LLVM 23.0.0git
AMDGPULowerModuleLDSPass.cpp
Go to the documentation of this file.
1//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates local data store, LDS, uses from non-kernel functions.
10// LDS is contiguous memory allocated per kernel execution.
11//
12// Background.
13//
14// The programming model is global variables, or equivalently function local
15// static variables, accessible from kernels or other functions. For uses from
16// kernels this is straightforward - assign an integer to the kernel for the
17// memory required by all the variables combined, allocate them within that.
18// For uses from functions there are performance tradeoffs to choose between.
19//
20// This model means the GPU runtime can specify the amount of memory allocated.
21// If this is more than the kernel assumed, the excess can be made available
22// using a language specific feature, which IR represents as a variable with
23// no initializer. This feature is referred to here as "Dynamic LDS" and is
24// lowered slightly differently to the normal case.
25//
26// Consequences of this GPU feature:
27// - memory is limited and exceeding it halts compilation
28// - a global accessed by one kernel exists independent of other kernels
29// - a global exists independent of simultaneous execution of the same kernel
30// - the address of the global may be different from different kernels as they
31// do not alias, which permits only allocating variables they use
32// - if the address is allowed to differ, functions need help to find it
33//
34// Uses from kernels are implemented here by grouping them in a per-kernel
35// struct instance. This duplicates the variables, accurately modelling their
36// aliasing properties relative to a single global representation. It also
37// permits control over alignment via padding.
38//
39// Uses from functions are more complicated and the primary purpose of this
40// IR pass. Several different lowering are chosen between to meet requirements
41// to avoid allocating any LDS where it is not necessary, as that impacts
42// occupancy and may fail the compilation, while not imposing overhead on a
43// feature whose primary advantage over global memory is performance. The basic
44// design goal is to avoid one kernel imposing overhead on another.
45//
46// Implementation.
47//
48// LDS variables with constant annotation or non-undef initializer are passed
49// through unchanged for simplification or error diagnostics in later passes.
50// Non-undef initializers are not yet implemented for LDS.
51//
52// LDS variables that are always allocated at the same address can be found
53// by lookup at that address. Otherwise runtime information/cost is required.
54//
55// The simplest strategy possible is to group all LDS variables in a single
56// struct and allocate that struct in every kernel such that the original
57// variables are always at the same address. LDS is however a limited resource
58// so this strategy is unusable in practice. It is not implemented here.
59//
60// Strategy | Precise allocation | Zero runtime cost | General purpose |
61// --------+--------------------+-------------------+-----------------+
62// Module | No | Yes | Yes |
63// Table | Yes | No | Yes |
64// Kernel | Yes | Yes | No |
65// Hybrid | Yes | Partial | Yes |
66//
67// "Module" spends LDS memory to save cycles. "Table" spends cycles and global
68// memory to save LDS. "Kernel" is as fast as kernel allocation but only works
69// for variables that are known reachable from a single kernel. "Hybrid" picks
70// between all three. When forced to choose between LDS and cycles we minimise
71// LDS use.
72
73// The "module" lowering implemented here finds LDS variables which are used by
74// non-kernel functions and creates a new struct with a field for each of those
75// LDS variables. Variables that are only used from kernels are excluded.
76//
77// The "table" lowering implemented here has three components.
78// First kernels are assigned a unique integer identifier which is available in
79// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80// is passed through a specific SGPR, thus works with indirect calls.
81// Second, each kernel allocates LDS variables independent of other kernels and
82// writes the addresses it chose for each variable into an array in consistent
83// order. If the kernel does not allocate a given variable, it writes undef to
84// the corresponding array location. These arrays are written to a constant
85// table in the order matching the kernel unique integer identifier.
86// Third, uses from non-kernel functions are replaced with a table lookup using
87// the intrinsic function to find the address of the variable.
88//
89// "Kernel" lowering is only applicable for variables that are unambiguously
90// reachable from exactly one kernel. For those cases, accesses to the variable
91// can be lowered to ConstantExpr address of a struct instance specific to that
92// one kernel. This is zero cost in space and in compute. It will raise a fatal
93// error on any variable that might be reachable from multiple kernels and is
94// thus most easily used as part of the hybrid lowering strategy.
95//
96// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97// lowering where it can. It lowers the variable accessed by the greatest
98// number of kernels using the module strategy as that is free for the first
99// variable. Any futher variables that can be lowered with the module strategy
100// without incurring LDS memory overhead are. The remaining ones are lowered
101// via table.
102//
103// Consequences
104// - No heuristics or user controlled magic numbers, hybrid is the right choice
105// - Kernels that don't use functions (or have had them all inlined) are not
106// affected by any lowering for kernels that do.
107// - Kernels that don't make indirect function calls are not affected by those
108// that do.
109// - Variables which are used by lots of kernels, e.g. those injected by a
110// language runtime in most kernels, are expected to have no overhead
111// - Implementations that instantiate templates per-kernel where those templates
112// use LDS are expected to hit the "Kernel" lowering strategy
113// - The runtime properties impose a cost in compiler implementation complexity
114//
115// Dynamic LDS implementation
116// Dynamic LDS is lowered similarly to the "table" strategy above and uses the
117// same intrinsic to identify which kernel is at the root of the dynamic call
118// graph. This relies on the specified behaviour that all dynamic LDS variables
119// alias one another, i.e. are at the same address, with respect to a given
120// kernel. Therefore this pass creates new dynamic LDS variables for each kernel
121// that allocates any dynamic LDS and builds a table of addresses out of those.
122// The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
123// The corresponding optimisation for "kernel" lowering where the table lookup
124// is elided is not implemented.
125//
126//
127// Implementation notes / limitations
128// A single LDS global variable represents an instance per kernel that can reach
129// said variables. This pass essentially specialises said variables per kernel.
130// Handling ConstantExpr during the pass complicated this significantly so now
131// all ConstantExpr uses of LDS variables are expanded to instructions. This
132// may need amending when implementing non-undef initialisers.
133//
134// Lowering is split between this IR pass and the back end. This pass chooses
135// where given variables should be allocated and marks them with metadata,
136// MD_absolute_symbol. The backend places the variables in coincidentally the
137// same location and raises a fatal error if something has gone awry. This works
138// in practice because the only pass between this one and the backend that
139// changes LDS is PromoteAlloca and the changes it makes do not conflict.
140//
141// Addresses are written to constant global arrays based on the same metadata.
142//
143// The backend lowers LDS variables in the order of traversal of the function.
144// This is at odds with the deterministic layout required. The workaround is to
145// allocate the fixed-address variables immediately upon starting the function
146// where they can be placed as intended. This requires a means of mapping from
147// the function to the variables that it allocates. For the module scope lds,
148// this is via metadata indicating whether the variable is not required. If a
149// pass deletes that metadata, a fatal error on disagreement with the absolute
150// symbol metadata will occur. For kernel scope and dynamic, this is by _name_
151// correspondence between the function and the variable. It requires the
152// kernel to have a name (which is only a limitation for tests in practice) and
153// for nothing to rename the corresponding symbols. This is a hazard if the pass
154// is run multiple times during debugging. Alternative schemes considered all
155// involve bespoke metadata.
