69 "jump-is-expensive",
cl::init(
false),
70 cl::desc(
"Do not create extra branches to split comparison logic."),
75 cl::desc(
"Set minimum number of entries to use a jump table."));
79 cl::desc(
"Set maximum size of jump tables."));
84 cl::desc(
"Minimum density for building a jump table in "
85 "a normal function"));
90 cl::desc(
"Minimum density for building a jump table in "
91 "an optsize function"));
98 cl::desc(
"Don't mutate strict-float node to a legalize node"),
102 assert(TT.isOSDarwin() &&
"should be called with darwin triple");
108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
111 return !TT.isOSVersionLT(7, 0);
116void TargetLoweringBase::InitLibcalls(
const Triple &TT) {
117#define HANDLE_LIBCALL(code, name) \
118 setLibcallName(RTLIB::code, name);
119#include "llvm/IR/RuntimeLibcalls.def"
122 for (
int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
158 if (
TT.isOSDarwin()) {
166 switch (
TT.getArch()) {
169 if (
TT.isMacOSX() && !
TT.isMacOSXVersionLT(10, 6))
183 if (
TT.isWatchABI()) {
195 if (
TT.isGNUEnvironment() ||
TT.isOSFuchsia() ||
196 (
TT.isAndroid() && !
TT.isAndroidVersionLT(9))) {
209 if (
TT.isOSOpenBSD()) {
223 VT == MVT::f32 ? Call_F32 :
224 VT == MVT::f64 ? Call_F64 :
225 VT == MVT::f80 ? Call_F80 :
226 VT == MVT::f128 ? Call_F128 :
227 VT == MVT::ppcf128 ? Call_PPCF128 :
228 RTLIB::UNKNOWN_LIBCALL;
234 if (OpVT == MVT::f16) {
235 if (RetVT == MVT::f32)
236 return FPEXT_F16_F32;
237 if (RetVT == MVT::f64)
238 return FPEXT_F16_F64;
239 if (RetVT == MVT::f80)
240 return FPEXT_F16_F80;
241 if (RetVT == MVT::f128)
242 return FPEXT_F16_F128;
243 }
else if (OpVT == MVT::f32) {
244 if (RetVT == MVT::f64)
245 return FPEXT_F32_F64;
246 if (RetVT == MVT::f128)
247 return FPEXT_F32_F128;
248 if (RetVT == MVT::ppcf128)
249 return FPEXT_F32_PPCF128;
250 }
else if (OpVT == MVT::f64) {
251 if (RetVT == MVT::f128)
252 return FPEXT_F64_F128;
253 else if (RetVT == MVT::ppcf128)
254 return FPEXT_F64_PPCF128;
255 }
else if (OpVT == MVT::f80) {
256 if (RetVT == MVT::f128)
257 return FPEXT_F80_F128;
260 return UNKNOWN_LIBCALL;
266 if (RetVT == MVT::f16) {
267 if (OpVT == MVT::f32)
268 return FPROUND_F32_F16;
269 if (OpVT == MVT::f64)
270 return FPROUND_F64_F16;
271 if (OpVT == MVT::f80)
272 return FPROUND_F80_F16;
273 if (OpVT == MVT::f128)
274 return FPROUND_F128_F16;
275 if (OpVT == MVT::ppcf128)
276 return FPROUND_PPCF128_F16;
277 }
else if (RetVT == MVT::bf16) {
278 if (OpVT == MVT::f32)
279 return FPROUND_F32_BF16;
280 if (OpVT == MVT::f64)
281 return FPROUND_F64_BF16;
282 }
else if (RetVT == MVT::f32) {
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F32;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F32;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F32;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F32;
291 }
else if (RetVT == MVT::f64) {
292 if (OpVT == MVT::f80)
293 return FPROUND_F80_F64;
294 if (OpVT == MVT::f128)
295 return FPROUND_F128_F64;
296 if (OpVT == MVT::ppcf128)
297 return FPROUND_PPCF128_F64;
298 }
else if (RetVT == MVT::f80) {
299 if (OpVT == MVT::f128)
300 return FPROUND_F128_F80;
