LLVM 22.0.0git
RISCVTargetTransformInfo.h
Go to the documentation of this file.
1//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file defines a TargetTransformInfoImplBase conforming object specific
10/// to the RISC-V target machine. It uses the target's detailed information to
11/// provide more precise answers to certain TTI queries, while letting the
12/// target independent and default TTI implementations handle the rest.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
17#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
18
19#include "RISCVSubtarget.h"
20#include "RISCVTargetMachine.h"
23#include "llvm/IR/Function.h"
24#include <optional>
25
26namespace llvm {
27
28class RISCVTTIImpl final : public BasicTTIImplBase<RISCVTTIImpl> {
30 using TTI = TargetTransformInfo;
31
32 friend BaseT;
33
34 const RISCVSubtarget *ST;
35 const RISCVTargetLowering *TLI;
36
37 const RISCVSubtarget *getST() const { return ST; }
38 const RISCVTargetLowering *getTLI() const { return TLI; }
39
40 /// This function returns an estimate for VL to be used in VL based terms
41 /// of the cost model. For fixed length vectors, this is simply the
42 /// vector length. For scalable vectors, we return results consistent
43 /// with getVScaleForTuning under the assumption that clients are also
44 /// using that when comparing costs between scalar and vector representation.
45 /// This does unfortunately mean that we can both undershoot and overshot
46 /// the true cost significantly if getVScaleForTuning is wildly off for the
47 /// actual target hardware.
48 unsigned getEstimatedVLFor(VectorType *Ty) const;
49
50 /// This function calculates the costs for one or more RVV opcodes based
51 /// on the vtype and the cost kind.
52 /// \param Opcodes A list of opcodes of the RVV instruction to evaluate.
53 /// \param VT The MVT of vtype associated with the RVV instructions.
54 /// For widening/narrowing instructions where the result and source types
55 /// differ, it is important to check the spec to determine whether the vtype
56 /// refers to the result or source type.
57 /// \param CostKind The type of cost to compute.
58 InstructionCost getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
60
61 /// Return the cost of accessing a constant pool entry of the specified
62 /// type.
63 InstructionCost getConstantPoolLoadCost(Type *Ty,
65
66 /// If this shuffle can be lowered as a masked slide pair (at worst),
67 /// return a cost for it.
68 InstructionCost getSlideCost(FixedVectorType *Tp, ArrayRef<int> Mask,
70
71public:
72 explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
73 : BaseT(TM, F.getDataLayout()), ST(TM->getSubtargetImpl(F)),
74 TLI(ST->getTargetLowering()) {}
75
76 /// Return the cost of materializing an immediate for a value operand of
77 /// a store instruction.
80
82 TTI::TargetCostKind CostKind) const override;
83 InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
84 const APInt &Imm, Type *Ty,
86 Instruction *Inst = nullptr) const override;
88 getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
89 Type *Ty, TTI::TargetCostKind CostKind) const override;
90
91 /// \name EVL Support for predicated vectorization.
92 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
93 /// in hardware. (see LLVM Language Reference - "Vector Predication
94 /// Intrinsics",
95 /// https://llvm.org/docs/LangRef.html#vector-predication-intrinsics and
96 /// "IR-level VP intrinsics",
97 /// https://llvm.org/docs/Proposals/VectorPredication.html#ir-level-vp-intrinsics).
98 bool hasActiveVectorLength() const override;
99
101 getPopcntSupport(unsigned TyWidth) const override;
102
104 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
106 TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
107 TTI::TargetCostKind CostKind) const override;
108
109 bool shouldExpandReduction(const IntrinsicInst *II) const override;
110 bool supportsScalableVectors() const override {
111 return ST->hasVInstructions();
112 }
113 bool enableOrderedReductions() const override { return true; }
114 bool enableScalableVectorization() const override {
115 return ST->hasVInstructions();
116 }
118 return ST->hasVInstructions();
119 }
121 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override {
122 return ST->hasVInstructions() ? TailFoldingStyle::DataWithEVL
124 }
125 std::optional<unsigned> getMaxVScale() const override;
126 std::optional<unsigned> getVScaleForTuning() const override;
127
130
131 unsigned getRegUsageForType(Type *Ty) const override;
132
133 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override;
134
135 bool preferAlternateOpcodeVectorization() const override;
136
137 bool preferEpilogueVectorization() const override {
138 // Epilogue vectorization is usually unprofitable - tail folding or
139 // a smaller VF would have been better. This a blunt hammer - we
140 // should re-examine this once vectorization is better tuned.