156//
157// If the name correspondence can be replaced, multiple distinct kernels that
158// have the same memory layout can map to the same kernel id (as the address
159// itself is handled by the absolute symbol metadata) and that will allow more
160// uses of the "kernel" style faster lowering and reduce the size of the lookup
161// tables.
162//
163// There is a test that checks this does not fire for a graphics shader. This
164// lowering is expected to work for graphics if the isKernel test is changed.
165//
166// The current markUsedByKernel is sufficient for PromoteAlloca but is elided
167// before codegen. Replacing this with an equivalent intrinsic which lasts until
168// shortly after the machine function lowering of LDS would help break the name
169// mapping. The other part needed is probably to amend PromoteAlloca to embed
170// the LDS variables it creates in the same struct created here. That avoids the
171// current hazard where a PromoteAlloca LDS variable might be allocated before
172// the kernel scope (and thus error on the address check). Given a new invariant
173// that no LDS variables exist outside of the structs managed here, and an
174// intrinsic that lasts until after the LDS frame lowering, it should be
175// possible to drop the name mapping and fold equivalent memory layouts.
176//
177//===----------------------------------------------------------------------===//
178
179#include "AMDGPU.h"
180#include "AMDGPUMemoryUtils.h"
181#include "AMDGPUTargetMachine.h"
182#include "Utils/AMDGPUBaseInfo.h"
183#include "llvm/ADT/BitVector.h"
184#include "llvm/ADT/DenseMap.h"
185#include "llvm/ADT/DenseSet.h"
186#include "llvm/ADT/STLExtras.h"
191#include "llvm/IR/Constants.h"
192#include "llvm/IR/DerivedTypes.h"
193#include "llvm/IR/Dominators.h"
194#include "llvm/IR/IRBuilder.h"
195#include "llvm/IR/InlineAsm.h"
196#include "llvm/IR/Instructions.h"
197#include "llvm/IR/IntrinsicsAMDGPU.h"
198#include "llvm/IR/MDBuilder.h"
201#include "llvm/Pass.h"
203#include "llvm/Support/Debug.h"
204#include "llvm/Support/Format.h"
209
210#include <vector>
211
212#include <cstdio>
213
214#define DEBUG_TYPE "amdgpu-lower-module-lds"
215
216using namespace llvm;
217using namespace AMDGPU;
218
219namespace {
220
221cl::opt<bool> SuperAlignLDSGlobals(
222 "amdgpu-super-align-lds-globals",
223 cl::desc("Increase alignment of LDS if it is not on align boundary"),
224 cl::init(true), cl::Hidden);
225
226enum class LoweringKind { module, table, kernel, hybrid };
227cl::opt<LoweringKind> LoweringKindLoc(
228 "amdgpu-lower-module-lds-strategy",
229 cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
230 cl::init(LoweringKind::hybrid),
232 clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
233 clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
235 LoweringKind::kernel, "kernel",
236 "Lower variables reachable from one kernel, otherwise abort"),
237 clEnumValN(LoweringKind::hybrid, "hybrid",
238 "Lower via mixture of above strategies")));
239
240template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
241 llvm::sort(V, [](const auto *L, const auto *R) {
242 return L->getName() < R->getName();
243 });
244 return {std::move(V)};
245}
246
247class AMDGPULowerModuleLDS {
248 const AMDGPUTargetMachine &TM;
249
250 static void
251 removeLocalVarsFromUsedLists(Module &M,
252 const DenseSet<GlobalVariable *> &LocalVars) {
253 // The verifier rejects used lists containing an inttoptr of a constant
254 // so remove the variables from these lists before replaceAllUsesWith
255 SmallPtrSet<Constant *, 8> LocalVarsSet;
256 for (GlobalVariable *LocalVar : LocalVars)
257 LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
258
260 M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
261
262 for (GlobalVariable *LocalVar : LocalVars)
263 LocalVar->removeDeadConstantUsers();
264 }
265
266 static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
267 // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
268 // that might call a function which accesses a field within it. This is
269 // presently approximated to 'all kernels' if there are any such functions
270 // in the module. This implicit use is redefined as an explicit use here so
271 // that later passes, specifically PromoteAlloca, account for the required
272 // memory without any knowledge of this transform.
273
274 // An operand bundle on llvm.donothing works because the call instruction
275 // survives until after the last pass that needs to account for LDS. It is
276 // better than inline asm as the latter survives until the end of codegen. A
277 // totally robust solution would be a function with the same semantics as
278 // llvm.donothing that takes a pointer to the instance and is lowered to a
279 // no-op after LDS is allocated, but that is not presently necessary.
280
281 // This intrinsic is eliminated shortly before instruction selection. It
282 // does not suffice to indicate to ISel that a given global which is not
283 // immediately used by the kernel must still be allocated by it. An
284 // equivalent target specific intrinsic which lasts until immediately after
285 // codegen would suffice for that, but one would still need to ensure that
286 // the variables are allocated in the anticipated order.
