClass *>
5863 StringRef Constraint,
5864 MVT VT) const {
5865 if (!Constraint.starts_with("{"))
5866 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5867 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5868
5869 // Remove the braces from around the name.
5870 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5871
5872 std::pair<unsigned, const TargetRegisterClass *> R =
5873 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5874
5875 // Figure out which register class contains this reg.
5876 for (const TargetRegisterClass *RC : RI->regclasses()) {
5877 // If none of the value types for this register class are valid, we
5878 // can't use it. For example, 64-bit reg classes on 32-bit targets.
5879 if (!isLegalRC(*RI, *RC))
5880 continue;
5881
5882 for (const MCPhysReg &PR : *RC) {
5883 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5884 std::pair<unsigned, const TargetRegisterClass *> S =
5885 std::make_pair(PR, RC);
5886
5887 // If this register class has the requested value type, return it,
5888 // otherwise keep searching and return the first class found
5889 // if no other is found which explicitly has the requested type.
5890 if (RI->isTypeLegalForClass(*RC, VT))
5891 return S;
5892 if (!R.second)
5893 R = S;
5894 }
5895 }
5896 }
5897
5898 return R;
5899}
5900
5901//===----------------------------------------------------------------------===//
5902// Constraint Selection.
5903
5904/// Return true of this is an input operand that is a matching constraint like
5905/// "4".
5907 assert(!ConstraintCode.empty() && "No known constraint!");
5908 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5909}
5910
5911/// If this is an input matching constraint, this method returns the output
5912/// operand it matches.
5914 assert(!ConstraintCode.empty() && "No known constraint!");
5915 return atoi(ConstraintCode.c_str());
5916}
5917
5918/// Split up the constraint string from the inline assembly value into the
5919/// specific constraints and their prefixes, and also tie in the associated
5920/// operand values.
5921/// If this returns an empty vector, and if the constraint string itself
5922/// isn't empty, there was an error parsing.
5925 const TargetRegisterInfo *TRI,
5926 const CallBase &Call) const {
5927 /// Information about all of the constraints.
5928 AsmOperandInfoVector ConstraintOperands;
5929 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5930 unsigned maCount = 0; // Largest number of multiple alternative constraints.
5931
5932 // Do a prepass over the constraints, canonicalizing them, and building up the
5933 // ConstraintOperands list.
5934 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5935 unsigned ResNo = 0; // ResNo - The result number of the next output.
5936 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5937
5938 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5939 ConstraintOperands.emplace_back(std::move(CI));
5940 AsmOperandInfo &OpInfo = ConstraintOperands.back();
5941
5942 // Update multiple alternative constraint count.
5943 if (OpInfo.multipleAlternatives.size() > maCount)
5944 maCount = OpInfo.multipleAlternatives.size();
5945
5946 OpInfo.ConstraintVT = MVT::Other;
5947
5948 // Compute the value type for each operand.
5949 switch (OpInfo.Type) {
5951 // Indirect outputs just consume an argument.
5952 if (OpInfo.isIndirect) {
5953 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5954 break;
5955 }
5956
5957 // The return value of the call is this value. As such, there is no
5958 // corresponding argument.
5959 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5960 if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5961 OpInfo.ConstraintVT =
5962 getAsmOperandValueType(DL, STy->getElementType(ResNo))
5963 .getSimpleVT();
5964 } else {
5965 assert(ResNo == 0 && "Asm only has one result!");
5966 OpInfo.ConstraintVT =
5968 }
5969 ++ResNo;
5970 break;
5971 case InlineAsm::isInput:
5972 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5973 break;
5974 case InlineAsm::isLabel:
5975 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5976 ++LabelNo;
5977 continue;
5979 // Nothing to do.
5980 break;
5981 }
5982
5983 if (OpInfo.CallOperandVal) {
5984 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5985 if (OpInfo.isIndirect) {
5986 OpTy = Call.getParamElementType(ArgNo);
5987 assert(OpTy && "Indirect operand must have elementtype attribute");
5988 }
5989
5990 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5991 if (StructType *STy = dyn_cast<StructType>(OpTy))
5992 if (STy->getNumElements() == 1)
5993 OpTy = STy->getElementType(0);
5994
5995 // If OpTy is not a single value, it may be a struct/union that we
5996 // can tile with integers.
5997 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5998 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5999 switch (BitSize) {
6000 default: break;
6001 case 1:
6002 case 8:
6003 case 16:
6004 case 32:
6005 case 64:
6006 case 128:
6007 OpTy = IntegerType::get(OpTy->getContext(), BitSize);
6008 break;
6009 }
6010 }
6011
6012 EVT VT = getAsmOperandValueType(DL, OpTy, true);
6013 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
6014 ArgNo++;
6015 }
6016 }
6017
6018 // If we have multiple alternative constraints, select the best alternative.
6019 if (!ConstraintOperands.empty()) {
6020 if (maCount) {
6021 unsigned bestMAIndex = 0;
6022 int bestWeight = -1;
6023 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
6024 int weight = -1;
6025 unsigned maIndex;
6026 // Compute the sums of the weights for each alternative, keeping track
6027 // of the best (highest weight) one so far.
6028 for (maIndex = 0; maIndex < maCount; ++maIndex) {
6029 int weightSum = 0;
6030 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6031 cIndex != eIndex; ++cIndex) {
6032 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
6033 if (OpInfo.Type == InlineAsm::isClobber)
6034 continue;
6035
6036 // If this is an output operand with a matching input operand,
6037 // look up the matching input. If their types mismatch, e.g. one
6038 // is an integer, the other is floating point, or their sizes are
6039 // different, flag it as an maCantMatch.
6040 if (OpInfo.hasMatchingInput()) {
6041 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6042 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6043 if ((OpInfo.ConstraintVT.isInteger() !=
6044 Input.ConstraintVT.isInteger()) ||
6045 (OpInfo.ConstraintVT.getSizeInBits() !=
6046 Input.ConstraintVT.getSizeInBits())) {
6047 weightSum = -1; // Can't match.
6048 break;
6049 }
6050 }
6051 }
6052 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
6053 if (weight == -1) {
6054 weightSum = -1;
6055 break;
6056 }
6057 weightSum += weight;
6058 }
6059 // Update best.
6060 if (weightSum > bestWeight) {
6061 bestWeight = weightSum;
6062 bestMAIndex = maIndex;
6063 }
6064 }
6065
6066 // Now select chosen alternative in each constraint.
6067 for (AsmOperandInfo &cInfo : ConstraintOperands)
6068 if (cInfo.Type != InlineAsm::isClobber)
6069 cInfo.selectAlternative(bestMAIndex);
6070 }
6071 }
6072
6073 // Check and hook up tied operands, choose constraint code to use.
6074 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6075 cIndex != eIndex; ++cIndex) {
6076 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
6077
6078 // If this is an output operand with a matching input operand, look up the
6079 // matching input. If their types mismatch, e.g. one is an integer, the
6080 // other is floating point, or their sizes are different, flag it as an
6081 // error.
6082 if (OpInfo.hasMatchingInput()) {
6083 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6084
6085 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6086 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6087 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6088 OpInfo.ConstraintVT);
6089 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6090 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6091 Input.ConstraintVT);
6092 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
6093 OpInfo.ConstraintVT.isFloatingPoint();
6094 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
6095 Input.ConstraintVT.isFloatingPoint();
6096 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
6097 (MatchRC.second != InputRC.second)) {
6098 report_fatal_error("Unsupported asm: input constraint"
6099 " with a matching output constraint of"
6100 " incompatible type!");
6101 }
6102 }
6103 }
6104 }
6105
6106 return ConstraintOperands;
6107}
6108
6109/// Return a number indicating our preference for chosing a type of constraint
6110/// over another, for the purpose of sorting them. Immediates are almost always
6111/// preferrable (when they can be emitted). A higher return value means a
6112/// stronger preference for one constraint type relative to another.
6113/// FIXME: We should prefer registers over memory but doing so may lead to
6114/// unrecoverable register exhaustion later.
6115/// https://github.com/llvm/llvm-project/issues/20571
6117 switch (CT) {
6120 return 4;
6123 return 3;
6125 return 2;
6127 return 1;
6129 return 0;
6130 }
6131 llvm_unreachable("Invalid constraint type");
6132}
6133
6134/// Examine constraint type and operand type and determine a weight value.
6135/// This object must already have been set up with the operand type
6136/// and the current alternative constraint selected.
6139 AsmOperandInfo &info, int maIndex) const {
6141 if (maIndex >= (int)info.multipleAlternatives.size())
6142 rCodes = &info.Codes;
6143 else
6144 rCodes = &info.multipleAlternatives[maIndex].Codes;
6145 ConstraintWeight BestWeight = CW_Invalid;
6146
6147 // Loop over the options, keeping track of the most general one.
6148 for (const std::string &rCode : *rCodes) {
6149 ConstraintWeight weight =
6150 getSingleConstraintMatchWeight(info, rCode.c_str());
6151 if (weight > BestWeight)
6152 BestWeight = weight;
6153 }
6154
6155 return BestWeight;
6156}
6157
6158/// Examine constraint type and operand type and determine a weight value.
6159/// This object must already have been set up with the operand type
6160/// and the current alternative constraint selected.
6163 AsmOperandInfo &info, const char *constraint) const {
6165 Value *CallOperandVal = info.CallOperandVal;
6166 // If we don't have a value, we can't do a match,
6167 // but allow it at the lowest weight.
6168 if (!CallOperandVal)
6169 return CW_Default;
6170 // Look at the constraint type.
6171 switch (*constraint) {
6172 case 'i': // immediate integer.
6173 case 'n': // immediate integer with a known value.
6174 if (isa<ConstantInt>(CallOperandVal))
6175 weight = CW_Constant;
6176 break;
6177 case 's': // non-explicit intregal immediate.
6178 if (isa<GlobalValue>(CallOperandVal))
6179 weight = CW_Constant;
6180 break;
6181 case 'E': // immediate float if host format.
6182 case 'F': // immediate float.
6183 if (isa<ConstantFP>(CallOperandVal))
6184 weight = CW_Constant;
6185 break;
6186 case '<': // memory operand with autodecrement.
6187 case '>': // memory operand with autoincrement.
6188 case 'm': // memory operand.
6189 case 'o': // offsettable memory operand
6190 case 'V': // non-offsettable memory operand
6191 weight = CW_Memory;
6192 break;
6193 case 'r': // general register.
6194 case 'g': // general register, memory operand or immediate integer.
6195 // note: Clang converts "g" to "imr".
6196 if (CallOperandVal->getType()->isIntegerTy())
6197 weight = CW_Register;
6198 break;
6199 case 'X': // any operand.
6200 default:
6201 weight = CW_Default;
6202 break;
6203 }
6204 return weight;
6205}
6206
6207/// If there are multiple different constraints that we could pick for this
6208/// operand (e.g. "imr") try to pick the 'best' one.
6209/// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
6210/// into seven classes:
6211/// Register -> one specific register
6212/// RegisterClass -> a group of regs
6213/// Memory -> memory
6214/// Address -> a symbolic memory reference
6215/// Immediate -> immediate values
6216/// Other -> magic values (such as "Flag Output Operands")
6217/// Unknown -> something we don't recognize yet and can't handle
6218/// Ideally, we would pick the most specific constraint possible: if we have
6219/// something that fits into a register, we would pick it. The problem here
6220/// is that if we have something that could either be in a register or in
6221/// memory that use of the register could cause selection of *other*
6222/// operands to fail: they might only succeed if we pick memory. Because of
6223/// this the heuristic we use is:
6224///
6225/// 1) If there is an 'other' constraint, and if the operand is valid for
6226/// that constraint, use it. This makes us take advantage of 'i'
6227/// constraints when available.
6228/// 2) Otherwise, pick the most general constraint present. This prefers
6229/// 'm' over 'r', for example.
6230///
6232 TargetLowering::AsmOperandInfo &OpInfo) const {
6233 ConstraintGroup Ret;
6234
6235 Ret.reserve(OpInfo.Codes.size());
6236 for (StringRef Code : OpInfo.Codes) {
6238
6239 // Indirect 'other' or 'immediate' constraints are not allowed.
6240 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6241 CType == TargetLowering::C_Register ||
6243 continue;
6244
6245 // Things with matching constraints can only be registers, per gcc
6246 // documentation. This mainly affects "g" constraints.
6247 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6248 continue;
6249
6250 Ret.emplace_back(Code, CType);
6251 }
6252
6254 return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6255 });
6256
6257 return Ret;
6258}
6259
6260/// If we have an immediate, see if we can lower it. Return true if we can,
6261/// false otherwise.
6263 SDValue Op, SelectionDAG *DAG,
6264 const TargetLowering &TLI) {
6265
6266 assert((P.second == TargetLowering::C_Other ||
6267 P.second == TargetLowering::C_Immediate) &&
6268 "need immediate or other");
6269
6270 if (!Op.getNode())
6271 return false;
6272
6273 std::vector<SDValue> ResultOps;
6274 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6275 return !ResultOps.empty();
6276}
6277
6278/// Determines the constraint code and constraint type to use for the specific
6279/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6281 SDValue Op,
6282 SelectionDAG *DAG) const {
6283 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6284
6285 // Single-letter constraints ('r') are very common.
6286 if (OpInfo.Codes.size() == 1) {
6287 OpInfo.ConstraintCode = OpInfo.Codes[0];
6288 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6289 } else {
6291 if (G.empty())
6292 return;
6293
6294 unsigned BestIdx = 0;
6295 for (const unsigned E = G.size();
6296 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6297 G[BestIdx].second == TargetLowering::C_Immediate);
6298 ++BestIdx) {
6299 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6300 break;
6301 // If we're out of constraints, just pick the first one.
6302 if (BestIdx + 1 == E) {
6303 BestIdx = 0;
6304 break;
6305 }
6306 }
6307
6308 OpInfo.ConstraintCode = G[BestIdx].first;
6309 OpInfo.ConstraintType = G[BestIdx].second;
6310 }
6311
6312 // 'X' matches anything.
6313 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6314 // Constants are handled elsewhere. For Functions, the type here is the
6315 // type of the result, which is not what we want to look at; leave them
6316 // alone.
6317 Value *v = OpInfo.CallOperandVal;
6318 if (isa<ConstantInt>(v) || isa<Function>(v)) {
6319 return;
6320 }
6321
6322 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6323 OpInfo.ConstraintCode = "i";
6324 return;
6325 }
6326
6327 // Otherwise, try to resolve it to something we know about by looking at
6328 // the actual operand type.
6329 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6330 OpInfo.ConstraintCode = Repl;
6331 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6332 }
6333 }
6334}
6335
6336/// Given an exact SDIV by a constant, create a multiplication
6337/// with the multiplicative inverse of the constant.
6338/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6340 const SDLoc &dl, SelectionDAG &DAG,
6341 SmallVectorImpl<SDNode *> &Created) {
6342 SDValue Op0 = N->getOperand(0);
6343 SDValue Op1 = N->getOperand(1);
6344 EVT VT = N->getValueType(0);
6345 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6346 EVT ShSVT = ShVT.getScalarType();
6347
6348 bool UseSRA = false;
6349 SmallVector<SDValue, 16> Shifts, Factors;
6350
6351 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6352 if (C->isZero())
6353 return false;
6354
6355 EVT CT = C->getValueType(0);
6356 APInt Divisor = C->getAPIntValue();
6357 unsigned Shift = Divisor.countr_zero();
6358 if (Shift) {
6359 Divisor.ashrInPlace(Shift);
6360 UseSRA = true;
6361 }
6362 APInt Factor = Divisor.multiplicativeInverse();
6363 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6364 Factors.push_back(DAG.getConstant(Factor, dl, CT));
6365 return true;
6366 };
6367
6368 // Collect all magic values from the build vector.
6369 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern, /*AllowUndefs=*/false,
6370 /*AllowTruncation=*/true))
6371 return SDValue();
6372
6373 SDValue Shift, Factor;
6374 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6375 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6376 Factor = DAG.getBuildVector(VT, dl, Factors);
6377 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6378 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6379 "Expected matchUnaryPredicate to return one element for scalable "
6380 "vectors");
6381 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6382 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6383 } else {
6384 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6385 Shift = Shifts[0];
6386 Factor = Factors[0];
6387 }
6388
6389 SDValue Res = Op0;
6390 if (UseSRA) {
6391 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6392 Created.push_back(Res.getNode());
6393 }
6394
6395 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6396}
6397
6398/// Given an exact UDIV by a constant, create a multiplication
6399/// with the multiplicative inverse of the constant.
6400/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6402 const SDLoc &dl, SelectionDAG &DAG,
6403 SmallVectorImpl<SDNode *> &Created) {
6404 EVT VT = N->getValueType(0);
6405 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6406 EVT ShSVT = ShVT.getScalarType();
6407
6408 bool UseSRL = false;
6409 SmallVector<SDValue, 16> Shifts, Factors;
6410
6411 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6412 if (C->isZero())
6413 return false;
6414
6415 EVT CT = C->getValueType(0);
6416 APInt Divisor = C->getAPIntValue();
6417 unsigned Shift = Divisor.countr_zero();
6418 if (Shift) {
6419 Divisor.lshrInPlace(Shift);
6420 UseSRL = true;
6421 }
6422 // Calculate the multiplicative inverse modulo BW.
6423 APInt Factor = Divisor.multiplicativeInverse();
6424 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6425 Factors.push_back(DAG.getConstant(Factor, dl, CT));
6426 return true;
6427 };
6428
6429 SDValue Op1 = N->getOperand(1);
6430
6431 // Collect all magic values from the build vector.
6432 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern, /*AllowUndefs=*/false,
6433 /*AllowTruncation=*/true))
6434 return SDValue();
6435
6436 SDValue Shift, Factor;
6437 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6438 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6439 Factor = DAG.getBuildVector(VT, dl, Factors);
6440 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6441 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6442 "Expected matchUnaryPredicate to return one element for scalable "
6443 "vectors");
6444 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6445 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6446 } else {
6447 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6448 Shift = Shifts[0];
6449 Factor = Factors[0];
6450 }
6451
6452 SDValue Res = N->getOperand(0);
6453 if (UseSRL) {
6454 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6455 Created.push_back(Res.getNode());
6456 }
6457
6458 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6459}
6460
6462 SelectionDAG &DAG,
6463 SmallVectorImpl<SDNode *> &Created) const {
6464 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6465 if (isIntDivCheap(N->getValueType(0), Attr))
6466 return SDValue(N, 0); // Lower SDIV as SDIV
6467 return SDValue();
6468}
6469
6470SDValue
6472 SelectionDAG &DAG,
6473 SmallVectorImpl<SDNode *> &Created) const {
6474 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6475 if (isIntDivCheap(N->getValueType(0), Attr))
6476 return SDValue(N, 0); // Lower SREM as SREM
6477 return SDValue();
6478}
6479
6480/// Build sdiv by power-of-2 with conditional move instructions
6481/// Ref: "Hacker's Delight" by Henry Warren 10-1
6482/// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6483/// bgez x, label
6484/// add x, x, 2**k-1
6485/// label:
6486/// sra res, x, k
6487/// neg res, res (when the divisor is negative)
6489 SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6490 SmallVectorImpl<SDNode *> &Created) const {
6491 unsigned Lg2 = Divisor.countr_zero();
6492 EVT VT = N->getValueType(0);
6493
6494 SDLoc DL(N);
6495 SDValue N0 = N->getOperand(0);
6496 SDValue Zero = DAG.getConstant(0, DL, VT);
6497 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6498 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6499
6500 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6501 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6502 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6503 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6504 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6505
6506 Created.push_back(Cmp.getNode());
6507 Created.push_back(Add.getNode());
6508 Created.push_back(CMov.getNode());
6509
6510 // Divide by pow2.
6511 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, CMov,
6512 DAG.getShiftAmountConstant(Lg2, VT, DL));
6513
6514 // If we're dividing by a positive value, we're done. Otherwise, we must
6515 // negate the result.
6516 if (Divisor.isNonNegative())
6517 return SRA;
6518
6519 Created.push_back(SRA.getNode());
6520 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6521}
6522
6523/// Given an ISD::SDIV node expressing a divide by constant,
6524/// return a DAG expression to select that will generate the same value by
6525/// multiplying by a magic number.
6526/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6528 bool IsAfterLegalization,
6529 bool IsAfterLegalTypes,
6530 SmallVectorImpl<SDNode *> &Created) const {
6531 SDLoc dl(N);
6532 EVT VT = N->getValueType(0);
6533 EVT SVT = VT.getScalarType();
6534 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6535 EVT ShSVT = ShVT.getScalarType();
6536 unsigned EltBits = VT.getScalarSizeInBits();
6537 EVT MulVT;
6538
6539 // Check to see if we can do this.
6540 // FIXME: We should be more aggressive here.
6541 if (!isTypeLegal(VT)) {
6542 // Limit this to simple scalars for now.
6543 if (VT.isVector() || !VT.isSimple())
6544 return SDValue();
6545
6546 // If this type will be promoted to a large enough type with a legal
6547 // multiply operation, we can go ahead and do this transform.
6549 return SDValue();
6550
6551 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6552 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6553 !isOperationLegal(ISD::MUL, MulVT))
6554 return SDValue();
6555 }
6556
6557 // If the sdiv has an 'exact' bit we can use a simpler lowering.
6558 if (N->getFlags().hasExact())
6559 return BuildExactSDIV(*this, N, dl, DAG, Created);
6560
6561 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6562
6563 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6564 if (C->isZero())
6565 return false;
6566 // Truncate the divisor to the target scalar type in case it was promoted
6567 // during type legalization.
6568 APInt Divisor = C->getAPIntValue().trunc(EltBits);
6570 int NumeratorFactor = 0;
6571 int ShiftMask = -1;
6572
6573 if (Divisor.isOne() || Divisor.isAllOnes()) {
6574 // If d is +1/-1, we just multiply the numerator by +1/-1.
6575 NumeratorFactor = Divisor.getSExtValue();
6576 magics.Magic = 0;
6577 magics.ShiftAmount = 0;
6578 ShiftMask = 0;
6579 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6580 // If d > 0 and m < 0, add the numerator.
6581 NumeratorFactor = 1;
6582 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6583 // If d < 0 and m > 0, subtract the numerator.
6584 NumeratorFactor = -1;
6585 }
6586
6587 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6588 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6589 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6590 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6591 return true;
6592 };
6593
6594 SDValue N0 = N->getOperand(0);
6595 SDValue N1 = N->getOperand(1);
6596
6597 // Collect the shifts / magic values from each element.
6598 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern, /*AllowUndefs=*/false,
6599 /*AllowTruncation=*/true))
6600 return SDValue();
6601
6602 SDValue MagicFactor, Factor, Shift, ShiftMask;
6603 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6604 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6605 Factor = DAG.getBuildVector(VT, dl, Factors);
6606 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6607 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6608 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6609 assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6610 Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6611 "Expected matchUnaryPredicate to return one element for scalable "
6612 "vectors");
6613 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6614 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6615 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6616 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6617 } else {
6618 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6619 MagicFactor = MagicFactors[0];
6620 Factor = Factors[0];
6621 Shift = Shifts[0];
6622 ShiftMask = ShiftMasks[0];
6623 }
6624
6625 // Multiply the numerator (operand 0) by the magic value.
6626 // FIXME: We should support doing a MUL in a wider type.
6627 auto GetMULHS = [&](SDValue X, SDValue Y) {
6628 // If the type isn't legal, use a wider mul of the type calculated
6629 // earlier.
6630 if (!isTypeLegal(VT)) {
6631 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6632 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6633 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6634 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6635 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6636 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6637 }
6638
6639 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6640 return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6641 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6642 SDValue LoHi =
6643 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6644 return SDValue(LoHi.getNode(), 1);
6645 }
6646 // If type twice as wide legal, widen and use a mul plus a shift.
6647 unsigned Size = VT.getScalarSizeInBits();
6648 EVT WideVT = VT.changeElementType(
6649 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), Size * 2));
6650 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6651 // custom lowered. This is very expensive so avoid it at all costs for
6652 // constant divisors.
6653 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6656 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6657 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6658 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6659 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6660 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6661 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6662 }
6663 return SDValue();
6664 };
6665
6666 SDValue Q = GetMULHS(N0, MagicFactor);
6667 if (!Q)
6668 return SDValue();
6669
6670 Created.push_back(Q.getNode());
6671
6672 // (Optionally) Add/subtract the numerator using Factor.
6673 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6674 Created.push_back(Factor.getNode());
6675 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6676 Created.push_back(Q.getNode());
6677
6678 // Shift right algebraic by shift value.
6679 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6680 Created.push_back(Q.getNode());
6681
6682 // Extract the sign bit, mask it and add it to the quotient.
6683 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6684 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6685 Created.push_back(T.getNode());
6686 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6687 Created.push_back(T.getNode());
6688 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6689}
6690
6691/// Given an ISD::UDIV node expressing a divide by constant,
6692/// return a DAG expression to select that will generate the same value by
6693/// multiplying by a magic number.
6694/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6696 bool IsAfterLegalization,
6697 bool IsAfterLegalTypes,
6698 SmallVectorImpl<SDNode *> &Created) const {
6699 SDLoc dl(N);
6700 EVT VT = N->getValueType(0);
6701 EVT SVT = VT.getScalarType();
6702 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6703 EVT ShSVT = ShVT.getScalarType();
6704 unsigned EltBits = VT.getScalarSizeInBits();
6705 EVT MulVT;
6706
6707 // Check to see if we can do this.
6708 // FIXME: We should be more aggressive here.
6709 if (!isTypeLegal(VT)) {
6710 // Limit this to simple scalars for now.
6711 if (VT.isVector() || !VT.isSimple())
6712 return SDValue();
6713
6714 // If this type will be promoted to a large enough type with a legal
6715 // multiply operation, we can go ahead and do this transform.
6717 return SDValue();
6718
6719 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6720 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6721 !isOperationLegal(ISD::MUL, MulVT))
6722 return SDValue();
6723 }
6724
6725 // If the udiv has an 'exact' bit we can use a simpler lowering.