303 return UNKNOWN_LIBCALL;
309 if (OpVT == MVT::f16) {
310 if (RetVT == MVT::i32)
311 return FPTOSINT_F16_I32;
312 if (RetVT == MVT::i64)
313 return FPTOSINT_F16_I64;
314 if (RetVT == MVT::i128)
315 return FPTOSINT_F16_I128;
316 }
else if (OpVT == MVT::f32) {
317 if (RetVT == MVT::i32)
318 return FPTOSINT_F32_I32;
319 if (RetVT == MVT::i64)
320 return FPTOSINT_F32_I64;
321 if (RetVT == MVT::i128)
322 return FPTOSINT_F32_I128;
323 }
else if (OpVT == MVT::f64) {
324 if (RetVT == MVT::i32)
325 return FPTOSINT_F64_I32;
326 if (RetVT == MVT::i64)
327 return FPTOSINT_F64_I64;
328 if (RetVT == MVT::i128)
329 return FPTOSINT_F64_I128;
330 }
else if (OpVT == MVT::f80) {
331 if (RetVT == MVT::i32)
332 return FPTOSINT_F80_I32;
333 if (RetVT == MVT::i64)
334 return FPTOSINT_F80_I64;
335 if (RetVT == MVT::i128)
336 return FPTOSINT_F80_I128;
337 }
else if (OpVT == MVT::f128) {
338 if (RetVT == MVT::i32)
339 return FPTOSINT_F128_I32;
340 if (RetVT == MVT::i64)
341 return FPTOSINT_F128_I64;
342 if (RetVT == MVT::i128)
343 return FPTOSINT_F128_I128;
344 }
else if (OpVT == MVT::ppcf128) {
345 if (RetVT == MVT::i32)
346 return FPTOSINT_PPCF128_I32;
347 if (RetVT == MVT::i64)
348 return FPTOSINT_PPCF128_I64;
349 if (RetVT == MVT::i128)
350 return FPTOSINT_PPCF128_I128;
352 return UNKNOWN_LIBCALL;
358 if (OpVT == MVT::f16) {
359 if (RetVT == MVT::i32)
360 return FPTOUINT_F16_I32;
361 if (RetVT == MVT::i64)
362 return FPTOUINT_F16_I64;
363 if (RetVT == MVT::i128)
364 return FPTOUINT_F16_I128;
365 }
else if (OpVT == MVT::f32) {
366 if (RetVT == MVT::i32)
367 return FPTOUINT_F32_I32;
368 if (RetVT == MVT::i64)
369 return FPTOUINT_F32_I64;
370 if (RetVT == MVT::i128)
371 return FPTOUINT_F32_I128;
372 }
else if (OpVT == MVT::f64) {
373 if (RetVT == MVT::i32)
374 return FPTOUINT_F64_I32;
375 if (RetVT == MVT::i64)
376 return FPTOUINT_F64_I64;
377 if (RetVT == MVT::i128)
378 return FPTOUINT_F64_I128;
379 }
else if (OpVT == MVT::f80) {
380 if (RetVT == MVT::i32)
381 return FPTOUINT_F80_I32;
382 if (RetVT == MVT::i64)
383 return FPTOUINT_F80_I64;
384 if (RetVT == MVT::i128)
385 return FPTOUINT_F80_I128;
386 }
else if (OpVT == MVT::f128) {
387 if (RetVT == MVT::i32)
388 return FPTOUINT_F128_I32;
389 if (RetVT == MVT::i64)
390 return FPTOUINT_F128_I64;
391 if (RetVT == MVT::i128)
392 return FPTOUINT_F128_I128;
393 }
else if (OpVT == MVT::ppcf128) {
394 if (RetVT == MVT::i32)
395 return FPTOUINT_PPCF128_I32;
396 if (RetVT == MVT::i64)
397 return FPTOUINT_PPCF128_I64;
398 if (RetVT == MVT::i128)
399 return FPTOUINT_PPCF128_I128;
401 return UNKNOWN_LIBCALL;
407 if (OpVT == MVT::i32) {
408 if (RetVT == MVT::f16)
409 return SINTTOFP_I32_F16;
410 if (RetVT == MVT::f32)
411 return SINTTOFP_I32_F32;
412 if (RetVT == MVT::f64)
413 return SINTTOFP_I32_F64;
414 if (RetVT == MVT::f80)
415 return SINTTOFP_I32_F80;
416 if (RetVT == MVT::f128)
417 return SINTTOFP_I32_F128;
418 if (RetVT == MVT::ppcf128)
419 return SINTTOFP_I32_PPCF128;
420 }
else if (OpVT == MVT::i64) {
421 if (RetVT == MVT::f16)
422 return SINTTOFP_I64_F16;
423 if (RetVT == MVT::f32)
424 return SINTTOFP_I64_F32;
425 if (RetVT == MVT::f64)