287 BasicBlock *Entry = &Func->getEntryBlock();
288 IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt());
289
291 Func->getParent(), Intrinsic::donothing, {});
292
293 Value *UseInstance[1] = {
294 Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
295
296 Builder.CreateCall(
297 Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
298 }
299
300public:
301 AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {}
302
303 struct LDSVariableReplacement {
304 GlobalVariable *SGV = nullptr;
305 DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
306 };
307
308 // remap from lds global to a constantexpr gep to where it has been moved to
309 // for each kernel
310 // an array with an element for each kernel containing where the corresponding
311 // variable was remapped to
312
313 static Constant *getAddressesOfVariablesInKernel(
315 const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
316 // Create a ConstantArray containing the address of each Variable within the
317 // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
318 // does not allocate it
319 // TODO: Drop the ptrtoint conversion
320
321 Type *I32 = Type::getInt32Ty(Ctx);
322
323 ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
324
326 for (GlobalVariable *GV : Variables) {
327 auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
328 if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
329 auto *elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
330 Elements.push_back(elt);
331 } else {
332 Elements.push_back(PoisonValue::get(I32));
333 }
334 }
335 return ConstantArray::get(KernelOffsetsType, Elements);
336 }
337
338 static GlobalVariable *buildLookupTable(
340 ArrayRef<Function *> kernels,
342 if (Variables.empty()) {
343 return nullptr;
344 }
345 LLVMContext &Ctx = M.getContext();
346
347 const size_t NumberVariables = Variables.size();
348 const size_t NumberKernels = kernels.size();
349
350 ArrayType *KernelOffsetsType =
351 ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
352
353 ArrayType *AllKernelsOffsetsType =
354 ArrayType::get(KernelOffsetsType, NumberKernels);
355
356 Constant *Missing = PoisonValue::get(KernelOffsetsType);
357 std::vector<Constant *> overallConstantExprElts(NumberKernels);
358 for (size_t i = 0; i < NumberKernels; i++) {
359 auto Replacement = KernelToReplacement.find(kernels[i]);
360 overallConstantExprElts[i] =
361 (Replacement == KernelToReplacement.end())
362 ? Missing
363 : getAddressesOfVariablesInKernel(
364 Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
365 }
366
367 Constant *init =
368 ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
369
370 return new GlobalVariable(
371 M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
372 "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
374 }
375
376 void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
377 GlobalVariable *LookupTable,
378 GlobalVariable *GV, Use &U,
379 Value *OptionalIndex) {
380 // Table is a constant array of the same length as OrderedKernels
381 LLVMContext &Ctx = M.getContext();
382 Type *I32 = Type::getInt32Ty(Ctx);
383 auto *I = cast<Instruction>(U.getUser());
384
385 Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
386
387 if (auto *Phi = dyn_cast<PHINode>(I)) {
388 BasicBlock *BB = Phi->getIncomingBlock(U);
389 Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
390 } else {
391 Builder.SetInsertPoint(I);
392 }
393
394 SmallVector<Value *, 3> GEPIdx = {
395 ConstantInt::get(I32, 0),
396 tableKernelIndex,
397 };
398 if (OptionalIndex)
399 GEPIdx.push_back(OptionalIndex);
400
401 Value *Address = Builder.CreateInBoundsGEP(
402 LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
403
404 Value *loaded = Builder.CreateLoad(I32, Address);
405
406 Value *replacement =
407 Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
408
409 U.set(replacement);
410 }
411
412 void replaceUsesInInstructionsWithTableLookup(
413 Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
414 GlobalVariable *LookupTable) {
415
416 LLVMContext &Ctx = M.getContext();
417 IRBuilder<> Builder(Ctx);
418 Type *I32 = Type::getInt32Ty(Ctx);
419
420 for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
421 auto *GV = ModuleScopeVariables[Index];
422
423 for (Use &U : make_early_inc_range(GV->uses())) {
424 auto *I = dyn_cast<Instruction>(U.getUser());
425 if (!I)
426 continue;
427
428 replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
429 ConstantInt::get(I32, Index));
430 }
431 }
432 }
433
434 static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
435 Module &M, LDSUsesInfoTy &LDSUsesInfo,
436 DenseSet<GlobalVariable *> const &VariableSet) {
437
438 DenseSet<Function *> KernelSet;
439
440 if (VariableSet.empty())
441 return KernelSet;
442
443 for (Function &Func : M.functions()) {
444 if (Func.isDeclaration() || !isKernel(Func))
445 continue;
446 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
447 if (VariableSet.contains(GV)) {
448 KernelSet.insert(&Func);
449 break;
450 }
451 }
452 }
453
454 return KernelSet;
455 }
456
457 static GlobalVariable *
458 chooseBestVariableForModuleStrategy(const DataLayout &DL,
459 VariableFunctionMap &LDSVars) {
460 // Find the global variable with the most indirect uses from kernels
461
462 struct CandidateTy {
463 GlobalVariable *GV = nullptr;
464 size_t UserCount = 0;
465 size_t Size = 0;
466
467 CandidateTy() = default;
468
469 CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
470 : GV(GV), UserCount(UserCount), Size(AllocSize) {}
471
472 bool operator<(const CandidateTy &Other) const {
473 // Fewer users makes module scope variable less attractive
474 if (UserCount < Other.UserCount) {
475 return true;
476 }
477 if (UserCount > Other.UserCount) {
478 return false;
479 }
480
481 // Bigger makes module scope variable less attractive
482 if (Size < Other.Size) {
483 return false;
484 }
485
486 if (Size > Other.Size) {
487 return true;
488 }
489
490 // Arbitrary but consistent
491 return GV->getName() < Other.GV->getName();
492 }
493 };
494
495 CandidateTy MostUsed;
496
497 for (auto &K : LDSVars) {
498 GlobalVariable *GV = K.first;
499 if (K.second.size() <= 1) {
500 // A variable reachable by only one kernel is best lowered with kernel
501 // strategy
502 continue;
503 }
504 CandidateTy Candidate(GV, K.second.size(), GV->getGlobalSize(DL));
505 if (MostUsed < Candidate)
506 MostUsed = Candidate;
507 }
508
509 return MostUsed.GV;
510 }
511
512 static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
513 uint32_t Address) {
514 // Write the specified address into metadata where it can be retrieved by
515 // the assembler. Format is a half open range, [Address Address+1)
516 LLVMContext &Ctx = M->getContext();
517 auto *IntTy =
518 M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
519 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
520 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
521 GV->setMetadata(LLVMContext::MD_absolute_symbol,
522 MDNode::get(Ctx, {MinC, MaxC}));
523 }
524
525 DenseMap<Function *, Value *> tableKernelIndexCache;
526 Value *getTableLookupKernelIndex(Module &M, Function *F) {
527 // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
528 // lowers to a read from a live in register. Emit it once in the entry
529 // block to spare deduplicating it later.
530 auto [It, Inserted] = tableKernelIndexCache.try_emplace(F);
531 if (Inserted) {
532 auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
533 IRBuilder<> Builder(&*InsertAt);
534
535 It->second = Builder.CreateIntrinsic(Intrinsic::amdgcn_lds_kernel_id, {});
536 }
537
538 return It->second;
539 }
540
541 static std::vector<Function *> assignLDSKernelIDToEachKernel(
542 Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
543 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
544 // Associate kernels in the set with an arbitrary but reproducible order and
545 // annotate them with that order in metadata. This metadata is recognised by
546 // the backend and lowered to a SGPR which can be read from using
547 // amdgcn_lds_kernel_id.