6726 if (N->getFlags().hasExact())
6727 return BuildExactUDIV(*this, N, dl, DAG, Created);
6728
6729 SDValue N0 = N->getOperand(0);
6730 SDValue N1 = N->getOperand(1);
6731
6732 // Try to use leading zeros of the dividend to reduce the multiplier and
6733 // avoid expensive fixups.
6734 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6735
6736 // If we're after type legalization and SVT is not legal, use the
6737 // promoted type for creating constants to avoid creating nodes with
6738 // illegal types.
6739 if (IsAfterLegalTypes && VT.isVector()) {
6740 SVT = getTypeToTransformTo(*DAG.getContext(), SVT);
6741 if (SVT.bitsLT(VT.getScalarType()))
6742 return SDValue();
6743 ShSVT = getTypeToTransformTo(*DAG.getContext(), ShSVT);
6744 if (ShSVT.bitsLT(ShVT.getScalarType()))
6745 return SDValue();
6746 }
6747 const unsigned SVTBits = SVT.getSizeInBits();
6748
6749 bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6750 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6751
6752 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6753 if (C->isZero())
6754 return false;
6755 // Truncate the divisor to the target scalar type in case it was promoted
6756 // during type legalization.
6757 APInt Divisor = C->getAPIntValue().trunc(EltBits);
6758
6759 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6760
6761 // Magic algorithm doesn't work for division by 1. We need to emit a select
6762 // at the end.
6763 if (Divisor.isOne()) {
6764 PreShift = PostShift = DAG.getUNDEF(ShSVT);
6765 MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6766 } else {
6769 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6770
6771 MagicFactor = DAG.getConstant(magics.Magic.zext(SVTBits), dl, SVT);
6772
6773 assert(magics.PreShift < Divisor.getBitWidth() &&
6774 "We shouldn't generate an undefined shift!");
6775 assert(magics.PostShift < Divisor.getBitWidth() &&
6776 "We shouldn't generate an undefined shift!");
6777 assert((!magics.IsAdd || magics.PreShift == 0) &&
6778 "Unexpected pre-shift");
6779 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6780 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6781 NPQFactor = DAG.getConstant(
6782 magics.IsAdd ? APInt::getOneBitSet(SVTBits, EltBits - 1)
6783 : APInt::getZero(SVTBits),
6784 dl, SVT);
6785 UseNPQ |= magics.IsAdd;
6786 UsePreShift |= magics.PreShift != 0;
6787 UsePostShift |= magics.PostShift != 0;
6788 }
6789
6790 PreShifts.push_back(PreShift);
6791 MagicFactors.push_back(MagicFactor);
6792 NPQFactors.push_back(NPQFactor);
6793 PostShifts.push_back(PostShift);
6794 return true;
6795 };
6796
6797 // Collect the shifts/magic values from each element.
6798 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern, /*AllowUndefs=*/false,
6799 /*AllowTruncation=*/true))
6800 return SDValue();
6801
6802 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6803 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6804 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6805 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6806 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6807 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6808 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6809 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6810 NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6811 "Expected matchUnaryPredicate to return one for scalable vectors");
6812 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6813 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6814 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6815 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6816 } else {
6817 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6818 PreShift = PreShifts[0];
6819 MagicFactor = MagicFactors[0];
6820 PostShift = PostShifts[0];
6821 }
6822
6823 SDValue Q = N0;
6824 if (UsePreShift) {
6825 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6826 Created.push_back(Q.getNode());
6827 }
6828
6829 // FIXME: We should support doing a MUL in a wider type.
6830 auto GetMULHU = [&](SDValue X, SDValue Y) {
6831 // If the type isn't legal, use a wider mul of the type calculated
6832 // earlier.
6833 if (!isTypeLegal(VT)) {
6834 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6835 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6836 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6837 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6838 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6839 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6840 }
6841
6842 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6843 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6844 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6845 SDValue LoHi =
6846 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6847 return SDValue(LoHi.getNode(), 1);
6848 }
6849 // If type twice as wide legal, widen and use a mul plus a shift.
6850 unsigned Size = VT.getScalarSizeInBits();
6851 EVT WideVT = VT.changeElementType(
6852 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), Size * 2));
6853 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6854 // custom lowered. This is very expensive so avoid it at all costs for
6855 // constant divisors.
6856 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6859 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6860 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6861 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6862 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6863 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6864 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6865 }
6866 return SDValue(); // No mulhu or equivalent
6867 };
6868
6869 // Multiply the numerator (operand 0) by the magic value.
6870 Q = GetMULHU(Q, MagicFactor);
6871 if (!Q)
6872 return SDValue();
6873
6874 Created.push_back(Q.getNode());
6875
6876 if (UseNPQ) {
6877 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6878 Created.push_back(NPQ.getNode());
6879
6880 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6881 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6882 if (VT.isVector())
6883 NPQ = GetMULHU(NPQ, NPQFactor);
6884 else
6885 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6886
6887 Created.push_back(NPQ.getNode());
6888
6889 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6890 Created.push_back(Q.getNode());
6891 }
6892
6893 if (UsePostShift) {
6894 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6895 Created.push_back(Q.getNode());
6896 }
6897
6898 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6899
6900 SDValue One = DAG.getConstant(1, dl, VT);
6901 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6902 return DAG.getSelect(dl, VT, IsOne, N0, Q);
6903}
6904
6905/// If all values in Values that *don't* match the predicate are same 'splat'
6906/// value, then replace all values with that splat value.
6907/// Else, if AlternativeReplacement was provided, then replace all values that
6908/// do match predicate with AlternativeReplacement value.
6909static void
6911 std::function<bool(SDValue)> Predicate,
6912 SDValue AlternativeReplacement = SDValue()) {
6913 SDValue Replacement;
6914 // Is there a value for which the Predicate does *NOT* match? What is it?
6915 auto SplatValue = llvm::find_if_not(Values, Predicate);
6916 if (SplatValue != Values.end()) {
6917 // Does Values consist only of SplatValue's and values matching Predicate?
6918 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6919 return Value == *SplatValue || Predicate(Value);
6920 })) // Then we shall replace values matching predicate with SplatValue.
6921 Replacement = *SplatValue;
6922 }
6923 if (!Replacement) {
6924 // Oops, we did not find the "baseline" splat value.
6925 if (!AlternativeReplacement)
6926 return; // Nothing to do.
6927 // Let's replace with provided value then.
6928 Replacement = AlternativeReplacement;
6929 }
6930 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6931}
6932
6933/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6934/// where the divisor is constant and the comparison target is zero,
6935/// return a DAG expression that will generate the same comparison result
6936/// using only multiplications, additions and shifts/rotations.
6937/// Ref: "Hacker's Delight" 10-17.
6938SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6939 SDValue CompTargetNode,
6941 DAGCombinerInfo &DCI,
6942 const SDLoc &DL) const {
6944 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6945 DCI, DL, Built)) {
6946 for (SDNode *N : Built)
6947 DCI.AddToWorklist(N);
6948 return Folded;
6949 }
6950
6951 return SDValue();
6952}
6953
6954SDValue
6955TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6956 SDValue CompTargetNode, ISD::CondCode Cond,
6957 DAGCombinerInfo &DCI, const SDLoc &DL,
6958 SmallVectorImpl<SDNode *> &Created) const {
6959 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6960 // - D must be constant, with D = D0 * 2^K where D0 is odd
6961 // - P is the multiplicative inverse of D0 modulo 2^W
6962 // - Q = floor(((2^W) - 1) / D)
6963 // where W is the width of the common type of N and D.
6964 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6965 "Only applicable for (in)equality comparisons.");
6966
6967 SelectionDAG &DAG = DCI.DAG;
6968
6969 EVT VT = REMNode.getValueType();
6970 EVT SVT = VT.getScalarType();
6971 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6972 EVT ShSVT = ShVT.getScalarType();
6973
6974 // If MUL is unavailable, we cannot proceed in any case.
6975 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6976 return SDValue();
6977
6978 bool ComparingWithAllZeros = true;
6979 bool AllComparisonsWithNonZerosAreTautological = true;
6980 bool HadTautologicalLanes = false;
6981 bool AllLanesAreTautological = true;
6982 bool HadEvenDivisor = false;
6983 bool AllDivisorsArePowerOfTwo = true;
6984 bool HadTautologicalInvertedLanes = false;
6985 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
6986
6987 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6988 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6989 if (CDiv->isZero())
6990 return false;
6991
6992 const APInt &D = CDiv->getAPIntValue();
6993 const APInt &Cmp = CCmp->getAPIntValue();
6994
6995 ComparingWithAllZeros &= Cmp.isZero();
6996
6997 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6998 // if C2 is not less than C1, the comparison is always false.
6999 // But we will only be able to produce the comparison that will give the
7000 // opposive tautological answer. So this lane would need to be fixed up.
7001 bool TautologicalInvertedLane = D.ule(Cmp);
7002 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
7003
7004 // If all lanes are tautological (either all divisors are ones, or divisor
7005 // is not greater than the constant we are comparing with),
7006 // we will prefer to avoid the fold.
7007 bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
7008 HadTautologicalLanes |= TautologicalLane;
7009 AllLanesAreTautological &= TautologicalLane;
7010
7011 // If we are comparing with non-zero, we need'll need to subtract said
7012 // comparison value from the LHS. But there is no point in doing that if
7013 // every lane where we are comparing with non-zero is tautological..
7014 if (!Cmp.isZero())
7015 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
7016
7017 // Decompose D into D0 * 2^K
7018 unsigned K = D.countr_zero();
7019 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7020 APInt D0 = D.lshr(K);
7021
7022 // D is even if it has trailing zeros.
7023 HadEvenDivisor |= (K != 0);
7024 // D is a power-of-two if D0 is one.
7025 // If all divisors are power-of-two, we will prefer to avoid the fold.
7026 AllDivisorsArePowerOfTwo &= D0.isOne();
7027
7028 // P = inv(D0, 2^W)
7029 // 2^W requires W + 1 bits, so we have to extend and then truncate.
7030 unsigned W = D.getBitWidth();
7031 APInt P = D0.multiplicativeInverse();
7032 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7033
7034 // Q = floor((2^W - 1) u/ D)
7035 // R = ((2^W - 1) u% D)
7036 APInt Q, R;
7038
7039 // If we are comparing with zero, then that comparison constant is okay,
7040 // else it may need to be one less than that.
7041 if (Cmp.ugt(R))
7042 Q -= 1;
7043
7045 "We are expecting that K is always less than all-ones for ShSVT");
7046
7047 // If the lane is tautological the result can be constant-folded.
7048 if (TautologicalLane) {
7049 // Set P and K amount to a bogus values so we can try to splat them.
7050 P = 0;
7051 K = -1;
7052 // And ensure that comparison constant is tautological,
7053 // it will always compare true/false.
7054 Q = -1;
7055 }
7056
7057 PAmts.push_back(DAG.getConstant(P, DL, SVT));
7058 KAmts.push_back(
7059 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7060 /*implicitTrunc=*/true),
7061 DL, ShSVT));
7062 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7063 return true;
7064 };
7065
7066 SDValue N = REMNode.getOperand(0);
7067 SDValue D = REMNode.getOperand(1);
7068
7069 // Collect the values from each element.
7070 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
7071 return SDValue();
7072
7073 // If all lanes are tautological, the result can be constant-folded.
7074 if (AllLanesAreTautological)
7075 return SDValue();
7076
7077 // If this is a urem by a powers-of-two, avoid the fold since it can be
7078 // best implemented as a bit test.
7079 if (AllDivisorsArePowerOfTwo)
7080 return SDValue();
7081
7082 SDValue PVal, KVal, QVal;
7083 if (D.getOpcode() == ISD::BUILD_VECTOR) {
7084 if (HadTautologicalLanes) {
7085 // Try to turn PAmts into a splat, since we don't care about the values
7086 // that are currently '0'. If we can't, just keep '0'`s.
7088 // Try to turn KAmts into a splat, since we don't care about the values
7089 // that are currently '-1'. If we can't, change them to '0'`s.
7091 DAG.getConstant(0, DL, ShSVT));
7092 }
7093
7094 PVal = DAG.getBuildVector(VT, DL, PAmts);
7095 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7096 QVal = DAG.getBuildVector(VT, DL, QAmts);
7097 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7098 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
7099 "Expected matchBinaryPredicate to return one element for "
7100 "SPLAT_VECTORs");
7101 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7102 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7103 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7104 } else {
7105 PVal = PAmts[0];
7106 KVal = KAmts[0];
7107 QVal = QAmts[0];
7108 }
7109
7110 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
7111 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
7112 return SDValue(); // FIXME: Could/should use `ISD::ADD`?
7113 assert(CompTargetNode.getValueType() == N.getValueType() &&
7114 "Expecting that the types on LHS and RHS of comparisons match.");
7115 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
7116 }
7117
7118 // (mul N, P)
7119 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7120 Created.push_back(Op0.getNode());
7121
7122 // Rotate right only if any divisor was even. We avoid rotates for all-odd
7123 // divisors as a performance improvement, since rotating by 0 is a no-op.
7124 if (HadEvenDivisor) {
7125 // We need ROTR to do this.
7126 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7127 return SDValue();
7128 // UREM: (rotr (mul N, P), K)
7129 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7130 Created.push_back(Op0.getNode());
7131 }
7132
7133 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
7134 SDValue NewCC =
7135 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7137 if (!HadTautologicalInvertedLanes)
7138 return NewCC;
7139
7140 // If any lanes previously compared always-false, the NewCC will give
7141 // always-true result for them, so we need to fixup those lanes.
7142 // Or the other way around for inequality predicate.
7143 assert(VT.isVector() && "Can/should only get here for vectors.");
7144 Created.push_back(NewCC.getNode());
7145
7146 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
7147 // if C2 is not less than C1, the comparison is always false.
7148 // But we have produced the comparison that will give the
7149 // opposive tautological answer. So these lanes would need to be fixed up.
7150 SDValue TautologicalInvertedChannels =
7151 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
7152 Created.push_back(TautologicalInvertedChannels.getNode());
7153
7154 // NOTE: we avoid letting illegal types through even if we're before legalize
7155 // ops – legalization has a hard time producing good code for this.
7156 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
7157 // If we have a vector select, let's replace the comparison results in the
7158 // affected lanes with the correct tautological result.
7159 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
7160 DL, SETCCVT, SETCCVT);
7161 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
7162 Replacement, NewCC);
7163 }
7164
7165 // Else, we can just invert the comparison result in the appropriate lanes.
7166 //
7167 // NOTE: see the note above VSELECT above.
7168 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
7169 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
7170 TautologicalInvertedChannels);
7171
7172 return SDValue(); // Don't know how to lower.
7173}
7174
7175/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
7176/// where the divisor is constant and the comparison target is zero,
7177/// return a DAG expression that will generate the same comparison result
7178/// using only multiplications, additions and shifts/rotations.
7179/// Ref: "Hacker's Delight" 10-17.
7180SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
7181 SDValue CompTargetNode,
7183 DAGCombinerInfo &DCI,
7184 const SDLoc &DL) const {
7186 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
7187 DCI, DL, Built)) {
7188 assert(Built.size() <= 7 && "Max size prediction failed.");
7189 for (SDNode *N : Built)
7190 DCI.AddToWorklist(N);
7191 return Folded;
7192 }
7193
7194 return SDValue();
7195}
7196
7197SDValue
7198TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
7199 SDValue CompTargetNode, ISD::CondCode Cond,
7200 DAGCombinerInfo &DCI, const SDLoc &DL,
7201 SmallVectorImpl<SDNode *> &Created) const {
7202 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
7203 // Fold:
7204 // (seteq/ne (srem N, D), 0)
7205 // To:
7206 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
7207 //
7208 // - D must be constant, with D = D0 * 2^K where D0 is odd
7209 // - P is the multiplicative inverse of D0 modulo 2^W
7210 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
7211 // - Q = floor((2 * A) / (2^K))
7212 // where W is the width of the common type of N and D.
7213 //
7214 // When D is a power of two (and thus D0 is 1), the normal
7215 // formula for A and Q don't apply, because the derivation
7216 // depends on D not dividing 2^(W-1), and thus theorem ZRS
7217 // does not apply. This specifically fails when N = INT_MIN.
7218 //
7219 // Instead, for power-of-two D, we use:
7220 // - A = 2^(W-1)
7221 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
7222 // - Q = 2^(W-K) - 1
7223 // |-> Test that the top K bits are zero after rotation
7224 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
7225 "Only applicable for (in)equality comparisons.");
7226
7227 SelectionDAG &DAG = DCI.DAG;
7228
7229 EVT VT = REMNode.getValueType();
7230 EVT SVT = VT.getScalarType();
7231 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7232 EVT ShSVT = ShVT.getScalarType();
7233
7234 // If we are after ops legalization, and MUL is unavailable, we can not
7235 // proceed.
7236 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
7237 return SDValue();
7238
7239 // TODO: Could support comparing with non-zero too.
7240 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
7241 if (!CompTarget || !CompTarget->isZero())
7242 return SDValue();
7243
7244 bool HadIntMinDivisor = false;
7245 bool HadOneDivisor = false;
7246 bool AllDivisorsAreOnes = true;
7247 bool HadEvenDivisor = false;
7248 bool NeedToApplyOffset = false;
7249 bool AllDivisorsArePowerOfTwo = true;
7250 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
7251
7252 auto BuildSREMPattern = [&](ConstantSDNode *C) {
7253 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
7254 if (C->isZero())
7255 return false;
7256
7257 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7258
7259 // WARNING: this fold is only valid for positive divisors!
7260 APInt D = C->getAPIntValue();
7261 if (D.isNegative())
7262 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
7263
7264 HadIntMinDivisor |= D.isMinSignedValue();
7265
7266 // If all divisors are ones, we will prefer to avoid the fold.
7267 HadOneDivisor |= D.isOne();
7268 AllDivisorsAreOnes &= D.isOne();
7269
7270 // Decompose D into D0 * 2^K
7271 unsigned K = D.countr_zero();
7272 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7273 APInt D0 = D.lshr(K);
7274
7275 if (!D.isMinSignedValue()) {
7276 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7277 // we don't care about this lane in this fold, we'll special-handle it.
7278 HadEvenDivisor |= (K != 0);
7279 }
7280
7281 // D is a power-of-two if D0 is one. This includes INT_MIN.
7282 // If all divisors are power-of-two, we will prefer to avoid the fold.
7283 AllDivisorsArePowerOfTwo &= D0.isOne();
7284
7285 // P = inv(D0, 2^W)
7286 // 2^W requires W + 1 bits, so we have to extend and then truncate.
7287 unsigned W = D.getBitWidth();
7288 APInt P = D0.multiplicativeInverse();
7289 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7290
7291 // A = floor((2^(W - 1) - 1) / D0) & -2^K
7292 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7293 A.clearLowBits(K);
7294
7295 if (!D.isMinSignedValue()) {
7296 // If divisor INT_MIN, then we don't care about this lane in this fold,
7297 // we'll special-handle it.
7298 NeedToApplyOffset |= A != 0;
7299 }
7300
7301 // Q = floor((2 * A) / (2^K))
7302 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7303
7305 "We are expecting that A is always less than all-ones for SVT");
7307 "We are expecting that K is always less than all-ones for ShSVT");
7308
7309 // If D was a power of two, apply the alternate constant derivation.
7310 if (D0.isOne()) {
7311 // A = 2^(W-1)
7313 // - Q = 2^(W-K) - 1
7314 Q = APInt::getAllOnes(W - K).zext(W);
7315 }
7316
7317 // If the divisor is 1 the result can be constant-folded. Likewise, we
7318 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7319 if (D.isOne()) {
7320 // Set P, A and K to a bogus values so we can try to splat them.
7321 P = 0;
7322 A = -1;
7323 K = -1;
7324
7325 // x ?% 1 == 0 <--> true <--> x u<= -1
7326 Q = -1;
7327 }
7328
7329 PAmts.push_back(DAG.getConstant(P, DL, SVT));
7330 AAmts.push_back(DAG.getConstant(A, DL, SVT));
7331 KAmts.push_back(
7332 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7333 /*implicitTrunc=*/true),
7334 DL, ShSVT));
7335 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7336 return true;
7337 };
7338
7339 SDValue N = REMNode.getOperand(0);
7340 SDValue D = REMNode.getOperand(1);
7341
7342 // Collect the values from each element.
7343 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7344 return SDValue();
7345
7346 // If this is a srem by a one, avoid the fold since it can be constant-folded.
7347 if (AllDivisorsAreOnes)
7348 return SDValue();
7349
7350 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7351 // since it can be best implemented as a bit test.
7352 if (AllDivisorsArePowerOfTwo)
7353 return SDValue();
7354
7355 SDValue PVal, AVal, KVal, QVal;
7356 if (D.getOpcode() == ISD::BUILD_VECTOR) {
7357 if (HadOneDivisor) {
7358 // Try to turn PAmts into a splat, since we don't care about the values
7359 // that are currently '0'. If we can't, just keep '0'`s.
7361 // Try to turn AAmts into a splat, since we don't care about the
7362 // values that are currently '-1'. If we can't, change them to '0'`s.
7364 DAG.getConstant(0, DL, SVT));
7365 // Try to turn KAmts into a splat, since we don't care about the values
7366 // that are currently '-1'. If we can't, change them to '0'`s.
7368 DAG.getConstant(0, DL, ShSVT));
7369 }
7370
7371 PVal = DAG.getBuildVector(VT, DL, PAmts);
7372 AVal = DAG.getBuildVector(VT, DL, AAmts);
7373 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7374 QVal = DAG.getBuildVector(VT, DL, QAmts);
7375 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7376 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7377 QAmts.size() == 1 &&
7378 "Expected matchUnaryPredicate to return one element for scalable "
7379 "vectors");
7380 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7381 AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7382 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7383 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7384 } else {
7385 assert(isa<ConstantSDNode>(D) && "Expected a constant");
7386 PVal = PAmts[0];
7387 AVal = AAmts[0];
7388 KVal = KAmts[0];
7389 QVal = QAmts[0];
7390 }
7391
7392 // (mul N, P)
7393 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7394 Created.push_back(Op0.getNode());
7395
7396 if (NeedToApplyOffset) {
7397 // We need ADD to do this.
7398 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7399 return SDValue();
7400
7401 // (add (mul N, P), A)
7402 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7403 Created.push_back(Op0.getNode());
7404 }
7405
7406 // Rotate right only if any divisor was even. We avoid rotates for all-odd
7407 // divisors as a performance improvement, since rotating by 0 is a no-op.
7408 if (HadEvenDivisor) {
7409 // We need ROTR to do this.
7410 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7411 return SDValue();
7412 // SREM: (rotr (add (mul N, P), A), K)
7413 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7414 Created.push_back(Op0.getNode());
7415 }
7416
7417 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7418 SDValue Fold =
7419 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7421
7422 // If we didn't have lanes with INT_MIN divisor, then we're done.
7423 if (!HadIntMinDivisor)
7424 return Fold;
7425
7426 // That fold is only valid for positive divisors. Which effectively means,
7427 // it is invalid for INT_MIN divisors. So if we have such a lane,
7428 // we must fix-up results for said lanes.
7429 assert(VT.isVector() && "Can/should only get here for vectors.");
7430
7431 // NOTE: we avoid letting illegal types through even if we're before legalize
7432 // ops – legalization has a hard time producing good code for the code that
7433 // follows.
7434 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7438 return SDValue();
7439
7440 Created.push_back(Fold.getNode());
7441
7442 SDValue IntMin = DAG.getConstant(
7444 SDValue IntMax = DAG.getConstant(
7446 SDValue Zero =
7448
7449 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7450 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7451 Created.push_back(DivisorIsIntMin.getNode());
7452
7453 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
7454 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7455 Created.push_back(Masked.getNode());
7456 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7457 Created.push_back(MaskedIsZero.getNode());
7458
7459 // To produce final result we need to blend 2 vectors: 'SetCC' and
7460 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7461 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7462 // constant-folded, select can get lowered to a shuffle with constant mask.
7463 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7464 MaskedIsZero, Fold);
7465
7466 return Blended;
7467}
7468
7470 const DenormalMode &Mode) const {
7471 SDLoc DL(Op);
7472 EVT VT = Op.getValueType();
7473 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7474 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7475
7476 // This is specifically a check for the handling of denormal inputs, not the
7477 // result.
7478 if (Mode.Input == DenormalMode::PreserveSign ||
7479 Mode.Input == DenormalMode::PositiveZero) {
7480 // Test = X == 0.0
7481 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7482 }
7483
7484 // Testing it with denormal inputs to avoid wrong estimate.
7485 //
7486 // Test = fabs(X) < SmallestNormal
7487 const fltSemantics &FltSem = VT.getFltSemantics();
7488 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7489 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7490 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7491 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7492}
7493
7495 bool LegalOps, bool OptForSize,
7497 unsigned Depth) const {
7498 // fneg is removable even if it has multiple uses.
7499 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7501 return Op.getOperand(0);
7502 }
7503
7504 // Don't recurse exponentially.
7506 return SDValue();
7507
7508 // Pre-increment recursion depth for use in recursive calls.
7509 ++Depth;
7510 const SDNodeFlags Flags = Op->getFlags();
7511 EVT VT = Op.getValueType();
7512 unsigned Opcode = Op.getOpcode();
7513
7514 // Don't allow anything with multiple uses unless we know it is free.
7515 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7516 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7517 isFPExtFree(VT, Op.getOperand(0).getValueType());
7518 if (!IsFreeExtend)
7519 return SDValue();
7520 }
7521
7522 auto RemoveDeadNode = [&](SDValue N) {
7523 if (N && N.getNode()->use_empty())
7524 DAG.RemoveDeadNode(N.getNode());
7525 };
7526
7527 SDLoc DL(Op);
7528
7529 // Because getNegatedExpression can delete nodes we need a handle to keep
7530 // temporary nodes alive in case the recursion manages to create an identical
7531 // node.
7532 std::list<HandleSDNode> Handles;
7533
7534 switch (Opcode) {
7535 case ISD::ConstantFP: {
7536 // Don't invert constant FP values after legalization unless the target says
7537 // the negated constant is legal.
7538 bool IsOpLegal =
7540 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7541 OptForSize);
7542
7543 if (LegalOps && !IsOpLegal)
7544 break;
7545
7546 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7547 V.changeSign();
7548 SDValue CFP = DAG.getConstantFP(V, DL, VT);
7549
7550 // If we already have the use of the negated floating constant, it is free
7551 // to negate it even it has multiple uses.
