LLVM 18.0.0git
PPCISelLowering.h
Go to the documentation of this file.
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that PPC uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16
17#include "PPCInstrInfo.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Type.h"
32#include <optional>
33#include <utility>
34
35namespace llvm {
36
37 namespace PPCISD {
38
39 // When adding a NEW PPCISD node please add it to the correct position in
40 // the enum. The order of elements in this enum matters!
41 // Values that are added after this entry:
42 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
43 // are considered memory opcodes and are treated differently than entries
44 // that come before it. For example, ADD or MUL should be placed before
45 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
46 // after it.
47 enum NodeType : unsigned {
48 // Start the numbering where the builtin ops and target ops leave off.
50
51 /// FSEL - Traditional three-operand fsel node.
52 ///
54
55 /// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
58
59 /// FCFID - The FCFID instruction, taking an f64 operand and producing
60 /// and f64 value containing the FP representation of the integer that
61 /// was temporarily in the f64 operand.
63
64 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
65 /// unsigned integers and single-precision outputs.
69
70 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
71 /// operand, producing an f64 value containing the integer representation
72 /// of that FP value.
75
76 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
77 /// unsigned integers with round toward zero.
80
81 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
82 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
84
85 /// Reciprocal estimate instructions (unary FP ops).
88
89 /// Test instruction for software square root.
91
92 /// Square root instruction.
94
95 /// VPERM - The PPC VPERM Instruction.
96 ///
98
99 /// XXSPLT - The PPC VSX splat instructions
100 ///
102
103 /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
104 /// converting immediate single precision numbers to double precision
105 /// vector or scalar.
107
108 /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
109 ///
111
112 /// VECINSERT - The PPC vector insert instruction
113 ///
115
116 /// VECSHL - The PPC vector shift left instruction
117 ///
119
120 /// XXPERMDI - The PPC XXPERMDI instruction
121 ///
124
125 /// The CMPB instruction (takes two operands of i32 or i64).
127
128 /// Hi/Lo - These represent the high and low 16-bit parts of a global
129 /// address respectively. These nodes have two operands, the first of
130 /// which must be a TargetGlobalAddress, and the second of which must be a
131 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
132 /// though these are usually folded into other nodes.
135
136 /// The following two target-specific nodes are used for calls through
137 /// function pointers in the 64-bit SVR4 ABI.
138
139 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
140 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
141 /// compute an allocation on the stack.
143
144 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
145 /// compute an offset from native SP to the address of the most recent
146 /// dynamic alloca.
148
149 /// To avoid stack clash, allocation is performed by block and each block is
150 /// probed.
152
153 /// The result of the mflr at function entry, used for PIC code.
155
156 /// These nodes represent PPC shifts.
157 ///
158 /// For scalar types, only the last `n + 1` bits of the shift amounts
159 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
160 /// for exact behaviors.
161 ///
162 /// For vector types, only the last n bits are used. See vsld.
166
167 /// FNMSUB - Negated multiply-subtract instruction.
169
170 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
171 /// word and shift left immediate.
173
174 /// The combination of sra[wd]i and addze used to implemented signed
175 /// integer division by a power of 2. The first operand is the dividend,
176 /// and the second is the constant shift amount (representing the
177 /// divisor).
179
180 /// CALL - A direct function call.
181 /// CALL_NOP is a call with the special NOP which follows 64-bit
182 /// CALL_NOTOC the caller does not use the TOC.
183 /// SVR4 calls and 32-bit/64-bit AIX calls.
187
188 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
189 /// MTCTR instruction.
191
192 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
193 /// BCTRL instruction.
195
196 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
197 /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
198 /// and 64-bit AIX.
200
201 /// The variants that implicitly define rounding mode for calls with
202 /// strictfp semantics.
208
209 /// Return with a glue operand, matched by 'blr'
211
212 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
213 /// This copies the bits corresponding to the specified CRREG into the
214 /// resultant GPR. Bits corresponding to other CR regs are undefined.
216
217 /// Direct move from a VSX register to a GPR
219
220 /// Direct move from a GPR to a VSX register (algebraic)
222
223 /// Direct move from a GPR to a VSX register (zero)
225
226 /// Direct move of 2 consecutive GPR to a VSX register.
228
229 /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
230 /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
231 /// unsupported for this target.
232 /// Merge 2 GPRs to a single SPE register.
234
235 /// Extract SPE register component, second argument is high or low.
237
238 /// Extract a subvector from signed integer vector and convert to FP.
239 /// It is primarily used to convert a (widened) illegal integer vector
240 /// type to a legal floating point vector type.
241 /// For example v2i32 -> widened to v4i32 -> v2f64
243
244 /// Extract a subvector from unsigned integer vector and convert to FP.
245 /// As with SINT_VEC_TO_FP, used for converting illegal types.
247
248 /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
249 /// place the value into the least significant element of the most
250 /// significant doubleword in the vector. This is not element zero for
251 /// anything smaller than a doubleword on either endianness. This node has
252 /// the same semantics as SCALAR_TO_VECTOR except that the value remains in
253 /// the aforementioned location in the vector register.
255
256 // FIXME: Remove these once the ANDI glue bug is fixed:
257 /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
258 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
259 /// implement truncation of i32 or i64 to i1.
262
263 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
264 // target (returns (Lo, Hi)). It takes a chain operand.
266
267 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
269
270 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
272
273 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
274 /// instructions. For lack of better number, we use the opcode number
275 /// encoding for the OPC field to identify the compare. For example, 838
276 /// is VCMPGTSH.
278
279 /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the
280 /// altivec VCMP*_rec instructions. For lack of better number, we use the
281 /// opcode number encoding for the OPC field to identify the compare. For
282 /// example, 838 is VCMPGTSH.
284
285 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
286 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
287 /// condition register to branch on, OPC is the branch opcode to use (e.g.
288 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
289 /// an optional input flag argument.
291
292 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
293 /// loops.
296
297 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
298 /// towards zero. Used only as part of the long double-to-int
299 /// conversion sequence.
301
302 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
304
305 /// TC_RETURN - A tail call return.
306 /// operand #0 chain
307 /// operand #1 callee (register or absolute)
308 /// operand #2 stack adjustment
309 /// operand #3 optional in flag
311
312 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
315
316 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
317 /// for non-position independent code on PPC32.
319
320 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
321 /// local dynamic TLS and position indendepent code on PPC32.
323
324 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
325 /// TLS model, produces an ADDIS8 instruction that adds the GOT
326 /// base to sym\@got\@tprel\@ha.
328
329 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
330 /// TLS model, produces a LD instruction with base register G8RReg
331 /// and offset sym\@got\@tprel\@l. This completes the addition that
332 /// finds the offset of "sym" relative to the thread pointer.
334
335 /// G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec
336 /// and local-exec TLS models, produces an ADD instruction that adds
337 /// the contents of G8RReg to the thread pointer. Symbol contains a
338 /// relocation sym\@tls which is to be replaced by the thread pointer
339 /// and identifies to the linker that the instruction is part of a
340 /// TLS sequence.
