LLVM 19.0.0git
SCCPSolver.cpp
Go to the documentation of this file.
1//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements the Sparse Conditional Constant Propagation (SCCP)
11// utility.
12//
13//===----------------------------------------------------------------------===//
14
21#include "llvm/IR/InstVisitor.h"
23#include "llvm/Support/Debug.h"
27#include <cassert>
28#include <utility>
29#include <vector>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "sccp"
34
35// The maximum number of range extensions allowed for operations requiring
36// widening.
37static const unsigned MaxNumRangeExtensions = 10;
38
39/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
43}
44
46 bool UndefAllowed = true) {
47 assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
48 if (LV.isConstantRange(UndefAllowed))
49 return LV.getConstantRange();
50 return ConstantRange::getFull(Ty->getScalarSizeInBits());
51}
52
53namespace llvm {
54
56 return LV.isConstant() ||
58}
59
61 return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
62}
63
66 return true;
67
68 // Some instructions can be handled but are rejected above. Catch
69 // those cases by falling through to here.
70 // TODO: Mark globals as being constant earlier, so
71 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
72 // TODO: are safe to remove.
73 return isa<LoadInst>(I);
74}
75
77 Constant *Const = getConstantOrNull(V);
78 if (!Const)
79 return false;
80 // Replacing `musttail` instructions with constant breaks `musttail` invariant
81 // unless the call itself can be removed.
82 // Calls with "clang.arc.attachedcall" implicitly use the return value and
83 // those uses cannot be updated with a constant.
84 CallBase *CB = dyn_cast<CallBase>(V);
85 if (CB && ((CB->isMustTailCall() &&
89
90 // Don't zap returns of the callee
91 if (F)
93
94 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
95 << " as a constant\n");
96 return false;
97 }
98
99 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
100
101 // Replaces all of the uses of a variable with uses of the constant.
102 V->replaceAllUsesWith(Const);
103 return true;
104}
105
106/// Try to use \p Inst's value range from \p Solver to infer the NUW flag.
107static bool refineInstruction(SCCPSolver &Solver,
108 const SmallPtrSetImpl<Value *> &InsertedValues,
109 Instruction &Inst) {
110 bool Changed = false;
111 auto GetRange = [&Solver, &InsertedValues](Value *Op) {
112 if (auto *Const = dyn_cast<ConstantInt>(Op))
113 return ConstantRange(Const->getValue());
114 if (isa<Constant>(Op) || InsertedValues.contains(Op)) {
115 unsigned Bitwidth = Op->getType()->getScalarSizeInBits();
116 return ConstantRange::getFull(Bitwidth);
117 }
118 return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(),
119 /*UndefAllowed=*/false);
120 };
121
122 if (isa<OverflowingBinaryOperator>(Inst)) {
123 auto RangeA = GetRange(Inst.getOperand(0));
124 auto RangeB = GetRange(Inst.getOperand(1));
125 if (!Inst.hasNoUnsignedWrap()) {
127 Instruction::BinaryOps(Inst.getOpcode()), RangeB,
129 if (NUWRange.contains(RangeA)) {
131 Changed = true;
132 }
133 }
134 if (!Inst.hasNoSignedWrap()) {
136 Instruction::BinaryOps(Inst.getOpcode()), RangeB,
138 if (NSWRange.contains(RangeA)) {
139 Inst.setHasNoSignedWrap();
140 Changed = true;
141 }
142 }
143 } else if (isa<ZExtInst>(Inst) && !Inst.hasNonNeg()) {
144 auto Range = GetRange(Inst.getOperand(0));
145 if (Range.isAllNonNegative()) {
146 Inst.setNonNeg();
147 Changed = true;
148 }
149 }
150
151 return Changed;
152}
153
154/// Try to replace signed instructions with their unsigned equivalent.
155static bool replaceSignedInst(SCCPSolver &Solver,
156 SmallPtrSetImpl<Value *> &InsertedValues,
157 Instruction &Inst) {
158 // Determine if a signed value is known to be >= 0.
159 auto isNonNegative = [&Solver](Value *V) {
160 // If this value was constant-folded, it may not have a solver entry.
161 // Handle integers. Otherwise, return false.
162 if (auto *C = dyn_cast<Constant>(V)) {
163 auto *CInt = dyn_cast<ConstantInt>(C);
164 return CInt && !CInt->isNegative();
165 }
166 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
167 return IV.isConstantRange(/*UndefAllowed=*/false) &&
168 IV.getConstantRange().isAllNonNegative();
169 };
170
171 Instruction *NewInst = nullptr;
172 switch (Inst.getOpcode()) {
173 // Note: We do not fold sitofp -> uitofp here because that could be more
174 // expensive in codegen and may not be reversible in the backend.
175 case Instruction::SExt: {
176 // If the source value is not negative, this is a zext.
177 Value *Op0 = Inst.getOperand(0);
178 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
179 return false;
180 NewInst = new ZExtInst(Op0, Inst.getType(), "", Inst.getIterator());
181 NewInst->setNonNeg();
182 break;
183 }
184 case Instruction::AShr: {
185 // If the shifted value is not negative, this is a logical shift right.
186 Value *Op0 = Inst.getOperand(0);
187 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
188 return false;
189 NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", Inst.getIterator());
190 NewInst->setIsExact(Inst.isExact());
191 break;
192 }
193 case Instruction::SDiv:
194 case Instruction::SRem: {
195 // If both operands are not negative, this is the same as udiv/urem.
196 Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
197 if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
198 !isNonNegative(Op0) || !isNonNegative(Op1))
199 return false;
200 auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
201 : Instruction::URem;
202 NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", Inst.getIterator());
203 if (Inst.getOpcode() == Instruction::SDiv)
204 NewInst->setIsExact(Inst.isExact());
205 break;
206 }
207 default:
208 return false;
209 }
210
211 // Wire up the new instruction and update state.
212 assert(NewInst && "Expected replacement instruction");
213 NewInst->takeName(&Inst);
214 InsertedValues.insert(NewInst);
215 Inst.replaceAllUsesWith(NewInst);
216 Solver.removeLatticeValueFor(&Inst);
217 Inst.eraseFromParent();
218 return true;
219}
220
222 SmallPtrSetImpl<Value *> &InsertedValues,
223 Statistic &InstRemovedStat,
224 Statistic &InstReplacedStat) {
225 bool MadeChanges = false;
226 for (Instruction &Inst : make_early_inc_range(BB)) {
227 if (Inst.getType()->isVoidTy())
228 continue;
229 if (tryToReplaceWithConstant(&Inst)) {
230 if (canRemoveInstruction(&Inst))
231 Inst.eraseFromParent();
232
233 MadeChanges = true;
234 ++InstRemovedStat;
235 } else if (replaceSignedInst(*this, InsertedValues, Inst)) {
236 MadeChanges = true;
237 ++InstReplacedStat;
238 } else if (refineInstruction(*this, InsertedValues, Inst)) {
239 MadeChanges = true;
240 }
241 }
242 return MadeChanges;
243}
244
246 BasicBlock *&NewUnreachableBB) const {
247 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
248 bool HasNonFeasibleEdges = false;
249 for (BasicBlock *Succ : successors(BB)) {
250 if (isEdgeFeasible(BB, Succ))
251 FeasibleSuccessors.insert(Succ);
252 else
253 HasNonFeasibleEdges = true;
254 }
255
256 // All edges feasible, nothing to do.
257 if (!HasNonFeasibleEdges)
258 return false;
259
260 // SCCP can only determine non-feasible edges for br, switch and indirectbr.
261 Instruction *TI = BB->getTerminator();
262 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
263 isa<IndirectBrInst>(TI)) &&
264 "Terminator must be a br, switch or indirectbr");
265
266 if (FeasibleSuccessors.size() == 0) {
267 // Branch on undef/poison, replace with unreachable.
270 for (BasicBlock *Succ : successors(BB)) {
271 Succ->removePredecessor(BB);
272 if (SeenSuccs.insert(Succ).second)
273 Updates.push_back({DominatorTree::Delete, BB, Succ});
274 }
275 TI->eraseFromParent();
276 new UnreachableInst(BB->getContext(), BB);
277 DTU.applyUpdatesPermissive(Updates);
278 } else if (FeasibleSuccessors.size() == 1) {
279 // Replace with an unconditional branch to the only feasible successor.
280 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
282 bool HaveSeenOnlyFeasibleSuccessor = false;
283 for (BasicBlock *Succ : successors(BB)) {
284 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
285 // Don't remove the edge to the only feasible successor the first time
286 // we see it. We still do need to remove any multi-edges to it though.
287 HaveSeenOnlyFeasibleSuccessor = true;
288 continue;
289 }
290
291 Succ->removePredecessor(BB);
292 Updates.push_back({DominatorTree::Delete, BB, Succ});
293 }
294
295 BranchInst::Create(OnlyFeasibleSuccessor, BB);
296 TI->eraseFromParent();
297 DTU.applyUpdatesPermissive(Updates);
298 } else if (FeasibleSuccessors.size() > 1) {
299 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
301
302 // If the default destination is unfeasible it will never be taken. Replace
303 // it with a new block with a single Unreachable instruction.