426 return SINTTOFP_I64_F64;
427 if (RetVT == MVT::f80)
428 return SINTTOFP_I64_F80;
429 if (RetVT == MVT::f128)
430 return SINTTOFP_I64_F128;
431 if (RetVT == MVT::ppcf128)
432 return SINTTOFP_I64_PPCF128;
433 }
else if (OpVT == MVT::i128) {
434 if (RetVT == MVT::f16)
435 return SINTTOFP_I128_F16;
436 if (RetVT == MVT::f32)
437 return SINTTOFP_I128_F32;
438 if (RetVT == MVT::f64)
439 return SINTTOFP_I128_F64;
440 if (RetVT == MVT::f80)
441 return SINTTOFP_I128_F80;
442 if (RetVT == MVT::f128)
443 return SINTTOFP_I128_F128;
444 if (RetVT == MVT::ppcf128)
445 return SINTTOFP_I128_PPCF128;
447 return UNKNOWN_LIBCALL;
453 if (OpVT == MVT::i32) {
454 if (RetVT == MVT::f16)
455 return UINTTOFP_I32_F16;
456 if (RetVT == MVT::f32)
457 return UINTTOFP_I32_F32;
458 if (RetVT == MVT::f64)
459 return UINTTOFP_I32_F64;
460 if (RetVT == MVT::f80)
461 return UINTTOFP_I32_F80;
462 if (RetVT == MVT::f128)
463 return UINTTOFP_I32_F128;
464 if (RetVT == MVT::ppcf128)
465 return UINTTOFP_I32_PPCF128;
466 }
else if (OpVT == MVT::i64) {
467 if (RetVT == MVT::f16)
468 return UINTTOFP_I64_F16;
469 if (RetVT == MVT::f32)
470 return UINTTOFP_I64_F32;
471 if (RetVT == MVT::f64)
472 return UINTTOFP_I64_F64;
473 if (RetVT == MVT::f80)
474 return UINTTOFP_I64_F80;
475 if (RetVT == MVT::f128)
476 return UINTTOFP_I64_F128;
477 if (RetVT == MVT::ppcf128)
478 return UINTTOFP_I64_PPCF128;
479 }
else if (OpVT == MVT::i128) {
480 if (RetVT == MVT::f16)
481 return UINTTOFP_I128_F16;
482 if (RetVT == MVT::f32)
483 return UINTTOFP_I128_F32;
484 if (RetVT == MVT::f64)
485 return UINTTOFP_I128_F64;
486 if (RetVT == MVT::f80)
487 return UINTTOFP_I128_F80;
488 if (RetVT == MVT::f128)
489 return UINTTOFP_I128_F128;
490 if (RetVT == MVT::ppcf128)
491 return UINTTOFP_I128_PPCF128;
493 return UNKNOWN_LIBCALL;
497 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
503 unsigned ModeN, ModelN;
521 return UNKNOWN_LIBCALL;
539 return UNKNOWN_LIBCALL;
542#define LCALLS(A, B) \
543 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
545 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
549 return LC[ModeN][ModelN];
553 return LC[ModeN][ModelN];
557 return LC[ModeN][ModelN];
561 return LC[ModeN][ModelN];
565 return LC[ModeN][ModelN];
569 return LC[ModeN][ModelN];
572 return UNKNOWN_LIBCALL;
579#define OP_TO_LIBCALL(Name, Enum) \
581 switch (VT.SimpleTy) { \
583 return UNKNOWN_LIBCALL; \
613 return UNKNOWN_LIBCALL;
617 switch (ElementSize) {
619 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
621 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
623 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
625 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
627 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
629 return UNKNOWN_LIBCALL;
634 switch (ElementSize) {
636 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
638 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
640 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
642 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
644 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
646 return UNKNOWN_LIBCALL;
651 switch (ElementSize) {
