LLVM 22.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/Loads.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/CallingConv.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <cstring>
62#include <string>
63#include <tuple>
64#include <utility>
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81/// Minimum jump table density for normal functions.
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87/// Minimum jump table density for -Os or -Oz functions.
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
94 "min-bit-test-cmps", cl::init(2), cl::Hidden,
95 cl::desc("Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
97
98// FIXME: This option is only to test if the strict fp operation processed
99// correctly by preventing mutating strict fp operation to normal fp operation
100// during development. When the backend supports strict float operation, this
101// option will be meaningless.
102static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
103 cl::desc("Don't mutate strict-float node to a legalize node"),
104 cl::init(false), cl::Hidden);
105
106/// GetFPLibCall - Helper to return the right libcall for the given floating
107/// point type, or UNKNOWN_LIBCALL if there is none.
108RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
109 RTLIB::Libcall Call_F32,
110 RTLIB::Libcall Call_F64,
111 RTLIB::Libcall Call_F80,
112 RTLIB::Libcall Call_F128,
113 RTLIB::Libcall Call_PPCF128) {
114 return
115 VT == MVT::f32 ? Call_F32 :
116 VT == MVT::f64 ? Call_F64 :
117 VT == MVT::f80 ? Call_F80 :
118 VT == MVT::f128 ? Call_F128 :
119 VT == MVT::ppcf128 ? Call_PPCF128 :
120 RTLIB::UNKNOWN_LIBCALL;
121}
122
123/// getFPEXT - Return the FPEXT_*_* value for the given types, or
124/// UNKNOWN_LIBCALL if there is none.
125RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
126 if (OpVT == MVT::f16) {
127 if (RetVT == MVT::f32)
128 return FPEXT_F16_F32;
129 if (RetVT == MVT::f64)
130 return FPEXT_F16_F64;
131 if (RetVT == MVT::f80)
132 return FPEXT_F16_F80;
133 if (RetVT == MVT::f128)
134 return FPEXT_F16_F128;
135 } else if (OpVT == MVT::f32) {
136 if (RetVT == MVT::f64)
137 return FPEXT_F32_F64;
138 if (RetVT == MVT::f128)
139 return FPEXT_F32_F128;
140 if (RetVT == MVT::ppcf128)
141 return FPEXT_F32_PPCF128;
142 } else if (OpVT == MVT::f64) {
143 if (RetVT == MVT::f128)
144 return FPEXT_F64_F128;
145 else if (RetVT == MVT::ppcf128)
146 return FPEXT_F64_PPCF128;
147 } else if (OpVT == MVT::f80) {
148 if (RetVT == MVT::f128)
149 return FPEXT_F80_F128;
150 } else if (OpVT == MVT::bf16) {
151 if (RetVT == MVT::f32)
152 return FPEXT_BF16_F32;
153 }
154
155 return UNKNOWN_LIBCALL;
156}
157
158/// getFPROUND - Return the FPROUND_*_* value for the given types, or
159/// UNKNOWN_LIBCALL if there is none.
160RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
161 if (RetVT == MVT::f16) {
162 if (OpVT == MVT::f32)
163 return FPROUND_F32_F16;
164 if (OpVT == MVT::f64)
165 return FPROUND_F64_F16;
166 if (OpVT == MVT::f80)
167 return FPROUND_F80_F16;
168 if (OpVT == MVT::f128)
169 return FPROUND_F128_F16;
170 if (OpVT == MVT::ppcf128)
171 return FPROUND_PPCF128_F16;
172 } else if (RetVT == MVT::bf16) {
173 if (OpVT == MVT::f32)
174 return FPROUND_F32_BF16;
175 if (OpVT == MVT::f64)
176 return FPROUND_F64_BF16;
177 if (OpVT == MVT::f80)
178 return FPROUND_F80_BF16;
179 if (OpVT == MVT::f128)
180 return FPROUND_F128_BF16;
181 } else if (RetVT == MVT::f32) {
182 if (OpVT == MVT::f64)
183 return FPROUND_F64_F32;
184 if (OpVT == MVT::f80)
185 return FPROUND_F80_F32;
186 if (OpVT == MVT::f128)
187 return FPROUND_F128_F32;
188 if (OpVT == MVT::ppcf128)
189 return FPROUND_PPCF128_F32;
190 } else if (RetVT == MVT::f64) {
191 if (OpVT == MVT::f80)
192 return FPROUND_F80_F64;
193 if (OpVT == MVT::f128)
194 return FPROUND_F128_F64;
195 if (OpVT == MVT::ppcf128)
196 return FPROUND_PPCF128_F64;
197 } else if (RetVT == MVT::f80) {
198 if (OpVT == MVT::f128)
199 return FPROUND_F128_F80;
200 }
201
202 return UNKNOWN_LIBCALL;
203}
204
205/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
206/// UNKNOWN_LIBCALL if there is none.
207RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
208 if (OpVT == MVT::f16) {
209 if (RetVT == MVT::i32)
210 return FPTOSINT_F16_I32;
211 if (RetVT == MVT::i64)
212 return FPTOSINT_F16_I64;
213 if (RetVT == MVT::i128)
214 return FPTOSINT_F16_I128;
215 } else if (OpVT == MVT::f32) {
216 if (RetVT == MVT::i32)
217 return FPTOSINT_F32_I32;
218 if (RetVT == MVT::i64)
219 return FPTOSINT_F32_I64;
220 if (RetVT == MVT::i128)
221 return FPTOSINT_F32_I128;
222 } else if (OpVT == MVT::f64) {
223 if (RetVT == MVT::i32)
224 return FPTOSINT_F64_I32;
225 if (RetVT == MVT::i64)
226 return FPTOSINT_F64_I64;
227 if (RetVT == MVT::i128)
228 return FPTOSINT_F64_I128;
229 } else if (OpVT == MVT::f80) {
230 if (RetVT == MVT::i32)
231 return FPTOSINT_F80_I32;
232 if (RetVT == MVT::i64)
233 return FPTOSINT_F80_I64;
234 if (RetVT == MVT::i128)
235 return FPTOSINT_F80_I128;
236 } else if (OpVT == MVT::f128) {
237 if (RetVT == MVT::i32)
238 return FPTOSINT_F128_I32;
239 if (RetVT == MVT::i64)
240 return FPTOSINT_F128_I64;
241 if (RetVT == MVT::i128)
242 return FPTOSINT_F128_I128;
243 } else if (OpVT == MVT::ppcf128) {
244 if (RetVT == MVT::i32)
245 return FPTOSINT_PPCF128_I32;
246 if (RetVT == MVT::i64)
247 return FPTOSINT_PPCF128_I64;
248 if (RetVT == MVT::i128)
249 return FPTOSINT_PPCF128_I128;
250 }
251 return UNKNOWN_LIBCALL;
252}
253
254/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
255/// UNKNOWN_LIBCALL if there is none.
256RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
257 if (OpVT == MVT::f16) {
258 if (RetVT == MVT::i32)
259 return FPTOUINT_F16_I32;
260 if (RetVT == MVT::i64)
261 return FPTOUINT_F16_I64;
262 if (RetVT == MVT::i128)
263 return FPTOUINT_F16_I128;
264 } else if (OpVT == MVT::f32) {
265 if (RetVT == MVT::i32)
266 return FPTOUINT_F32_I32;
267 if (RetVT == MVT::i64)
268 return FPTOUINT_F32_I64;
269 if (RetVT == MVT::i128)
270 return FPTOUINT_F32_I128;
271 } else if (OpVT == MVT::f64) {
272 if (RetVT == MVT::i32)
273 return FPTOUINT_F64_I32;
274 if (RetVT == MVT::i64)
275 return FPTOUINT_F64_I64;
276 if (RetVT == MVT::i128)
277 return FPTOUINT_F64_I128;
278 } else if (OpVT == MVT::f80) {
279 if (RetVT == MVT::i32)
280 return FPTOUINT_F80_I32;
281 if (RetVT == MVT::i64)
282 return FPTOUINT_F80_I64;
283 if (RetVT == MVT::i128)
284 return FPTOUINT_F80_I128;
285 } else if (OpVT == MVT::f128) {
286 if (RetVT == MVT::i32)
287 return FPTOUINT_F128_I32;
288 if (RetVT == MVT::i64)
289 return FPTOUINT_F128_I64;
290 if (RetVT == MVT::i128)
291 return FPTOUINT_F128_I128;
292 } else if (OpVT == MVT::ppcf128) {
293 if (RetVT == MVT::i32)
294 return FPTOUINT_PPCF128_I32;
295 if (RetVT == MVT::i64)
296 return FPTOUINT_PPCF128_I64;
297 if (RetVT == MVT::i128)
298 return FPTOUINT_PPCF128_I128;
299 }
300 return UNKNOWN_LIBCALL;
301}
302
303/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
304/// UNKNOWN_LIBCALL if there is none.
305RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
306 if (OpVT == MVT::i32) {
307 if (RetVT == MVT::f16)
308 return SINTTOFP_I32_F16;
309 if (RetVT == MVT::f32)
310 return SINTTOFP_I32_F32;
311 if (RetVT == MVT::f64)
312 return SINTTOFP_I32_F64;
313 if (RetVT == MVT::f80)
314 return SINTTOFP_I32_F80;
315 if (RetVT == MVT::f128)
316 return SINTTOFP_I32_F128;
317 if (RetVT == MVT::ppcf128)
318 return SINTTOFP_I32_PPCF128;
319 } else if (OpVT == MVT::i64) {
320 if (RetVT == MVT::bf16)
321 return SINTTOFP_I64_BF16;
322 if (RetVT == MVT::f16)
323 return SINTTOFP_I64_F16;
324 if (RetVT == MVT::f32)
325 return SINTTOFP_I64_F32;
326 if (RetVT == MVT::f64)
327 return SINTTOFP_I64_F64;
328 if (RetVT == MVT::f80)
329 return SINTTOFP_I64_F80;
330 if (RetVT == MVT::f128)
331 return SINTTOFP_I64_F128;
332 if (RetVT == MVT::ppcf128)
333 return SINTTOFP_I64_PPCF128;
334 } else if (OpVT == MVT::i128) {
335 if (RetVT == MVT::f16)
336 return SINTTOFP_I128_F16;
337 if (RetVT == MVT::f32)
338 return SINTTOFP_I128_F32;
339 if (RetVT == MVT::f64)
340 return SINTTOFP_I128_F64;
341 if (RetVT == MVT::f80)
342 return SINTTOFP_I128_F80;
343 if (RetVT == MVT::f128)
344 return SINTTOFP_I128_F128;
345 if (RetVT == MVT::ppcf128)
346 return SINTTOFP_I128_PPCF128;
347 }
348 return UNKNOWN_LIBCALL;
349}
350
351/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
352/// UNKNOWN_LIBCALL if there is none.
353RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
354 if (OpVT == MVT::i32) {
355 if (RetVT == MVT::f16)
356 return UINTTOFP_I32_F16;
357 if (RetVT == MVT::f32)
358 return UINTTOFP_I32_F32;
359 if (RetVT == MVT::f64)
360 return UINTTOFP_I32_F64;
361 if (RetVT == MVT::f80)
362 return UINTTOFP_I32_F80;
363 if (RetVT == MVT::f128)
364 return UINTTOFP_I32_F128;
365 if (RetVT == MVT::ppcf128)
366 return UINTTOFP_I32_PPCF128;
367 } else if (OpVT == MVT::i64) {
368 if (RetVT == MVT::bf16)
369 return UINTTOFP_I64_BF16;
370 if (RetVT == MVT::f16)
371 return UINTTOFP_I64_F16;
372 if (RetVT == MVT::f32)
373 return UINTTOFP_I64_F32;
374 if (RetVT == MVT::f64)
375 return UINTTOFP_I64_F64;
376 if (RetVT == MVT::f80)
377 return UINTTOFP_I64_F80;
378 if (RetVT == MVT::f128)
379 return UINTTOFP_I64_F128;
380 if (RetVT == MVT::ppcf128)
381 return UINTTOFP_I64_PPCF128;
382 } else if (OpVT == MVT::i128) {
383 if (RetVT == MVT::f16)
384 return UINTTOFP_I128_F16;
385 if (RetVT == MVT::f32)
386 return UINTTOFP_I128_F32;
387 if (RetVT == MVT::f64)
388 return UINTTOFP_I128_F64;
389 if (RetVT == MVT::f80)
390 return UINTTOFP_I128_F80;
391 if (RetVT == MVT::f128)
392 return UINTTOFP_I128_F128;
393 if (RetVT == MVT::ppcf128)
394 return UINTTOFP_I128_PPCF128;
395 }
396 return UNKNOWN_LIBCALL;
397}
398
399RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
400 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
401 POWI_PPCF128);
402}
403
404RTLIB::Libcall RTLIB::getPOW(EVT RetVT) {
405 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
406}
407
408RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
409 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
410 LDEXP_PPCF128);
411}
412
413RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
414 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
415 FREXP_PPCF128);
416}
417
418RTLIB::Libcall RTLIB::getSIN(EVT RetVT) {
419 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
420}
421
422RTLIB::Libcall RTLIB::getCOS(EVT RetVT) {
423 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
424}
425
426RTLIB::Libcall RTLIB::getSINCOS(EVT RetVT) {
427 // TODO: Tablegen should generate this function
428 if (RetVT.isVector()) {
429 if (!RetVT.isSimple())
430 return RTLIB::UNKNOWN_LIBCALL;
431 switch (RetVT.getSimpleVT().SimpleTy) {
432 case MVT::v4f32:
433 return RTLIB::SINCOS_V4F32;
434 case MVT::v2f64:
435 return RTLIB::SINCOS_V2F64;
436 case MVT::nxv4f32:
437 return RTLIB::SINCOS_NXV4F32;
438 case MVT::nxv2f64:
439 return RTLIB::SINCOS_NXV2F64;
440 default:
441 return RTLIB::UNKNOWN_LIBCALL;
442 }
443 }
444
445 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
446 SINCOS_PPCF128);
447}
448
449RTLIB::Libcall RTLIB::getSINCOSPI(EVT RetVT) {
450 // TODO: Tablegen should generate this function
451 if (RetVT.isVector()) {
452 if (!RetVT.isSimple())
453 return RTLIB::UNKNOWN_LIBCALL;
454 switch (RetVT.getSimpleVT().SimpleTy) {
455 case MVT::v4f32:
456 return RTLIB::SINCOSPI_V4F32;
457 case MVT::v2f64:
458 return RTLIB::SINCOSPI_V2F64;
459 case MVT::nxv4f32:
460 return RTLIB::SINCOSPI_NXV4F32;
461 case MVT::nxv2f64:
462 return RTLIB::SINCOSPI_NXV2F64;
463 default:
464 return RTLIB::UNKNOWN_LIBCALL;
465 }
466 }
467
468 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
469 SINCOSPI_F128, SINCOSPI_PPCF128);
470}
471
472RTLIB::Libcall RTLIB::getSINCOS_STRET(EVT RetVT) {
473 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
474 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
475}
476
477RTLIB::Libcall RTLIB::getMODF(EVT RetVT) {
478 // TODO: Tablegen should generate this function
479 if (RetVT.isVector()) {
480 if (!RetVT.isSimple())
481 return RTLIB::UNKNOWN_LIBCALL;
482 switch (RetVT.getSimpleVT().SimpleTy) {
483 case MVT::v4f32:
484 return RTLIB::MODF_V4F32;
485 case MVT::v2f64:
486 return RTLIB::MODF_V2F64;
487 case MVT::nxv4f32:
488 return RTLIB::MODF_NXV4F32;
489 case MVT::nxv2f64:
490 return RTLIB::MODF_NXV2F64;
491 default:
492 return RTLIB::UNKNOWN_LIBCALL;
493 }
494 }
495
496 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
497 MODF_PPCF128);
498}
499
500RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
501 AtomicOrdering Order,
502 uint64_t MemSize) {
503 unsigned ModeN, ModelN;
504 switch (MemSize) {
505 case 1:
506 ModeN = 0;
507 break;
508 case 2:
509 ModeN = 1;
510 break;
511 case 4:
512 ModeN = 2;
513 break;
514 case 8:
515 ModeN = 3;
516 break;
517 case 16:
518 ModeN = 4;
519 break;
520 default:
521 return RTLIB::UNKNOWN_LIBCALL;
522 }
523
524 switch (Order) {
526 ModelN = 0;
527 break;
529 ModelN = 1;
530 break;
532 ModelN = 2;
533 break;
536 ModelN = 3;
537 break;
538 default:
539 return UNKNOWN_LIBCALL;
540 }
541
542 return LC[ModeN][ModelN];
543}
544
545RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
546 MVT VT) {
547 if (!VT.isScalarInteger())
548 return UNKNOWN_LIBCALL;
549 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
550
551#define LCALLS(A, B) \
552 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
553#define LCALL5(A) \
554 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
555 switch (Opc) {
556 case ISD::ATOMIC_CMP_SWAP: {
557 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
558 return getOutlineAtomicHelper(LC, Order, MemSize);
559 }
560 case ISD::ATOMIC_SWAP: {
561 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
562 return getOutlineAtomicHelper(LC, Order, MemSize);
563 }
564 case ISD::ATOMIC_LOAD_ADD: {
565 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
566 return getOutlineAtomicHelper(LC, Order, MemSize);
567 }
568 case ISD::ATOMIC_LOAD_OR: {
569 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
570 return getOutlineAtomicHelper(LC, Order, MemSize);
571 }
572 case ISD::ATOMIC_LOAD_CLR: {
573 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
574 return getOutlineAtomicHelper(LC, Order, MemSize);
575 }
576 case ISD::ATOMIC_LOAD_XOR: {
577 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
578 return getOutlineAtomicHelper(LC, Order, MemSize);
579 }
580 default:
581 return UNKNOWN_LIBCALL;
582 }
583#undef LCALLS
584#undef LCALL5
585}
586
587RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
588#define OP_TO_LIBCALL(Name, Enum) \
589 case Name: \
590 switch (VT.SimpleTy) { \
591 default: \
592 return UNKNOWN_LIBCALL; \
593 case MVT::i8: \
594 return Enum##_1; \
595 case MVT::i16: \
596 return Enum##_2; \
597 case MVT::i32: \
598 return Enum##_4; \
599 case MVT::i64: \
600 return Enum##_8; \
601 case MVT::i128: \
602 return Enum##_16; \
603 }
604
605 switch (Opc) {
606 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
607 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
608 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
609 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
610 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
611 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
612 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
613 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
614 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
615 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
616 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
617 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
618 }
619
620#undef OP_TO_LIBCALL
621
622 return UNKNOWN_LIBCALL;
623}
624
626 switch (ElementSize) {
627 case 1:
628 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
629 case 2:
630 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
631 case 4:
632 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
633 case 8:
634 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
635 case 16:
636 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
637 default:
638 return UNKNOWN_LIBCALL;
639 }
640}
641
643 switch (ElementSize) {
644 case 1:
645 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
646 case 2:
647 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
648 case 4:
649 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
650 case 8:
651 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
652 case 16:
653 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
654 default:
655 return UNKNOWN_LIBCALL;
656 }
657}
658
660 switch (ElementSize) {
661 case 1:
662 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
663 case 2:
664 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
665 case 4:
666 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
667 case 8:
668 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
669 case 16:
670 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
671 default:
672 return UNKNOWN_LIBCALL;
673 }
674}
675
677 RTLIB::LibcallImpl Impl) const {
678 switch (Impl) {
679 case RTLIB::impl___aeabi_dcmpeq__une:
680 case RTLIB::impl___aeabi_fcmpeq__une:
681 // Usage in the eq case, so we have to invert the comparison.
