69 "jump-is-expensive",
cl::init(
false),
70 cl::desc(
"Do not create extra branches to split comparison logic."),
75 cl::desc(
"Set minimum number of entries to use a jump table."));
79 cl::desc(
"Set maximum size of jump tables."));
84 cl::desc(
"Minimum density for building a jump table in "
85 "a normal function"));
90 cl::desc(
"Minimum density for building a jump table in "
91 "an optsize function"));
95 cl::desc(
"Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
100 cl::desc(
"Override target's MaxStoresPerMemset and "
101 "MaxStoresPerMemsetOptSize. "
102 "Set to 0 to use the target default."));
106 cl::desc(
"Override target's MaxStoresPerMemcpy and "
107 "MaxStoresPerMemcpyOptSize. "
108 "Set to 0 to use the target default."));
112 cl::desc(
"Override target's MaxStoresPerMemmove and "
113 "MaxStoresPerMemmoveOptSize. "
114 "Set to 0 to use the target default."));
121 cl::desc(
"Don't mutate strict-float node to a legalize node"),
126 return RTLIB::SHL_I16;
128 return RTLIB::SHL_I32;
130 return RTLIB::SHL_I64;
132 return RTLIB::SHL_I128;
134 return RTLIB::UNKNOWN_LIBCALL;
139 return RTLIB::SRL_I16;
141 return RTLIB::SRL_I32;
143 return RTLIB::SRL_I64;
145 return RTLIB::SRL_I128;
147 return RTLIB::UNKNOWN_LIBCALL;
152 return RTLIB::SRA_I16;
154 return RTLIB::SRA_I32;
156 return RTLIB::SRA_I64;
158 return RTLIB::SRA_I128;
160 return RTLIB::UNKNOWN_LIBCALL;
165 return RTLIB::MUL_I16;
167 return RTLIB::MUL_I32;
169 return RTLIB::MUL_I64;
171 return RTLIB::MUL_I128;
172 return RTLIB::UNKNOWN_LIBCALL;
177 return RTLIB::MULO_I32;
179 return RTLIB::MULO_I64;
181 return RTLIB::MULO_I128;
182 return RTLIB::UNKNOWN_LIBCALL;
187 return RTLIB::SDIV_I16;
189 return RTLIB::SDIV_I32;
191 return RTLIB::SDIV_I64;
193 return RTLIB::SDIV_I128;
194 return RTLIB::UNKNOWN_LIBCALL;
199 return RTLIB::UDIV_I16;
201 return RTLIB::UDIV_I32;
203 return RTLIB::UDIV_I64;
205 return RTLIB::UDIV_I128;
206 return RTLIB::UNKNOWN_LIBCALL;
211 return RTLIB::SREM_I16;
213 return RTLIB::SREM_I32;
215 return RTLIB::SREM_I64;
217 return RTLIB::SREM_I128;
218 return RTLIB::UNKNOWN_LIBCALL;
223 return RTLIB::UREM_I16;
225 return RTLIB::UREM_I32;
227 return RTLIB::UREM_I64;
229 return RTLIB::UREM_I128;
230 return RTLIB::UNKNOWN_LIBCALL;
235 return RTLIB::CTPOP_I32;
237 return RTLIB::CTPOP_I64;
239 return RTLIB::CTPOP_I128;
240 return RTLIB::UNKNOWN_LIBCALL;
246 RTLIB::Libcall Call_F32,
247 RTLIB::Libcall Call_F64,
248 RTLIB::Libcall Call_F80,
249 RTLIB::Libcall Call_F128,
250 RTLIB::Libcall Call_PPCF128) {
252 VT == MVT::f32 ? Call_F32 :
253 VT == MVT::f64 ? Call_F64 :
254 VT == MVT::f80 ? Call_F80 :
255 VT == MVT::f128 ? Call_F128 :
256 VT == MVT::ppcf128 ? Call_PPCF128 :
257 RTLIB::UNKNOWN_LIBCALL;
263 if (OpVT == MVT::f16) {
264 if (RetVT == MVT::f32)
265 return FPEXT_F16_F32;
266 if (RetVT == MVT::f64)
267 return FPEXT_F16_F64;
268 if (RetVT == MVT::f80)
269 return FPEXT_F16_F80;
270 if (RetVT == MVT::f128)
271 return FPEXT_F16_F128;
272 }
else if (OpVT == MVT::f32) {
273 if (RetVT == MVT::f64)
274 return FPEXT_F32_F64;
275 if (RetVT == MVT::f128)
276 return FPEXT_F32_F128;
277 if (RetVT == MVT::ppcf128)
278 return FPEXT_F32_PPCF128;
279 }
else if (OpVT == MVT::f64) {
280 if (RetVT == MVT::f128)
281 return FPEXT_F64_F128;
282 else if (RetVT == MVT::ppcf128)
283 return FPEXT_F64_PPCF128;
284 }
else if (OpVT == MVT::f80) {
285 if (RetVT == MVT::f128)
286 return FPEXT_F80_F128;
287 }
else if (OpVT == MVT::bf16) {
288 if (RetVT == MVT::f32)
289 return FPEXT_BF16_F32;
292 return UNKNOWN_LIBCALL;
298 if (RetVT == MVT::f16) {
299 if (OpVT == MVT::f32)
