LLVM 20.0.0git
ARMParallelDSP.cpp
Go to the documentation of this file.
1//===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11/// purpose of this pass is do some IR pattern matching to create ACLE
12/// DSP intrinsics, which map on these 32-bit SIMD operations.
13/// This pass runs only when unaligned accesses is supported/enabled.
14//
15//===----------------------------------------------------------------------===//
16
17#include "ARM.h"
18#include "ARMSubtarget.h"
20#include "llvm/ADT/Statistic.h"
27#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/IntrinsicsARM.h"
30#include "llvm/IR/Module.h"
31#include "llvm/IR/NoFolder.h"
33#include "llvm/Pass.h"
34#include "llvm/PassRegistry.h"
35#include "llvm/Support/Debug.h"
38
39using namespace llvm;
40using namespace PatternMatch;
41
42#define DEBUG_TYPE "arm-parallel-dsp"
43
44STATISTIC(NumSMLAD , "Number of smlad instructions generated");
45
46static cl::opt<bool>
47DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
48 cl::desc("Disable the ARM Parallel DSP pass"));
49
51NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
52 cl::desc("Limit the number of loads analysed"));
53
54namespace {
55 struct MulCandidate;
56 class Reduction;
57
58 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
59 using MemInstList = SmallVectorImpl<LoadInst*>;
61
62 // 'MulCandidate' holds the multiplication instructions that are candidates
63 // for parallel execution.
64 struct MulCandidate {
65 Instruction *Root;
66 Value* LHS;
67 Value* RHS;
68 bool Exchange = false;
69 bool Paired = false;
70 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen.
71
72 MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
73 Root(I), LHS(lhs), RHS(rhs) { }
74
75 bool HasTwoLoadInputs() const {
76 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
77 }
78
79 LoadInst *getBaseLoad() const {
80 return VecLd.front();
81 }
82 };
83
84 /// Represent a sequence of multiply-accumulate operations with the aim to
85 /// perform the multiplications in parallel.
86 class Reduction {
87 Instruction *Root = nullptr;
88 Value *Acc = nullptr;
89 MulCandList Muls;
90 MulPairList MulPairs;
92
93 public:
94 Reduction() = delete;
95
96 Reduction (Instruction *Add) : Root(Add) { }
97
98 /// Record an Add instruction that is a part of the this reduction.
99 void InsertAdd(Instruction *I) { Adds.insert(I); }
100
101 /// Create MulCandidates, each rooted at a Mul instruction, that is a part
102 /// of this reduction.
103 void InsertMuls() {
104 auto GetMulOperand = [](Value *V) -> Instruction* {
105 if (auto *SExt = dyn_cast<SExtInst>(V)) {
106 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
107 if (I->getOpcode() == Instruction::Mul)
108 return I;
109 } else if (auto *I = dyn_cast<Instruction>(V)) {
110 if (I->getOpcode() == Instruction::Mul)
111 return I;
112 }
113 return nullptr;
114 };
115
116 auto InsertMul = [this](Instruction *I) {
117 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
118 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
119 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
120 };
121
122 for (auto *Add : Adds) {
123 if (Add == Acc)
124 continue;
125 if (auto *Mul = GetMulOperand(Add->getOperand(0)))
126 InsertMul(Mul);
127 if (auto *Mul = GetMulOperand(Add->getOperand(1)))
128 InsertMul(Mul);
129 }
130 }
131
132 /// Add the incoming accumulator value, returns true if a value had not
133 /// already been added. Returning false signals to the user that this
134 /// reduction already has a value to initialise the accumulator.
135 bool InsertAcc(Value *V) {
136 if (Acc)
137 return false;
138 Acc = V;
139 return true;
140 }
141
142 /// Set two MulCandidates, rooted at muls, that can be executed as a single
143 /// parallel operation.
144 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
145 bool Exchange = false) {
146 LLVM_DEBUG(dbgs() << "Pairing:\n"
147 << *Mul0->Root << "\n"
148 << *Mul1->Root << "\n");
149 Mul0->Paired = true;
150 Mul1->Paired = true;
151 if (Exchange)
152 Mul1->Exchange = true;
153 MulPairs.push_back(std::make_pair(Mul0, Mul1));
154 }
155
156 /// Return the add instruction which is the root of the reduction.