682 return ISD::SETEQ;
683 case RTLIB::impl___aeabi_dcmpeq__oeq:
684 case RTLIB::impl___aeabi_fcmpeq__oeq:
685 // Normal comparison to boolean value.
686 return ISD::SETNE;
687 case RTLIB::impl___aeabi_dcmplt:
688 case RTLIB::impl___aeabi_dcmple:
689 case RTLIB::impl___aeabi_dcmpge:
690 case RTLIB::impl___aeabi_dcmpgt:
691 case RTLIB::impl___aeabi_dcmpun:
692 case RTLIB::impl___aeabi_fcmplt:
693 case RTLIB::impl___aeabi_fcmple:
694 case RTLIB::impl___aeabi_fcmpge:
695 case RTLIB::impl___aeabi_fcmpgt:
696 /// The AEABI versions return a typical boolean value, so we can compare
697 /// against the integer result as simply != 0.
698 return ISD::SETNE;
699 default:
700 break;
701 }
702
703 // Assume libgcc/compiler-rt behavior. Most of the cases are really aliases of
704 // each other, and return a 3-way comparison style result of -1, 0, or 1
705 // depending on lt/eq/gt.
706 //
707 // FIXME: It would be cleaner to directly express this as a 3-way comparison
708 // soft FP libcall instead of individual compares.
709 RTLIB::Libcall LC = RTLIB::RuntimeLibcallsInfo::getLibcallFromImpl(Impl);
710 switch (LC) {
711 case RTLIB::OEQ_F32:
712 case RTLIB::OEQ_F64:
713 case RTLIB::OEQ_F128:
714 case RTLIB::OEQ_PPCF128:
715 return ISD::SETEQ;
716 case RTLIB::UNE_F32:
717 case RTLIB::UNE_F64:
718 case RTLIB::UNE_F128:
719 case RTLIB::UNE_PPCF128:
720 return ISD::SETNE;
721 case RTLIB::OGE_F32:
722 case RTLIB::OGE_F64:
723 case RTLIB::OGE_F128:
724 case RTLIB::OGE_PPCF128:
725 return ISD::SETGE;
726 case RTLIB::OLT_F32:
727 case RTLIB::OLT_F64:
728 case RTLIB::OLT_F128:
729 case RTLIB::OLT_PPCF128:
730 return ISD::SETLT;
731 case RTLIB::OLE_F32:
732 case RTLIB::OLE_F64:
733 case RTLIB::OLE_F128:
734 case RTLIB::OLE_PPCF128:
735 return ISD::SETLE;
736 case RTLIB::OGT_F32:
737 case RTLIB::OGT_F64:
738 case RTLIB::OGT_F128:
739 case RTLIB::OGT_PPCF128:
740 return ISD::SETGT;
741 case RTLIB::UO_F32:
742 case RTLIB::UO_F64:
743 case RTLIB::UO_F128:
744 case RTLIB::UO_PPCF128:
745 return ISD::SETNE;
746 default:
747 llvm_unreachable("not a compare libcall");
748 }
749}
750
751/// NOTE: The TargetMachine owns TLOF.
753 : TM(tm),
754 RuntimeLibcallInfo(TM.getTargetTriple(), TM.Options.ExceptionModel,
755 TM.Options.FloatABIType, TM.Options.EABIVersion,
756 TM.Options.MCOptions.getABIName(), TM.Options.VecLib),
757 Libcalls(RuntimeLibcallInfo) {
758 initActions();
759
760 // Perform these initializations only once.
766 HasExtractBitsInsn = false;
767 JumpIsExpensive = JumpIsExpensiveOverride;
769 EnableExtLdPromotion = false;
770 StackPointerRegisterToSaveRestore = 0;
771 BooleanContents = UndefinedBooleanContent;
772 BooleanFloatContents = UndefinedBooleanContent;
773 BooleanVectorContents = UndefinedBooleanContent;
774 SchedPreferenceInfo = Sched::ILP;
777 MaxBytesForAlignment = 0;
778 MaxAtomicSizeInBitsSupported = 0;
779
780 // Assume that even with libcalls, no target supports wider than 128 bit
781 // division.
782 MaxDivRemBitWidthSupported = 128;
783
784 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
785
786 MinCmpXchgSizeInBits = 0;
787 SupportsUnalignedAtomics = false;
788
789 MinimumBitTestCmps = MinimumBitTestCmpsOverride;
790}
791
792// Define the virtual destructor out-of-line to act as a key method to anchor
793// debug info (see coding standards).
795
797 // All operations default to being supported.
798 memset(OpActions, 0, sizeof(OpActions));
799 memset(LoadExtActions, 0, sizeof(LoadExtActions));
800 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
801 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
802 memset(CondCodeActions, 0, sizeof(CondCodeActions));
803 llvm::fill(RegClassForVT, nullptr);
804 llvm::fill(TargetDAGCombineArray, 0);
805
806 // Let extending atomic loads be unsupported by default.
807 for (MVT ValVT : MVT::all_valuetypes())
808 for (MVT MemVT : MVT::all_valuetypes())
810 Expand);
811
812 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
813 // remove this and targets should individually set these types if not legal.
816 for (MVT VT : {MVT::i2, MVT::i4})
817 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
818 }
819 for (MVT AVT : MVT::all_valuetypes()) {
820 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
821 setTruncStoreAction(AVT, VT, Expand);
824 }
825 }
826 for (unsigned IM = (unsigned)ISD::PRE_INC;
827 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
828 for (MVT VT : {MVT::i2, MVT::i4}) {
833 }
834 }
835
836 for (MVT VT : MVT::fp_valuetypes()) {
837 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
838 if (IntVT.isValid()) {
839 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
840 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
841 }
842 }
843
844 // Set default actions for various operations.
845 for (MVT VT : MVT::all_valuetypes()) {
846 // Default all indexed load / store to expand.
847 for (unsigned IM = (unsigned)ISD::PRE_INC;
848 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
853 }
854
855 // Most backends expect to see the node which just returns the value loaded.
856 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
857
858 // These operations default to expand.
860 ISD::FMINNUM, ISD::FMAXNUM,
861 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
862 ISD::FMINIMUM, ISD::FMAXIMUM,
863 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
876 ISD::IS_FPCLASS, ISD::FCBRT,
877 ISD::FLOG, ISD::FLOG2,
878 ISD::FLOG10, ISD::FEXP,
879 ISD::FEXP2, ISD::FEXP10,
880 ISD::FFLOOR, ISD::FNEARBYINT,
881 ISD::FCEIL, ISD::FRINT,
882 ISD::FTRUNC, ISD::FROUNDEVEN,
883 ISD::FTAN, ISD::FACOS,
884 ISD::FASIN, ISD::FATAN,
885 ISD::FCOSH, ISD::FSINH,
886 ISD::FTANH, ISD::FATAN2,
888 VT, Expand);
889
890 // Overflow operations default to expand
893 VT, Expand);
894
895 // Carry-using overflow operations default to expand.
898 VT, Expand);
899
900 // ADDC/ADDE/SUBC/SUBE default to expand.
902 Expand);
903
904 // [US]CMP default to expand
906
907 // Halving adds
910 Expand);
911
912 // Absolute difference
914
915 // Saturated trunc
919
920 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
922 Expand);
923
925
926 // These library functions default to expand.
927 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP,
928 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
929 VT, Expand);
930
931 // These operations default to expand for vector types.
932 if (VT.isVector())
937 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
938 VT, Expand);
939
940 // Constrained floating-point operations default to expand.
941#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
942 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
943#include "llvm/IR/ConstrainedOps.def"
944
945 // For most targets @llvm.get.dynamic.area.offset just returns 0.
946 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
947
948 // Vector reduction default to expand.
950 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
951 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
952 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
953 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
954 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
955 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
956 VT, Expand);
957
958 // Named vector shuffles default to expand.
960
961 // Only some target support this vector operation. Most need to expand it.
963
964 // VP operations default to expand.
965#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
966 setOperationAction(ISD::SDOPC, VT, Expand);
967#include "llvm/IR/VPIntrinsics.def"
968
969 // Masked vector extracts default to expand.
970 setOperationAction(ISD::VECTOR_FIND_LAST_ACTIVE, VT, Expand);
971
974
975 // FP environment operations default to expand.
976 setOperationAction(ISD::GET_FPENV, VT, Expand);
977 setOperationAction(ISD::SET_FPENV, VT, Expand);
978 setOperationAction(ISD::RESET_FPENV, VT, Expand);
979
980 setOperationAction(ISD::MSTORE, VT, Expand);
981 }
982
983 // Most targets ignore the @llvm.prefetch intrinsic.
984 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
985
986 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
987 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
988
989 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
990 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
991
992 // ConstantFP nodes default to expand. Targets can either change this to
993 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
994 // to optimize expansions for certain constants.
996 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
997 Expand);
998
999 // Insert custom handling default for llvm.canonicalize.*.
1001 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
1002
1003 // FIXME: Query RuntimeLibCalls to make the decision.
1004 setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
1005 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
1006
1007 setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
1008 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
1009 MVT::f16, Promote);
1010 // Default ISD::TRAP to expand (which turns it into abort).