300 return FPROUND_F32_F16;
301 if (OpVT == MVT::f64)
302 return FPROUND_F64_F16;
303 if (OpVT == MVT::f80)
304 return FPROUND_F80_F16;
305 if (OpVT == MVT::f128)
306 return FPROUND_F128_F16;
307 if (OpVT == MVT::ppcf128)
308 return FPROUND_PPCF128_F16;
309 }
else if (RetVT == MVT::bf16) {
310 if (OpVT == MVT::f32)
311 return FPROUND_F32_BF16;
312 if (OpVT == MVT::f64)
313 return FPROUND_F64_BF16;
314 if (OpVT == MVT::f80)
315 return FPROUND_F80_BF16;
316 if (OpVT == MVT::f128)
317 return FPROUND_F128_BF16;
318 }
else if (RetVT == MVT::f32) {
319 if (OpVT == MVT::f64)
320 return FPROUND_F64_F32;
321 if (OpVT == MVT::f80)
322 return FPROUND_F80_F32;
323 if (OpVT == MVT::f128)
324 return FPROUND_F128_F32;
325 if (OpVT == MVT::ppcf128)
326 return FPROUND_PPCF128_F32;
327 }
else if (RetVT == MVT::f64) {
328 if (OpVT == MVT::f80)
329 return FPROUND_F80_F64;
330 if (OpVT == MVT::f128)
331 return FPROUND_F128_F64;
332 if (OpVT == MVT::ppcf128)
333 return FPROUND_PPCF128_F64;
334 }
else if (RetVT == MVT::f80) {
335 if (OpVT == MVT::f128)
336 return FPROUND_F128_F80;
339 return UNKNOWN_LIBCALL;
345 if (OpVT == MVT::f16) {
346 if (RetVT == MVT::i32)
347 return FPTOSINT_F16_I32;
348 if (RetVT == MVT::i64)
349 return FPTOSINT_F16_I64;
350 if (RetVT == MVT::i128)
351 return FPTOSINT_F16_I128;
352 }
else if (OpVT == MVT::f32) {
353 if (RetVT == MVT::i32)
354 return FPTOSINT_F32_I32;
355 if (RetVT == MVT::i64)
356 return FPTOSINT_F32_I64;
357 if (RetVT == MVT::i128)
358 return FPTOSINT_F32_I128;
359 }
else if (OpVT == MVT::f64) {
360 if (RetVT == MVT::i32)
361 return FPTOSINT_F64_I32;
362 if (RetVT == MVT::i64)
363 return FPTOSINT_F64_I64;
364 if (RetVT == MVT::i128)
365 return FPTOSINT_F64_I128;
366 }
else if (OpVT == MVT::f80) {
367 if (RetVT == MVT::i32)
368 return FPTOSINT_F80_I32;
369 if (RetVT == MVT::i64)
370 return FPTOSINT_F80_I64;
371 if (RetVT == MVT::i128)
372 return FPTOSINT_F80_I128;
373 }
else if (OpVT == MVT::f128) {
374 if (RetVT == MVT::i32)
375 return FPTOSINT_F128_I32;
376 if (RetVT == MVT::i64)
377 return FPTOSINT_F128_I64;
378 if (RetVT == MVT::i128)
379 return FPTOSINT_F128_I128;
380 }
else if (OpVT == MVT::ppcf128) {
381 if (RetVT == MVT::i32)
382 return FPTOSINT_PPCF128_I32;
383 if (RetVT == MVT::i64)
384 return FPTOSINT_PPCF128_I64;
385 if (RetVT == MVT::i128)
386 return FPTOSINT_PPCF128_I128;
388 return UNKNOWN_LIBCALL;
394 if (OpVT == MVT::f16) {
395 if (RetVT == MVT::i32)
396 return FPTOUINT_F16_I32;
397 if (RetVT == MVT::i64)
398 return FPTOUINT_F16_I64;
399 if (RetVT == MVT::i128)
400 return FPTOUINT_F16_I128;
401 }
else if (OpVT == MVT::f32) {
402 if (RetVT == MVT::i32)
403 return FPTOUINT_F32_I32;
404 if (RetVT == MVT::i64)
405 return FPTOUINT_F32_I64;
406 if (RetVT == MVT::i128)
407 return FPTOUINT_F32_I128;
408 }
else if (OpVT == MVT::f64) {
409 if (RetVT == MVT::i32)
410 return FPTOUINT_F64_I32;
411 if (RetVT == MVT::i64)
412 return FPTOUINT_F64_I64;
413 if (RetVT == MVT::i128)
414 return FPTOUINT_F64_I128;
415 }
else if (OpVT == MVT::f80) {
416 if (RetVT == MVT::i32)
417 return FPTOUINT_F80_I32;
418 if (RetVT == MVT::i64)
419 return FPTOUINT_F80_I64;
420 if (RetVT == MVT::i128)
421 return FPTOUINT_F80_I128;
422 }
else if (OpVT == MVT::f128) {
423 if (RetVT == MVT::i32)
424 return FPTOUINT_F128_I32;
425 if (RetVT == MVT::i64)
426 return FPTOUINT_F128_I64;
427 if (RetVT == MVT::i128)
428 return FPTOUINT_F128_I128;
429 }
else if (OpVT == MVT::ppcf128) {
430 if (RetVT == MVT::i32)
431 return FPTOUINT_PPCF128_I32;
432 if (RetVT == MVT::i64)
433 return FPTOUINT_PPCF128_I64;
434 if (RetVT == MVT::i128)