653 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
655 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
657 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
659 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
661 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
663 return UNKNOWN_LIBCALL;
710 HasMultipleConditionRegisters =
false;
711 HasExtractBitsInsn =
false;
715 StackPointerRegisterToSaveRestore = 0;
722 MaxBytesForAlignment = 0;
725 MaxAtomicSizeInBitsSupported = 1024;
729 MaxDivRemBitWidthSupported = 128;
733 MinCmpXchgSizeInBits = 0;
734 SupportsUnalignedAtomics =
false;
736 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames),
nullptr);
744 memset(OpActions, 0,
sizeof(OpActions));
745 memset(LoadExtActions, 0,
sizeof(LoadExtActions));
746 memset(TruncStoreActions, 0,
sizeof(TruncStoreActions));
747 memset(IndexedModeActions, 0,
sizeof(IndexedModeActions));
748 memset(CondCodeActions, 0,
sizeof(CondCodeActions));
749 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT),
nullptr);
750 std::fill(std::begin(TargetDAGCombineArray),
751 std::end(TargetDAGCombineArray), 0);
757 for (
MVT VT : {MVT::i2, MVT::i4})
758 OpActions[(
unsigned)VT.SimpleTy][NT] =
Expand;
761 for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
769 for (
MVT VT : {MVT::i2, MVT::i4}) {
859#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
860 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
861#include "llvm/IR/ConstrainedOps.def"
879#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
880 setOperationAction(ISD::SDOPC, VT, Expand);
881#include "llvm/IR/VPIntrinsics.def"
894 {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
902 {MVT::f32, MVT::f64, MVT::f128},
Expand);
920 bool LegalTypes)
const {
931 "ShiftVT is still too small!");
949 unsigned DestAS)
const {
956 JumpIsExpensive = isExpensive;
972 "Promote may not follow Expand or Promote");
988 assert(NVT != VT &&
"Unable to round integer VT");
1037 EVT OldEltVT = EltVT;
1076 if (LargerVector ==
MVT())
1100 unsigned &NumIntermediates,
1107 unsigned NumVectorRegs = 1;
1113 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1119 NumVectorRegs = EC.getKnownMinValue();
1126 while (EC.getKnownMinValue() > 1 &&
1128 EC = EC.divideCoefficientBy(2);
1129 NumVectorRegs <<= 1;
1132 NumIntermediates = NumVectorRegs;
1137 IntermediateVT = NewVT;
1145 RegisterVT = DestVT;
1146 if (
EVT(DestVT).bitsLT(NewVT))
1151 return NumVectorRegs;
1158 for (
const auto *
I =
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
1194 for (
unsigned i = 0; i <
MI->getNumOperands(); ++i) {
1201 unsigned TiedTo = i;
1203 TiedTo =
MI->findTiedOperandIdx(i);
1220 assert(
MI->getOpcode() == TargetOpcode::STATEPOINT &&
"sanity");
1221 MIB.
addImm(StackMaps::IndirectMemRefOp);
1228 MIB.
addImm(StackMaps::DirectMemRefOp);
1233 assert(MIB->
mayLoad() &&
"Folded a stackmap use to a non-load!");
1240 if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
1249 MI->eraseFromParent();
1259std::pair<const TargetRegisterClass *, uint8_t>
1264 return std::make_pair(RC, 0);
1273 for (
unsigned i : SuperRegRC.