342
343 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
344 /// model, produces an ADDIS8 instruction that adds the GOT base
345 /// register to sym\@got\@tlsgd\@ha.
347
348 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
349 /// model, produces an ADDI8 instruction that adds G8RReg to
350 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
351 /// ADDIS_TLSGD_L_ADDR until after register assignment.
353
354 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
355 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
356 /// ADDIS_TLSGD_L_ADDR until after register assignment.
358
359 /// %x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on
360 /// 32-bit AIX, produces a call to .__get_tpointer to retrieve the thread
361 /// pointer. At the end of the call, the thread pointer is found in R3.
363
364 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
365 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
366 /// register assignment.
368
369 /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
370 /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
371 /// Op that combines two register copies of TOC entries
372 /// (region handle into R3 and variable offset into R4) followed by a
373 /// GET_TLS_ADDR node which will be expanded to a call to __get_tls_addr.
374 /// This node is used in 64-bit mode as well (in which case the result is
375 /// G8RC and inputs are X3/X4).
377
378 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
379 /// model, produces an ADDIS8 instruction that adds the GOT base
380 /// register to sym\@got\@tlsld\@ha.
382
383 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
384 /// model, produces an ADDI8 instruction that adds G8RReg to
385 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
386 /// ADDIS_TLSLD_L_ADDR until after register assignment.
388
389 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
390 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
391 /// ADDIS_TLSLD_L_ADDR until after register assignment.
393
394 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
395 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
396 /// following register assignment.
398
399 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
400 /// model, produces an ADDIS8 instruction that adds X3 to
401 /// sym\@dtprel\@ha.
403
404 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
405 /// model, produces an ADDI8 instruction that adds G8RReg to
406 /// sym\@got\@dtprel\@l.
408
409 /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS
410 /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel.
412
413 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
414 /// during instruction selection to optimize a BUILD_VECTOR into
415 /// operations on splats. This is necessary to avoid losing these
416 /// optimizations due to constant folding.
418
419 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
420 /// operand identifies the operating system entry point.
422
423 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
425
426 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
427 /// history rolling buffer entry.
429
430 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
432
433 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
434 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
435 /// or stxvd2x instruction. The chain is necessary because the
436 /// sequence replaces a load and needs to provide the same number
437 /// of outputs.
439
440 /// An SDNode for swaps that are not associated with any loads/stores
441 /// and thereby have no chain.
443
444 /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
445 /// lower (IDX=1) half of v4f32 to v2f64.
447
448 /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
449 /// either through an add like PADDI or through a PC Relative load like
450 /// PLD.
452
453 /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for
454 /// TLS global address when using dynamic access models. This can be done
455 /// through an add like PADDI.
457
458 /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address
459 /// when using local exec access models, and when prefixed instructions are
460 /// available. This is used with ADD_TLS to produce an add like PADDI.
462
463 /// ACC_BUILD = Build an accumulator register from 4 VSX registers.
465
466 /// PAIR_BUILD = Build a vector pair register from 2 VSX registers.
468
469 /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of
470 /// an accumulator or pair register. This node is needed because
471 /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same
472 /// element type.
474
475 /// XXMFACC = This corresponds to the xxmfacc instruction.
477
478 // Constrained conversion from floating point to int
483
484 /// Constrained integer-to-floating-point conversion instructions.
489
490 /// Constrained floating point add in round-to-zero mode.
492
493 // NOTE: The nodes below may require PC-Rel specific patterns if the
494 // address could be PC-Relative. When adding new nodes below, consider
495 // whether or not the address can be PC-Relative and add the corresponding
496 // PC-relative patterns and tests.
497
498 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
499 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
500 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
501 /// i32.
503
504 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
505 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
506 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
507 /// or i32.
509
510 /// STFIWX - The STFIWX instruction. The first operand is an input token
511 /// chain, then an f64 value to store, then an address to store it to.
513
514 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
515 /// load which sign-extends from a 32-bit integer value into the
516 /// destination 64-bit register.
518
519 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
520 /// load which zero-extends from a 32-bit integer value into the
521 /// destination 64-bit register.
523
524 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
525 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
526 /// This can be used for converting loaded integers to floating point.
528
529 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
530 /// chain, then an f64 value to store, then an address to store it to,
531 /// followed by a byte-width for the store.
533
534 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
535 /// Maps directly to an lxvd2x instruction that will be followed by
536 /// an xxswapd.
538
539 /// LXVRZX - Load VSX Vector Rightmost and Zero Extend
540 /// This node represents v1i128 BUILD_VECTOR of a zero extending load
541 /// instruction from <byte, halfword, word, or doubleword> to i128.
542 /// Allows utilization of the Load VSX Vector Rightmost Instructions.
544
545 /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
546 /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
547 /// the vector type to load vector in big-endian element order.
549
550 /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
551 /// v2f32 value into the lower half of a VSR register.
553
554 /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
555 /// instructions such as LXVDSX, LXVWSX.
557
558 /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
559 /// that zero-extends.
561
562 /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
563 /// that sign-extends.
565
566 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
567 /// Maps directly to an stxvd2x instruction that will be preceded by
568 /// an xxswapd.
570
571 /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
572 /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
573 /// the vector type to store vector in big-endian element order.
575
576 /// Store scalar integers from VSR.
578
579 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
580 /// except they ensure that the compare input is zero-extended for
581 /// sub-word versions because the atomic loads zero-extend.
584
585 /// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr
586 /// The store conditional instruction ST[BHWD]ARX that produces a glue
587 /// result to attach it to a conditional branch.
589
590 /// GPRC = TOC_ENTRY GA, TOC
591 /// Loads the entry for GA from the TOC, where the TOC base is given by
592 /// the last operand.
594 };
595
596 } // end namespace PPCISD
597
598 /// Define some predicates that are used for node matching.
599 namespace PPC {
600
601 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
602 /// VPKUHUM instruction.
603 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
604 SelectionDAG &DAG);
605
606 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
607 /// VPKUWUM instruction.
608 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
609 SelectionDAG &DAG);
610
611 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
612 /// VPKUDUM instruction.
613 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
614 SelectionDAG &DAG);
615
616 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
617 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
618 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
619 unsigned ShuffleKind, SelectionDAG &DAG);
620
621 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
622 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
623 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
624 unsigned ShuffleKind, SelectionDAG &DAG);
625
626 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
627 /// a VMRGEW or VMRGOW instruction
628 bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
629 unsigned ShuffleKind, SelectionDAG &DAG);
630 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
631 /// for a XXSLDWI instruction.
632 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
633 bool &Swap, bool IsLE);
634
635 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
636 /// for a XXBRH instruction.
637 bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
638
639 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
640 /// for a XXBRW instruction.
641 bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
642
643 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
644 /// for a XXBRD instruction.
645 bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
646
647 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
648 /// for a XXBRQ instruction.
649 bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
650
651 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
652 /// for a XXPERMDI instruction.
