LLVM 17.0.0git
IRMover.cpp
Go to the documentation of this file.
1//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "LinkDiagnosticInfo.h"
11#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/Triple.h"
15#include "llvm/IR/AutoUpgrade.h"
16#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
21#include "llvm/IR/GlobalValue.h"
22#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Intrinsics.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/PseudoProbe.h"
27#include "llvm/IR/TypeFinder.h"
29#include "llvm/Support/Error.h"
30#include "llvm/Support/Path.h"
32#include <optional>
33#include <utility>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37// TypeMap implementation.
38//===----------------------------------------------------------------------===//
39
40namespace {
41class TypeMapTy : public ValueMapTypeRemapper {
42 /// This is a mapping from a source type to a destination type to use.
43 DenseMap<Type *, Type *> MappedTypes;
44
45 /// When checking to see if two subgraphs are isomorphic, we speculatively
46 /// add types to MappedTypes, but keep track of them here in case we need to
47 /// roll back.
48 SmallVector<Type *, 16> SpeculativeTypes;
49
50 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
51
52 /// This is a list of non-opaque structs in the source module that are mapped
53 /// to an opaque struct in the destination module.
54 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
55
56 /// This is the set of opaque types in the destination modules who are
57 /// getting a body from the source module.
58 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
59
60public:
61 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
62 : DstStructTypesSet(DstStructTypesSet) {}
63
64 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
65 /// Indicate that the specified type in the destination module is conceptually
66 /// equivalent to the specified type in the source module.
67 void addTypeMapping(Type *DstTy, Type *SrcTy);
68
69 /// Produce a body for an opaque type in the dest module from a type
70 /// definition in the source module.
71 void linkDefinedTypeBodies();
72
73 /// Return the mapped type to use for the specified input type from the
74 /// source module.
75 Type *get(Type *SrcTy);
76 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
77
78 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
79
81 return cast<FunctionType>(get((Type *)T));
82 }
83
84private:
85 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
86
87 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
88};
89}
90
91void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
92 assert(SpeculativeTypes.empty());
93 assert(SpeculativeDstOpaqueTypes.empty());
94
95 // Check to see if these types are recursively isomorphic and establish a
96 // mapping between them if so.
97 if (!areTypesIsomorphic(DstTy, SrcTy)) {
98 // Oops, they aren't isomorphic. Just discard this request by rolling out
99 // any speculative mappings we've established.
100 for (Type *Ty : SpeculativeTypes)
101 MappedTypes.erase(Ty);
102
103 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
104 SpeculativeDstOpaqueTypes.size());
105 for (StructType *Ty : SpeculativeDstOpaqueTypes)
106 DstResolvedOpaqueTypes.erase(Ty);
107 } else {
108 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
109 // and all its descendants to lower amount of renaming in LLVM context
110 // Renaming occurs because we load all source modules to the same context
111 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
112 // As a result we may get several different types in the destination
113 // module, which are in fact the same.
114 for (Type *Ty : SpeculativeTypes)
115 if (auto *STy = dyn_cast<StructType>(Ty))
116 if (STy->hasName())
117 STy->setName("");
118 }
119 SpeculativeTypes.clear();
120 SpeculativeDstOpaqueTypes.clear();
121}
122
123/// Recursively walk this pair of types, returning true if they are isomorphic,
124/// false if they are not.
125bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
126 // Two types with differing kinds are clearly not isomorphic.
127 if (DstTy->getTypeID() != SrcTy->getTypeID())
128 return false;
129
130 // If we have an entry in the MappedTypes table, then we have our answer.
131 Type *&Entry = MappedTypes[SrcTy];
132 if (Entry)
133 return Entry == DstTy;
134
135 // Two identical types are clearly isomorphic. Remember this
136 // non-speculatively.
137 if (DstTy == SrcTy) {
138 Entry = DstTy;
139 return true;
140 }
141
142 // Okay, we have two types with identical kinds that we haven't seen before.
143
144 // If this is an opaque struct type, special case it.
145 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
146 // Mapping an opaque type to any struct, just keep the dest struct.
147 if (SSTy->isOpaque()) {
148 Entry = DstTy;
149 SpeculativeTypes.push_back(SrcTy);
150 return true;
151 }
152
153 // Mapping a non-opaque source type to an opaque dest. If this is the first
154 // type that we're mapping onto this destination type then we succeed. Keep
155 // the dest, but fill it in later. If this is the second (different) type
156 // that we're trying to map onto the same opaque type then we fail.
157 if (cast<StructType>(DstTy)->isOpaque()) {
158 // We can only map one source type onto the opaque destination type.
159 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
160 return false;
161 SrcDefinitionsToResolve.push_back(SSTy);
162 SpeculativeTypes.push_back(SrcTy);
163 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
164 Entry = DstTy;
165 return true;
166 }
167 }
168
169 // If the number of subtypes disagree between the two types, then we fail.
170 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
171 return false;
172
173 // Fail if any of the extra properties (e.g. array size) of the type disagree.
174 if (isa<IntegerType>(DstTy))
175 return false; // bitwidth disagrees.
176 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
177 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
178 return false;
179 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
180 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
181 return false;
182 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
183 StructType *SSTy = cast<StructType>(SrcTy);
184 if (DSTy->isLiteral() != SSTy->isLiteral() ||
185 DSTy->isPacked() != SSTy->isPacked())
186 return false;
187 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
188 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
189 return false;
190 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
191 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
192 return false;
193 }
194
195 // Otherwise, we speculate that these two types will line up and recursively
196 // check the subelements.
197 Entry = DstTy;
198 SpeculativeTypes.push_back(SrcTy);
199
200 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
201 if (!areTypesIsomorphic(DstTy->getContainedType(I),
202 SrcTy->getContainedType(I)))
203 return false;
204
205 // If everything seems to have lined up, then everything is great.
206 return true;
207}
208
209void TypeMapTy::linkDefinedTypeBodies() {
211 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
212 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
213 assert(DstSTy->isOpaque());
214
215 // Map the body of the source type over to a new body for the dest type.
216 Elements.resize(SrcSTy->getNumElements());
217 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
218 Elements[I] = get(SrcSTy->getElementType(I));
219
220 DstSTy->setBody(Elements, SrcSTy->isPacked());
221 DstStructTypesSet.switchToNonOpaque(DstSTy);
222 }
223 SrcDefinitionsToResolve.clear();
224 DstResolvedOpaqueTypes.clear();
225}
226
227void TypeMapTy::finishType(StructType *DTy, StructType *STy,
228 ArrayRef<Type *> ETypes) {
229 DTy->setBody(ETypes, STy->isPacked());
230
231 // Steal STy's name.
232 if (STy->hasName()) {
233 SmallString<16> TmpName = STy->getName();
234 STy->setName("");
235 DTy->setName(TmpName);
236 }
237
238 DstStructTypesSet.addNonOpaque(DTy);
239}
240
241Type *TypeMapTy::get(Type *Ty) {
243 return get(Ty, Visited);
244}
245
246Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
247 // If we already have an entry for this type, return it.
248 Type **Entry = &MappedTypes[Ty];
249 if (*Entry)
250 return *Entry;
251
252 // These are types that LLVM itself will unique.
253 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
254
255 if (!IsUniqued) {
256#ifndef NDEBUG
257 for (auto &Pair : MappedTypes) {
258 assert(!(Pair.first != Ty && Pair.second == Ty) &&
259 "mapping to a source type");
260 }
261#endif
262
263 if (!Visited.insert(cast<StructType>(Ty)).second) {
265 return *Entry = DTy;
266 }
267 }
268
269 // If this is not a recursive type, then just map all of the elements and
270 // then rebuild the type from inside out.
271 SmallVector<Type *, 4> ElementTypes;
272
273 // If there are no element types to map, then the type is itself. This is
274 // true for the anonymous {} struct, things like 'float', integers, etc.
275 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
276 return *Entry = Ty;
277
278 // Remap all of the elements, keeping track of whether any of them change.
279 bool AnyChange = false;
280 ElementTypes.resize(Ty->getNumContainedTypes());
281 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
282 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
283 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
284 }
285
286 // If we found our type while recursively processing stuff, just use it.
287 Entry = &MappedTypes[Ty];
288 if (*Entry) {
289 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
290 if (DTy->isOpaque()) {
291 auto *STy = cast<StructType>(Ty);
292 finishType(DTy, STy, ElementTypes);
293 }
294 }
295 return *Entry;
296 }
297
298 // If all of the element types mapped directly over and the type is not
299 // a named struct, then the type is usable as-is.