set_bits()) {
1276 if (
TRI->getSpillSize(*SuperRC) <=
TRI->getSpillSize(*BestRC))
1282 return std::make_pair(BestRC, 1);
1290 "Too many value types for ValueTypeActions to hold!");
1294 NumRegistersForVT[i] = 1;
1298 NumRegistersForVT[MVT::isVoid] = 0;
1301 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1302 for (; RegClassForVT[LargestIntReg] ==
nullptr; --LargestIntReg)
1303 assert(LargestIntReg != MVT::i1 &&
"No integer registers defined!");
1307 for (
unsigned ExpandedReg = LargestIntReg + 1;
1308 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1309 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1318 unsigned LegalIntReg = LargestIntReg;
1319 for (
unsigned IntReg = LargestIntReg - 1;
1320 IntReg >= (
unsigned)MVT::i1; --IntReg) {
1323 LegalIntReg = IntReg;
1325 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1334 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1335 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1336 TransformToType[MVT::ppcf128] = MVT::f64;
1339 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1340 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1341 TransformToType[MVT::ppcf128] = MVT::i128;
1349 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1350 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1351 TransformToType[MVT::f128] = MVT::i128;
1358 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1359 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1360 TransformToType[MVT::f80] = MVT::i32;
1367 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1368 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1369 TransformToType[MVT::f64] = MVT::i64;
1376 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1377 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1378 TransformToType[MVT::f32] = MVT::i32;
1388 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1389 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1390 TransformToType[MVT::f16] = MVT::f32;
1393 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1394 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1395 TransformToType[MVT::f16] = MVT::f32;
1404 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1405 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1406 TransformToType[MVT::bf16] = MVT::f32;
1411 for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1412 i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1419 bool IsLegalWiderType =
false;
1422 switch (PreferredAction) {
1425 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1426 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1429 for (
unsigned nVT = i + 1;
1436 TransformToType[i] = SVT;
1437 RegisterTypeForVT[i] = SVT;
1438 NumRegistersForVT[i] = 1;
1440 IsLegalWiderType =
true;
1444 if (IsLegalWiderType)
1452 for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1457 EC.getKnownMinValue() &&
1459 TransformToType[i] = SVT;
1460 RegisterTypeForVT[i] = SVT;
1461 NumRegistersForVT[i] = 1;
1463 IsLegalWiderType =
true;
1467 if (IsLegalWiderType)
1473 TransformToType[i] = NVT;
1475 RegisterTypeForVT[i] = NVT;
1476 NumRegistersForVT[i] = 1;
1486 unsigned NumIntermediates;
1488 NumIntermediates, RegisterVT,
this);
1489 NumRegistersForVT[i] = NumRegisters;
1490 assert(NumRegistersForVT[i] == NumRegisters &&
1491 "NumRegistersForVT size cannot represent NumRegisters!");
1492 RegisterTypeForVT[i] = RegisterVT;
1497 TransformToType[i] = MVT::Other;
1502 else if (EC.getKnownMinValue() > 1)
1509 TransformToType[i] = NVT;
1528 RepRegClassForVT[i] = RRC;
1529 RepRegClassCostForVT[i] =
Cost;
1552 EVT VT,
EVT &IntermediateVT,
1553 unsigned &NumIntermediates,
1554 MVT &RegisterVT)
const {
1567 IntermediateVT = RegisterEVT;
1569 NumIntermediates = 1;
1577 unsigned NumVectorRegs = 1;
1592 "Don't know how to legalize this scalable vector type");
1598 IntermediateVT = PartVT;
1600 return NumIntermediates;
1615 NumVectorRegs <<= 1;
1618 NumIntermediates = NumVectorRegs;
1623 IntermediateVT = NewVT;
1626 RegisterVT = DestVT;
1628 if (
EVT(DestVT).bitsLT(NewVT)) {
1638 return NumVectorRegs;
1651 const bool OptForSize =
1652 SI->getParent()->getParent()->hasOptSize() ||
1659 return (OptForSize || Range <= MaxJumpTableSize) &&
1660 (NumCases * 100 >= Range * MinDensity);
1664 EVT ConditionVT)
const {
1678 unsigned NumValues = ValueVTs.