653 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
654 bool &Swap, bool IsLE);
655
656 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
657 /// shift amount, otherwise return -1.
658 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
659 SelectionDAG &DAG);
660
661 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
662 /// specifies a splat of a single element that is suitable for input to
663 /// VSPLTB/VSPLTH/VSPLTW.
664 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
665
666 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
667 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
668 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
669 /// vector into the other. This function will also set a couple of
670 /// output parameters for how much the source vector needs to be shifted and
671 /// what byte number needs to be specified for the instruction to put the
672 /// element in the desired location of the target vector.
673 bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
674 unsigned &InsertAtByte, bool &Swap, bool IsLE);
675
676 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
677 /// appropriate for PPC mnemonics (which have a big endian bias - namely
678 /// elements are counted from the left of the vector register).
679 unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
680 SelectionDAG &DAG);
681
682 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
683 /// formed by using a vspltis[bhw] instruction of the specified element
684 /// size, return the constant being splatted. The ByteSize field indicates
685 /// the number of bytes of each element [124] -> [bhw].
686 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
687
688 // Flags for computing the optimal addressing mode for loads and stores.
691
692 // Extension mode for integer loads.
694 MOF_ZExt = 1 << 1,
695 MOF_NoExt = 1 << 2,
696
697 // Address computation flags.
698 MOF_NotAddNorCst = 1 << 5, // Not const. or sum of ptr and scalar.
699 MOF_RPlusSImm16 = 1 << 6, // Reg plus signed 16-bit constant.
700 MOF_RPlusLo = 1 << 7, // Reg plus signed 16-bit relocation
701 MOF_RPlusSImm16Mult4 = 1 << 8, // Reg plus 16-bit signed multiple of 4.
702 MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16.
703 MOF_RPlusSImm34 = 1 << 10, // Reg plus 34-bit signed constant.
704 MOF_RPlusR = 1 << 11, // Sum of two variables.
705 MOF_PCRel = 1 << 12, // PC-Relative relocation.
706 MOF_AddrIsSImm32 = 1 << 13, // A simple 32-bit constant.
707
708 // The in-memory type.
709 MOF_SubWordInt = 1 << 15,
710 MOF_WordInt = 1 << 16,
712 MOF_ScalarFloat = 1 << 18, // Scalar single or double precision.
713 MOF_Vector = 1 << 19, // Vector types and quad precision scalars.
714 MOF_Vector256 = 1 << 20,
715
716 // Subtarget features.
720 MOF_SubtargetSPE = 1 << 25
721 };
722
723 // The addressing modes for loads and stores.
724 enum AddrMode {
732 };
733 } // end namespace PPC
734
736 const PPCSubtarget &Subtarget;
737
738 public:
739 explicit PPCTargetLowering(const PPCTargetMachine &TM,
740 const PPCSubtarget &STI);
741
742 /// getTargetNodeName() - This method returns the name of a target specific
743 /// DAG node.
744 const char *getTargetNodeName(unsigned Opcode) const override;
745
746 bool isSelectSupported(SelectSupportKind Kind) const override {
747 // PowerPC does not support scalar condition selects on vectors.
749 }
750
751 /// getPreferredVectorAction - The code we generate when vector types are
752 /// legalized by promoting the integer element type is often much worse
753 /// than code we generate if we widen the type for applicable vector types.
754 /// The issue with promoting is that the vector is scalaraized, individual
755 /// elements promoted and then the vector is rebuilt. So say we load a pair
756 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
757 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
758 /// then the VPERM for the shuffle. All in all a very slow sequence.
760 const override {
761 // Default handling for scalable and single-element vectors.
762 if (VT.isScalableVector() || VT.getVectorNumElements() == 1)
764
765 // Split and promote vNi1 vectors so we don't produce v256i1/v512i1
766 // types as those are only for MMA instructions.
767 if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16)
768 return TypeSplitVector;
769 if (VT.getScalarSizeInBits() == 1)
770 return TypePromoteInteger;
771
772 // Widen vectors that have reasonably sized elements.
773 if (VT.getScalarSizeInBits() % 8 == 0)
774 return TypeWidenVector;
776 }
777
778 bool useSoftFloat() const override;
779
780 bool hasSPE() const;
781
782 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
783 return MVT::i32;
784 }
785
786 bool isCheapToSpeculateCttz(Type *Ty) const override {
787 return true;
788 }
789
790 bool isCheapToSpeculateCtlz(Type *Ty) const override {
791 return true;
792 }
793
794 bool
796 unsigned ElemSizeInBits,
797 unsigned &Index) const override;
798
799 bool isCtlzFast() const override {
800 return true;
801 }
802
803 bool isEqualityCmpFoldedWithSignedCmp() const override {
804 return false;
805 }
806
807 bool hasAndNotCompare(SDValue) const override {
808 return true;
809 }
810
811 bool preferIncOfAddToSubOfNot(EVT VT) const override;
812
813 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
814 return VT.isScalarInteger();
815 }
816
818 bool OptForSize, NegatibleCost &Cost,
819 unsigned Depth = 0) const override;
820
821 /// getSetCCResultType - Return the ISD::SETCC ValueType
823 EVT VT) const override;
824
825 /// Return true if target always benefits from combining into FMA for a
826 /// given value type. This must typically return false on targets where FMA
827 /// takes more cycles to execute than FADD.
828 bool enableAggressiveFMAFusion(EVT VT) const override;
829
830 /// getPreIndexedAddressParts - returns true by value, base pointer and
831 /// offset pointer and addressing mode by reference if the node's address
832 /// can be legally represented as pre-indexed load / store address.
836 SelectionDAG &DAG) const override;
837
838 /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
839 /// it can be more efficiently represented as [r+imm].
841 SelectionDAG &DAG) const;
842
843 /// SelectAddressRegReg - Given the specified addressed, check to see if it
844 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
845 /// is non-zero, only accept displacement which is not suitable for [r+imm].
846 /// Returns false if it can be represented by [r+imm], which are preferred.
848 SelectionDAG &DAG,
849 MaybeAlign EncodingAlignment = std::nullopt) const;
850
851 /// SelectAddressRegImm - Returns true if the address N can be represented
852 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
853 /// is not better represented as reg+reg. If \p EncodingAlignment is
854 /// non-zero, only accept displacements suitable for instruction encoding
855 /// requirement, i.e. multiples of 4 for DS form.
857 SelectionDAG &DAG,
858 MaybeAlign EncodingAlignment) const;
860 SelectionDAG &DAG) const;
861
862 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
863 /// represented as an indexed [r+r] operation.
865 SelectionDAG &DAG) const;
866
867 /// SelectAddressPCRel - Represent the specified address as pc relative to
868 /// be represented as [pc+imm]
870
872
873 /// LowerOperation - Provide custom lowering hooks for some operations.
874 ///
875 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
876
877 /// ReplaceNodeResults - Replace the results of node with an illegal result
878 /// type with new values built out of custom code.