7552 if (!Op.hasOneUse() && CFP.use_empty())
7553 break;
7555 return CFP;
7556 }
7557 case ISD::BUILD_VECTOR: {
7558 // Only permit BUILD_VECTOR of constants.
7559 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7560 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7561 }))
7562 break;
7563
7564 bool IsOpLegal =
7567 llvm::all_of(Op->op_values(), [&](SDValue N) {
7568 return N.isUndef() ||
7569 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7570 OptForSize);
7571 });
7572
7573 if (LegalOps && !IsOpLegal)
7574 break;
7575
7577 for (SDValue C : Op->op_values()) {
7578 if (C.isUndef()) {
7579 Ops.push_back(C);
7580 continue;
7581 }
7582 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7583 V.changeSign();
7584 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7585 }
7587 return DAG.getBuildVector(VT, DL, Ops);
7588 }
7589 case ISD::FADD: {
7590 if (!Flags.hasNoSignedZeros())
7591 break;
7592
7593 // After operation legalization, it might not be legal to create new FSUBs.
7594 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7595 break;
7596 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7597
7598 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7600 SDValue NegX =
7601 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7602 // Prevent this node from being deleted by the next call.
7603 if (NegX)
7604 Handles.emplace_back(NegX);
7605
7606 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7608 SDValue NegY =
7609 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7610
7611 // We're done with the handles.
7612 Handles.clear();
7613
7614 // Negate the X if its cost is less or equal than Y.
7615 if (NegX && (CostX <= CostY)) {
7616 Cost = CostX;
7617 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7618 if (NegY != N)
7619 RemoveDeadNode(NegY);
7620 return N;
7621 }
7622
7623 // Negate the Y if it is not expensive.
7624 if (NegY) {
7625 Cost = CostY;
7626 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7627 if (NegX != N)
7628 RemoveDeadNode(NegX);
7629 return N;
7630 }
7631 break;
7632 }
7633 case ISD::FSUB: {
7634 // We can't turn -(A-B) into B-A when we honor signed zeros.
7635 if (!Flags.hasNoSignedZeros())
7636 break;
7637
7638 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7639 // fold (fneg (fsub 0, Y)) -> Y
7640 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7641 if (C->isZero()) {
7643 return Y;
7644 }
7645
7646 // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7648 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7649 }
7650 case ISD::FMUL:
7651 case ISD::FDIV: {
7652 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7653
7654 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7656 SDValue NegX =
7657 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7658 // Prevent this node from being deleted by the next call.
7659 if (NegX)
7660 Handles.emplace_back(NegX);
7661
7662 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7664 SDValue NegY =
7665 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7666
7667 // We're done with the handles.
7668 Handles.clear();
7669
7670 // Negate the X if its cost is less or equal than Y.
7671 if (NegX && (CostX <= CostY)) {
7672 Cost = CostX;
7673 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7674 if (NegY != N)
7675 RemoveDeadNode(NegY);
7676 return N;
7677 }
7678
7679 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7680 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7681 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7682 break;
7683
7684 // Negate the Y if it is not expensive.
7685 if (NegY) {
7686 Cost = CostY;
7687 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7688 if (NegX != N)
7689 RemoveDeadNode(NegX);
7690 return N;
7691 }
7692 break;
7693 }
7694 case ISD::FMA:
7695 case ISD::FMULADD:
7696 case ISD::FMAD: {
7697 if (!Flags.hasNoSignedZeros())
7698 break;
7699
7700 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7702 SDValue NegZ =
7703 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7704 // Give up if fail to negate the Z.
7705 if (!NegZ)
7706 break;
7707
7708 // Prevent this node from being deleted by the next two calls.
7709 Handles.emplace_back(NegZ);
7710
7711 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7713 SDValue NegX =
7714 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7715 // Prevent this node from being deleted by the next call.
7716 if (NegX)
7717 Handles.emplace_back(NegX);
7718
7719 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7721 SDValue NegY =
7722 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7723
7724 // We're done with the handles.
7725 Handles.clear();
7726
7727 // Negate the X if its cost is less or equal than Y.
7728 if (NegX && (CostX <= CostY)) {
7729 Cost = std::min(CostX, CostZ);
7730 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7731 if (NegY != N)
7732 RemoveDeadNode(NegY);
7733 return N;
7734 }
7735
7736 // Negate the Y if it is not expensive.
7737 if (NegY) {
7738 Cost = std::min(CostY, CostZ);
7739 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7740 if (NegX != N)
7741 RemoveDeadNode(NegX);
7742 return N;
7743 }
7744 break;
7745 }
7746
7747 case ISD::FP_EXTEND:
7748 case ISD::FSIN:
7749 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7750 OptForSize, Cost, Depth))
7751 return DAG.getNode(Opcode, DL, VT, NegV);
7752 break;
7753 case ISD::FP_ROUND:
7754 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7755 OptForSize, Cost, Depth))
7756 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7757 break;
7758 case ISD::SELECT:
7759 case ISD::VSELECT: {
7760 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7761 // iff at least one cost is cheaper and the other is neutral/cheaper
7762 SDValue LHS = Op.getOperand(1);
7764 SDValue NegLHS =
7765 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7766 if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7767 RemoveDeadNode(NegLHS);
7768 break;
7769 }
7770
7771 // Prevent this node from being deleted by the next call.
7772 Handles.emplace_back(NegLHS);
7773
7774 SDValue RHS = Op.getOperand(2);
7776 SDValue NegRHS =
7777 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7778
7779 // We're done with the handles.
7780 Handles.clear();
7781
7782 if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7783 (CostLHS != NegatibleCost::Cheaper &&
7784 CostRHS != NegatibleCost::Cheaper)) {
7785 RemoveDeadNode(NegLHS);
7786 RemoveDeadNode(NegRHS);
7787 break;
7788 }
7789
7790 Cost = std::min(CostLHS, CostRHS);
7791 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7792 }
7793 }
7794
7795 return SDValue();
7796}
7797
7798//===----------------------------------------------------------------------===//
7799// Legalization Utilities
7800//===----------------------------------------------------------------------===//
7801
7802bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7803 SDValue LHS, SDValue RHS,
7805 EVT HiLoVT, SelectionDAG &DAG,
7806 MulExpansionKind Kind, SDValue LL,
7807 SDValue LH, SDValue RL, SDValue RH) const {
7808 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7809 Opcode == ISD::SMUL_LOHI);
7810
7811 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7813 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7815 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7817 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7819
7820 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7821 return false;
7822
7823 unsigned OuterBitSize = VT.getScalarSizeInBits();
7824 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7825
7826 // LL, LH, RL, and RH must be either all NULL or all set to a value.
7827 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7828 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7829
7830 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7831 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7832 bool Signed) -> bool {
7833 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7834 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7835 Hi = SDValue(Lo.getNode(), 1);
7836 return true;
7837 }
7838 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7839 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7840 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7841 return true;
7842 }
7843 return false;
7844 };
7845
7846 SDValue Lo, Hi;
7847
7848 if (!LL.getNode() && !RL.getNode() &&
7850 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7851 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7852 }
7853
7854 if (!LL.getNode())
7855 return false;
7856
7857 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7858 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7859 DAG.MaskedValueIsZero(RHS, HighMask)) {
7860 // The inputs are both zero-extended.
7861 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7862 Result.push_back(Lo);
7863 Result.push_back(Hi);
7864 if (Opcode != ISD::MUL) {
7865 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7866 Result.push_back(Zero);
7867 Result.push_back(Zero);
7868 }
7869 return true;
7870 }
7871 }
7872
7873 if (!VT.isVector() && Opcode == ISD::MUL &&
7874 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7875 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7876 // The input values are both sign-extended.
7877 // TODO non-MUL case?
7878 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7879 Result.push_back(Lo);
7880 Result.push_back(Hi);
7881 return true;
7882 }
7883 }
7884
7885 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7886 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7887
7888 if (!LH.getNode() && !RH.getNode() &&
7891 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7892 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7893 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7894 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7895 }
7896
7897 if (!LH.getNode())
7898 return false;
7899
7900 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7901 return false;
7902
7903 Result.push_back(Lo);
7904
7905 if (Opcode == ISD::MUL) {
7906 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7907 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7908 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7909 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7910 Result.push_back(Hi);
7911 return true;
7912 }
7913
7914 // Compute the full width result.
7915 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7916 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7917 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7918 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7919 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7920 };
7921
7922 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7923 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7924 return false;
7925
7926 // This is effectively the add part of a multiply-add of half-sized operands,
7927 // so it cannot overflow.
7928 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7929
7930 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7931 return false;
7932
7933 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7934 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7935
7936 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7938 if (UseGlue)
7939 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7940 Merge(Lo, Hi));
7941 else
7942 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7943 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7944
7945 SDValue Carry = Next.getValue(1);
7946 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7947 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7948
7949 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7950 return false;
7951
7952 if (UseGlue)
7953 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7954 Carry);
7955 else
7956 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7957 Zero, Carry);
7958
7959 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7960
7961 if (Opcode == ISD::SMUL_LOHI) {
7962 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7963 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7964 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7965
7966 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7967 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7968 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7969 }
7970
7971 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7972 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7973 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7974 return true;
7975}
7976
7978 SelectionDAG &DAG, MulExpansionKind Kind,
7979 SDValue LL, SDValue LH, SDValue RL,
7980 SDValue RH) const {
7982 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7983 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7984 DAG, Kind, LL, LH, RL, RH);
7985 if (Ok) {
7986 assert(Result.size() == 2);
7987 Lo = Result[0];
7988 Hi = Result[1];
7989 }
7990 return Ok;
7991}
7992
7993// Optimize unsigned division or remainder by constants for types twice as large
7994// as a legal VT.
7995//
7996// If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7997// can be computed
7998// as:
7999// Sum += __builtin_uadd_overflow(Lo, High, &Sum);
8000// Remainder = Sum % Constant
8001// This is based on "Remainder by Summing Digits" from Hacker's Delight.
8002//
8003// For division, we can compute the remainder using the algorithm described
8004// above, subtract it from the dividend to get an exact multiple of Constant.
8005// Then multiply that exact multiply by the multiplicative inverse modulo
8006// (1 << (BitWidth / 2)) to get the quotient.
8007
8008// If Constant is even, we can shift right the dividend and the divisor by the
8009// number of trailing zeros in Constant before applying the remainder algorithm.
8010// If we're after the quotient, we can subtract this value from the shifted
8011// dividend and multiply by the multiplicative inverse of the shifted divisor.
8012// If we want the remainder, we shift the value left by the number of trailing
8013// zeros and add the bits that were shifted out of the dividend.
8016 EVT HiLoVT, SelectionDAG &DAG,
8017 SDValue LL, SDValue LH) const {
8018 unsigned Opcode = N->getOpcode();
8019 EVT VT = N->getValueType(0);
8020
8021 // TODO: Support signed division/remainder.
8022 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
8023 return false;
8024 assert(
8025 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
8026 "Unexpected opcode");
8027
8028 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
8029 if (!CN)
8030 return false;
8031
8032 APInt Divisor = CN->getAPIntValue();
8033 unsigned BitWidth = Divisor.getBitWidth();
8034 unsigned HBitWidth = BitWidth / 2;
8036 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
8037
8038 // Divisor needs to less than (1 << HBitWidth).
8039 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
8040 if (Divisor.uge(HalfMaxPlus1))
8041 return false;
8042
8043 // We depend on the UREM by constant optimization in DAGCombiner that requires
8044 // high multiply.
8045 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
8047 return false;
8048
8049 // Don't expand if optimizing for size.
8050 if (DAG.shouldOptForSize())
8051 return false;
8052
8053 // Early out for 0 or 1 divisors.
8054 if (Divisor.ule(1))
8055 return false;
8056
8057 // If the divisor is even, shift it until it becomes odd.
8058 unsigned TrailingZeros = 0;
8059 if (!Divisor[0]) {
8060 TrailingZeros = Divisor.countr_zero();
8061 Divisor.lshrInPlace(TrailingZeros);
8062 }
8063
8064 SDLoc dl(N);
8065 SDValue Sum;
8066 SDValue PartialRem;
8067
8068 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
8069 // then add in the carry.
8070 // TODO: If we can't split it in half, we might be able to split into 3 or
8071 // more pieces using a smaller bit width.
8072 if (HalfMaxPlus1.urem(Divisor).isOne()) {
8073 assert(!LL == !LH && "Expected both input halves or no input halves!");
8074 if (!LL)
8075 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
8076
8077 // Shift the input by the number of TrailingZeros in the divisor. The
8078 // shifted out bits will be added to the remainder later.
8079 if (TrailingZeros) {
8080 // Save the shifted off bits if we need the remainder.
8081 if (Opcode != ISD::UDIV) {
8082 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
8083 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
8084 DAG.getConstant(Mask, dl, HiLoVT));
8085 }
8086
8087 LL = DAG.getNode(
8088 ISD::OR, dl, HiLoVT,
8089 DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
8090 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
8091 DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
8092 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
8093 HiLoVT, dl)));
8094 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
8095 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
8096 }
8097
8098 // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
8099 EVT SetCCType =
8100 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
8102 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
8103 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
8104 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
8105 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
8106 } else {
8107 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
8108 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
8109 // If the boolean for the target is 0 or 1, we can add the setcc result
8110 // directly.
8111 if (getBooleanContents(HiLoVT) ==
8113 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
8114 else
8115 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
8116 DAG.getConstant(0, dl, HiLoVT));
8117 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
8118 }
8119 }
8120
8121 // If we didn't find a sum, we can't do the expansion.
8122 if (!Sum)
8123 return false;
8124
8125 // Perform a HiLoVT urem on the Sum using truncated divisor.
8126 SDValue RemL =
8127 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
8128 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
8129 SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
8130
8131 if (Opcode != ISD::UREM) {
8132 // Subtract the remainder from the shifted dividend.
8133 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
8134 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
8135
8136 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
8137
8138 // Multiply by the multiplicative inverse of the divisor modulo
8139 // (1 << BitWidth).
8140 APInt MulFactor = Divisor.multiplicativeInverse();
8141
8142 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
8143 DAG.getConstant(MulFactor, dl, VT));
8144
8145 // Split the quotient into low and high parts.
8146 SDValue QuotL, QuotH;
8147 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
8148 Result.push_back(QuotL);
8149 Result.push_back(QuotH);
8150 }
8151
8152 if (Opcode != ISD::UDIV) {
8153 // If we shifted the input, shift the remainder left and add the bits we
8154 // shifted off the input.
8155 if (TrailingZeros) {
8156 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
8157 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
8158 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
8159 }
8160 Result.push_back(RemL);
8161 Result.push_back(DAG.getConstant(0, dl, HiLoVT));
8162 }
8163
8164 return true;
8165}
8166
8167// Check that (every element of) Z is undef or not an exact multiple of BW.
8168static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
8170 Z,
8171 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
8172 /*AllowUndefs=*/true, /*AllowTruncation=*/true);
8173}
8174
8176 EVT VT = Node->getValueType(0);
8177 SDValue ShX, ShY;
8178 SDValue ShAmt, InvShAmt;
8179 SDValue X = Node->getOperand(0);
8180 SDValue Y = Node->getOperand(1);
8181 SDValue Z = Node->getOperand(2);
8182 SDValue Mask = Node->getOperand(3);
8183 SDValue VL = Node->getOperand(4);
8184
8185 unsigned BW = VT.getScalarSizeInBits();
8186 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
8187 SDLoc DL(SDValue(Node, 0));
8188
8189 EVT ShVT = Z.getValueType();
8190 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8191 // fshl: X << C | Y >> (BW - C)
8192 // fshr: X << (BW - C) | Y >> C
8193 // where C = Z % BW is not zero
8194 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8195 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8196 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8197 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
8198 VL);
8199 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8200 VL);
8201 } else {
8202 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8203 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8204 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
8205 if (isPowerOf2_32(BW)) {
8206 // Z % BW -> Z & (BW - 1)
8207 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
8208 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8209 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
8210 DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
8211 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
8212 } else {
8213 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8214 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8215 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
8216 }
8217
8218 SDValue One = DAG.getConstant(1, DL, ShVT);
8219 if (IsFSHL) {
8220 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
8221 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
8222 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
8223 } else {
8224 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
8225 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
8226 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
8227 }
8228 }
8229 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
8230}
8231
8233 SelectionDAG &DAG) const {
8234 if (Node->isVPOpcode())
8235 return expandVPFunnelShift(Node, DAG);
8236
8237 EVT VT = Node->getValueType(0);
8238
8239 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8243 return SDValue();
8244
8245 SDValue X = Node->getOperand(0);
8246 SDValue Y = Node->getOperand(1);
8247 SDValue Z = Node->getOperand(2);
8248
8249 unsigned BW = VT.getScalarSizeInBits();
8250 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8251 SDLoc DL(SDValue(Node, 0));
8252
8253 EVT ShVT = Z.getValueType();
8254
8255 // If a funnel shift in the other direction is more supported, use it.
8256 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8257 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8258 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8259 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8260 // fshl X, Y, Z -> fshr X, Y, -Z
8261 // fshr X, Y, Z -> fshl X, Y, -Z
8262 Z = DAG.getNegative(Z, DL, ShVT);
8263 } else {
8264 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8265 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8266 SDValue One = DAG.getConstant(1, DL, ShVT);
8267 if (IsFSHL) {
8268 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8269 X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8270 } else {
8271 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8272 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8273 }
8274 Z = DAG.getNOT(DL, Z, ShVT);
8275 }
8276 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8277 }
8278
8279 SDValue ShX, ShY;
8280 SDValue ShAmt, InvShAmt;
8281 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8282 // fshl: X << C | Y >> (BW - C)
8283 // fshr: X << (BW - C) | Y >> C
8284 // where C = Z % BW is not zero
8285 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8286 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8287 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8288 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8289 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8290 } else {
8291 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8292 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8293 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8294 if (isPowerOf2_32(BW)) {
8295 // Z % BW -> Z & (BW - 1)
8296 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8297 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8298 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8299 } else {
8300 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8301 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8302 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8303 }
8304
8305 SDValue One = DAG.getConstant(1, DL, ShVT);
8306 if (IsFSHL) {
8307 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8308 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8309 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8310 } else {
8311 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8312 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8313 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8314 }
8315 }
8316 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8317}
8318
8319// TODO: Merge with expandFunnelShift.
8321 SelectionDAG &DAG) const {
8322 EVT VT = Node->getValueType(0);
8323 unsigned EltSizeInBits = VT.getScalarSizeInBits();
8324 bool IsLeft = Node->getOpcode() == ISD::ROTL;
8325 SDValue Op0 = Node->getOperand(0);
8326 SDValue Op1 = Node->getOperand(1);
8327 SDLoc DL(SDValue(Node, 0));
8328
8329 EVT ShVT = Op1.getValueType();
8330 SDValue Zero = DAG.getConstant(0, DL, ShVT);
8331
8332 // If a rotate in the other direction is more supported, use it.
8333 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8334 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8335 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8336 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8337 return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8338 }
8339
8340 if (!AllowVectorOps && VT.isVector() &&
8346 return SDValue();
8347
8348 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8349 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8350 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8351 SDValue ShVal;
8352 SDValue HsVal;
8353 if (isPowerOf2_32(EltSizeInBits)) {
8354 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8355 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8356 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8357 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8358 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8359 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8360 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8361 } else {
8362 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8363 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8364 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8365 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8366 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8367 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8368 SDValue One = DAG.getConstant(1, DL, ShVT);
8369 HsVal =
8370 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8371 }
8372 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8373}
8374
8376 SDLoc DL(Node);
8377 EVT VT = Node->getValueType(0);
8378 SDValue X = Node->getOperand(0);
8379 SDValue Y = Node->getOperand(1);
8380 unsigned BW = VT.getScalarSizeInBits();
8381 unsigned Opcode = Node->getOpcode();
8382
8383 switch (Opcode) {
8384 case ISD::CLMUL: {
8385 SDValue Res = DAG.getConstant(0, DL, VT);
8386 for (unsigned I = 0; I < BW; ++I) {
8387 SDValue Mask = DAG.getConstant(APInt::getOneBitSet(BW, I), DL, VT);
8388 SDValue YMasked = DAG.getNode(ISD::AND, DL, VT, Y, Mask);
8389 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, X, YMasked);
8390 Res = DAG.getNode(ISD::XOR, DL, VT, Res, Mul);
8391 }
8392 return Res;
8393 }
8394 case ISD::CLMULR:
8395 case ISD::CLMULH: {
8396 EVT ExtVT = VT.changeElementType(
8397 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), 2 * BW));
8398 // For example, ExtVT = i64 based operations aren't legal on a 32-bit
8399 // target; use bitreverse-based lowering in this case.
8402 SDValue XRev = DAG.getNode(ISD::BITREVERSE, DL, VT, X);
8403 SDValue YRev = DAG.getNode(ISD::BITREVERSE, DL, VT, Y);
8404 SDValue ClMul = DAG.getNode(ISD::CLMUL, DL, VT, XRev, YRev);
8405 SDValue Res = DAG.getNode(ISD::BITREVERSE, DL, VT, ClMul);
8406 if (Opcode == ISD::CLMULH)
8407 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
8408 DAG.getShiftAmountConstant(1, VT, DL));
8409 return Res;
8410 }
8411 SDValue XExt = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, X);
8412 SDValue YExt = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, Y);
8413 SDValue ClMul = DAG.getNode(ISD::CLMUL, DL, ExtVT, XExt, YExt);
8414 unsigned ShAmt = Opcode == ISD::CLMULR ? BW - 1 : BW;
8415 SDValue HiBits = DAG.getNode(ISD::SRL, DL, ExtVT, ClMul,
8416 DAG.getShiftAmountConstant(ShAmt, ExtVT, DL));
8417 return DAG.getNode(ISD::TRUNCATE, DL, VT, HiBits);
8418 }
8419 }
8420 llvm_unreachable("Expected CLMUL, CLMULR, or CLMULH");
8421}
8422
8424 SelectionDAG &DAG) const {
8425 assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8426 EVT VT = Node->getValueType(0);
8427 unsigned VTBits = VT.getScalarSizeInBits();
8428 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8429
8430 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8431 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8432 SDValue ShOpLo = Node->getOperand(0);
8433 SDValue ShOpHi = Node->getOperand(1);
8434 SDValue ShAmt = Node->getOperand(2);
8435 EVT ShAmtVT = ShAmt.getValueType();
8436 EVT ShAmtCCVT =
8437 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8438 SDLoc dl(Node);
8439
8440 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8441 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8442 // away during isel.
8443 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8444 DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8445 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8446 DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8447 : DAG.getConstant(0, dl, VT);
8448
8449 SDValue Tmp2, Tmp3;
8450 if (IsSHL) {
8451 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8452 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8453 } else {
8454 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8455 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8456 }
8457
8458 // If the shift amount is larger or equal than the width of a part we don't
8459 // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8460 // values for large shift amounts.
8461 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8462 DAG.getConstant(VTBits, dl, ShAmtVT));
8463 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8464 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8465
8466 if (IsSHL) {
8467 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8468 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8469 } else {
8470 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8471 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8472 }
8473}
8474
8476 SelectionDAG &DAG) const {
8477 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8478 SDValue Src = Node->getOperand(OpNo);
8479 EVT SrcVT = Src.getValueType();
8480 EVT DstVT = Node->getValueType(0);
8481 SDLoc dl(SDValue(Node, 0));
8482
8483 // FIXME: Only f32 to i64 conversions are supported.
8484 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8485 return false;
8486
8487 if (Node->isStrictFPOpcode())
8488 // When a NaN is converted to an integer a trap is allowed. We can't
8489 // use this expansion here because it would eliminate that trap. Other
8490 // traps are also allowed and cannot be eliminated. See
8491 // IEEE 754-2008 sec 5.8.
8492 return false;
8493
8494 // Expand f32 -> i64 conversion
8495 // This algorithm comes from compiler-rt's implementation of fixsfdi:
8496 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8497 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8498 EVT IntVT = SrcVT.changeTypeToInteger();
8499 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8500
8501 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8502 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8503 SDValue Bias = DAG.getConstant(127, dl, IntVT);
8504 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8505 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8506 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8507
8508 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8509
8510 SDValue ExponentBits = DAG.getNode(
8511 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8512 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8513 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8514
8515 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8516 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8517 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8518 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8519
8520 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8521 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8522 DAG.getConstant(0x00800000, dl, IntVT));
8523
8524 R = DAG.getZExtOrTrunc(R, dl, DstVT);
8525
8526 R = DAG.getSelectCC(
8527 dl, Exponent, ExponentLoBit,
8528 DAG.getNode(ISD::SHL, dl, DstVT, R,
8529 DAG.getZExtOrTrunc(
8530 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8531 dl, IntShVT)),
8532 DAG.getNode(ISD::SRL, dl, DstVT, R,
8533 DAG.getZExtOrTrunc(
8534 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8535 dl, IntShVT)),
8536 ISD::SETGT);
8537
8538 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8539 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8540
8541 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8542 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8543 return true;
8544}
8545
8547 SDValue &Chain,
8548 SelectionDAG &DAG) const {
8549 SDLoc dl(SDValue(Node, 0));
8550 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8551 SDValue Src = Node->getOperand(OpNo);
8552
8553 EVT SrcVT = Src.getValueType();
8554 EVT DstVT = Node->getValueType(0);
8555 EVT SetCCVT =
8556 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8557 EVT DstSetCCVT =
8558 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8559
8560 // Only expand vector types if we have the appropriate vector bit operations.
8561 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8563 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8565 return false;
8566
8567 // If the maximum float value is smaller then the signed integer range,
8568 // the destination signmask can't be represented by the float, so we can
8569 // just use FP_TO_SINT directly.
8570 const fltSemantics &APFSem = SrcVT.getFltSemantics();
8571 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8572 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8574 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8575 if (Node->isStrictFPOpcode()) {
8576 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8577 { Node->getOperand(0), Src });
8578 Chain = Result.getValue(1);
8579 } else
8580 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8581 return true;
8582 }
8583
8584 // Don't expand it if there isn't cheap fsub instruction.