1011 setOperationAction(ISD::TRAP, MVT::Other, Expand);
1012
1013 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
1014 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
1015 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
1016
1017 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
1018
1019 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
1020 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
1021
1022 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1023 setOperationAction(ISD::GET_FPMODE, VT, Expand);
1024 setOperationAction(ISD::SET_FPMODE, VT, Expand);
1025 }
1026 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
1027
1028 // This one by default will call __clear_cache unless the target
1029 // wants something different.
1031}
1032
1034 EVT) const {
1035 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1036}
1037
1039 const DataLayout &DL) const {
1040 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1041 if (LHSTy.isVector())
1042 return LHSTy;
1043 MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
1044 // If any possible shift value won't fit in the prefered type, just use
1045 // something safe. Assume it will be legalized when the shift is expanded.
1046 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1047 ShiftVT = MVT::i32;
1048 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1049 "ShiftVT is still too small!");
1050 return ShiftVT;
1051}
1052
1053bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1054 assert(isTypeLegal(VT));
1055 switch (Op) {
1056 default:
1057 return false;
1058 case ISD::SDIV:
1059 case ISD::UDIV:
1060 case ISD::SREM:
1061 case ISD::UREM:
1062 return true;
1063 }
1064}
1065
1067 unsigned DestAS) const {
1068 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1069}
1070
1072 Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1073 const ConstantRange *VScaleRange) const {
1074 // Find the smallest "sensible" element type to use for the expansion.
1075 ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1076 if (EC.isScalable())
1077 CR = CR.umul_sat(*VScaleRange);
1078
1079 if (ZeroIsPoison)
1080 CR = CR.subtract(APInt(64, 1));
1081
1082 unsigned EltWidth = RetTy->getScalarSizeInBits();
1083 EltWidth = std::min(EltWidth, CR.getActiveBits());
1084 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1085
1086 return EltWidth;
1087}
1088
1090 // If the command-line option was specified, ignore this request.
1091 if (!JumpIsExpensiveOverride.getNumOccurrences())
1092 JumpIsExpensive = isExpensive;
1093}
1094
1097 // If this is a simple type, use the ComputeRegisterProp mechanism.
1098 if (VT.isSimple()) {
1099 MVT SVT = VT.getSimpleVT();
1100 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1101 MVT NVT = TransformToType[SVT.SimpleTy];
1102 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1103
1104 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1105 LA == TypeSoftPromoteHalf ||
1106 (NVT.isVector() ||
1107 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1108 "Promote may not follow Expand or Promote");
1109
1110 if (LA == TypeSplitVector)
1111 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1112 if (LA == TypeScalarizeVector)
1113 return LegalizeKind(LA, SVT.getVectorElementType());
1114 return LegalizeKind(LA, NVT);
1115 }
1116
1117 // Handle Extended Scalar Types.
1118 if (!VT.isVector()) {
1119 assert(VT.isInteger() && "Float types must be simple");
1120 unsigned BitSize = VT.getSizeInBits();
1121 // First promote to a power-of-two size, then expand if necessary.
1122 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1123 EVT NVT = VT.getRoundIntegerType(Context);
1124 assert(NVT != VT && "Unable to round integer VT");
1125 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1126 // Avoid multi-step promotion.
1127 if (NextStep.first == TypePromoteInteger)
1128 return NextStep;
1129 // Return rounded integer type.
1130 return LegalizeKind(TypePromoteInteger, NVT);
1131 }
1132
1134 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1135 }
1136
1137 // Handle vector types.
1138 ElementCount NumElts = VT.getVectorElementCount();
1139 EVT EltVT = VT.getVectorElementType();
1140
1141 // Vectors with only one element are always scalarized.
1142 if (NumElts.isScalar())
1143 return LegalizeKind(TypeScalarizeVector, EltVT);
1144
1145 // Try to widen vector elements until the element type is a power of two and
1146 // promote it to a legal type later on, for example:
1147 // <3 x i8> -> <4 x i8> -> <4 x i32>
1148 if (EltVT.isInteger()) {
1149 // Vectors with a number of elements that is not a power of two are always
1150 // widened, for example <3 x i8> -> <4 x i8>.
1151 if (!VT.isPow2VectorType()) {
1152 NumElts = NumElts.coefficientNextPowerOf2();
1153 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1154 return LegalizeKind(TypeWidenVector, NVT);
1155 }
1156
1157 // Examine the element type.
1158 LegalizeKind LK = getTypeConversion(Context, EltVT);
1159
1160 // If type is to be expanded, split the vector.
1161 // <4 x i140> -> <2 x i140>
1162 if (LK.first == TypeExpandInteger) {
1163 if (NumElts.isScalable() && NumElts.getKnownMinValue() == 1)
1166 VT.getHalfNumVectorElementsVT(Context));
1167 }
1168
1169 // Promote the integer element types until a legal vector type is found
1170 // or until the element integer type is too big. If a legal type was not
1171 // found, fallback to the usual mechanism of widening/splitting the
1172 // vector.
1173 EVT OldEltVT = EltVT;
1174 while (true) {
1175 // Increase the bitwidth of the element to the next pow-of-two
1176 // (which is greater than 8 bits).
1177 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1178 .getRoundIntegerType(Context);
1179
1180 // Stop trying when getting a non-simple element type.
1181 // Note that vector elements may be greater than legal vector element
1182 // types. Example: X86 XMM registers hold 64bit element on 32bit
1183 // systems.
1184 if (!EltVT.isSimple())
1185 break;
1186
1187 // Build a new vector type and check if it is legal.
1188 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1189 // Found a legal promoted vector type.
1190 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1192 EVT::getVectorVT(Context, EltVT, NumElts));
1193 }
1194
1195 // Reset the type to the unexpanded type if we did not find a legal vector
1196 // type with a promoted vector element type.
1197 EltVT = OldEltVT;
1198 }
1199
1200 // Try to widen the vector until a legal type is found.
1201 // If there is no wider legal type, split the vector.
1202 while (true) {
1203 // Round up to the next power of 2.
1204 NumElts = NumElts.coefficientNextPowerOf2();
1205
1206 // If there is no simple vector type with this many elements then there
1207 // cannot be a larger legal vector type. Note that this assumes that
1208 // there are no skipped intermediate vector types in the simple types.
1209 if (!EltVT.isSimple())
1210 break;
1211 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1212 if (LargerVector == MVT())
1213 break;
1214
1215 // If this type is legal then widen the vector.
1216 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1217 return LegalizeKind(TypeWidenVector, LargerVector);
1218 }
1219
1220 // Widen odd vectors to next power of two.
1221 if (!VT.isPow2VectorType()) {
1222 EVT NVT = VT.getPow2VectorType(Context);
1223 return LegalizeKind(TypeWidenVector, NVT);
1224 }
1225
1228
1229 // Vectors with illegal element types are expanded.
1230 EVT NVT = EVT::getVectorVT(Context, EltVT,
1232 return LegalizeKind(TypeSplitVector, NVT);
1233}
1234
1235static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1236 unsigned &NumIntermediates,
1237 MVT &RegisterVT,
1238 TargetLoweringBase *TLI) {
1239 // Figure out the right, legal destination reg to copy into.
1241 MVT EltTy = VT.getVectorElementType();
1242
1243 unsigned NumVectorRegs = 1;
1244
1245 // Scalable vectors cannot be scalarized, so splitting or widening is
1246 // required.
1247 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1249 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1250
1251 // FIXME: We don't support non-power-of-2-sized vectors for now.
1252 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1253 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1254 // Split EC to unit size (scalable property is preserved).
1255 NumVectorRegs = EC.getKnownMinValue();
1256 EC = ElementCount::getFixed(1);
1257 }
1258
1259 // Divide the input until we get to a supported size. This will
1260 // always end up with an EC that represent a scalar or a scalable
1261 // scalar.
1262 while (EC.getKnownMinValue() > 1 &&
1263 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1264 EC = EC.divideCoefficientBy(2);
1265 NumVectorRegs <<= 1;
1266 }
1267
1268 NumIntermediates = NumVectorRegs;
1269
1270 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1271 if (!TLI->isTypeLegal(NewVT))
1272 NewVT = EltTy;
1273 IntermediateVT = NewVT;
1274
1275 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1276
1277 // Convert sizes such as i33 to i64.
1278 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1279
1280 MVT DestVT = TLI->getRegisterType(NewVT);
1281 RegisterVT = DestVT;
1282 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1283 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1284
1285 // Otherwise, promotion or legal types use the same number of registers as
1286 // the vector decimated to the appropriate level.
1287 return NumVectorRegs;
1288}
1289
1290/// isLegalRC - Return true if the value types that can be represented by the
1291/// specified register class are all legal.
1293 const TargetRegisterClass &RC) const {
1294 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1295 if (isTypeLegal(*I))
1296 return true;
1297 return false;
1298}
1299
1300/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1301/// sequence of memory operands that is recognized by PrologEpilogInserter.
1304 MachineBasicBlock *MBB) const {
1305 MachineInstr *MI = &InitialMI;
1306 MachineFunction &MF = *MI->getMF();
1307 MachineFrameInfo &MFI = MF.getFrameInfo();
1308
1309 // We're handling multiple types of operands here:
1310 // PATCHPOINT MetaArgs - live-in, read only, direct
1311 // STATEPOINT Deopt Spill - live-through, read only, indirect
1312 // STATEPOINT Deopt Alloca - live-through, read only, direct
1313 // (We're currently conservative and mark the deopt slots read/write in
1314 // practice.)
1315 // STATEPOINT GC Spill - live-through, read/write, indirect
1316 // STATEPOINT GC Alloca - live-through, read/write, direct
1317 // The live-in vs live-through is handled already (the live through ones are
1318 // all stack slots), but we need to handle the different type of stackmap
1319 // operands and memory effects here.
1320
1321 if (llvm::none_of(MI->operands(),
1322 [](MachineOperand &Operand) { return Operand.isFI(); }))
1323 return MBB;
1324
1325 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1326
1327 // Inherit previous memory operands.
