LLVM 22.0.0git
RISCVTargetTransformInfo.h
Go to the documentation of this file.
1//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file defines a TargetTransformInfoImplBase conforming object specific
10/// to the RISC-V target machine. It uses the target's detailed information to
11/// provide more precise answers to certain TTI queries, while letting the
12/// target independent and default TTI implementations handle the rest.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
17#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
18
19#include "RISCVSubtarget.h"
20#include "RISCVTargetMachine.h"
23#include "llvm/IR/Function.h"
24#include <optional>
25
26namespace llvm {
27
28class RISCVTTIImpl final : public BasicTTIImplBase<RISCVTTIImpl> {
30 using TTI = TargetTransformInfo;
31
32 friend BaseT;
33
34 const RISCVSubtarget *ST;
35 const RISCVTargetLowering *TLI;
36
37 const RISCVSubtarget *getST() const { return ST; }
38 const RISCVTargetLowering *getTLI() const { return TLI; }
39
40 /// This function returns an estimate for VL to be used in VL based terms
41 /// of the cost model. For fixed length vectors, this is simply the
42 /// vector length. For scalable vectors, we return results consistent
43 /// with getVScaleForTuning under the assumption that clients are also
44 /// using that when comparing costs between scalar and vector representation.
45 /// This does unfortunately mean that we can both undershoot and overshot
46 /// the true cost significantly if getVScaleForTuning is wildly off for the
47 /// actual target hardware.
48 unsigned getEstimatedVLFor(VectorType *Ty) const;
49
50 /// This function calculates the costs for one or more RVV opcodes based
51 /// on the vtype and the cost kind.
52 /// \param Opcodes A list of opcodes of the RVV instruction to evaluate.
53 /// \param VT The MVT of vtype associated with the RVV instructions.
54 /// For widening/narrowing instructions where the result and source types
55 /// differ, it is important to check the spec to determine whether the vtype
56 /// refers to the result or source type.
57 /// \param CostKind The type of cost to compute.
58 InstructionCost getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
60
61 // Return the cost of generating a PC relative address
63 getStaticDataAddrGenerationCost(const TTI::TargetCostKind CostKind) const;
64
65 /// Return the cost of accessing a constant pool entry of the specified
66 /// type.
67 InstructionCost getConstantPoolLoadCost(Type *Ty,
69
70 /// If this shuffle can be lowered as a masked slide pair (at worst),
71 /// return a cost for it.
72 InstructionCost getSlideCost(FixedVectorType *Tp, ArrayRef<int> Mask,
74
75public:
76 explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
77 : BaseT(TM, F.getDataLayout()), ST(TM->getSubtargetImpl(F)),
78 TLI(ST->getTargetLowering()) {}
79
80 /// Return the cost of materializing an immediate for a value operand of
81 /// a store instruction.
84
86 TTI::TargetCostKind CostKind) const override;
87 InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
88 const APInt &Imm, Type *Ty,
90 Instruction *Inst = nullptr) const override;
92 getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
93 Type *Ty, TTI::TargetCostKind CostKind) const override;
94
95 /// \name EVL Support for predicated vectorization.
96 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
97 /// in hardware. (see LLVM Language Reference - "Vector Predication
98 /// Intrinsics",
99 /// https://llvm.org/docs/LangRef.html#vector-predication-intrinsics and
100 /// "IR-level VP intrinsics",
101 /// https://llvm.org/docs/Proposals/VectorPredication.html#ir-level-vp-intrinsics).
102 bool hasActiveVectorLength() const override;
103
105 getPopcntSupport(unsigned TyWidth) const override;
106
108 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
110 TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
111 TTI::TargetCostKind CostKind) const override;
112
113 bool shouldExpandReduction(const IntrinsicInst *II) const override;
114 bool supportsScalableVectors() const override {
115 return ST->hasVInstructions();
116 }
117 bool enableOrderedReductions() const override { return true; }
118 bool enableScalableVectorization() const override {
119 return ST->hasVInstructions();
120 }
122 return ST->hasVInstructions();
123 }
125 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override {
126 return ST->hasVInstructions() ? TailFoldingStyle::DataWithEVL
128 }
129 std::optional<unsigned> getMaxVScale() const override;
130 std::optional<unsigned> getVScaleForTuning() const override;
131
134
135 unsigned getRegUsageForType(Type *Ty) const override;
136
137 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override;
138
139 bool preferAlternateOpcodeVectorization() const override;
140
141 bool preferEpilogueVectorization() const override {
142 // Epilogue vectorization is usually unprofitable - tail folding or
143 // a smaller VF would have been better. This a blunt hammer - we
144 // should re-examine this once vectorization is better tuned.