304 BasicBlock *DefaultDest = SI->getDefaultDest();
305 if (!FeasibleSuccessors.contains(DefaultDest)) {
306 if (!NewUnreachableBB) {
307 NewUnreachableBB =
308 BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
309 DefaultDest->getParent(), DefaultDest);
310 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
311 }
312
313 DefaultDest->removePredecessor(BB);
314 SI->setDefaultDest(NewUnreachableBB);
315 Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
316 Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
317 }
318
319 for (auto CI = SI->case_begin(); CI != SI->case_end();) {
320 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
321 ++CI;
322 continue;
323 }
324
325 BasicBlock *Succ = CI->getCaseSuccessor();
326 Succ->removePredecessor(BB);
327 Updates.push_back({DominatorTree::Delete, BB, Succ});
328 SI.removeCase(CI);
329 // Don't increment CI, as we removed a case.
330 }
331
332 DTU.applyUpdatesPermissive(Updates);
333 } else {
334 llvm_unreachable("Must have at least one feasible successor");
335 }
336 return true;
337}
338
339/// Helper class for SCCPSolver. This implements the instruction visitor and
340/// holds all the state.
341class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
342 const DataLayout &DL;
343 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
344 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
346 ValueState; // The state each value is in.
347
348 /// StructValueState - This maintains ValueState for values that have
349 /// StructType, for example for formal arguments, calls, insertelement, etc.
351
352 /// GlobalValue - If we are tracking any values for the contents of a global
353 /// variable, we keep a mapping from the constant accessor to the element of
354 /// the global, to the currently known value. If the value becomes
355 /// overdefined, it's entry is simply removed from this map.
357
358 /// TrackedRetVals - If we are tracking arguments into and the return
359 /// value out of a function, it will have an entry in this map, indicating
360 /// what the known return value for the function is.
362
363 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
364 /// that return multiple values.
366 TrackedMultipleRetVals;
367
368 /// The set of values whose lattice has been invalidated.
369 /// Populated by resetLatticeValueFor(), cleared after resolving undefs.
370 DenseSet<Value *> Invalidated;
371
372 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
373 /// represented here for efficient lookup.
374 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
375
376 /// A list of functions whose return cannot be modified.
377 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
378
379 /// TrackingIncomingArguments - This is the set of functions for whose
380 /// arguments we make optimistic assumptions about and try to prove as
381 /// constants.
382 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
383
384 /// The reason for two worklists is that overdefined is the lowest state
385 /// on the lattice, and moving things to overdefined as fast as possible
386 /// makes SCCP converge much faster.
387 ///
388 /// By having a separate worklist, we accomplish this because everything
389 /// possibly overdefined will become overdefined at the soonest possible
390 /// point.
391 SmallVector<Value *, 64> OverdefinedInstWorkList;
392 SmallVector<Value *, 64> InstWorkList;
393
394 // The BasicBlock work list
396
397 /// KnownFeasibleEdges - Entries in this set are edges which have already had
398 /// PHI nodes retriggered.
399 using Edge = std::pair<BasicBlock *, BasicBlock *>;
400 DenseSet<Edge> KnownFeasibleEdges;
401
403
405
406 LLVMContext &Ctx;
407
408private:
409 ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const {
410 return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty));
411 }
412
413 // pushToWorkList - Helper for markConstant/markOverdefined
414 void pushToWorkList(ValueLatticeElement &IV, Value *V);
415
416 // Helper to push \p V to the worklist, after updating it to \p IV. Also
417 // prints a debug message with the updated value.
418 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
419
420 // markConstant - Make a value be marked as "constant". If the value
421 // is not already a constant, add it to the instruction work list so that
422 // the users of the instruction are updated later.
423 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
424 bool MayIncludeUndef = false);
425
426 bool markConstant(Value *V, Constant *C) {
427 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
428 return markConstant(ValueState[V], V, C);
429 }
430
431 // markOverdefined - Make a value be marked as "overdefined". If the
432 // value is not already overdefined, add it to the overdefined instruction
433 // work list so that the users of the instruction are updated later.
434 bool markOverdefined(ValueLatticeElement &IV, Value *V);
435
436 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
437 /// changes.
438 bool mergeInValue(ValueLatticeElement &IV, Value *V,
439 ValueLatticeElement MergeWithV,
441 /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
442
443 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
445 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
446 assert(!V->getType()->isStructTy() &&
447 "non-structs should use markConstant");
448 return mergeInValue(ValueState[V], V, MergeWithV, Opts);
449 }
450
451 /// getValueState - Return the ValueLatticeElement object that corresponds to
452 /// the value. This function handles the case when the value hasn't been seen
453 /// yet by properly seeding constants etc.
454 ValueLatticeElement &getValueState(Value *V) {
455 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
456
457 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
458 ValueLatticeElement &LV = I.first->second;
459
460 if (!I.second)
461 return LV; // Common case, already in the map.
462
463 if (auto *C = dyn_cast<Constant>(V))
464 LV.markConstant(C); // Constants are constant
465
466 // All others are unknown by default.
467 return LV;
468 }
469
470 /// getStructValueState - Return the ValueLatticeElement object that
471 /// corresponds to the value/field pair. This function handles the case when
472 /// the value hasn't been seen yet by properly seeding constants etc.
473 ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
474 assert(V->getType()->isStructTy() && "Should use getValueState");
475 assert(i < cast<StructType>(V->getType())->getNumElements() &&
476 "Invalid element #");
477
478 auto I = StructValueState.insert(
479 std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
480 ValueLatticeElement &LV = I.first->second;
481
482 if (!I.second)
483 return LV; // Common case, already in the map.
484
485 if (auto *C = dyn_cast<Constant>(V)) {
486 Constant *Elt = C->getAggregateElement(i);
487
488 if (!Elt)
489 LV.markOverdefined(); // Unknown sort of constant.
490 else
491 LV.markConstant(Elt); // Constants are constant.
492 }
493
494 // All others are underdefined by default.
495 return LV;
496 }
497
498 /// Traverse the use-def chain of \p Call, marking itself and its users as
499 /// "unknown" on the way.
500 void invalidate(CallBase *Call) {
502 ToInvalidate.push_back(Call);
503
504 while (!ToInvalidate.empty()) {
505 Instruction *Inst = ToInvalidate.pop_back_val();
506
507 if (!Invalidated.insert(Inst).second)
508 continue;
509
510 if (!BBExecutable.count(Inst->getParent()))
511 continue;
512
513 Value *V = nullptr;
514 // For return instructions we need to invalidate the tracked returns map.
515 // Anything else has its lattice in the value map.
516 if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) {
517 Function *F = RetInst->getParent()->getParent();
518 if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) {
519 It->second = ValueLatticeElement();
520 V = F;
521 } else if (MRVFunctionsTracked.count(F)) {
522 auto *STy = cast<StructType>(F->getReturnType());
523 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
524 TrackedMultipleRetVals[{F, I}] = ValueLatticeElement();
525 V = F;
526 }
527 } else if (auto *STy = dyn_cast<StructType>(Inst->getType())) {
528 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
529 if (auto It = StructValueState.find({Inst, I});
530 It != StructValueState.end()) {
531 It->second = ValueLatticeElement();
532 V = Inst;
533 }
534 }
535 } else if (auto It = ValueState.find(Inst); It != ValueState.end()) {
536 It->second = ValueLatticeElement();
537 V = Inst;
538 }
539
540 if (V) {
541 LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n");
542
543 for (User *U : V->users())
544 if (auto *UI = dyn_cast<Instruction>(U))
545 ToInvalidate.push_back(UI);
546
547 auto It = AdditionalUsers.find(V);
548 if (It != AdditionalUsers.end())
549 for (User *U : It->second)
550 if (auto *UI = dyn_cast<Instruction>(U))
551 ToInvalidate.push_back(UI);
552 }
553 }
554 }
555
556 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
557 /// work list if it is not already executable.
558 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
559
560 // getFeasibleSuccessors - Return a vector of booleans to indicate which
561 // successors are reachable from a given terminator instruction.
562 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
563
564 // OperandChangedState - This method is invoked on all of the users of an
565 // instruction that was just changed state somehow. Based on this
566 // information, we need to update the specified user of this instruction.
567 void operandChangedState(Instruction *I) {
568 if (BBExecutable.count(I->getParent())) // Inst is executable?
569 visit(*I);
570 }
571
572 // Add U as additional user of V.
573 void addAdditionalUser(Value *V, User *U) {
574 auto Iter = AdditionalUsers.insert({V, {}});
575 Iter.first->second.insert(U);
576 }
577
578 // Mark I's users as changed, including AdditionalUsers.
579 void markUsersAsChanged(Value *I) {
580 // Functions include their arguments in the use-list. Changed function
581 // values mean that the result of the function changed. We only need to
582 // update the call sites with the new function result and do not have to
583 // propagate the call arguments.
584 if (isa<Function>(I)) {
585 for (User *U : I->users()) {
586 if (auto *CB = dyn_cast<CallBase>(U))
587 handleCallResult(*CB);
588 }
589 } else {
590 for (User *U : I->users())
591 if (auto *UI = dyn_cast<Instruction>(U))
592 operandChangedState(UI);
593 }
594
595 auto Iter = AdditionalUsers.find(I);
596 if (Iter != AdditionalUsers.end()) {
597 // Copy additional users before notifying them of changes, because new
598 // users may be added, potentially invalidating the iterator.