157 Instruction *getRoot() { return Root; }
158
159 bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
160
161 Type *getType() const { return Root->getType(); }
162
163 /// Return the incoming value to be accumulated. This maybe null.
164 Value *getAccumulator() { return Acc; }
165
166 /// Return the set of adds that comprise the reduction.
167 SetVector<Instruction*> &getAdds() { return Adds; }
168
169 /// Return the MulCandidate, rooted at mul instruction, that comprise the
170 /// the reduction.
171 MulCandList &getMuls() { return Muls; }
172
173 /// Return the MulCandidate, rooted at mul instructions, that have been
174 /// paired for parallel execution.
175 MulPairList &getMulPairs() { return MulPairs; }
176
177 /// To finalise, replace the uses of the root with the intrinsic call.
178 void UpdateRoot(Instruction *SMLAD) {
179 Root->replaceAllUsesWith(SMLAD);
180 }
181
182 void dump() {
183 LLVM_DEBUG(dbgs() << "Reduction:\n";
184 for (auto *Add : Adds)
185 LLVM_DEBUG(dbgs() << *Add << "\n");
186 for (auto &Mul : Muls)
187 LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
188 << " " << *Mul->LHS << "\n"
189 << " " << *Mul->RHS << "\n");
190 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
191 );
192 }
193 };
194
195 class WidenedLoad {
196 LoadInst *NewLd = nullptr;
198
199 public:
200 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
201 : NewLd(Wide) {
202 append_range(Loads, Lds);
203 }
204 LoadInst *getLoad() {
205 return NewLd;
206 }
207 };
208
209 class ARMParallelDSP : public FunctionPass {
210 ScalarEvolution *SE;
211 AliasAnalysis *AA;
213 DominatorTree *DT;
214 const DataLayout *DL;
215 Module *M;
216 std::map<LoadInst*, LoadInst*> LoadPairs;
217 SmallPtrSet<LoadInst*, 4> OffsetLoads;
218 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
219
220 template<unsigned>
221 bool IsNarrowSequence(Value *V);
222 bool Search(Value *V, BasicBlock *BB, Reduction &R);
223 bool RecordMemoryOps(BasicBlock *BB);
224 void InsertParallelMACs(Reduction &Reduction);
225 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
226 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
227 bool CreateParallelPairs(Reduction &R);
228
229 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
230 /// Dual performs two signed 16x16-bit multiplications. It adds the
231 /// products to a 32-bit accumulate operand. Optionally, the instruction can
232 /// exchange the halfwords of the second operand before performing the
233 /// arithmetic.
234 bool MatchSMLAD(Function &F);
235
236 public:
237 static char ID;
238
239 ARMParallelDSP() : FunctionPass(ID) { }
240
241 void getAnalysisUsage(AnalysisUsage &AU) const override {
251 AU.setPreservesCFG();
252 }
253
254 bool runOnFunction(Function &F) override {
256 return false;
257 if (skipFunction(F))
258 return false;
259
260 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
261 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
262 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
263 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
264 auto &TPC = getAnalysis<TargetPassConfig>();
265
266 M = F.getParent();
267 DL = &M->getDataLayout();
268
269 auto &TM = TPC.getTM<TargetMachine>();
270 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
271
272 if (!ST->allowsUnalignedMem()) {
273 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
274 "running pass ARMParallelDSP\n");
275 return false;
276 }
277
278 if (!ST->hasDSP()) {
279 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
280 "ARMParallelDSP\n");
281 return false;
282 }
283
284 if (!ST->isLittle()) {
285 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
286 << "ARMParallelDSP\n");
287 return false;
288 }
289
290 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
291 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
292
293 bool Changes = MatchSMLAD(F);
294 return Changes;
295 }
296 };
297}
298
299bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
300 MemInstList &VecMem) {
301 if (!Ld0 || !Ld1)
302 return false;
303
304 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
305 return false;
306
307 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
308 dbgs() << "Ld0:"; Ld0->dump();
309 dbgs() << "Ld1:"; Ld1->dump();
310 );
311
312 VecMem.clear();
313 VecMem.push_back(Ld0);
314 VecMem.push_back(Ld1);
315 return true;
316}
317
318// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
319// instructions, which is set to 16. So here we should collect all i8 and i16
320// narrow operations.
