69 "jump-is-expensive",
cl::init(
false),
70 cl::desc(
"Do not create extra branches to split comparison logic."),
75 cl::desc(
"Set minimum number of entries to use a jump table."));
79 cl::desc(
"Set maximum size of jump tables."));
84 cl::desc(
"Minimum density for building a jump table in "
85 "a normal function"));
90 cl::desc(
"Minimum density for building a jump table in "
91 "an optsize function"));
95 cl::desc(
"Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
103 cl::desc(
"Don't mutate strict-float node to a legalize node"),
108 return RTLIB::SHL_I16;
110 return RTLIB::SHL_I32;
112 return RTLIB::SHL_I64;
114 return RTLIB::SHL_I128;
116 return RTLIB::UNKNOWN_LIBCALL;
121 return RTLIB::SRL_I16;
123 return RTLIB::SRL_I32;
125 return RTLIB::SRL_I64;
127 return RTLIB::SRL_I128;
129 return RTLIB::UNKNOWN_LIBCALL;
134 return RTLIB::SRA_I16;
136 return RTLIB::SRA_I32;
138 return RTLIB::SRA_I64;
140 return RTLIB::SRA_I128;
142 return RTLIB::UNKNOWN_LIBCALL;
147 return RTLIB::MUL_I16;
149 return RTLIB::MUL_I32;
151 return RTLIB::MUL_I64;
153 return RTLIB::MUL_I128;
154 return RTLIB::UNKNOWN_LIBCALL;
159 return RTLIB::MULO_I32;
161 return RTLIB::MULO_I64;
163 return RTLIB::MULO_I128;
164 return RTLIB::UNKNOWN_LIBCALL;
169 return RTLIB::SDIV_I16;
171 return RTLIB::SDIV_I32;
173 return RTLIB::SDIV_I64;
175 return RTLIB::SDIV_I128;
176 return RTLIB::UNKNOWN_LIBCALL;
181 return RTLIB::UDIV_I16;
183 return RTLIB::UDIV_I32;
185 return RTLIB::UDIV_I64;
187 return RTLIB::UDIV_I128;
188 return RTLIB::UNKNOWN_LIBCALL;
193 return RTLIB::SREM_I16;
195 return RTLIB::SREM_I32;
197 return RTLIB::SREM_I64;
199 return RTLIB::SREM_I128;
200 return RTLIB::UNKNOWN_LIBCALL;
205 return RTLIB::UREM_I16;
207 return RTLIB::UREM_I32;
209 return RTLIB::UREM_I64;
211 return RTLIB::UREM_I128;
212 return RTLIB::UNKNOWN_LIBCALL;
217 return RTLIB::CTPOP_I32;
219 return RTLIB::CTPOP_I64;
221 return RTLIB::CTPOP_I128;
222 return RTLIB::UNKNOWN_LIBCALL;
228 RTLIB::Libcall Call_F32,
229 RTLIB::Libcall Call_F64,
230 RTLIB::Libcall Call_F80,
231 RTLIB::Libcall Call_F128,
232 RTLIB::Libcall Call_PPCF128) {
234 VT == MVT::f32 ? Call_F32 :
235 VT == MVT::f64 ? Call_F64 :
236 VT == MVT::f80 ? Call_F80 :
237 VT == MVT::f128 ? Call_F128 :
238 VT == MVT::ppcf128 ? Call_PPCF128 :
239 RTLIB::UNKNOWN_LIBCALL;
245 if (OpVT == MVT::f16) {
246 if (RetVT == MVT::f32)
247 return FPEXT_F16_F32;
248 if (RetVT == MVT::f64)
249 return FPEXT_F16_F64;
250 if (RetVT == MVT::f80)
251 return FPEXT_F16_F80;
252 if (RetVT == MVT::f128)
253 return FPEXT_F16_F128;
254 }
else if (OpVT == MVT::f32) {
255 if (RetVT == MVT::f64)
256 return FPEXT_F32_F64;
257 if (RetVT == MVT::f128)
258 return FPEXT_F32_F128;
259 if (RetVT == MVT::ppcf128)
260 return FPEXT_F32_PPCF128;
261 }
else if (OpVT == MVT::f64) {
262 if (RetVT == MVT::f128)
263 return FPEXT_F64_F128;
264 else if (RetVT == MVT::ppcf128)
265 return FPEXT_F64_PPCF128;
266 }
else if (OpVT == MVT::f80) {
267 if (RetVT == MVT::f128)
268 return FPEXT_F80_F128;
269 }
else if (OpVT == MVT::bf16) {
270 if (RetVT == MVT::f32)
271 return FPEXT_BF16_F32;
274 return UNKNOWN_LIBCALL;
280 if (RetVT == MVT::f16) {
281 if (OpVT == MVT::f32)
282 return FPROUND_F32_F16;
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F16;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F16;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F16;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F16;