435 return FPTOUINT_PPCF128_I128;
437 return UNKNOWN_LIBCALL;
443 if (OpVT == MVT::i32) {
444 if (RetVT == MVT::f16)
445 return SINTTOFP_I32_F16;
446 if (RetVT == MVT::f32)
447 return SINTTOFP_I32_F32;
448 if (RetVT == MVT::f64)
449 return SINTTOFP_I32_F64;
450 if (RetVT == MVT::f80)
451 return SINTTOFP_I32_F80;
452 if (RetVT == MVT::f128)
453 return SINTTOFP_I32_F128;
454 if (RetVT == MVT::ppcf128)
455 return SINTTOFP_I32_PPCF128;
456 }
else if (OpVT == MVT::i64) {
457 if (RetVT == MVT::bf16)
458 return SINTTOFP_I64_BF16;
459 if (RetVT == MVT::f16)
460 return SINTTOFP_I64_F16;
461 if (RetVT == MVT::f32)
462 return SINTTOFP_I64_F32;
463 if (RetVT == MVT::f64)
464 return SINTTOFP_I64_F64;
465 if (RetVT == MVT::f80)
466 return SINTTOFP_I64_F80;
467 if (RetVT == MVT::f128)
468 return SINTTOFP_I64_F128;
469 if (RetVT == MVT::ppcf128)
470 return SINTTOFP_I64_PPCF128;
471 }
else if (OpVT == MVT::i128) {
472 if (RetVT == MVT::f16)
473 return SINTTOFP_I128_F16;
474 if (RetVT == MVT::f32)
475 return SINTTOFP_I128_F32;
476 if (RetVT == MVT::f64)
477 return SINTTOFP_I128_F64;
478 if (RetVT == MVT::f80)
479 return SINTTOFP_I128_F80;
480 if (RetVT == MVT::f128)
481 return SINTTOFP_I128_F128;
482 if (RetVT == MVT::ppcf128)
483 return SINTTOFP_I128_PPCF128;
485 return UNKNOWN_LIBCALL;
491 if (OpVT == MVT::i32) {
492 if (RetVT == MVT::f16)
493 return UINTTOFP_I32_F16;
494 if (RetVT == MVT::f32)
495 return UINTTOFP_I32_F32;
496 if (RetVT == MVT::f64)
497 return UINTTOFP_I32_F64;
498 if (RetVT == MVT::f80)
499 return UINTTOFP_I32_F80;
500 if (RetVT == MVT::f128)
501 return UINTTOFP_I32_F128;
502 if (RetVT == MVT::ppcf128)
503 return UINTTOFP_I32_PPCF128;
504 }
else if (OpVT == MVT::i64) {
505 if (RetVT == MVT::bf16)
506 return UINTTOFP_I64_BF16;
507 if (RetVT == MVT::f16)
508 return UINTTOFP_I64_F16;
509 if (RetVT == MVT::f32)
510 return UINTTOFP_I64_F32;
511 if (RetVT == MVT::f64)
512 return UINTTOFP_I64_F64;
513 if (RetVT == MVT::f80)
514 return UINTTOFP_I64_F80;
515 if (RetVT == MVT::f128)
516 return UINTTOFP_I64_F128;
517 if (RetVT == MVT::ppcf128)
518 return UINTTOFP_I64_PPCF128;
519 }
else if (OpVT == MVT::i128) {
520 if (RetVT == MVT::f16)
521 return UINTTOFP_I128_F16;
522 if (RetVT == MVT::f32)
523 return UINTTOFP_I128_F32;
524 if (RetVT == MVT::f64)
525 return UINTTOFP_I128_F64;
526 if (RetVT == MVT::f80)
527 return UINTTOFP_I128_F80;
528 if (RetVT == MVT::f128)
529 return UINTTOFP_I128_F128;
530 if (RetVT == MVT::ppcf128)
531 return UINTTOFP_I128_PPCF128;
533 return UNKNOWN_LIBCALL;
537 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
542 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
546 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
551 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
556 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
560 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
567 return RTLIB::UNKNOWN_LIBCALL;
570 return RTLIB::SINCOS_V4F32;
572 return RTLIB::SINCOS_V2F64;
574 return RTLIB::SINCOS_NXV4F32;
576 return RTLIB::SINCOS_NXV2F64;
578 return RTLIB::UNKNOWN_LIBCALL;
582 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
590 return RTLIB::UNKNOWN_LIBCALL;
593 return RTLIB::SINCOSPI_V4F32;
595 return RTLIB::SINCOSPI_V2F64;
597 return RTLIB::SINCOSPI_NXV4F32;
599 return RTLIB::SINCOSPI_NXV2F64;
601 return RTLIB::UNKNOWN_LIBCALL;
605 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
606 SINCOSPI_F128, SINCOSPI_PPCF128);
610 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
611 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
618 return RTLIB::UNKNOWN_LIBCALL;