321// TODO: we currently only collect i16, and will support i8 later, so that's
322// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
323template<unsigned MaxBitWidth>
324bool ARMParallelDSP::IsNarrowSequence(Value *V) {
325 if (auto *SExt = dyn_cast<SExtInst>(V)) {
326 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
327 return false;
328
329 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
330 // Check that this load could be paired.
331 return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
332 }
333 }
334 return false;
335}
336
337/// Iterate through the block and record base, offset pairs of loads which can
338/// be widened into a single load.
339bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
342 LoadPairs.clear();
343 WideLoads.clear();
344
345 // Collect loads and instruction that may write to memory. For now we only
346 // record loads which are simple, sign-extended and have a single user.
347 // TODO: Allow zero-extended loads.
348 for (auto &I : *BB) {
349 if (I.mayWriteToMemory())
351 auto *Ld = dyn_cast<LoadInst>(&I);
352 if (!Ld || !Ld->isSimple() ||
353 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
354 continue;
355 Loads.push_back(Ld);
356 }
357
358 if (Loads.empty() || Loads.size() > NumLoadLimit)
359 return false;
360
361 using InstSet = std::set<Instruction*>;
362 using DepMap = std::map<Instruction*, InstSet>;
363 DepMap RAWDeps;
364
365 // Record any writes that may alias a load.
367 for (auto *Write : Writes) {
368 for (auto *Read : Loads) {
369 MemoryLocation ReadLoc =
370 MemoryLocation(Read->getPointerOperand(), Size);
371
372 if (!isModOrRefSet(AA->getModRefInfo(Write, ReadLoc)))
373 continue;
374 if (Write->comesBefore(Read))
375 RAWDeps[Read].insert(Write);
376 }
377 }
378
379 // Check whether there's not a write between the two loads which would
380 // prevent them from being safely merged.
381 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
382 bool BaseFirst = Base->comesBefore(Offset);
383 LoadInst *Dominator = BaseFirst ? Base : Offset;
384 LoadInst *Dominated = BaseFirst ? Offset : Base;
385
386 if (RAWDeps.count(Dominated)) {
387 InstSet &WritesBefore = RAWDeps[Dominated];
388
389 for (auto *Before : WritesBefore) {
390 // We can't move the second load backward, past a write, to merge
391 // with the first load.
392 if (Dominator->comesBefore(Before))
393 return false;
394 }
395 }
396 return true;
397 };
398
399 // Record base, offset load pairs.
400 for (auto *Base : Loads) {
401 for (auto *Offset : Loads) {
402 if (Base == Offset || OffsetLoads.count(Offset))
403 continue;
404
405 if (isConsecutiveAccess(Base, Offset, *DL, *SE) &&
406 SafeToPair(Base, Offset)) {
407 LoadPairs[Base] = Offset;
408 OffsetLoads.insert(Offset);
409 break;
410 }
411 }
412 }
413
414 LLVM_DEBUG(if (!LoadPairs.empty()) {
415 dbgs() << "Consecutive load pairs:\n";
416 for (auto &MapIt : LoadPairs) {
417 LLVM_DEBUG(dbgs() << *MapIt.first << ", "
418 << *MapIt.second << "\n");
419 }
420 });
421 return LoadPairs.size() > 1;
422}
423
424// Search recursively back through the operands to find a tree of values that
425// form a multiply-accumulate chain. The search records the Add and Mul
426// instructions that form the reduction and allows us to find a single value
427// to be used as the initial input to the accumlator.
428bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
429 // If we find a non-instruction, try to use it as the initial accumulator
430 // value. This may have already been found during the search in which case
431 // this function will return false, signaling a search fail.
432 auto *I = dyn_cast<Instruction>(V);
433 if (!I)
434 return R.InsertAcc(V);
435
436 if (I->getParent() != BB)
437 return false;
438
439 switch (I->getOpcode()) {
440 default:
441 break;
442 case Instruction::PHI:
443 // Could be the accumulator value.