300 if (!AnyChange && IsUniqued)
301 return *Entry = Ty;
302
303 // Otherwise, rebuild a modified type.
304 switch (Ty->getTypeID()) {
305 default:
306 llvm_unreachable("unknown derived type to remap");
307 case Type::ArrayTyID:
308 return *Entry = ArrayType::get(ElementTypes[0],
309 cast<ArrayType>(Ty)->getNumElements());
312 return *Entry = VectorType::get(ElementTypes[0],
313 cast<VectorType>(Ty)->getElementCount());
315 return *Entry = PointerType::get(ElementTypes[0],
316 cast<PointerType>(Ty)->getAddressSpace());
318 return *Entry = FunctionType::get(ElementTypes[0],
319 ArrayRef(ElementTypes).slice(1),
320 cast<FunctionType>(Ty)->isVarArg());
321 case Type::StructTyID: {
322 auto *STy = cast<StructType>(Ty);
323 bool IsPacked = STy->isPacked();
324 if (IsUniqued)
325 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
326
327 // If the type is opaque, we can just use it directly.
328 if (STy->isOpaque()) {
329 DstStructTypesSet.addOpaque(STy);
330 return *Entry = Ty;
331 }
332
333 if (StructType *OldT =
334 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
335 STy->setName("");
336 return *Entry = OldT;
337 }
338
339 if (!AnyChange) {
340 DstStructTypesSet.addNonOpaque(STy);
341 return *Entry = Ty;
342 }
343
345 finishType(DTy, STy, ElementTypes);
346 return *Entry = DTy;
347 }
348 }
349}
350
352 const Twine &Msg)
353 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
354void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
355
356//===----------------------------------------------------------------------===//
357// IRLinker implementation.
358//===----------------------------------------------------------------------===//
359
360namespace {
361class IRLinker;
362
363/// Creates prototypes for functions that are lazily linked on the fly. This
364/// speeds up linking for modules with many/ lazily linked functions of which
365/// few get used.
366class GlobalValueMaterializer final : public ValueMaterializer {
367 IRLinker &TheIRLinker;
368
369public:
370 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
371 Value *materialize(Value *V) override;
372};
373
374class LocalValueMaterializer final : public ValueMaterializer {
375 IRLinker &TheIRLinker;
376
377public:
378 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
379 Value *materialize(Value *V) override;
380};
381
382/// Type of the Metadata map in \a ValueToValueMapTy.
384
385/// This is responsible for keeping track of the state used for moving data
386/// from SrcM to DstM.
387class IRLinker {
388 Module &DstM;
389 std::unique_ptr<Module> SrcM;
390
391 /// See IRMover::move().
392 IRMover::LazyCallback AddLazyFor;
393
394 TypeMapTy TypeMap;
395 GlobalValueMaterializer GValMaterializer;
396 LocalValueMaterializer LValMaterializer;
397
398 /// A metadata map that's shared between IRLinker instances.
399 MDMapT &SharedMDs;
400
401 /// Mapping of values from what they used to be in Src, to what they are now
402 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
403 /// due to the use of Value handles which the Linker doesn't actually need,
404 /// but this allows us to reuse the ValueMapper code.
406 ValueToValueMapTy IndirectSymbolValueMap;
407
408 DenseSet<GlobalValue *> ValuesToLink;
409 std::vector<GlobalValue *> Worklist;
410 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
411
412 void maybeAdd(GlobalValue *GV) {
413 if (ValuesToLink.insert(GV).second)
414 Worklist.push_back(GV);
415 }
416
417 /// Whether we are importing globals for ThinLTO, as opposed to linking the
418 /// source module. If this flag is set, it means that we can rely on some
419 /// other object file to define any non-GlobalValue entities defined by the
420 /// source module. This currently causes us to not link retained types in
421 /// debug info metadata and module inline asm.
422 bool IsPerformingImport;
423
424 /// Set to true when all global value body linking is complete (including
425 /// lazy linking). Used to prevent metadata linking from creating new
426 /// references.
427 bool DoneLinkingBodies = false;
428
429 /// The Error encountered during materialization. We use an Optional here to
430 /// avoid needing to manage an unconsumed success value.
431 std::optional<Error> FoundError;
432 void setError(Error E) {
433 if (E)
434 FoundError = std::move(E);
435 }
436
437 /// Most of the errors produced by this module are inconvertible StringErrors.
438 /// This convenience function lets us return one of those more easily.
439 Error stringErr(const Twine &T) {
440 return make_error<StringError>(T, inconvertibleErrorCode());
441 }
442
443 /// Entry point for mapping values and alternate context for mapping aliases.
444 ValueMapper Mapper;
445 unsigned IndirectSymbolMCID;
446
447 /// Handles cloning of a global values from the source module into
448 /// the destination module, including setting the attributes and visibility.
449 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
450
451 void emitWarning(const Twine &Message) {
452 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
453 }
454
455 /// Given a global in the source module, return the global in the
456 /// destination module that is being linked to, if any.
457 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
458 // If the source has no name it can't link. If it has local linkage,
459 // there is no name match-up going on.
460 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
461 return nullptr;
462
463 // Otherwise see if we have a match in the destination module's symtab.
464 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
465 if (!DGV)
466 return nullptr;
467
468 // If we found a global with the same name in the dest module, but it has
469 // internal linkage, we are really not doing any linkage here.
470 if (DGV->hasLocalLinkage())
471 return nullptr;
472
473 // If we found an intrinsic declaration with mismatching prototypes, we
474 // probably had a nameclash. Don't use that version.
475 if (auto *FDGV = dyn_cast<Function>(DGV))
476 if (FDGV->isIntrinsic())
477 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
478 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
479 return nullptr;
480
481 // Otherwise, we do in fact link to the destination global.
482 return DGV;
483 }
484
485 void computeTypeMapping();
486
487 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
488 const GlobalVariable *SrcGV);
489
490 /// Given the GlobaValue \p SGV in the source module, and the matching
491 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
492 /// into the destination module.
493 ///
494 /// Note this code may call the client-provided \p AddLazyFor.
495 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
496 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
497 bool ForIndirectSymbol);
498
499 Error linkModuleFlagsMetadata();
500
501 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
502 Error linkFunctionBody(Function &Dst, Function &Src);
503 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src);
504 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src);
505 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
506
507 /// Replace all types in the source AttributeList with the
508 /// corresponding destination type.
509 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
510
511 /// Functions that take care of cloning a specific global value type
512 /// into the destination module.
513 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
514 Function *copyFunctionProto(const Function *SF);
515 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV);
516
517 /// Perform "replace all uses with" operations. These work items need to be
518 /// performed as part of materialization, but we postpone them to happen after
519 /// materialization is done. The materializer called by ValueMapper is not
520 /// expected to delete constants, as ValueMapper is holding pointers to some
521 /// of them, but constant destruction may be indirectly triggered by RAUW.
522 /// Hence, the need to move this out of the materialization call chain.
523 void flushRAUWWorklist();
524
525 /// When importing for ThinLTO, prevent importing of types listed on
526 /// the DICompileUnit that we don't need a copy of in the importing
527 /// module.
528 void prepareCompileUnitsForImport();
529 void linkNamedMDNodes();
530
531 /// Update attributes while linking.
532 void updateAttributes(GlobalValue &GV);
533
534public:
535 IRLinker(Module &DstM, MDMapT &SharedMDs,
536 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
537 ArrayRef<GlobalValue *> ValuesToLink,
538 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport)
539 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
540 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
541 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
543 &TypeMap, &GValMaterializer),
544 IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
545 IndirectSymbolValueMap, &LValMaterializer)) {
546 ValueMap.getMDMap() = std::move(SharedMDs);
547 for (GlobalValue *GV : ValuesToLink)
548 maybeAdd(GV);
549 if (IsPerformingImport)
550 prepareCompileUnitsForImport();
551 }
552 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
553
554 Error run();
555 Value *materialize(Value *V, bool ForIndirectSymbol);
556};
557}
558
559/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
560/// table. This is good for all clients except for us. Go through the trouble
561/// to force this back.
563 // If the global doesn't force its name or if it already has the right name,
564 // there is nothing for us to do.
565 if (GV->hasLocalLinkage() || GV->getName() == Name)
566 return;
567
568 Module *M = GV->getParent();
569
570 // If there is a conflict, rename the conflict.