879 ///
881 SelectionDAG &DAG) const override;
882
883 SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
884 SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
885
886 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
887
888 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
889 SmallVectorImpl<SDNode *> &Created) const override;
890
891 Register getRegisterByName(const char* RegName, LLT VT,
892 const MachineFunction &MF) const override;
893
895 KnownBits &Known,
896 const APInt &DemandedElts,
897 const SelectionDAG &DAG,
898 unsigned Depth = 0) const override;
899
900 Align getPrefLoopAlignment(MachineLoop *ML) const override;
901
902 bool shouldInsertFencesForAtomic(const Instruction *I) const override {
903 return true;
904 }
905
907 AtomicOrdering Ord) const override;
909 AtomicOrdering Ord) const override;
910
911 bool shouldInlineQuadwordAtomics() const;
912
914 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
915
918
920 AtomicRMWInst *AI, Value *AlignedAddr,
921 Value *Incr, Value *Mask,
922 Value *ShiftAmt,
923 AtomicOrdering Ord) const override;
926 Value *AlignedAddr, Value *CmpVal,
927 Value *NewVal, Value *Mask,
928 AtomicOrdering Ord) const override;
929
932 MachineBasicBlock *MBB) const override;
935 unsigned AtomicSize,
936 unsigned BinOpcode,
937 unsigned CmpOpcode = 0,
938 unsigned CmpPred = 0) const;
941 bool is8bit,
942 unsigned Opcode,
943 unsigned CmpOpcode = 0,
944 unsigned CmpPred = 0) const;
945
947 MachineBasicBlock *MBB) const;
948
950 MachineBasicBlock *MBB) const;
951
953 MachineBasicBlock *MBB) const;
954
955 bool hasInlineStackProbe(const MachineFunction &MF) const override;
956
957 unsigned getStackProbeSize(const MachineFunction &MF) const;
958
959 ConstraintType getConstraintType(StringRef Constraint) const override;
960
961 /// Examine constraint string and operand type and determine a weight value.
962 /// The operand object must already have been set up with the operand type.
964 AsmOperandInfo &info, const char *constraint) const override;
965
966 std::pair<unsigned, const TargetRegisterClass *>
968 StringRef Constraint, MVT VT) const override;
969
970 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
971 /// function arguments in the caller parameter area. This is the actual
972 /// alignment, not its logarithm.
974 const DataLayout &DL) const override;
975
976 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
977 /// vector. If it is invalid, don't add anything to Ops.
979 std::vector<SDValue> &Ops,
980 SelectionDAG &DAG) const override;
981
983 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
984 if (ConstraintCode == "es")
986 else if (ConstraintCode == "Q")
988 else if (ConstraintCode == "Z")
990 else if (ConstraintCode == "Zy")
992 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
993 }
994
997 SelectionDAG &DAG) const override;
998
999 /// isLegalAddressingMode - Return true if the addressing mode represented
1000 /// by AM is legal for this target, for a load/store of the specified type.
1001 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1002 Type *Ty, unsigned AS,
1003 Instruction *I = nullptr) const override;
1004
1005 /// isLegalICmpImmediate - Return true if the specified immediate is legal
1006 /// icmp immediate, that is the target has icmp instructions which can
1007 /// compare a register against the immediate without having to materialize
1008 /// the immediate into a register.
1009 bool isLegalICmpImmediate(int64_t Imm) const override;
1010
1011 /// isLegalAddImmediate - Return true if the specified immediate is legal
1012 /// add immediate, that is the target has add instructions which can
1013 /// add a register and the immediate without having to materialize
1014 /// the immediate into a register.
1015 bool isLegalAddImmediate(int64_t Imm) const override;
1016
1017 /// isTruncateFree - Return true if it's free to truncate a value of
1018 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
1019 /// register X1 to i32 by referencing its sub-register R1.
1020 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1021 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1022
1023 bool isZExtFree(SDValue Val, EVT VT2) const override;
1024
1025 bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
1026
1027 /// Returns true if it is beneficial to convert a load of a constant
1028 /// to just the constant itself.
1030 Type *Ty) const override;
1031
1032 bool convertSelectOfConstantsToMath(EVT VT) const override {
1033 return true;
1034 }
1035
1036 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1037 SDValue C) const override;
1038
1040 EVT VT) const override {
1041 // Only handle float load/store pair because float(fpr) load/store
1042 // instruction has more cycles than integer(gpr) load/store in PPC.
1043 if (Opc != ISD::LOAD && Opc != ISD::STORE)
1044 return false;
1045 if (VT != MVT::f32 && VT != MVT::f64)
1046 return false;
1047
1048 return true;
1049 }
1050
1051 // Returns true if the address of the global is stored in TOC entry.
1052 bool isAccessedAsGotIndirect(SDValue N) const;
1053
1054 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
1055
1056 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
1057 const CallInst &I,
1058 MachineFunction &MF,
1059 unsigned Intrinsic) const override;
1060
1061 /// It returns EVT::Other if the type should be determined using generic
1062 /// target-independent logic.
1064 const AttributeList &FuncAttributes) const override;
1065
1066 /// Is unaligned memory access allowed for the given type, and is it fast
1067 /// relative to software emulation.
1069 EVT VT, unsigned AddrSpace, Align Alignment = Align(1),
1071 unsigned *Fast = nullptr) const override;
1072
1073 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
1074 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
1075 /// expanded to FMAs when this method returns true, otherwise fmuladd is
1076 /// expanded to fmul + fadd.
1078 EVT VT) const override;
1079
1080 bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
1081
1082 /// isProfitableToHoist - Check if it is profitable to hoist instruction
1083 /// \p I to its dominator block.
1084 /// For example, it is not profitable if \p I and it's only user can form a
1085 /// FMA instruction, because Powerpc prefers FMADD.
1086 bool isProfitableToHoist(Instruction *I) const override;
1087
1088 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1089
1090 // Should we expand the build vector with shuffles?
1091 bool
1093 unsigned DefinedValues) const override;
1094
1095 // Keep the zero-extensions for arguments to libcalls.
1096 bool shouldKeepZExtForFP16Conv() const override { return true; }
1097
1098 /// createFastISel - This method returns a target-specific FastISel object,
1099 /// or null if the target does not support "fast" instruction selection.
1101 const TargetLibraryInfo *LibInfo) const override;
1102
1103 /// Returns true if an argument of type Ty needs to be passed in a
1104 /// contiguous block of registers in calling convention CallConv.
1106 Type *Ty, CallingConv::ID CallConv, bool isVarArg,
1107 const DataLayout &DL) const override {
1108 // We support any array type as "consecutive" block in the parameter
1109 // save area. The element type defines the alignment requirement and
1110 // whether the argument should go in GPRs, FPRs, or VRs if available.
1111 //
1112 // Note that clang uses this capability both to implement the ELFv2
1113 // homogeneous float/vector aggregate ABI, and to avoid having to use
1114 // "byval" when passing aggregates that might fully fit in registers.
1115 return Ty->isArrayTy();
1116 }
1117
1118 /// If a physical register, this returns the register that receives the
1119 /// exception address on entry to an EH pad.