548
549 std::vector<Function *> OrderedKernels;
550 if (!KernelsThatAllocateTableLDS.empty() ||
551 !KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
552
553 for (Function &Func : M->functions()) {
554 if (Func.isDeclaration())
555 continue;
556 if (!isKernel(Func))
557 continue;
558
559 if (KernelsThatAllocateTableLDS.contains(&Func) ||
560 KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
561 assert(Func.hasName()); // else fatal error earlier
562 OrderedKernels.push_back(&Func);
563 }
564 }
565
566 // Put them in an arbitrary but reproducible order
567 OrderedKernels = sortByName(std::move(OrderedKernels));
568
569 // Annotate the kernels with their order in this vector
570 LLVMContext &Ctx = M->getContext();
571 IRBuilder<> Builder(Ctx);
572
573 if (OrderedKernels.size() > UINT32_MAX) {
574 // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
575 reportFatalUsageError("unimplemented LDS lowering for > 2**32 kernels");
576 }
577
578 for (size_t i = 0; i < OrderedKernels.size(); i++) {
579 Metadata *AttrMDArgs[1] = {
580 ConstantAsMetadata::get(Builder.getInt32(i)),
581 };
582 OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
583 MDNode::get(Ctx, AttrMDArgs));
584 }
585 }
586 return OrderedKernels;
587 }
588
589 static void partitionVariablesIntoIndirectStrategies(
590 Module &M, LDSUsesInfoTy const &LDSUsesInfo,
591 VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
592 DenseSet<GlobalVariable *> &ModuleScopeVariables,
593 DenseSet<GlobalVariable *> &TableLookupVariables,
594 DenseSet<GlobalVariable *> &KernelAccessVariables,
595 DenseSet<GlobalVariable *> &DynamicVariables) {
596
597 GlobalVariable *HybridModuleRoot =
598 LoweringKindLoc != LoweringKind::hybrid
599 ? nullptr
600 : chooseBestVariableForModuleStrategy(
601 M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
602
603 DenseSet<Function *> const EmptySet;
604 DenseSet<Function *> const &HybridModuleRootKernels =
605 HybridModuleRoot
606 ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
607 : EmptySet;
608
609 for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
610 // Each iteration of this loop assigns exactly one global variable to
611 // exactly one of the implementation strategies.
612
613 GlobalVariable *GV = K.first;
615 assert(K.second.size() != 0);
616
617 if (AMDGPU::isDynamicLDS(*GV)) {
618 DynamicVariables.insert(GV);
619 continue;
620 }
621
622 switch (LoweringKindLoc) {
623 case LoweringKind::module:
624 ModuleScopeVariables.insert(GV);
625 break;
626
627 case LoweringKind::table:
628 TableLookupVariables.insert(GV);
629 break;
630
631 case LoweringKind::kernel:
632 if (K.second.size() == 1) {
633 KernelAccessVariables.insert(GV);
634 } else {
635 // FIXME: This should use DiagnosticInfo
637 "cannot lower LDS '" + GV->getName() +
638 "' to kernel access as it is reachable from multiple kernels");
639 }
640 break;
641
642 case LoweringKind::hybrid: {
643 if (GV == HybridModuleRoot) {
644 assert(K.second.size() != 1);
645 ModuleScopeVariables.insert(GV);
646 } else if (K.second.size() == 1) {
647 KernelAccessVariables.insert(GV);
648 } else if (K.second == HybridModuleRootKernels) {
649 ModuleScopeVariables.insert(GV);
650 } else {
651 TableLookupVariables.insert(GV);
652 }
653 break;
654 }
655 }
656 }
657
658 // All LDS variables accessed indirectly have now been partitioned into
659 // the distinct lowering strategies.
660 assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
661 KernelAccessVariables.size() + DynamicVariables.size() ==
662 LDSToKernelsThatNeedToAccessItIndirectly.size());
663 }
664
665 static GlobalVariable *lowerModuleScopeStructVariables(
666 Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
667 DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
668 // Create a struct to hold the ModuleScopeVariables
669 // Replace all uses of those variables from non-kernel functions with the
670 // new struct instance Replace only the uses from kernel functions that will
671 // allocate this instance. That is a space optimisation - kernels that use a
672 // subset of the module scope struct and do not need to allocate it for
673 // indirect calls will only allocate the subset they use (they do so as part
674 // of the per-kernel lowering).
675 if (ModuleScopeVariables.empty()) {
676 return nullptr;
677 }
678
679 LLVMContext &Ctx = M.getContext();
680
681 LDSVariableReplacement ModuleScopeReplacement =
682 createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
683 ModuleScopeVariables);
684
685 appendToCompilerUsed(M, {static_cast<GlobalValue *>(
687 cast<Constant>(ModuleScopeReplacement.SGV),
688 PointerType::getUnqual(Ctx)))});
689
690 // module.lds will be allocated at zero in any kernel that allocates it
691 recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
692
693 // historic
694 removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
695
696 // Replace all uses of module scope variable from non-kernel functions
697 replaceLDSVariablesWithStruct(
698 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
699 Instruction *I = dyn_cast<Instruction>(U.getUser());
700 if (!I) {
701 return false;
702 }
703 Function *F = I->getFunction();
704 return !isKernel(*F);
705 });
706
707 // Replace uses of module scope variable from kernel functions that
708 // allocate the module scope variable, otherwise leave them unchanged
709 // Record on each kernel whether the module scope global is used by it
710
711 for (Function &Func : M.functions()) {
712 if (Func.isDeclaration() || !isKernel(Func))
713 continue;
714
715 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
716 replaceLDSVariablesWithStruct(
717 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
718 Instruction *I = dyn_cast<Instruction>(U.getUser());
719 if (!I) {
720 return false;
721 }
722 Function *F = I->getFunction();
723 return F == &Func;
724 });
725
726 markUsedByKernel(&Func, ModuleScopeReplacement.SGV);
727 }
728 }
729
730 return ModuleScopeReplacement.SGV;
731 }
732
734 lowerKernelScopeStructVariables(
735 Module &M, LDSUsesInfoTy &LDSUsesInfo,
736 DenseSet<GlobalVariable *> const &ModuleScopeVariables,
737 DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
738 GlobalVariable *MaybeModuleScopeStruct) {
739
740 // Create a struct for each kernel for the non-module-scope variables.
741
743 for (Function &Func : M.functions()) {
744 if (Func.isDeclaration() || !isKernel(Func))
745 continue;
746
747 DenseSet<GlobalVariable *> KernelUsedVariables;
748 // Allocating variables that are used directly in this struct to get
749 // alignment aware allocation and predictable frame size.
750 for (auto &v : LDSUsesInfo.direct_access[&Func]) {
751 if (!AMDGPU::isDynamicLDS(*v)) {
752 KernelUsedVariables.insert(v);
753 }
754 }
755
756 // Allocating variables that are accessed indirectly so that a lookup of
757 // this struct instance can find them from nested functions.
758 for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
759 if (!AMDGPU::isDynamicLDS(*v)) {
760 KernelUsedVariables.insert(v);
761 }
762 }
763
764 // Variables allocated in module lds must all resolve to that struct,
765 // not to the per-kernel instance.
766 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
767 for (GlobalVariable *v : ModuleScopeVariables) {
768 KernelUsedVariables.erase(v);
769 }
770 }
771
772 if (KernelUsedVariables.empty()) {
773 // Either used no LDS, or the LDS it used was all in the module struct
774 // or dynamically sized
775 continue;
776 }
777
778 // The association between kernel function and LDS struct is done by
779 // symbol name, which only works if the function in question has a
780 // name This is not expected to be a problem in practice as kernels
781 // are called by name making anonymous ones (which are named by the
782 // backend) difficult to use. This does mean that llvm test cases need
783 // to name the kernels.