571 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
572 GV->takeName(ConflictGV);
573 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
574 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
575 } else {
576 GV->setName(Name); // Force the name back
577 }
578}
579
580Value *GlobalValueMaterializer::materialize(Value *SGV) {
581 return TheIRLinker.materialize(SGV, false);
582}
583
584Value *LocalValueMaterializer::materialize(Value *SGV) {
585 return TheIRLinker.materialize(SGV, true);
586}
587
588Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
589 auto *SGV = dyn_cast<GlobalValue>(V);
590 if (!SGV)
591 return nullptr;
592
593 // When linking a global from other modules than source & dest, skip
594 // materializing it because it would be mapped later when its containing
595 // module is linked. Linking it now would potentially pull in many types that
596 // may not be mapped properly.
597 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
598 return nullptr;
599
600 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
601 if (!NewProto) {
602 setError(NewProto.takeError());
603 return nullptr;
604 }
605 if (!*NewProto)
606 return nullptr;
607
608 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
609 if (!New)
610 return *NewProto;
611
612 // If we already created the body, just return.
613 if (auto *F = dyn_cast<Function>(New)) {
614 if (!F->isDeclaration())
615 return New;
616 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
617 if (V->hasInitializer() || V->hasAppendingLinkage())
618 return New;
619 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) {
620 if (GA->getAliasee())
621 return New;
622 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) {
623 if (GI->getResolver())
624 return New;
625 } else {
626 llvm_unreachable("Invalid GlobalValue type");
627 }
628
629 // If the global is being linked for an indirect symbol, it may have already
630 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
631 // for a regular symbol may have already been scheduled for an indirect
632 // symbol. Check for these cases by looking in the other value map and
633 // confirming the same value has been scheduled. If there is an entry in the
634 // ValueMap but the value is different, it means that the value already had a
635 // definition in the destination module (linkonce for instance), but we need a
636 // new definition for the indirect symbol ("New" will be different).
637 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
638 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
639 return New;
640
641 if (ForIndirectSymbol || shouldLink(New, *SGV))
642 setError(linkGlobalValueBody(*New, *SGV));
643
644 updateAttributes(*New);
645 return New;
646}
647
648/// Loop through the global variables in the src module and merge them into the
649/// dest module.
650GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
651 // No linking to be performed or linking from the source: simply create an
652 // identical version of the symbol over in the dest module... the
653 // initializer will be filled in later by LinkGlobalInits.
654 GlobalVariable *NewDGV =
655 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
657 /*init*/ nullptr, SGVar->getName(),
658 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
659 SGVar->getAddressSpace());
660 NewDGV->setAlignment(SGVar->getAlign());
661 NewDGV->copyAttributesFrom(SGVar);
662 return NewDGV;
663}
664
665AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
666 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
667 for (int AttrIdx = Attribute::FirstTypeAttr;
668 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
669 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
670 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) {
671 if (Type *Ty =
672 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
673 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
674 TypeMap.get(Ty));
675 break;
676 }
677 }
678 }
679 }
680 return Attrs;
681}
682
683/// Link the function in the source module into the destination module if
684/// needed, setting up mapping information.
685Function *IRLinker::copyFunctionProto(const Function *SF) {
686 // If there is no linkage to be performed or we are linking from the source,
687 // bring SF over.
688 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
690 SF->getAddressSpace(), SF->getName(), &DstM);
691 F->copyAttributesFrom(SF);
692 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
693 return F;
694}
695
696/// Set up prototypes for any indirect symbols that come over from the source
697/// module.
698GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) {
699 // If there is no linkage to be performed or we're linking from the source,
700 // bring over SGA.
701 auto *Ty = TypeMap.get(SGV->getValueType());
702
703 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) {
704 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(),
706 SGV->getName(), &DstM);
707 DGA->copyAttributesFrom(GA);
708 return DGA;
709 }
710
711 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) {
712 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(),
714 SGV->getName(), nullptr, &DstM);
715 DGI->copyAttributesFrom(GI);
716 return DGI;
717 }
718
719 llvm_unreachable("Invalid source global value type");
720}
721
722GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
723 bool ForDefinition) {
724 GlobalValue *NewGV;
725 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
726 NewGV = copyGlobalVariableProto(SGVar);
727 } else if (auto *SF = dyn_cast<Function>(SGV)) {
728 NewGV = copyFunctionProto(SF);
729 } else {
730 if (ForDefinition)
731 NewGV = copyIndirectSymbolProto(SGV);
732 else if (SGV->getValueType()->isFunctionTy())
733 NewGV =
734 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
736 SGV->getName(), &DstM);
737 else
738 NewGV =
739 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
740 /*isConstant*/ false, GlobalValue::ExternalLinkage,
741 /*init*/ nullptr, SGV->getName(),
742 /*insertbefore*/ nullptr,
743 SGV->getThreadLocalMode(), SGV->getAddressSpace());
744 }
745
746 if (ForDefinition)
747 NewGV->setLinkage(SGV->getLinkage());
748 else if (SGV->hasExternalWeakLinkage())
750
751 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
752 // Metadata for global variables and function declarations is copied eagerly.
753 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
754 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
755 }
756
757 // Remove these copied constants in case this stays a declaration, since
758 // they point to the source module. If the def is linked the values will
759 // be mapped in during linkFunctionBody.
760 if (auto *NewF = dyn_cast<Function>(NewGV)) {
761 NewF->setPersonalityFn(nullptr);
762 NewF->setPrefixData(nullptr);
763 NewF->setPrologueData(nullptr);
764 }
765
766 return NewGV;
767}
768
770 size_t DotPos = Name.rfind('.');
771 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
772 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
773 ? Name
774 : Name.substr(0, DotPos);
775}
776
777/// Loop over all of the linked values to compute type mappings. For example,
778/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
779/// types 'Foo' but one got renamed when the module was loaded into the same
780/// LLVMContext.
781void IRLinker::computeTypeMapping() {
782 for (GlobalValue &SGV : SrcM->globals()) {
783 GlobalValue *DGV = getLinkedToGlobal(&SGV);
784 if (!DGV)
785 continue;
786
787 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
788 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
789 continue;
790 }
791
792 // Unify the element type of appending arrays.
793 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
794 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
795 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
796 }
797
798 for (GlobalValue &SGV : *SrcM)
799 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
800 if (DGV->getType() == SGV.getType()) {
801 // If the types of DGV and SGV are the same, it means that DGV is from
802 // the source module and got added to DstM from a shared metadata. We
803 // shouldn't map this type to itself in case the type's components get
804 // remapped to a new type from DstM (for instance, during the loop over
805 // SrcM->getIdentifiedStructTypes() below).
806 continue;
807 }
808
809 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
810 }
811
812 for (GlobalValue &SGV : SrcM->aliases())
813 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
814 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
815
816 // Incorporate types by name, scanning all the types in the source module.
817 // At this point, the destination module may have a type "%foo = { i32 }" for
818 // example. When the source module got loaded into the same LLVMContext, if
819 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
820 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
821 for (StructType *ST : Types) {
822 if (!ST->hasName())
823 continue;
824
825 if (TypeMap.DstStructTypesSet.hasType(ST)) {
826 // This is actually a type from the destination module.
827 // getIdentifiedStructTypes() can have found it by walking debug info
828 // metadata nodes, some of which get linked by name when ODR Type Uniquing
829 // is enabled on the Context, from the source to the destination module.
830 continue;
831 }
832
833 auto STTypePrefix = getTypeNamePrefix(ST->getName());
834 if (STTypePrefix.size() == ST->getName().size())
835 continue;
836
837 // Check to see if the destination module has a struct with the prefix name.
838 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
839 if (!DST)
840 continue;
841
842 // Don't use it if this actually came from the source module. They're in
843 // the same LLVMContext after all. Also don't use it unless the type is
844 // actually used in the destination module. This can happen in situations
845 // like this:
846 //
847 // Module A Module B
848 // -------- --------
849 // %Z = type { %A } %B = type { %C.1 }
850 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
851 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
852 // %C = type { i8* } %B.3 = type { %C.1 }
853 //
854 // When we link Module B with Module A, the '%B' in Module B is
855 // used. However, that would then use '%C.1'. But when we process '%C.1',
856 // we prefer to take the '%C' version. So we are then left with both
857 // '%C.1' and '%C' being used for the same types. This leads to some
858 // variables using one type and some using the other.
859 if (TypeMap.DstStructTypesSet.hasType(DST))
860 TypeMap.addTypeMapping(DST, ST);
861 }
862
863 // Now that we have discovered all of the type equivalences, get a body for
864 // any 'opaque' types in the dest module that are now resolved.
865 TypeMap.linkDefinedTypeBodies();
866}
867
868static void getArrayElements(const Constant *C,
870 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
871
872 for (unsigned i = 0; i != NumElements; ++i)
873 Dest.push_back(C->getAggregateElement(i));
874}
875
876/// If there were any appending global variables, link them together now.
878IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
879 const GlobalVariable *SrcGV) {
880 // Check that both variables have compatible properties.
881 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
882 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
883 return stringErr(
884 "Linking globals named '" + SrcGV->getName() +
885 "': can only link appending global with another appending "
886 "global!");
887
888 if (DstGV->isConstant() != SrcGV->isConstant())
889 return stringErr("Appending variables linked with different const'ness!");
890
891 if (DstGV->getAlign() != SrcGV->getAlign())
892 return stringErr(
893 "Appending variables with different alignment need to be linked!");
894
895 if (DstGV->getVisibility() != SrcGV->getVisibility())
896 return stringErr(
897 "Appending variables with different visibility need to be linked!");
898
899 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
900 return stringErr(
901 "Appending variables with different unnamed_addr need to be linked!");
902
903 if (DstGV->getSection() != SrcGV->getSection())
904 return stringErr(
905 "Appending variables with different section name need to be linked!");
906
907 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace())
908 return stringErr("Appending variables with different address spaces need "
909 "to be linked!");
910 }
911
912 // Do not need to do anything if source is a declaration.
913 if (SrcGV->isDeclaration())
914 return DstGV;
915
916 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
917 ->getElementType();
918
919 // FIXME: This upgrade is done during linking to support the C API. Once the
920 // old form is deprecated, we should move this upgrade to
921 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
922 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
923 StringRef Name = SrcGV->getName();
924 bool IsNewStructor = false;
925 bool IsOldStructor = false;
926 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
927 if (cast<StructType>(EltTy)->getNumElements() == 3)
928 IsNewStructor = true;
929 else
930 IsOldStructor = true;
931 }
932
933 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
934 if (IsOldStructor) {
935 auto &ST = *cast<StructType>(EltTy);
936 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
937 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
938 }
939
940 uint64_t DstNumElements = 0;
941 if (DstGV && !DstGV->isDeclaration()) {
942 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
943 DstNumElements = DstTy->getNumElements();
944
945 // Check to see that they two arrays agree on type.
946 if (EltTy != DstTy->getElementType())
947 return stringErr("Appending variables with different element types!");
948 }
949
950 SmallVector<Constant *, 16> SrcElements;
951 getArrayElements(SrcGV->getInitializer(), SrcElements);
952
953 if (IsNewStructor) {
954 erase_if(SrcElements, [this](Constant *E) {
955 auto *Key =
956 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
957 if (!Key)
958 return false;
959 GlobalValue *DGV = getLinkedToGlobal(Key);
960 return !shouldLink(DGV, *Key);
961 });
962 }
963 uint64_t NewSize = DstNumElements + SrcElements.size();
964 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
965
966 // Create the new global variable.
968 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
969 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
970 SrcGV->getAddressSpace());
971
972 NG->copyAttributesFrom(SrcGV);
973 forceRenaming(NG, SrcGV->getName());
974
975 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
976
978 *NG,
979 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
980 IsOldStructor, SrcElements);
981
982 // Replace any uses of the two global variables with uses of the new
983 // global.
984 if (DstGV) {
985 RAUWWorklist.push_back(
986 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
987 }
988
989 return Ret;
990}
991
992bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
993 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
994 return true;
995
996 if (DGV && !DGV->isDeclarationForLinker())
997 return false;
998
999 if (SGV.isDeclaration() || DoneLinkingBodies)
1000 return false;
1001
1002 // Callback to the client to give a chance to lazily add the Global to the
1003 // list of value to link.
1004 bool LazilyAdded = false;
1005 if (AddLazyFor)
1006 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
1007 maybeAdd(&GV);
1008 LazilyAdded = true;
1009 });
1010 return LazilyAdded;
1011}
1012
1013Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
1014 bool ForIndirectSymbol) {
1015 GlobalValue *DGV = getLinkedToGlobal(SGV);
1016
1017 bool ShouldLink = shouldLink(DGV, *SGV);
1018
1019 // just missing from map
1020 if (ShouldLink) {
1021 auto I = ValueMap.find(SGV);
1022 if (I != ValueMap.end())
1023 return cast<Constant>(I->second);
1024
1025 I = IndirectSymbolValueMap.find(SGV);
1026 if (I != IndirectSymbolValueMap.end())
1027 return cast<Constant>(I->second);
1028 }
1029
1030 if (!ShouldLink && ForIndirectSymbol)
1031 DGV = nullptr;
1032
1033 // Handle the ultra special appending linkage case first.
1034 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
1035 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
1036 cast<GlobalVariable>(SGV));
1037
1038 bool NeedsRenaming = false;
1039 GlobalValue *NewGV;
1040 if (DGV && !ShouldLink) {
1041 NewGV = DGV;
1042 } else {
1043 // If we are done linking global value bodies (i.e. we are performing
1044 // metadata linking), don't link in the global value due to this
1045 // reference, simply map it to null.
1046 if (DoneLinkingBodies)
1047 return nullptr;
1048
1049 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1050 if (ShouldLink || !ForIndirectSymbol)
1051 NeedsRenaming = true;
1052 }
1053
1054 // Overloaded intrinsics have overloaded types names as part of their
1055 // names. If we renamed overloaded types we should rename the intrinsic
1056 // as well.
1057 if (Function *F = dyn_cast<Function>(NewGV))
1058 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
1059 NewGV->eraseFromParent();
1060 NewGV = *Remangled;
1061 NeedsRenaming = false;
1062 }
1063
1064 if (NeedsRenaming)
1065 forceRenaming(NewGV, SGV->getName());
1066
1067 if (ShouldLink || ForIndirectSymbol) {
1068 if (const Comdat *SC = SGV->getComdat()) {
1069 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1070 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1071 DC->setSelectionKind(SC->getSelectionKind());
1072 GO->setComdat(DC);
1073 }
1074 }
1075 }
1076
1077 if (!ShouldLink && ForIndirectSymbol)
1079
1080 Constant *C = NewGV;
1081 // Only create a bitcast if necessary. In particular, with
1082 // DebugTypeODRUniquing we may reach metadata in the destination module
1083 // containing a GV from the source module, in which case SGV will be
1084 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1085 // assumes it is being invoked on a type in the source module.
1086 if (DGV && NewGV != SGV) {
1088 NewGV, TypeMap.get(SGV->getType()));
1089 }
1090
1091 if (DGV && NewGV != DGV) {
1092 // Schedule "replace all uses with" to happen after materializing is
1093 // done. It is not safe to do it now, since ValueMapper may be holding
1094 // pointers to constants that will get deleted if RAUW runs.
1095 RAUWWorklist.push_back(std::make_pair(
1096 DGV,
1098 }
1099
1100 return C;
1101}
1102
1103/// Update the initializers in the Dest module now that all globals that may be
1104/// referenced are in Dest.
1105void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1106 // Figure out what the initializer looks like in the dest module.
1107 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1108}
1109
1110/// Copy the source function over into the dest function and fix up references
1111/// to values. At this point we know that Dest is an external function, and
1112/// that Src is not.
1113Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1114 assert(Dst.isDeclaration() && !Src.isDeclaration());
1115
1116 // Materialize if needed.
1117 if (Error Err = Src.materialize())
1118 return Err;
1119
1120 // Link in the operands without remapping.
1121 if (Src.hasPrefixData())
1122 Dst.setPrefixData(Src.getPrefixData());
1123 if (Src.hasPrologueData())
1124 Dst.setPrologueData(Src.getPrologueData());
1125 if (Src.hasPersonalityFn())
1126 Dst.setPersonalityFn(Src.getPersonalityFn());
1127
1128 // Copy over the metadata attachments without remapping.
1129 Dst.copyMetadata(&Src, 0);
1130
1131 // Steal arguments and splice the body of Src into Dst.
1132 Dst.stealArgumentListFrom(Src);
1133 Dst.splice(Dst.end(), &Src);
1134
1135 // Everything has been moved over. Remap it.
1136 Mapper.scheduleRemapFunction(Dst);
1137 return Error::success();
1138}
1139
1140void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) {
1141 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID);
1142}
1143
1144void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) {
1145 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID);
1146}
1147
1148Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1149 if (auto *F = dyn_cast<Function>(&Src))
1150 return linkFunctionBody(cast<Function>(Dst), *F);
1151 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1152 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1153 return Error::success();
1154 }
1155 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) {
1156 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA);
1157 return Error::success();
1158 }
1159 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src));
1160 return Error::success();
1161}
1162
1163void IRLinker::flushRAUWWorklist() {
1164 for (const auto &Elem : RAUWWorklist) {
1165 GlobalValue *Old;
1166 Value *New;
1167 std::tie(Old, New) = Elem;
1168
1169 Old->replaceAllUsesWith(New);
1170 Old->eraseFromParent();
1171 }
1172 RAUWWorklist.clear();
1173}
1174
1175void IRLinker::prepareCompileUnitsForImport() {
1176 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1177 if (!SrcCompileUnits)
1178 return;
1179 // When importing for ThinLTO, prevent importing of types listed on
1180 // the DICompileUnit that we don't need a copy of in the importing
1181 // module. They will be emitted by the originating module.