600 for (User *U : Iter->second)
601 if (auto *UI = dyn_cast<Instruction>(U))
602 ToNotify.push_back(UI);
603 for (Instruction *UI : ToNotify)
604 operandChangedState(UI);
605 }
606 }
607 void handleCallOverdefined(CallBase &CB);
608 void handleCallResult(CallBase &CB);
609 void handleCallArguments(CallBase &CB);
610 void handleExtractOfWithOverflow(ExtractValueInst &EVI,
611 const WithOverflowInst *WO, unsigned Idx);
612
613private:
614 friend class InstVisitor<SCCPInstVisitor>;
615
616 // visit implementations - Something changed in this instruction. Either an
617 // operand made a transition, or the instruction is newly executable. Change
618 // the value type of I to reflect these changes if appropriate.
619 void visitPHINode(PHINode &I);
620
621 // Terminators
622
623 void visitReturnInst(ReturnInst &I);
624 void visitTerminator(Instruction &TI);
625
626 void visitCastInst(CastInst &I);
627 void visitSelectInst(SelectInst &I);
628 void visitUnaryOperator(Instruction &I);
629 void visitFreezeInst(FreezeInst &I);
630 void visitBinaryOperator(Instruction &I);
631 void visitCmpInst(CmpInst &I);
632 void visitExtractValueInst(ExtractValueInst &EVI);
633 void visitInsertValueInst(InsertValueInst &IVI);
634
635 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
636 markOverdefined(&CPI);
637 visitTerminator(CPI);
638 }
639
640 // Instructions that cannot be folded away.
641
642 void visitStoreInst(StoreInst &I);
643 void visitLoadInst(LoadInst &I);
644 void visitGetElementPtrInst(GetElementPtrInst &I);
645
646 void visitInvokeInst(InvokeInst &II) {
647 visitCallBase(II);
648 visitTerminator(II);
649 }
650
651 void visitCallBrInst(CallBrInst &CBI) {
652 visitCallBase(CBI);
653 visitTerminator(CBI);
654 }
655
656 void visitCallBase(CallBase &CB);
657 void visitResumeInst(ResumeInst &I) { /*returns void*/
658 }
659 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
660 }
661 void visitFenceInst(FenceInst &I) { /*returns void*/
662 }
663
664 void visitInstruction(Instruction &I);
665
666public:
668 FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)});
669 }
670
671 void visitCallInst(CallInst &I) { visitCallBase(I); }
672
674
676 auto It = FnPredicateInfo.find(I->getParent()->getParent());
677 if (It == FnPredicateInfo.end())
678 return nullptr;
679 return It->second->getPredicateInfoFor(I);
680 }
681
683 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
684 LLVMContext &Ctx)
685 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
686
688 // We only track the contents of scalar globals.
689 if (GV->getValueType()->isSingleValueType()) {
690 ValueLatticeElement &IV = TrackedGlobals[GV];
691 IV.markConstant(GV->getInitializer());
692 }
693 }
694
696 // Add an entry, F -> undef.
697 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
698 MRVFunctionsTracked.insert(F);
699 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
700 TrackedMultipleRetVals.insert(
701 std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
702 } else if (!F->getReturnType()->isVoidTy())
703 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
704 }
705
707 MustPreserveReturnsInFunctions.insert(F);
708 }
709
711 return MustPreserveReturnsInFunctions.count(F);
712 }
713
715 TrackingIncomingArguments.insert(F);
716 }
717
719 return TrackingIncomingArguments.count(F);
720 }
721
722 void solve();
723
725
727
729 return BBExecutable.count(BB);
730 }
731
732 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
733
734 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
735 std::vector<ValueLatticeElement> StructValues;
736 auto *STy = dyn_cast<StructType>(V->getType());
737 assert(STy && "getStructLatticeValueFor() can be called only on structs");
738 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
739 auto I = StructValueState.find(std::make_pair(V, i));
740 assert(I != StructValueState.end() && "Value not in valuemap!");
741 StructValues.push_back(I->second);
742 }
743 return StructValues;
744 }
745
746 void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
747
748 /// Invalidate the Lattice Value of \p Call and its users after specializing
749 /// the call. Then recompute it.
751 // Calls to void returning functions do not need invalidation.
752 Function *F = Call->getCalledFunction();
753 (void)F;
754 assert(!F->getReturnType()->isVoidTy() &&
755 (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) &&
756 "All non void specializations should be tracked");
757 invalidate(Call);
758 handleCallResult(*Call);
759 }
760
762 assert(!V->getType()->isStructTy() &&
763 "Should use getStructLatticeValueFor");
765 ValueState.find(V);
766 assert(I != ValueState.end() &&
767 "V not found in ValueState nor Paramstate map!");
768 return I->second;
769 }
770
772 return TrackedRetVals;
773 }
774
776 return TrackedGlobals;
777 }
778
780 return MRVFunctionsTracked;
781 }
782
784 if (auto *STy = dyn_cast<StructType>(V->getType()))
785 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
786 markOverdefined(getStructValueState(V, i), V);
787 else
788 markOverdefined(ValueState[V], V);
789 }
790
792
793 Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
794
796
798 return TrackingIncomingArguments;
799 }
800
802 const SmallVectorImpl<ArgInfo> &Args);
803
805 for (auto &BB : *F)
806 BBExecutable.erase(&BB);
807 }
808
810 bool ResolvedUndefs = true;
811 while (ResolvedUndefs) {
812 solve();
813 ResolvedUndefs = false;
814 for (Function &F : M)
815 ResolvedUndefs |= resolvedUndefsIn(F);
816 }
817 }
818
820 bool ResolvedUndefs = true;
821 while (ResolvedUndefs) {
822 solve();
823 ResolvedUndefs = false;
824 for (Function *F : WorkList)
825 ResolvedUndefs |= resolvedUndefsIn(*F);
826 }
827 }
828
830 bool ResolvedUndefs = true;
831 while (ResolvedUndefs) {
832 solve();
833 ResolvedUndefs = false;
834 for (Value *V : Invalidated)
835 if (auto *I = dyn_cast<Instruction>(V))
836 ResolvedUndefs |= resolvedUndef(*I);
837 }
838 Invalidated.clear();
839 }
840};
841
842} // namespace llvm
843
845 if (!BBExecutable.insert(BB).second)
846 return false;
847 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
848 BBWorkList.push_back(BB); // Add the block to the work list!
849 return true;
850}
851
852void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
853 if (IV.isOverdefined()) {
854 if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V)
855 OverdefinedInstWorkList.push_back(V);
856 return;
857 }
858 if (InstWorkList.empty() || InstWorkList.back() != V)
859 InstWorkList.push_back(V);
860}
861
862void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
863 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
864 pushToWorkList(IV, V);
865}
866
867bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
868 Constant *C, bool MayIncludeUndef) {
869 if (!IV.markConstant(C, MayIncludeUndef))
870 return false;
871 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
872 pushToWorkList(IV, V);
873 return true;
874}
875
876bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
877 if (!IV.markOverdefined())
878 return false;
879
880 LLVM_DEBUG(dbgs() << "markOverdefined: ";
881 if (auto *F = dyn_cast<Function>(V)) dbgs()
882 << "Function '" << F->getName() << "'\n";
883 else dbgs() << *V << '\n');
884 // Only instructions go on the work list
885 pushToWorkList(IV, V);
886 return true;
887}
888
890 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
891 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
892 assert(It != TrackedMultipleRetVals.end());
893 ValueLatticeElement LV = It->second;
894 if (!SCCPSolver::isConstant(LV))
895 return false;
896 }
897 return true;
898}
899
901 Type *Ty) const {
902 if (LV.isConstant()) {
903 Constant *C = LV.getConstant();
904 assert(C->getType() == Ty && "Type mismatch");
905 return C;
906 }
907
908 if (LV.isConstantRange()) {
909 const auto &CR = LV.getConstantRange();
910 if (CR.getSingleElement())
911 return ConstantInt::get(Ty, *CR.getSingleElement());
912 }
913 return nullptr;
914}
915
917 Constant *Const = nullptr;
918 if (V->getType()->isStructTy()) {
919 std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V);
921 return nullptr;
922 std::vector<Constant *> ConstVals;
923 auto *ST = cast<StructType>(V->getType());
924 for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) {
925 ValueLatticeElement LV = LVs[I];
926 ConstVals.push_back(SCCPSolver::isConstant(LV)
927 ? getConstant(LV, ST->getElementType(I))
928 : UndefValue::get(ST->getElementType(I)));
929 }
930 Const = ConstantStruct::get(ST, ConstVals);
931 } else {
934 return nullptr;
935 Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType())
936 : UndefValue::get(V->getType());
937 }
938 assert(Const && "Constant is nullptr here!");
939 return Const;
940}
941
943 const SmallVectorImpl<ArgInfo> &Args) {
944 assert(!Args.empty() && "Specialization without arguments");
945 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
946 "Functions should have the same number of arguments");
947
948 auto Iter = Args.begin();
949 Function::arg_iterator NewArg = F->arg_begin();
950 Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin();
951 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
952
953 LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
954 << NewArg->getNameOrAsOperand() << "\n");
955
956 // Mark the argument constants in the new function
957 // or copy the lattice state over from the old function.