784 if (!Func.hasName()) {
785 reportFatalUsageError("anonymous kernels cannot use LDS variables");
786 }
787
788 std::string VarName =
789 (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
790
791 auto Replacement =
792 createLDSVariableReplacement(M, VarName, KernelUsedVariables);
793
794 // If any indirect uses, create a direct use to ensure allocation
795 // TODO: Simpler to unconditionally mark used but that regresses
796 // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
797 auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
798 if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
799 !Accesses->second.empty())
800 markUsedByKernel(&Func, Replacement.SGV);
801
802 // remove preserves existing codegen
803 removeLocalVarsFromUsedLists(M, KernelUsedVariables);
804 KernelToReplacement[&Func] = Replacement;
805
806 // Rewrite uses within kernel to the new struct
807 replaceLDSVariablesWithStruct(
808 M, KernelUsedVariables, Replacement, [&Func](Use &U) {
809 Instruction *I = dyn_cast<Instruction>(U.getUser());
810 return I && I->getFunction() == &Func;
811 });
812 }
813 return KernelToReplacement;
814 }
815
816 static GlobalVariable *
817 buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
818 Function *func) {
819 // Create a dynamic lds variable with a name associated with the passed
820 // function that has the maximum alignment of any dynamic lds variable
821 // reachable from this kernel. Dynamic LDS is allocated after the static LDS
822 // allocation, possibly after alignment padding. The representative variable
823 // created here has the maximum alignment of any other dynamic variable
824 // reachable by that kernel. All dynamic LDS variables are allocated at the
825 // same address in each kernel in order to provide the documented aliasing
826 // semantics. Setting the alignment here allows this IR pass to accurately
827 // predict the exact constant at which it will be allocated.
828
829 assert(isKernel(*func));
830
831 LLVMContext &Ctx = M.getContext();
832 const DataLayout &DL = M.getDataLayout();
833 Align MaxDynamicAlignment(1);
834
835 auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
836 if (AMDGPU::isDynamicLDS(*GV)) {
837 MaxDynamicAlignment =
838 std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
839 }
840 };
841
842 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
843 UpdateMaxAlignment(GV);
844 }
845
846 for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
847 UpdateMaxAlignment(GV);
848 }
849
850 assert(func->hasName()); // Checked by caller
851 auto *emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
853 M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
854 Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
855 false);
856 N->setAlignment(MaxDynamicAlignment);
857
859 return N;
860 }
861
862 DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
863 Module &M, LDSUsesInfoTy &LDSUsesInfo,
864 DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
865 DenseSet<GlobalVariable *> const &DynamicVariables,
866 std::vector<Function *> const &OrderedKernels) {
867 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
868 if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
869 LLVMContext &Ctx = M.getContext();
870 IRBuilder<> Builder(Ctx);
871 Type *I32 = Type::getInt32Ty(Ctx);
872
873 std::vector<Constant *> newDynamicLDS;
874
875 // Table is built in the same order as OrderedKernels
876 for (auto &func : OrderedKernels) {
877
878 if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
879 assert(isKernel(*func));
880 if (!func->hasName()) {
881 reportFatalUsageError("anonymous kernels cannot use LDS variables");
882 }
883
885 buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
886
887 KernelToCreatedDynamicLDS[func] = N;
888
889 markUsedByKernel(func, N);
890
891 auto *emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
893 emptyCharArray, N, ConstantInt::get(I32, 0), true);
894 newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
895 } else {
896 newDynamicLDS.push_back(PoisonValue::get(I32));
897 }
898 }
899 assert(OrderedKernels.size() == newDynamicLDS.size());
900
901 ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
902 Constant *init = ConstantArray::get(t, newDynamicLDS);
903 GlobalVariable *table = new GlobalVariable(
904 M, t, true, GlobalValue::InternalLinkage, init,
905 "llvm.amdgcn.dynlds.offset.table", nullptr,
907
908 for (GlobalVariable *GV : DynamicVariables) {
909 for (Use &U : make_early_inc_range(GV->uses())) {
910 auto *I = dyn_cast<Instruction>(U.getUser());
911 if (!I)
912 continue;
913 if (isKernel(*I->getFunction()))
914 continue;
915
916 replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
917 }
918 }
919 }
920 return KernelToCreatedDynamicLDS;
921 }
922
923 bool runOnModule(Module &M) {
924 CallGraph CG = CallGraph(M);
925 bool Changed = superAlignLDSGlobals(M);
926
928
929 Changed = true; // todo: narrow this down
930
931 // For each kernel, what variables does it access directly or through
932 // callees
933 LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
934
935 // For each variable accessed through callees, which kernels access it
936 VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
937 for (auto &K : LDSUsesInfo.indirect_access) {
938 Function *F = K.first;
939 assert(isKernel(*F));
940 for (GlobalVariable *GV : K.second) {
941 LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
942 }
943 }
944
945 // Partition variables accessed indirectly into the different strategies
946 DenseSet<GlobalVariable *> ModuleScopeVariables;
947 DenseSet<GlobalVariable *> TableLookupVariables;
948 DenseSet<GlobalVariable *> KernelAccessVariables;
949 DenseSet<GlobalVariable *> DynamicVariables;
950 partitionVariablesIntoIndirectStrategies(
951 M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
952 ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
953 DynamicVariables);
954
955 // If the kernel accesses a variable that is going to be stored in the
956 // module instance through a call then that kernel needs to allocate the
957 // module instance
958 const DenseSet<Function *> KernelsThatAllocateModuleLDS =
959 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
960 ModuleScopeVariables);
961 const DenseSet<Function *> KernelsThatAllocateTableLDS =
962 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
963 TableLookupVariables);
964
965 const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
966 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
967 DynamicVariables);
968
969 GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
970 M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
971
973 lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
974 KernelsThatAllocateModuleLDS,
975 MaybeModuleScopeStruct);
976
977 // Lower zero cost accesses to the kernel instances just created
978 for (auto &GV : KernelAccessVariables) {
979 auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
980 assert(funcs.size() == 1); // Only one kernel can access it
981 LDSVariableReplacement Replacement =
982 KernelToReplacement[*(funcs.begin())];
983
985 Vec.insert(GV);
986
987 replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
988 return isa<Instruction>(U.getUser());
989 });
990 }
991
992 // The ith element of this vector is kernel id i
993 std::vector<Function *> OrderedKernels =
994 assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
995 KernelsThatIndirectlyAllocateDynamicLDS);
996
997 if (!KernelsThatAllocateTableLDS.empty()) {
998 LLVMContext &Ctx = M.getContext();
999 IRBuilder<> Builder(Ctx);
1000
1001 // The order must be consistent between lookup table and accesses to
1002 // lookup table
1003 auto TableLookupVariablesOrdered =
1004 sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
1005 TableLookupVariables.end()));
1006
1007 GlobalVariable *LookupTable = buildLookupTable(
1008 M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
1009 replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
1010 LookupTable);
1011 }
1012
1013 DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
1014 lowerDynamicLDSVariables(M, LDSUsesInfo,
1015 KernelsThatIndirectlyAllocateDynamicLDS,
1016 DynamicVariables, OrderedKernels);
1017
1018 // Strip amdgpu-no-lds-kernel-id from all functions reachable from the
1019 // kernel. We may have inferred this wasn't used prior to the pass.