141 return false;
142 }
143
144 bool shouldConsiderVectorizationRegPressure() const override { return true; }
145
147 getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
148 unsigned AddressSpace,
149 TTI::TargetCostKind CostKind) const override;
150
153 const TTI::PointersChainInfo &Info, Type *AccessTy,
154 TTI::TargetCostKind CostKind) const override;
155
158 OptimizationRemarkEmitter *ORE) const override;
159
161 TTI::PeelingPreferences &PP) const override;
162
164 MemIntrinsicInfo &Info) const override;
165
166 unsigned getMinVectorRegisterBitWidth() const override {
167 return ST->useRVVForFixedLengthVectors() ? 16 : 0;
168 }
169
173 VectorType *SubTp, ArrayRef<const Value *> Args = {},
174 const Instruction *CxtI = nullptr) const override;
175
177 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
178 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
179 ArrayRef<Value *> VL = {}) const override;
180
182 getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
183 TTI::TargetCostKind CostKind) const override;
184
186 getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr,
187 TTI::TargetCostKind CostKind) const override;
188
190 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
191 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
192 bool UseMaskForCond = false, bool UseMaskForGaps = false) const override;
193
194 InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
195 const Value *Ptr, bool VariableMask,
196 Align Alignment,
198 const Instruction *I) const override;
199
201 getExpandCompressMemoryOpCost(unsigned Opcode, Type *Src, bool VariableMask,
202 Align Alignment, TTI::TargetCostKind CostKind,
203 const Instruction *I = nullptr) const override;
204
205 InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy,
206 const Value *Ptr, bool VariableMask,
207 Align Alignment,
209 const Instruction *I) const override;
210
213
215 getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
217 const Instruction *I = nullptr) const override;
218
220 getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
221 TTI::TargetCostKind CostKind) const override;
222
224 getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
225 std::optional<FastMathFlags> FMF,
226 TTI::TargetCostKind CostKind) const override;
227
229 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
230 VectorType *ValTy, std::optional<FastMathFlags> FMF,
231 TTI::TargetCostKind CostKind) const override;
232
234 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
237 const Instruction *I = nullptr) const override;
238
240 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
244 const Instruction *I = nullptr) const override;
245
247 const Instruction *I = nullptr) const override;
248
250 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
252 unsigned Index, const Value *Op0,
253 const Value *Op1) const override;
254
256 getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val,
258 unsigned Index) const override;
259
261 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
265 const Instruction *CxtI = nullptr) const override;
266
267 bool isElementTypeLegalForScalableVector(Type *Ty) const override {
268 return TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty));
269 }
270
271 bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const {
272 if (!ST->hasVInstructions())
273 return false;
274
275 EVT DataTypeVT = TLI->getValueType(DL, DataType);
276
277 // Only support fixed vectors if we know the minimum vector size.
278 if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
279 return false;
280
281 EVT ElemType = DataTypeVT.getScalarType();
282 if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
283 return false;
284
285 return TLI->isLegalElementTypeForRVV(ElemType);
286 }
287
288 bool isLegalMaskedLoad(Type *DataType, Align Alignment,
289 unsigned /*AddressSpace*/) const override {
290 return isLegalMaskedLoadStore(DataType, Alignment);
291 }
292 bool isLegalMaskedStore(Type *DataType, Align Alignment,
293 unsigned /*AddressSpace*/) const override {
294 return isLegalMaskedLoadStore(DataType, Alignment);
295 }
296
297 bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const {
298 if (!ST->hasVInstructions())
299 return false;
300
301 EVT DataTypeVT = TLI->getValueType(DL, DataType);
302
303 // Only support fixed vectors if we know the minimum vector size.
304 if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
305 return false;
306
307 // We also need to check if the vector of address is valid.