8586 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8587 return false;
8588
8589 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8590 SDValue Sel;
8591
8592 if (Node->isStrictFPOpcode()) {
8593 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8594 Node->getOperand(0), /*IsSignaling*/ true);
8595 Chain = Sel.getValue(1);
8596 } else {
8597 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8598 }
8599
8600 bool Strict = Node->isStrictFPOpcode() ||
8601 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8602
8603 if (Strict) {
8604 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8605 // signmask then offset (the result of which should be fully representable).
8606 // Sel = Src < 0x8000000000000000
8607 // FltOfs = select Sel, 0, 0x8000000000000000
8608 // IntOfs = select Sel, 0, 0x8000000000000000
8609 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8610
8611 // TODO: Should any fast-math-flags be set for the FSUB?
8612 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8613 DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8614 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8615 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8616 DAG.getConstant(0, dl, DstVT),
8617 DAG.getConstant(SignMask, dl, DstVT));
8618 SDValue SInt;
8619 if (Node->isStrictFPOpcode()) {
8620 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8621 { Chain, Src, FltOfs });
8622 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8623 { Val.getValue(1), Val });
8624 Chain = SInt.getValue(1);
8625 } else {
8626 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8627 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8628 }
8629 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8630 } else {
8631 // Expand based on maximum range of FP_TO_SINT:
8632 // True = fp_to_sint(Src)
8633 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8634 // Result = select (Src < 0x8000000000000000), True, False
8635
8636 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8637 // TODO: Should any fast-math-flags be set for the FSUB?
8638 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8639 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8640 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8641 DAG.getConstant(SignMask, dl, DstVT));
8642 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8643 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8644 }
8645 return true;
8646}
8647
8649 SDValue &Chain, SelectionDAG &DAG) const {
8650 // This transform is not correct for converting 0 when rounding mode is set
8651 // to round toward negative infinity which will produce -0.0. So disable
8652 // under strictfp.
8653 if (Node->isStrictFPOpcode())
8654 return false;
8655
8656 SDValue Src = Node->getOperand(0);
8657 EVT SrcVT = Src.getValueType();
8658 EVT DstVT = Node->getValueType(0);
8659
8660 // If the input is known to be non-negative and SINT_TO_FP is legal then use
8661 // it.
8662 if (Node->getFlags().hasNonNeg() &&
8664 Result =
8665 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8666 return true;
8667 }
8668
8669 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8670 return false;
8671
8672 // Only expand vector types if we have the appropriate vector bit
8673 // operations.
8674 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8679 return false;
8680
8681 SDLoc dl(SDValue(Node, 0));
8682
8683 // Implementation of unsigned i64 to f64 following the algorithm in
8684 // __floatundidf in compiler_rt. This implementation performs rounding
8685 // correctly in all rounding modes with the exception of converting 0
8686 // when rounding toward negative infinity. In that case the fsub will
8687 // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8688 // incorrect.
8689 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8690 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8691 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8692 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8693 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8694 SDValue HiShift = DAG.getShiftAmountConstant(32, SrcVT, dl);
8695
8696 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8697 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8698 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8699 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8700 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8701 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8702 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8703 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8704 return true;
8705}
8706
8707SDValue
8709 SelectionDAG &DAG) const {
8710 unsigned Opcode = Node->getOpcode();
8711 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8712 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8713 "Wrong opcode");
8714
8715 if (Node->getFlags().hasNoNaNs()) {
8716 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8717 EVT VT = Node->getValueType(0);
8718 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8720 VT.isVector())
8721 return SDValue();
8722 SDValue Op1 = Node->getOperand(0);
8723 SDValue Op2 = Node->getOperand(1);
8724 return DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred,
8725 Node->getFlags());
8726 }
8727
8728 return SDValue();
8729}
8730
8732 SelectionDAG &DAG) const {
8733 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8734 return Expanded;
8735
8736 EVT VT = Node->getValueType(0);
8737 if (VT.isScalableVector())
8739 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8740
8741 SDLoc dl(Node);
8742 unsigned NewOp =
8744
8745 if (isOperationLegalOrCustom(NewOp, VT)) {
8746 SDValue Quiet0 = Node->getOperand(0);
8747 SDValue Quiet1 = Node->getOperand(1);
8748
8749 if (!Node->getFlags().hasNoNaNs()) {
8750 // Insert canonicalizes if it's possible we need to quiet to get correct
8751 // sNaN behavior.
8752 if (!DAG.isKnownNeverSNaN(Quiet0)) {
8753 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8754 Node->getFlags());
8755 }
8756 if (!DAG.isKnownNeverSNaN(Quiet1)) {
8757 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8758 Node->getFlags());
8759 }
8760 }
8761
8762 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8763 }
8764
8765 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8766 // instead if there are no NaNs and there can't be an incompatible zero
8767 // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8768 if ((Node->getFlags().hasNoNaNs() ||
8769 (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8770 DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8771 (Node->getFlags().hasNoSignedZeros() ||
8772 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8773 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8774 unsigned IEEE2018Op =
8775 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8776 if (isOperationLegalOrCustom(IEEE2018Op, VT))
8777 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8778 Node->getOperand(1), Node->getFlags());
8779 }
8780
8782 return SelCC;
8783
8784 return SDValue();
8785}
8786
8788 SelectionDAG &DAG) const {
8789 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8790 return Expanded;
8791
8792 SDLoc DL(N);
8793 SDValue LHS = N->getOperand(0);
8794 SDValue RHS = N->getOperand(1);
8795 unsigned Opc = N->getOpcode();
8796 EVT VT = N->getValueType(0);
8797 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8798 bool IsMax = Opc == ISD::FMAXIMUM;
8799 SDNodeFlags Flags = N->getFlags();
8800
8801 // First, implement comparison not propagating NaN. If no native fmin or fmax
8802 // available, use plain select with setcc instead.
8804 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8805 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8806
8807 // FIXME: We should probably define fminnum/fmaxnum variants with correct
8808 // signed zero behavior.
8809 bool MinMaxMustRespectOrderedZero = false;
8810
8811 if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8812 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8813 MinMaxMustRespectOrderedZero = true;
8814 } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8815 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8816 } else {
8818 return DAG.UnrollVectorOp(N);
8819
8820 // NaN (if exists) will be propagated later, so orderness doesn't matter.
8821 SDValue Compare =
8822 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8823 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8824 }
8825
8826 // Propagate any NaN of both operands
8827 if (!N->getFlags().hasNoNaNs() &&
8828 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8829 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8831 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8832 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8833 }
8834
8835 // fminimum/fmaximum requires -0.0 less than +0.0
8836 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8837 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8838 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8839 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8840 SDValue TestZero =
8841 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8842 SDValue LCmp = DAG.getSelect(
8843 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8844 MinMax, Flags);
8845 SDValue RCmp = DAG.getSelect(
8846 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8847 LCmp, Flags);
8848 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8849 }
8850
8851 return MinMax;
8852}
8853
8855 SelectionDAG &DAG) const {
8856 SDLoc DL(Node);
8857 SDValue LHS = Node->getOperand(0);
8858 SDValue RHS = Node->getOperand(1);
8859 unsigned Opc = Node->getOpcode();
8860 EVT VT = Node->getValueType(0);
8861 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8862 bool IsMax = Opc == ISD::FMAXIMUMNUM;
8863 SDNodeFlags Flags = Node->getFlags();
8864
8865 unsigned NewOp =
8867
8868 if (isOperationLegalOrCustom(NewOp, VT)) {
8869 if (!Flags.hasNoNaNs()) {
8870 // Insert canonicalizes if it's possible we need to quiet to get correct
8871 // sNaN behavior.
8872 if (!DAG.isKnownNeverSNaN(LHS)) {
8873 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8874 }
8875 if (!DAG.isKnownNeverSNaN(RHS)) {
8876 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8877 }
8878 }
8879
8880 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8881 }
8882
8883 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8884 // same behaviors for all of other cases: +0.0 vs -0.0 included.
8885 if (Flags.hasNoNaNs() ||
8886 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8887 unsigned IEEE2019Op =
8889 if (isOperationLegalOrCustom(IEEE2019Op, VT))
8890 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8891 }
8892
8893 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8894 // either one for +0.0 vs -0.0.
8895 if ((Flags.hasNoNaNs() ||
8896 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8897 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8898 DAG.isKnownNeverZeroFloat(RHS))) {
8899 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8900 if (isOperationLegalOrCustom(IEEE2008Op, VT))
8901 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8902 }
8903
8904 if (VT.isVector() &&
8907 return DAG.UnrollVectorOp(Node);
8908
8909 // If only one operand is NaN, override it with another operand.
8910 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8911 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8912 }
8913 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8914 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8915 }
8916
8917 // Always prefer RHS if equal.
8918 SDValue MinMax =
8919 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8920
8921 // TODO: We need quiet sNaN if strictfp.
8922
8923 // Fixup signed zero behavior.
8924 if (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8925 DAG.isKnownNeverZeroFloat(RHS)) {
8926 return MinMax;
8927 }
8928 SDValue TestZero =
8929 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8930 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8931 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8932 EVT IntVT = VT.changeTypeToInteger();
8933 EVT FloatVT = VT.changeElementType(*DAG.getContext(), MVT::f32);
8934 SDValue LHSTrunc = LHS;
8936 LHSTrunc = DAG.getNode(ISD::FP_ROUND, DL, FloatVT, LHS,
8937 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
8938 }
8939 // It's OK to select from LHS and MinMax, with only one ISD::IS_FPCLASS, as
8940 // we preferred RHS when generate MinMax, if the operands are equal.
8941 SDValue RetZero = DAG.getSelect(
8942 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHSTrunc, TestZero), LHS,
8943 MinMax, Flags);
8944 return DAG.getSelect(DL, VT, IsZero, RetZero, MinMax, Flags);
8945}
8946
8947/// Returns a true value if if this FPClassTest can be performed with an ordered
8948/// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8949/// std::nullopt if it cannot be performed as a compare with 0.
8950static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8951 const fltSemantics &Semantics,
8952 const MachineFunction &MF) {
8953 FPClassTest OrderedMask = Test & ~fcNan;
8954 FPClassTest NanTest = Test & fcNan;
8955 bool IsOrdered = NanTest == fcNone;
8956 bool IsUnordered = NanTest == fcNan;
8957
8958 // Skip cases that are testing for only a qnan or snan.
8959 if (!IsOrdered && !IsUnordered)
8960 return std::nullopt;
8961
8962 if (OrderedMask == fcZero &&
8963 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8964 return IsOrdered;
8965 if (OrderedMask == (fcZero | fcSubnormal) &&
8966 MF.getDenormalMode(Semantics).inputsAreZero())
8967 return IsOrdered;
8968 return std::nullopt;
8969}
8970
8972 const FPClassTest OrigTestMask,
8973 SDNodeFlags Flags, const SDLoc &DL,
8974 SelectionDAG &DAG) const {
8975 EVT OperandVT = Op.getValueType();
8976 assert(OperandVT.isFloatingPoint());
8977 FPClassTest Test = OrigTestMask;
8978
8979 // Degenerated cases.
8980 if (Test == fcNone)
8981 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8982 if (Test == fcAllFlags)
8983 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8984
8985 // PPC double double is a pair of doubles, of which the higher part determines
8986 // the value class.
8987 if (OperandVT == MVT::ppcf128) {
8988 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8989 DAG.getConstant(1, DL, MVT::i32));
8990 OperandVT = MVT::f64;
8991 }
8992
8993 // Floating-point type properties.
8994 EVT ScalarFloatVT = OperandVT.getScalarType();
8995 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8996 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8997 bool IsF80 = (ScalarFloatVT == MVT::f80);
8998
8999 // Some checks can be implemented using float comparisons, if floating point
9000 // exceptions are ignored.
9001 if (Flags.hasNoFPExcept() &&
9003 FPClassTest FPTestMask = Test;
9004 bool IsInvertedFP = false;
9005
9006 if (FPClassTest InvertedFPCheck =
9007 invertFPClassTestIfSimpler(FPTestMask, true)) {
9008 FPTestMask = InvertedFPCheck;
9009 IsInvertedFP = true;
9010 }
9011
9012 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
9013 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
9014
9015 // See if we can fold an | fcNan into an unordered compare.
9016 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
9017
9018 // Can't fold the ordered check if we're only testing for snan or qnan
9019 // individually.
9020 if ((FPTestMask & fcNan) != fcNan)
9021 OrderedFPTestMask = FPTestMask;
9022
9023 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
9024
9025 if (std::optional<bool> IsCmp0 =
9026 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
9027 IsCmp0 && (isCondCodeLegalOrCustom(
9028 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
9029 OperandVT.getScalarType().getSimpleVT()))) {
9030
9031 // If denormals could be implicitly treated as 0, this is not equivalent
9032 // to a compare with 0 since it will also be true for denormals.
9033 return DAG.getSetCC(DL, ResultVT, Op,
9034 DAG.getConstantFP(0.0, DL, OperandVT),
9035 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
9036 }
9037
9038 if (FPTestMask == fcNan &&
9040 OperandVT.getScalarType().getSimpleVT()))
9041 return DAG.getSetCC(DL, ResultVT, Op, Op,
9042 IsInvertedFP ? ISD::SETO : ISD::SETUO);
9043
9044 bool IsOrderedInf = FPTestMask == fcInf;
9045 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
9046 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
9047 : UnorderedCmpOpcode,
9048 OperandVT.getScalarType().getSimpleVT()) &&
9051 (OperandVT.isVector() &&
9053 // isinf(x) --> fabs(x) == inf
9054 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9055 SDValue Inf =
9056 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
9057 return DAG.getSetCC(DL, ResultVT, Abs, Inf,
9058 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
9059 }
9060
9061 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
9062 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
9063 : UnorderedCmpOpcode,
9064 OperandVT.getSimpleVT())) {
9065 // isposinf(x) --> x == inf
9066 // isneginf(x) --> x == -inf
9067 // isposinf(x) || nan --> x u== inf
9068 // isneginf(x) || nan --> x u== -inf
9069
9070 SDValue Inf = DAG.getConstantFP(
9071 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
9072 OperandVT);
9073 return DAG.getSetCC(DL, ResultVT, Op, Inf,
9074 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
9075 }
9076
9077 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
9078 // TODO: Could handle ordered case, but it produces worse code for
9079 // x86. Maybe handle ordered if fabs is free?
9080
9081 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
9082 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
9083
9084 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
9085 OperandVT.getScalarType().getSimpleVT())) {
9086 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
9087
9088 // TODO: Maybe only makes sense if fabs is free. Integer test of
9089 // exponent bits seems better for x86.
9090 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9091 SDValue SmallestNormal = DAG.getConstantFP(
9092 APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
9093 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
9094 IsOrdered ? OrderedOp : UnorderedOp);
9095 }
9096 }
9097
9098 if (FPTestMask == fcNormal) {
9099 // TODO: Handle unordered
9100 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
9101 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
9102
9103 if (isCondCodeLegalOrCustom(IsFiniteOp,
9104 OperandVT.getScalarType().getSimpleVT()) &&
9105 isCondCodeLegalOrCustom(IsNormalOp,
9106 OperandVT.getScalarType().getSimpleVT()) &&
9107 isFAbsFree(OperandVT)) {
9108 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
9109 SDValue Inf =
9110 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
9111 SDValue SmallestNormal = DAG.getConstantFP(
9112 APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
9113
9114 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
9115 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
9116 SDValue IsNormal =
9117 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
9118 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
9119 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
9120 }
9121 }
9122 }
9123
9124 // Some checks may be represented as inversion of simpler check, for example
9125 // "inf|normal|subnormal|zero" => !"nan".
9126 bool IsInverted = false;
9127
9128 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
9129 Test = InvertedCheck;
9130 IsInverted = true;
9131 }
9132
9133 // In the general case use integer operations.
9134 unsigned BitSize = OperandVT.getScalarSizeInBits();
9135 EVT IntVT = OperandVT.changeElementType(
9136 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), BitSize));
9137 SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
9138
9139 // Various masks.
9140 APInt SignBit = APInt::getSignMask(BitSize);
9141 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
9142 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
9143 const unsigned ExplicitIntBitInF80 = 63;
9144 APInt ExpMask = Inf;
9145 if (IsF80)
9146 ExpMask.clearBit(ExplicitIntBitInF80);
9147 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
9148 APInt QNaNBitMask =
9149 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
9150 APInt InversionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
9151
9152 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
9153 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
9154 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
9155 SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
9156 SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
9157 SDValue ResultInversionMask = DAG.getConstant(InversionMask, DL, ResultVT);
9158
9159 SDValue Res;
9160 const auto appendResult = [&](SDValue PartialRes) {
9161 if (PartialRes) {
9162 if (Res)
9163 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
9164 else
9165 Res = PartialRes;
9166 }
9167 };
9168
9169 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
9170 const auto getIntBitIsSet = [&]() -> SDValue {
9171 if (!IntBitIsSetV) {
9172 APInt IntBitMask(BitSize, 0);
9173 IntBitMask.setBit(ExplicitIntBitInF80);
9174 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
9175 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
9176 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
9177 }
9178 return IntBitIsSetV;
9179 };
9180
9181 // Split the value into sign bit and absolute value.
9182 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
9183 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
9184 DAG.getConstant(0, DL, IntVT), ISD::SETLT);
9185
9186 // Tests that involve more than one class should be processed first.
9187 SDValue PartialRes;
9188
9189 if (IsF80)
9190 ; // Detect finite numbers of f80 by checking individual classes because
9191 // they have different settings of the explicit integer bit.
9192 else if ((Test & fcFinite) == fcFinite) {
9193 // finite(V) ==> abs(V) < exp_mask
9194 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
9195 Test &= ~fcFinite;
9196 } else if ((Test & fcFinite) == fcPosFinite) {
9197 // finite(V) && V > 0 ==> V < exp_mask
9198 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
9199 Test &= ~fcPosFinite;
9200 } else if ((Test & fcFinite) == fcNegFinite) {
9201 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
9202 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
9203 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9204 Test &= ~fcNegFinite;
9205 }
9206 appendResult(PartialRes);
9207
9208 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
9209 // fcZero | fcSubnormal => test all exponent bits are 0
9210 // TODO: Handle sign bit specific cases
9211 if (PartialCheck == (fcZero | fcSubnormal)) {
9212 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
9213 SDValue ExpIsZero =
9214 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9215 appendResult(ExpIsZero);
9216 Test &= ~PartialCheck & fcAllFlags;
9217 }
9218 }
9219
9220 // Check for individual classes.
9221
9222 if (unsigned PartialCheck = Test & fcZero) {
9223 if (PartialCheck == fcPosZero)
9224 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
9225 else if (PartialCheck == fcZero)
9226 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
9227 else // ISD::fcNegZero
9228 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
9229 appendResult(PartialRes);
9230 }
9231
9232 if (unsigned PartialCheck = Test & fcSubnormal) {
9233 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
9234 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
9235 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
9236 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
9237 SDValue VMinusOneV =
9238 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
9239 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
9240 if (PartialCheck == fcNegSubnormal)
9241 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9242 appendResult(PartialRes);
9243 }
9244
9245 if (unsigned PartialCheck = Test & fcInf) {
9246 if (PartialCheck == fcPosInf)
9247 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
9248 else if (PartialCheck == fcInf)
9249 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
9250 else { // ISD::fcNegInf
9251 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
9252 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
9253 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
9254 }
9255 appendResult(PartialRes);
9256 }
9257
9258 if (unsigned PartialCheck = Test & fcNan) {
9259 APInt InfWithQnanBit = Inf | QNaNBitMask;
9260 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
9261 if (PartialCheck == fcNan) {
9262 // isnan(V) ==> abs(V) > int(inf)
9263 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9264 if (IsF80) {
9265 // Recognize unsupported values as NaNs for compatibility with glibc.
9266 // In them (exp(V)==0) == int_bit.
9267 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
9268 SDValue ExpIsZero =
9269 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9270 SDValue IsPseudo =
9271 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
9272 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
9273 }
9274 } else if (PartialCheck == fcQNan) {
9275 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
9276 PartialRes =
9277 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
9278 } else { // ISD::fcSNan
9279 // issignaling(V) ==> abs(V) > unsigned(Inf) &&
9280 // abs(V) < (unsigned(Inf) | quiet_bit)
9281 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9282 SDValue IsNotQnan =
9283 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
9284 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
9285 }
9286 appendResult(PartialRes);
9287 }
9288
9289 if (unsigned PartialCheck = Test & fcNormal) {
9290 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
9291 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9292 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9293 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9294 APInt ExpLimit = ExpMask - ExpLSB;
9295 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9296 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9297 if (PartialCheck == fcNegNormal)
9298 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9299 else if (PartialCheck == fcPosNormal) {
9300 SDValue PosSignV =
9301 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInversionMask);
9302 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9303 }
9304 if (IsF80)
9305 PartialRes =
9306 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9307 appendResult(PartialRes);
9308 }
9309
9310 if (!Res)
9311 return DAG.getConstant(IsInverted, DL, ResultVT);
9312 if (IsInverted)
9313 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInversionMask);
9314 return Res;
9315}
9316
9317// Only expand vector types if we have the appropriate vector bit operations.
9318static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9319 assert(VT.isVector() && "Expected vector type");
9320 unsigned Len = VT.getScalarSizeInBits();
9321 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9324 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9326}
9327
9329 SDLoc dl(Node);
9330 EVT VT = Node->getValueType(0);
9331 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9332 SDValue Op = Node->getOperand(0);
9333 unsigned Len = VT.getScalarSizeInBits();
9334 assert(VT.isInteger() && "CTPOP not implemented for this type.");
9335
9336 // TODO: Add support for irregular type lengths.
9337 if (!(Len <= 128 && Len % 8 == 0))
9338 return SDValue();
9339
9340 // Only expand vector types if we have the appropriate vector bit operations.
9341 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9342 return SDValue();
9343
9344 // This is the "best" algorithm from
9345 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9346 SDValue Mask55 =
9347 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9348 SDValue Mask33 =
9349 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9350 SDValue Mask0F =
9351 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9352
9353 // v = v - ((v >> 1) & 0x55555555...)
9354 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9355 DAG.getNode(ISD::AND, dl, VT,
9356 DAG.getNode(ISD::SRL, dl, VT, Op,
9357 DAG.getConstant(1, dl, ShVT)),
9358 Mask55));
9359 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9360 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9361 DAG.getNode(ISD::AND, dl, VT,
9362 DAG.getNode(ISD::SRL, dl, VT, Op,
9363 DAG.getConstant(2, dl, ShVT)),
9364 Mask33));
9365 // v = (v + (v >> 4)) & 0x0F0F0F0F...
9366 Op = DAG.getNode(ISD::AND, dl, VT,
9367 DAG.getNode(ISD::ADD, dl, VT, Op,
9368 DAG.getNode(ISD::SRL, dl, VT, Op,
9369 DAG.getConstant(4, dl, ShVT))),
9370 Mask0F);
9371
9372 if (Len <= 8)
9373 return Op;
9374
9375 // Avoid the multiply if we only have 2 bytes to add.
9376 // TODO: Only doing this for scalars because vectors weren't as obviously
9377 // improved.
9378 if (Len == 16 && !VT.isVector()) {
9379 // v = (v + (v >> 8)) & 0x00FF;
9380 return DAG.getNode(ISD::AND, dl, VT,
9381 DAG.getNode(ISD::ADD, dl, VT, Op,
9382 DAG.getNode(ISD::SRL, dl, VT, Op,
9383 DAG.getConstant(8, dl, ShVT))),
9384 DAG.getConstant(0xFF, dl, VT));
9385 }
9386
9387 // v = (v * 0x01010101...) >> (Len - 8)
9388 SDValue V;
9391 SDValue Mask01 =
9392 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9393 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9394 } else {
9395 V = Op;
9396 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9397 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9398 V = DAG.getNode(ISD::ADD, dl, VT, V,
9399 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9400 }
9401 }
9402 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9403}
9404
9406 SDLoc dl(Node);
9407 EVT VT = Node->getValueType(0);
9408 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9409 SDValue Op = Node->getOperand(0);
9410 SDValue Mask = Node->getOperand(1);
9411 SDValue VL = Node->getOperand(2);
9412 unsigned Len = VT.getScalarSizeInBits();
9413 assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9414
9415 // TODO: Add support for irregular type lengths.
9416 if (!(Len <= 128 && Len % 8 == 0))
9417 return SDValue();
9418
9419 // This is same algorithm of expandCTPOP from
9420 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9421 SDValue Mask55 =
9422 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9423 SDValue Mask33 =
9424 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9425 SDValue Mask0F =
9426 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9427
9428 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9429
9430 // v = v - ((v >> 1) & 0x55555555...)
9431 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9432 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9433 DAG.getConstant(1, dl, ShVT), Mask, VL),
9434 Mask55, Mask, VL);
9435 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9436
9437 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9438 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9439 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9440 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9441 DAG.getConstant(2, dl, ShVT), Mask, VL),
9442 Mask33, Mask, VL);
9443 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9444
9445 // v = (v + (v >> 4)) & 0x0F0F0F0F...
9446 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9447 Mask, VL),
9448 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9449 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9450
9451 if (Len <= 8)
9452 return Op;
9453
9454 // v = (v * 0x01010101...) >> (Len - 8)
9455 SDValue V;
9457 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9458 SDValue Mask01 =
9459 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9460 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9461 } else {
9462 V = Op;
9463 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9464 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9465 V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9466 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9467 Mask, VL);
9468 }
9469 }
9470 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9471 Mask, VL);
9472}
9473
9475 SDLoc dl(Node);
9476 EVT VT = Node->getValueType(0);
9477 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9478 SDValue Op = Node->getOperand(0);
9479 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9480
9481 // If the non-ZERO_UNDEF version is supported we can use that instead.
9482 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9484 return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9485
9486 // If the ZERO_UNDEF version is supported use that and handle the zero case.
9488 EVT SetCCVT =
9489 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9490 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9491 SDValue Zero = DAG.getConstant(0, dl, VT);
9492 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9493 return DAG.getSelect(dl, VT, SrcIsZero,
9494 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9495 }
9496
9497 // Only expand vector types if we have the appropriate vector bit operations.
9498 // This includes the operations needed to expand CTPOP if it isn't supported.