1120 Register
1121 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1122
1123 /// If a physical register, this returns the register that receives the
1124 /// exception typeid on entry to a landing pad.
1125 Register
1126 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1127
1128 /// Override to support customized stack guard loading.
1129 bool useLoadStackGuardNode() const override;
1130 void insertSSPDeclarations(Module &M) const override;
1131 Value *getSDagStackGuard(const Module &M) const override;
1132
1133 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1134 bool ForCodeSize) const override;
1135
1136 unsigned getJumpTableEncoding() const override;
1137 bool isJumpTableRelative() const override;
1139 SelectionDAG &DAG) const override;
1141 unsigned JTI,
1142 MCContext &Ctx) const override;
1143
1144 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
1145 /// compute the address flags of the node, get the optimal address mode
1146 /// based on the flags, and set the Base and Disp based on the address mode.
1148 SDValue &Disp, SDValue &Base,
1149 SelectionDAG &DAG,
1150 MaybeAlign Align) const;
1151 /// SelectForceXFormMode - Given the specified address, force it to be
1152 /// represented as an indexed [r+r] operation (an XForm instruction).
1154 SelectionDAG &DAG) const;
1155
1157 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1158 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
1159 const override;
1160 /// Structure that collects some common arguments that get passed around
1161 /// between the functions for call lowering.
1162 struct CallFlags {
1164 const bool IsTailCall : 1;
1165 const bool IsVarArg : 1;
1166 const bool IsPatchPoint : 1;
1167 const bool IsIndirect : 1;
1168 const bool HasNest : 1;
1169 const bool NoMerge : 1;
1170
1172 bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
1176 };
1177
1179 bool IsVarArg) const;
1180 bool supportsTailCallFor(const CallBase *CB) const;
1181
1182 private:
1183 struct ReuseLoadInfo {
1184 SDValue Ptr;
1185 SDValue Chain;
1186 SDValue ResChain;
1188 bool IsDereferenceable = false;
1189 bool IsInvariant = false;
1190 Align Alignment;
1191 AAMDNodes AAInfo;
1192 const MDNode *Ranges = nullptr;
1193
1194 ReuseLoadInfo() = default;
1195
1196 MachineMemOperand::Flags MMOFlags() const {
1198 if (IsDereferenceable)
1200 if (IsInvariant)
1202 return F;
1203 }
1204 };
1205
1206 // Map that relates a set of common address flags to PPC addressing modes.
1207 std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap;
1208 void initializeAddrModeMap();
1209
1210 bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1211 SelectionDAG &DAG,
1213 void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
1214 SelectionDAG &DAG) const;
1215
1216 void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1217 SelectionDAG &DAG, const SDLoc &dl) const;
1218 SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1219 const SDLoc &dl) const;
1220
1221 bool directMoveIsProfitable(const SDValue &Op) const;
1222 SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1223 const SDLoc &dl) const;
1224
1225 SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1226 const SDLoc &dl) const;
1227
1228 SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1229
1230 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1231 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1232
1233 bool IsEligibleForTailCallOptimization(
1234 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1235 CallingConv::ID CallerCC, bool isVarArg,
1236 const SmallVectorImpl<ISD::InputArg> &Ins) const;
1237
1238 bool IsEligibleForTailCallOptimization_64SVR4(
1239 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1240 CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg,
1241 const SmallVectorImpl<ISD::OutputArg> &Outs,
1242 const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc,
1243 bool isCalleeExternalSymbol) const;
1244
1245 bool isEligibleForTCO(const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1246 CallingConv::ID CallerCC, const CallBase *CB,
1247 bool isVarArg,
1248 const SmallVectorImpl<ISD::OutputArg> &Outs,
1249 const SmallVectorImpl<ISD::InputArg> &Ins,
1250 const Function *CallerFunc,
1251 bool isCalleeExternalSymbol) const;
1252
1253 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1254 SDValue Chain, SDValue &LROpOut,
1255 SDValue &FPOpOut,
1256 const SDLoc &dl) const;
1257
1258 SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1259
1260 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1261 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1262 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1263 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1264 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1265 SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const;
1266 SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const;
1267 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1268 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1269 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1270 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1271 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1272 SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
1273 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1274 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1275 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1276 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1277 SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1278 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1279 SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1280 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1281 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1282 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1283 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1284 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1285 const SDLoc &dl) const;
1286 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1287 SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1288 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1289 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1290 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1291 SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const;
1292 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1293 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1294 SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask,
1295 EVT VT, SDValue V1, SDValue V2) const;
1296 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1297 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1298 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1299 SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1300 SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1301 SDValue LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
1302 SDValue lowerToLibCall(const char *LibCallName, SDValue Op,
1303 SelectionDAG &DAG) const;
1304 SDValue lowerLibCallBasedOnType(const char *LibCallFloatName,
1305 const char *LibCallDoubleName, SDValue Op,
1306 SelectionDAG &DAG) const;
1307 bool isLowringToMASSFiniteSafe(SDValue Op) const;
1308 bool isLowringToMASSSafe(SDValue Op) const;
1309 bool isScalarMASSConversionEnabled() const;
1310 SDValue lowerLibCallBase(const char *LibCallDoubleName,
1311 const char *LibCallFloatName,
1312 const char *LibCallDoubleNameFinite,
1313 const char *LibCallFloatNameFinite, SDValue Op,
1314 SelectionDAG &DAG) const;
1315 SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const;
1316 SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const;
1317 SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const;
1318 SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const;
1319 SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const;
1320 SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const;
1321 SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const;
1322 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1323 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1324 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1325 SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1326 SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
1327
1328 SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1329 SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1330
1331 SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
1332 CallingConv::ID CallConv, bool isVarArg,
1333 const SmallVectorImpl<ISD::InputArg> &Ins,
1334 const SDLoc &dl, SelectionDAG &DAG,
1335 SmallVectorImpl<SDValue> &InVals) const;
1336
1337 SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
1338 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1339 SDValue InGlue, SDValue Chain, SDValue CallSeqStart,
1340 SDValue &Callee, int SPDiff, unsigned NumBytes,
1341 const SmallVectorImpl<ISD::InputArg> &Ins,
1342 SmallVectorImpl<SDValue> &InVals,
1343 const CallBase *CB) const;
1344
1345 SDValue
1346 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1347 const SmallVectorImpl<ISD::InputArg> &Ins,
1348 const SDLoc &dl, SelectionDAG &DAG,
1349 SmallVectorImpl<SDValue> &InVals) const override;
1350
1351 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1352 SmallVectorImpl<SDValue> &InVals) const override;
1353
1354 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1355 bool isVarArg,
1356 const SmallVectorImpl<ISD::OutputArg> &Outs,
1357 LLVMContext &Context) const override;
1358
1359 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1360 const SmallVectorImpl<ISD::OutputArg> &Outs,
1361 const SmallVectorImpl<SDValue> &OutVals,
1362 const SDLoc &dl, SelectionDAG &DAG) const override;
1363
1364 SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1365 SelectionDAG &DAG, SDValue ArgVal,
1366 const SDLoc &dl) const;
1367
1368 SDValue LowerFormalArguments_AIX(
1369 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1370 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1371 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1372 SDValue LowerFormalArguments_64SVR4(