1182 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1183 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1184 assert(CU && "Expected valid compile unit");
1185 // Enums, macros, and retained types don't need to be listed on the
1186 // imported DICompileUnit. This means they will only be imported
1187 // if reached from the mapped IR.
1188 CU->replaceEnumTypes(nullptr);
1189 CU->replaceMacros(nullptr);
1190 CU->replaceRetainedTypes(nullptr);
1191
1192 // The original definition (or at least its debug info - if the variable is
1193 // internalized and optimized away) will remain in the source module, so
1194 // there's no need to import them.
1195 // If LLVM ever does more advanced optimizations on global variables
1196 // (removing/localizing write operations, for instance) that can track
1197 // through debug info, this decision may need to be revisited - but do so
1198 // with care when it comes to debug info size. Emitting small CUs containing
1199 // only a few imported entities into every destination module may be very
1200 // size inefficient.
1201 CU->replaceGlobalVariables(nullptr);
1202
1203 // Imported entities only need to be mapped in if they have local
1204 // scope, as those might correspond to an imported entity inside a
1205 // function being imported (any locally scoped imported entities that
1206 // don't end up referenced by an imported function will not be emitted
1207 // into the object). Imported entities not in a local scope
1208 // (e.g. on the namespace) only need to be emitted by the originating
1209 // module. Create a list of the locally scoped imported entities, and
1210 // replace the source CUs imported entity list with the new list, so
1211 // only those are mapped in.
1212 // FIXME: Locally-scoped imported entities could be moved to the
1213 // functions they are local to instead of listing them on the CU, and
1214 // we would naturally only link in those needed by function importing.
1215 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1216 bool ReplaceImportedEntities = false;
1217 for (auto *IE : CU->getImportedEntities()) {
1218 DIScope *Scope = IE->getScope();
1219 assert(Scope && "Invalid Scope encoding!");
1220 if (isa<DILocalScope>(Scope))
1221 AllImportedModules.emplace_back(IE);
1222 else
1223 ReplaceImportedEntities = true;
1224 }
1225 if (ReplaceImportedEntities) {
1226 if (!AllImportedModules.empty())
1227 CU->replaceImportedEntities(MDTuple::get(
1228 CU->getContext(),
1229 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1230 AllImportedModules.end())));
1231 else
1232 // If there were no local scope imported entities, we can map
1233 // the whole list to nullptr.
1234 CU->replaceImportedEntities(nullptr);
1235 }
1236 }
1237}
1238
1239/// Insert all of the named MDNodes in Src into the Dest module.
1240void IRLinker::linkNamedMDNodes() {
1241 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1242 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1243 // Don't link module flags here. Do them separately.
1244 if (&NMD == SrcModFlags)
1245 continue;
1246 // Don't import pseudo probe descriptors here for thinLTO. They will be
1247 // emitted by the originating module.
1248 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) {
1249 if (!DstM.getNamedMetadata(NMD.getName()))
1250 emitWarning("Pseudo-probe ignored: source module '" +
1251 SrcM->getModuleIdentifier() +
1252 "' is compiled with -fpseudo-probe-for-profiling while "
1253 "destination module '" +
1254 DstM.getModuleIdentifier() + "' is not\n");
1255 continue;
1256 }
1257 // The stats are computed per module and will all be merged in the binary.
1258 // Importing the metadata will cause duplication of the stats.
1259 if (IsPerformingImport && NMD.getName() == "llvm.stats")
1260 continue;
1261
1262 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1263 // Add Src elements into Dest node.
1264 for (const MDNode *Op : NMD.operands())
1265 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1266 }
1267}
1268
1269/// Merge the linker flags in Src into the Dest module.
1270Error IRLinker::linkModuleFlagsMetadata() {
1271 // If the source module has no module flags, we are done.
1272 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1273 if (!SrcModFlags)
1274 return Error::success();
1275
1276 // Check for module flag for updates before do anything.
1277 UpgradeModuleFlags(*SrcM);
1278
1279 // If the destination module doesn't have module flags yet, then just copy
1280 // over the source module's flags.
1281 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1282 if (DstModFlags->getNumOperands() == 0) {
1283 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1284 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1285
1286 return Error::success();
1287 }
1288
1289 // First build a map of the existing module flags and requirements.
1291 SmallSetVector<MDNode *, 16> Requirements;
1293 DenseSet<MDString *> SeenMin;
1294 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1295 MDNode *Op = DstModFlags->getOperand(I);
1296 uint64_t Behavior =
1297 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue();
1298 MDString *ID = cast<MDString>(Op->getOperand(1));
1299
1300 if (Behavior == Module::Require) {
1301 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1302 } else {
1303 if (Behavior == Module::Min)
1304 Mins.push_back(I);
1305 Flags[ID] = std::make_pair(Op, I);
1306 }
1307 }
1308
1309 // Merge in the flags from the source module, and also collect its set of
1310 // requirements.
1311 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1312 MDNode *SrcOp = SrcModFlags->getOperand(I);
1313 ConstantInt *SrcBehavior =
1314 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1315 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1316 MDNode *DstOp;
1317 unsigned DstIndex;
1318 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1319 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1320 SeenMin.insert(ID);
1321
1322 // If this is a requirement, add it and continue.
1323 if (SrcBehaviorValue == Module::Require) {
1324 // If the destination module does not already have this requirement, add
1325 // it.
1326 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1327 DstModFlags->addOperand(SrcOp);
1328 }
1329 continue;
1330 }
1331
1332 // If there is no existing flag with this ID, just add it.
1333 if (!DstOp) {
1334 if (SrcBehaviorValue == Module::Min) {
1335 Mins.push_back(DstModFlags->getNumOperands());
1336 SeenMin.erase(ID);
1337 }
1338 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1339 DstModFlags->addOperand(SrcOp);
1340 continue;
1341 }
1342
1343 // Otherwise, perform a merge.
1344 ConstantInt *DstBehavior =
1345 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1346 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1347
1348 auto overrideDstValue = [&]() {
1349 DstModFlags->setOperand(DstIndex, SrcOp);
1350 Flags[ID].first = SrcOp;
1351 };
1352
1353 // If either flag has override behavior, handle it first.
1354 if (DstBehaviorValue == Module::Override) {
1355 // Diagnose inconsistent flags which both have override behavior.
1356 if (SrcBehaviorValue == Module::Override &&
1357 SrcOp->getOperand(2) != DstOp->getOperand(2))
1358 return stringErr("linking module flags '" + ID->getString() +
1359 "': IDs have conflicting override values in '" +
1360 SrcM->getModuleIdentifier() + "' and '" +
1361 DstM.getModuleIdentifier() + "'");
1362 continue;
1363 } else if (SrcBehaviorValue == Module::Override) {
1364 // Update the destination flag to that of the source.
1365 overrideDstValue();
1366 continue;
1367 }
1368
1369 // Diagnose inconsistent merge behavior types.
1370 if (SrcBehaviorValue != DstBehaviorValue) {
1371 bool MinAndWarn = (SrcBehaviorValue == Module::Min &&
1372 DstBehaviorValue == Module::Warning) ||
1373 (DstBehaviorValue == Module::Min &&
1374 SrcBehaviorValue == Module::Warning);
1375 bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1376 DstBehaviorValue == Module::Warning) ||
1377 (DstBehaviorValue == Module::Max &&
1378 SrcBehaviorValue == Module::Warning);
1379 if (!(MaxAndWarn || MinAndWarn))
1380 return stringErr("linking module flags '" + ID->getString() +
1381 "': IDs have conflicting behaviors in '" +
1382 SrcM->getModuleIdentifier() + "' and '" +
1383 DstM.getModuleIdentifier() + "'");
1384 }
1385
1386 auto ensureDistinctOp = [&](MDNode *DstValue) {
1387 assert(isa<MDTuple>(DstValue) &&
1388 "Expected MDTuple when appending module flags");
1389 if (DstValue->isDistinct())
1390 return dyn_cast<MDTuple>(DstValue);
1391 ArrayRef<MDOperand> DstOperands = DstValue->operands();
1393 DstM.getContext(),
1394 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end()));
1395 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1396 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps);
1397 DstModFlags->setOperand(DstIndex, Flag);
1398 Flags[ID].first = Flag;
1399 return New;
1400 };
1401
1402 // Emit a warning if the values differ and either source or destination
1403 // request Warning behavior.