291 }
else if (RetVT == MVT::bf16) {
292 if (OpVT == MVT::f32)
293 return FPROUND_F32_BF16;
294 if (OpVT == MVT::f64)
295 return FPROUND_F64_BF16;
296 if (OpVT == MVT::f80)
297 return FPROUND_F80_BF16;
298 if (OpVT == MVT::f128)
299 return FPROUND_F128_BF16;
300 }
else if (RetVT == MVT::f32) {
301 if (OpVT == MVT::f64)
302 return FPROUND_F64_F32;
303 if (OpVT == MVT::f80)
304 return FPROUND_F80_F32;
305 if (OpVT == MVT::f128)
306 return FPROUND_F128_F32;
307 if (OpVT == MVT::ppcf128)
308 return FPROUND_PPCF128_F32;
309 }
else if (RetVT == MVT::f64) {
310 if (OpVT == MVT::f80)
311 return FPROUND_F80_F64;
312 if (OpVT == MVT::f128)
313 return FPROUND_F128_F64;
314 if (OpVT == MVT::ppcf128)
315 return FPROUND_PPCF128_F64;
316 }
else if (RetVT == MVT::f80) {
317 if (OpVT == MVT::f128)
318 return FPROUND_F128_F80;
321 return UNKNOWN_LIBCALL;
327 if (OpVT == MVT::f16) {
328 if (RetVT == MVT::i32)
329 return FPTOSINT_F16_I32;
330 if (RetVT == MVT::i64)
331 return FPTOSINT_F16_I64;
332 if (RetVT == MVT::i128)
333 return FPTOSINT_F16_I128;
334 }
else if (OpVT == MVT::f32) {
335 if (RetVT == MVT::i32)
336 return FPTOSINT_F32_I32;
337 if (RetVT == MVT::i64)
338 return FPTOSINT_F32_I64;
339 if (RetVT == MVT::i128)
340 return FPTOSINT_F32_I128;
341 }
else if (OpVT == MVT::f64) {
342 if (RetVT == MVT::i32)
343 return FPTOSINT_F64_I32;
344 if (RetVT == MVT::i64)
345 return FPTOSINT_F64_I64;
346 if (RetVT == MVT::i128)
347 return FPTOSINT_F64_I128;
348 }
else if (OpVT == MVT::f80) {
349 if (RetVT == MVT::i32)
350 return FPTOSINT_F80_I32;
351 if (RetVT == MVT::i64)
352 return FPTOSINT_F80_I64;
353 if (RetVT == MVT::i128)
354 return FPTOSINT_F80_I128;
355 }
else if (OpVT == MVT::f128) {
356 if (RetVT == MVT::i32)
357 return FPTOSINT_F128_I32;
358 if (RetVT == MVT::i64)
359 return FPTOSINT_F128_I64;
360 if (RetVT == MVT::i128)
361 return FPTOSINT_F128_I128;
362 }
else if (OpVT == MVT::ppcf128) {
363 if (RetVT == MVT::i32)
364 return FPTOSINT_PPCF128_I32;
365 if (RetVT == MVT::i64)
366 return FPTOSINT_PPCF128_I64;
367 if (RetVT == MVT::i128)
368 return FPTOSINT_PPCF128_I128;
370 return UNKNOWN_LIBCALL;
376 if (OpVT == MVT::f16) {
377 if (RetVT == MVT::i32)
378 return FPTOUINT_F16_I32;
379 if (RetVT == MVT::i64)
380 return FPTOUINT_F16_I64;
381 if (RetVT == MVT::i128)
382 return FPTOUINT_F16_I128;
383 }
else if (OpVT == MVT::f32) {
384 if (RetVT == MVT::i32)
385 return FPTOUINT_F32_I32;
386 if (RetVT == MVT::i64)
387 return FPTOUINT_F32_I64;
388 if (RetVT == MVT::i128)
389 return FPTOUINT_F32_I128;
390 }
else if (OpVT == MVT::f64) {
391 if (RetVT == MVT::i32)
392 return FPTOUINT_F64_I32;
393 if (RetVT == MVT::i64)
394 return FPTOUINT_F64_I64;
395 if (RetVT == MVT::i128)
396 return FPTOUINT_F64_I128;
397 }
else if (OpVT == MVT::f80) {
398 if (RetVT == MVT::i32)
399 return FPTOUINT_F80_I32;
400 if (RetVT == MVT::i64)
401 return FPTOUINT_F80_I64;
402 if (RetVT == MVT::i128)
403 return FPTOUINT_F80_I128;
404 }
else if (OpVT == MVT::f128) {
405 if (RetVT == MVT::i32)
406 return FPTOUINT_F128_I32;
407 if (RetVT == MVT::i64)
408 return FPTOUINT_F128_I64;
409 if (RetVT == MVT::i128)
410 return FPTOUINT_F128_I128;
411 }
else if (OpVT == MVT::ppcf128) {
412 if (RetVT == MVT::i32)
413 return FPTOUINT_PPCF128_I32;
414 if (RetVT == MVT::i64)
415 return FPTOUINT_PPCF128_I64;
416 if (RetVT == MVT::i128)
417 return FPTOUINT_PPCF128_I128;
419 return UNKNOWN_LIBCALL;
425 if (OpVT == MVT::i32) {