1373 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1374 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1375 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1376 SDValue LowerFormalArguments_32SVR4(
1377 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1378 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1379 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1380
1381 SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1382 SDValue CallSeqStart,
1383 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1384 const SDLoc &dl) const;
1385
1386 SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1387 const SmallVectorImpl<ISD::OutputArg> &Outs,
1388 const SmallVectorImpl<SDValue> &OutVals,
1389 const SmallVectorImpl<ISD::InputArg> &Ins,
1390 const SDLoc &dl, SelectionDAG &DAG,
1391 SmallVectorImpl<SDValue> &InVals,
1392 const CallBase *CB) const;
1393 SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1394 const SmallVectorImpl<ISD::OutputArg> &Outs,
1395 const SmallVectorImpl<SDValue> &OutVals,
1396 const SmallVectorImpl<ISD::InputArg> &Ins,
1397 const SDLoc &dl, SelectionDAG &DAG,
1398 SmallVectorImpl<SDValue> &InVals,
1399 const CallBase *CB) const;
1400 SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
1401 const SmallVectorImpl<ISD::OutputArg> &Outs,
1402 const SmallVectorImpl<SDValue> &OutVals,
1403 const SmallVectorImpl<ISD::InputArg> &Ins,
1404 const SDLoc &dl, SelectionDAG &DAG,
1405 SmallVectorImpl<SDValue> &InVals,
1406 const CallBase *CB) const;
1407
1408 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1409 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1410 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1411
1412 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1413 SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1414 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1415 SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1416 SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1417 SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1418 SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1419 SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1420 SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1421 SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1422 SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
1423 SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1424 SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1425 SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
1426 SelectionDAG &DAG) const;
1427 SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1428 DAGCombinerInfo &DCI) const;
1429
1430 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1431 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1432 /// (2) keeping the result of comparison in GPR has performance benefit.
1433 SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1434
1435 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1436 int &RefinementSteps, bool &UseOneConstNR,
1437 bool Reciprocal) const override;
1438 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1439 int &RefinementSteps) const override;
1440 SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
1441 const DenormalMode &Mode) const override;
1442 SDValue getSqrtResultForDenormInput(SDValue Operand,
1443 SelectionDAG &DAG) const override;
1444 unsigned combineRepeatedFPDivisors() const override;
1445
1446 SDValue
1447 combineElementTruncationToVectorTruncation(SDNode *N,
1448 DAGCombinerInfo &DCI) const;
1449
1450 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1451 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1452 /// essentially any shuffle of v8i16 vectors that just inserts one element
1453 /// from one vector into the other.
1454 SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1455
1456 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1457 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1458 /// essentially v16i8 vector version of VINSERTH.
1459 SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1460
1461 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
1462 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
1463 SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1464
1465 // Return whether the call instruction can potentially be optimized to a
1466 // tail call. This will cause the optimizers to attempt to move, or
1467 // duplicate return instructions to help enable tail call optimizations.
1468 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1469 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1470
1471 /// getAddrModeForFlags - Based on the set of address flags, select the most
1472 /// optimal instruction format to match by.
1473 PPC::AddrMode getAddrModeForFlags(unsigned Flags) const;
1474
1475 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
1476 /// the address flags of the load/store instruction that is to be matched.
1477 /// The address flags are stored in a map, which is then searched
1478 /// through to determine the optimal load/store instruction format.
1479 unsigned computeMOFlags(const SDNode *Parent, SDValue N,
1480 SelectionDAG &DAG) const;
1481 }; // end class PPCTargetLowering
1482
1483 namespace PPC {
1484
1485 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1486 const TargetLibraryInfo *LibInfo);
1487
1488 } // end namespace PPC
1489
1490 bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1491 bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1492 bool isIntS34Immediate(SDNode *N, int64_t &Imm);
1493 bool isIntS34Immediate(SDValue Op, int64_t &Imm);
1494
1495 bool convertToNonDenormSingle(APInt &ArgAPInt);
1496 bool convertToNonDenormSingle(APFloat &ArgAPFloat);
1497 bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat);
1498
1499} // end namespace llvm
1500
1501#endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
IRTranslator LLVM IR MI
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
This file contains the declarations for metadata subclasses.
const char LLVMTargetMachineRef TM
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
Definition: APInt.h:76
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:513
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:718
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1190
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:94
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Context object for machine code objects.
Definition: MCContext.h:76
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:35
Metadata node.
Definition: Metadata.h:950
Machine Value Type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
Representation of each machine instruction.
Definition: MachineInstr.h:68
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOInvariant
The memory access always returns the same value (or traps).
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
MachineBasicBlock * emitEHSjLjLongJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
CCAssignFn * ccAssignFnForCall(CallingConv::ID CC, bool Return, bool IsVarArg) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
isTruncateFree - Return true if it's free to truncate a value of type Ty1 to type Ty2.
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isFPExtFree(EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
SelectForceXFormMode - Given the specified address, force it to be represented as an indexed [r+r] op...
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
bool hasInlineStackProbe(const MachineFunction &MF) const override
MachineBasicBlock * emitEHSjLjSetJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
const char * getTargetNodeName(unsigned Opcode) const override
getTargetNodeName() - This method returns the name of a target specific DAG node.
bool supportsTailCallFor(const CallBase *CB) const
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
MachineBasicBlock * emitProbedAlloca(MachineInstr &MI, MachineBasicBlock *MBB) const
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
MachineBasicBlock * EmitPartwordAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, bool is8bit, unsigned Opcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const override
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign EncodingAlignment) const
SelectAddressRegImm - Returns true if the address N can be represented by a base register plus a sign...
bool shouldInsertFencesForAtomic(const Instruction *I) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
bool isCtlzFast() const override
Return true if ctlz instruction is fast.
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override
Returns true if an argument of type Ty needs to be passed in a contiguous block of registers in calli...
bool isSelectSupported(SelectSupportKind Kind) const override
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const override
Target-specific splitting of values into parts that fit a register storing a legal type.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
LowerAsmOperandForConstraint - Lower the specified operand into the Ops vector.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
ReplaceNodeResults - Replace the results of node with an illegal result type with new values built ou...
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, MaybeAlign EncodingAlignment=std::nullopt) const
SelectAddressRegReg - Given the specified addressed, check to see if it can be more efficiently repre...
MachineBasicBlock * EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, unsigned AtomicSize, unsigned BinOpcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
bool hasAndNotCompare(SDValue) const override
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const override
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressRegRegOnly - Given the specified addressed, force it to be represented as an indexed [r+...
bool useSoftFloat() const override
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override
Examine constraint string and operand type and determine a weight value.
uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override
getByValTypeAlignment - Return the desired alignment for ByVal aggregate function arguments in the ca...