621 return RTLIB::REM_V4F32;
623 return RTLIB::REM_V2F64;
625 return RTLIB::REM_NXV4F32;
627 return RTLIB::REM_NXV2F64;
629 return RTLIB::UNKNOWN_LIBCALL;
633 return getFPLibCall(VT, REM_F32, REM_F64, REM_F80, REM_F128, REM_PPCF128);
640 return RTLIB::UNKNOWN_LIBCALL;
643 return RTLIB::MODF_V4F32;
645 return RTLIB::MODF_V2F64;
647 return RTLIB::MODF_NXV4F32;
649 return RTLIB::MODF_NXV2F64;
651 return RTLIB::UNKNOWN_LIBCALL;
655 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
661 return RTLIB::LROUND_F32;
663 return RTLIB::LROUND_F64;
665 return RTLIB::LROUND_F80;
667 return RTLIB::LROUND_F128;
668 if (VT == MVT::ppcf128)
669 return RTLIB::LROUND_PPCF128;
671 return RTLIB::UNKNOWN_LIBCALL;
676 return RTLIB::LLROUND_F32;
678 return RTLIB::LLROUND_F64;
680 return RTLIB::LLROUND_F80;
682 return RTLIB::LLROUND_F128;
683 if (VT == MVT::ppcf128)
684 return RTLIB::LLROUND_PPCF128;
686 return RTLIB::UNKNOWN_LIBCALL;
691 return RTLIB::LRINT_F32;
693 return RTLIB::LRINT_F64;
695 return RTLIB::LRINT_F80;
697 return RTLIB::LRINT_F128;
698 if (VT == MVT::ppcf128)
699 return RTLIB::LRINT_PPCF128;
700 return RTLIB::UNKNOWN_LIBCALL;
705 return RTLIB::LLRINT_F32;
707 return RTLIB::LLRINT_F64;
709 return RTLIB::LLRINT_F80;
711 return RTLIB::LLRINT_F128;
712 if (VT == MVT::ppcf128)
713 return RTLIB::LLRINT_PPCF128;
714 return RTLIB::UNKNOWN_LIBCALL;
720 unsigned ModeN, ModelN;
738 return RTLIB::UNKNOWN_LIBCALL;
756 return UNKNOWN_LIBCALL;
759 return LC[ModeN][ModelN];
765 return UNKNOWN_LIBCALL;
768#define LCALLS(A, B) \
769 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
771 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
774 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_CAS)};
778 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_SWP)};
782 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDADD)};
786 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDSET)};
790 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDCLR)};
794 const Libcall LC[5][4] = {
LCALL5(OUTLINE_ATOMIC_LDEOR)};
798 return UNKNOWN_LIBCALL;
805#define OP_TO_LIBCALL(Name, Enum) \
807 switch (VT.SimpleTy) { \
809 return UNKNOWN_LIBCALL; \
839 return UNKNOWN_LIBCALL;
843 switch (ElementSize) {
845 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
847 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
849 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
851 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
853 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
855 return UNKNOWN_LIBCALL;
860 switch (ElementSize) {
862 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
864 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
866 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
868 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
870 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
872 return UNKNOWN_LIBCALL;
877 switch (ElementSize) {
879 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
881 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
883 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
885 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
887 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
889 return UNKNOWN_LIBCALL;
894 RTLIB::LibcallImpl Impl)
const {
896 case RTLIB::impl___aeabi_dcmpeq__une:
897 case RTLIB::impl___aeabi_fcmpeq__une:
900 case RTLIB::impl___aeabi_dcmpeq__oeq:
901 case RTLIB::impl___aeabi_fcmpeq__oeq:
904 case RTLIB::impl___aeabi_dcmplt:
905 case RTLIB::impl___aeabi_dcmple:
906 case RTLIB::impl___aeabi_dcmpge:
907 case RTLIB::impl___aeabi_dcmpgt:
908 case RTLIB::impl___aeabi_dcmpun:
909 case RTLIB::impl___aeabi_fcmplt:
910 case RTLIB::impl___aeabi_fcmple:
911 case RTLIB::impl___aeabi_fcmpge:
912 case RTLIB::impl___aeabi_fcmpgt:
930 case RTLIB::OEQ_F128:
931 case RTLIB::OEQ_PPCF128:
935 case RTLIB::UNE_F128:
936 case RTLIB::UNE_PPCF128:
940 case RTLIB::OGE_F128:
941 case RTLIB::OGE_PPCF128:
945 case RTLIB::OLT_F128:
946 case RTLIB::OLT_PPCF128:
950 case RTLIB::OLE_F128:
951 case RTLIB::OLE_PPCF128:
955 case RTLIB::OGT_F128:
956 case RTLIB::OGT_PPCF128:
961 case RTLIB::UO_PPCF128:
972 RuntimeLibcallInfo(TM.getTargetTriple(), TM.
Options.ExceptionModel,
975 Libcalls(RuntimeLibcallInfo, STI) {
984 HasExtractBitsInsn =
false;
988 StackPointerRegisterToSaveRestore = 0;
995 MaxBytesForAlignment = 0;
996 MaxAtomicSizeInBitsSupported = 0;
1000 MaxDivRemBitWidthSupported = 128;
1004 MinCmpXchgSizeInBits = 0;
1005 SupportsUnalignedAtomics =
false;
1016 memset(OpActions, 0,
sizeof(OpActions));
1017 memset(LoadExtActions, 0,
sizeof(LoadExtActions));
1018 memset(TruncStoreActions, 0,
sizeof(TruncStoreActions));
1019 memset(IndexedModeActions, 0,
sizeof(IndexedModeActions));
1020 memset(CondCodeActions, 0,
sizeof(CondCodeActions));
1034 for (
MVT VT : {MVT::i2, MVT::i4})
1035 OpActions[(
unsigned)VT.SimpleTy][NT] =
Expand;
1038 for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1046 for (
MVT VT : {MVT::i2, MVT::i4}) {
1168#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1169 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1170#include "llvm/IR/ConstrainedOps.def"
1193#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
1194 setOperationAction(ISD::SDOPC, VT, Expand);
1195#include "llvm/IR/VPIntrinsics.def"
1224 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1229 {MVT::f16, MVT::f32, MVT::f64, MVT::f128},
Expand);
1233 {MVT::f32, MVT::f64, MVT::f128},
LibCall);
1250 for (
MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1277 "ShiftVT is still too small!");
1295 unsigned DestAS)
const {
1296 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1304 if (EC.isScalable())
1320 JumpIsExpensive = isExpensive;
1336 "Promote may not follow Expand or Promote");
1339 return LegalizeKind(LA,
EVT(SVT).getHalfNumVectorElementsVT(Context));
1352 assert(NVT != VT &&
"Unable to round integer VT");
1401 EVT OldEltVT = EltVT;
1418 if (NVT !=
MVT() && ValueTypeActions.getTypeAction(NVT) ==
TypeLegal)
1440 if (LargerVector ==
MVT())
1444 if (ValueTypeActions.getTypeAction(LargerVector) ==
TypeLegal)
1464 unsigned &NumIntermediates,
1471 unsigned NumVectorRegs = 1;
1477 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1483 NumVectorRegs = EC.getKnownMinValue();
1490 while (EC.getKnownMinValue() > 1 &&
1492 EC = EC.divideCoefficientBy(2);
1493 NumVectorRegs <<= 1;
1496 NumIntermediates = NumVectorRegs;
1501 IntermediateVT = NewVT;
1509 RegisterVT = DestVT;
1510 if (
EVT(DestVT).bitsLT(NewVT))
1515 return NumVectorRegs;
1522 for (
const auto *
I =
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
1558 for (
unsigned i = 0; i <
MI->getNumOperands(); ++i) {
1565 unsigned TiedTo = i;
1567 TiedTo =
MI->findTiedOperandIdx(i);
1584 assert(
MI->getOpcode() == TargetOpcode::STATEPOINT &&
"sanity");
1585 MIB.
addImm(StackMaps::IndirectMemRefOp);
1592 MIB.
addImm(StackMaps::DirectMemRefOp);
1597 assert(MIB->
mayLoad() &&
"Folded a stackmap use to a non-load!");
1604 if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
1613 MI->eraseFromParent();
1623std::pair<const TargetRegisterClass *, uint8_t>
1628 return std::make_pair(RC, 0);
1637 for (
unsigned i : SuperRegRC.