426 if (RetVT == MVT::f16)
427 return SINTTOFP_I32_F16;
428 if (RetVT == MVT::f32)
429 return SINTTOFP_I32_F32;
430 if (RetVT == MVT::f64)
431 return SINTTOFP_I32_F64;
432 if (RetVT == MVT::f80)
433 return SINTTOFP_I32_F80;
434 if (RetVT == MVT::f128)
435 return SINTTOFP_I32_F128;
436 if (RetVT == MVT::ppcf128)
437 return SINTTOFP_I32_PPCF128;
438 }
else if (OpVT == MVT::i64) {
439 if (RetVT == MVT::bf16)
440 return SINTTOFP_I64_BF16;
441 if (RetVT == MVT::f16)
442 return SINTTOFP_I64_F16;
443 if (RetVT == MVT::f32)
444 return SINTTOFP_I64_F32;
445 if (RetVT == MVT::f64)
446 return SINTTOFP_I64_F64;
447 if (RetVT == MVT::f80)
448 return SINTTOFP_I64_F80;
449 if (RetVT == MVT::f128)
450 return SINTTOFP_I64_F128;
451 if (RetVT == MVT::ppcf128)
452 return SINTTOFP_I64_PPCF128;
453 }
else if (OpVT == MVT::i128) {
454 if (RetVT == MVT::f16)
455 return SINTTOFP_I128_F16;
456 if (RetVT == MVT::f32)
457 return SINTTOFP_I128_F32;
458 if (RetVT == MVT::f64)
459 return SINTTOFP_I128_F64;
460 if (RetVT == MVT::f80)
461 return SINTTOFP_I128_F80;
462 if (RetVT == MVT::f128)
463 return SINTTOFP_I128_F128;
464 if (RetVT == MVT::ppcf128)
465 return SINTTOFP_I128_PPCF128;
467 return UNKNOWN_LIBCALL;
473 if (OpVT == MVT::i32) {
474 if (RetVT == MVT::f16)
475 return UINTTOFP_I32_F16;
476 if (RetVT == MVT::f32)
477 return UINTTOFP_I32_F32;
478 if (RetVT == MVT::f64)
479 return UINTTOFP_I32_F64;
480 if (RetVT == MVT::f80)
481 return UINTTOFP_I32_F80;
482 if (RetVT == MVT::f128)
483 return UINTTOFP_I32_F128;
484 if (RetVT == MVT::ppcf128)
485 return UINTTOFP_I32_PPCF128;
486 }
else if (OpVT == MVT::i64) {
487 if (RetVT == MVT::bf16)
488 return UINTTOFP_I64_BF16;
489 if (RetVT == MVT::f16)
490 return UINTTOFP_I64_F16;
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I64_F32;
493 if (RetVT == MVT::f64)
494 return UINTTOFP_I64_F64;
495 if (RetVT == MVT::f80)
496 return UINTTOFP_I64_F80;
497 if (RetVT == MVT::f128)
498 return UINTTOFP_I64_F128;
499 if (RetVT == MVT::ppcf128)
500 return UINTTOFP_I64_PPCF128;
501 }
else if (OpVT == MVT::i128) {
502 if (RetVT == MVT::f16)
503 return UINTTOFP_I128_F16;
504 if (RetVT == MVT::f32)
505 return UINTTOFP_I128_F32;
506 if (RetVT == MVT::f64)
507 return UINTTOFP_I128_F64;
508 if (RetVT == MVT::f80)
509 return UINTTOFP_I128_F80;
510 if (RetVT == MVT::f128)
511 return UINTTOFP_I128_F128;
512 if (RetVT == MVT::ppcf128)
513 return UINTTOFP_I128_PPCF128;
515 return UNKNOWN_LIBCALL;
519 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
524 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
528 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
533 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
538 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
542 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
549 return RTLIB::UNKNOWN_LIBCALL;
552 return RTLIB::SINCOS_V4F32;
554 return RTLIB::SINCOS_V2F64;
556 return RTLIB::SINCOS_NXV4F32;
558 return RTLIB::SINCOS_NXV2F64;
560 return RTLIB::UNKNOWN_LIBCALL;
564 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
572 return RTLIB::UNKNOWN_LIBCALL;
575 return RTLIB::SINCOSPI_V4F32;
577 return RTLIB::SINCOSPI_V2F64;
579 return RTLIB::SINCOSPI_NXV4F32;
581 return RTLIB::SINCOSPI_NXV2F64;
583 return RTLIB::UNKNOWN_LIBCALL;
587 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
588 SINCOSPI_F128, SINCOSPI_PPCF128);
592 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