444 return R.InsertAcc(V);
445 case Instruction::Add: {
446 // Adds should be adding together two muls, or another add and a mul to
447 // be within the mac chain. One of the operands may also be the
448 // accumulator value at which point we should stop searching.
449 R.InsertAdd(I);
450 Value *LHS = I->getOperand(0);
451 Value *RHS = I->getOperand(1);
452 bool ValidLHS = Search(LHS, BB, R);
453 bool ValidRHS = Search(RHS, BB, R);
454
455 if (ValidLHS && ValidRHS)
456 return true;
457
458 // Ensure we don't add the root as the incoming accumulator.
459 if (R.getRoot() == I)
460 return false;
461
462 return R.InsertAcc(I);
463 }
464 case Instruction::Mul: {
465 Value *MulOp0 = I->getOperand(0);
466 Value *MulOp1 = I->getOperand(1);
467 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
468 }
469 case Instruction::SExt:
470 return Search(I->getOperand(0), BB, R);
471 }
472 return false;
473}
474
475// The pass needs to identify integer add/sub reductions of 16-bit vector
476// multiplications.
477// To use SMLAD:
478// 1) we first need to find integer add then look for this pattern:
479//
480// acc0 = ...
481// ld0 = load i16
482// sext0 = sext i16 %ld0 to i32
483// ld1 = load i16
484// sext1 = sext i16 %ld1 to i32
485// mul0 = mul %sext0, %sext1
486// ld2 = load i16
487// sext2 = sext i16 %ld2 to i32
488// ld3 = load i16
489// sext3 = sext i16 %ld3 to i32
490// mul1 = mul i32 %sext2, %sext3
491// add0 = add i32 %mul0, %acc0
492// acc1 = add i32 %add0, %mul1
493//
494// Which can be selected to:
495//
496// ldr r0
497// ldr r1
498// smlad r2, r0, r1, r2
499//
500// If constants are used instead of loads, these will need to be hoisted
501// out and into a register.
502//
503// If loop invariants are used instead of loads, these need to be packed
504// before the loop begins.
505//
506bool ARMParallelDSP::MatchSMLAD(Function &F) {
507 bool Changed = false;
508
509 for (auto &BB : F) {
511 if (!RecordMemoryOps(&BB))
512 continue;
513
514 for (Instruction &I : reverse(BB)) {
515 if (I.getOpcode() != Instruction::Add)
516 continue;
517
518 if (AllAdds.count(&I))
519 continue;
520
521 const auto *Ty = I.getType();
522 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
523 continue;
524
525 Reduction R(&I);
526 if (!Search(&I, &BB, R))
527 continue;
528
529 R.InsertMuls();
530 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
531
532 if (!CreateParallelPairs(R))
533 continue;
534
535 InsertParallelMACs(R);
536 Changed = true;
537 AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
538 LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB);
539 }
540 }
541
542 return Changed;
543}
544
545bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
546
547 // Not enough mul operations to make a pair.
548 if (R.getMuls().size() < 2)
549 return false;
550
551 // Check that the muls operate directly upon sign extended loads.
552 for (auto &MulCand : R.getMuls()) {
553 if (!MulCand->HasTwoLoadInputs())
554 return false;
555 }
556
557 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
558 // The first elements of each vector should be loads with sexts. If we
559 // find that its two pairs of consecutive loads, then these can be
560 // transformed into two wider loads and the users can be replaced with
561 // DSP intrinsics.
562 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
563 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
564 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
565 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
566
567 // Check that each mul is operating on two different loads.
568 if (Ld0 == Ld2 || Ld1 == Ld3)
569 return false;
570
571 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
572 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
573 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
574 R.AddMulPair(PMul0, PMul1);
575 return true;
576 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
577 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
578 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
579 R.AddMulPair(PMul0, PMul1, true);
580 return true;
581 }
582 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
583 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
584 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
585 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
586 LLVM_DEBUG(dbgs() << " and swapping muls\n");
587 // Only the second operand can be exchanged, so swap the muls.