set_bits()) {
1640 if (
TRI->getSpillSize(*SuperRC) <=
TRI->getSpillSize(*BestRC))
1646 return std::make_pair(BestRC, 1);
1655 NumRegistersForVT[i] = 1;
1659 NumRegistersForVT[MVT::isVoid] = 0;
1662 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1663 for (; RegClassForVT[LargestIntReg] ==
nullptr; --LargestIntReg)
1664 assert(LargestIntReg != MVT::i1 &&
"No integer registers defined!");
1668 for (
unsigned ExpandedReg = LargestIntReg + 1;
1669 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1670 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1679 unsigned LegalIntReg = LargestIntReg;
1680 for (
unsigned IntReg = LargestIntReg - 1;
1681 IntReg >= (
unsigned)MVT::i1; --IntReg) {
1684 LegalIntReg = IntReg;
1686 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1695 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1696 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1697 TransformToType[MVT::ppcf128] = MVT::f64;
1700 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1701 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1702 TransformToType[MVT::ppcf128] = MVT::i128;
1710 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1711 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1712 TransformToType[MVT::f128] = MVT::i128;
1719 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1720 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1721 TransformToType[MVT::f80] = MVT::i32;
1728 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1729 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1730 TransformToType[MVT::f64] = MVT::i64;
1737 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1738 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1739 TransformToType[MVT::f32] = MVT::i32;
1751 if (!UseFPRegsForHalfType) {
1752 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1753 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1755 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1756 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1758 TransformToType[MVT::f16] = MVT::f32;
1759 if (SoftPromoteHalfType) {
1770 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1771 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1772 TransformToType[MVT::bf16] = MVT::f32;
1777 for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1778 i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1785 bool IsLegalWiderType =
false;
1788 switch (PreferredAction) {
1791 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1792 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1795 for (
unsigned nVT = i + 1;
1802 TransformToType[i] = SVT;
1803 RegisterTypeForVT[i] = SVT;
1804 NumRegistersForVT[i] = 1;
1806 IsLegalWiderType =
true;
1810 if (IsLegalWiderType)
1818 for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1823 EC.getKnownMinValue() &&
1825 TransformToType[i] = SVT;
1826 RegisterTypeForVT[i] = SVT;
1827 NumRegistersForVT[i] = 1;
1829 IsLegalWiderType =
true;
1833 if (IsLegalWiderType)
1839 TransformToType[i] = NVT;
1841 RegisterTypeForVT[i] = NVT;
1842 NumRegistersForVT[i] = 1;
1852 unsigned NumIntermediates;
1854 NumIntermediates, RegisterVT,
this);
1855 NumRegistersForVT[i] = NumRegisters;
1856 assert(NumRegistersForVT[i] == NumRegisters &&
1857 "NumRegistersForVT size cannot represent NumRegisters!");
1858 RegisterTypeForVT[i] = RegisterVT;
1863 TransformToType[i] = MVT::Other;
1868 else if (EC.getKnownMinValue() > 1)
1871 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1875 TransformToType[i] = NVT;
1894 RepRegClassForVT[i] = RRC;
1895 RepRegClassCostForVT[i] =
Cost;
1918 EVT VT,
EVT &IntermediateVT,
1919 unsigned &NumIntermediates,
1920 MVT &RegisterVT)
const {
1933 IntermediateVT = RegisterEVT;
1935 NumIntermediates = 1;
1943 unsigned NumVectorRegs = 1;
1958 "Don't know how to legalize this scalable vector type");
1964 IntermediateVT = PartVT;
1966 return NumIntermediates;
1981 NumVectorRegs <<= 1;
1984 NumIntermediates = NumVectorRegs;
1989 IntermediateVT = NewVT;
1992 RegisterVT = DestVT;
1994 if (
EVT(DestVT).bitsLT(NewVT)) {
2004 return NumVectorRegs;
2017 const bool OptForSize =
2024 return (OptForSize ||
Range <= MaxJumpTableSize) &&
2025 (NumCases * 100 >=
Range * MinDensity);
2029 EVT ConditionVT)
const {
2043 unsigned NumValues = Types.size();
2044 if (NumValues == 0)
return;
2046 for (
Type *Ty : Types) {
2050 if (attr.hasRetAttr(Attribute::SExt))
2052 else if (attr.hasRetAttr(Attribute::ZExt))
2065 if (attr.hasRetAttr(Attribute::InReg))
2069 if (attr.hasRetAttr(Attribute::SExt))
2071 else if (attr.hasRetAttr(Attribute::ZExt))
2074 for (
unsigned i = 0; i < NumParts; ++i)
2081 return DL.getABITypeAlign(Ty);
2093 if (VT.