593 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
600 return RTLIB::UNKNOWN_LIBCALL;
603 return RTLIB::REM_V4F32;
605 return RTLIB::REM_V2F64;
607 return RTLIB::REM_NXV4F32;
609 return RTLIB::REM_NXV2F64;
611 return RTLIB::UNKNOWN_LIBCALL;
615 return getFPLibCall(VT, REM_F32, REM_F64, REM_F80, REM_F128, REM_PPCF128);
622 return RTLIB::UNKNOWN_LIBCALL;
625 return RTLIB::MODF_V4F32;
627 return RTLIB::MODF_V2F64;
629 return RTLIB::MODF_NXV4F32;
631 return RTLIB::MODF_NXV2F64;
633 return RTLIB::UNKNOWN_LIBCALL;
637 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
643 return RTLIB::LROUND_F32;
645 return RTLIB::LROUND_F64;
647 return RTLIB::LROUND_F80;
649 return RTLIB::LROUND_F128;
650 if (VT == MVT::ppcf128)
651 return RTLIB::LROUND_PPCF128;
653 return RTLIB::UNKNOWN_LIBCALL;
658 return RTLIB::LLROUND_F32;
660 return RTLIB::LLROUND_F64;
662 return RTLIB::LLROUND_F80;
664 return RTLIB::LLROUND_F128;
665 if (VT == MVT::ppcf128)
666 return RTLIB::LLROUND_PPCF128;
668 return RTLIB::UNKNOWN_LIBCALL;
673 return RTLIB::LRINT_F32;
675 return RTLIB::LRINT_F64;
677 return RTLIB::LRINT_F80;
679 return RTLIB::LRINT_F128;
680 if (VT == MVT::ppcf128)
681 return RTLIB::LRINT_PPCF128;
682 return RTLIB::UNKNOWN_LIBCALL;
687 return RTLIB::LLRINT_F32;
689 return RTLIB::LLRINT_F64;
691 return RTLIB::LLRINT_F80;
693 return RTLIB::LLRINT_F128;
694 if (VT == MVT::ppcf128)
695 return RTLIB::LLRINT_PPCF128;
696 return RTLIB::UNKNOWN_LIBCALL;
702 unsigned ModeN, ModelN;
720 return RTLIB::UNKNOWN_LIBCALL;
738 return UNKNOWN_LIBCALL;
741 return LC[ModeN][ModelN];
747 return UNKNOWN_LIBCALL;
750#define LCALLS(A, B) \
751 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
753 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
756 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_CAS)};
760 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_SWP)};
764 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDADD)};
768 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDSET)};
772 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDCLR)};
776 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDEOR)};
780 return UNKNOWN_LIBCALL;
787#define OP_TO_LIBCALL(Name, Enum) \
789 switch (VT.SimpleTy) { \
791 return UNKNOWN_LIBCALL; \
821 return UNKNOWN_LIBCALL;
825 switch (ElementSize) {
827 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
829 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
831 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
833 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
835 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
837 return UNKNOWN_LIBCALL;
842 switch (ElementSize) {
844 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
846 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
848 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
850 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
852 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
854 return UNKNOWN_LIBCALL;
859 switch (ElementSize) {
861 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
863 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
865 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
867 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
869 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
871 return UNKNOWN_LIBCALL;
876 RTLIB::LibcallImpl Impl)
const {
878 case RTLIB::impl___aeabi_dcmpeq__une:
879 case RTLIB::impl___aeabi_fcmpeq__une:
882 case RTLIB::impl___aeabi_dcmpeq__oeq:
883 case RTLIB::impl___aeabi_fcmpeq__oeq:
886 case RTLIB::impl___aeabi_dcmplt:
887 case RTLIB::impl___aeabi_dcmple:
888 case RTLIB::impl___aeabi_dcmpge:
889 case RTLIB::impl___aeabi_dcmpgt:
890 case RTLIB::impl___aeabi_dcmpun:
891 case RTLIB::impl___aeabi_fcmplt:
892 case RTLIB::impl___aeabi_fcmple:
893 case RTLIB::impl___aeabi_fcmpge:
894 case RTLIB::impl___aeabi_fcmpgt:
912 case RTLIB::OEQ_F128:
913 case RTLIB::OEQ_PPCF128:
917 case RTLIB::UNE_F128:
918 case RTLIB::UNE_PPCF128:
922 case RTLIB::OGE_F128:
923 case RTLIB::OGE_PPCF128:
927 case RTLIB::OLT_F128:
928 case RTLIB::OLT_PPCF128:
932 case RTLIB::OLE_F128:
933 case RTLIB::OLE_PPCF128:
937 case RTLIB::OGT_F128:
938 case RTLIB::OGT_PPCF128:
943 case RTLIB::UO_PPCF128:
954 RuntimeLibcallInfo(TM.getTargetTriple(), TM.
Options.ExceptionModel,
957 Libcalls(RuntimeLibcallInfo, STI) {
966 HasExtractBitsInsn =
false;
970 StackPointerRegisterToSaveRestore = 0;
977 MaxBytesForAlignment = 0;
978 MaxAtomicSizeInBitsSupported = 0;
982 MaxDivRemBitWidthSupported = 128;
986 MinCmpXchgSizeInBits = 0;
987 SupportsUnalignedAtomics =
false;
998 memset(OpActions, 0,
sizeof(OpActions));
999 memset(LoadExtActions, 0,
sizeof(LoadExtActions));
1000 memset(TruncStoreActions, 0,
sizeof(TruncStoreActions));
1001 memset(IndexedModeActions, 0,
sizeof(IndexedModeActions));
1002 memset(CondCodeActions, 0,
sizeof(CondCodeActions));
1016 for (
MVT VT : {MVT::i2, MVT::i4})
1017 OpActions[(
unsigned)VT.SimpleTy][NT] =
Expand;
1020 for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1028 for (
MVT VT : {MVT::i2, MVT::i4}) {
1150#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1151 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1152#include "llvm/IR/ConstrainedOps.def"
1175#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
1176 setOperationAction(ISD::SDOPC, VT, Expand);
1177#include "llvm/IR/VPIntrinsics.def"
1206 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1211 {MVT::f16, MVT::f32, MVT::f64, MVT::f128},
Expand);
1215 {MVT::f32, MVT::f64, MVT::f128},
LibCall);
1232 for (
MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1259 "ShiftVT is still too small!");
1277 unsigned DestAS)
const {
1278 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1286 if (EC.isScalable())
1302 JumpIsExpensive = isExpensive;
1318 "Promote may not follow Expand or Promote");
1321 return LegalizeKind(LA,
EVT(SVT).getHalfNumVectorElementsVT(Context));
1334 assert(NVT != VT &&
"Unable to round integer VT");
1383 EVT OldEltVT = EltVT;
1400 if (NVT !=
MVT() && ValueTypeActions.getTypeAction(NVT) ==
TypeLegal)
1422 if (LargerVector ==
MVT())
1426 if (ValueTypeActions.getTypeAction(LargerVector) ==
TypeLegal)
1446 unsigned &NumIntermediates,
1453 unsigned NumVectorRegs = 1;
1459 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1465 NumVectorRegs = EC.getKnownMinValue();
1472 while (EC.getKnownMinValue() > 1 &&
1474 EC = EC.divideCoefficientBy(2);
1475 NumVectorRegs <<= 1;
1478 NumIntermediates = NumVectorRegs;
1483 IntermediateVT = NewVT;
1491 RegisterVT = DestVT;
1492 if (
EVT(DestVT).bitsLT(NewVT))
1497 return NumVectorRegs;
1504 for (
const auto *
I =
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
1540 for (
unsigned i = 0; i <
MI->getNumOperands(); ++i) {
1547 unsigned TiedTo = i;
1549 TiedTo =
MI->findTiedOperandIdx(i);
1566 assert(
MI->getOpcode() == TargetOpcode::STATEPOINT &&
"sanity");