1020 // TODO: We could filter out subgraphs that do not access LDS globals.
1021 for (auto *KernelSet : {&KernelsThatIndirectlyAllocateDynamicLDS,
1022 &KernelsThatAllocateTableLDS})
1023 for (Function *F : *KernelSet)
1024 removeFnAttrFromReachable(CG, F, {"amdgpu-no-lds-kernel-id"});
1025
1026 // All kernel frames have been allocated. Calculate and record the
1027 // addresses.
1028 {
1029 const DataLayout &DL = M.getDataLayout();
1030
1031 for (Function &Func : M.functions()) {
1032 if (Func.isDeclaration() || !isKernel(Func))
1033 continue;
1034
1035 // All three of these are optional. The first variable is allocated at
1036 // zero. They are allocated by AMDGPUMachineFunction as one block.
1037 // Layout:
1038 //{
1039 // module.lds
1040 // alignment padding
1041 // kernel instance
1042 // alignment padding
1043 // dynamic lds variables
1044 //}
1045
1046 const bool AllocateModuleScopeStruct =
1047 MaybeModuleScopeStruct &&
1048 KernelsThatAllocateModuleLDS.contains(&Func);
1049
1050 auto Replacement = KernelToReplacement.find(&Func);
1051 const bool AllocateKernelScopeStruct =
1052 Replacement != KernelToReplacement.end();
1053
1054 const bool AllocateDynamicVariable =
1055 KernelToCreatedDynamicLDS.contains(&Func);
1056
1057 uint32_t Offset = 0;
1058
1059 if (AllocateModuleScopeStruct) {
1060 // Allocated at zero, recorded once on construction, not once per
1061 // kernel
1062 Offset += MaybeModuleScopeStruct->getGlobalSize(DL);
1063 }
1064
1065 if (AllocateKernelScopeStruct) {
1066 GlobalVariable *KernelStruct = Replacement->second.SGV;
1067 Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
1068 recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
1069 Offset += KernelStruct->getGlobalSize(DL);
1070 }
1071
1072 // If there is dynamic allocation, the alignment needed is included in
1073 // the static frame size. There may be no reference to the dynamic
1074 // variable in the kernel itself, so without including it here, that
1075 // alignment padding could be missed.
1076 if (AllocateDynamicVariable) {
1077 GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
1078 Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
1079 recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
1080 }
1081
1082 if (Offset != 0) {
1083 (void)TM; // TODO: Account for target maximum LDS
1084 std::string Buffer;
1085 raw_string_ostream SS{Buffer};
1086 SS << format("%u", Offset);
1087
1088 // Instead of explicitly marking kernels that access dynamic variables
1089 // using special case metadata, annotate with min-lds == max-lds, i.e.
1090 // that there is no more space available for allocating more static
1091 // LDS variables. That is the right condition to prevent allocating
1092 // more variables which would collide with the addresses assigned to
1093 // dynamic variables.
1094 if (AllocateDynamicVariable)
1095 SS << format(",%u", Offset);
1096
1097 Func.addFnAttr("amdgpu-lds-size", Buffer);
1098 }
1099 }
1100 }
1101
1102 for (auto &GV : make_early_inc_range(M.globals()))
1104 // probably want to remove from used lists
1106 if (GV.use_empty())
1107 GV.eraseFromParent();
1108 }
1109
1110 return Changed;
1111 }
1112
1113private:
1114 // Increase the alignment of LDS globals if necessary to maximise the chance
1115 // that we can use aligned LDS instructions to access them.
1116 static bool superAlignLDSGlobals(Module &M) {
1117 const DataLayout &DL = M.getDataLayout();
1118 bool Changed = false;
1119 if (!SuperAlignLDSGlobals) {
1120 return Changed;
1121 }
1122
1123 for (auto &GV : M.globals()) {
1125 // Only changing alignment of LDS variables
1126 continue;
1127 }
1128 if (!GV.hasInitializer()) {
1129 // cuda/hip extern __shared__ variable, leave alignment alone
1130 continue;
1131 }
1132
1133 if (GV.isAbsoluteSymbolRef()) {
1134 // If the variable is already allocated, don't change the alignment
1135 continue;
1136 }
1137
1138 Align Alignment = AMDGPU::getAlign(DL, &GV);
1139 uint64_t GVSize = GV.getGlobalSize(DL);
1140
1141 if (GVSize > 8) {
1142 // We might want to use a b96 or b128 load/store
1143 Alignment = std::max(Alignment, Align(16));
1144 } else if (GVSize > 4) {
1145 // We might want to use a b64 load/store
1146 Alignment = std::max(Alignment, Align(8));
1147 } else if (GVSize > 2) {
1148 // We might want to use a b32 load/store
1149 Alignment = std::max(Alignment, Align(4));
1150 } else if (GVSize > 1) {
1151 // We might want to use a b16 load/store
1152 Alignment = std::max(Alignment, Align(2));
1153 }
1154
1155 if (Alignment != AMDGPU::getAlign(DL, &GV)) {
1156 Changed = true;
1157 GV.setAlignment(Alignment);
1158 }
1159 }
1160 return Changed;
1161 }
1162
1163 static LDSVariableReplacement createLDSVariableReplacement(
1164 Module &M, std::string VarName,
1165 DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1166 // Create a struct instance containing LDSVarsToTransform and map from those
1167 // variables to ConstantExprGEP
1168 // Variables may be introduced to meet alignment requirements. No aliasing
1169 // metadata is useful for these as they have no uses. Erased before return.
1170
1171 LLVMContext &Ctx = M.getContext();
1172 const DataLayout &DL = M.getDataLayout();
1173 assert(!LDSVarsToTransform.empty());
1174
1176 LayoutFields.reserve(LDSVarsToTransform.size());
1177 {
1178 // The order of fields in this struct depends on the order of
1179 // variables in the argument which varies when changing how they
1180 // are identified, leading to spurious test breakage.