size();
1679 if (NumValues == 0)
return;
1681 for (
unsigned j = 0, f = NumValues; j != f; ++j) {
1682 EVT VT = ValueVTs[j];
1716 for (
unsigned i = 0; i < NumParts; ++i)
1726 return DL.getABITypeAlign(Ty).value();
1738 if (VT.
isZeroSized() || Alignment >=
DL.getABITypeAlign(Ty)) {
1740 if (
Fast !=
nullptr)
1758 unsigned AddrSpace,
Align Alignment,
1760 unsigned *
Fast)
const {
1768 unsigned *
Fast)
const {
1776 unsigned *
Fast)
const {
1787 enum InstructionOpcodes {
1788#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1789#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1790#include "llvm/IR/Instruction.def"
1792 switch (
static_cast<InstructionOpcodes
>(Opcode)) {
1795 case Switch:
return 0;
1796 case IndirectBr:
return 0;
1797 case Invoke:
return 0;
1798 case CallBr:
return 0;
1799 case Resume:
return 0;
1800 case Unreachable:
return 0;
1801 case CleanupRet:
return 0;
1802 case CatchRet:
return 0;
1803 case CatchPad:
return 0;
1804 case CatchSwitch:
return 0;
1805 case CleanupPad:
return 0;
1825 case Alloca:
return 0;
1828 case GetElementPtr:
return 0;
1829 case Fence:
return 0;
1830 case AtomicCmpXchg:
return 0;
1831 case AtomicRMW:
return 0;
1848 case Call:
return 0;
1850 case UserOp1:
return 0;
1851 case UserOp2:
return 0;
1852 case VAArg:
return 0;
1858 case LandingPad:
return 0;
1867 bool UseTLS)
const {
1871 const char *UnsafeStackPtrVar =
"__safestack_unsafe_stack_ptr";
1872 auto UnsafeStackPtr =
1873 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1877 if (!UnsafeStackPtr) {
1878 auto TLSModel = UseTLS ?
1886 UnsafeStackPtrVar,
nullptr, TLSModel);
1889 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1891 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1893 (UseTLS ?
"" :
"not ") +
"be thread-local");
1895 return UnsafeStackPtr;
1907 FunctionCallee Fn = M->getOrInsertFunction(
"__safestack_pointer_address",
1963 Constant *
C = M.getOrInsertGlobal(
"__guard_local", PtrTy);
1974 if (!M.getNamedValue(
"__stack_chk_guard")) {
1977 "__stack_chk_guard");
1980 if (M.getDirectAccessExternalData() &&
1983 GV->setDSOLocal(
true);
1990 return M.getNamedValue(
"__stack_chk_guard");
2024 return PrefLoopAlignment;
2029 return MaxBytesForAlignment;
2040 return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
2050 Name += IsSqrt ?
"sqrt" :
"div";
2059 "Unexpected FP type for reciprocal estimate");
2071 const char RefStepToken =
':';
2072 Position = In.find(RefStepToken);
2076 StringRef RefStepString = In.substr(Position + 1);
2079 if (RefStepString.