1404 if ((DstBehaviorValue == Module::Warning ||
1405 SrcBehaviorValue == Module::Warning) &&
1406 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1407 std::string Str;
1409 << "linking module flags '" << ID->getString()
1410 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1411 << "' from " << SrcM->getModuleIdentifier() << " with '"
1412 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1413 << ')';
1414 emitWarning(Str);
1415 }
1416
1417 // Choose the minimum if either source or destination request Min behavior.
1418 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) {
1419 ConstantInt *DstValue =
1420 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1421 ConstantInt *SrcValue =
1422 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1423
1424 // The resulting flag should have a Min behavior, and contain the minimum
1425 // value from between the source and destination values.
1426 Metadata *FlagOps[] = {
1427 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID,
1428 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp)
1429 ->getOperand(2)};
1430 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1431 DstModFlags->setOperand(DstIndex, Flag);
1432 Flags[ID].first = Flag;
1433 continue;
1434 }
1435
1436 // Choose the maximum if either source or destination request Max behavior.
1437 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1438 ConstantInt *DstValue =
1439 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1440 ConstantInt *SrcValue =
1441 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1442
1443 // The resulting flag should have a Max behavior, and contain the maximum
1444 // value from between the source and destination values.
1445 Metadata *FlagOps[] = {
1446 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1447 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1448 ->getOperand(2)};
1449 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1450 DstModFlags->setOperand(DstIndex, Flag);
1451 Flags[ID].first = Flag;
1452 continue;
1453 }
1454
1455 // Perform the merge for standard behavior types.
1456 switch (SrcBehaviorValue) {
1457 case Module::Require:
1458 case Module::Override:
1459 llvm_unreachable("not possible");
1460 case Module::Error: {
1461 // Emit an error if the values differ.
1462 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1463 return stringErr("linking module flags '" + ID->getString() +
1464 "': IDs have conflicting values in '" +
1465 SrcM->getModuleIdentifier() + "' and '" +
1466 DstM.getModuleIdentifier() + "'");
1467 continue;
1468 }
1469 case Module::Warning: {
1470 break;
1471 }
1472 case Module::Max: {
1473 break;
1474 }
1475 case Module::Append: {
1476 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1477 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1478 for (const auto &O : SrcValue->operands())
1479 DstValue->push_back(O);
1480 break;
1481 }
1482 case Module::AppendUnique: {
1484 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1485 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1486 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1487 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1488 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++)
1489 DstValue->push_back(Elts[I]);
1490 break;
1491 }
1492 }
1493
1494 }
1495
1496 // For the Min behavior, set the value to 0 if either module does not have the
1497 // flag.
1498 for (auto Idx : Mins) {
1499 MDNode *Op = DstModFlags->getOperand(Idx);
1500 MDString *ID = cast<MDString>(Op->getOperand(1));
1501 if (!SeenMin.count(ID)) {
1502 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2));
1503 Metadata *FlagOps[] = {
1504 Op->getOperand(0), ID,
1506 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps));
1507 }
1508 }
1509
1510 // Check all of the requirements.
1511 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1512 MDNode *Requirement = Requirements[I];
1513 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1514 Metadata *ReqValue = Requirement->getOperand(1);
1515
1516 MDNode *Op = Flags[Flag].first;
1517 if (!Op || Op->getOperand(2) != ReqValue)
1518 return stringErr("linking module flags '" + Flag->getString() +
1519 "': does not have the required value");
1520 }
1521 return Error::success();
1522}
1523
1524/// Return InlineAsm adjusted with target-specific directives if required.
1525/// For ARM and Thumb, we have to add directives to select the appropriate ISA
1526/// to support mixing module-level inline assembly from ARM and Thumb modules.
1527static std::string adjustInlineAsm(const std::string &InlineAsm,
1528 const Triple &Triple) {
1530 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1532 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1533 return InlineAsm;
1534}
1535
1536void IRLinker::updateAttributes(GlobalValue &GV) {
1537 /// Remove nocallback attribute while linking, because nocallback attribute
1538 /// indicates that the function is only allowed to jump back into caller's
1539 /// module only by a return or an exception. When modules are linked, this
1540 /// property cannot be guaranteed anymore. For example, the nocallback
1541 /// function may contain a call to another module. But if we merge its caller
1542 /// and callee module here, and not the module containing the nocallback
1543 /// function definition itself, the nocallback property will be violated
1544 /// (since the nocallback function will call back into the newly merged module
1545 /// containing both its caller and callee). This could happen if the module
1546 /// containing the nocallback function definition is native code, so it does
1547 /// not participate in the LTO link. Note if the nocallback function does
1548 /// participate in the LTO link, and thus ends up in the merged module
1549 /// containing its caller and callee, removing the attribute doesn't hurt as
1550 /// it has no effect on definitions in the same module.
1551 if (auto *F = dyn_cast<Function>(&GV)) {
1552 if (!F->isIntrinsic())
1553 F->removeFnAttr(llvm::Attribute::NoCallback);
1554
1555 // Remove nocallback attribute when it is on a call-site.
1556 for (BasicBlock &BB : *F)
1557 for (Instruction &I : BB)
1558 if (CallBase *CI = dyn_cast<CallBase>(&I))
1559 CI->removeFnAttr(Attribute::NoCallback);
1560 }
1561}
1562
1563Error IRLinker::run() {
1564 // Ensure metadata materialized before value mapping.
1565 if (SrcM->getMaterializer())
1566 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1567 return Err;
1568
1569 // Inherit the target data from the source module if the destination module
1570 // doesn't have one already.
1571 if (DstM.getDataLayout().isDefault())
1572 DstM.setDataLayout(SrcM->getDataLayout());
1573
1574 // Copy the target triple from the source to dest if the dest's is empty.
1575 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1576 DstM.setTargetTriple(SrcM->getTargetTriple());
1577
1578 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1579
1580 // During CUDA compilation we have to link with the bitcode supplied with
1581 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1582 // the layout that is different from the one used by LLVM/clang (it does not
1583 // include i128). Issuing a warning is not very helpful as there's not much
1584 // the user can do about it.
1585 bool EnableDLWarning = true;
1586 bool EnableTripleWarning = true;
1587 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) {
1588 std::string ModuleId = SrcM->getModuleIdentifier();
1589 StringRef FileName = llvm::sys::path::filename(ModuleId);
1590 bool SrcIsLibDevice =
1591 FileName.startswith("libdevice") && FileName.endswith(".10.bc");
1592 bool SrcHasLibDeviceDL =
1593 (SrcM->getDataLayoutStr().empty() ||
1594 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1595 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1596 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1597 // all NVPTX variants.
1598 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA &&
1599 SrcTriple.getOSName() == "gpulibs") ||
1600 (SrcTriple.getVendorName() == "unknown" &&
1601 SrcTriple.getOSName() == "unknown");
1602 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple);
1603 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL);
1604 }
1605
1606 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) {
1607 emitWarning("Linking two modules of different data layouts: '" +
1608 SrcM->getModuleIdentifier() + "' is '" +
1609 SrcM->getDataLayoutStr() + "' whereas '" +
1610 DstM.getModuleIdentifier() + "' is '" +
1611 DstM.getDataLayoutStr() + "'\n");
1612 }
1613
1614 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() &&
1615 !SrcTriple.isCompatibleWith(DstTriple))
1616 emitWarning("Linking two modules of different target triples: '" +
1617 SrcM->getModuleIdentifier() + "' is '" +
1618 SrcM->getTargetTriple() + "' whereas '" +
1619 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1620 "'\n");
1621
1622 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1623
1624 // Loop over all of the linked values to compute type mappings.
1625 computeTypeMapping();
1626
1627 std::reverse(Worklist.begin(), Worklist.end());
1628 while (!Worklist.empty()) {
1629 GlobalValue *GV = Worklist.back();
1630 Worklist.pop_back();
1631
1632 // Already mapped.
1633 if (ValueMap.find(GV) != ValueMap.end() ||
1634 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1635 continue;
1636
1637 assert(!GV->isDeclaration());
1638 Mapper.mapValue(*GV);
1639 if (FoundError)
1640 return std::move(*FoundError);
1641 flushRAUWWorklist();
1642 }
1643
1644 // Note that we are done linking global value bodies. This prevents
1645 // metadata linking from creating new references.