958 if (Iter != Args.end() && Iter->Formal == &*OldArg) {
959 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
960 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
961 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
962 NewValue.markConstant(Iter->Actual->getAggregateElement(I));
963 }
964 } else {
965 ValueState[&*NewArg].markConstant(Iter->Actual);
966 }
967 ++Iter;
968 } else {
969 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
970 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
971 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
972 NewValue = StructValueState[{&*OldArg, I}];
973 }
974 } else {
975 ValueLatticeElement &NewValue = ValueState[&*NewArg];
976 NewValue = ValueState[&*OldArg];
977 }
978 }
979 }
980}
981
982void SCCPInstVisitor::visitInstruction(Instruction &I) {
983 // All the instructions we don't do any special handling for just
984 // go to overdefined.
985 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
986 markOverdefined(&I);
987}
988
989bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
990 ValueLatticeElement MergeWithV,
992 if (IV.mergeIn(MergeWithV, Opts)) {
993 pushToWorkList(IV, V);
994 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
995 << IV << "\n");
996 return true;
997 }
998 return false;
999}
1000
1001bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
1002 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
1003 return false; // This edge is already known to be executable!
1004
1005 if (!markBlockExecutable(Dest)) {
1006 // If the destination is already executable, we just made an *edge*
1007 // feasible that wasn't before. Revisit the PHI nodes in the block
1008 // because they have potentially new operands.
1009 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
1010 << " -> " << Dest->getName() << '\n');
1011
1012 for (PHINode &PN : Dest->phis())
1013 visitPHINode(PN);
1014 }
1015 return true;
1016}
1017
1018// getFeasibleSuccessors - Return a vector of booleans to indicate which
1019// successors are reachable from a given terminator instruction.
1020void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
1021 SmallVectorImpl<bool> &Succs) {
1022 Succs.resize(TI.getNumSuccessors());
1023 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
1024 if (BI->isUnconditional()) {
1025 Succs[0] = true;
1026 return;
1027 }
1028
1029 ValueLatticeElement BCValue = getValueState(BI->getCondition());
1030 ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType());
1031 if (!CI) {
1032 // Overdefined condition variables, and branches on unfoldable constant
1033 // conditions, mean the branch could go either way.
1034 if (!BCValue.isUnknownOrUndef())
1035 Succs[0] = Succs[1] = true;
1036 return;
1037 }
1038
1039 // Constant condition variables mean the branch can only go a single way.
1040 Succs[CI->isZero()] = true;
1041 return;
1042 }
1043
1044 // We cannot analyze special terminators, so consider all successors
1045 // executable.
1046 if (TI.isSpecialTerminator()) {
1047 Succs.assign(TI.getNumSuccessors(), true);
1048 return;
1049 }
1050
1051 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
1052 if (!SI->getNumCases()) {
1053 Succs[0] = true;
1054 return;
1055 }
1056 const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
1057 if (ConstantInt *CI =
1058 getConstantInt(SCValue, SI->getCondition()->getType())) {
1059 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
1060 return;
1061 }
1062
1063 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
1064 // is ready.
1065 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
1066 const ConstantRange &Range = SCValue.getConstantRange();
1067 unsigned ReachableCaseCount = 0;
1068 for (const auto &Case : SI->cases()) {
1069 const APInt &CaseValue = Case.getCaseValue()->getValue();
1070 if (Range.contains(CaseValue)) {
1071 Succs[Case.getSuccessorIndex()] = true;
1072 ++ReachableCaseCount;
1073 }
1074 }
1075
1076 Succs[SI->case_default()->getSuccessorIndex()] =
1077 Range.isSizeLargerThan(ReachableCaseCount);
1078 return;
1079 }
1080
1081 // Overdefined or unknown condition? All destinations are executable!
1082 if (!SCValue.isUnknownOrUndef())
1083 Succs.assign(TI.getNumSuccessors(), true);
1084 return;
1085 }
1086
1087 // In case of indirect branch and its address is a blockaddress, we mark
1088 // the target as executable.
1089 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
1090 // Casts are folded by visitCastInst.
1091 ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
1092 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(
1093 getConstant(IBRValue, IBR->getAddress()->getType()));
1094 if (!Addr) { // Overdefined or unknown condition?
1095 // All destinations are executable!
1096 if (!IBRValue.isUnknownOrUndef())
1097 Succs.assign(TI.getNumSuccessors(), true);
1098 return;
1099 }
1100
1101 BasicBlock *T = Addr->getBasicBlock();
1102 assert(Addr->getFunction() == T->getParent() &&
1103 "Block address of a different function ?");
1104 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
1105 // This is the target.
1106 if (IBR->getDestination(i) == T) {
1107 Succs[i] = true;
1108 return;
1109 }
1110 }
1111
1112 // If we didn't find our destination in the IBR successor list, then we
1113 // have undefined behavior. Its ok to assume no successor is executable.
1114 return;
1115 }
1116
1117 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
1118 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
1119}
1120
1121// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
1122// block to the 'To' basic block is currently feasible.
1124 // Check if we've called markEdgeExecutable on the edge yet. (We could
1125 // be more aggressive and try to consider edges which haven't been marked
1126 // yet, but there isn't any need.)
1127 return KnownFeasibleEdges.count(Edge(From, To));
1128}
1129
1130// visit Implementations - Something changed in this instruction, either an
1131// operand made a transition, or the instruction is newly executable. Change
1132// the value type of I to reflect these changes if appropriate. This method
1133// makes sure to do the following actions:
1134//
1135// 1. If a phi node merges two constants in, and has conflicting value coming
1136// from different branches, or if the PHI node merges in an overdefined
1137// value, then the PHI node becomes overdefined.
1138// 2. If a phi node merges only constants in, and they all agree on value, the
1139// PHI node becomes a constant value equal to that.
1140// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
1141// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
1142// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
1143// 6. If a conditional branch has a value that is constant, make the selected
1144// destination executable
1145// 7. If a conditional branch has a value that is overdefined, make all
1146// successors executable.
1147void SCCPInstVisitor::visitPHINode(PHINode &PN) {
1148 // If this PN returns a struct, just mark the result overdefined.
1149 // TODO: We could do a lot better than this if code actually uses this.
1150 if (PN.getType()->isStructTy())
1151 return (void)markOverdefined(&PN);
1152
1153 if (getValueState(&PN).isOverdefined())
1154 return; // Quick exit
1155
1156 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1157 // and slow us down a lot. Just mark them overdefined.
1158 if (PN.getNumIncomingValues() > 64)
1159 return (void)markOverdefined(&PN);
1160
1161 unsigned NumActiveIncoming = 0;
1162
1163 // Look at all of the executable operands of the PHI node. If any of them
1164 // are overdefined, the PHI becomes overdefined as well. If they are all
1165 // constant, and they agree with each other, the PHI becomes the identical
1166 // constant. If they are constant and don't agree, the PHI is a constant
1167 // range. If there are no executable operands, the PHI remains unknown.
1168 ValueLatticeElement PhiState = getValueState(&PN);
1169 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1170 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
1171 continue;
1172
1173 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
1174 PhiState.mergeIn(IV);
1175 NumActiveIncoming++;
1176 if (PhiState.isOverdefined())
1177 break;
1178 }
1179
1180 // We allow up to 1 range extension per active incoming value and one
1181 // additional extension. Note that we manually adjust the number of range
1182 // extensions to match the number of active incoming values. This helps to
1183 // limit multiple extensions caused by the same incoming value, if other
1184 // incoming values are equal.
1185 mergeInValue(&PN, PhiState,
1186 ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1187 NumActiveIncoming + 1));
1188 ValueLatticeElement &PhiStateRef = getValueState(&PN);
1189 PhiStateRef.setNumRangeExtensions(
1190 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
1191}
1192
1193void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1194 if (I.getNumOperands() == 0)
1195 return; // ret void
1196
1197 Function *F = I.getParent()->getParent();
1198 Value *ResultOp = I.getOperand(0);
1199
1200 // If we are tracking the return value of this function, merge it in.
1201 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1202 auto TFRVI = TrackedRetVals.find(F);
1203 if (TFRVI != TrackedRetVals.end()) {
1204 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
1205 return;
1206 }
1207 }
1208
1209 // Handle functions that return multiple values.
1210 if (!TrackedMultipleRetVals.empty()) {
1211 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
1212 if (MRVFunctionsTracked.count(F))
1213 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1214 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
1215 getStructValueState(ResultOp, i));
1216 }
1217}
1218
1219void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1220 SmallVector<bool, 16> SuccFeasible;
1221 getFeasibleSuccessors(TI, SuccFeasible);
1222
1223 BasicBlock *BB = TI.getParent();
1224
1225 // Mark all feasible successors executable.
1226 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1227 if (SuccFeasible[i])
1228 markEdgeExecutable(BB, TI.getSuccessor(i));
1229}
1230
1231void SCCPInstVisitor::visitCastInst(CastInst &I) {
1232 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1233 // discover a concrete value later.
1234 if (ValueState[&I].isOverdefined())
1235 return;
1236
1237 ValueLatticeElement OpSt = getValueState(I.getOperand(0));
1238 if (OpSt.isUnknownOrUndef())
1239 return;
1240
1241 if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) {
1242 // Fold the constant as we build.