1328 MIB.cloneMemRefs(*MI);
1329
1330 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1331 MachineOperand &MO = MI->getOperand(i);
1332 if (!MO.isFI()) {
1333 // Index of Def operand this Use it tied to.
1334 // Since Defs are coming before Uses, if Use is tied, then
1335 // index of Def must be smaller that index of that Use.
1336 // Also, Defs preserve their position in new MI.
1337 unsigned TiedTo = i;
1338 if (MO.isReg() && MO.isTied())
1339 TiedTo = MI->findTiedOperandIdx(i);
1340 MIB.add(MO);
1341 if (TiedTo < i)
1342 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1343 continue;
1344 }
1345
1346 // foldMemoryOperand builds a new MI after replacing a single FI operand
1347 // with the canonical set of five x86 addressing-mode operands.
1348 int FI = MO.getIndex();
1349
1350 // Add frame index operands recognized by stackmaps.cpp
1352 // indirect-mem-ref tag, size, #FI, offset.
1353 // Used for spills inserted by StatepointLowering. This codepath is not
1354 // used for patchpoints/stackmaps at all, for these spilling is done via
1355 // foldMemoryOperand callback only.
1356 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1357 MIB.addImm(StackMaps::IndirectMemRefOp);
1358 MIB.addImm(MFI.getObjectSize(FI));
1359 MIB.add(MO);
1360 MIB.addImm(0);
1361 } else {
1362 // direct-mem-ref tag, #FI, offset.
1363 // Used by patchpoint, and direct alloca arguments to statepoints
1364 MIB.addImm(StackMaps::DirectMemRefOp);
1365 MIB.add(MO);
1366 MIB.addImm(0);
1367 }
1368
1369 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1370
1371 // Add a new memory operand for this FI.
1372 assert(MFI.getObjectOffset(FI) != -1);
1373
1374 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1375 // PATCHPOINT should be updated to do the same. (TODO)
1376 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1377 auto Flags = MachineMemOperand::MOLoad;
1379 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1381 MIB->addMemOperand(MF, MMO);
1382 }
1383 }
1384 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1385 MI->eraseFromParent();
1386 return MBB;
1387}
1388
1389/// findRepresentativeClass - Return the largest legal super-reg register class
1390/// of the register class for the specified type and its associated "cost".
1391// This function is in TargetLowering because it uses RegClassForVT which would
1392// need to be moved to TargetRegisterInfo and would necessitate moving
1393// isTypeLegal over as well - a massive change that would just require
1394// TargetLowering having a TargetRegisterInfo class member that it would use.
1395std::pair<const TargetRegisterClass *, uint8_t>
1397 MVT VT) const {
1398 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1399 if (!RC)
1400 return std::make_pair(RC, 0);
1401
1402 // Compute the set of all super-register classes.
1403 BitVector SuperRegRC(TRI->getNumRegClasses());
1404 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1405 SuperRegRC.setBitsInMask(RCI.getMask());
1406
1407 // Find the first legal register class with the largest spill size.
1408 const TargetRegisterClass *BestRC = RC;
1409 for (unsigned i : SuperRegRC.set_bits()) {
1410 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1411 // We want the largest possible spill size.
1412 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1413 continue;
1414 if (!isLegalRC(*TRI, *SuperRC))
1415 continue;
1416 BestRC = SuperRC;
1417 }
1418 return std::make_pair(BestRC, 1);
1419}
1420
1421/// computeRegisterProperties - Once all of the register classes are added,
1422/// this allows us to compute derived properties we expose.
1424 const TargetRegisterInfo *TRI) {
1425 // Everything defaults to needing one register.
1426 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1427 NumRegistersForVT[i] = 1;
1428 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1429 }
1430 // ...except isVoid, which doesn't need any registers.
1431 NumRegistersForVT[MVT::isVoid] = 0;
1432
1433 // Find the largest integer register class.
1434 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1435 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1436 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1437
1438 // Every integer value type larger than this largest register takes twice as
1439 // many registers to represent as the previous ValueType.
1440 for (unsigned ExpandedReg = LargestIntReg + 1;
1441 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1442 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1443 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1444 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1445 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1447 }
1448
1449 // Inspect all of the ValueType's smaller than the largest integer
1450 // register to see which ones need promotion.
1451 unsigned LegalIntReg = LargestIntReg;
1452 for (unsigned IntReg = LargestIntReg - 1;
1453 IntReg >= (unsigned)MVT::i1; --IntReg) {
1454 MVT IVT = (MVT::SimpleValueType)IntReg;
1455 if (isTypeLegal(IVT)) {
1456 LegalIntReg = IntReg;
1457 } else {
1458 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1459 (MVT::SimpleValueType)LegalIntReg;
1460 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1461 }
1462 }
1463
1464 // ppcf128 type is really two f64's.
1465 if (!isTypeLegal(MVT::ppcf128)) {
1466 if (isTypeLegal(MVT::f64)) {
1467 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1468 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1469 TransformToType[MVT::ppcf128] = MVT::f64;
1470 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1471 } else {
1472 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1473 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1474 TransformToType[MVT::ppcf128] = MVT::i128;
1475 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1476 }
1477 }
1478
1479 // Decide how to handle f128. If the target does not have native f128 support,
1480 // expand it to i128 and we will be generating soft float library calls.
1481 if (!isTypeLegal(MVT::f128)) {
1482 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1483 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1484 TransformToType[MVT::f128] = MVT::i128;
1485 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1486 }
1487
1488 // Decide how to handle f80. If the target does not have native f80 support,
1489 // expand it to i96 and we will be generating soft float library calls.
1490 if (!isTypeLegal(MVT::f80)) {
1491 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1492 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1493 TransformToType[MVT::f80] = MVT::i32;
1494 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1495 }
1496
1497 // Decide how to handle f64. If the target does not have native f64 support,
1498 // expand it to i64 and we will be generating soft float library calls.
1499 if (!isTypeLegal(MVT::f64)) {
1500 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1501 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1502 TransformToType[MVT::f64] = MVT::i64;
1503 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1504 }
1505
1506 // Decide how to handle f32. If the target does not have native f32 support,
1507 // expand it to i32 and we will be generating soft float library calls.
1508 if (!isTypeLegal(MVT::f32)) {
1509 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1510 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1511 TransformToType[MVT::f32] = MVT::i32;
1512 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1513 }
1514
1515 // Decide how to handle f16. If the target does not have native f16 support,
1516 // promote it to f32, because there are no f16 library calls (except for
1517 // conversions).
1518 if (!isTypeLegal(MVT::f16)) {
1519 // Allow targets to control how we legalize half.
1520 bool SoftPromoteHalfType = softPromoteHalfType();
1521 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1522
1523 if (!UseFPRegsForHalfType) {
1524 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1525 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1526 } else {
1527 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1528 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1529 }
1530 TransformToType[MVT::f16] = MVT::f32;
1531 if (SoftPromoteHalfType) {
1532 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1533 } else {
1534 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1535 }
1536 }
1537
1538 // Decide how to handle bf16. If the target does not have native bf16 support,
1539 // promote it to f32, because there are no bf16 library calls (except for
1540 // converting from f32 to bf16).
1541 if (!isTypeLegal(MVT::bf16)) {
1542 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1543 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1544 TransformToType[MVT::bf16] = MVT::f32;
1545 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1546 }
1547
1548 // Loop over all of the vector value types to see which need transformations.
1549 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1550 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1551 MVT VT = (MVT::SimpleValueType) i;
1552 if (isTypeLegal(VT))
1553 continue;
1554
1555 MVT EltVT = VT.getVectorElementType();
1557 bool IsLegalWiderType = false;
1558 bool IsScalable = VT.isScalableVector();
1559 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1560 switch (PreferredAction) {
1561 case TypePromoteInteger: {
1562 MVT::SimpleValueType EndVT = IsScalable ?
1563 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1564 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1565 // Try to promote the elements of integer vectors. If no legal
1566 // promotion was found, fall through to the widen-vector method.
1567 for (unsigned nVT = i + 1;
1568 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1569 MVT SVT = (MVT::SimpleValueType) nVT;
1570 // Promote vectors of integers to vectors with the same number
1571 // of elements, with a wider element type.
1572 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1573 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1574 TransformToType[i] = SVT;
1575 RegisterTypeForVT[i] = SVT;
1576 NumRegistersForVT[i] = 1;
1577 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1578 IsLegalWiderType = true;
1579 break;
1580 }
1581 }
1582 if (IsLegalWiderType)
1583 break;
1584 [[fallthrough]];
1585 }
1586
1587 case TypeWidenVector:
1588 if (isPowerOf2_32(EC.getKnownMinValue())) {
1589 // Try to widen the vector.
1590 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1591 MVT SVT = (MVT::SimpleValueType) nVT;
1592 if (SVT.getVectorElementType() == EltVT &&
1593 SVT.isScalableVector() == IsScalable &&
1595 EC.getKnownMinValue() &&
1596 isTypeLegal(SVT)) {
1597 TransformToType[i] = SVT;
1598 RegisterTypeForVT[i] = SVT;
1599 NumRegistersForVT[i] = 1;
1600 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1601 IsLegalWiderType = true;
1602 break;
1603 }
1604 }
1605 if (IsLegalWiderType)
1606 break;
1607 } else {
1608 // Only widen to the next power of 2 to keep consistency with EVT.