1646 DoneLinkingBodies = true;
1648
1649 // Remap all of the named MDNodes in Src into the DstM module. We do this
1650 // after linking GlobalValues so that MDNodes that reference GlobalValues
1651 // are properly remapped.
1652 linkNamedMDNodes();
1653
1654 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1655 // Append the module inline asm string.
1656 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
1657 SrcTriple));
1658 } else if (IsPerformingImport) {
1659 // Import any symver directives for symbols in DstM.
1661 [&](StringRef Name, StringRef Alias) {
1662 if (DstM.getNamedValue(Name)) {
1663 SmallString<256> S(".symver ");
1664 S += Name;
1665 S += ", ";
1666 S += Alias;
1667 DstM.appendModuleInlineAsm(S);
1668 }
1669 });
1670 }
1671
1672 // Reorder the globals just added to the destination module to match their
1673 // original order in the source module.
1674 Module::GlobalListType &Globals = DstM.getGlobalList();
1675 for (GlobalVariable &GV : SrcM->globals()) {
1676 if (GV.hasAppendingLinkage())
1677 continue;
1678 Value *NewValue = Mapper.mapValue(GV);
1679 if (NewValue) {
1680 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
1681 if (NewGV)
1682 Globals.splice(Globals.end(), Globals, NewGV->getIterator());
1683 }
1684 }
1685
1686 // Merge the module flags into the DstM module.
1687 return linkModuleFlagsMetadata();
1688}
1689
1691 : ETypes(E), IsPacked(P) {}
1692
1694 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1695
1697 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1698}
1699
1701 return !this->operator==(That);
1702}
1703
1704StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1706}
1707
1708StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1710}
1711
1712unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1713 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1714 Key.IsPacked);
1715}
1716
1717unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1718 return getHashValue(KeyTy(ST));
1719}
1720
1721bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1722 const StructType *RHS) {
1723 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1724 return false;
1725 return LHS == KeyTy(RHS);
1726}
1727
1728bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1729 const StructType *RHS) {
1730 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1731 return LHS == RHS;
1732 return KeyTy(LHS) == KeyTy(RHS);
1733}
1734
1736 assert(!Ty->isOpaque());
1737 NonOpaqueStructTypes.insert(Ty);
1738}
1739
1741 assert(!Ty->isOpaque());
1742 NonOpaqueStructTypes.insert(Ty);
1743 bool Removed = OpaqueStructTypes.erase(Ty);
1744 (void)Removed;
1745 assert(Removed);
1746}
1747
1749 assert(Ty->isOpaque());
1750 OpaqueStructTypes.insert(Ty);
1751}
1752
1753StructType *
1755 bool IsPacked) {
1756 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1757 auto I = NonOpaqueStructTypes.find_as(Key);
1758 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1759}
1760
1762 if (Ty->isOpaque())
1763 return OpaqueStructTypes.count(Ty);
1764 auto I = NonOpaqueStructTypes.find(Ty);
1765 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1766}
1767
1768IRMover::IRMover(Module &M) : Composite(M) {
1769 TypeFinder StructTypes;
1770 StructTypes.run(M, /* OnlyNamed */ false);
1771 for (StructType *Ty : StructTypes) {
1772 if (Ty->isOpaque())
1773 IdentifiedStructTypes.addOpaque(Ty);
1774 else
1775 IdentifiedStructTypes.addNonOpaque(Ty);
1776 }
1777 // Self-map metadatas in the destination module. This is needed when
1778 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1779 // destination module may be reached from the source module.
1780 for (const auto *MD : StructTypes.getVisitedMetadata()) {
1781 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1782 }
1783}
1784
1785Error IRMover::move(std::unique_ptr<Module> Src,
1786 ArrayRef<GlobalValue *> ValuesToLink,
1787 LazyCallback AddLazyFor, bool IsPerformingImport) {
1788 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1789 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1790 IsPerformingImport);
1791 Error E = TheIRLinker.run();
1793 return E;
1794}
This header is deprecated in favour of llvm/TargetParser/Triple.h.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::string Name
static void forceRenaming(GlobalValue *GV, StringRef Name)
The LLVM SymbolTable class autorenames globals that conflict in the symbol table.
Definition: IRMover.cpp:562
static void getArrayElements(const Constant *C, SmallVectorImpl< Constant * > &Dest)
Definition: IRMover.cpp:868
static std::string adjustInlineAsm(const std::string &InlineAsm, const Triple &Triple)
Return InlineAsm adjusted with target-specific directives if required.
Definition: IRMover.cpp:1527
static StringRef getTypeNamePrefix(StringRef Name)
Definition: IRMover.cpp:769
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Module.h This file contains the declarations for the Module class.
#define P(N)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:152
iterator begin() const
Definition: ArrayRef.h:151
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:652
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
Definition: Attributes.h:86
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1184
void setSelectionKind(SelectionKind Val)
Definition: Comdat.h:47
static ConstantAsMetadata * get(Constant *C)
Definition: Metadata.h:419
static Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
Definition: Constants.cpp:2056
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2229
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:887
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:141
This is an important base class in LLVM.
Definition: Constant.h:41
Base class for scope-like contexts.
bool isDefault() const
Test if the DataLayout was constructed from an empty string.
Definition: DataLayout.h:258
bool erase(const KeyT &Val)
Definition: DenseMap.h:302
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
This is the base abstract class for diagnostic reporting in the backend.
Interface for custom diagnostic printing.
Lightweight error class with error context and mandatory checking.
Definition: Error.h:156
static ErrorSuccess success()
Create a success value.
Definition: Error.h:330
Tagged union holding either a T or a Error.
Definition: Error.h:470
Error takeError()
Take ownership of the stored error.
Definition: Error.h:597
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:136
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:174
static GlobalAlias * create(Type *Ty, unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name, Constant *Aliasee, Module *Parent)
If a parent module is specified, the alias is automatically inserted into the end of the specified mo...
Definition: Globals.cpp:520
static GlobalIFunc * create(Type *Ty, unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name, Constant *Resolver, Module *Parent)
If a parent module is specified, the ifunc is automatically inserted into the end of the specified mo...
Definition: Globals.cpp:581
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:117
MaybeAlign getAlign() const
Returns the alignment of the given variable or function.
Definition: GlobalObject.h:79
void setAlignment(Align Align)
Sets the alignment attribute of the GlobalObject.
Definition: Globals.cpp:130
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:244
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:275
LinkageTypes getLinkage() const
Definition: GlobalValue.h:541
bool hasLocalLinkage() const
Definition: GlobalValue.h:523
const Comdat * getComdat() const
Definition: Globals.cpp:185
bool hasExternalWeakLinkage() const
Definition: GlobalValue.h:524
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:267
void setLinkage(LinkageTypes LT)
Definition: GlobalValue.h:532
bool isDeclarationForLinker() const
Definition: GlobalValue.h:614
unsigned getAddressSpace() const
Definition: GlobalValue.h:201
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:652
void eraseFromParent()
This method unlinks 'this' from the containing module and deletes it.
Definition: Globals.cpp:88
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:290
bool hasGlobalUnnamedAddr() const
Definition: GlobalValue.h:211
bool hasAppendingLinkage() const
Definition: GlobalValue.h:520
@ InternalLinkage
Rename collisions when linking (static functions).
Definition: GlobalValue.h:55
@ ExternalLinkage
Externally visible function.
Definition: GlobalValue.h:48
@ ExternalWeakLinkage
ExternalWeak linkage description.
Definition: GlobalValue.h:57
Type * getValueType() const
Definition: GlobalValue.h:292
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
void copyAttributesFrom(const GlobalVariable *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a GlobalVariable) fro...
Definition: Globals.cpp:495
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
void switchToNonOpaque(StructType *Ty)
Definition: IRMover.cpp:1740
StructType * findNonOpaque(ArrayRef< Type * > ETypes, bool IsPacked)
Definition: IRMover.cpp:1754
IRMover(Module &M)
Definition: IRMover.cpp:1768
Error move(std::unique_ptr< Module > Src, ArrayRef< GlobalValue * > ValuesToLink, LazyCallback AddLazyFor, bool IsPerformingImport)
Move in the provide values in ValuesToLink from Src.
Definition: IRMover.cpp:1785
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg)
Definition: IRMover.cpp:351
void print(DiagnosticPrinter &DP) const override
Print using the given DP a user-friendly message.
Definition: IRMover.cpp:354
Metadata node.
Definition: Metadata.h:943
ArrayRef< MDOperand > operands() const
Definition: Metadata.h:1289
op_iterator op_end() const
Definition: Metadata.h:1285
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1399
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1297
op_iterator op_begin() const
Definition: Metadata.h:1281
A single uniqued string.