145 return false;
146 }
147
148 bool shouldConsiderVectorizationRegPressure() const override { return true; }
149
152 TTI::TargetCostKind CostKind) const override;
153
156
159 const TTI::PointersChainInfo &Info, Type *AccessTy,
160 TTI::TargetCostKind CostKind) const override;
161
164 OptimizationRemarkEmitter *ORE) const override;
165
167 TTI::PeelingPreferences &PP) const override;
168
170 MemIntrinsicInfo &Info) const override;
171
172 unsigned getMinVectorRegisterBitWidth() const override {
173 return ST->useRVVForFixedLengthVectors() ? 16 : 0;
174 }
175
179 VectorType *SubTp, ArrayRef<const Value *> Args = {},
180 const Instruction *CxtI = nullptr) const override;
181
183 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
184 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
185 ArrayRef<Value *> VL = {}) const override;
186
188 getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
189 TTI::TargetCostKind CostKind) const override;
190
192 getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr,
193 TTI::TargetCostKind CostKind) const override;
194
196 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
197 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
198 bool UseMaskForCond = false, bool UseMaskForGaps = false) const override;
199
200 InstructionCost getGatherScatterOpCost(const MemIntrinsicCostAttributes &MICA,
202
204 getExpandCompressMemoryOpCost(const MemIntrinsicCostAttributes &MICA,
206
207 InstructionCost getStridedMemoryOpCost(const MemIntrinsicCostAttributes &MICA,
209
212
214 getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
216 const Instruction *I = nullptr) const override;
217
219 getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
220 TTI::TargetCostKind CostKind) const override;
221
223 getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
224 std::optional<FastMathFlags> FMF,
225 TTI::TargetCostKind CostKind) const override;
226
228 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
229 VectorType *ValTy, std::optional<FastMathFlags> FMF,
230 TTI::TargetCostKind CostKind) const override;
231
233 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
236 const Instruction *I = nullptr) const override;
237
239 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
243 const Instruction *I = nullptr) const override;
244
246 const Instruction *I = nullptr) const override;
247
249 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
251 unsigned Index, const Value *Op0,
252 const Value *Op1) const override;
253
255 getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val,
257 unsigned Index) const override;
258
260 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
264 const Instruction *CxtI = nullptr) const override;
265
266 bool isElementTypeLegalForScalableVector(Type *Ty) const override {
267 return TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty));
268 }
269
270 bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const {
271 if (!ST->hasVInstructions())
272 return false;
273
274 EVT DataTypeVT = TLI->getValueType(DL, DataType);
275
276 // Only support fixed vectors if we know the minimum vector size.
277 if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
278 return false;
279
280 EVT ElemType = DataTypeVT.getScalarType();
281 if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
282 return false;
283
284 return TLI->isLegalElementTypeForRVV(ElemType);
285 }
286
287 bool isLegalMaskedLoad(Type *DataType, Align Alignment,
288 unsigned /*AddressSpace*/,
289 TTI::MaskKind /*MaskKind*/) const override {
290 return isLegalMaskedLoadStore(DataType, Alignment);
291 }
292 bool isLegalMaskedStore(Type *DataType, Align Alignment,
293 unsigned /*AddressSpace*/,
294 TTI::MaskKind /*MaskKind*/) const override {
295 return isLegalMaskedLoadStore(DataType, Alignment);
296 }
297
298 bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const {
299 if (!ST->hasVInstructions())
300 return false;
301
302 EVT DataTypeVT = TLI->getValueType(DL, DataType);
303
304 // Only support fixed vectors if we know the minimum vector size.
305 if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
306 return false;
307
308 // We also need to check if the vector of address is valid.