1243 if (Constant *C =
1244 ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL))
1245 return (void)markConstant(&I, C);
1246 }
1247
1248 if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) {
1249 auto &LV = getValueState(&I);
1250 ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
1251
1252 Type *DestTy = I.getDestTy();
1253 // Vectors where all elements have the same known constant range are treated
1254 // as a single constant range in the lattice. When bitcasting such vectors,
1255 // there is a mis-match between the width of the lattice value (single
1256 // constant range) and the original operands (vector). Go to overdefined in
1257 // that case.
1258 if (I.getOpcode() == Instruction::BitCast &&
1259 I.getOperand(0)->getType()->isVectorTy() &&
1260 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
1261 return (void)markOverdefined(&I);
1262
1263 ConstantRange Res =
1264 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
1265 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
1266 } else
1267 markOverdefined(&I);
1268}
1269
1270void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1271 const WithOverflowInst *WO,
1272 unsigned Idx) {
1273 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1274 ValueLatticeElement L = getValueState(LHS);
1275 ValueLatticeElement R = getValueState(RHS);
1276 addAdditionalUser(LHS, &EVI);
1277 addAdditionalUser(RHS, &EVI);
1278 if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1279 return; // Wait to resolve.
1280
1281 Type *Ty = LHS->getType();
1282 ConstantRange LR = getConstantRange(L, Ty);
1283 ConstantRange RR = getConstantRange(R, Ty);
1284 if (Idx == 0) {
1285 ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
1286 mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
1287 } else {
1288 assert(Idx == 1 && "Index can only be 0 or 1");
1290 WO->getBinaryOp(), RR, WO->getNoWrapKind());
1291 if (NWRegion.contains(LR))
1292 return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
1293 markOverdefined(&EVI);
1294 }
1295}
1296
1297void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1298 // If this returns a struct, mark all elements over defined, we don't track
1299 // structs in structs.
1300 if (EVI.getType()->isStructTy())
1301 return (void)markOverdefined(&EVI);
1302
1303 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1304 // discover a concrete value later.
1305 if (ValueState[&EVI].isOverdefined())
1306 return (void)markOverdefined(&EVI);
1307
1308 // If this is extracting from more than one level of struct, we don't know.
1309 if (EVI.getNumIndices() != 1)
1310 return (void)markOverdefined(&EVI);
1311
1312 Value *AggVal = EVI.getAggregateOperand();
1313 if (AggVal->getType()->isStructTy()) {
1314 unsigned i = *EVI.idx_begin();
1315 if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
1316 return handleExtractOfWithOverflow(EVI, WO, i);
1317 ValueLatticeElement EltVal = getStructValueState(AggVal, i);
1318 mergeInValue(getValueState(&EVI), &EVI, EltVal);
1319 } else {
1320 // Otherwise, must be extracting from an array.
1321 return (void)markOverdefined(&EVI);
1322 }
1323}
1324
1325void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1326 auto *STy = dyn_cast<StructType>(IVI.getType());
1327 if (!STy)
1328 return (void)markOverdefined(&IVI);
1329
1330 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1331 // discover a concrete value later.
1332 if (SCCPSolver::isOverdefined(ValueState[&IVI]))
1333 return (void)markOverdefined(&IVI);
1334
1335 // If this has more than one index, we can't handle it, drive all results to
1336 // undef.
1337 if (IVI.getNumIndices() != 1)
1338 return (void)markOverdefined(&IVI);
1339
1340 Value *Aggr = IVI.getAggregateOperand();
1341 unsigned Idx = *IVI.idx_begin();
1342
1343 // Compute the result based on what we're inserting.
1344 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1345 // This passes through all values that aren't the inserted element.
1346 if (i != Idx) {
1347 ValueLatticeElement EltVal = getStructValueState(Aggr, i);
1348 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
1349 continue;
1350 }
1351
1352 Value *Val = IVI.getInsertedValueOperand();
1353 if (Val->getType()->isStructTy())
1354 // We don't track structs in structs.
1355 markOverdefined(getStructValueState(&IVI, i), &IVI);
1356 else {
1357 ValueLatticeElement InVal = getValueState(Val);
1358 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
1359 }
1360 }
1361}
1362
1363void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1364 // If this select returns a struct, just mark the result overdefined.
1365 // TODO: We could do a lot better than this if code actually uses this.
1366 if (I.getType()->isStructTy())
1367 return (void)markOverdefined(&I);
1368
1369 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1370 // discover a concrete value later.
1371 if (ValueState[&I].isOverdefined())
1372 return (void)markOverdefined(&I);
1373
1374 ValueLatticeElement CondValue = getValueState(I.getCondition());
1375 if (CondValue.isUnknownOrUndef())
1376 return;
1377
1378 if (ConstantInt *CondCB =
1379 getConstantInt(CondValue, I.getCondition()->getType())) {
1380 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1381 mergeInValue(&I, getValueState(OpVal));
1382 return;
1383 }
1384
1385 // Otherwise, the condition is overdefined or a constant we can't evaluate.
1386 // See if we can produce something better than overdefined based on the T/F
1387 // value.
1388 ValueLatticeElement TVal = getValueState(I.getTrueValue());
1389 ValueLatticeElement FVal = getValueState(I.getFalseValue());
1390
1391 bool Changed = ValueState[&I].mergeIn(TVal);
1392 Changed |= ValueState[&I].mergeIn(FVal);
1393 if (Changed)
1394 pushToWorkListMsg(ValueState[&I], &I);
1395}
1396
1397// Handle Unary Operators.
1398void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1399 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1400
1401 ValueLatticeElement &IV = ValueState[&I];
1402 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1403 // discover a concrete value later.
1405 return (void)markOverdefined(&I);
1406
1407 // If something is unknown/undef, wait for it to resolve.
1408 if (V0State.isUnknownOrUndef())
1409 return;
1410
1411 if (SCCPSolver::isConstant(V0State))
1413 I.getOpcode(), getConstant(V0State, I.getType()), DL))
1414 return (void)markConstant(IV, &I, C);
1415
1416 markOverdefined(&I);
1417}
1418
1419void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) {
1420 // If this freeze returns a struct, just mark the result overdefined.
1421 // TODO: We could do a lot better than this.
1422 if (I.getType()->isStructTy())
1423 return (void)markOverdefined(&I);
1424
1425 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1426 ValueLatticeElement &IV = ValueState[&I];
1427 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1428 // discover a concrete value later.
1430 return (void)markOverdefined(&I);
1431
1432 // If something is unknown/undef, wait for it to resolve.
1433 if (V0State.isUnknownOrUndef())
1434 return;
1435
1436 if (SCCPSolver::isConstant(V0State) &&
1437 isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType())))
1438 return (void)markConstant(IV, &I, getConstant(V0State, I.getType()));
1439
1440 markOverdefined(&I);
1441}
1442
1443// Handle Binary Operators.
1444void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1445 ValueLatticeElement V1State = getValueState(I.getOperand(0));
1446 ValueLatticeElement V2State = getValueState(I.getOperand(1));
1447
1448 ValueLatticeElement &IV = ValueState[&I];
1449 if (IV.isOverdefined())
1450 return;
1451
1452 // If something is undef, wait for it to resolve.
1453 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1454 return;
1455
1456 if (V1State.isOverdefined() && V2State.isOverdefined())
1457 return (void)markOverdefined(&I);
1458
1459 // If either of the operands is a constant, try to fold it to a constant.
1460 // TODO: Use information from notconstant better.
1461 if ((V1State.isConstant() || V2State.isConstant())) {
1462 Value *V1 = SCCPSolver::isConstant(V1State)
1463 ? getConstant(V1State, I.getOperand(0)->getType())
1464 : I.getOperand(0);
1465 Value *V2 = SCCPSolver::isConstant(V2State)
1466 ? getConstant(V2State, I.getOperand(1)->getType())
1467 : I.getOperand(1);
1468 Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1469 auto *C = dyn_cast_or_null<Constant>(R);
1470 if (C) {
1471 // Conservatively assume that the result may be based on operands that may
1472 // be undef. Note that we use mergeInValue to combine the constant with
1473 // the existing lattice value for I, as different constants might be found
1474 // after one of the operands go to overdefined, e.g. due to one operand
1475 // being a special floating value.
1477 NewV.markConstant(C, /*MayIncludeUndef=*/true);
1478 return (void)mergeInValue(&I, NewV);
1479 }
1480 }
1481
1482 // Only use ranges for binary operators on integers.
1483 if (!I.getType()->isIntegerTy())
1484 return markOverdefined(&I);
1485
1486 // Try to simplify to a constant range.
1487 ConstantRange A = getConstantRange(V1State, I.getType());
1488 ConstantRange B = getConstantRange(V2State, I.getType());
1489
1490 auto *BO = cast<BinaryOperator>(&I);
1491 ConstantRange R = ConstantRange::getEmpty(I.getType()->getScalarSizeInBits());
1492 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO))
1493 R = A.overflowingBinaryOp(BO->getOpcode(), B, OBO->getNoWrapKind());
1494 else
1495 R = A.binaryOp(BO->getOpcode(), B);
1496 mergeInValue(&I, ValueLatticeElement::getRange(R));
1497
1498 // TODO: Currently we do not exploit special values that produce something
1499 // better than overdefined with an overdefined operand for vector or floating
1500 // point types, like and <4 x i32> overdefined, zeroinitializer.