isZeroSized() || Alignment >=
DL.getABITypeAlign(Ty)) {
2095 if (
Fast !=
nullptr)
2113 unsigned AddrSpace,
Align Alignment,
2115 unsigned *
Fast)
const {
2123 unsigned *
Fast)
const {
2131 unsigned *
Fast)
const {
2163 enum InstructionOpcodes {
2164#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2165#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2166#include "llvm/IR/Instruction.def"
2168 switch (
static_cast<InstructionOpcodes
>(Opcode)) {
2171 case Switch:
return 0;
2172 case IndirectBr:
return 0;
2173 case Invoke:
return 0;
2174 case CallBr:
return 0;
2175 case Resume:
return 0;
2176 case Unreachable:
return 0;
2177 case CleanupRet:
return 0;
2178 case CatchRet:
return 0;
2179 case CatchPad:
return 0;
2180 case CatchSwitch:
return 0;
2181 case CleanupPad:
return 0;
2201 case Alloca:
return 0;
2204 case GetElementPtr:
return 0;
2205 case Fence:
return 0;
2206 case AtomicCmpXchg:
return 0;
2207 case AtomicRMW:
return 0;
2225 case Call:
return 0;
2227 case UserOp1:
return 0;
2228 case UserOp2:
return 0;
2229 case VAArg:
return 0;
2235 case LandingPad:
return 0;
2244 case Intrinsic::exp:
2246 case Intrinsic::exp2:
2248 case Intrinsic::log:
2257 bool UseTLS)
const {
2261 const char *UnsafeStackPtrVar =
"__safestack_unsafe_stack_ptr";
2262 auto UnsafeStackPtr =
2266 PointerType *StackPtrTy =
DL.getAllocaPtrType(M->getContext());
2268 if (!UnsafeStackPtr) {
2277 UnsafeStackPtrVar,
nullptr,
TLSModel);
2282 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2284 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2286 (UseTLS ?
"" :
"not ") +
"be thread-local");
2288 return UnsafeStackPtr;
2295 if (!TM.getTargetTriple().isAndroid())
2301 const char *SafestackPointerAddressName =
2303 if (!SafestackPointerAddressName) {
2304 M->getContext().emitError(
2305 "no libcall available for safestack pointer address");
2312 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2368 RTLIB::LibcallImpl GuardLocalImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2369 if (GuardLocalImpl != RTLIB::impl___guard_local)
2385 RTLIB::LibcallImpl StackGuardImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2386 if (StackGuardImpl == RTLIB::Unsupported)
2390 M.getOrInsertGlobal(
2392 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2393 false, GlobalVariable::ExternalLinkage,
2394 nullptr, StackGuardVarName);
2397 if (M.getDirectAccessExternalData() &&
2398 !TM.getTargetTriple().isOSCygMing() &&
2399 !(TM.getTargetTriple().isPPC64() &&
2400 TM.getTargetTriple().isOSFreeBSD()) &&
2401 (!TM.getTargetTriple().isOSDarwin() ||
2402 TM.getRelocationModel() == Reloc::Static))
2403 GV->setDSOLocal(true);
2412 RTLIB::LibcallImpl GuardVarImpl =
getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2413 if (GuardVarImpl == RTLIB::Unsupported)
2420 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2422 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2452 return MinimumBitTestCmps;
2456 MinimumBitTestCmps = Val;
2460 if (TM.Options.LoopAlignment)
2461 return Align(TM.Options.LoopAlignment);
2462 return PrefLoopAlignment;
2467 return MaxBytesForAlignment;
2478 return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
2486 std::string Name = VT.
isVector() ?