1567 MIB.
addImm(StackMaps::IndirectMemRefOp);
1574 MIB.
addImm(StackMaps::DirectMemRefOp);
1579 assert(MIB->
mayLoad() &&
"Folded a stackmap use to a non-load!");
1586 if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
1595 MI->eraseFromParent();
1605std::pair<const TargetRegisterClass *, uint8_t>
1610 return std::make_pair(RC, 0);
1619 for (
unsigned i : SuperRegRC.
set_bits()) {
1622 if (
TRI->getSpillSize(*SuperRC) <=
TRI->getSpillSize(*BestRC))
1628 return std::make_pair(BestRC, 1);
1637 NumRegistersForVT[i] = 1;
1641 NumRegistersForVT[MVT::isVoid] = 0;
1644 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1645 for (; RegClassForVT[LargestIntReg] ==
nullptr; --LargestIntReg)
1646 assert(LargestIntReg != MVT::i1 &&
"No integer registers defined!");
1650 for (
unsigned ExpandedReg = LargestIntReg + 1;
1651 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1652 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1661 unsigned LegalIntReg = LargestIntReg;
1662 for (
unsigned IntReg = LargestIntReg - 1;
1663 IntReg >= (
unsigned)MVT::i1; --IntReg) {
1666 LegalIntReg = IntReg;
1668 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1677 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1678 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1679 TransformToType[MVT::ppcf128] = MVT::f64;
1682 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1683 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1684 TransformToType[MVT::ppcf128] = MVT::i128;
1692 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1693 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1694 TransformToType[MVT::f128] = MVT::i128;
1701 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1702 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1703 TransformToType[MVT::f80] = MVT::i32;
1710 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1711 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1712 TransformToType[MVT::f64] = MVT::i64;
1719 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1720 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1721 TransformToType[MVT::f32] = MVT::i32;
1733 if (!UseFPRegsForHalfType) {
1734 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1735 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1737 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1738 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1740 TransformToType[MVT::f16] = MVT::f32;
1741 if (SoftPromoteHalfType) {
1752 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1753 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1754 TransformToType[MVT::bf16] = MVT::f32;
1759 for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1760 i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1767 bool IsLegalWiderType =
false;
1770 switch (PreferredAction) {
1773 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1774 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1777 for (
unsigned nVT = i + 1;
1784 TransformToType[i] = SVT;
1785 RegisterTypeForVT[i] = SVT;
1786 NumRegistersForVT[i] = 1;
1788 IsLegalWiderType =
true;
1792 if (IsLegalWiderType)
1800 for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1805 EC.getKnownMinValue() &&
1807 TransformToType[i] = SVT;
1808 RegisterTypeForVT[i] = SVT;
1809 NumRegistersForVT[i] = 1;
1811 IsLegalWiderType =
true;
1815 if (IsLegalWiderType)
1821 TransformToType[i] = NVT;
1823 RegisterTypeForVT[i] = NVT;
1824 NumRegistersForVT[i] = 1;
1834 unsigned NumIntermediates;
1836 NumIntermediates, RegisterVT,
this);
1837 NumRegistersForVT[i] = NumRegisters;
1838 assert(NumRegistersForVT[i] == NumRegisters &&
1839 "NumRegistersForVT size cannot represent NumRegisters!");
1840 RegisterTypeForVT[i] = RegisterVT;
1845 TransformToType[i] = MVT::Other;
1850 else if (EC.getKnownMinValue() > 1)
1853 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1857 TransformToType[i] = NVT;
1876 RepRegClassForVT[i] = RRC;
1877 RepRegClassCostForVT[i] =
Cost;
1900 EVT VT,
EVT &IntermediateVT,
1901 unsigned &NumIntermediates,
1902 MVT &RegisterVT)
const {
1915 IntermediateVT = RegisterEVT;
1917 NumIntermediates = 1;
1925 unsigned NumVectorRegs = 1;
1940 "Don't know how to legalize this scalable vector type");
1946 IntermediateVT = PartVT;
1948 return NumIntermediates;
1963 NumVectorRegs <<= 1;
1966 NumIntermediates = NumVectorRegs;
1971 IntermediateVT = NewVT;
1974 RegisterVT = DestVT;
1976 if (
EVT(DestVT).bitsLT(NewVT)) {
1986 return NumVectorRegs;
1999 const bool OptForSize =
2006 return (OptForSize ||
Range <= MaxJumpTableSize) &&
2007 (NumCases * 100 >=
Range * MinDensity);
2011 EVT ConditionVT)
const {
2025 unsigned NumValues = Types.size();
2026 if (NumValues == 0)
return;
2028 for (
Type *Ty : Types) {
2032 if (attr.hasRetAttr(Attribute::SExt))
2034 else if (attr.hasRetAttr(Attribute::ZExt))
2047 if (attr.hasRetAttr(Attribute::InReg))
2051 if (attr.hasRetAttr(Attribute::SExt))
2053 else if (attr.hasRetAttr(Attribute::ZExt))
2056 for (
unsigned i = 0; i < NumParts; ++i)
2063 return DL.getABITypeAlign(Ty);
2075 if (VT.