1501}
1502
1503// Handle ICmpInst instruction.
1504void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1505 // Do not cache this lookup, getValueState calls later in the function might
1506 // invalidate the reference.
1507 if (SCCPSolver::isOverdefined(ValueState[&I]))
1508 return (void)markOverdefined(&I);
1509
1510 Value *Op1 = I.getOperand(0);
1511 Value *Op2 = I.getOperand(1);
1512
1513 // For parameters, use ParamState which includes constant range info if
1514 // available.
1515 auto V1State = getValueState(Op1);
1516 auto V2State = getValueState(Op2);
1517
1518 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
1519 if (C) {
1521 CV.markConstant(C);
1522 mergeInValue(&I, CV);
1523 return;
1524 }
1525
1526 // If operands are still unknown, wait for it to resolve.
1527 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1528 !SCCPSolver::isConstant(ValueState[&I]))
1529 return;
1530
1531 markOverdefined(&I);
1532}
1533
1534// Handle getelementptr instructions. If all operands are constants then we
1535// can turn this into a getelementptr ConstantExpr.
1536void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1537 if (SCCPSolver::isOverdefined(ValueState[&I]))
1538 return (void)markOverdefined(&I);
1539
1541 Operands.reserve(I.getNumOperands());
1542
1543 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1544 ValueLatticeElement State = getValueState(I.getOperand(i));
1545 if (State.isUnknownOrUndef())
1546 return; // Operands are not resolved yet.
1547
1548 if (SCCPSolver::isOverdefined(State))
1549 return (void)markOverdefined(&I);
1550
1551 if (Constant *C = getConstant(State, I.getOperand(i)->getType())) {
1552 Operands.push_back(C);
1553 continue;
1554 }
1555
1556 return (void)markOverdefined(&I);
1557 }
1558
1560 markConstant(&I, C);
1561}
1562
1563void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1564 // If this store is of a struct, ignore it.
1565 if (SI.getOperand(0)->getType()->isStructTy())
1566 return;
1567
1568 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1569 return;
1570
1571 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1572 auto I = TrackedGlobals.find(GV);
1573 if (I == TrackedGlobals.end())
1574 return;
1575
1576 // Get the value we are storing into the global, then merge it.
1577 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1579 if (I->second.isOverdefined())
1580 TrackedGlobals.erase(I); // No need to keep tracking this!
1581}
1582
1584 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1585 if (I->getType()->isIntegerTy())
1588 if (I->hasMetadata(LLVMContext::MD_nonnull))
1590 ConstantPointerNull::get(cast<PointerType>(I->getType())));
1592}
1593
1594// Handle load instructions. If the operand is a constant pointer to a constant
1595// global, we can replace the load with the loaded constant value!
1596void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1597 // If this load is of a struct or the load is volatile, just mark the result
1598 // as overdefined.
1599 if (I.getType()->isStructTy() || I.isVolatile())
1600 return (void)markOverdefined(&I);
1601
1602 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1603 // discover a concrete value later.
1604 if (ValueState[&I].isOverdefined())
1605 return (void)markOverdefined(&I);
1606
1607 ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1608 if (PtrVal.isUnknownOrUndef())
1609 return; // The pointer is not resolved yet!
1610
1611 ValueLatticeElement &IV = ValueState[&I];
1612
1613 if (SCCPSolver::isConstant(PtrVal)) {
1614 Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType());
1615
1616 // load null is undefined.
1617 if (isa<ConstantPointerNull>(Ptr)) {
1618 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1619 return (void)markOverdefined(IV, &I);
1620 else
1621 return;
1622 }
1623
1624 // Transform load (constant global) into the value loaded.
1625 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1626 if (!TrackedGlobals.empty()) {
1627 // If we are tracking this global, merge in the known value for it.
1628 auto It = TrackedGlobals.find(GV);
1629 if (It != TrackedGlobals.end()) {
1630 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1631 return;
1632 }
1633 }
1634 }
1635
1636 // Transform load from a constant into a constant if possible.
1637 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
1638 return (void)markConstant(IV, &I, C);
1639 }
1640
1641 // Fall back to metadata.
1642 mergeInValue(&I, getValueFromMetadata(&I));
1643}
1644
1645void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1646 handleCallResult(CB);
1647 handleCallArguments(CB);
1648}
1649
1650void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1652
1653 // Void return and not tracking callee, just bail.
1654 if (CB.getType()->isVoidTy())
1655 return;
1656
1657 // Always mark struct return as overdefined.
1658 if (CB.getType()->isStructTy())
1659 return (void)markOverdefined(&CB);
1660
1661 // Otherwise, if we have a single return value case, and if the function is
1662 // a declaration, maybe we can constant fold it.
1663 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1665 for (const Use &A : CB.args()) {
1666 if (A.get()->getType()->isStructTy())
1667 return markOverdefined(&CB); // Can't handle struct args.
1668 if (A.get()->getType()->isMetadataTy())
1669 continue; // Carried in CB, not allowed in Operands.
1670 ValueLatticeElement State = getValueState(A);
1671
1672 if (State.isUnknownOrUndef())
1673 return; // Operands are not resolved yet.
1674 if (SCCPSolver::isOverdefined(State))
1675 return (void)markOverdefined(&CB);
1676 assert(SCCPSolver::isConstant(State) && "Unknown state!");
1677 Operands.push_back(getConstant(State, A->getType()));
1678 }
1679
1680 if (SCCPSolver::isOverdefined(getValueState(&CB)))
1681 return (void)markOverdefined(&CB);
1682
1683 // If we can constant fold this, mark the result of the call as a
1684 // constant.
1685 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
1686 return (void)markConstant(&CB, C);
1687 }
1688
1689 // Fall back to metadata.
1690 mergeInValue(&CB, getValueFromMetadata(&CB));
1691}
1692
1693void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1695 // If this is a local function that doesn't have its address taken, mark its
1696 // entry block executable and merge in the actual arguments to the call into
1697 // the formal arguments of the function.
1698 if (TrackingIncomingArguments.count(F)) {
1699 markBlockExecutable(&F->front());
1700
1701 // Propagate information from this call site into the callee.
1702 auto CAI = CB.arg_begin();
1703 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1704 ++AI, ++CAI) {
1705 // If this argument is byval, and if the function is not readonly, there
1706 // will be an implicit copy formed of the input aggregate.
1707 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1708 markOverdefined(&*AI);
1709 continue;
1710 }
1711
1712 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1713 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1714 ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1715 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1717 }
1718 } else
1719 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1720 }
1721 }
1722}
1723
1724void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1726
1727 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1728 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1729 if (ValueState[&CB].isOverdefined())
1730 return;
1731
1732 Value *CopyOf = CB.getOperand(0);
1733 ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1734 const auto *PI = getPredicateInfoFor(&CB);
1735 assert(PI && "Missing predicate info for ssa.copy");
1736
1737 const std::optional<PredicateConstraint> &Constraint =
1738 PI->getConstraint();
1739 if (!Constraint) {
1740 mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1741 return;
1742 }
1743
1744 CmpInst::Predicate Pred = Constraint->Predicate;
1745 Value *OtherOp = Constraint->OtherOp;
1746
1747 // Wait until OtherOp is resolved.
1748 if (getValueState(OtherOp).isUnknown()) {
1749 addAdditionalUser(OtherOp, &CB);
1750 return;
1751 }
1752
1753 ValueLatticeElement CondVal = getValueState(OtherOp);
1754 ValueLatticeElement &IV = ValueState[&CB];
1755 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1756 auto ImposedCR =
1757 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1758
1759 // Get the range imposed by the condition.
1760 if (CondVal.isConstantRange())
1762 Pred, CondVal.getConstantRange());
1763
1764 // Combine range info for the original value with the new range from the
1765 // condition.
1766 auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
1767 auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1768 // If the existing information is != x, do not use the information from
1769 // a chained predicate, as the != x information is more likely to be
1770 // helpful in practice.
1771 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1772 NewCR = CopyOfCR;
1773
1774 // The new range is based on a branch condition. That guarantees that
1775 // neither of the compare operands can be undef in the branch targets,
1776 // unless we have conditions that are always true/false (e.g. icmp ule
1777 // i32, %a, i32_max). For the latter overdefined/empty range will be
1778 // inferred, but the branch will get folded accordingly anyways.
1779 addAdditionalUser(OtherOp, &CB);
1780 mergeInValue(
1781 IV, &CB,
1782 ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
1783 return;
1784 } else if (Pred == CmpInst::ICMP_EQ &&
1785 (CondVal.isConstant() || CondVal.isNotConstant())) {
1786 // For non-integer values or integer constant expressions, only
1787 // propagate equal constants or not-constants.
1788 addAdditionalUser(OtherOp, &CB);
1789 mergeInValue(IV, &CB, CondVal);
1790 return;
1791 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1792 // Propagate inequalities.
1793 addAdditionalUser(OtherOp, &CB);
1794 mergeInValue(IV, &CB,
1796 return;
1797 }
1798
1799 return (void)mergeInValue(IV, &CB, CopyOfVal);
1800 }
1801
1802 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1803 // Compute result range for intrinsics supported by ConstantRange.
1804 // Do this even if we don't know a range for all operands, as we may
1805 // still know something about the result range, e.g. of abs(x).