308 EVT PointerTypeVT = EVT(TLI->getPointerTy(DL));
309 if (DataTypeVT.isScalableVector() &&
310 !TLI->isLegalElementTypeForRVV(PointerTypeVT))
311 return false;
312
313 EVT ElemType = DataTypeVT.getScalarType();
314 if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
315 return false;
316
317 return TLI->isLegalElementTypeForRVV(ElemType);
318 }
319
320 bool isLegalMaskedGather(Type *DataType, Align Alignment) const override {
321 return isLegalMaskedGatherScatter(DataType, Alignment);
322 }
323 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override {
324 return isLegalMaskedGatherScatter(DataType, Alignment);
325 }
326
328 Align Alignment) const override {
329 // Scalarize masked gather for RV64 if EEW=64 indices aren't supported.
330 return ST->is64Bit() && !ST->hasVInstructionsI64();
331 }
332
334 Align Alignment) const override {
335 // Scalarize masked scatter for RV64 if EEW=64 indices aren't supported.
336 return ST->is64Bit() && !ST->hasVInstructionsI64();
337 }
338
339 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override {
340 EVT DataTypeVT = TLI->getValueType(DL, DataType);
341 return TLI->isLegalStridedLoadStore(DataTypeVT, Alignment);
342 }
343
344 bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
345 Align Alignment,
346 unsigned AddrSpace) const override {
347 return TLI->isLegalInterleavedAccessType(VTy, Factor, Alignment, AddrSpace,
348 DL);
349 }
350
351 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override;
352
353 bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override;
354
355 bool isVScaleKnownToBeAPowerOfTwo() const override {
356 return TLI->isVScaleKnownToBeAPowerOfTwo();
357 }
358
359 /// \returns How the target needs this vector-predicated operation to be
360 /// transformed.
362 getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
364 if (!ST->hasVInstructions() ||
365 (PI.getIntrinsicID() == Intrinsic::vp_reduce_mul &&
367 ->getElementType()
368 ->getIntegerBitWidth() != 1))
371 }
372
374 ElementCount VF) const override {
375 if (!VF.isScalable())
376 return true;
377
378 Type *Ty = RdxDesc.getRecurrenceType();
379 if (!TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty)))
380 return false;
381
382 switch (RdxDesc.getRecurrenceKind()) {
383 case RecurKind::Add:
384 case RecurKind::Sub:
386 case RecurKind::And:
387 case RecurKind::Or:
388 case RecurKind::Xor:
389 case RecurKind::SMin:
390 case RecurKind::SMax:
391 case RecurKind::UMin:
392 case RecurKind::UMax:
393 case RecurKind::FMin:
394 case RecurKind::FMax:
395 return true;
396 case RecurKind::AnyOf:
397 case RecurKind::FAdd:
399 // We can't promote f16/bf16 fadd reductions and scalable vectors can't be
400 // expanded.
401 if (Ty->isBFloatTy() || (Ty->isHalfTy() && !ST->hasVInstructionsF16()))
402 return false;
403 return true;
404 default:
405 return false;
406 }
407 }
408
409 unsigned getMaxInterleaveFactor(ElementCount VF) const override {
410 // Don't interleave if the loop has been vectorized with scalable vectors.
411 if (VF.isScalable())
412 return 1;
413 // If the loop will not be vectorized, don't interleave the loop.
414 // Let regular unroll to unroll the loop.
415 return VF.isScalar() ? 1 : ST->getMaxInterleaveFactor();
416 }
417
418 bool enableInterleavedAccessVectorization() const override { return true; }
419
421 return ST->hasVInstructions();
422 }
423
424 unsigned getMinTripCountTailFoldingThreshold() const override;
425
427 unsigned getNumberOfRegisters(unsigned ClassID) const override {
428 switch (ClassID) {
430 // 31 = 32 GPR - x0 (zero register)
431 // FIXME: Should we exclude fixed registers like SP, TP or GP?
432 return 31;
434 if (ST->hasStdExtF())
435 return 32;
436 return 0;
438 // Although there are 32 vector registers, v0 is special in that it is the
439 // only register that can be used to hold a mask.
440 // FIXME: Should we conservatively return 31 as the number of usable
441 // vector registers?