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
bool preferIncOfAddToSubOfNot(EVT VT) const override
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Returns true if it is beneficial to convert a load of a constant to just the constant itself.
const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const override
Returns a 0 terminated array of registers that can be safely used as scratch registers.
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override
getPreIndexedAddressParts - returns true by value, base pointer and offset pointer and addressing mod...
bool isProfitableToHoist(Instruction *I) const override
isProfitableToHoist - Check if it is profitable to hoist instruction I to its dominator block.
bool convertSelectOfConstantsToMath(EVT VT) const override
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override
Use bitwise logic to make pairs of compares more efficient.
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint, return the type of constraint it is for this target.
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const override
Return true if the target shall perform extract vector element and store given that the vector is kno...
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
bool isEqualityCmpFoldedWithSignedCmp() const override
Return true if instruction generated for equality comparison is folded with instruction generated for...
EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override
It returns EVT::Other if the type should be determined using generic target-independent logic.
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
getPreferredVectorAction - The code we generate when vector types are legalized by promoting the inte...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
bool useLoadStackGuardNode() const override
Override to support customized stack guard loading.
unsigned getStackProbeSize(const MachineFunction &MF) const
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool shouldKeepZExtForFP16Conv() const override
Does this target require the clearing of high-order bits in a register passed to the fp16 to fp conve...
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster than a pair of fmul and fadd i...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Is unaligned memory access allowed for the given type, and is it fast relative to software emulation.
bool shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const override
bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
Similar to the 16-bit case but for instructions that take a 34-bit displacement field (prefixed loads...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool isJumpTableRelative() const override
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
LowerOperation - Provide custom lowering hooks for some operations.
PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign Align) const
SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), compute the address flags of...
Value * getSDagStackGuard(const Module &M) const override
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
bool SelectAddressPCRel(SDValue N, SDValue &Base) const
SelectAddressPCRel - Represent the specified address as pc relative to be represented as [pc+imm].
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
getSetCCResultType - Return the ISD::SETCC ValueType
bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressEVXRegReg - Given the specified addressed, check to see if it can be more efficiently re...
bool isLegalICmpImmediate(int64_t Imm) const override
isLegalICmpImmediate - Return true if the specified immediate is legal icmp immediate,...
bool isAccessedAsGotIndirect(SDValue N) const
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const override
createFastISel - This method returns a target-specific FastISel object, or null if the target does no...
bool shouldInlineQuadwordAtomics() const
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
bool isLegalAddImmediate(int64_t Imm) const override
isLegalAddImmediate - Return true if the specified immediate is legal add immediate,...
Common code between 32-bit and 64-bit PowerPC targets.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:225
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Provides information about what library functions are available for the current target.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
SelectSupportKind
Enum that describes what type of support for selects the target has.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
NegatibleCost
Enum that specifies when a float negation is beneficial.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:252
LLVM Value Representation.
Definition: Value.h:74
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:1026
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1380
static const int FIRST_TARGET_MEMORY_OPCODE
FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific me...
Definition: ISDOpcodes.h:1392
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1452
static const int FIRST_TARGET_STRICTFP_OPCODE
FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions s...
Definition: ISDOpcodes.h:1386
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1483
@ SEXT_LD_SPLAT
VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that sign-extends.
@ FCTIDUZ
Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for unsigned integers with round ...
@ ADDI_TLSGD_L_ADDR
G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSGD_L and GET_TLS_ADDR unti...
@ FSQRT
Square root instruction.
@ STRICT_FCFID
Constrained integer-to-floating-point conversion instructions.
@ DYNALLOC
The following two target-specific nodes are used for calls through function pointers in the 64-bit SV...
@ COND_BRANCH
CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This corresponds to the COND_BRANCH pseudo ...
@ CALL_RM
The variants that implicitly define rounding mode for calls with strictfp semantics.
@ STORE_VEC_BE
CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
@ BDNZ
CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based loops.
@ MTVSRZ
Direct move from a GPR to a VSX register (zero)
@ SRL
These nodes represent PPC shifts.
@ VECINSERT
VECINSERT - The PPC vector insert instruction.
@ LXSIZX
GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an integer smaller than 64 bits into ...
@ FNMSUB
FNMSUB - Negated multiply-subtract instruction.
@ RFEBB
CHAIN = RFEBB CHAIN, State - Return from event-based branch.
@ FCTIDZ
FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 operand, producing an f64 value...
@ SC
CHAIN = SC CHAIN, Imm128 - System call.
@ GET_TLS_ADDR
x3 = GET_TLS_ADDR x3, Symbol - For the general-dynamic TLS model, produces a call to __tls_get_addr(s...
@ XXSPLTI32DX
XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
@ ANDI_rec_1_EQ_BIT
i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the eq or gt bit of CR0 after ex...
@ FRE
Reciprocal estimate instructions (unary FP ops).
@ ADDIS_GOT_TPREL_HA
G8RC = ADDIS_GOT_TPREL_HA x2, Symbol - Used by the initial-exec TLS model, produces an ADDIS8 instruc...
@ CLRBHRB
CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
@ STORE_COND
CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr The store conditional instruction ST[BHWD]ARX that produces a...
@ SINT_VEC_TO_FP
Extract a subvector from signed integer vector and convert to FP.
@ EXTRACT_SPE
Extract SPE register component, second argument is high or low.
@ XXSWAPD
VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little endian.
@ ADDI_TLSLD_L_ADDR
G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSLD_L and GET_TLSLD_ADDR un...
@ ATOMIC_CMP_SWAP_8
ATOMIC_CMP_SWAP - the exact same as the target-independent nodes except they ensure that the compare ...
@ ST_VSR_SCAL_INT
Store scalar integers from VSR.
@ VCMP
RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* instructions.
@ BCTRL
CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a BCTRL instruction.
@ BUILD_SPE64
BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and EXTRACT_ELEMENT but take f64 arguments in...
@ LFIWZX
GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point load which zero-extends from a 32-bit inte...
@ RET_GLUE
Return with a glue operand, matched by 'blr'.
@ SCALAR_TO_VECTOR_PERMUTED
PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to place the value into the least sign...
@ EXTRACT_VSX_REG
EXTRACT_VSX_REG = Extract one of the underlying vsx registers of an accumulator or pair register.
@ STXSIX
STXSIX - The STXSI[bh]X instruction.
@ MAT_PCREL_ADDR
MAT_PCREL_ADDR = Materialize a PC Relative address.
@ MFOCRF
R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
@ XXSPLT
XXSPLT - The PPC VSX splat instructions.
@ TOC_ENTRY
GPRC = TOC_ENTRY GA, TOC Loads the entry for GA from the TOC, where the TOC base is given by the last...
@ XXPERMDI
XXPERMDI - The PPC XXPERMDI instruction.
@ ADDIS_DTPREL_HA
G8RC = ADDIS_DTPREL_HA x3, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction t...
@ ADD_TLS
G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec and local-exec TLS models,...