1807 for (Value *Op : II->args()) {
1808 const ValueLatticeElement &State = getValueState(Op);
1809 if (State.isUnknownOrUndef())
1810 return;
1811 OpRanges.push_back(getConstantRange(State, Op->getType()));
1812 }
1813
1815 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1816 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1817 }
1818 }
1819
1820 // The common case is that we aren't tracking the callee, either because we
1821 // are not doing interprocedural analysis or the callee is indirect, or is
1822 // external. Handle these cases first.
1823 if (!F || F->isDeclaration())
1824 return handleCallOverdefined(CB);
1825
1826 // If this is a single/zero retval case, see if we're tracking the function.
1827 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1828 if (!MRVFunctionsTracked.count(F))
1829 return handleCallOverdefined(CB); // Not tracking this callee.
1830
1831 // If we are tracking this callee, propagate the result of the function
1832 // into this call site.
1833 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1834 mergeInValue(getStructValueState(&CB, i), &CB,
1835 TrackedMultipleRetVals[std::make_pair(F, i)],
1837 } else {
1838 auto TFRVI = TrackedRetVals.find(F);
1839 if (TFRVI == TrackedRetVals.end())
1840 return handleCallOverdefined(CB); // Not tracking this callee.
1841
1842 // If so, propagate the return value of the callee into this call result.
1843 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1844 }
1845}
1846
1848 // Process the work lists until they are empty!
1849 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1850 !OverdefinedInstWorkList.empty()) {
1851 // Process the overdefined instruction's work list first, which drives other
1852 // things to overdefined more quickly.
1853 while (!OverdefinedInstWorkList.empty()) {
1854 Value *I = OverdefinedInstWorkList.pop_back_val();
1855 Invalidated.erase(I);
1856
1857 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1858
1859 // "I" got into the work list because it either made the transition from
1860 // bottom to constant, or to overdefined.
1861 //
1862 // Anything on this worklist that is overdefined need not be visited
1863 // since all of its users will have already been marked as overdefined
1864 // Update all of the users of this instruction's value.
1865 //
1866 markUsersAsChanged(I);
1867 }
1868
1869 // Process the instruction work list.
1870 while (!InstWorkList.empty()) {
1871 Value *I = InstWorkList.pop_back_val();
1872 Invalidated.erase(I);
1873
1874 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1875
1876 // "I" got into the work list because it made the transition from undef to
1877 // constant.
1878 //
1879 // Anything on this worklist that is overdefined need not be visited
1880 // since all of its users will have already been marked as overdefined.
1881 // Update all of the users of this instruction's value.
1882 //
1883 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1884 markUsersAsChanged(I);
1885 }
1886
1887 // Process the basic block work list.
1888 while (!BBWorkList.empty()) {
1889 BasicBlock *BB = BBWorkList.pop_back_val();
1890
1891 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1892
1893 // Notify all instructions in this basic block that they are newly
1894 // executable.
1895 visit(BB);
1896 }
1897 }
1898}
1899
1901 // Look for instructions which produce undef values.
1902 if (I.getType()->isVoidTy())
1903 return false;
1904
1905 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1906 // Only a few things that can be structs matter for undef.
1907
1908 // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1909 if (auto *CB = dyn_cast<CallBase>(&I))
1910 if (Function *F = CB->getCalledFunction())
1911 if (MRVFunctionsTracked.count(F))
1912 return false;
1913
1914 // extractvalue and insertvalue don't need to be marked; they are
1915 // tracked as precisely as their operands.
1916 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1917 return false;
1918 // Send the results of everything else to overdefined. We could be
1919 // more precise than this but it isn't worth bothering.
1920 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1921 ValueLatticeElement &LV = getStructValueState(&I, i);
1922 if (LV.isUnknown()) {
1923 markOverdefined(LV, &I);
1924 return true;
1925 }
1926 }
1927 return false;
1928 }
1929
1930 ValueLatticeElement &LV = getValueState(&I);
1931 if (!LV.isUnknown())
1932 return false;
1933
1934 // There are two reasons a call can have an undef result
1935 // 1. It could be tracked.
1936 // 2. It could be constant-foldable.
1937 // Because of the way we solve return values, tracked calls must
1938 // never be marked overdefined in resolvedUndefsIn.
1939 if (auto *CB = dyn_cast<CallBase>(&I))
1940 if (Function *F = CB->getCalledFunction())
1941 if (TrackedRetVals.count(F))
1942 return false;
1943
1944 if (isa<LoadInst>(I)) {
1945 // A load here means one of two things: a load of undef from a global,
1946 // a load from an unknown pointer. Either way, having it return undef
1947 // is okay.
1948 return false;
1949 }
1950
1951 markOverdefined(&I);
1952 return true;
1953}
1954
1955/// While solving the dataflow for a function, we don't compute a result for
1956/// operations with an undef operand, to allow undef to be lowered to a
1957/// constant later. For example, constant folding of "zext i8 undef to i16"
1958/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
1959/// zext result would become "i16 1" and would result into an overdefined
1960/// lattice value once merged with the previous result. Not computing the
1961/// result of the zext (treating undef the same as unknown) allows us to handle
1962/// a later undef->constant lowering more optimally.
1963///
1964/// However, if the operand remains undef when the solver returns, we do need
1965/// to assign some result to the instruction (otherwise we would treat it as
1966/// unreachable). For simplicity, we mark any instructions that are still
1967/// unknown as overdefined.
1969 bool MadeChange = false;
1970 for (BasicBlock &BB : F) {
1971 if (!BBExecutable.count(&BB))
1972 continue;
1973
1974 for (Instruction &I : BB)
1975 MadeChange |= resolvedUndef(I);
1976 }
1977
1978 LLVM_DEBUG(if (MadeChange) dbgs()
1979 << "\nResolved undefs in " << F.getName() << '\n');
1980
1981 return MadeChange;
1982}
1983
1984//===----------------------------------------------------------------------===//
1985//
1986// SCCPSolver implementations
1987//
1989 const DataLayout &DL,
1990 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1991 LLVMContext &Ctx)
1992 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1993
1994SCCPSolver::~SCCPSolver() = default;
1995
1997 AssumptionCache &AC) {
1998 Visitor->addPredicateInfo(F, DT, AC);
1999}
2000
2002 return Visitor->markBlockExecutable(BB);
2003}
2004
2006 return Visitor->getPredicateInfoFor(I);
2007}
2008
2010 Visitor->trackValueOfGlobalVariable(GV);
2011}
2012
2014 Visitor->addTrackedFunction(F);
2015}
2016
2018 Visitor->addToMustPreserveReturnsInFunctions(F);
2019}
2020
2022 return Visitor->mustPreserveReturn(F);
2023}
2024
2026 Visitor->addArgumentTrackedFunction(F);
2027}
2028
2030 return Visitor->isArgumentTrackedFunction(F);
2031}
2032
2033void SCCPSolver::solve() { Visitor->solve(); }
2034
2036 return Visitor->resolvedUndefsIn(F);
2037}
2038
2040 Visitor->solveWhileResolvedUndefsIn(M);
2041}
2042
2043void
2045 Visitor->solveWhileResolvedUndefsIn(WorkList);
2046}
2047
2049 Visitor->solveWhileResolvedUndefs();
2050}
2051
2053 return Visitor->isBlockExecutable(BB);
2054}
2055
2057 return Visitor->isEdgeFeasible(From, To);
2058}
2059
2060std::vector<ValueLatticeElement>
2062 return Visitor->getStructLatticeValueFor(V);
2063}
2064
2066 return Visitor->removeLatticeValueFor(V);
2067}
2068
2070 Visitor->resetLatticeValueFor(Call);
2071}
2072
2074 return Visitor->getLatticeValueFor(V);
2075}
2076
2079 return Visitor->getTrackedRetVals();
2080}
2081
2084 return Visitor->getTrackedGlobals();
2085}
2086
2088 return Visitor->getMRVFunctionsTracked();
2089}
2090
2091void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
2092
2094 return Visitor->isStructLatticeConstant(F, STy);
2095}
2096
2098 Type *Ty) const {
2099 return Visitor->getConstant(LV, Ty);
2100}
2101
2103 return Visitor->getConstantOrNull(V);
2104}
2105
2107 return Visitor->getArgumentTrackedFunctions();
2108}
2109
2111 const SmallVectorImpl<ArgInfo> &Args) {
2112 Visitor->setLatticeValueForSpecializationArguments(F, Args);
2113}
2114
2116 Visitor->markFunctionUnreachable(F);
2117}
2118
2119void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
2120
2121void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Addr
bool End
Definition: ELF_riscv.cpp:480
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts()
Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
Definition: SCCPSolver.cpp:40
static const unsigned MaxNumRangeExtensions
Definition: SCCPSolver.cpp:37
static ValueLatticeElement getValueFromMetadata(const Instruction *I)
static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty, bool UndefAllowed=true)
Definition: SCCPSolver.cpp:45
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:76
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:498
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:198
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:205
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:157
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:220
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:498
Value * getRHS() const
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
Value * getLHS() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a binary instruction, given the opcode and the two operands.
The address of a basic block.
Definition: Constants.h:889
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock::iterator InsertBefore)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1461
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Definition: InstrTypes.h:2367
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1709
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1629
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1645
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:574
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:950
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:960
@ ICMP_EQ
equal
Definition: InstrTypes.h:981
@ ICMP_NE
not equal
Definition: InstrTypes.h:982
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:205
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:856
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1775
This class represents a range of values.