isZeroSized() || Alignment >=
DL.getABITypeAlign(Ty)) {
2077 if (
Fast !=
nullptr)
2095 unsigned AddrSpace,
Align Alignment,
2097 unsigned *
Fast)
const {
2105 unsigned *
Fast)
const {
2113 unsigned *
Fast)
const {
2124 enum InstructionOpcodes {
2125#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2126#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2127#include "llvm/IR/Instruction.def"
2129 switch (
static_cast<InstructionOpcodes
>(Opcode)) {
2132 case Switch:
return 0;
2133 case IndirectBr:
return 0;
2134 case Invoke:
return 0;
2135 case CallBr:
return 0;
2136 case Resume:
return 0;
2137 case Unreachable:
return 0;
2138 case CleanupRet:
return 0;
2139 case CatchRet:
return 0;
2140 case CatchPad:
return 0;
2141 case CatchSwitch:
return 0;
2142 case CleanupPad:
return 0;
2162 case Alloca:
return 0;
2165 case GetElementPtr:
return 0;
2166 case Fence:
return 0;
2167 case AtomicCmpXchg:
return 0;
2168 case AtomicRMW:
return 0;
2186 case Call:
return 0;
2188 case UserOp1:
return 0;
2189 case UserOp2:
return 0;
2190 case VAArg:
return 0;
2196 case LandingPad:
return 0;
2205 case Intrinsic::exp:
2207 case Intrinsic::exp2:
2209 case Intrinsic::log:
2218 bool UseTLS)
const {
2222 const char *UnsafeStackPtrVar =
"__safestack_unsafe_stack_ptr";
2223 auto UnsafeStackPtr =
2227 PointerType *StackPtrTy =
DL.getAllocaPtrType(M->getContext());
2229 if (!UnsafeStackPtr) {
2238 UnsafeStackPtrVar,
nullptr,
TLSModel);
2243 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2245 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2247 (UseTLS ?
"" :
"not ") +
"be thread-local");
2249 return UnsafeStackPtr;
2256 if (!TM.getTargetTriple().isAndroid())
2262 const char *SafestackPointerAddressName =
2264 if (!SafestackPointerAddressName) {
2265 M->getContext().emitError(
2266 "no libcall available for safestack pointer address");
2273 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2329 RTLIB::LibcallImpl GuardLocalImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2330 if (GuardLocalImpl != RTLIB::impl___guard_local)
2346 RTLIB::LibcallImpl StackGuardImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2347 if (StackGuardImpl == RTLIB::Unsupported)
2351 M.getOrInsertGlobal(
2353 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2354 false, GlobalVariable::ExternalLinkage,
2355 nullptr, StackGuardVarName);
2358 if (M.getDirectAccessExternalData() &&
2359 !TM.getTargetTriple().isOSCygMing() &&
2360 !(TM.getTargetTriple().isPPC64() &&
2361 TM.getTargetTriple().isOSFreeBSD()) &&
2362 (!TM.getTargetTriple().isOSDarwin() ||
2363 TM.getRelocationModel() == Reloc::Static))
2364 GV->setDSOLocal(true);
2373 RTLIB::LibcallImpl GuardVarImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2374 if (GuardVarImpl == RTLIB::Unsupported)
2381 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2383 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2413 return MinimumBitTestCmps;
2417 MinimumBitTestCmps = Val;
2421 if (TM.Options.LoopAlignment)
2422 return Align(TM.Options.LoopAlignment);
2423 return PrefLoopAlignment;
2428 return MaxBytesForAlignment;
2439 return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
2447 std::string Name = VT.
isVector() ?