1609 MVT NVT = VT.getPow2VectorType();
1610 if (isTypeLegal(NVT)) {
1611 TransformToType[i] = NVT;
1612 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1613 RegisterTypeForVT[i] = NVT;
1614 NumRegistersForVT[i] = 1;
1615 break;
1616 }
1617 }
1618 [[fallthrough]];
1619
1620 case TypeSplitVector:
1621 case TypeScalarizeVector: {
1622 MVT IntermediateVT;
1623 MVT RegisterVT;
1624 unsigned NumIntermediates;
1625 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1626 NumIntermediates, RegisterVT, this);
1627 NumRegistersForVT[i] = NumRegisters;
1628 assert(NumRegistersForVT[i] == NumRegisters &&
1629 "NumRegistersForVT size cannot represent NumRegisters!");
1630 RegisterTypeForVT[i] = RegisterVT;
1631
1632 MVT NVT = VT.getPow2VectorType();
1633 if (NVT == VT) {
1634 // Type is already a power of 2. The default action is to split.
1635 TransformToType[i] = MVT::Other;
1636 if (PreferredAction == TypeScalarizeVector)
1637 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1638 else if (PreferredAction == TypeSplitVector)
1639 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1640 else if (EC.getKnownMinValue() > 1)
1641 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1642 else
1643 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1646 } else {
1647 TransformToType[i] = NVT;
1648 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1649 }
1650 break;
1651 }
1652 default:
1653 llvm_unreachable("Unknown vector legalization action!");
1654 }
1655 }
1656
1657 // Determine the 'representative' register class for each value type.
1658 // An representative register class is the largest (meaning one which is
1659 // not a sub-register class / subreg register class) legal register class for
1660 // a group of value types. For example, on i386, i8, i16, and i32
1661 // representative would be GR32; while on x86_64 it's GR64.
1662 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1663 const TargetRegisterClass* RRC;
1664 uint8_t Cost;
1666 RepRegClassForVT[i] = RRC;
1667 RepRegClassCostForVT[i] = Cost;
1668 }
1669}
1670
1672 EVT VT) const {
1673 assert(!VT.isVector() && "No default SetCC type for vectors!");
1674 return getPointerTy(DL).SimpleTy;
1675}
1676
1678 return MVT::i32; // return the default value
1679}
1680
1681/// getVectorTypeBreakdown - Vector types are broken down into some number of
1682/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1683/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1684/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1685///
1686/// This method returns the number of registers needed, and the VT for each
1687/// register. It also returns the VT and quantity of the intermediate values
1688/// before they are promoted/expanded.
1690 EVT VT, EVT &IntermediateVT,
1691 unsigned &NumIntermediates,
1692 MVT &RegisterVT) const {
1693 ElementCount EltCnt = VT.getVectorElementCount();
1694
1695 // If there is a wider vector type with the same element type as this one,
1696 // or a promoted vector type that has the same number of elements which
1697 // are wider, then we should convert to that legal vector type.
1698 // This handles things like <2 x float> -> <4 x float> and
1699 // <4 x i1> -> <4 x i32>.
1700 LegalizeTypeAction TA = getTypeAction(Context, VT);
1701 if (!EltCnt.isScalar() &&
1702 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1703 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1704 if (isTypeLegal(RegisterEVT)) {
1705 IntermediateVT = RegisterEVT;
1706 RegisterVT = RegisterEVT.getSimpleVT();
1707 NumIntermediates = 1;
1708 return 1;
1709 }
1710 }
1711
1712 // Figure out the right, legal destination reg to copy into.
1713 EVT EltTy = VT.getVectorElementType();
1714
1715 unsigned NumVectorRegs = 1;
1716
1717 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1718 // types like done elsewhere in SelectionDAG.
1719 if (EltCnt.isScalable()) {
1720 LegalizeKind LK;
1721 EVT PartVT = VT;
1722 do {
1723 // Iterate until we've found a legal (part) type to hold VT.
1724 LK = getTypeConversion(Context, PartVT);
1725 PartVT = LK.second;
1726 } while (LK.first != TypeLegal);
1727
1728 if (!PartVT.isVector()) {
1730 "Don't know how to legalize this scalable vector type");
1731 }
1732
1733 NumIntermediates =
1736 IntermediateVT = PartVT;
1737 RegisterVT = getRegisterType(Context, IntermediateVT);
1738 return NumIntermediates;
1739 }
1740
1741 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1742 // we could break down into LHS/RHS like LegalizeDAG does.
1743 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1744 NumVectorRegs = EltCnt.getKnownMinValue();
1745 EltCnt = ElementCount::getFixed(1);
1746 }
1747
1748 // Divide the input until we get to a supported size. This will always
1749 // end with a scalar if the target doesn't support vectors.
1750 while (EltCnt.getKnownMinValue() > 1 &&
1751 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1752 EltCnt = EltCnt.divideCoefficientBy(2);
1753 NumVectorRegs <<= 1;
1754 }
1755
1756 NumIntermediates = NumVectorRegs;
1757
1758 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1759 if (!isTypeLegal(NewVT))
1760 NewVT = EltTy;
1761 IntermediateVT = NewVT;
1762
1763 MVT DestVT = getRegisterType(Context, NewVT);
1764 RegisterVT = DestVT;
1765
1766 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1767 TypeSize NewVTSize = NewVT.getSizeInBits();
1768 // Convert sizes such as i33 to i64.
1770 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1771 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1772 }
1773
1774 // Otherwise, promotion or legal types use the same number of registers as
1775 // the vector decimated to the appropriate level.
1776 return NumVectorRegs;
1777}
1778
1780 uint64_t NumCases,
1782 ProfileSummaryInfo *PSI,
1783 BlockFrequencyInfo *BFI) const {
1784 // FIXME: This function check the maximum table size and density, but the
1785 // minimum size is not checked. It would be nice if the minimum size is
1786 // also combined within this function. Currently, the minimum size check is
1787 // performed in findJumpTable() in SelectionDAGBuiler and
1788 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1789 const bool OptForSize =
1790 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1791 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1792 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1793
1794 // Check whether the number of cases is small enough and
1795 // the range is dense enough for a jump table.
1796 return (OptForSize || Range <= MaxJumpTableSize) &&
1797 (NumCases * 100 >= Range * MinDensity);
1798}
1799
1801 EVT ConditionVT) const {
1802 return getRegisterType(Context, ConditionVT);
1803}
1804
1805/// Get the EVTs and ArgFlags collections that represent the legalized return
1806/// type of the given function. This does not require a DAG or a return value,
1807/// and is suitable for use before any DAGs for the function are constructed.
1808/// TODO: Move this out of TargetLowering.cpp.
1810 AttributeList attr,
1812 const TargetLowering &TLI, const DataLayout &DL) {
1814 ComputeValueTypes(DL, ReturnType, Types);
1815 unsigned NumValues = Types.size();
1816 if (NumValues == 0) return;
1817
1818 for (Type *Ty : Types) {
1819 EVT VT = TLI.getValueType(DL, Ty);
1820 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1821
1822 if (attr.hasRetAttr(Attribute::SExt))
1823 ExtendKind = ISD::SIGN_EXTEND;
1824 else if (attr.hasRetAttr(Attribute::ZExt))
1825 ExtendKind = ISD::ZERO_EXTEND;
1826
1827 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1828 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1829
1830 unsigned NumParts =
1831 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1832 MVT PartVT =
1833 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1834
1835 // 'inreg' on function refers to return value
1837 if (attr.hasRetAttr(Attribute::InReg))
1838 Flags.setInReg();
1839
1840 // Propagate extension type if any
1841 if (attr.hasRetAttr(Attribute::SExt))
1842 Flags.setSExt();
1843 else if (attr.hasRetAttr(Attribute::ZExt))
1844 Flags.setZExt();
1845
1846 for (unsigned i = 0; i < NumParts; ++i)
1847 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, Ty, 0, 0));
1848 }
1849}
1850
1852 const DataLayout &DL) const {
1853 return DL.getABITypeAlign(Ty);
1854}
1855
1857 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1858 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1859 // Check if the specified alignment is sufficient based on the data layout.
1860 // TODO: While using the data layout works in practice, a better solution
1861 // would be to implement this check directly (make this a virtual function).
1862 // For example, the ABI alignment may change based on software platform while
1863 // this function should only be affected by hardware implementation.
1864 Type *Ty = VT.getTypeForEVT(Context);
1865 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1866 // Assume that an access that meets the ABI-specified alignment is fast.
1867 if (Fast != nullptr)
1868 *Fast = 1;
1869 return true;
1870 }
1871
1872 // This is a misaligned access.