1181 auto Sorted = sortByName(std::vector<GlobalVariable *>(
1182 LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
1183
1184 for (GlobalVariable *GV : Sorted) {
1186 AMDGPU::getAlign(DL, GV));
1187 LayoutFields.emplace_back(F);
1188 }
1189 }
1190
1191 performOptimizedStructLayout(LayoutFields);
1192
1193 std::vector<GlobalVariable *> LocalVars;
1194 BitVector IsPaddingField;
1195 LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1196 IsPaddingField.reserve(LDSVarsToTransform.size());
1197 {
1198 uint64_t CurrentOffset = 0;
1199 for (auto &F : LayoutFields) {
1200 GlobalVariable *FGV =
1201 static_cast<GlobalVariable *>(const_cast<void *>(F.Id));
1202 Align DataAlign = F.Alignment;
1203
1204 uint64_t DataAlignV = DataAlign.value();
1205 if (uint64_t Rem = CurrentOffset % DataAlignV) {
1206 uint64_t Padding = DataAlignV - Rem;
1207
1208 // Append an array of padding bytes to meet alignment requested
1209 // Note (o + (a - (o % a)) ) % a == 0
1210 // (offset + Padding ) % align == 0
1211
1212 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1213 LocalVars.push_back(new GlobalVariable(
1214 M, ATy, false, GlobalValue::InternalLinkage,
1216 AMDGPUAS::LOCAL_ADDRESS, false));
1217 IsPaddingField.push_back(true);
1218 CurrentOffset += Padding;
1219 }
1220
1221 LocalVars.push_back(FGV);
1222 IsPaddingField.push_back(false);
1223 CurrentOffset += F.Size;
1224 }
1225 }
1226
1227 std::vector<Type *> LocalVarTypes;
1228 LocalVarTypes.reserve(LocalVars.size());
1229 std::transform(
1230 LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1231 [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1232
1233 StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1234
1235 Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1236
1237 GlobalVariable *SGV = new GlobalVariable(
1238 M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy),
1240 false);
1241 SGV->setAlignment(StructAlign);
1242
1244 Type *I32 = Type::getInt32Ty(Ctx);
1245 for (size_t I = 0; I < LocalVars.size(); I++) {
1246 GlobalVariable *GV = LocalVars[I];
1247 Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1248 Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1249 if (IsPaddingField[I]) {
1250 assert(GV->use_empty());
1251 GV->eraseFromParent();
1252 } else {
1253 Map[GV] = GEP;
1254 }
1255 }
1256 assert(Map.size() == LDSVarsToTransform.size());
1257 return {SGV, std::move(Map)};
1258 }
1259
1260 template <typename PredicateTy>
1261 static void replaceLDSVariablesWithStruct(
1262 Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1263 const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
1264 LLVMContext &Ctx = M.getContext();
1265 const DataLayout &DL = M.getDataLayout();
1266
1267 // A hack... we need to insert the aliasing info in a predictable order for
1268 // lit tests. Would like to have them in a stable order already, ideally the
1269 // same order they get allocated, which might mean an ordered set container
1270 auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
1271 LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
1272
1273 // Create alias.scope and their lists. Each field in the new structure
1274 // does not alias with all other fields.
1275 SmallVector<MDNode *> AliasScopes;
1276 SmallVector<Metadata *> NoAliasList;
1277 const size_t NumberVars = LDSVarsToTransform.size();
1278 if (NumberVars > 1) {
1279 MDBuilder MDB(Ctx);
1280 AliasScopes.reserve(NumberVars);
1282 for (size_t I = 0; I < NumberVars; I++) {
1284 AliasScopes.push_back(Scope);
1285 }
1286 NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1287 }
1288
1289 // Replace uses of ith variable with a constantexpr to the corresponding
1290 // field of the instance that will be allocated by AMDGPUMachineFunction
1291 for (size_t I = 0; I < NumberVars; I++) {
1292 GlobalVariable *GV = LDSVarsToTransform[I];
1293 Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
1294
1296
1297 APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1298 GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1299 uint64_t Offset = APOff.getZExtValue();
1300
1301 Align A =
1302 commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1303
1304 if (I)
1305 NoAliasList[I - 1] = AliasScopes[I - 1];
1306 MDNode *NoAlias =
1307 NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1308 MDNode *AliasScope =
1309 AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1310
1311 refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1312 }
1313 }
1314
1315 static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
1316 const DataLayout &DL, MDNode *AliasScope,
1317 MDNode *NoAlias, unsigned MaxDepth = 5) {
1318 if (!MaxDepth || (A == 1 && !AliasScope))
1319 return;
1320
1321 ScopedNoAliasAAResult ScopedNoAlias;
1322
1323 for (User *U : Ptr->users()) {
1324 if (auto *I = dyn_cast<Instruction>(U)) {
1325 if (AliasScope && I->mayReadOrWriteMemory()) {
1326 MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1327 AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1328 : AliasScope);
1329 I->setMetadata(LLVMContext::MD_alias_scope, AS);
1330
1331 MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1332
1333 // Scoped aliases can originate from two different domains.
1334 // First domain would be from LDS domain (created by this pass).
1335 // All entries (LDS vars) into LDS struct will have same domain.
1336
1337 // Second domain could be existing scoped aliases that are the
1338 // results of noalias params and subsequent optimizations that
1339 // may alter thesse sets.
1340
1341 // We need to be careful how we create new alias sets, and
1342 // have right scopes and domains for loads/stores of these new
1343 // LDS variables. We intersect NoAlias set if alias sets belong
1344 // to the same domain. This is the case if we have memcpy using
1345 // LDS variables. Both src and dst of memcpy would belong to
1346 // LDS struct, they donot alias.
1347 // On the other hand, if one of the domains is LDS and other is
1348 // existing domain prior to LDS, we need to have a union of all
1349 // these aliases set to preserve existing aliasing information.
1350
1351 SmallPtrSet<const MDNode *, 16> ExistingDomains, LDSDomains;
1352 ScopedNoAlias.collectScopedDomains(NA, ExistingDomains);
1353 ScopedNoAlias.collectScopedDomains(NoAlias, LDSDomains);
1354 auto Intersection = set_intersection(ExistingDomains, LDSDomains);
1355 if (Intersection.empty()) {
1356 NA = NA ? MDNode::concatenate(NA, NoAlias) : NoAlias;
1357 } else {
1358 NA = NA ? MDNode::intersect(NA, NoAlias) : NoAlias;
1359 }
1360 I->setMetadata(LLVMContext::MD_noalias, NA);
1361 }
1362 }
1363
1364 if (auto *LI = dyn_cast<LoadInst>(U)) {
1365 LI->setAlignment(std::max(A, LI->getAlign()));
1366 continue;
1367 }
1368 if (auto *SI = dyn_cast<StoreInst>(U)) {
1369 if (SI->getPointerOperand() == Ptr)
1370 SI->setAlignment(std::max(A, SI->getAlign()));
1371 continue;
1372 }
1373 if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1374 // None of atomicrmw operations can work on pointers, but let's
1375 // check it anyway in case it will or we will process ConstantExpr.