9499 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9501 !canExpandVectorCTPOP(*this, VT)) ||
9504 return SDValue();
9505
9506 // for now, we do this:
9507 // x = x | (x >> 1);
9508 // x = x | (x >> 2);
9509 // ...
9510 // x = x | (x >>16);
9511 // x = x | (x >>32); // for 64-bit input
9512 // return popcount(~x);
9513 //
9514 // Ref: "Hacker's Delight" by Henry Warren
9515 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9516 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9517 Op = DAG.getNode(ISD::OR, dl, VT, Op,
9518 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9519 }
9520 Op = DAG.getNOT(dl, Op, VT);
9521 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9522}
9523
9525 SDLoc dl(Node);
9526 EVT VT = Node->getValueType(0);
9527 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9528 SDValue Op = Node->getOperand(0);
9529 SDValue Mask = Node->getOperand(1);
9530 SDValue VL = Node->getOperand(2);
9531 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9532
9533 // do this:
9534 // x = x | (x >> 1);
9535 // x = x | (x >> 2);
9536 // ...
9537 // x = x | (x >>16);
9538 // x = x | (x >>32); // for 64-bit input
9539 // return popcount(~x);
9540 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9541 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9542 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9543 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9544 VL);
9545 }
9546 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9547 Mask, VL);
9548 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9549}
9550
9552 const SDLoc &DL, EVT VT, SDValue Op,
9553 unsigned BitWidth) const {
9554 if (BitWidth != 32 && BitWidth != 64)
9555 return SDValue();
9556 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9557 : APInt(64, 0x0218A392CD3D5DBFULL);
9558 const DataLayout &TD = DAG.getDataLayout();
9559 MachinePointerInfo PtrInfo =
9561 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9562 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9563 SDValue Lookup = DAG.getNode(
9564 ISD::SRL, DL, VT,
9565 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9566 DAG.getConstant(DeBruijn, DL, VT)),
9567 DAG.getShiftAmountConstant(ShiftAmt, VT, DL));
9569
9571 for (unsigned i = 0; i < BitWidth; i++) {
9572 APInt Shl = DeBruijn.shl(i);
9573 APInt Lshr = Shl.lshr(ShiftAmt);
9574 Table[Lshr.getZExtValue()] = i;
9575 }
9576
9577 // Create a ConstantArray in Constant Pool
9578 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9579 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9580 TD.getPrefTypeAlign(CA->getType()));
9581 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9582 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9583 PtrInfo, MVT::i8);
9584 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9585 return ExtLoad;
9586
9587 EVT SetCCVT =
9588 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9589 SDValue Zero = DAG.getConstant(0, DL, VT);
9590 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9591 return DAG.getSelect(DL, VT, SrcIsZero,
9592 DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9593}
9594
9596 SDLoc dl(Node);
9597 EVT VT = Node->getValueType(0);
9598 SDValue Op = Node->getOperand(0);
9599 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9600
9601 // If the non-ZERO_UNDEF version is supported we can use that instead.
9602 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9604 return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9605
9606 // If the ZERO_UNDEF version is supported use that and handle the zero case.
9608 EVT SetCCVT =
9609 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9610 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9611 SDValue Zero = DAG.getConstant(0, dl, VT);
9612 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9613 return DAG.getSelect(dl, VT, SrcIsZero,
9614 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9615 }
9616
9617 // Only expand vector types if we have the appropriate vector bit operations.
9618 // This includes the operations needed to expand CTPOP if it isn't supported.
9619 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9622 !canExpandVectorCTPOP(*this, VT)) ||
9626 return SDValue();
9627
9628 // Emit Table Lookup if ISD::CTPOP used in the fallback path below is going
9629 // to be expanded or converted to a libcall.
9632 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9633 return V;
9634
9635 // for now, we use: { return popcount(~x & (x - 1)); }
9636 // unless the target has ctlz but not ctpop, in which case we use:
9637 // { return 32 - nlz(~x & (x-1)); }
9638 // Ref: "Hacker's Delight" by Henry Warren
9639 SDValue Tmp = DAG.getNode(
9640 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9641 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9642
9643 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9645 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9646 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9647 }
9648
9649 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9650}
9651
9653 SDValue Op = Node->getOperand(0);
9654 SDValue Mask = Node->getOperand(1);
9655 SDValue VL = Node->getOperand(2);
9656 SDLoc dl(Node);
9657 EVT VT = Node->getValueType(0);
9658
9659 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9660 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9661 DAG.getAllOnesConstant(dl, VT), Mask, VL);
9662 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9663 DAG.getConstant(1, dl, VT), Mask, VL);
9664 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9665 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9666}
9667
9669 SelectionDAG &DAG) const {
9670 // %cond = to_bool_vec %source
9671 // %splat = splat /*val=*/VL
9672 // %tz = step_vector
9673 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9674 // %r = vp.reduce.umin %v
9675 SDLoc DL(N);
9676 SDValue Source = N->getOperand(0);
9677 SDValue Mask = N->getOperand(1);
9678 SDValue EVL = N->getOperand(2);
9679 EVT SrcVT = Source.getValueType();
9680 EVT ResVT = N->getValueType(0);
9681 EVT ResVecVT =
9682 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9683
9684 // Convert to boolean vector.
9685 if (SrcVT.getScalarType() != MVT::i1) {
9686 SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9687 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9688 SrcVT.getVectorElementCount());
9689 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9690 DAG.getCondCode(ISD::SETNE), Mask, EVL);
9691 }
9692
9693 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9694 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9695 SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9696 SDValue Select =
9697 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9698 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9699}
9700
9702 SelectionDAG &DAG) const {
9703 SDLoc DL(N);
9704 SDValue Mask = N->getOperand(0);
9705 EVT MaskVT = Mask.getValueType();
9706 EVT BoolVT = MaskVT.getScalarType();
9707
9708 // Find a suitable type for a stepvector.
9709 ConstantRange VScaleRange(1, /*isFullSet=*/true); // Fixed length default.
9710 if (MaskVT.isScalableVector())
9711 VScaleRange = getVScaleRange(&DAG.getMachineFunction().getFunction(), 64);
9712 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9713 unsigned EltWidth = TLI.getBitWidthForCttzElements(
9714 BoolVT.getTypeForEVT(*DAG.getContext()), MaskVT.getVectorElementCount(),
9715 /*ZeroIsPoison=*/true, &VScaleRange);
9716 EVT StepVT = MVT::getIntegerVT(EltWidth);
9717 EVT StepVecVT = MaskVT.changeVectorElementType(*DAG.getContext(), StepVT);
9718
9719 // If promotion or widening is required to make the type legal, do it here.
9720 // Promotion of integers within LegalizeVectorOps is looking for types of
9721 // the same size but with a smaller number of larger elements, not the usual
9722 // larger size with the same number of larger elements.
9724 TLI.getTypeAction(StepVecVT.getSimpleVT());
9725 SDValue StepVec;
9726 if (TypeAction == TargetLowering::TypePromoteInteger) {
9727 StepVecVT = TLI.getTypeToTransformTo(*DAG.getContext(), StepVecVT);
9728 StepVT = StepVecVT.getVectorElementType();
9729 StepVec = DAG.getStepVector(DL, StepVecVT);
9730 } else if (TypeAction == TargetLowering::TypeWidenVector) {
9731 // For widening, the element count changes. Create a step vector with only
9732 // the original elements valid and zeros for padding. Also widen the mask.
9733 EVT WideVecVT = TLI.getTypeToTransformTo(*DAG.getContext(), StepVecVT);
9734 unsigned WideNumElts = WideVecVT.getVectorNumElements();
9735
9736 // Build widened step vector: <0, 1, ..., OrigNumElts-1, poison, poison, ..>
9737 SDValue OrigStepVec = DAG.getStepVector(DL, StepVecVT);
9738 SDValue UndefStep = DAG.getPOISON(WideVecVT);
9739 StepVec = DAG.getInsertSubvector(DL, UndefStep, OrigStepVec, 0);
9740
9741 // Widen mask: pad with zeros.
9742 EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(), BoolVT, WideNumElts);
9743 SDValue ZeroMask = DAG.getConstant(0, DL, WideMaskVT);
9744 Mask = DAG.getInsertSubvector(DL, ZeroMask, Mask, 0);
9745
9746 StepVecVT = WideVecVT;
9747 StepVT = WideVecVT.getVectorElementType();
9748 } else {
9749 StepVec = DAG.getStepVector(DL, StepVecVT);
9750 }
9751
9752 // Zero out lanes with inactive elements, then find the highest remaining
9753 // value from the stepvector.
9754 SDValue Zeroes = DAG.getConstant(0, DL, StepVecVT);
9755 SDValue ActiveElts = DAG.getSelect(DL, StepVecVT, Mask, StepVec, Zeroes);
9756 SDValue HighestIdx = DAG.getNode(ISD::VECREDUCE_UMAX, DL, StepVT, ActiveElts);
9757 return DAG.getZExtOrTrunc(HighestIdx, DL, N->getValueType(0));
9758}
9759
9761 bool IsNegative) const {
9762 SDLoc dl(N);
9763 EVT VT = N->getValueType(0);
9764 SDValue Op = N->getOperand(0);
9765
9766 // abs(x) -> smax(x,sub(0,x))
9767 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9769 SDValue Zero = DAG.getConstant(0, dl, VT);
9770 Op = DAG.getFreeze(Op);
9771 return DAG.getNode(ISD::SMAX, dl, VT, Op,
9772 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9773 }
9774
9775 // abs(x) -> umin(x,sub(0,x))
9776 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9778 SDValue Zero = DAG.getConstant(0, dl, VT);
9779 Op = DAG.getFreeze(Op);
9780 return DAG.getNode(ISD::UMIN, dl, VT, Op,
9781 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9782 }
9783
9784 // 0 - abs(x) -> smin(x, sub(0,x))
9785 if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9787 SDValue Zero = DAG.getConstant(0, dl, VT);
9788 Op = DAG.getFreeze(Op);
9789 return DAG.getNode(ISD::SMIN, dl, VT, Op,
9790 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9791 }
9792
9793 // Only expand vector types if we have the appropriate vector operations.
9794 if (VT.isVector() &&
9796 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9797 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9799 return SDValue();
9800
9801 Op = DAG.getFreeze(Op);
9802 SDValue Shift = DAG.getNode(
9803 ISD::SRA, dl, VT, Op,
9804 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9805 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9806
9807 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9808 if (!IsNegative)
9809 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9810
9811 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9812 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9813}
9814
9816 SDLoc dl(N);
9817 EVT VT = N->getValueType(0);
9818 SDValue LHS = N->getOperand(0);
9819 SDValue RHS = N->getOperand(1);
9820 bool IsSigned = N->getOpcode() == ISD::ABDS;
9821
9822 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9823 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9824 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9825 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9826 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9827 LHS = DAG.getFreeze(LHS);
9828 RHS = DAG.getFreeze(RHS);
9829 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9830 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9831 return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9832 }
9833
9834 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9835 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) {
9836 LHS = DAG.getFreeze(LHS);
9837 RHS = DAG.getFreeze(RHS);
9838 return DAG.getNode(ISD::OR, dl, VT,
9839 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9840 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9841 }
9842
9843 // If the subtract doesn't overflow then just use abs(sub())
9844 bool IsNonNegative = DAG.SignBitIsZero(LHS) && DAG.SignBitIsZero(RHS);
9845
9846 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, LHS, RHS))
9847 return DAG.getNode(ISD::ABS, dl, VT,
9848 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9849
9850 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, RHS, LHS))
9851 return DAG.getNode(ISD::ABS, dl, VT,
9852 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9853
9854 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9856 LHS = DAG.getFreeze(LHS);
9857 RHS = DAG.getFreeze(RHS);
9858 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9859
9860 // Branchless expansion iff cmp result is allbits:
9861 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9862 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9863 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9864 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9865 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9866 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9867 }
9868
9869 // Similar to the branchless expansion, if we don't prefer selects, use the
9870 // (sign-extended) usubo overflow flag if the (scalar) type is illegal as this
9871 // is more likely to legalize cleanly: abdu(lhs, rhs) -> sub(xor(sub(lhs,
9872 // rhs), uof(lhs, rhs)), uof(lhs, rhs))
9873 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT) &&
9875 SDValue USubO =
9876 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9877 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9878 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9879 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9880 }
9881
9882 // FIXME: Should really try to split the vector in case it's legal on a
9883 // subvector.
9885 return DAG.UnrollVectorOp(N);
9886
9887 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9888 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9889 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9890 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9891}
9892
9894 SDLoc dl(N);
9895 EVT VT = N->getValueType(0);
9896 SDValue LHS = N->getOperand(0);
9897 SDValue RHS = N->getOperand(1);
9898
9899 unsigned Opc = N->getOpcode();
9900 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9901 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9902 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9903 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9904 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9905 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9907 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9908 "Unknown AVG node");
9909
9910 // If the operands are already extended, we can add+shift.
9911 bool IsExt =
9912 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9913 DAG.ComputeNumSignBits(RHS) >= 2) ||
9914 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9915 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9916 if (IsExt) {
9917 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9918 if (!IsFloor)
9919 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9920 return DAG.getNode(ShiftOpc, dl, VT, Sum,
9921 DAG.getShiftAmountConstant(1, VT, dl));
9922 }
9923
9924 // For scalars, see if we can efficiently extend/truncate to use add+shift.
9925 if (VT.isScalarInteger()) {
9926 unsigned BW = VT.getScalarSizeInBits();
9927 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9928 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9929 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9930 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9931 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9932 if (!IsFloor)
9933 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9934 DAG.getConstant(1, dl, ExtVT));
9935 // Just use SRL as we will be truncating away the extended sign bits.
9936 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9937 DAG.getShiftAmountConstant(1, ExtVT, dl));
9938 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9939 }
9940 }
9941
9942 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9943 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9944 SDValue UAddWithOverflow =
9945 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9946
9947 SDValue Sum = UAddWithOverflow.getValue(0);
9948 SDValue Overflow = UAddWithOverflow.getValue(1);
9949
9950 // Right shift the sum by 1
9951 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9952 DAG.getShiftAmountConstant(1, VT, dl));
9953
9954 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9955 SDValue OverflowShl = DAG.getNode(
9956 ISD::SHL, dl, VT, ZeroExtOverflow,
9957 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9958
9959 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9960 }
9961
9962 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9963 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9964 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9965 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9966 LHS = DAG.getFreeze(LHS);
9967 RHS = DAG.getFreeze(RHS);
9968 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9969 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9970 SDValue Shift =
9971 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9972 return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9973}
9974
9976 SDLoc dl(N);
9977 EVT VT = N->getValueType(0);
9978 SDValue Op = N->getOperand(0);
9979
9980 if (!VT.isSimple())
9981 return SDValue();
9982
9983 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9984 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9985 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9986 default:
9987 return SDValue();
9988 case MVT::i16:
9989 // Use a rotate by 8. This can be further expanded if necessary.
9990 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9991 case MVT::i32:
9992 // This is meant for ARM speficially, which has ROTR but no ROTL.
9994 SDValue Mask = DAG.getConstant(0x00FF00FF, dl, VT);
9995 // (x & 0x00FF00FF) rotr 8 | (x rotl 8) & 0x00FF00FF
9996 SDValue And = DAG.getNode(ISD::AND, dl, VT, Op, Mask);
9997 SDValue Rotr =
9998 DAG.getNode(ISD::ROTR, dl, VT, And, DAG.getConstant(8, dl, SHVT));
9999 SDValue Rotl =
10000 DAG.getNode(ISD::ROTR, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10001 SDValue And2 = DAG.getNode(ISD::AND, dl, VT, Rotl, Mask);
10002 return DAG.getNode(ISD::OR, dl, VT, Rotr, And2);
10003 }
10004 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10005 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
10006 DAG.getConstant(0xFF00, dl, VT));
10007 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
10008 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
10009 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
10010 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10011 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
10012 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
10013 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
10014 case MVT::i64:
10015 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
10016 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
10017 DAG.getConstant(255ULL<<8, dl, VT));
10018 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
10019 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
10020 DAG.getConstant(255ULL<<16, dl, VT));
10021 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
10022 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
10023 DAG.getConstant(255ULL<<24, dl, VT));
10024 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
10025 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
10026 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
10027 DAG.getConstant(255ULL<<24, dl, VT));
10028 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
10029 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
10030 DAG.getConstant(255ULL<<16, dl, VT));
10031 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
10032 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
10033 DAG.getConstant(255ULL<<8, dl, VT));
10034 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
10035 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
10036 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
10037 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
10038 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
10039 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
10040 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
10041 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
10042 }
10043}
10044
10046 SDLoc dl(N);
10047 EVT VT = N->getValueType(0);
10048 SDValue Op = N->getOperand(0);
10049 SDValue Mask = N->getOperand(1);
10050 SDValue EVL = N->getOperand(2);
10051
10052 if (!VT.isSimple())
10053 return SDValue();
10054
10055 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10056 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
10057 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
10058 default:
10059 return SDValue();
10060 case MVT::i16:
10061 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10062 Mask, EVL);
10063 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10064 Mask, EVL);
10065 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
10066 case MVT::i32:
10067 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10068 Mask, EVL);
10069 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
10070 Mask, EVL);
10071 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
10072 Mask, EVL);
10073 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10074 Mask, EVL);
10075 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10076 DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
10077 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10078 Mask, EVL);
10079 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10080 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10081 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10082 case MVT::i64:
10083 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
10084 Mask, EVL);
10085 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10086 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
10087 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
10088 Mask, EVL);
10089 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10090 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
10091 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
10092 Mask, EVL);
10093 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
10094 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
10095 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
10096 Mask, EVL);
10097 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
10098 Mask, EVL);
10099 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
10100 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
10101 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
10102 Mask, EVL);
10103 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
10104 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
10105 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
10106 Mask, EVL);
10107 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10108 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
10109 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
10110 Mask, EVL);
10111 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
10112 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
10113 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10114 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10115 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
10116 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10117 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
10118 }
10119}
10120
10122 SDLoc dl(N);
10123 EVT VT = N->getValueType(0);
10124 SDValue Op = N->getOperand(0);
10125 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10126 unsigned Sz = VT.getScalarSizeInBits();
10127
10128 SDValue Tmp, Tmp2, Tmp3;
10129
10130 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
10131 // and finally the i1 pairs.
10132 // TODO: We can easily support i4/i2 legal types if any target ever does.
10133 if (Sz >= 8 && isPowerOf2_32(Sz)) {
10134 // Create the masks - repeating the pattern every byte.
10135 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
10136 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
10137 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
10138
10139 // BSWAP if the type is wider than a single byte.
10140 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
10141
10142 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
10143 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
10144 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
10145 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
10146 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
10147 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10148
10149 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
10150 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
10151 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
10152 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
10153 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
10154 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10155
10156 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
10157 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
10158 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
10159 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
10160 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
10161 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
10162 return Tmp;
10163 }
10164
10165 Tmp = DAG.getConstant(0, dl, VT);
10166 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
10167 if (I < J)
10168 Tmp2 =
10169 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
10170 else
10171 Tmp2 =
10172 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
10173
10174 APInt Shift = APInt::getOneBitSet(Sz, J);
10175 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
10176 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
10177 }
10178
10179 return Tmp;
10180}
10181
10183 assert(N->getOpcode() == ISD::VP_BITREVERSE);
10184
10185 SDLoc dl(N);
10186 EVT VT = N->getValueType(0);
10187 SDValue Op = N->getOperand(0);
10188 SDValue Mask = N->getOperand(1);
10189 SDValue EVL = N->getOperand(2);
10190 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
10191 unsigned Sz = VT.getScalarSizeInBits();
10192
10193 SDValue Tmp, Tmp2, Tmp3;
10194
10195 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
10196 // and finally the i1 pairs.
10197 // TODO: We can easily support i4/i2 legal types if any target ever does.
10198 if (Sz >= 8 && isPowerOf2_32(Sz)) {
10199 // Create the masks - repeating the pattern every byte.
10200 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
10201 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
10202 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
10203
10204 // BSWAP if the type is wider than a single byte.
10205 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
10206
10207 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
10208 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
10209 Mask, EVL);
10210 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10211 DAG.getConstant(Mask4, dl, VT), Mask, EVL);
10212 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
10213 Mask, EVL);
10214 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
10215 Mask, EVL);
10216 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10217
10218 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
10219 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
10220 Mask, EVL);
10221 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10222 DAG.getConstant(Mask2, dl, VT), Mask, EVL);
10223 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
10224 Mask, EVL);
10225 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
10226 Mask, EVL);
10227 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10228
10229 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
10230 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
10231 Mask, EVL);
10232 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
10233 DAG.getConstant(Mask1, dl, VT), Mask, EVL);
10234 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
10235 Mask, EVL);
10236 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
10237 Mask, EVL);
10238 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10239 return Tmp;
10240 }
10241 return SDValue();
10242}
10243
10244std::pair<SDValue, SDValue>
10246 SelectionDAG &DAG) const {
10247 SDLoc SL(LD);
10248 SDValue Chain = LD->getChain();
10249 SDValue BasePTR = LD->getBasePtr();
10250 EVT SrcVT = LD->getMemoryVT();
10251 EVT DstVT = LD->getValueType(0);
10252 ISD::LoadExtType ExtType = LD->getExtensionType();
10253
10254 if (SrcVT.isScalableVector())
10255 report_fatal_error("Cannot scalarize scalable vector loads");
10256
10257 unsigned NumElem = SrcVT.getVectorNumElements();
10258
10259 EVT SrcEltVT = SrcVT.getScalarType();
10260 EVT DstEltVT = DstVT.getScalarType();
10261
10262 // A vector must always be stored in memory as-is, i.e. without any padding
10263 // between the elements, since various code depend on it, e.g. in the
10264 // handling of a bitcast of a vector type to int, which may be done with a
10265 // vector store followed by an integer load. A vector that does not have
10266 // elements that are byte-sized must therefore be stored as an integer
10267 // built out of the extracted vector elements.
10268 if (!SrcEltVT.isByteSized()) {
10269 unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
10270 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
10271
10272 unsigned NumSrcBits = SrcVT.getSizeInBits();
10273 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
10274
10275 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
10276 SDValue SrcEltBitMask = DAG.getConstant(
10277 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
10278
10279 // Load the whole vector and avoid masking off the top bits as it makes
10280 // the codegen worse.
10281 SDValue Load =
10282 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
10283 LD->getPointerInfo(), SrcIntVT, LD->getBaseAlign(),
10284 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10285
10287 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10288 unsigned ShiftIntoIdx =
10289 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10290 SDValue ShiftAmount = DAG.getShiftAmountConstant(
10291 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
10292 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
10293 SDValue Elt =
10294 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
10295 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
10296
10297 if (ExtType != ISD::NON_EXTLOAD) {
10298 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
10299 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
10300 }
10301
10302 Vals.push_back(Scalar);
10303 }
10304
10305 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10306 return std::make_pair(Value, Load.getValue(1));
10307 }
10308
10309 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
10310 assert(SrcEltVT.isByteSized());
10311
10313 SmallVector<SDValue, 8> LoadChains;
10314
10315 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10316 SDValue ScalarLoad = DAG.getExtLoad(
10317 ExtType, SL, DstEltVT, Chain, BasePTR,
10318 LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT,
10319 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10320
10321 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
10322
10323 Vals.push_back(ScalarLoad.getValue(0));
10324 LoadChains.push_back(ScalarLoad.getValue(1));
10325 }
10326
10327 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
10328 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10329
10330 return std::make_pair(Value, NewChain);
10331}
10332
10334 SelectionDAG &DAG) const {
10335 SDLoc SL(ST);
10336
10337 SDValue Chain = ST->getChain();
10338 SDValue BasePtr = ST->getBasePtr();
10339 SDValue Value = ST->getValue();
10340 EVT StVT = ST->getMemoryVT();
10341
10342 if (StVT.isScalableVector())
10343 report_fatal_error("Cannot scalarize scalable vector stores");
10344
10345 // The type of the data we want to save
10346 EVT RegVT = Value.getValueType();
10347 EVT RegSclVT = RegVT.getScalarType();
10348
10349 // The type of data as saved in memory.
10350 EVT MemSclVT = StVT.getScalarType();
10351
10352 unsigned NumElem = StVT.getVectorNumElements();
10353
10354 // A vector must always be stored in memory as-is, i.e. without any padding
10355 // between the elements, since various code depend on it, e.g. in the
10356 // handling of a bitcast of a vector type to int, which may be done with a
10357 // vector store followed by an integer load. A vector that does not have
10358 // elements that are byte-sized must therefore be stored as an integer
10359 // built out of the extracted vector elements.
10360 if (!MemSclVT.isByteSized()) {
10361 unsigned NumBits = StVT.getSizeInBits();
10362 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
10363
10364 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
10365
10366 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10367 SDValue Elt = DAG.getExtractVectorElt(SL, RegSclVT, Value, Idx);
10368 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10369 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10370 unsigned ShiftIntoIdx =
10371 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10372 SDValue ShiftAmount =
10373 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10374 SDValue ShiftedElt =
10375 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10376 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10377 }
10378
10379 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10380 ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10381 ST->getAAInfo());
10382 }
10383
10384 // Store Stride in bytes
10385 unsigned Stride = MemSclVT.getSizeInBits() / 8;
10386 assert(Stride && "Zero stride!");
10387 // Extract each of the elements from the original vector and save them into
10388 // memory individually.
10390 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10391 SDValue Elt = DAG.getExtractVectorElt(SL, RegSclVT, Value, Idx);
10392
10393 SDValue Ptr =
10394 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10395
10396 // This scalar TruncStore may be illegal, but we legalize it later.
10397 SDValue Store = DAG.getTruncStore(
10398 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10399 MemSclVT, ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10400 ST->getAAInfo());
10401
10402 Stores.push_back(Store);
10403 }
10404
10405 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10406}
10407
10408std::pair<SDValue, SDValue>
10410 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10411 "unaligned indexed loads not implemented!");
10412 SDValue Chain = LD->getChain();
10413 SDValue Ptr = LD->getBasePtr();
10414 EVT VT = LD->getValueType(0);
10415 EVT LoadedVT = LD->getMemoryVT();
10416 SDLoc dl(LD);
10417 auto &MF = DAG.getMachineFunction();
10418
10419 if (VT.isFloatingPoint() || VT.isVector()) {
10420 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10421 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10422 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10423 LoadedVT.isVector()) {
10424 // Scalarize the load and let the individual components be handled.