1873 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1874}
1875
1877 LLVMContext &Context, const DataLayout &DL, EVT VT,
1878 const MachineMemOperand &MMO, unsigned *Fast) const {
1879 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1880 MMO.getAlign(), MMO.getFlags(), Fast);
1881}
1882
1884 const DataLayout &DL, EVT VT,
1885 unsigned AddrSpace, Align Alignment,
1887 unsigned *Fast) const {
1888 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1889 Flags, Fast);
1890}
1891
1893 const DataLayout &DL, EVT VT,
1894 const MachineMemOperand &MMO,
1895 unsigned *Fast) const {
1896 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1897 MMO.getFlags(), Fast);
1898}
1899
1901 const DataLayout &DL, LLT Ty,
1902 const MachineMemOperand &MMO,
1903 unsigned *Fast) const {
1904 EVT VT = getApproximateEVTForLLT(Ty, Context);
1905 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1906 MMO.getFlags(), Fast);
1907}
1908
1909//===----------------------------------------------------------------------===//
1910// TargetTransformInfo Helpers
1911//===----------------------------------------------------------------------===//
1912
1914 enum InstructionOpcodes {
1915#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1916#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1917#include "llvm/IR/Instruction.def"
1918 };
1919 switch (static_cast<InstructionOpcodes>(Opcode)) {
1920 case Ret: return 0;
1921 case Br: return 0;
1922 case Switch: return 0;
1923 case IndirectBr: return 0;
1924 case Invoke: return 0;
1925 case CallBr: return 0;
1926 case Resume: return 0;
1927 case Unreachable: return 0;
1928 case CleanupRet: return 0;
1929 case CatchRet: return 0;
1930 case CatchPad: return 0;
1931 case CatchSwitch: return 0;
1932 case CleanupPad: return 0;
1933 case FNeg: return ISD::FNEG;
1934 case Add: return ISD::ADD;
1935 case FAdd: return ISD::FADD;
1936 case Sub: return ISD::SUB;
1937 case FSub: return ISD::FSUB;
1938 case Mul: return ISD::MUL;
1939 case FMul: return ISD::FMUL;
1940 case UDiv: return ISD::UDIV;
1941 case SDiv: return ISD::SDIV;
1942 case FDiv: return ISD::FDIV;
1943 case URem: return ISD::UREM;
1944 case SRem: return ISD::SREM;
1945 case FRem: return ISD::FREM;
1946 case Shl: return ISD::SHL;
1947 case LShr: return ISD::SRL;
1948 case AShr: return ISD::SRA;
1949 case And: return ISD::AND;
1950 case Or: return ISD::OR;
1951 case Xor: return ISD::XOR;
1952 case Alloca: return 0;
1953 case Load: return ISD::LOAD;
1954 case Store: return ISD::STORE;
1955 case GetElementPtr: return 0;
1956 case Fence: return 0;
1957 case AtomicCmpXchg: return 0;
1958 case AtomicRMW: return 0;
1959 case Trunc: return ISD::TRUNCATE;
1960 case ZExt: return ISD::ZERO_EXTEND;
1961 case SExt: return ISD::SIGN_EXTEND;
1962 case FPToUI: return ISD::FP_TO_UINT;
1963 case FPToSI: return ISD::FP_TO_SINT;
1964 case UIToFP: return ISD::UINT_TO_FP;
1965 case SIToFP: return ISD::SINT_TO_FP;
1966 case FPTrunc: return ISD::FP_ROUND;
1967 case FPExt: return ISD::FP_EXTEND;
1968 case PtrToAddr: return ISD::BITCAST;
1969 case PtrToInt: return ISD::BITCAST;
1970 case IntToPtr: return ISD::BITCAST;
1971 case BitCast: return ISD::BITCAST;
1972 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1973 case ICmp: return ISD::SETCC;
1974 case FCmp: return ISD::SETCC;
1975 case PHI: return 0;
1976 case Call: return 0;
1977 case Select: return ISD::SELECT;
1978 case UserOp1: return 0;
1979 case UserOp2: return 0;
1980 case VAArg: return 0;
1981 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1982 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1983 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1984 case ExtractValue: return ISD::MERGE_VALUES;
1985 case InsertValue: return ISD::MERGE_VALUES;
1986 case LandingPad: return 0;
1987 case Freeze: return ISD::FREEZE;
1988 }
1989
1990 llvm_unreachable("Unknown instruction type encountered!");
1991}
1992
1994 switch (ID) {
1995 case Intrinsic::exp:
1996 return ISD::FEXP;
1997 case Intrinsic::exp2:
1998 return ISD::FEXP2;
1999 case Intrinsic::log:
2000 return ISD::FLOG;
2001 default:
2002 return ISD::DELETED_NODE;
2003 }
2004}
2005
2006Value *
2008 bool UseTLS) const {
2009 // compiler-rt provides a variable with a magic name. Targets that do not
2010 // link with compiler-rt may also provide such a variable.
2011 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2012 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
2013 auto UnsafeStackPtr =
2014 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
2015
2016 const DataLayout &DL = M->getDataLayout();
2017 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
2018
2019 if (!UnsafeStackPtr) {
2020 auto TLSModel = UseTLS ?
2023 // The global variable is not defined yet, define it ourselves.
2024 // We use the initial-exec TLS model because we do not support the
2025 // variable living anywhere other than in the main executable.
2026 UnsafeStackPtr = new GlobalVariable(
2027 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
2028 UnsafeStackPtrVar, nullptr, TLSModel);
2029 } else {
2030 // The variable exists, check its type and attributes.
2031 //
2032 // FIXME: Move to IR verifier.
2033 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2034 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
2035 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2036 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
2037 (UseTLS ? "" : "not ") + "be thread-local");
2038 }
2039 return UnsafeStackPtr;
2040}
2041
2042Value *
2044 // FIXME: Can this triple check be replaced with SAFESTACK_POINTER_ADDRESS
2045 // being available?
2046 if (!TM.getTargetTriple().isAndroid())
2047 return getDefaultSafeStackPointerLocation(IRB, true);
2048
2049 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2050 auto *PtrTy = PointerType::getUnqual(M->getContext());
2051
2052 const char *SafestackPointerAddressName =
2053 getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
2054 if (!SafestackPointerAddressName) {
2055 M->getContext().emitError(
2056 "no libcall available for safestack pointer address");
2057 return PoisonValue::get(PtrTy);
2058 }
2059
2060 // Android provides a libc function to retrieve the address of the current
2061 // thread's unsafe stack pointer.
2062 FunctionCallee Fn =
2063 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2064 return IRB.CreateCall(Fn);
2065}
2066
2067//===----------------------------------------------------------------------===//
2068// Loop Strength Reduction hooks
2069//===----------------------------------------------------------------------===//
2070
2071/// isLegalAddressingMode - Return true if the addressing mode represented
2072/// by AM is legal for this target, for a load/store of the specified type.
2074 const AddrMode &AM, Type *Ty,
2075 unsigned AS, Instruction *I) const {
2076 // The default implementation of this implements a conservative RISCy, r+r and
2077 // r+i addr mode.
2078
2079 // Scalable offsets not supported
2080 if (AM.ScalableOffset)
2081 return false;
2082
2083 // Allows a sign-extended 16-bit immediate field.
2084 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2085 return false;
2086
2087 // No global is ever allowed as a base.
2088 if (AM.BaseGV)
2089 return false;
2090
2091 // Only support r+r,
2092 switch (AM.Scale) {
2093 case 0: // "r+i" or just "i", depending on HasBaseReg.
2094 break;
2095 case 1:
2096 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2097 return false;
2098 // Otherwise we have r+r or r+i.
2099 break;
2100 case 2:
2101 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2102 return false;
2103 // Allow 2*r as r+r.
2104 break;
2105 default: // Don't allow n * r
2106 return false;
2107 }
2108
2109 return true;
2110}
2111
2112//===----------------------------------------------------------------------===//
2113// Stack Protector
2114//===----------------------------------------------------------------------===//
2115
2116// For OpenBSD return its special guard variable. Otherwise return nullptr,
2117// so that SelectionDAG handle SSP.
2119 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2120 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2121 const DataLayout &DL = M.getDataLayout();
2122 PointerType *PtrTy =
2123 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2124 GlobalVariable *G = M.getOrInsertGlobal("__guard_local", PtrTy);
2125 G->setVisibility(GlobalValue::HiddenVisibility);
2126 return G;
2127 }
2128 return nullptr;
2129}
2130
2131// Currently only support "standard" __stack_chk_guard.
2132// TODO: add LOAD_STACK_GUARD support.
2134 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2135 if (StackGuardImpl == RTLIB::Unsupported)
2136 return;
2137
2138 StringRef StackGuardVarName = getLibcallImplName(StackGuardImpl);
2139 M.getOrInsertGlobal(
2140 StackGuardVarName, PointerType::getUnqual(M.getContext()), [=, &M]() {
2141 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2142 false, GlobalVariable::ExternalLinkage,
2143 nullptr, StackGuardVarName);
2144
2145 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2146 if (M.getDirectAccessExternalData() &&
2147 !TM.getTargetTriple().isOSCygMing() &&
2148 !(TM.getTargetTriple().isPPC64() &&
2149 TM.getTargetTriple().isOSFreeBSD()) &&
2150 (!TM.getTargetTriple().isOSDarwin() ||
2151 TM.getRelocationModel() == Reloc::Static))
2152 GV->setDSOLocal(true);
2153
2154 return GV;
2155 });
2156}
2157
2158// Currently only support "standard" __stack_chk_guard.
2159// TODO: add LOAD_STACK_GUARD support.
2161 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2162 if (GuardVarImpl == RTLIB::Unsupported)
2163 return nullptr;
2164 return M.getNamedValue(getLibcallImplName(GuardVarImpl));
2165}
2166
2168 // MSVC CRT has a function to validate security cookie.
2169 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2170 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
2171 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2172 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2173 return nullptr;
2174}
2175
2179
2183
2184unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2185 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2186}
2187
2191
2195
2199
2201 return MinimumBitTestCmps;
2202}
2203
2205 MinimumBitTestCmps = Val;
2206}
2207
2209 if (TM.Options.LoopAlignment)
2210 return Align(TM.Options.LoopAlignment);
2211 return PrefLoopAlignment;
2212}
2213
2215 MachineBasicBlock *MBB) const {
2216 return MaxBytesForAlignment;
2217}
2218
2219//===----------------------------------------------------------------------===//
2220// Reciprocal Estimates
2221//===----------------------------------------------------------------------===//
2222
2223/// Get the reciprocal estimate attribute string for a function that will
2224/// override the target defaults.
2226 const Function &F = MF.getFunction();
2227 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2228}
2229
2230/// Construct a string for the given reciprocal operation of the given type.
2231/// This string should match the corresponding option to the front-end's
2232/// "-mrecip" flag assuming those strings have been passed through in an
2233/// attribute string. For example, "vec-divf" for a division of a vXf32.
2234static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2235 std::string Name = VT.isVector() ? "vec-" : "";
2236
2237 Name += IsSqrt ? "sqrt" : "div";
2238
2239 // TODO: Handle other float types?