1376 if (AI->getPointerOperand() == Ptr)
1377 AI->setAlignment(std::max(A, AI->getAlign()));
1378 continue;
1379 }
1380 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1381 if (AI->getPointerOperand() == Ptr)
1382 AI->setAlignment(std::max(A, AI->getAlign()));
1383 continue;
1384 }
1385 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1386 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1387 APInt Off(BitWidth, 0);
1388 if (GEP->getPointerOperand() == Ptr) {
1389 Align GA;
1390 if (GEP->accumulateConstantOffset(DL, Off))
1391 GA = commonAlignment(A, Off.getLimitedValue());
1392 refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1393 MaxDepth - 1);
1394 }
1395 continue;
1396 }
1397 if (auto *I = dyn_cast<Instruction>(U)) {
1398 if (I->getOpcode() == Instruction::BitCast ||
1399 I->getOpcode() == Instruction::AddrSpaceCast)
1400 refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1401 }
1402 }
1403 }
1404};
1405
1406class AMDGPULowerModuleLDSLegacy : public ModulePass {
1407public:
1408 const AMDGPUTargetMachine *TM;
1409 static char ID;
1410
1411 AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM = nullptr)
1412 : ModulePass(ID), TM(TM) {}
1413
1414 void getAnalysisUsage(AnalysisUsage &AU) const override {
1415 if (!TM)
1417 }
1418
1419 bool runOnModule(Module &M) override {
1420 if (!TM) {
1421 auto &TPC = getAnalysis<TargetPassConfig>();
1422 TM = &TPC.getTM<AMDGPUTargetMachine>();
1423 }
1424
1425 return AMDGPULowerModuleLDS(*TM).runOnModule(M);
1426 }
1427};
1428
1429} // namespace
1430char AMDGPULowerModuleLDSLegacy::ID = 0;
1431
1432char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID;
1433
1434INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1435 "Lower uses of LDS variables from non-kernel functions",
1436 false, false)
1438INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1439 "Lower uses of LDS variables from non-kernel functions",
1441
1442ModulePass *
1444 return new AMDGPULowerModuleLDSLegacy(TM);
1445}
1446
1449 return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none()
1451}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
The AMDGPU TargetMachine interface definition for hw codegen targets.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file provides interfaces used to build and manipulate a call graph, which is a very useful tool ...
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
#define DEBUG_TYPE
Hexagon Common GEP
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file provides an interface for laying out a sequence of fields as a struct in a way that attempt...
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
This file contains some templates that are useful if you are working with the STL at all.
This is the interface for a metadata-based scoped no-alias analysis.
This file defines generic set operations that may be used on set's of different types,...
Target-Independent Code Generator Pass Configuration Options pass.
Class for arbitrary precision integers.
Definition APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1549
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
void reserve(unsigned N)
Definition BitVector.h:367
void push_back(bool Val)
Definition BitVector.h:485
The basic data container for the call graph of a Module of IR.
Definition CallGraph.h:72
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:537
static LLVM_ABI Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1284
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set a particular kind of metadata attachment.
LLVM_ABI bool isAbsoluteSymbolRef() const
Returns whether this is a reference to an absolute symbol.
Definition Globals.cpp:447
PointerType * getType() const
Global values are always pointers.
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Type * getValueType() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
LLVM_ABI uint64_t getGlobalSize(const DataLayout &DL) const
Get the size of this global variable in bytes.
Definition Globals.cpp:561
LLVM_ABI void eraseFromParent()
eraseFromParent - This method unlinks 'this' from the containing module and deletes it.
Definition Globals.cpp:530
void setAlignment(Align Align)
Sets the alignment attribute of the GlobalVariable.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2775
bool runOnModule(Module &) override
ImmutablePasses are never run.
Definition Pass.h:302
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
MDNode * createAnonymousAliasScope(MDNode *Domain, StringRef Name=StringRef())
Return metadata appropriate for an alias scope root node.
Definition MDBuilder.h:181
MDNode * createAnonymousAliasScopeDomain(StringRef Name=StringRef())
Return metadata appropriate for an alias scope domain node.
Definition MDBuilder.h:174
Metadata node.
Definition Metadata.h:1080
static LLVM_ABI MDNode * getMostGenericAliasScope(MDNode *A, MDNode *B)
static LLVM_ABI MDNode * concatenate(MDNode *A, MDNode *B)
Methods for metadata merging.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1572
static LLVM_ABI MDNode * intersect(MDNode *A, MDNode *B)
Root of the metadata hierarchy.
Definition Metadata.h:64
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition Pass.h:255
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
A container for an operand bundle being viewed as a set of values rather than a set of uses.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition Analysis.h:115
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
A simple AA result which uses scoped-noalias metadata to answer queries.
static LLVM_ABI void collectScopedDomains(const MDNode *NoAlias, SmallPtrSetImpl< const MDNode * > &Domains)
Collect the set of scoped domains relevant to the noalias scopes.
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition Type.cpp:619
Target-Independent Code Generator Pass Configuration Options.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
Definition Value.cpp:561
bool use_empty() const
Definition Value.h:346
iterator_range< use_iterator > uses()
Definition Value.h:380
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
size_type size() const
Definition DenseSet.h:87
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
bool erase(const ValueT &V)
Definition DenseSet.h:100
A raw_ostream that writes to an std::string.
Changed
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
bool isDynamicLDS(const GlobalVariable &GV)
void removeFnAttrFromReachable(CallGraph &CG, Function *KernelRoot, ArrayRef< StringRef > FnAttrs)
Strip FnAttr attribute from any functions where we may have introduced its use.
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LDSUsesInfoTy getTransitiveUsesOfLDS(const CallGraph &CG, Module &M)
bool isLDSVariableToLower(const GlobalVariable &GV)
bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M)
Align getAlign(const DataLayout &DL, const GlobalVariable *GV)
DenseMap< GlobalVariable *, DenseSet< Function * > > VariableFunctionMap
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
char & AMDGPULowerModuleLDSLegacyPassID
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
S1Ty set_intersection(const S1Ty &S1, const S2Ty &S2)
set_intersection(A, B) - Return A ^ B
LLVM_ABI void removeFromUsedLists(Module &M, function_ref< bool(Constant *)> ShouldRemove)
Removes global values from the llvm.used and llvm.compiler.used arrays.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
ModulePass * createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM=nullptr)
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_ABI void appendToCompilerUsed(Module &M, ArrayRef< GlobalValue * > Values)
Adds global values to the llvm.compiler.used list.
LLVM_ABI std::pair< uint64_t, Align > performOptimizedStructLayout(MutableArrayRef< OptimizedStructLayoutField > Fields)
Compute a layout for a struct containing the given fields, making a best-effort attempt to minimize t...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
Definition MIRParser.h:39
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:177
#define N
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
const AMDGPUTargetMachine & TM
Definition AMDGPU.h:139
FunctionVariableMap direct_access
FunctionVariableMap indirect_access
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77