10425 return scalarizeVectorLoad(LD, DAG);
10426 }
10427
10428 // Expand to a (misaligned) integer load of the same size,
10429 // then bitconvert to floating point or vector.
10430 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10431 LD->getMemOperand());
10432 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10433 if (LoadedVT != VT)
10434 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10435 ISD::ANY_EXTEND, dl, VT, Result);
10436
10437 return std::make_pair(Result, newLoad.getValue(1));
10438 }
10439
10440 // Copy the value to a (aligned) stack slot using (unaligned) integer
10441 // loads and stores, then do a (aligned) load from the stack slot.
10442 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10443 unsigned LoadedBytes = LoadedVT.getStoreSize();
10444 unsigned RegBytes = RegVT.getSizeInBits() / 8;
10445 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10446
10447 // Make sure the stack slot is also aligned for the register type.
10448 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10449 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10451 SDValue StackPtr = StackBase;
10452 unsigned Offset = 0;
10453
10454 EVT PtrVT = Ptr.getValueType();
10455 EVT StackPtrVT = StackPtr.getValueType();
10456
10457 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10458 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10459
10460 // Do all but one copies using the full register width.
10461 for (unsigned i = 1; i < NumRegs; i++) {
10462 // Load one integer register's worth from the original location.
10463 SDValue Load = DAG.getLoad(
10464 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10465 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10466 // Follow the load with a store to the stack slot. Remember the store.
10467 Stores.push_back(DAG.getStore(
10468 Load.getValue(1), dl, Load, StackPtr,
10469 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10470 // Increment the pointers.
10471 Offset += RegBytes;
10472
10473 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10474 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10475 }
10476
10477 // The last copy may be partial. Do an extending load.
10478 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10479 8 * (LoadedBytes - Offset));
10480 SDValue Load = DAG.getExtLoad(
10481 ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10482 LD->getPointerInfo().getWithOffset(Offset), MemVT, LD->getBaseAlign(),
10483 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10484 // Follow the load with a store to the stack slot. Remember the store.
10485 // On big-endian machines this requires a truncating store to ensure
10486 // that the bits end up in the right place.
10487 Stores.push_back(DAG.getTruncStore(
10488 Load.getValue(1), dl, Load, StackPtr,
10489 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10490
10491 // The order of the stores doesn't matter - say it with a TokenFactor.
10492 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10493
10494 // Finally, perform the original load only redirected to the stack slot.
10495 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10496 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10497 LoadedVT);
10498
10499 // Callers expect a MERGE_VALUES node.
10500 return std::make_pair(Load, TF);
10501 }
10502
10503 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10504 "Unaligned load of unsupported type.");
10505
10506 // Compute the new VT that is half the size of the old one. This is an
10507 // integer MVT.
10508 unsigned NumBits = LoadedVT.getSizeInBits();
10509 EVT NewLoadedVT;
10510 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10511 NumBits >>= 1;
10512
10513 Align Alignment = LD->getBaseAlign();
10514 unsigned IncrementSize = NumBits / 8;
10515 ISD::LoadExtType HiExtType = LD->getExtensionType();
10516
10517 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10518 if (HiExtType == ISD::NON_EXTLOAD)
10519 HiExtType = ISD::ZEXTLOAD;
10520
10521 // Load the value in two parts
10522 SDValue Lo, Hi;
10523 if (DAG.getDataLayout().isLittleEndian()) {
10524 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10525 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10526 LD->getAAInfo());
10527
10528 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10529 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10530 LD->getPointerInfo().getWithOffset(IncrementSize),
10531 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10532 LD->getAAInfo());
10533 } else {
10534 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10535 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10536 LD->getAAInfo());
10537
10538 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10539 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10540 LD->getPointerInfo().getWithOffset(IncrementSize),
10541 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10542 LD->getAAInfo());
10543 }
10544
10545 // aggregate the two parts
10546 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10547 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10548 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10549
10550 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10551 Hi.getValue(1));
10552
10553 return std::make_pair(Result, TF);
10554}
10555
10557 SelectionDAG &DAG) const {
10558 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10559 "unaligned indexed stores not implemented!");
10560 SDValue Chain = ST->getChain();
10561 SDValue Ptr = ST->getBasePtr();
10562 SDValue Val = ST->getValue();
10563 EVT VT = Val.getValueType();
10564 Align Alignment = ST->getBaseAlign();
10565 auto &MF = DAG.getMachineFunction();
10566 EVT StoreMemVT = ST->getMemoryVT();
10567
10568 SDLoc dl(ST);
10569 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10570 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10571 if (isTypeLegal(intVT)) {
10572 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10573 StoreMemVT.isVector()) {
10574 // Scalarize the store and let the individual components be handled.
10575 SDValue Result = scalarizeVectorStore(ST, DAG);
10576 return Result;
10577 }
10578 // Expand to a bitconvert of the value to the integer type of the
10579 // same size, then a (misaligned) int store.
10580 // FIXME: Does not handle truncating floating point stores!
10581 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10582 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10583 Alignment, ST->getMemOperand()->getFlags());
10584 return Result;
10585 }
10586 // Do a (aligned) store to a stack slot, then copy from the stack slot
10587 // to the final destination using (unaligned) integer loads and stores.
10588 MVT RegVT = getRegisterType(
10589 *DAG.getContext(),
10590 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10591 EVT PtrVT = Ptr.getValueType();
10592 unsigned StoredBytes = StoreMemVT.getStoreSize();
10593 unsigned RegBytes = RegVT.getSizeInBits() / 8;
10594 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10595
10596 // Make sure the stack slot is also aligned for the register type.
10597 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10598 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10599
10600 // Perform the original store, only redirected to the stack slot.
10601 SDValue Store = DAG.getTruncStore(
10602 Chain, dl, Val, StackPtr,
10603 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10604
10605 EVT StackPtrVT = StackPtr.getValueType();
10606
10607 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10608 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10610 unsigned Offset = 0;
10611
10612 // Do all but one copies using the full register width.
10613 for (unsigned i = 1; i < NumRegs; i++) {
10614 // Load one integer register's worth from the stack slot.
10615 SDValue Load = DAG.getLoad(
10616 RegVT, dl, Store, StackPtr,
10617 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10618 // Store it to the final location. Remember the store.
10619 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10620 ST->getPointerInfo().getWithOffset(Offset),
10621 ST->getBaseAlign(),
10622 ST->getMemOperand()->getFlags()));
10623 // Increment the pointers.
10624 Offset += RegBytes;
10625 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10626 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10627 }
10628
10629 // The last store may be partial. Do a truncating store. On big-endian
10630 // machines this requires an extending load from the stack slot to ensure
10631 // that the bits are in the right place.
10632 EVT LoadMemVT =
10633 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10634
10635 // Load from the stack slot.
10636 SDValue Load = DAG.getExtLoad(
10637 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10638 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10639
10640 Stores.push_back(DAG.getTruncStore(
10641 Load.getValue(1), dl, Load, Ptr,
10642 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10643 ST->getBaseAlign(), ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10644 // The order of the stores doesn't matter - say it with a TokenFactor.
10645 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10646 return Result;
10647 }
10648
10649 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10650 "Unaligned store of unknown type.");
10651 // Get the half-size VT
10652 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10653 unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10654 unsigned IncrementSize = NumBits / 8;
10655
10656 // Divide the stored value in two parts.
10657 SDValue ShiftAmount =
10658 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10659 SDValue Lo = Val;
10660 // If Val is a constant, replace the upper bits with 0. The SRL will constant
10661 // fold and not use the upper bits. A smaller constant may be easier to
10662 // materialize.
10663 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10664 Lo = DAG.getNode(
10665 ISD::AND, dl, VT, Lo,
10666 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10667 VT));
10668 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10669
10670 // Store the two parts
10671 SDValue Store1, Store2;
10672 Store1 = DAG.getTruncStore(Chain, dl,
10673 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10674 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10675 ST->getMemOperand()->getFlags());
10676
10677 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10678 Store2 = DAG.getTruncStore(
10679 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10680 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10681 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10682
10683 SDValue Result =
10684 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10685 return Result;
10686}
10687
10688SDValue
10690 const SDLoc &DL, EVT DataVT,
10691 SelectionDAG &DAG,
10692 bool IsCompressedMemory) const {
10694 EVT AddrVT = Addr.getValueType();
10695 EVT MaskVT = Mask.getValueType();
10696 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10697 "Incompatible types of Data and Mask");
10698 if (IsCompressedMemory) {
10699 // Incrementing the pointer according to number of '1's in the mask.
10700 if (DataVT.isScalableVector()) {
10701 EVT MaskExtVT = MaskVT.changeElementType(*DAG.getContext(), MVT::i32);
10702 SDValue MaskExt = DAG.getNode(ISD::ZERO_EXTEND, DL, MaskExtVT, Mask);
10703 Increment = DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i32, MaskExt);
10704 } else {
10705 EVT MaskIntVT =
10706 EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10707 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10708 if (MaskIntVT.getSizeInBits() < 32) {
10709 MaskInIntReg =
10710 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10711 MaskIntVT = MVT::i32;
10712 }
10713 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10714 }
10715 // Scale is an element size in bytes.
10716 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10717 AddrVT);
10718 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10719 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10720 } else
10721 Increment = DAG.getTypeSize(DL, AddrVT, DataVT.getStoreSize());
10722
10723 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10724}
10725
10727 EVT VecVT, const SDLoc &dl,
10728 ElementCount SubEC) {
10729 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10730 "Cannot index a scalable vector within a fixed-width vector");
10731
10732 unsigned NElts = VecVT.getVectorMinNumElements();
10733 unsigned NumSubElts = SubEC.getKnownMinValue();
10734 EVT IdxVT = Idx.getValueType();
10735
10736 if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10737 // If this is a constant index and we know the value plus the number of the
10738 // elements in the subvector minus one is less than the minimum number of
10739 // elements then it's safe to return Idx.
10740 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10741 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10742 return Idx;
10743 SDValue VS =
10744 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10745 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10746 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10747 DAG.getConstant(NumSubElts, dl, IdxVT));
10748 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10749 }
10750 if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10751 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10752 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10753 DAG.getConstant(Imm, dl, IdxVT));
10754 }
10755 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10756 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10757 DAG.getConstant(MaxIndex, dl, IdxVT));
10758}
10759
10760SDValue
10762 EVT VecVT, SDValue Index,
10763 const SDNodeFlags PtrArithFlags) const {
10765 DAG, VecPtr, VecVT,
10767 Index, PtrArithFlags);
10768}
10769
10770SDValue
10772 EVT VecVT, EVT SubVecVT, SDValue Index,
10773 const SDNodeFlags PtrArithFlags) const {
10774 SDLoc dl(Index);
10775 // Make sure the index type is big enough to compute in.
10776 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10777
10778 EVT EltVT = VecVT.getVectorElementType();
10779
10780 // Calculate the element offset and add it to the pointer.
10781 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10782 assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10783 "Converting bits to bytes lost precision");
10784 assert(SubVecVT.getVectorElementType() == EltVT &&
10785 "Sub-vector must be a vector with matching element type");
10786 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10787 SubVecVT.getVectorElementCount());
10788
10789 EVT IdxVT = Index.getValueType();
10790 if (SubVecVT.isScalableVector())
10791 Index =
10792 DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10793 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10794
10795 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10796 DAG.getConstant(EltSize, dl, IdxVT));
10797 return DAG.getMemBasePlusOffset(VecPtr, Index, dl, PtrArithFlags);
10798}
10799
10800//===----------------------------------------------------------------------===//
10801// Implementation of Emulated TLS Model
10802//===----------------------------------------------------------------------===//
10803
10805 SelectionDAG &DAG) const {
10806 // Access to address of TLS varialbe xyz is lowered to a function call:
10807 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10808 EVT PtrVT = getPointerTy(DAG.getDataLayout());
10809 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10810 SDLoc dl(GA);
10811
10812 ArgListTy Args;
10813 const GlobalValue *GV =
10815 SmallString<32> NameString("__emutls_v.");
10816 NameString += GV->getName();
10817 StringRef EmuTlsVarName(NameString);
10818 const GlobalVariable *EmuTlsVar =
10819 GV->getParent()->getNamedGlobal(EmuTlsVarName);
10820 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10821 Args.emplace_back(DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT), VoidPtrType);
10822
10823 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10824
10826 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10827 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10828 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10829
10830 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10831 // At last for X86 targets, maybe good for other targets too?
10833 MFI.setAdjustsStack(true); // Is this only for X86 target?
10834 MFI.setHasCalls(true);
10835
10836 assert((GA->getOffset() == 0) &&
10837 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10838 return CallResult.first;
10839}
10840
10842 SelectionDAG &DAG) const {
10843 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10844 if (!isCtlzFast())
10845 return SDValue();
10846 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10847 SDLoc dl(Op);
10848 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10849 EVT VT = Op.getOperand(0).getValueType();
10850 SDValue Zext = Op.getOperand(0);
10851 if (VT.bitsLT(MVT::i32)) {
10852 VT = MVT::i32;
10853 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10854 }
10855 unsigned Log2b = Log2_32(VT.getSizeInBits());
10856 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10857 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10858 DAG.getConstant(Log2b, dl, MVT::i32));
10859 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10860 }
10861 return SDValue();
10862}
10863
10865 SDValue Op0 = Node->getOperand(0);
10866 SDValue Op1 = Node->getOperand(1);
10867 EVT VT = Op0.getValueType();
10868 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10869 unsigned Opcode = Node->getOpcode();
10870 SDLoc DL(Node);
10871
10872 // If both sign bits are zero, flip UMIN/UMAX <-> SMIN/SMAX if legal.
10873 unsigned AltOpcode;
10874 switch (Opcode) {
10875 case ISD::SMIN:
10876 AltOpcode = ISD::UMIN;
10877 break;
10878 case ISD::SMAX:
10879 AltOpcode = ISD::UMAX;
10880 break;
10881 case ISD::UMIN:
10882 AltOpcode = ISD::SMIN;
10883 break;
10884 case ISD::UMAX:
10885 AltOpcode = ISD::SMAX;
10886 break;
10887 default:
10888 llvm_unreachable("Unknown MINMAX opcode");
10889 }
10890 if (isOperationLegal(AltOpcode, VT) && DAG.SignBitIsZero(Op0) &&
10891 DAG.SignBitIsZero(Op1))
10892 return DAG.getNode(AltOpcode, DL, VT, Op0, Op1);
10893
10894 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10895 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10897 Op0 = DAG.getFreeze(Op0);
10898 SDValue Zero = DAG.getConstant(0, DL, VT);
10899 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10900 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10901 }
10902
10903 // umin(x,y) -> sub(x,usubsat(x,y))
10904 // TODO: Missing freeze(Op0)?
10905 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10907 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10908 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10909 }
10910
10911 // umax(x,y) -> add(x,usubsat(y,x))
10912 // TODO: Missing freeze(Op0)?
10913 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10915 return DAG.getNode(ISD::ADD, DL, VT, Op0,
10916 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10917 }
10918
10919 // FIXME: Should really try to split the vector in case it's legal on a
10920 // subvector.
10922 return DAG.UnrollVectorOp(Node);
10923
10924 // Attempt to find an existing SETCC node that we can reuse.
10925 // TODO: Do we need a generic doesSETCCNodeExist?
10926 // TODO: Missing freeze(Op0)/freeze(Op1)?
10927 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10928 ISD::CondCode PrefCommuteCC,
10929 ISD::CondCode AltCommuteCC) {
10930 SDVTList BoolVTList = DAG.getVTList(BoolVT);
10931 for (ISD::CondCode CC : {PrefCC, AltCC}) {
10932 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10933 {Op0, Op1, DAG.getCondCode(CC)})) {
10934 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10935 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10936 }
10937 }
10938 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10939 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10940 {Op0, Op1, DAG.getCondCode(CC)})) {
10941 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10942 return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10943 }
10944 }
10945 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10946 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10947 };
10948
10949 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10950 // -> Y = (A < B) ? B : A
10951 // -> Y = (A >= B) ? A : B
10952 // -> Y = (A <= B) ? B : A
10953 switch (Opcode) {
10954 case ISD::SMAX:
10955 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10956 case ISD::SMIN:
10957 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10958 case ISD::UMAX:
10959 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10960 case ISD::UMIN:
10961 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10962 }
10963
10964 llvm_unreachable("How did we get here?");
10965}
10966
10968 unsigned Opcode = Node->getOpcode();
10969 SDValue LHS = Node->getOperand(0);
10970 SDValue RHS = Node->getOperand(1);
10971 EVT VT = LHS.getValueType();
10972 SDLoc dl(Node);
10973
10974 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10975 assert(VT.isInteger() && "Expected operands to be integers");
10976
10977 // usub.sat(a, b) -> umax(a, b) - b
10978 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10979 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10980 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10981 }
10982
10983 // usub.sat(a, 1) -> sub(a, zext(a != 0))
10984 if (Opcode == ISD::USUBSAT && isOneOrOneSplat(RHS)) {
10985 LHS = DAG.getFreeze(LHS);
10986 SDValue Zero = DAG.getConstant(0, dl, VT);
10987 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10988 SDValue IsNonZero = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETNE);
10989 SDValue Subtrahend = DAG.getBoolExtOrTrunc(IsNonZero, dl, VT, BoolVT);
10990 Subtrahend =
10991 DAG.getNode(ISD::AND, dl, VT, Subtrahend, DAG.getConstant(1, dl, VT));
10992 return DAG.getNode(ISD::SUB, dl, VT, LHS, Subtrahend);
10993 }
10994
10995 // uadd.sat(a, b) -> umin(a, ~b) + b
10996 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10997 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10998 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10999 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
11000 }
11001
11002 unsigned OverflowOp;
11003 switch (Opcode) {
11004 case ISD::SADDSAT:
11005 OverflowOp = ISD::SADDO;
11006 break;
11007 case ISD::UADDSAT:
11008 OverflowOp = ISD::UADDO;
11009 break;
11010 case ISD::SSUBSAT:
11011 OverflowOp = ISD::SSUBO;
11012 break;
11013 case ISD::USUBSAT:
11014 OverflowOp = ISD::USUBO;
11015 break;
11016 default:
11017 llvm_unreachable("Expected method to receive signed or unsigned saturation "
11018 "addition or subtraction node.");
11019 }
11020
11021 // FIXME: Should really try to split the vector in case it's legal on a
11022 // subvector.
11024 return DAG.UnrollVectorOp(Node);
11025
11026 unsigned BitWidth = LHS.getScalarValueSizeInBits();
11027 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11028 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11029 SDValue SumDiff = Result.getValue(0);
11030 SDValue Overflow = Result.getValue(1);
11031 SDValue Zero = DAG.getConstant(0, dl, VT);
11032 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
11033
11034 if (Opcode == ISD::UADDSAT) {
11036 // (LHS + RHS) | OverflowMask
11037 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
11038 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
11039 }
11040 // Overflow ? 0xffff.... : (LHS + RHS)
11041 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
11042 }
11043
11044 if (Opcode == ISD::USUBSAT) {
11046 // (LHS - RHS) & ~OverflowMask
11047 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
11048 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
11049 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
11050 }
11051 // Overflow ? 0 : (LHS - RHS)
11052 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
11053 }
11054
11055 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
11058
11059 KnownBits KnownLHS = DAG.computeKnownBits(LHS);
11060 KnownBits KnownRHS = DAG.computeKnownBits(RHS);
11061
11062 // If either of the operand signs are known, then they are guaranteed to
11063 // only saturate in one direction. If non-negative they will saturate
11064 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
11065 //
11066 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
11067 // sign of 'y' has to be flipped.
11068
11069 bool LHSIsNonNegative = KnownLHS.isNonNegative();
11070 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
11071 : KnownRHS.isNegative();
11072 if (LHSIsNonNegative || RHSIsNonNegative) {
11073 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11074 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
11075 }
11076
11077 bool LHSIsNegative = KnownLHS.isNegative();
11078 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
11079 : KnownRHS.isNonNegative();
11080 if (LHSIsNegative || RHSIsNegative) {
11081 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
11082 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
11083 }
11084 }
11085
11086 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
11088 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
11089 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
11090 DAG.getConstant(BitWidth - 1, dl, VT));
11091 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
11092 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
11093}
11094
11096 unsigned Opcode = Node->getOpcode();
11097 SDValue LHS = Node->getOperand(0);
11098 SDValue RHS = Node->getOperand(1);
11099 EVT VT = LHS.getValueType();
11100 EVT ResVT = Node->getValueType(0);
11101 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11102 SDLoc dl(Node);
11103
11104 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
11105 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
11106 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
11107 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
11108
11109 // We can't perform arithmetic on i1 values. Extending them would
11110 // probably result in worse codegen, so let's just use two selects instead.
11111 // Some targets are also just better off using selects rather than subtraction
11112 // because one of the conditions can be merged with one of the selects.
11113 // And finally, if we don't know the contents of high bits of a boolean value
11114 // we can't perform any arithmetic either.
11116 BoolVT.getScalarSizeInBits() == 1 ||
11118 SDValue SelectZeroOrOne =
11119 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
11120 DAG.getConstant(0, dl, ResVT));
11121 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
11122 SelectZeroOrOne);
11123 }
11124
11126 std::swap(IsGT, IsLT);
11127 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
11128 ResVT);
11129}
11130
11132 unsigned Opcode = Node->getOpcode();
11133 bool IsSigned = Opcode == ISD::SSHLSAT;
11134 SDValue LHS = Node->getOperand(0);
11135 SDValue RHS = Node->getOperand(1);
11136 EVT VT = LHS.getValueType();
11137 SDLoc dl(Node);
11138
11139 assert((Node->getOpcode() == ISD::SSHLSAT ||
11140 Node->getOpcode() == ISD::USHLSAT) &&
11141 "Expected a SHLSAT opcode");
11142 assert(VT.isInteger() && "Expected operands to be integers");
11143
11145 return DAG.UnrollVectorOp(Node);
11146
11147 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
11148
11149 unsigned BW = VT.getScalarSizeInBits();
11150 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11151 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
11152 SDValue Orig =
11153 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
11154
11155 SDValue SatVal;
11156 if (IsSigned) {
11157 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
11158 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
11159 SDValue Cond =
11160 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
11161 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
11162 } else {
11163 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
11164 }
11165 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
11166 return DAG.getSelect(dl, VT, Cond, SatVal, Result);
11167}
11168
11170 bool Signed, SDValue &Lo, SDValue &Hi,
11171 SDValue LHS, SDValue RHS,
11172 SDValue HiLHS, SDValue HiRHS) const {
11173 EVT VT = LHS.getValueType();
11174 assert(RHS.getValueType() == VT && "Mismatching operand types");
11175
11176 assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS));
11177 assert((!Signed || !HiLHS) &&
11178 "Signed flag should only be set when HiLHS and RiRHS are null");
11179
11180 // We'll expand the multiplication by brute force because we have no other
11181 // options. This is a trivially-generalized version of the code from
11182 // Hacker's Delight (itself derived from Knuth's Algorithm M from section
11183 // 4.3.1). If Signed is set, we can use arithmetic right shifts to propagate
11184 // sign bits while calculating the Hi half.
11185 unsigned Bits = VT.getSizeInBits();
11186 unsigned HalfBits = Bits / 2;
11187 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
11188 SDValue LL = DAG.getNode(ISD::AND, dl, VT, LHS, Mask);
11189 SDValue RL = DAG.getNode(ISD::AND, dl, VT, RHS, Mask);
11190
11191 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LL, RL);
11192 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
11193
11194 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
11195 // This is always an unsigned shift.
11196 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
11197
11198 unsigned ShiftOpc = Signed ? ISD::SRA : ISD::SRL;
11199 SDValue LH = DAG.getNode(ShiftOpc, dl, VT, LHS, Shift);
11200 SDValue RH = DAG.getNode(ShiftOpc, dl, VT, RHS, Shift);
11201
11202 SDValue U =
11203 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LH, RL), TH);
11204 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
11205 SDValue UH = DAG.getNode(ShiftOpc, dl, VT, U, Shift);
11206
11207 SDValue V =
11208 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LL, RH), UL);
11209 SDValue VH = DAG.getNode(ShiftOpc, dl, VT, V, Shift);
11210
11211 Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
11212 DAG.getNode(ISD::SHL, dl, VT, V, Shift));
11213
11214 Hi = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LH, RH),
11215 DAG.getNode(ISD::ADD, dl, VT, UH, VH));
11216
11217 // If HiLHS and HiRHS are set, multiply them by the opposite low part and add
11218 // the products to Hi.
11219 if (HiLHS) {
11220 Hi = DAG.getNode(ISD::ADD, dl, VT, Hi,
11221 DAG.getNode(ISD::ADD, dl, VT,
11222 DAG.getNode(ISD::MUL, dl, VT, HiRHS, LHS),
11223 DAG.getNode(ISD::MUL, dl, VT, RHS, HiLHS)));
11224 }
11225}
11226
11228 bool Signed, const SDValue LHS,
11229 const SDValue RHS, SDValue &Lo,
11230 SDValue &Hi) const {
11231 EVT VT = LHS.getValueType();
11232 assert(RHS.getValueType() == VT && "Mismatching operand types");
11233 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
11234 // We can fall back to a libcall with an illegal type for the MUL if we
11235 // have a libcall big enough.
11236 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
11237 if (WideVT == MVT::i16)
11238 LC = RTLIB::MUL_I16;
11239 else if (WideVT == MVT::i32)
11240 LC = RTLIB::MUL_I32;
11241 else if (WideVT == MVT::i64)
11242 LC = RTLIB::MUL_I64;
11243 else if (WideVT == MVT::i128)
11244 LC = RTLIB::MUL_I128;
11245
11246 RTLIB::LibcallImpl LibcallImpl = getLibcallImpl(LC);
11247 if (LibcallImpl == RTLIB::Unsupported) {
11248 forceExpandMultiply(DAG, dl, Signed, Lo, Hi, LHS, RHS);
11249 return;
11250 }
11251
11252 SDValue HiLHS, HiRHS;
11253 if (Signed) {
11254 // The high part is obtained by SRA'ing all but one of the bits of low
11255 // part.