"vec-" :
"";
2449 Name += IsSqrt ?
"sqrt" :
"div";
2458 "Unexpected FP type for reciprocal estimate");
2470 const char RefStepToken =
':';
2471 Position = In.find(RefStepToken);
2475 StringRef RefStepString = In.substr(Position + 1);
2478 if (RefStepString.
size() == 1) {
2479 char RefStepChar = RefStepString[0];
2481 Value = RefStepChar -
'0';
2492 if (Override.
empty())
2496 Override.
split(OverrideVector,
',');
2497 unsigned NumArgs = OverrideVector.
size();
2507 Override = Override.
substr(0, RefPos);
2511 if (Override ==
"all")
2515 if (Override ==
"none")
2519 if (Override ==
"default")
2525 std::string VTNameNoSize = VTName;
2526 VTNameNoSize.pop_back();
2527 static const char DisabledPrefix =
'!';
2529 for (
StringRef RecipType : OverrideVector) {
2533 RecipType = RecipType.substr(0, RefPos);
2536 bool IsDisabled = RecipType[0] == DisabledPrefix;
2538 RecipType = RecipType.substr(1);
2540 if (RecipType == VTName || RecipType == VTNameNoSize)
2552 if (Override.
empty())
2556 Override.
split(OverrideVector,
',');
2557 unsigned NumArgs = OverrideVector.
size();
2569 Override = Override.
substr(0, RefPos);
2570 assert(Override !=
"none" &&
2571 "Disabled reciprocals, but specifed refinement steps?");
2574 if (Override ==
"all" || Override ==
"default")
2580 std::string VTNameNoSize = VTName;
2581 VTNameNoSize.pop_back();
2583 for (
StringRef RecipType : OverrideVector) {
2589 RecipType = RecipType.substr(0, RefPos);
2590 if (RecipType == VTName || RecipType == VTNameNoSize)
2659 if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
2676 if (
SI.isVolatile())
2679 if (
SI.hasMetadata(LLVMContext::MD_nontemporal))
2693 if (RMW->isVolatile())
2696 if (CmpX->isVolatile())
2714 "for it, but support must be explicitly enabled");
2715 case Intrinsic::vp_load:
2716 case Intrinsic::vp_gather:
2717 case Intrinsic::experimental_vp_strided_load:
2720 case Intrinsic::vp_store:
2721 case Intrinsic::vp_scatter:
2722 case Intrinsic::experimental_vp_strided_store:
2727 if (VPIntrin.
hasMetadata(LLVMContext::MD_nontemporal))
2738 return Builder.CreateFence(Ord);
2747 return Builder.CreateFence(Ord);
2758 auto &MF = *
MI.getMF();
2759 auto &
MRI = MF.getRegInfo();
2766 auto maxUses = [](
unsigned RematCost) {
2769 return std::numeric_limits<unsigned>::max();
2779 switch (
MI.getOpcode()) {
2784 case TargetOpcode::G_CONSTANT:
2785 case TargetOpcode::G_FCONSTANT:
2786 case TargetOpcode::G_FRAME_INDEX:
2787 case TargetOpcode::G_INTTOPTR:
2789 case TargetOpcode::G_GLOBAL_VALUE: {
2790 unsigned RematCost =
TTI->getGISelRematGlobalCost();
2792 unsigned MaxUses = maxUses(RematCost);
2793 if (MaxUses == UINT_MAX)
2795 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file defines the SmallVector class.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
static constexpr size_t npos
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual ~TargetLoweringBase()
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ RESET_FPENV
Set floating-point environment to default state.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ CLMUL
Carry-less multiplication operations.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ CTLS
Count leading redundant sign bits.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUREM(EVT VT)
LLVM_ABI Libcall getSHL(EVT VT)
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getREM(EVT VT)
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSDIV(EVT VT)
LLVM_ABI Libcall getSRL(EVT VT)
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSRA(EVT VT)
LLVM_ABI Libcall getUDIV(EVT VT)
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLLROUND(EVT VT)
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLROUND(EVT VT)
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLRINT(EVT RetVT)
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getLLRINT(EVT RetVT)
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSREM(EVT VT)
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getMUL(EVT VT)
LLVM_ABI Libcall getCTPOP(EVT VT)
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMULO(EVT VT)
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...