588 R.AddMulPair(PMul1, PMul0, true);
589 return true;
590 }
591 return false;
592 };
593
594 MulCandList &Muls = R.getMuls();
595 const unsigned Elems = Muls.size();
596 for (unsigned i = 0; i < Elems; ++i) {
597 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
598 if (PMul0->Paired)
599 continue;
600
601 for (unsigned j = 0; j < Elems; ++j) {
602 if (i == j)
603 continue;
604
605 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
606 if (PMul1->Paired)
607 continue;
608
609 const Instruction *Mul0 = PMul0->Root;
610 const Instruction *Mul1 = PMul1->Root;
611 if (Mul0 == Mul1)
612 continue;
613
614 assert(PMul0 != PMul1 && "expected different chains");
615
616 if (CanPair(R, PMul0, PMul1))
617 break;
618 }
619 }
620 return !R.getMulPairs().empty();
621}
622
623void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
624
625 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
626 Value *Acc, bool Exchange,
627 Instruction *InsertAfter) {
628 // Replace the reduction chain with an intrinsic call
629
630 Value* Args[] = { WideLd0, WideLd1, Acc };
631 Function *SMLAD = nullptr;
632 if (Exchange)
633 SMLAD = Acc->getType()->isIntegerTy(32) ?
634 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
635 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
636 else
637 SMLAD = Acc->getType()->isIntegerTy(32) ?
638 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
639 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
640
641 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
642 BasicBlock::iterator(InsertAfter));
643 Instruction *Call = Builder.CreateCall(SMLAD, Args);
644 NumSMLAD++;
645 return Call;
646 };
647
648 // Return the instruction after the dominated instruction.
649 auto GetInsertPoint = [this](Value *A, Value *B) {
650 assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
651 "expected at least one instruction");
652
653 Value *V = nullptr;
654 if (!isa<Instruction>(A))
655 V = B;
656 else if (!isa<Instruction>(B))
657 V = A;
658 else
659 V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
660
661 return &*++BasicBlock::iterator(cast<Instruction>(V));
662 };
663
664 Value *Acc = R.getAccumulator();
665
666 // For any muls that were discovered but not paired, accumulate their values
667 // as before.
668 IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
669 MulCandList &MulCands = R.getMuls();
670 for (auto &MulCand : MulCands) {
671 if (MulCand->Paired)
672 continue;
673
674 Instruction *Mul = cast<Instruction>(MulCand->Root);
675 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
676
677 if (R.getType() != Mul->getType()) {
678 assert(R.is64Bit() && "expected 64-bit result");
679 Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
680 Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
681 }
682
683 if (!Acc) {
684 Acc = Mul;
685 continue;
686 }
687
688 // If Acc is the original incoming value to the reduction, it could be a
689 // phi. But the phi will dominate Mul, meaning that Mul will be the
690 // insertion point.
691 Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
692 Acc = Builder.CreateAdd(Mul, Acc);
693 }
694
695 if (!Acc) {
696 Acc = R.is64Bit() ?
697 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
698 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
699 } else if (Acc->getType() != R.getType()) {
700 Builder.SetInsertPoint(R.getRoot());
701 Acc = Builder.CreateSExt(Acc, R.getType());
702 }
703
704 // Roughly sort the mul pairs in their program order.
705 llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) {
706 const Instruction *A = PairA.first->Root;
707 const Instruction *B = PairB.first->Root;
708 return A->comesBefore(B);
709 });
710
711 IntegerType *Ty = IntegerType::get(M->getContext(), 32);
712 for (auto &Pair : R.getMulPairs()) {
713 MulCandidate *LHSMul = Pair.first;
714 MulCandidate *RHSMul = Pair.second;
715 LoadInst *BaseLHS = LHSMul->getBaseLoad();
716 LoadInst *BaseRHS = RHSMul->getBaseLoad();
717 LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
718 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
719 LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
720 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
721
722 Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
723 InsertAfter = GetInsertPoint(InsertAfter, Acc);
724 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
725 }
726 R.UpdateRoot(cast<Instruction>(Acc));
727}
728
729LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
730 IntegerType *LoadTy) {
731 assert(Loads.size() == 2 && "currently only support widening two loads");
732
733 LoadInst *Base = Loads[0];
734 LoadInst *Offset = Loads[1];
735
736 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
737 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
738
739 assert((BaseSExt && OffsetSExt)
740 && "Loads should have a single, extending, user");
741
742 std::function<void(Value*, Value*)> MoveBefore =
743 [&](Value *A, Value *B) -> void {
744 if (!isa<Instruction>(A) || !isa<Instruction>(B))
745 return;
746
747 auto *Source = cast<Instruction>(A);
748 auto *Sink = cast<Instruction>(B);
749
750 if (DT->dominates(Source, Sink) ||
751 Source->getParent() != Sink->getParent() ||
752 isa<PHINode>(Source) || isa<PHINode>(Sink))
753 return;
754
755 Source->moveBefore(Sink);
756 for (auto &Op : Source->operands())
757 MoveBefore(Op, Source);
758 };
759
760 // Insert the load at the point of the original dominating load.