11256 unsigned LoSize = VT.getFixedSizeInBits();
11257 SDValue Shift = DAG.getShiftAmountConstant(LoSize - 1, VT, dl);
11258 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, Shift);
11259 HiRHS = DAG.getNode(ISD::SRA, dl, VT, RHS, Shift);
11260 } else {
11261 HiLHS = DAG.getConstant(0, dl, VT);
11262 HiRHS = DAG.getConstant(0, dl, VT);
11263 }
11264
11265 // Attempt a libcall.
11266 SDValue Ret;
11268 CallOptions.setIsSigned(Signed);
11269 CallOptions.setIsPostTypeLegalization(true);
11271 // Halves of WideVT are packed into registers in different order
11272 // depending on platform endianness. This is usually handled by
11273 // the C calling convention, but we can't defer to it in
11274 // the legalizer.
11275 SDValue Args[] = {LHS, HiLHS, RHS, HiRHS};
11276 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11277 } else {
11278 SDValue Args[] = {HiLHS, LHS, HiRHS, RHS};
11279 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11280 }
11282 "Ret value is a collection of constituent nodes holding result.");
11283 if (DAG.getDataLayout().isLittleEndian()) {
11284 // Same as above.
11285 Lo = Ret.getOperand(0);
11286 Hi = Ret.getOperand(1);
11287 } else {
11288 Lo = Ret.getOperand(1);
11289 Hi = Ret.getOperand(0);
11290 }
11291}
11292
11293SDValue
11295 assert((Node->getOpcode() == ISD::SMULFIX ||
11296 Node->getOpcode() == ISD::UMULFIX ||
11297 Node->getOpcode() == ISD::SMULFIXSAT ||
11298 Node->getOpcode() == ISD::UMULFIXSAT) &&
11299 "Expected a fixed point multiplication opcode");
11300
11301 SDLoc dl(Node);
11302 SDValue LHS = Node->getOperand(0);
11303 SDValue RHS = Node->getOperand(1);
11304 EVT VT = LHS.getValueType();
11305 unsigned Scale = Node->getConstantOperandVal(2);
11306 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
11307 Node->getOpcode() == ISD::UMULFIXSAT);
11308 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
11309 Node->getOpcode() == ISD::SMULFIXSAT);
11310 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11311 unsigned VTSize = VT.getScalarSizeInBits();
11312
11313 if (!Scale) {
11314 // [us]mul.fix(a, b, 0) -> mul(a, b)
11315 if (!Saturating) {
11317 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11318 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
11319 SDValue Result =
11320 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11321 SDValue Product = Result.getValue(0);
11322 SDValue Overflow = Result.getValue(1);
11323 SDValue Zero = DAG.getConstant(0, dl, VT);
11324
11325 APInt MinVal = APInt::getSignedMinValue(VTSize);
11326 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
11327 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
11328 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11329 // Xor the inputs, if resulting sign bit is 0 the product will be
11330 // positive, else negative.
11331 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
11332 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
11333 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
11334 return DAG.getSelect(dl, VT, Overflow, Result, Product);
11335 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
11336 SDValue Result =
11337 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
11338 SDValue Product = Result.getValue(0);
11339 SDValue Overflow = Result.getValue(1);
11340
11341 APInt MaxVal = APInt::getMaxValue(VTSize);
11342 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
11343 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
11344 }
11345 }
11346
11347 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
11348 "Expected scale to be less than the number of bits if signed or at "
11349 "most the number of bits if unsigned.");
11350 assert(LHS.getValueType() == RHS.getValueType() &&
11351 "Expected both operands to be the same type");
11352
11353 // Get the upper and lower bits of the result.
11354 SDValue Lo, Hi;
11355 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
11356 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
11357 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
11358 if (VT.isVector())
11359 WideVT =
11361 if (isOperationLegalOrCustom(LoHiOp, VT)) {
11362 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
11363 Lo = Result.getValue(0);
11364 Hi = Result.getValue(1);
11365 } else if (isOperationLegalOrCustom(HiOp, VT)) {
11366 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11367 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
11368 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
11369 // Try for a multiplication using a wider type.
11370 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
11371 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
11372 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
11373 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
11374 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
11375 SDValue Shifted =
11376 DAG.getNode(ISD::SRA, dl, WideVT, Res,
11377 DAG.getShiftAmountConstant(VTSize, WideVT, dl));
11378 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
11379 } else if (VT.isVector()) {
11380 return SDValue();
11381 } else {
11382 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
11383 }
11384
11385 if (Scale == VTSize)
11386 // Result is just the top half since we'd be shifting by the width of the
11387 // operand. Overflow impossible so this works for both UMULFIX and
11388 // UMULFIXSAT.
11389 return Hi;
11390
11391 // The result will need to be shifted right by the scale since both operands
11392 // are scaled. The result is given to us in 2 halves, so we only want part of
11393 // both in the result.
11394 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
11395 DAG.getShiftAmountConstant(Scale, VT, dl));
11396 if (!Saturating)
11397 return Result;
11398
11399 if (!Signed) {
11400 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11401 // widened multiplication) aren't all zeroes.
11402
11403 // Saturate to max if ((Hi >> Scale) != 0),
11404 // which is the same as if (Hi > ((1 << Scale) - 1))
11405 APInt MaxVal = APInt::getMaxValue(VTSize);
11406 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11407 dl, VT);
11408 Result = DAG.getSelectCC(dl, Hi, LowMask,
11409 DAG.getConstant(MaxVal, dl, VT), Result,
11410 ISD::SETUGT);
11411
11412 return Result;
11413 }
11414
11415 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11416 // widened multiplication) aren't all ones or all zeroes.
11417
11418 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11419 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11420
11421 if (Scale == 0) {
11422 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11423 DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11424 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11425 // Saturated to SatMin if wide product is negative, and SatMax if wide
11426 // product is positive ...
11427 SDValue Zero = DAG.getConstant(0, dl, VT);
11428 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11429 ISD::SETLT);
11430 // ... but only if we overflowed.
11431 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11432 }
11433
11434 // We handled Scale==0 above so all the bits to examine is in Hi.
11435
11436 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11437 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11438 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11439 dl, VT);
11440 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11441 // Saturate to min if (Hi >> (Scale - 1)) < -1),
11442 // which is the same as if (HI < (-1 << (Scale - 1))
11443 SDValue HighMask =
11444 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11445 dl, VT);
11446 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11447 return Result;
11448}
11449
11450SDValue
11452 SDValue LHS, SDValue RHS,
11453 unsigned Scale, SelectionDAG &DAG) const {
11454 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11455 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11456 "Expected a fixed point division opcode");
11457
11458 EVT VT = LHS.getValueType();
11459 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11460 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11461 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11462
11463 // If there is enough room in the type to upscale the LHS or downscale the
11464 // RHS before the division, we can perform it in this type without having to
11465 // resize. For signed operations, the LHS headroom is the number of
11466 // redundant sign bits, and for unsigned ones it is the number of zeroes.
11467 // The headroom for the RHS is the number of trailing zeroes.
11468 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11470 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11471
11472 // For signed saturating operations, we need to be able to detect true integer
11473 // division overflow; that is, when you have MIN / -EPS. However, this
11474 // is undefined behavior and if we emit divisions that could take such
11475 // values it may cause undesired behavior (arithmetic exceptions on x86, for
11476 // example).
11477 // Avoid this by requiring an extra bit so that we never get this case.
11478 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11479 // signed saturating division, we need to emit a whopping 32-bit division.
11480 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11481 return SDValue();
11482
11483 unsigned LHSShift = std::min(LHSLead, Scale);
11484 unsigned RHSShift = Scale - LHSShift;
11485
11486 // At this point, we know that if we shift the LHS up by LHSShift and the
11487 // RHS down by RHSShift, we can emit a regular division with a final scaling
11488 // factor of Scale.
11489
11490 if (LHSShift)
11491 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11492 DAG.getShiftAmountConstant(LHSShift, VT, dl));
11493 if (RHSShift)
11494 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11495 DAG.getShiftAmountConstant(RHSShift, VT, dl));
11496
11497 SDValue Quot;
11498 if (Signed) {
11499 // For signed operations, if the resulting quotient is negative and the
11500 // remainder is nonzero, subtract 1 from the quotient to round towards
11501 // negative infinity.
11502 SDValue Rem;
11503 // FIXME: Ideally we would always produce an SDIVREM here, but if the
11504 // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11505 // we couldn't just form a libcall, but the type legalizer doesn't do it.
11506 if (isTypeLegal(VT) &&
11508 Quot = DAG.getNode(ISD::SDIVREM, dl,
11509 DAG.getVTList(VT, VT),
11510 LHS, RHS);
11511 Rem = Quot.getValue(1);
11512 Quot = Quot.getValue(0);
11513 } else {
11514 Quot = DAG.getNode(ISD::SDIV, dl, VT,
11515 LHS, RHS);
11516 Rem = DAG.getNode(ISD::SREM, dl, VT,
11517 LHS, RHS);
11518 }
11519 SDValue Zero = DAG.getConstant(0, dl, VT);
11520 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11521 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11522 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11523 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11524 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11525 DAG.getConstant(1, dl, VT));
11526 Quot = DAG.getSelect(dl, VT,
11527 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11528 Sub1, Quot);
11529 } else
11530 Quot = DAG.getNode(ISD::UDIV, dl, VT,
11531 LHS, RHS);
11532
11533 return Quot;
11534}
11535
11537 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11538 SDLoc dl(Node);
11539 SDValue LHS = Node->getOperand(0);
11540 SDValue RHS = Node->getOperand(1);
11541 bool IsAdd = Node->getOpcode() == ISD::UADDO;
11542
11543 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11544 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11545 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11546 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11547 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11548 { LHS, RHS, CarryIn });
11549 Result = SDValue(NodeCarry.getNode(), 0);
11550 Overflow = SDValue(NodeCarry.getNode(), 1);
11551 return;
11552 }
11553
11554 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11555 LHS.getValueType(), LHS, RHS);
11556
11557 EVT ResultType = Node->getValueType(1);
11558 EVT SetCCType = getSetCCResultType(
11559 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11560 SDValue SetCC;
11561 if (IsAdd && isOneConstant(RHS)) {
11562 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11563 // the live range of X. We assume comparing with 0 is cheap.
11564 // The general case (X + C) < C is not necessarily beneficial. Although we
11565 // reduce the live range of X, we may introduce the materialization of
11566 // constant C.
11567 SetCC =
11568 DAG.getSetCC(dl, SetCCType, Result,
11569 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11570 } else if (IsAdd && isAllOnesConstant(RHS)) {
11571 // Special case: uaddo X, -1 overflows if X != 0.
11572 SetCC =
11573 DAG.getSetCC(dl, SetCCType, LHS,
11574 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11575 } else {
11576 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11577 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11578 }
11579 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11580}
11581
11583 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11584 SDLoc dl(Node);
11585 SDValue LHS = Node->getOperand(0);
11586 SDValue RHS = Node->getOperand(1);
11587 bool IsAdd = Node->getOpcode() == ISD::SADDO;
11588
11589 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11590 LHS.getValueType(), LHS, RHS);
11591
11592 EVT ResultType = Node->getValueType(1);
11593 EVT OType = getSetCCResultType(
11594 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11595
11596 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11597 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11598 if (isOperationLegal(OpcSat, LHS.getValueType())) {
11599 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11600 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11601 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11602 return;
11603 }
11604
11605 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11606
11607 // For an addition, the result should be less than one of the operands (LHS)
11608 // if and only if the other operand (RHS) is negative, otherwise there will
11609 // be overflow.
11610 // For a subtraction, the result should be less than one of the operands
11611 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11612 // otherwise there will be overflow.
11613 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11614 SDValue ConditionRHS =
11615 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11616
11617 Overflow = DAG.getBoolExtOrTrunc(
11618 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11619 ResultType, ResultType);
11620}
11621
11623 SDValue &Overflow, SelectionDAG &DAG) const {
11624 SDLoc dl(Node);
11625 EVT VT = Node->getValueType(0);
11626 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11627 SDValue LHS = Node->getOperand(0);
11628 SDValue RHS = Node->getOperand(1);
11629 bool isSigned = Node->getOpcode() == ISD::SMULO;
11630
11631 // For power-of-two multiplications we can use a simpler shift expansion.
11632 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11633 const APInt &C = RHSC->getAPIntValue();
11634 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11635 if (C.isPowerOf2()) {
11636 // smulo(x, signed_min) is same as umulo(x, signed_min).
11637 bool UseArithShift = isSigned && !C.isMinSignedValue();
11638 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11639 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11640 Overflow = DAG.getSetCC(dl, SetCCVT,
11641 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11642 dl, VT, Result, ShiftAmt),
11643 LHS, ISD::SETNE);
11644 return true;
11645 }
11646 }
11647
11648 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11649 if (VT.isVector())
11650 WideVT =
11652
11653 SDValue BottomHalf;
11654 SDValue TopHalf;
11655 static const unsigned Ops[2][3] =
11658 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11659 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11660 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11661 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11662 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11663 RHS);
11664 TopHalf = BottomHalf.getValue(1);
11665 } else if (isTypeLegal(WideVT)) {
11666 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11667 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11668 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11669 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11670 SDValue ShiftAmt =
11671 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11672 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11673 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11674 } else {
11675 if (VT.isVector())
11676 return false;
11677
11678 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11679 }
11680
11681 Result = BottomHalf;
11682 if (isSigned) {
11683 SDValue ShiftAmt = DAG.getShiftAmountConstant(
11684 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11685 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11686 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11687 } else {
11688 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11689 DAG.getConstant(0, dl, VT), ISD::SETNE);
11690 }
11691
11692 // Truncate the result if SetCC returns a larger type than needed.
11693 EVT RType = Node->getValueType(1);
11694 if (RType.bitsLT(Overflow.getValueType()))
11695 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11696
11697 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11698 "Unexpected result type for S/UMULO legalization");
11699 return true;
11700}
11701
11703 SDLoc dl(Node);
11704 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11705 SDValue Op = Node->getOperand(0);
11706 EVT VT = Op.getValueType();
11707
11708 // Try to use a shuffle reduction for power of two vectors.
11709 if (VT.isPow2VectorType()) {
11711 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11712 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11713 break;
11714
11715 SDValue Lo, Hi;
11716 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11717 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11718 VT = HalfVT;
11719
11720 // Stop if splitting is enough to make the reduction legal.
11721 if (isOperationLegalOrCustom(Node->getOpcode(), HalfVT))
11722 return DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Op,
11723 Node->getFlags());
11724 }
11725 }
11726
11727 if (VT.isScalableVector())
11729 "Expanding reductions for scalable vectors is undefined.");
11730
11731 EVT EltVT = VT.getVectorElementType();
11732 unsigned NumElts = VT.getVectorNumElements();
11733
11735 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11736
11737 SDValue Res = Ops[0];
11738 for (unsigned i = 1; i < NumElts; i++)
11739 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11740
11741 // Result type may be wider than element type.
11742 if (EltVT != Node->getValueType(0))
11743 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11744 return Res;
11745}
11746
11748 SDLoc dl(Node);
11749 SDValue AccOp = Node->getOperand(0);
11750 SDValue VecOp = Node->getOperand(1);
11751 SDNodeFlags Flags = Node->getFlags();
11752
11753 EVT VT = VecOp.getValueType();
11754 EVT EltVT = VT.getVectorElementType();
11755
11756 if (VT.isScalableVector())
11758 "Expanding reductions for scalable vectors is undefined.");
11759
11760 unsigned NumElts = VT.getVectorNumElements();
11761
11763 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11764
11765 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11766
11767 SDValue Res = AccOp;
11768 for (unsigned i = 0; i < NumElts; i++)
11769 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11770
11771 return Res;
11772}
11773
11775 SelectionDAG &DAG) const {
11776 EVT VT = Node->getValueType(0);
11777 SDLoc dl(Node);
11778 bool isSigned = Node->getOpcode() == ISD::SREM;
11779 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11780 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11781 SDValue Dividend = Node->getOperand(0);
11782 SDValue Divisor = Node->getOperand(1);
11783 if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11784 SDVTList VTs = DAG.getVTList(VT, VT);
11785 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11786 return true;
11787 }
11788 if (isOperationLegalOrCustom(DivOpc, VT)) {
11789 // X % Y -> X-X/Y*Y
11790 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11791 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11792 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11793 return true;
11794 }
11795 return false;
11796}
11797
11799 SelectionDAG &DAG) const {
11800 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11801 SDLoc dl(SDValue(Node, 0));
11802 SDValue Src = Node->getOperand(0);
11803
11804 // DstVT is the result type, while SatVT is the size to which we saturate
11805 EVT SrcVT = Src.getValueType();
11806 EVT DstVT = Node->getValueType(0);
11807
11808 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11809 unsigned SatWidth = SatVT.getScalarSizeInBits();
11810 unsigned DstWidth = DstVT.getScalarSizeInBits();
11811 assert(SatWidth <= DstWidth &&
11812 "Expected saturation width smaller than result width");
11813
11814 // Determine minimum and maximum integer values and their corresponding
11815 // floating-point values.
11816 APInt MinInt, MaxInt;
11817 if (IsSigned) {
11818 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11819 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11820 } else {
11821 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11822 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11823 }
11824
11825 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11826 // libcall emission cannot handle this. Large result types will fail.
11827 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11828 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11829 SrcVT = Src.getValueType();
11830 }
11831
11832 const fltSemantics &Sem = SrcVT.getFltSemantics();
11833 APFloat MinFloat(Sem);
11834 APFloat MaxFloat(Sem);
11835
11836 APFloat::opStatus MinStatus =
11837 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11838 APFloat::opStatus MaxStatus =
11839 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11840 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11841 !(MaxStatus & APFloat::opStatus::opInexact);
11842
11843 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11844 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11845
11846 // If the integer bounds are exactly representable as floats and min/max are
11847 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11848 // of comparisons and selects.
11849 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11851 if (AreExactFloatBounds && MinMaxLegal) {
11852 SDValue Clamped = Src;
11853
11854 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11855 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11856 // Clamp by MaxFloat from above. NaN cannot occur.
11857 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11858 // Convert clamped value to integer.
11859 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11860 dl, DstVT, Clamped);
11861
11862 // In the unsigned case we're done, because we mapped NaN to MinFloat,
11863 // which will cast to zero.
11864 if (!IsSigned)
11865 return FpToInt;
11866
11867 // Otherwise, select 0 if Src is NaN.
11868 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11869 EVT SetCCVT =
11870 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11871 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11872 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11873 }
11874
11875 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11876 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11877
11878 // Result of direct conversion. The assumption here is that the operation is
11879 // non-trapping and it's fine to apply it to an out-of-range value if we
11880 // select it away later.
11881 SDValue FpToInt =
11882 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11883
11884 SDValue Select = FpToInt;
11885
11886 EVT SetCCVT =
11887 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11888
11889 // If Src ULT MinFloat, select MinInt. In particular, this also selects
11890 // MinInt if Src is NaN.
11891 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11892 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11893 // If Src OGT MaxFloat, select MaxInt.
11894 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11895 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11896
11897 // In the unsigned case we are done, because we mapped NaN to MinInt, which
11898 // is already zero.
11899 if (!IsSigned)
11900 return Select;
11901
11902 // Otherwise, select 0 if Src is NaN.
11903 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11904 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11905 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11906}
11907
11909 const SDLoc &dl,
11910 SelectionDAG &DAG) const {
11911 EVT OperandVT = Op.getValueType();
11912 if (OperandVT.getScalarType() == ResultVT.getScalarType())
11913 return Op;
11914 EVT ResultIntVT = ResultVT.changeTypeToInteger();
11915 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11916 // can induce double-rounding which may alter the results. We can
11917 // correct for this using a trick explained in: Boldo, Sylvie, and
11918 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11919 // World Congress. 2005.
11920 SDValue Narrow = DAG.getFPExtendOrRound(Op, dl, ResultVT);
11921 SDValue NarrowAsWide = DAG.getFPExtendOrRound(Narrow, dl, OperandVT);
11922
11923 // We can keep the narrow value as-is if narrowing was exact (no
11924 // rounding error), the wide value was NaN (the narrow value is also
11925 // NaN and should be preserved) or if we rounded to the odd value.
11926 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, Narrow);
11927 SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11928 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11929 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11930 EVT ResultIntVTCCVT = getSetCCResultType(
11931 DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11932 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11933 // The result is already odd so we don't need to do anything.
11934 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11935
11936 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11937 Op.getValueType());
11938 // We keep results which are exact, odd or NaN.
11939 SDValue KeepNarrow =
11940 DAG.getSetCC(dl, WideSetCCVT, Op, NarrowAsWide, ISD::SETUEQ);
11941 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11942 // We morally performed a round-down if AbsNarrow is smaller than
11943 // AbsWide.
11944 SDValue AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11945 SDValue AbsNarrowAsWide = DAG.getNode(ISD::FABS, dl, OperandVT, NarrowAsWide);
11946 SDValue NarrowIsRd =
11947 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11948 // If the narrow value is odd or exact, pick it.
11949 // Otherwise, narrow is even and corresponds to either the rounded-up
11950 // or rounded-down value. If narrow is the rounded-down value, we want
11951 // the rounded-up value as it will be odd.
11952 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11953 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11954 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11955 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11956}
11957
11959 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11960 SDValue Op = Node->getOperand(0);
11961 EVT VT = Node->getValueType(0);
11962 SDLoc dl(Node);
11963 if (VT.getScalarType() == MVT::bf16) {
11964 if (Node->getConstantOperandVal(1) == 1) {
11965 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11966 }
11967 EVT OperandVT = Op.getValueType();
11968 SDValue IsNaN = DAG.getSetCC(
11969 dl,
11970 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11971 Op, Op, ISD::SETUO);
11972
11973 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11974 // can induce double-rounding which may alter the results. We can
11975 // correct for this using a trick explained in: Boldo, Sylvie, and
11976 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11977 // World Congress. 2005.
11978 EVT F32 = VT.changeElementType(*DAG.getContext(), MVT::f32);
11979 EVT I32 = F32.changeTypeToInteger();
11980 Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11981 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11982
11983 // Conversions should set NaN's quiet bit. This also prevents NaNs from
11984 // turning into infinities.
11985 SDValue NaN =
11986 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11987
11988 // Factor in the contribution of the low 16 bits.
11989 SDValue One = DAG.getConstant(1, dl, I32);
11990 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11991 DAG.getShiftAmountConstant(16, I32, dl));
11992 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11993 SDValue RoundingBias =
11994 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11995 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11996
11997 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11998 // 0x80000000.
11999 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
12000
12001 // Now that we have rounded, shift the bits into position.
12002 Op = DAG.getNode(ISD::SRL, dl, I32, Op,
12003 DAG.getShiftAmountConstant(16, I32, dl));
12004 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
12005 EVT I16 = I32.changeElementType(*DAG.getContext(), MVT::i16);
12006 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
12007 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
12008 }
12009 return SDValue();
12010}
12011
12013 SelectionDAG &DAG) const {
12014 assert((Node->getOpcode() == ISD::VECTOR_SPLICE_LEFT ||
12015 Node->getOpcode() == ISD::VECTOR_SPLICE_RIGHT) &&
12016 "Unexpected opcode!");
12017 assert(Node->getValueType(0).isScalableVector() &&
12018 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
12019
12020 EVT VT = Node->getValueType(0);
12021 SDValue V1 = Node->getOperand(0);
12022 SDValue V2 = Node->getOperand(1);
12023 uint64_t Imm = Node->getConstantOperandVal(2);
12024 SDLoc DL(Node);
12025
12026 // Expand through memory thusly:
12027 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
12028 // Store V1, Ptr
12029 // Store V2, Ptr + sizeof(V1)
12030 // If (Imm < 0)
12031 // TrailingElts = -Imm
12032 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
12033 // else
12034 // Ptr = Ptr + (Imm * sizeof(VT.Elt))
12035 // Res = Load Ptr
12036
12037 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
12038
12040 VT.getVectorElementCount() * 2);
12041 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
12042 EVT PtrVT = StackPtr.getValueType();
12043 auto &MF = DAG.getMachineFunction();
12044 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
12045 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
12046
12047 // Store the lo part of CONCAT_VECTORS(V1, V2)
12048 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
12049 // Store the hi part of CONCAT_VECTORS(V1, V2)
12050 SDValue VTBytes = DAG.getTypeSize(DL, PtrVT, VT.getStoreSize());
12051 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, VTBytes);
12052 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
12053
12054 if (Node->getOpcode() == ISD::VECTOR_SPLICE_LEFT) {
12055 // Load back the required element. getVectorElementPointer takes care of
12056 // clamping the index if it's out-of-bounds.
12057 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
12058 // Load the spliced result
12059 return DAG.getLoad(VT, DL, StoreV2, StackPtr,
12061 }
12062
12063 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
12064 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
12065 SDValue TrailingBytes = DAG.getConstant(Imm * EltByteSize, DL, PtrVT);
12066
12067 if (Imm > VT.getVectorMinNumElements())
12068 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VTBytes);
12069
12070 // Calculate the start address of the spliced result.
12071 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
12072
12073 // Load the spliced result
12074 return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
12076}
12077
12079 SelectionDAG &DAG) const {
12080 SDLoc DL(Node);
12081 SDValue Vec = Node->getOperand(0);
12082 SDValue Mask = Node->getOperand(1);
12083 SDValue Passthru = Node->getOperand(2);
12084
12085 EVT VecVT = Vec.getValueType();
12086 EVT ScalarVT = VecVT.getScalarType();
12087 EVT MaskVT = Mask.getValueType();
12088 EVT MaskScalarVT = MaskVT.getScalarType();
12089
12090 // Needs to be handled by targets that have scalable vector types.
12091 if (VecVT.isScalableVector())
12092 report_fatal_error("Cannot expand masked_compress for scalable vectors.");
12093
12094 SDValue StackPtr = DAG.CreateStackTemporary(
12095 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
12096 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
12097 MachinePointerInfo PtrInfo =
12099
12100 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
12101 SDValue Chain = DAG.getEntryNode();
12102 SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
12103
12104 bool HasPassthru = !Passthru.isUndef();
12105
12106 // If we have a passthru vector, store it on the stack, overwrite the matching
12107 // positions and then re-write the last element that was potentially
12108 // overwritten even though mask[i] = false.