size() == 1) {
2080 char RefStepChar = RefStepString[0];
2082 Value = RefStepChar -
'0';
2093 if (Override.
empty())
2097 Override.
split(OverrideVector,
',');
2098 unsigned NumArgs = OverrideVector.
size();
2108 Override = Override.
substr(0, RefPos);
2112 if (Override ==
"all")
2116 if (Override ==
"none")
2120 if (Override ==
"default")
2126 std::string VTNameNoSize = VTName;
2127 VTNameNoSize.pop_back();
2128 static const char DisabledPrefix =
'!';
2130 for (
StringRef RecipType : OverrideVector) {
2134 RecipType = RecipType.substr(0, RefPos);
2137 bool IsDisabled = RecipType[0] == DisabledPrefix;
2139 RecipType = RecipType.substr(1);
2141 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2153 if (Override.
empty())
2157 Override.
split(OverrideVector,
',');
2158 unsigned NumArgs = OverrideVector.
size();
2170 Override = Override.
substr(0, RefPos);
2171 assert(Override !=
"none" &&
2172 "Disabled reciprocals, but specifed refinement steps?");
2175 if (Override ==
"all" || Override ==
"default")
2181 std::string VTNameNoSize = VTName;
2182 VTNameNoSize.pop_back();
2184 for (
StringRef RecipType : OverrideVector) {
2190 RecipType = RecipType.substr(0, RefPos);
2191 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2260 if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
2277 if (
SI.isVolatile())
2280 if (
SI.hasMetadata(LLVMContext::MD_nontemporal))
2293 if (
const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2294 if (RMW->isVolatile())
2297 if (CmpX->isVolatile())
2311 return Builder.CreateFence(Ord);
2320 return Builder.CreateFence(Ord);
2331 auto &MF = *
MI.getMF();
2332 auto &
MRI = MF.getRegInfo();
2339 auto maxUses = [](
unsigned RematCost) {
2342 return std::numeric_limits<unsigned>::max();
2352 switch (
MI.getOpcode()) {
2357 case TargetOpcode::G_CONSTANT:
2358 case TargetOpcode::G_FCONSTANT:
2359 case TargetOpcode::G_FRAME_INDEX:
2360 case TargetOpcode::G_INTTOPTR:
2362 case TargetOpcode::G_GLOBAL_VALUE: {
2365 unsigned MaxUses = maxUses(RematCost);
2366 if (MaxUses == UINT_MAX)
2368 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
amdgpu AMDGPU Register Bank Select
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
unsigned const TargetRegisterInfo * TRI
Module.h This file contains the declarations for the Module class.
const char LLVMTargetMachineRef TM
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static bool darwinHasSinCos(const Triple &TT)
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static void InitCmpLibcallCCs(ISD::CondCode *CCs)
InitCmpLibcallCCs - Set default comparison libcall CC.
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
bool hasRetAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the return value.
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSize(unsigned AS=0) const
Layout pointer size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args=std::nullopt, const Twine &Name="", MDNode *FPMathTag=nullptr)
bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
void freezeReservedRegs(const MachineFunction &)
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
static constexpr size_t npos
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
virtual Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL, bool LegalTypes=true) const
Returns the type for the shift amount of a shift opcode.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Return the desired alignment for ByVal or InAlloca aggregate function arguments in the caller paramet...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should should continue looking for chain dependencies when trying to find...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
unsigned LoopAlignment
If greater than 0, override TargetLoweringBase::PrefLoopAlignment.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Triple - Helper class for working with autoconf configuration names.
bool isWindowsGNUEnvironment() const
bool isAndroid() const
Tests whether the target is Android.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< TypeSize > *Offsets, TypeSize StartingOffset)
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
EVT getApproximateEVTForLLT(LLT Ty, const DataLayout &DL, LLVMContext &Ctx)
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator)
Returns the integer ceil(Numerator / Denominator).
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
bool isReleaseOrStronger(AtomicOrdering AO)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg If BaseGV is null...