2240 if (VT.getScalarType() == MVT::f64) {
2241 Name += "d";
2242 } else if (VT.getScalarType() == MVT::f16) {
2243 Name += "h";
2244 } else {
2245 assert(VT.getScalarType() == MVT::f32 &&
2246 "Unexpected FP type for reciprocal estimate");
2247 Name += "f";
2248 }
2249
2250 return Name;
2251}
2252
2253/// Return the character position and value (a single numeric character) of a
2254/// customized refinement operation in the input string if it exists. Return
2255/// false if there is no customized refinement step count.
2256static bool parseRefinementStep(StringRef In, size_t &Position,
2257 uint8_t &Value) {
2258 const char RefStepToken = ':';
2259 Position = In.find(RefStepToken);
2260 if (Position == StringRef::npos)
2261 return false;
2262
2263 StringRef RefStepString = In.substr(Position + 1);
2264 // Allow exactly one numeric character for the additional refinement
2265 // step parameter.
2266 if (RefStepString.size() == 1) {
2267 char RefStepChar = RefStepString[0];
2268 if (isDigit(RefStepChar)) {
2269 Value = RefStepChar - '0';
2270 return true;
2271 }
2272 }
2273 report_fatal_error("Invalid refinement step for -recip.");
2274}
2275
2276/// For the input attribute string, return one of the ReciprocalEstimate enum
2277/// status values (enabled, disabled, or not specified) for this operation on
2278/// the specified data type.
2279static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2280 if (Override.empty())
2282
2283 SmallVector<StringRef, 4> OverrideVector;
2284 Override.split(OverrideVector, ',');
2285 unsigned NumArgs = OverrideVector.size();
2286
2287 // Check if "all", "none", or "default" was specified.
2288 if (NumArgs == 1) {
2289 // Look for an optional setting of the number of refinement steps needed
2290 // for this type of reciprocal operation.
2291 size_t RefPos;
2292 uint8_t RefSteps;
2293 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2294 // Split the string for further processing.
2295 Override = Override.substr(0, RefPos);
2296 }
2297
2298 // All reciprocal types are enabled.
2299 if (Override == "all")
2301
2302 // All reciprocal types are disabled.
2303 if (Override == "none")
2305
2306 // Target defaults for enablement are used.
2307 if (Override == "default")
2309 }
2310
2311 // The attribute string may omit the size suffix ('f'/'d').
2312 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2313 std::string VTNameNoSize = VTName;
2314 VTNameNoSize.pop_back();
2315 static const char DisabledPrefix = '!';
2316
2317 for (StringRef RecipType : OverrideVector) {
2318 size_t RefPos;
2319 uint8_t RefSteps;
2320 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2321 RecipType = RecipType.substr(0, RefPos);
2322
2323 // Ignore the disablement token for string matching.
2324 bool IsDisabled = RecipType[0] == DisabledPrefix;
2325 if (IsDisabled)
2326 RecipType = RecipType.substr(1);
2327
2328 if (RecipType == VTName || RecipType == VTNameNoSize)
2331 }
2332
2334}
2335
2336/// For the input attribute string, return the customized refinement step count
2337/// for this operation on the specified data type. If the step count does not
2338/// exist, return the ReciprocalEstimate enum value for unspecified.
2339static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2340 if (Override.empty())
2342
2343 SmallVector<StringRef, 4> OverrideVector;
2344 Override.split(OverrideVector, ',');
2345 unsigned NumArgs = OverrideVector.size();
2346
2347 // Check if "all", "default", or "none" was specified.
2348 if (NumArgs == 1) {
2349 // Look for an optional setting of the number of refinement steps needed
2350 // for this type of reciprocal operation.
2351 size_t RefPos;
2352 uint8_t RefSteps;
2353 if (!parseRefinementStep(Override, RefPos, RefSteps))
2355
2356 // Split the string for further processing.
2357 Override = Override.substr(0, RefPos);
2358 assert(Override != "none" &&
2359 "Disabled reciprocals, but specifed refinement steps?");
2360
2361 // If this is a general override, return the specified number of steps.
2362 if (Override == "all" || Override == "default")
2363 return RefSteps;
2364 }
2365
2366 // The attribute string may omit the size suffix ('f'/'d').
2367 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2368 std::string VTNameNoSize = VTName;
2369 VTNameNoSize.pop_back();
2370
2371 for (StringRef RecipType : OverrideVector) {
2372 size_t RefPos;
2373 uint8_t RefSteps;
2374 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2375 continue;
2376
2377 RecipType = RecipType.substr(0, RefPos);
2378 if (RecipType == VTName || RecipType == VTNameNoSize)
2379 return RefSteps;
2380 }
2381
2383}
2384
2389
2394
2399
2404
2406 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2407 const MachineMemOperand &MMO) const {
2408 // Single-element vectors are scalarized, so we should generally avoid having
2409 // any memory operations on such types, as they would get scalarized too.
2410 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2411 BitcastVT.getVectorNumElements() == 1)
2412 return false;
2413
2414 // Don't do if we could do an indexed load on the original type, but not on
2415 // the new one.
2416 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2417 return true;
2418
2419 MVT LoadMVT = LoadVT.getSimpleVT();
2420
2421 // Don't bother doing this if it's just going to be promoted again later, as
2422 // doing so might interfere with other combines.
2423 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2424 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2425 return false;
2426
2427 unsigned Fast = 0;
2428 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2429 MMO, &Fast) &&
2430 Fast;
2431}
2432
2436
2438 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2439 const TargetLibraryInfo *LibInfo) const {
2441 if (LI.isVolatile())
2443
2444 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2446
2447 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2449
2451 LI.getAlign(), DL, &LI, AC,
2452 /*DT=*/nullptr, LibInfo))
2454
2455 Flags |= getTargetMMOFlags(LI);
2456 return Flags;
2457}
2458
2461 const DataLayout &DL) const {
2463
2464 if (SI.isVolatile())
2466
2467 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2469
2470 // FIXME: Not preserving dereferenceable
2471 Flags |= getTargetMMOFlags(SI);
2472 return Flags;
2473}
2474
2477 const DataLayout &DL) const {
2479
2480 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2481 if (RMW->isVolatile())
2483 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2484 if (CmpX->isVolatile())
2486 } else
2487 llvm_unreachable("not an atomic instruction");
2488
2489 // FIXME: Not preserving dereferenceable
2490 Flags |= getTargetMMOFlags(AI);
2491 return Flags;
2492}
2493
2495 const VPIntrinsic &VPIntrin) const {
2497 Intrinsic::ID IntrinID = VPIntrin.getIntrinsicID();
2498
2499 switch (IntrinID) {
2500 default:
2501 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2502 "for it, but support must be explicitly enabled");
2503 case Intrinsic::vp_load:
2504 case Intrinsic::vp_gather:
2505 case Intrinsic::experimental_vp_strided_load:
2507 break;
2508 case Intrinsic::vp_store:
2509 case Intrinsic::vp_scatter:
2510 case Intrinsic::experimental_vp_strided_store:
2512 break;
2513 }
2514
2515 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2517
2518 Flags |= getTargetMMOFlags(VPIntrin);
2519 return Flags;
2520}
2521
2523 Instruction *Inst,
2524 AtomicOrdering Ord) const {
2525 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2526 return Builder.CreateFence(Ord);
2527 else
2528 return nullptr;
2529}
2530
2532 Instruction *Inst,
2533 AtomicOrdering Ord) const {
2534 if (isAcquireOrStronger(Ord))
2535 return Builder.CreateFence(Ord);
2536 else
2537 return nullptr;
2538}
2539
2540//===----------------------------------------------------------------------===//
2541// GlobalISel Hooks
2542//===----------------------------------------------------------------------===//
2543
2545 const TargetTransformInfo *TTI) const {
2546 auto &MF = *MI.getMF();
2547 auto &MRI = MF.getRegInfo();
2548 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2549 // this helper function computes the maximum number of uses we should consider
2550 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2551 // break even in terms of code size when the original MI has 2 users vs
2552 // choosing to potentially spill. Any more than 2 users we we have a net code
2553 // size increase. This doesn't take into account register pressure though.
2554 auto maxUses = [](unsigned RematCost) {
2555 // A cost of 1 means remats are basically free.
2556 if (RematCost == 1)
2557 return std::numeric_limits<unsigned>::max();
2558 if (RematCost == 2)
2559 return 2U;
2560
2561 // Remat is too expensive, only sink if there's one user.
2562 if (RematCost > 2)
2563 return 1U;
2564 llvm_unreachable("Unexpected remat cost");
2565 };
2566
2567 switch (MI.getOpcode()) {
2568 default:
2569 return false;
2570 // Constants-like instructions should be close to their users.
2571 // We don't want long live-ranges for them.
2572 case TargetOpcode::G_CONSTANT:
2573 case TargetOpcode::G_FCONSTANT:
2574 case TargetOpcode::G_FRAME_INDEX:
2575 case TargetOpcode::G_INTTOPTR:
2576 return true;
2577 case TargetOpcode::G_GLOBAL_VALUE: {
2578 unsigned RematCost = TTI->getGISelRematGlobalCost();
2579 Register Reg = MI.getOperand(0).getReg();
2580 unsigned MaxUses = maxUses(RematCost);
2581 if (MaxUses == UINT_MAX)
2582 return true; // Remats are "free" so always localize.
2583 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2584 }
2585 }
2586}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
#define LCALL5(A)
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition BitVector.h:723
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
static constexpr size_t npos
Definition StringRef.h:57
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
constexpr LeafTy coefficientNextPowerOf2() const
Definition TypeSize.h:260
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:861
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:859
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:863
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
InstructionCost Cost
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition Sequence.h:337
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition Sequence.h:109
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
TargetTransformInfo TTI
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition ValueTypes.h:477
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition ValueTypes.h:419
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
Matching combinators.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...