309 EVT PointerTypeVT = EVT(TLI->getPointerTy(DL));
310 if (DataTypeVT.isScalableVector() &&
311 !TLI->isLegalElementTypeForRVV(PointerTypeVT))
312 return false;
313
314 EVT ElemType = DataTypeVT.getScalarType();
315 if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
316 return false;
317
318 return TLI->isLegalElementTypeForRVV(ElemType);
319 }
320
321 bool isLegalMaskedGather(Type *DataType, Align Alignment) const override {
322 return isLegalMaskedGatherScatter(DataType, Alignment);
323 }
324 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override {
325 return isLegalMaskedGatherScatter(DataType, Alignment);
326 }
327
329 Align Alignment) const override {
330 // Scalarize masked gather for RV64 if EEW=64 indices aren't supported.
331 return ST->is64Bit() && !ST->hasVInstructionsI64();
332 }
333
335 Align Alignment) const override {
336 // Scalarize masked scatter for RV64 if EEW=64 indices aren't supported.
337 return ST->is64Bit() && !ST->hasVInstructionsI64();
338 }
339
340 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override {
341 EVT DataTypeVT = TLI->getValueType(DL, DataType);
342 return TLI->isLegalStridedLoadStore(DataTypeVT, Alignment);
343 }
344
345 bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
346 Align Alignment,
347 unsigned AddrSpace) const override {
348 return TLI->isLegalInterleavedAccessType(VTy, Factor, Alignment, AddrSpace,
349 DL);
350 }
351
352 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override;
353
354 bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override;
355
356 bool isVScaleKnownToBeAPowerOfTwo() const override {
357 return TLI->isVScaleKnownToBeAPowerOfTwo();
358 }
359
360 /// \returns How the target needs this vector-predicated operation to be
361 /// transformed.
363 getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
365 if (!ST->hasVInstructions() ||
366 (PI.getIntrinsicID() == Intrinsic::vp_reduce_mul &&
368 ->getElementType()
369 ->getIntegerBitWidth() != 1))
372 }
373
375 ElementCount VF) const override {
376 if (!VF.isScalable())
377 return true;
378
379 Type *Ty = RdxDesc.getRecurrenceType();
380 if (!TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty)))
381 return false;
382
383 switch (RdxDesc.getRecurrenceKind()) {
384 case RecurKind::Add:
385 case RecurKind::Sub:
387 case RecurKind::And:
388 case RecurKind::Or:
389 case RecurKind::Xor:
390 case RecurKind::SMin:
391 case RecurKind::SMax:
392 case RecurKind::UMin:
393 case RecurKind::UMax:
394 case RecurKind::FMin:
395 case RecurKind::FMax:
396 return true;
397 case RecurKind::AnyOf:
398 case RecurKind::FAdd:
400 // We can't promote f16/bf16 fadd reductions and scalable vectors can't be
401 // expanded.
402 if (Ty->isBFloatTy() || (Ty->isHalfTy() && !ST->hasVInstructionsF16()))
403 return false;
404 return true;
405 default:
406 return false;
407 }
408 }
409
410 unsigned getMaxInterleaveFactor(ElementCount VF) const override {
411 // Don't interleave if the loop has been vectorized with scalable vectors.
412 if (VF.isScalable())
413 return 1;
414 // If the loop will not be vectorized, don't interleave the loop.
415 // Let regular unroll to unroll the loop.
416 return VF.isScalar() ? 1 : ST->getMaxInterleaveFactor();
417 }
418
419 bool enableInterleavedAccessVectorization() const override { return true; }
420
422 return ST->hasVInstructions();
423 }
424
425 unsigned getMinTripCountTailFoldingThreshold() const override;
426
428 unsigned getNumberOfRegisters(unsigned ClassID) const override {
429 switch (ClassID) {
431 // 31 = 32 GPR - x0 (zero register)
432 // FIXME: Should we exclude fixed registers like SP, TP or GP?
433 return 31;
435 if (ST->hasStdExtF())
436 return 32;
437 return 0;
439 // Although there are 32 vector registers, v0 is special in that it is the
440 // only register that can be used to hold a mask.
441 // FIXME: Should we conservatively return 31 as the number of usable
442 // vector registers?