Definition: Metadata.h:611
Tuple of metadata.
Definition: Metadata.h:1328
static MDTuple * getDistinct(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Return a distinct node.
Definition: Metadata.h:1367
void push_back(Metadata *MD)
Append an element to the tuple. This will resize the node.
Definition: Metadata.h:1385
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1356
Root of the metadata hierarchy.
Definition: Metadata.h:61
static void CollectAsmSymvers(const Module &M, function_ref< void(StringRef, StringRef)> AsmSymver)
Parse inline ASM and collect the symvers directives that are defined in the current module.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
@ AppendUnique
Appends the two values, which are required to be metadata nodes.
Definition: Module.h:144
@ Override
Uses the specified value, regardless of the behavior or value of the other module.
Definition: Module.h:136
@ Warning
Emits a warning if two values disagree.
Definition: Module.h:122
@ Error
Emits an error if two values disagree, otherwise the resulting value is that of the operands.
Definition: Module.h:118
@ Min
Takes the min of the two values, which are required to be integers.
Definition: Module.h:150
@ Append
Appends the two values, which are required to be metadata nodes.
Definition: Module.h:139
@ Max
Takes the max of the two values, which are required to be integers.
Definition: Module.h:147
@ Require
Adds a requirement that another module flag be present and have a specified value after linking is pe...
Definition: Module.h:131
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:262
void dropTriviallyDeadConstantArrays()
Destroy ConstantArrays in LLVMContext if they are not used.
NamedMDNode * getNamedMetadata(const Twine &Name) const
Return the first NamedMDNode in the module with the specified name.
Definition: Module.cpp:251
NamedMDNode * getOrInsertModuleFlagsMetadata()
Returns the NamedMDNode in the module that represents module-level flags.
Definition: Module.cpp:342
const GlobalListType & getGlobalList() const
Get the Module's list of global variables (constant).
Definition: Module.h:550
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:258
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition: Module.cpp:398
const std::string & getModuleIdentifier() const
Get the module identifier which is, essentially, the name of the module.
Definition: Module.h:228
void setDataLayout(StringRef Desc)
Set the data layout.
Definition: Module.cpp:392
GlobalValue * getNamedValue(StringRef Name) const
Return the global value in the module with the specified name, of arbitrary type.
Definition: Module.cpp:110
NamedMDNode * getOrInsertNamedMetadata(StringRef Name)
Return the named MDNode in the module with the specified name.
Definition: Module.cpp:260
Comdat * getOrInsertComdat(StringRef Name)
Return the Comdat in the module with the specified name.
Definition: Module.cpp:582
const std::string & getDataLayoutStr() const
Get the data layout string for the module's target platform.
Definition: Module.h:249
void appendModuleInlineAsm(StringRef Asm)
Append to the module-scope inline assembly blocks.
Definition: Module.h:313
void setTargetTriple(StringRef T)
Set the target triple.
Definition: Module.h:301
A tuple of MDNodes.
Definition: Metadata.h:1587
void setOperand(unsigned I, MDNode *New)
Definition: Metadata.cpp:1223
MDNode * getOperand(unsigned i) const
Definition: Metadata.cpp:1215
unsigned getNumOperands() const
Definition: Metadata.cpp:1211
void addOperand(MDNode *M)
Definition: Metadata.cpp:1221
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:77
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:141
bool erase(PtrType Ptr)
erase - If the set contains the specified pointer, remove it and return true, otherwise return false.
Definition: SmallPtrSet.h:379
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:365
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:450
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:301
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:941
void resize(size_type N)
Definition: SmallVector.h:642
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
bool startswith(StringRef Prefix) const
Definition: StringRef.h:261
bool endswith(StringRef Suffix) const
Definition: StringRef.h:277
static constexpr size_t npos
Definition: StringRef.h:52
Class to represent struct types.
Definition: DerivedTypes.h:213
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:420
void setBody(ArrayRef< Type * > Elements, bool isPacked=false)
Specify a body for an opaque identified type.
Definition: Type.cpp:459
static StructType * getTypeByName(LLVMContext &C, StringRef Name)
Return the type with the specified name, or null if there is none by that name.
Definition: Type.cpp:637
static StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:527
bool isPacked() const
Definition: DerivedTypes.h:273
void setName(StringRef Name)
Change the name of this type to the specified name, or to a name with a suffix if there is a collisio...
Definition: Type.cpp:476
bool hasName() const
Return true if this is a named struct that has a non-empty name.
Definition: DerivedTypes.h:290
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
Definition: DerivedTypes.h:277
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
Definition: DerivedTypes.h:281
StringRef getName() const
Return the name for this struct type if it has an identity.
Definition: Type.cpp:595
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition: Triple.h:355
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
Definition: TypeFinder.h:31
DenseSet< const MDNode * > & getVisitedMetadata()
Definition: TypeFinder.h:63
void run(const Module &M, bool onlyNamed)
Definition: TypeFinder.cpp:34
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
@ FunctionTyID
Functions.
Definition: Type.h:72
@ ArrayTyID
Arrays.
Definition: Type.h:75
@ ScalableVectorTyID
Scalable SIMD vector type.
Definition: Type.h:77
@ StructTyID
Structures.
Definition: Type.h:74
@ FixedVectorTyID
Fixed width SIMD vector type.
Definition: Type.h:76
@ PointerTyID
Pointers.
Definition: Type.h:73
unsigned getNumContainedTypes() const
Return the number of types in the derived type.
Definition: Type.h:376
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
static IntegerType * getInt8Ty(LLVMContext &C)
bool isFunctionTy() const
True if this is an instance of FunctionType.
Definition: Type.h:240
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:137
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition: Type.h:370
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:36
virtual Type * remapType(Type *SrcTy)=0
The client should implement this method if they want to remap types while mapping values.
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:164
std::optional< MDMapT > & getMDMap()
Definition: ValueMap.h:119
iterator find(const KeyT &Val)
Definition: ValueMap.h:155
iterator end()
Definition: ValueMap.h:135
Context for (re-)mapping values (and metadata).
Definition: ValueMapper.h:143
MDNode * mapMDNode(const MDNode &N)
void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MappingContextID=0)
void scheduleRemapFunction(Function &F, unsigned MappingContextID=0)
void scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, unsigned MappingContextID=0)
void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef< Constant * > NewMembers, unsigned MappingContextID=0)
void scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, unsigned MappingContextID=0)
Value * mapValue(const Value &V)
void addFlags(RemapFlags Flags)
Add to the current RemapFlags.
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:49
LLVM Value Representation.
Definition: Value.h:74
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:375
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:532
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:685
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:994
bool hasName() const
Definition: Value.h:261
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:308
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:381
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
bool erase(const ValueT &V)
Definition: DenseSet.h:101
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
void splice(iterator where, iplist_impl &L2)
Definition: ilist.h:330
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:642
unique_function is a type-erasing functor similar to std::function.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
Key
PAL metadata keys.
AddressSpace getAddressSpace(T *V)
Definition: AVR.h:66
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::optional< Function * > remangleIntrinsicFunction(Function *F)
Definition: Function.cpp:1867
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:148
@ SC
CHAIN = SC CHAIN, Imm128 - System call.
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
StringRef filename(StringRef path, Style style=Style::native)
Get filename.
Definition: Path.cpp:577
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
std::error_code inconvertibleErrorCode()
The value returned by this function can be returned from convertToErrorCode for Error values where no...
Definition: Error.cpp:79
bool UpgradeModuleFlags(Module &M)
This checks for module flags which should be upgraded.
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
@ DK_Linker
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:89
@ RF_NullMapMissingGlobalValues
Any global values not in value map are mapped to null instead of mapping to self.
Definition: ValueMapper.h:99
@ RF_ReuseAndMutateDistinctMDs
Instruct the remapper to reuse and mutate distinct metadata (remapping them in place) instead of clon...
Definition: ValueMapper.h:95
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1862
DiagnosticSeverity
Defines the different supported severity of a diagnostic.
@ DS_Warning
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:1998
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition: Hashing.h:608
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition: Hashing.h:486
constexpr const char * PseudoProbeDescMetadataName
Definition: PseudoProbe.h:25
Definition: BitVector.h:851
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:51
KeyTy(ArrayRef< Type * > E, bool P)
Definition: IRMover.cpp:1690
bool operator==(const KeyTy &that) const
Definition: IRMover.cpp:1696
bool operator!=(const KeyTy &that) const
Definition: IRMover.cpp:1700