442 return ST->hasVInstructions() ? 32 : 0;
443 }
444 llvm_unreachable("unknown register class");
445 }
446
448 getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override;
449
451 Type *Ty = nullptr) const override {
452 if (Vector)
454 if (!Ty)
456
457 Type *ScalarTy = Ty->getScalarType();
458 if ((ScalarTy->isHalfTy() && ST->hasStdExtZfhmin()) ||
459 (ScalarTy->isFloatTy() && ST->hasStdExtF()) ||
460 (ScalarTy->isDoubleTy() && ST->hasStdExtD())) {
462 }
463
465 }
466
467 const char *getRegisterClassName(unsigned ClassID) const override {
468 switch (ClassID) {
470 return "RISCV::GPRRC";
472 return "RISCV::FPRRC";
474 return "RISCV::VRRC";
475 }
476 llvm_unreachable("unknown register class");
477 }
478
480 const TargetTransformInfo::LSRCost &C2) const override;
481
483 const Instruction &I,
484 bool &AllowPromotionWithoutCommonHeader) const override;
485 std::optional<unsigned> getMinPageSize() const override { return 4096; }
486 /// Return true if the (vector) instruction I will be lowered to an
487 /// instruction with a scalar splat operand for the given Operand number.
488 bool canSplatOperand(Instruction *I, int Operand) const;
489 /// Return true if a vector instruction will lower to a target instruction
490 /// able to splat the given operand.
491 bool canSplatOperand(unsigned Opcode, int Operand) const;
492
494 SmallVectorImpl<Use *> &Ops) const override;
495
497 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override;
498};
499
500} // end namespace llvm
501
502#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
uint64_t IntrinsicInst * II
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
Value * getArgOperand(unsigned i) const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Class to represent fixed width SIMD vectors.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Machine Value Type.
The optimization diagnostic interface.
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
bool supportsScalableVectors() const override
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
unsigned getMinTripCountTailFoldingThreshold() const override
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const override
TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override
bool preferEpilogueVectorization() const override
InstructionCost getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const override
InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo, TTI::TargetCostKind CostKind) const
Return the cost of materializing an immediate for a value operand of a store instruction.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const override
bool isElementTypeLegalForScalableVector(Type *Ty) const override
bool enableMaskedInterleavedAccessVectorization() const override
bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const override
std::optional< unsigned > getMinPageSize() const override
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const override
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const override
bool hasActiveVectorLength() const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
bool shouldConsiderVectorizationRegPressure() const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *Src, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) const override
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const override
bool forceScalarizeMaskedScatter(VectorType *VTy, Align Alignment) const override
const char * getRegisterClassName(unsigned ClassID) const override
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const override
bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
bool canSplatOperand(Instruction *I, int Operand) const
Return true if the (vector) instruction I will be lowered to an instruction with a scalar splat opera...
bool enableInterleavedAccessVectorization() const override
bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const override
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override
unsigned getMinVectorRegisterBitWidth() const override
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override
bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override
unsigned getMaxInterleaveFactor(ElementCount VF) const override
bool enableOrderedReductions() const override
RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
TargetTransformInfo::VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const override
bool preferAlternateOpcodeVectorization() const override
bool isVScaleKnownToBeAPowerOfTwo() const override
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const override
Check if sinking I's operands to I's basic block is profitable, because the operands can be folded in...
unsigned getNumberOfRegisters(unsigned ClassID) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
std::optional< unsigned > getMaxVScale() const override
bool shouldExpandReduction(const IntrinsicInst *II) const override
std::optional< unsigned > getVScaleForTuning() const override
bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned) const override
bool isLegalMaskedGather(Type *DataType, Align Alignment) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) const override
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override
InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpdInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const override
bool enableScalableVectorization() const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const override
See if I should be considered for address type promotion.
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const override
bool forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) const override
TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Type * getRecurrenceType() const
Returns the type of the recurrence.
RecurKind getRecurrenceKind() const
The main scalar evolution driver.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
virtual const DataLayout & getDataLayout() const
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
TargetCostKind
The kind of cost model.
PopcntSupportKind
Flags indicating the kind of support for population count.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
CastContextHint
Represents a hint about the context in which a cast is used.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition Type.h:142
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition Type.h:156
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Base class of all SIMD vector types.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FAdd
Sum of floats.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
Information about a load/store intrinsic defined by the target.
Returns options for expansion of memcmp. IsZeroCmp is.
Describe known properties for a set of pointers.
Parameters that control the generic loop unrolling transformation.