761 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
762 IRBuilder<NoFolder> IRB(DomLoad->getParent(),
763 ++BasicBlock::iterator(DomLoad));
764
765 // Create the wide load, while making sure to maintain the original alignment
766 // as this prevents ldrd from being generated when it could be illegal due to
767 // memory alignment.
768 Value *VecPtr = Base->getPointerOperand();
769 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign());
770
771 // Make sure everything is in the correct order in the basic block.
772 MoveBefore(Base->getPointerOperand(), VecPtr);
773 MoveBefore(VecPtr, WideLoad);
774
775 // From the wide load, create two values that equal the original two loads.
776 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
777 // TODO: Support big-endian as well.
778 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
779 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
780 BaseSExt->replaceAllUsesWith(NewBaseSExt);
781
782 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
783 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
784 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
785 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
786 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
787 OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
788
789 LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
790 << *Base << "\n" << *Offset << "\n"
791 << "Created Wide Load:\n"
792 << *WideLoad << "\n"
793 << *Bottom << "\n"
794 << *NewBaseSExt << "\n"
795 << *Top << "\n"
796 << *Trunc << "\n"
797 << *NewOffsetSExt << "\n");
798 WideLoads.emplace(std::make_pair(Base,
799 std::make_unique<WidenedLoad>(Loads, WideLoad)));
800 return WideLoad;
801}
802
804 return new ARMParallelDSP();
805}
806
807char ARMParallelDSP::ID = 0;
808
809INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
810 "Transform functions to use DSP intrinsics", false, false)
811INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
812 "Transform functions to use DSP intrinsics", false, false)
Lower uses of LDS variables from non kernel functions
arm parallel Transform functions to use DSP intrinsics
static cl::opt< bool > DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), cl::desc("Disable the ARM Parallel DSP pass"))
static cl::opt< unsigned > NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), cl::desc("Limit the number of loads analysed"))
arm parallel dsp
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
SmallVector< uint32_t, 0 > Writes
Definition: ELF_riscv.cpp:497
This is the interface for a simple mod/ref and alias analysis over globals.
Move duplicate certain instructions close to their use
Definition: Localizer.cpp:33
loop Loop Strength Reduction
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Module.h This file contains the declarations for the Module class.
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
Target-Independent Code Generator Pass Configuration Options pass.
static bool is64Bit(const char *name)
Value * RHS
Value * LHS
BinaryOperator * Mul
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Check whether or not an instruction may read or write the optionally specified memory location.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
An immutable pass that tracks lazily created AssumptionCache objects.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition: Pass.cpp:178
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
Legacy wrapper pass to provide the GlobalsAAResult object.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2674
bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
Class to represent integer types.
Definition: DerivedTypes.h:40
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:266
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:72
An instruction for reading from memory.
Definition: Instructions.h:174
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
The main scalar evolution driver.
A vector that has set insertion semantics.
Definition: SetVector.h:57
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:436
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:368
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:503
bool empty() const
Definition: SmallVector.h:95
size_t size() const
Definition: SmallVector.h:92
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:587
void push_back(const T &Elt)
Definition: SmallVector.h:427
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
Provides information about what library functions are available for the current target.
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
Target-Independent Code Generator Pass Configuration Options.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:224
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:5266
const ParentTy * getParent() const
Definition: ilist_node.h:32
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1539
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
@ Offset
Definition: DWP.cpp:480
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2073
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isModOrRefSet(const ModRefInfo MRI)
Definition: ModRef.h:42
@ Add
Sum of integers.
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
Pass * createARMParallelDSPPass()