"vec-" :
"";
2488 Name += IsSqrt ?
"sqrt" :
"div";
2497 "Unexpected FP type for reciprocal estimate");
2509 const char RefStepToken =
':';
2510 Position = In.find(RefStepToken);
2514 StringRef RefStepString = In.substr(Position + 1);
2517 if (RefStepString.
size() == 1) {
2518 char RefStepChar = RefStepString[0];
2520 Value = RefStepChar -
'0';
2531 if (Override.
empty())
2535 Override.
split(OverrideVector,
',');
2536 unsigned NumArgs = OverrideVector.
size();
2546 Override = Override.
substr(0, RefPos);
2550 if (Override ==
"all")
2554 if (Override ==
"none")
2558 if (Override ==
"default")
2564 std::string VTNameNoSize = VTName;
2565 VTNameNoSize.pop_back();
2566 static const char DisabledPrefix =
'!';
2568 for (
StringRef RecipType : OverrideVector) {
2572 RecipType = RecipType.substr(0, RefPos);
2575 bool IsDisabled = RecipType[0] == DisabledPrefix;
2577 RecipType = RecipType.substr(1);
2579 if (RecipType == VTName || RecipType == VTNameNoSize)
2591 if (Override.
empty())
2595 Override.
split(OverrideVector,
',');
2596 unsigned NumArgs = OverrideVector.
size();
2608 Override = Override.
substr(0, RefPos);
2609 assert(Override !=
"none" &&
2610 "Disabled reciprocals, but specifed refinement steps?");
2613 if (Override ==
"all" || Override ==
"default")
2619 std::string VTNameNoSize = VTName;
2620 VTNameNoSize.pop_back();
2622 for (
StringRef RecipType : OverrideVector) {
2628 RecipType = RecipType.substr(0, RefPos);
2629 if (RecipType == VTName || RecipType == VTNameNoSize)
2698 if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
2715 if (
SI.isVolatile())
2718 if (
SI.hasMetadata(LLVMContext::MD_nontemporal))
2732 if (RMW->isVolatile())
2735 if (CmpX->isVolatile())
2753 "for it, but support must be explicitly enabled");
2754 case Intrinsic::vp_load:
2755 case Intrinsic::vp_gather:
2756 case Intrinsic::experimental_vp_strided_load:
2759 case Intrinsic::vp_store:
2760 case Intrinsic::vp_scatter:
2761 case Intrinsic::experimental_vp_strided_store:
2766 if (VPIntrin.
hasMetadata(LLVMContext::MD_nontemporal))
2777 return Builder.CreateFence(Ord);
2786 return Builder.CreateFence(Ord);
2797 auto &MF = *
MI.getMF();
2798 auto &
MRI = MF.getRegInfo();
2805 auto maxUses = [](
unsigned RematCost) {
2808 return std::numeric_limits<unsigned>::max();
2818 switch (
MI.getOpcode()) {
2823 case TargetOpcode::G_CONSTANT:
2824 case TargetOpcode::G_FCONSTANT:
2825 case TargetOpcode::G_FRAME_INDEX:
2826 case TargetOpcode::G_INTTOPTR:
2828 case TargetOpcode::G_GLOBAL_VALUE: {
2829 unsigned RematCost =
TTI->getGISelRematGlobalCost();
2831 unsigned MaxUses = maxUses(RematCost);
2832 if (MaxUses == UINT_MAX)
2834 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file defines the SmallVector class.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static cl::opt< unsigned > MaxStoresPerMemmoveOverride("max-store-memmove", cl::init(0), cl::Hidden, cl::desc("Override target's MaxStoresPerMemmove and " "MaxStoresPerMemmoveOptSize. " "Set to 0 to use the target default."))
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static cl::opt< unsigned > MaxStoresPerMemsetOverride("max-store-memset", cl::init(0), cl::Hidden, cl::desc("Override target's MaxStoresPerMemset and " "MaxStoresPerMemsetOptSize. " "Set to 0 to use the target default."))
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > MaxStoresPerMemcpyOverride("max-store-memcpy", cl::init(0), cl::Hidden, cl::desc("Override target's MaxStoresPerMemcpy and " "MaxStoresPerMemcpyOptSize. " "Set to 0 to use the target default."))
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
static constexpr size_t npos
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual ~TargetLoweringBase()
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Fast
Attempts to make calls as fast as possible (e.g.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ RESET_FPENV
Set floating-point environment to default state.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ CLMUL
Carry-less multiplication operations.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ CTLS
Count leading redundant sign bits.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUREM(EVT VT)
LLVM_ABI Libcall getSHL(EVT VT)
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getREM(EVT VT)
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSDIV(EVT VT)
LLVM_ABI Libcall getSRL(EVT VT)
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSRA(EVT VT)
LLVM_ABI Libcall getUDIV(EVT VT)
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLLROUND(EVT VT)
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLROUND(EVT VT)
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLRINT(EVT RetVT)
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getLLRINT(EVT RetVT)
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSREM(EVT VT)
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getMUL(EVT VT)
LLVM_ABI Libcall getCTPOP(EVT VT)
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMULO(EVT VT)
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...