Definition: ConstantRange.h:47
ConstantRange castOp(Instruction::CastOps CastOp, uint32_t BitWidth) const
Return a new range representing the possible values resulting from an application of the specified ca...
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID)
Returns true if ConstantRange calculations are supported for intrinsic with IntrinsicID.
bool isSingleElement() const
Return true if this set contains exactly one member.
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1356
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool erase(const KeyT &Val)
Definition: DenseMap.h:329
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
This instruction extracts a struct member or array element value from an aggregate value.
unsigned getNumIndices() const
idx_iterator idx_begin() const
An instruction for ordering other memory operations.
Definition: Instructions.h:460
This class represents a freeze function that returns random concrete value if an operand is either a ...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:973
Type * getValueType() const
Definition: GlobalValue.h:296
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
This instruction inserts a struct field of array element value into an aggregate value.
Base class for instruction visitors.
Definition: InstVisitor.h:78
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:87
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const BasicBlock * getParent() const
Definition: Instruction.h:152
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
bool hasNonNeg() const LLVM_READONLY
Determine whether the the nneg flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:252
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
bool isSpecialTerminator() const
Definition: Instruction.h:262
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
Metadata node.
Definition: Metadata.h:1067
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
size_type count(const KeyT &Key) const
Definition: MapVector.h:165
iterator end()
Definition: MapVector.h:71
iterator find(const KeyT &Key)
Definition: MapVector.h:167
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: MapVector.h:141
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Helper class for SCCPSolver.
Definition: SCCPSolver.cpp:341
const PredicateBase * getPredicateInfoFor(Instruction *I)
Definition: SCCPSolver.cpp:675
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:734
bool resolvedUndef(Instruction &I)
void markFunctionUnreachable(Function *F)
Definition: SCCPSolver.cpp:804
bool markBlockExecutable(BasicBlock *BB)
Definition: SCCPSolver.cpp:844
bool resolvedUndefsIn(Function &F)
While solving the dataflow for a function, we don't compute a result for operations with an undef ope...
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Definition: SCCPSolver.cpp:900
SCCPInstVisitor(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
Definition: SCCPSolver.cpp:682
const ValueLatticeElement & getLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:761
void removeLatticeValueFor(Value *V)
Definition: SCCPSolver.cpp:746
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
Definition: SCCPSolver.cpp:775
void visitCallInst(CallInst &I)
Definition: SCCPSolver.cpp:671
void markOverdefined(Value *V)
Definition: SCCPSolver.cpp:783
bool isArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:718
void addTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:695
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Definition: SCCPSolver.cpp:797
void solveWhileResolvedUndefsIn(Module &M)
Definition: SCCPSolver.cpp:809
void trackValueOfGlobalVariable(GlobalVariable *GV)
Definition: SCCPSolver.cpp:687
Constant * getConstantOrNull(Value *V) const
Definition: SCCPSolver.cpp:916
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
Definition: SCCPSolver.cpp:779
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
Definition: SCCPSolver.cpp:750
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
Definition: SCCPSolver.cpp:771
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
Definition: SCCPSolver.cpp:667
void addToMustPreserveReturnsInFunctions(Function *F)
Definition: SCCPSolver.cpp:706
void addArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:714
bool isStructLatticeConstant(Function *F, StructType *STy)
Definition: SCCPSolver.cpp:889
void solveWhileResolvedUndefsIn(SmallVectorImpl< Function * > &WorkList)
Definition: SCCPSolver.cpp:819
bool isBlockExecutable(BasicBlock *BB) const
Definition: SCCPSolver.cpp:728
bool mustPreserveReturn(Function *F)
Definition: SCCPSolver.cpp:710
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Definition: SCCPSolver.cpp:942
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
SCCPSolver - This interface class is a general purpose solver for Sparse Conditional Constant Propaga...
Definition: SCCPSolver.h:65
void visitCall(CallInst &I)
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
getTrackedGlobals - Get and return the set of inferred initializers for global variables.
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
void trackValueOfGlobalVariable(GlobalVariable *GV)
trackValueOfGlobalVariable - Clients can use this method to inform the SCCPSolver that it should trac...
bool tryToReplaceWithConstant(Value *V)
Definition: SCCPSolver.cpp:76
bool isStructLatticeConstant(Function *F, StructType *STy)
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
void solve()
Solve - Solve for constants and executable blocks.
void visit(Instruction *I)
void addTrackedFunction(Function *F)
addTrackedFunction - If the SCCP solver is supposed to track calls into and out of the specified func...
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
getTrackedRetVals - Get the inferred return value map.
void solveWhileResolvedUndefsIn(Module &M)
const PredicateBase * getPredicateInfoFor(Instruction *I)
bool resolvedUndefsIn(Function &F)
resolvedUndefsIn - While solving the dataflow for a function, we assume that branches on undef values...
void addArgumentTrackedFunction(Function *F)
void solveWhileResolvedUndefs()
void removeLatticeValueFor(Value *V)
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
getMRVFunctionsTracked - Get the set of functions which return multiple values tracked by the pass.
Constant * getConstantOrNull(Value *V) const
Return either a Constant or nullptr for a given Value.
bool simplifyInstsInBlock(BasicBlock &BB, SmallPtrSetImpl< Value * > &InsertedValues, Statistic &InstRemovedStat, Statistic &InstReplacedStat)
Definition: SCCPSolver.cpp:221
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Helper to return a Constant if LV is either a constant or a constant range with a single element.
const ValueLatticeElement & getLatticeValueFor(Value *V) const
void addToMustPreserveReturnsInFunctions(Function *F)
Add function to the list of functions whose return cannot be modified.
bool removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, BasicBlock *&NewUnreachableBB) const
Definition: SCCPSolver.cpp:245
bool isBlockExecutable(BasicBlock *BB) const
bool markBlockExecutable(BasicBlock *BB)
markBlockExecutable - This method can be used by clients to mark all of the blocks that are known to ...
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Set the Lattice Value for the arguments of a specialization F.
static bool isConstant(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:55
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
bool mustPreserveReturn(Function *F)
Returns true if the return of the given function cannot be modified.
static bool isOverdefined(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:60
void markFunctionUnreachable(Function *F)
Mark all of the blocks in function F non-executable.
bool isArgumentTrackedFunction(Function *F)
Returns true if the given function is in the solver's set of argument-tracked functions.
SCCPSolver(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Return a reference to the set of argument tracked functions.
void markOverdefined(Value *V)
markOverdefined - Mark the specified value overdefined.
This class represents the LLVM 'select' instruction.
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
iterator begin() const
Definition: SmallPtrSet.h:380
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:717
void resize(size_type N)
Definition: SmallVector.h:651
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
Class to represent struct types.
Definition: DerivedTypes.h:216
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:341
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:234
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition: Type.h:287
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:249
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:140
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1808
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
This class represents lattice values for constants.
Definition: ValueLattice.h:29
static ValueLatticeElement getRange(ConstantRange CR, bool MayIncludeUndef=false)
Definition: ValueLattice.h:214
Constant * getCompare(CmpInst::Predicate Pred, Type *Ty, const ValueLatticeElement &Other, const DataLayout &DL) const
true, false or undef constants, or nullptr if the comparison cannot be evaluated.
static ValueLatticeElement getNot(Constant *C)
Definition: ValueLattice.h:208
void setNumRangeExtensions(unsigned N)
Definition: ValueLattice.h:456
const ConstantRange & getConstantRange(bool UndefAllowed=true) const
Returns the constant range for this value.
Definition: ValueLattice.h:269
bool isConstantRange(bool UndefAllowed=true) const
Returns true if this value is a constant range.
Definition: ValueLattice.h:249
unsigned getNumRangeExtensions() const
Definition: ValueLattice.h:455
bool isUnknownOrUndef() const
Definition: ValueLattice.h:239
Constant * getConstant() const
Definition: ValueLattice.h:255
bool mergeIn(const ValueLatticeElement &RHS, MergeOptions Opts=MergeOptions())
Updates this object to approximate both this object and RHS.
Definition: ValueLattice.h:385
bool markConstant(Constant *V, bool MayIncludeUndef=false)
Definition: ValueLattice.h:301
static ValueLatticeElement getOverdefined()
Definition: ValueLattice.h:231
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
std::string getNameOrAsOperand() const
Definition: Value.cpp:445
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool replaceSignedInst(SCCPSolver &Solver, SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to replace signed instructions with their unsigned equivalent.
Definition: SCCPSolver.cpp:155
bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:665
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1738
Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:2022
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition: Local.cpp:418
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
DWARFExpression::Operation Op
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1858
static bool canRemoveInstruction(Instruction *I)
Definition: SCCPSolver.cpp:64
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
static bool refineInstruction(SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to use Inst's value range from Solver to infer the NUW flag.
Definition: SCCPSolver.cpp:107
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
Struct to control some aspects related to merging constant ranges.
Definition: ValueLattice.h:111
MergeOptions & setMaxWidenSteps(unsigned Steps=1)
Definition: ValueLattice.h:140
MergeOptions & setCheckWiden(bool V=true)
Definition: ValueLattice.h:135