443 return ST->hasVInstructions() ? 32 : 0;
444 }
445 llvm_unreachable("unknown register class");
446 }
447
449 getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override;
450
452 Type *Ty = nullptr) const override {
453 if (Vector)
455 if (!Ty)
457
458 Type *ScalarTy = Ty->getScalarType();
459 if ((ScalarTy->isHalfTy() && ST->hasStdExtZfhmin()) ||
460 (ScalarTy->isFloatTy() && ST->hasStdExtF()) ||
461 (ScalarTy->isDoubleTy() && ST->hasStdExtD())) {
463 }
464
466 }
467
468 const char *getRegisterClassName(unsigned ClassID) const override {
469 switch (ClassID) {
471 return "RISCV::GPRRC";
473 return "RISCV::FPRRC";
475 return "RISCV::VRRC";
476 }
477 llvm_unreachable("unknown register class");
478 }
479
481 const TargetTransformInfo::LSRCost &C2) const override;
482
484 const Instruction &I,
485 bool &AllowPromotionWithoutCommonHeader) const override;
486 std::optional<unsigned> getMinPageSize() const override { return 4096; }
487 /// Return true if the (vector) instruction I will be lowered to an
488 /// instruction with a scalar splat operand for the given Operand number.
489 bool canSplatOperand(Instruction *I, int Operand) const;
490 /// Return true if a vector instruction will lower to a target instruction
491 /// able to splat the given operand.
492 bool canSplatOperand(unsigned Opcode, int Operand) const;
493
495 SmallVectorImpl<Use *> &Ops) const override;
496
498 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override;
499};
500
501} // end namespace llvm
502
503#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
uint64_t IntrinsicInst * II
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
Value * getArgOperand(unsigned i) const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Class to represent fixed width SIMD vectors.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Machine Value Type.
Information for memory intrinsic cost model.
The optimization diagnostic interface.
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
bool supportsScalableVectors() const override
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override
InstructionCost getStridedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
unsigned getMinTripCountTailFoldingThreshold() const override
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const override
TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override
bool preferEpilogueVectorization() const override
InstructionCost getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const override
InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo, TTI::TargetCostKind CostKind) const
Return the cost of materializing an immediate for a value operand of a store instruction.
bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned, TTI::MaskKind) const override
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const override
bool isElementTypeLegalForScalableVector(Type *Ty) const override
bool enableMaskedInterleavedAccessVectorization() const override
bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const override
std::optional< unsigned > getMinPageSize() const override
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const override
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const override
bool hasActiveVectorLength() const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
bool shouldConsiderVectorizationRegPressure() const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
bool forceScalarizeMaskedScatter(VectorType *VTy, Align Alignment) const override
const char * getRegisterClassName(unsigned ClassID) const override
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
bool canSplatOperand(Instruction *I, int Operand) const
Return true if the (vector) instruction I will be lowered to an instruction with a scalar splat opera...
bool enableInterleavedAccessVectorization() const override
bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const override
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override
unsigned getMinVectorRegisterBitWidth() const override
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override
bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override
unsigned getMaxInterleaveFactor(ElementCount VF) const override
InstructionCost getGatherScatterOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
bool enableOrderedReductions() const override
InstructionCost getExpandCompressMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
TargetTransformInfo::VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const override
bool preferAlternateOpcodeVectorization() const override
bool isVScaleKnownToBeAPowerOfTwo() const override
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const override
Check if sinking I's operands to I's basic block is profitable, because the operands can be folded in...
unsigned getNumberOfRegisters(unsigned ClassID) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
std::optional< unsigned > getMaxVScale() const override
bool shouldExpandReduction(const IntrinsicInst *II) const override
std::optional< unsigned > getVScaleForTuning() const override
InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const override
Get memory intrinsic cost based on arguments.
bool isLegalMaskedGather(Type *DataType, Align Alignment) const override
bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned, TTI::MaskKind) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) const override
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override
InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpdInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const override
bool enableScalableVectorization() const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
InstructionCost getMaskedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const override
See if I should be considered for address type promotion.
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
bool forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) const override
TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Type * getRecurrenceType() const
Returns the type of the recurrence.
RecurKind getRecurrenceKind() const
The main scalar evolution driver.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
virtual const DataLayout & getDataLayout() const
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
MaskKind
Some targets only support masked load/store with a constant mask.
TargetCostKind
The kind of cost model.
PopcntSupportKind
Flags indicating the kind of support for population count.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
CastContextHint
Represents a hint about the context in which a cast is used.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition Type.h:142
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition Type.h:156
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Base class of all SIMD vector types.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FAdd
Sum of floats.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
Information about a load/store intrinsic defined by the target.
Returns options for expansion of memcmp. IsZeroCmp is.
Describe known properties for a set of pointers.
Parameters that control the generic loop unrolling transformation.