@ MTVSRA
Direct move from a GPR to a VSX register (algebraic)
@ VADD_SPLAT
VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded during instruction selection to optimi...
@ PPC32_GOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ ADDI_DTPREL_L
G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction ...
@ BCTRL_LOAD_TOC
CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl instruction and the TOC reload r...
@ PPC32_PICGOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ FCFID
FCFID - The FCFID instruction, taking an f64 operand and producing and f64 value containing the FP re...
@ CR6SET
ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
@ LBRX
GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a byte-swapping load instruction.
@ LD_VSX_LH
VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a v2f32 value into the lower ha...
@ PROBED_ALLOCA
To avoid stack clash, allocation is performed by block and each block is probed.
@ XXMFACC
XXMFACC = This corresponds to the xxmfacc instruction.
@ ADDIS_TLSGD_HA
G8RC = ADDIS_TLSGD_HA x2, Symbol - For the general-dynamic TLS model, produces an ADDIS8 instruction ...
@ ACC_BUILD
ACC_BUILD = Build an accumulator register from 4 VSX registers.
@ GlobalBaseReg
The result of the mflr at function entry, used for PIC code.
@ LXVD2X
VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
@ XSMAXC
XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
@ CALL
CALL - A direct function call.
@ MTCTR
CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a MTCTR instruction.
@ TC_RETURN
TC_RETURN - A tail call return.
@ STFIWX
STFIWX - The STFIWX instruction.
@ LD_SPLAT
VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory instructions such as LXVDSX,...
@ VCMP_rec
RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the altivec VCMP*_rec instructions.
@ MFFS
F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
@ PADDI_DTPREL
G8RC = PADDI_DTPREL x3, Symbol - For the pc-rel based local-dynamic TLS model, produces a PADDI8 inst...
@ BUILD_FP128
Direct move of 2 consecutive GPR to a VSX register.
@ VEXTS
VEXTS, ByteWidth - takes an input in VSFRC and produces an output in VSFRC that is sign-extended from...
@ TLS_LOCAL_EXEC_MAT_ADDR
TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address when using local exec access ...
@ VPERM
VPERM - The PPC VPERM Instruction.
@ ADDIS_TLSLD_HA
G8RC = ADDIS_TLSLD_HA x2, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction th...
@ XXSPLTI_SP_TO_DP
XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for converting immediate single prec...
@ GET_TLSLD_ADDR
x3 = GET_TLSLD_ADDR x3, Symbol - For the local-dynamic TLS model, produces a call to __tls_get_addr(s...
@ ADDI_TLSGD_L
x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS model, produces an ADDI8 instruction t...
@ DYNAREAOFFSET
This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to compute an offset from native ...
@ PAIR_BUILD
PAIR_BUILD = Build a vector pair register from 2 VSX registers.
@ STRICT_FADDRTZ
Constrained floating point add in round-to-zero mode.
@ FTSQRT
Test instruction for software square root.
@ FP_EXTEND_HALF
FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or lower (IDX=1) half of v4f32 to v2f6...
@ CMPB
The CMPB instruction (takes two operands of i32 or i64).
@ VECSHL
VECSHL - The PPC vector shift left instruction.
@ ADDI_TLSLD_L
x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction tha...
@ FADDRTZ
F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding towards zero.
@ ZEXT_LD_SPLAT
VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that zero-extends.
@ SRA_ADDZE
The combination of sra[wd]i and addze used to implemented signed integer division by a power of 2.
@ EXTSWSLI
EXTSWSLI = The PPC extswsli instruction, which does an extend-sign word and shift left immediate.
@ STXVD2X
CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
@ TLSGD_AIX
GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY Op that combines two re...
@ UINT_VEC_TO_FP
Extract a subvector from unsigned integer vector and convert to FP.
@ GET_TPOINTER
x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on 32-bit AIX, produces a call to ...
@ LXVRZX
LXVRZX - Load VSX Vector Rightmost and Zero Extend This node represents v1i128 BUILD_VECTOR of a zero...
@ MFBHRBE
GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch history rolling buffer entry.
@ FCFIDU
Newer FCFID[US] integer-to-floating-point conversion instructions for unsigned integers and single-pr...
@ FSEL
FSEL - Traditional three-operand fsel node.
@ SWAP_NO_CHAIN
An SDNode for swaps that are not associated with any loads/stores and thereby have no chain.
@ LOAD_VEC_BE
VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
@ LFIWAX
GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point load which sign-extends from a 32-bit inte...
@ STBRX
CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a byte-swapping store instruction.
@ LD_GOT_TPREL_L
G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec TLS model, produces a LD instruction ...
@ MFVSR
Direct move from a VSX register to a GPR.
@ TLS_DYNAMIC_MAT_PCREL_ADDR
TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for TLS global address when using dyna...
@ Hi
Hi/Lo - These represent the high and low 16-bit parts of a global address respectively.
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG)
get_VSPLTI_elt - If this is a build_vector of constants which can be formed by using a vspltis[bhw] i...
bool isXXBRDShuffleMask(ShuffleVectorSDNode *N)
isXXBRDShuffleMask - Return true if this is a shuffle mask suitable for a XXBRD instruction.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo)
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for a VRGH* instruction with the ...
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a VPKUDUM instruction.
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for a VMRGEW or VMRGOW instructi...
bool isXXBRQShuffleMask(ShuffleVectorSDNode *N)
isXXBRQShuffleMask - Return true if this is a shuffle mask suitable for a XXBRQ instruction.
bool isXXBRWShuffleMask(ShuffleVectorSDNode *N)
isXXBRWShuffleMask - Return true if this is a shuffle mask suitable for a XXBRW instruction.
bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable for a XXPERMDI instruction.
bool isXXBRHShuffleMask(ShuffleVectorSDNode *N)
isXXBRHShuffleMask - Return true if this is a shuffle mask suitable for a XXBRH instruction.
unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, SelectionDAG &DAG)
getSplatIdxForPPCMnemonics - Return the splat index as a value that is appropriate for PPC mnemonics ...
bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable for a XXSLDWI instruction.
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift amount, otherwise return -1.
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for a VRGL* instruction with the ...
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, unsigned &InsertAtByte, bool &Swap, bool IsLE)
isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by the XXINSERTW instruction intr...
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize)
isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand specifies a splat of a singl...
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a VPKUWUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a VPKUHUM instruction.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:440
bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat)
bool isIntS16Immediate(SDNode *N, int16_t &Imm)
isIntS16Immediate - This method tests to see if the node is either a 32-bit or 64-bit immediate,...
bool convertToNonDenormSingle(APInt &ArgAPInt)
AtomicOrdering
Atomic ordering for LLVM's memory model.
bool isIntS34Immediate(SDNode *N, int64_t &Imm)
isIntS34Immediate - This method tests if value of node given can be accurately represented as a sign ...
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
DWARFExpression::Operation Op
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:651
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:34
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:149
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Structure that collects some common arguments that get passed around between the functions for call l...
CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg, bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)