12109 if (HasPassthru)
12110 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
12111
12112 SDValue LastWriteVal;
12113 APInt PassthruSplatVal;
12114 bool IsSplatPassthru =
12115 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
12116
12117 if (IsSplatPassthru) {
12118 // As we do not know which position we wrote to last, we cannot simply
12119 // access that index from the passthru vector. So we first check if passthru
12120 // is a splat vector, to use any element ...
12121 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
12122 } else if (HasPassthru) {
12123 // ... if it is not a splat vector, we need to get the passthru value at
12124 // position = popcount(mask) and re-load it from the stack before it is
12125 // overwritten in the loop below.
12126 EVT PopcountVT = ScalarVT.changeTypeToInteger();
12127 SDValue Popcount = DAG.getNode(
12129 MaskVT.changeVectorElementType(*DAG.getContext(), MVT::i1), Mask);
12130 Popcount = DAG.getNode(
12132 MaskVT.changeVectorElementType(*DAG.getContext(), PopcountVT),
12133 Popcount);
12134 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
12135 SDValue LastElmtPtr =
12136 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
12137 LastWriteVal = DAG.getLoad(
12138 ScalarVT, DL, Chain, LastElmtPtr,
12140 Chain = LastWriteVal.getValue(1);
12141 }
12142
12143 unsigned NumElms = VecVT.getVectorNumElements();
12144 for (unsigned I = 0; I < NumElms; I++) {
12145 SDValue ValI = DAG.getExtractVectorElt(DL, ScalarVT, Vec, I);
12146 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
12147 Chain = DAG.getStore(
12148 Chain, DL, ValI, OutPtr,
12150
12151 // Get the mask value and add it to the current output position. This
12152 // either increments by 1 if MaskI is true or adds 0 otherwise.
12153 // Freeze in case we have poison/undef mask entries.
12154 SDValue MaskI = DAG.getExtractVectorElt(DL, MaskScalarVT, Mask, I);
12155 MaskI = DAG.getFreeze(MaskI);
12156 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
12157 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
12158 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
12159
12160 if (HasPassthru && I == NumElms - 1) {
12161 SDValue EndOfVector =
12162 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
12163 SDValue AllLanesSelected =
12164 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
12165 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
12166 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
12167
12168 // Re-write the last ValI if all lanes were selected. Otherwise,
12169 // overwrite the last write it with the passthru value.
12170 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
12171 LastWriteVal, SDNodeFlags::Unpredictable);
12172 Chain = DAG.getStore(
12173 Chain, DL, LastWriteVal, OutPtr,
12175 }
12176 }
12177
12178 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
12179}
12180
12182 SelectionDAG &DAG) const {
12183 SDLoc DL(N);
12184 SDValue Acc = N->getOperand(0);
12185 SDValue MulLHS = N->getOperand(1);
12186 SDValue MulRHS = N->getOperand(2);
12187 EVT AccVT = Acc.getValueType();
12188 EVT MulOpVT = MulLHS.getValueType();
12189
12190 EVT ExtMulOpVT =
12192 MulOpVT.getVectorElementCount());
12193
12194 unsigned ExtOpcLHS, ExtOpcRHS;
12195 switch (N->getOpcode()) {
12196 default:
12197 llvm_unreachable("Unexpected opcode");
12199 ExtOpcLHS = ExtOpcRHS = ISD::ZERO_EXTEND;
12200 break;
12202 ExtOpcLHS = ExtOpcRHS = ISD::SIGN_EXTEND;
12203 break;
12205 ExtOpcLHS = ExtOpcRHS = ISD::FP_EXTEND;
12206 break;
12207 }
12208
12209 if (ExtMulOpVT != MulOpVT) {
12210 MulLHS = DAG.getNode(ExtOpcLHS, DL, ExtMulOpVT, MulLHS);
12211 MulRHS = DAG.getNode(ExtOpcRHS, DL, ExtMulOpVT, MulRHS);
12212 }
12213 SDValue Input = MulLHS;
12214 if (N->getOpcode() == ISD::PARTIAL_REDUCE_FMLA) {
12215 if (!llvm::isOneOrOneSplatFP(MulRHS))
12216 Input = DAG.getNode(ISD::FMUL, DL, ExtMulOpVT, MulLHS, MulRHS);
12217 } else if (!llvm::isOneOrOneSplat(MulRHS)) {
12218 Input = DAG.getNode(ISD::MUL, DL, ExtMulOpVT, MulLHS, MulRHS);
12219 }
12220
12221 unsigned Stride = AccVT.getVectorMinNumElements();
12222 unsigned ScaleFactor = MulOpVT.getVectorMinNumElements() / Stride;
12223
12224 // Collect all of the subvectors
12225 std::deque<SDValue> Subvectors = {Acc};
12226 for (unsigned I = 0; I < ScaleFactor; I++)
12227 Subvectors.push_back(DAG.getExtractSubvector(DL, AccVT, Input, I * Stride));
12228
12229 unsigned FlatNode =
12230 N->getOpcode() == ISD::PARTIAL_REDUCE_FMLA ? ISD::FADD : ISD::ADD;
12231
12232 // Flatten the subvector tree
12233 while (Subvectors.size() > 1) {
12234 Subvectors.push_back(
12235 DAG.getNode(FlatNode, DL, AccVT, {Subvectors[0], Subvectors[1]}));
12236 Subvectors.pop_front();
12237 Subvectors.pop_front();
12238 }
12239
12240 assert(Subvectors.size() == 1 &&
12241 "There should only be one subvector after tree flattening");
12242
12243 return Subvectors[0];
12244}
12245
12246/// Given a store node \p StoreNode, return true if it is safe to fold that node
12247/// into \p FPNode, which expands to a library call with output pointers.
12249 SDNode *FPNode) {
12251 SmallVector<const SDNode *, 8> DeferredNodes;
12253
12254 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
12255 for (SDValue Op : StoreNode->ops())
12256 if (Op.getNode() != FPNode)
12257 Worklist.push_back(Op.getNode());
12258
12260 while (!Worklist.empty()) {
12261 const SDNode *Node = Worklist.pop_back_val();
12262 auto [_, Inserted] = Visited.insert(Node);
12263 if (!Inserted)
12264 continue;
12265
12266 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
12267 return false;
12268
12269 // Reached the FPNode (would result in a cycle).
12270 // OR Reached CALLSEQ_START (would result in nested call sequences).
12271 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
12272 return false;
12273
12274 if (Node->getOpcode() == ISD::CALLSEQ_END) {
12275 // Defer looking into call sequences (so we can check we're outside one).
12276 // We still need to look through these for the predecessor check.
12277 DeferredNodes.push_back(Node);
12278 continue;
12279 }
12280
12281 for (SDValue Op : Node->ops())
12282 Worklist.push_back(Op.getNode());
12283 }
12284
12285 // True if we're outside a call sequence and don't have the FPNode as a
12286 // predecessor. No cycles or nested call sequences possible.
12287 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
12288 MaxSteps);
12289}
12290
12292 SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node,
12294 std::optional<unsigned> CallRetResNo) const {
12295 if (LC == RTLIB::UNKNOWN_LIBCALL)
12296 return false;
12297
12298 RTLIB::LibcallImpl LibcallImpl = getLibcallImpl(LC);
12299 if (LibcallImpl == RTLIB::Unsupported)
12300 return false;
12301
12302 LLVMContext &Ctx = *DAG.getContext();
12303 EVT VT = Node->getValueType(0);
12304 unsigned NumResults = Node->getNumValues();
12305
12306 // Find users of the node that store the results (and share input chains). The
12307 // destination pointers can be used instead of creating stack allocations.
12308 SDValue StoresInChain;
12309 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
12310 for (SDNode *User : Node->users()) {
12312 continue;
12313 auto *ST = cast<StoreSDNode>(User);
12314 SDValue StoreValue = ST->getValue();
12315 unsigned ResNo = StoreValue.getResNo();
12316 // Ensure the store corresponds to an output pointer.
12317 if (CallRetResNo == ResNo)
12318 continue;
12319 // Ensure the store to the default address space and not atomic or volatile.
12320 if (!ST->isSimple() || ST->getAddressSpace() != 0)
12321 continue;
12322 // Ensure all store chains are the same (so they don't alias).
12323 if (StoresInChain && ST->getChain() != StoresInChain)
12324 continue;
12325 // Ensure the store is properly aligned.
12326 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
12327 if (ST->getAlign() <
12328 DAG.getDataLayout().getABITypeAlign(StoreType->getScalarType()))
12329 continue;
12330 // Avoid:
12331 // 1. Creating cyclic dependencies.
12332 // 2. Expanding the node to a call within a call sequence.
12334 continue;
12335 ResultStores[ResNo] = ST;
12336 StoresInChain = ST->getChain();
12337 }
12338
12339 ArgListTy Args;
12340
12341 // Pass the arguments.
12342 for (const SDValue &Op : Node->op_values()) {
12343 EVT ArgVT = Op.getValueType();
12344 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
12345 Args.emplace_back(Op, ArgTy);
12346 }
12347
12348 // Pass the output pointers.
12349 SmallVector<SDValue, 2> ResultPtrs(NumResults);
12351 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
12352 if (ResNo == CallRetResNo)
12353 continue;
12354 EVT ResVT = Node->getValueType(ResNo);
12355 SDValue ResultPtr = ST ? ST->getBasePtr() : DAG.CreateStackTemporary(ResVT);
12356 ResultPtrs[ResNo] = ResultPtr;
12357 Args.emplace_back(ResultPtr, PointerTy);
12358 }
12359
12360 SDLoc DL(Node);
12361
12363 // Pass the vector mask (if required).
12364 EVT MaskVT = getSetCCResultType(DAG.getDataLayout(), Ctx, VT);
12365 SDValue Mask = DAG.getBoolConstant(true, DL, MaskVT, VT);
12366 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
12367 }
12368
12369 Type *RetType = CallRetResNo.has_value()
12370 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
12371 : Type::getVoidTy(Ctx);
12372 SDValue InChain = StoresInChain ? StoresInChain : DAG.getEntryNode();
12373 SDValue Callee =
12374 DAG.getExternalSymbol(LibcallImpl, getPointerTy(DAG.getDataLayout()));
12376 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
12377 getLibcallImplCallingConv(LibcallImpl), RetType, Callee, std::move(Args));
12378
12379 auto [Call, CallChain] = LowerCallTo(CLI);
12380
12381 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
12382 if (ResNo == CallRetResNo) {
12383 Results.push_back(Call);
12384 continue;
12385 }
12386 MachinePointerInfo PtrInfo;
12387 SDValue LoadResult = DAG.getLoad(Node->getValueType(ResNo), DL, CallChain,
12388 ResultPtr, PtrInfo);
12389 SDValue OutChain = LoadResult.getValue(1);
12390
12391 if (StoreSDNode *ST = ResultStores[ResNo]) {
12392 // Replace store with the library call.
12393 DAG.ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
12394 PtrInfo = ST->getPointerInfo();
12395 } else {
12397 DAG.getMachineFunction(),
12398 cast<FrameIndexSDNode>(ResultPtr)->getIndex());
12399 }
12400
12401 Results.push_back(LoadResult);
12402 }
12403
12404 return true;
12405}
12406
12408 SDValue &LHS, SDValue &RHS,
12409 SDValue &CC, SDValue Mask,
12410 SDValue EVL, bool &NeedInvert,
12411 const SDLoc &dl, SDValue &Chain,
12412 bool IsSignaling) const {
12413 MVT OpVT = LHS.getSimpleValueType();
12414 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
12415 NeedInvert = false;
12416 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
12417 bool IsNonVP = !EVL;
12418 switch (getCondCodeAction(CCCode, OpVT)) {
12419 default:
12420 llvm_unreachable("Unknown condition code action!");
12422 // Nothing to do.
12423 break;
12426 if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
12427 std::swap(LHS, RHS);
12428 CC = DAG.getCondCode(InvCC);
12429 return true;
12430 }
12431 // Swapping operands didn't work. Try inverting the condition.
12432 bool NeedSwap = false;
12433 InvCC = getSetCCInverse(CCCode, OpVT);
12434 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
12435 // If inverting the condition is not enough, try swapping operands
12436 // on top of it.
12437 InvCC = ISD::getSetCCSwappedOperands(InvCC);
12438 NeedSwap = true;
12439 }
12440 if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
12441 CC = DAG.getCondCode(InvCC);
12442 NeedInvert = true;
12443 if (NeedSwap)
12444 std::swap(LHS, RHS);
12445 return true;
12446 }
12447
12448 // Special case: expand i1 comparisons using logical operations.
12449 if (OpVT == MVT::i1) {
12450 SDValue Ret;
12451 switch (CCCode) {
12452 default:
12453 llvm_unreachable("Unknown integer setcc!");
12454 case ISD::SETEQ: // X == Y --> ~(X ^ Y)
12455 Ret = DAG.getNOT(dl, DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS),
12456 MVT::i1);
12457 break;
12458 case ISD::SETNE: // X != Y --> (X ^ Y)
12459 Ret = DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS);
12460 break;
12461 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
12462 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
12463 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, RHS,
12464 DAG.getNOT(dl, LHS, MVT::i1));
12465 break;
12466 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
12467 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
12468 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, LHS,
12469 DAG.getNOT(dl, RHS, MVT::i1));
12470 break;
12471 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
12472 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
12473 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, RHS,
12474 DAG.getNOT(dl, LHS, MVT::i1));
12475 break;
12476 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
12477 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
12478 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, LHS,
12479 DAG.getNOT(dl, RHS, MVT::i1));
12480 break;
12481 }
12482
12483 LHS = DAG.getZExtOrTrunc(Ret, dl, VT);
12484 RHS = SDValue();
12485 CC = SDValue();
12486 return true;
12487 }
12488
12490 unsigned Opc = 0;
12491 switch (CCCode) {
12492 default:
12493 llvm_unreachable("Don't know how to expand this condition!");
12494 case ISD::SETUO:
12495 if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
12496 CC1 = ISD::SETUNE;
12497 CC2 = ISD::SETUNE;
12498 Opc = ISD::OR;
12499 break;
12500 }
12502 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
12503 NeedInvert = true;
12504 [[fallthrough]];
12505 case ISD::SETO:
12507 "If SETO is expanded, SETOEQ must be legal!");
12508 CC1 = ISD::SETOEQ;
12509 CC2 = ISD::SETOEQ;
12510 Opc = ISD::AND;
12511 break;
12512 case ISD::SETONE:
12513 case ISD::SETUEQ:
12514 // If the SETUO or SETO CC isn't legal, we might be able to use
12515 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
12516 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
12517 // the operands.
12518 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
12519 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
12520 isCondCodeLegal(ISD::SETOLT, OpVT))) {
12521 CC1 = ISD::SETOGT;
12522 CC2 = ISD::SETOLT;
12523 Opc = ISD::OR;
12524 NeedInvert = ((unsigned)CCCode & 0x8U);
12525 break;
12526 }
12527 [[fallthrough]];
12528 case ISD::SETOEQ:
12529 case ISD::SETOGT:
12530 case ISD::SETOGE:
12531 case ISD::SETOLT:
12532 case ISD::SETOLE:
12533 case ISD::SETUNE:
12534 case ISD::SETUGT:
12535 case ISD::SETUGE:
12536 case ISD::SETULT:
12537 case ISD::SETULE:
12538 // If we are floating point, assign and break, otherwise fall through.
12539 if (!OpVT.isInteger()) {
12540 // We can use the 4th bit to tell if we are the unordered
12541 // or ordered version of the opcode.
12542 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
12543 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
12544 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
12545 break;
12546 }
12547 // Fallthrough if we are unsigned integer.
12548 [[fallthrough]];
12549 case ISD::SETLE:
12550 case ISD::SETGT:
12551 case ISD::SETGE:
12552 case ISD::SETLT:
12553 case ISD::SETNE:
12554 case ISD::SETEQ:
12555 // If all combinations of inverting the condition and swapping operands
12556 // didn't work then we have no means to expand the condition.
12557 llvm_unreachable("Don't know how to expand this condition!");
12558 }
12559
12560 SDValue SetCC1, SetCC2;
12561 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
12562 // If we aren't the ordered or unorder operation,
12563 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
12564 if (IsNonVP) {
12565 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12566 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12567 } else {
12568 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12569 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12570 }
12571 } else {
12572 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
12573 if (IsNonVP) {
12574 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12575 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12576 } else {
12577 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12578 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12579 }
12580 }
12581 if (Chain)
12582 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
12583 SetCC2.getValue(1));
12584 if (IsNonVP)
12585 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
12586 else {
12587 // Transform the binary opcode to the VP equivalent.
12588 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
12589 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
12590 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12591 }
12592 RHS = SDValue();
12593 CC = SDValue();
12594 return true;
12595 }
12596 }
12597 return false;
12598}
12599
12601 SelectionDAG &DAG) const {
12602 EVT VT = Node->getValueType(0);
12603 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
12604 // split into two equal parts.
12605 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
12606 return SDValue();
12607
12608 // Restrict expansion to cases where both parts can be concatenated.
12609 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
12610 if (LoVT != HiVT || !isTypeLegal(LoVT))
12611 return SDValue();
12612
12613 SDLoc DL(Node);
12614 unsigned Opcode = Node->getOpcode();
12615
12616 // Don't expand if the result is likely to be unrolled anyway.
12617 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
12618 return SDValue();
12619
12620 SmallVector<SDValue, 4> LoOps, HiOps;
12621 for (const SDValue &V : Node->op_values()) {
12622 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
12623 LoOps.push_back(Lo);
12624 HiOps.push_back(Hi);
12625 }
12626
12627 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
12628 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
12629 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
12630}
12631
12633 const SDLoc &DL,
12634 EVT InVecVT, SDValue EltNo,
12635 LoadSDNode *OriginalLoad,
12636 SelectionDAG &DAG) const {
12637 assert(OriginalLoad->isSimple());
12638
12639 EVT VecEltVT = InVecVT.getVectorElementType();
12640
12641 // If the vector element type is not a multiple of a byte then we are unable
12642 // to correctly compute an address to load only the extracted element as a
12643 // scalar.
12644 if (!VecEltVT.isByteSized())
12645 return SDValue();
12646
12647 ISD::LoadExtType ExtTy =
12648 ResultVT.bitsGT(VecEltVT) ? ISD::EXTLOAD : ISD::NON_EXTLOAD;
12649 if (!isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
12650 return SDValue();
12651
12652 std::optional<unsigned> ByteOffset;
12653 Align Alignment = OriginalLoad->getAlign();
12655 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
12656 int Elt = ConstEltNo->getZExtValue();
12657 ByteOffset = VecEltVT.getSizeInBits() * Elt / 8;
12658 MPI = OriginalLoad->getPointerInfo().getWithOffset(*ByteOffset);
12659 Alignment = commonAlignment(Alignment, *ByteOffset);
12660 } else {
12661 // Discard the pointer info except the address space because the memory
12662 // operand can't represent this new access since the offset is variable.
12663 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
12664 Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8);
12665 }
12666
12667 if (!shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT, ByteOffset))
12668 return SDValue();
12669
12670 unsigned IsFast = 0;
12671 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT,
12672 OriginalLoad->getAddressSpace(), Alignment,
12673 OriginalLoad->getMemOperand()->getFlags(), &IsFast) ||
12674 !IsFast)
12675 return SDValue();
12676
12677 // The original DAG loaded the entire vector from memory, so arithmetic
12678 // within it must be inbounds.
12680 DAG, OriginalLoad->getBasePtr(), InVecVT, EltNo);
12681
12682 // We are replacing a vector load with a scalar load. The new load must have
12683 // identical memory op ordering to the original.
12684 SDValue Load;
12685 if (ResultVT.bitsGT(VecEltVT)) {
12686 // If the result type of vextract is wider than the load, then issue an
12687 // extending load instead.
12688 ISD::LoadExtType ExtType = isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, VecEltVT)
12690 : ISD::EXTLOAD;
12691 Load = DAG.getExtLoad(ExtType, DL, ResultVT, OriginalLoad->getChain(),
12692 NewPtr, MPI, VecEltVT, Alignment,
12693 OriginalLoad->getMemOperand()->getFlags(),
12694 OriginalLoad->getAAInfo());
12695 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
12696 } else {
12697 // The result type is narrower or the same width as the vector element
12698 Load = DAG.getLoad(VecEltVT, DL, OriginalLoad->getChain(), NewPtr, MPI,
12699 Alignment, OriginalLoad->getMemOperand()->getFlags(),
12700 OriginalLoad->getAAInfo());
12701 DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
12702 if (ResultVT.bitsLT(VecEltVT))
12703 Load = DAG.getNode(ISD::TRUNCATE, DL, ResultVT, Load);
12704 else
12705 Load = DAG.getBitcast(ResultVT, Load);
12706 }
12707
12708 return Load;
12709}
unsigned const MachineRegisterInfo * MRI
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT F32
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define _
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
#define T
#define T1
#define P(N)
Function const char * Passes
R600 Clause Merge
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
This file contains some templates that are useful if you are working with the STL at all.
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
Value * RHS
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1329
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
Definition APFloat.h:1140
APInt bitcastToAPInt() const
Definition APFloat.h:1335
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1120
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1080
void changeSign()
Definition APFloat.h:1279
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1091
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1758
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1407
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition APInt.h:450
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:230
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1392
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1386
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1513
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:207
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1331
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:372
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:259
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
void setSignBit()
Set the sign bit to 1.
Definition APInt.h:1341
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition APInt.h:217
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:330
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1250
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1397
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:835
void negate()
Negate this APInt in place.
Definition APInt.h:1469
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1640
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1599
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition APInt.h:1532
unsigned countLeadingZeros() const
Definition APInt.h:1607
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition APInt.h:357
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1436
unsigned logBase2() const
Definition APInt.h:1762
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition APInt.h:476
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
void setAllBits()
Set every bit to 1.
Definition APInt.h:1320
LLVM_ABI APInt multiplicativeInverse() const
Definition APInt.cpp:1274
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition APInt.h:406
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1151
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1368
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1258
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1418
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:297
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1389
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:287
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:240
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
Definition APInt.h:1443
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1563
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:859
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
unsigned countr_one() const
Count the number of trailing one bits.
Definition APInt.h:1657
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1222
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
Definition APInt.h:1344
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:720
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
This class represents a range of values.
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:214
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
Definition InlineAsm.h:104
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:214
Machine Value Type.
SimpleValueType SimpleTy
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags getFlags() const
Return the raw flags of the source value,.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getAlign() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
Definition Module.h:445
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
iterator end() const
Definition ArrayRef.h:343
iterator begin() const
Definition ArrayRef.h:342
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
iterator end() const
Definition StringRef.h:114
Class to represent struct types.
LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual bool preferSelectsOverBooleanArithmetic(EVT VT) const
Should we prefer selects to doing arithmetic on boolean types.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
std::vector< ArgListEntry > ArgListTy
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
bool expandMultipleResultFPLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={}) const
Expands a node with multiple results to an FP or vector libcall.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SmallVector< ConstraintPair > ConstraintGroup
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, const SDValue LHS, const SDValue RHS, SDValue &Lo, SDValue &Hi) const
Calculate full product of LHS and RHS either via a libcall or through brute force expansion of the mu...
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandCLMUL(SDNode *N, SelectionDAG &DAG) const
Expand carryless multiply.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
virtual unsigned computeNumSignBitsForTargetInstr(GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed, SDValue &Lo, SDValue &Hi, SDValue LHS, SDValue RHS, SDValue HiLHS=SDValue(), SDValue HiRHS=SDValue()) const
Calculate the product twice the width of LHS and RHS.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
~TargetLowering() override
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis, Register R, KnownFPClass &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue getInboundsVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
Definition Triple.h:791
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition Type.h:296
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
Definition Value.cpp:712
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
Definition TypeSize.h:180
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:813
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:782
@ PTRADD
PTRADD represents pointer arithmetic semantics, for targets that opt in using shouldPreservePtrArith(...
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:533
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:595
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:773
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:389
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:517
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:395
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:847
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:513
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:874
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:579
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:412
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:741
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:904
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:523
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:987
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ CLMUL
Carry-less multiplication operations.
Definition ISDOpcodes.h:768
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:402
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:838
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:709
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:659
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:781
@ PARTIAL_REDUCE_FMLA
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ BRIND
BRIND - Indirect branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:536
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:543
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:790
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:666
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:698
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:759
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:644
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:609
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:571
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:844
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:805
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:381
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
Definition ISDOpcodes.h:648
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:893
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:882
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:721
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:408
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:972
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:799
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:472
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:920
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:733
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:704
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
Definition ISDOpcodes.h:651
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:560
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:953
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:915
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:939
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:850
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:827
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:529
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ CALLSEQ_START
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence,...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:716
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:551
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
void stable_sort(R &&Range)
Definition STLExtras.h:2106
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
InstructionCost Cost
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2530
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
void * PointerTy
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
LLVM_ABI void reportFatalInternalError(Error Err)
Report a fatal error that indicates a bug in LLVM.
Definition Error.cpp:177
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:331
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
Definition STLExtras.h:1775
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
@ Other
Any other memory.
Definition ModRef.h:68
To bit_cast(const From &from) noexcept
Definition bit.h:90
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
Definition APFloat.h:1551
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
@ Increment
Incrementally increasing token ID.
Definition AllocToken.h:26
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:373
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
Definition ValueTypes.h:430
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
Definition ValueTypes.h:412
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
Definition KnownBits.h:186
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
KnownBits reverseBits() const
Definition KnownBits.h:518
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
bool isSignUnknown() const
Returns true if we don't know the sign bit.
Definition KnownBits.h:69
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition KnownBits.h:286
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
Matching combinators.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
static LLVM_ABI SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
std::string ConstraintCode
This contains the actual string for the code, like "m".
LLVM_ABI unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
LLVM_ABI bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
LLVM_ABI void AddToWorklist(SDNode *N)
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
MakeLibCallOptions & setIsSigned(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
Magic data for optimising unsigned division by a constant.
static LLVM_ABI UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...