LLVM 23.0.0git
MemCpyOptimizer.cpp
Go to the documentation of this file.
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs various transformations related to eliminating memcpy
10// calls, or transforming sets of stores into memset's.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/ScopeExit.h"
19#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/CFG.h"
27#include "llvm/Analysis/Loads.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Function.h"
41#include "llvm/IR/IRBuilder.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/IR/PassManager.h"
51#include "llvm/IR/Type.h"
52#include "llvm/IR/User.h"
53#include "llvm/IR/Value.h"
55#include "llvm/Support/Debug.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <optional>
62
63using namespace llvm;
64
65#define DEBUG_TYPE "memcpyopt"
66
68 "enable-memcpyopt-without-libcalls", cl::Hidden,
69 cl::desc("Enable memcpyopt even when libcalls are disabled"));
70
71STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
72STATISTIC(NumMemMoveInstr, "Number of memmove instructions deleted");
73STATISTIC(NumMemSetInfer, "Number of memsets inferred");
74STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
75STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
76STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
77STATISTIC(NumStackMove, "Number of stack-move optimizations performed");
78
79namespace {
80
81/// Represents a range of memset'd bytes with the ByteVal value.
82/// This allows us to analyze stores like:
83/// store 0 -> P+1
84/// store 0 -> P+0
85/// store 0 -> P+3
86/// store 0 -> P+2
87/// which sometimes happens with stores to arrays of structs etc. When we see
88/// the first store, we make a range [1, 2). The second store extends the range
89/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
90/// two ranges into [0, 3) which is memset'able.
91struct MemsetRange {
92 // Start/End - A semi range that describes the span that this range covers.
93 // The range is closed at the start and open at the end: [Start, End).
94 int64_t Start, End;
95
96 /// StartPtr - The getelementptr instruction that points to the start of the
97 /// range.
98 Value *StartPtr;
99
100 /// Alignment - The known alignment of the first store.
101 MaybeAlign Alignment;
102
103 /// TheStores - The actual stores that make up this range.
105
106 bool isProfitableToUseMemset(const DataLayout &DL) const;
107};
108
109} // end anonymous namespace
110
111static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy,
112 MemIntrinsic *MemSrc, BatchAAResults &BAA);
113
114bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
115 // If we found more than 4 stores to merge or 16 bytes, use memset.
116 if (TheStores.size() >= 4 || End - Start >= 16)
117 return true;
118
119 // If there is nothing to merge, don't do anything.
120 if (TheStores.size() < 2)
121 return false;
122
123 // If any of the stores are a memset, then it is always good to extend the
124 // memset.
125 for (Instruction *SI : TheStores)
126 if (!isa<StoreInst>(SI))
127 return true;
128
129 // Assume that the code generator is capable of merging pairs of stores
130 // together if it wants to.
131 if (TheStores.size() == 2)
132 return false;
133
134 // If we have fewer than 8 stores, it can still be worthwhile to do this.
135 // For example, merging 4 i8 stores into an i32 store is useful almost always.
136 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
137 // memset will be split into 2 32-bit stores anyway) and doing so can
138 // pessimize the llvm optimizer.
139 //
140 // Since we don't have perfect knowledge here, make some assumptions: assume
141 // the maximum GPR width is the same size as the largest legal integer
142 // size. If so, check to see whether we will end up actually reducing the
143 // number of stores used.
144 unsigned Bytes = unsigned(End - Start);
145 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
146 if (MaxIntSize == 0)
147 MaxIntSize = 1;
148 unsigned NumPointerStores = Bytes / MaxIntSize;
149
150 // Assume the remaining bytes if any are done a byte at a time.
151 unsigned NumByteStores = Bytes % MaxIntSize;
152
153 // If we will reduce the # stores (according to this heuristic), do the
154 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
155 // etc.
156 return TheStores.size() > NumPointerStores + NumByteStores;
157}
158
159namespace {
160
161class MemsetRanges {
162 using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
163
164 /// A sorted list of the memset ranges.
166
167 const DataLayout &DL;
168
169public:
170 MemsetRanges(const DataLayout &DL) : DL(DL) {}
171
173
174 const_iterator begin() const { return Ranges.begin(); }
175 const_iterator end() const { return Ranges.end(); }
176 bool empty() const { return Ranges.empty(); }
177
178 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
179 if (auto *SI = dyn_cast<StoreInst>(Inst))
180 addStore(OffsetFromFirst, SI);
181 else
182 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
183 }
184
185 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
186 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
187 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
188 addRange(OffsetFromFirst, StoreSize.getFixedValue(),
189 SI->getPointerOperand(), SI->getAlign(), SI);
190 }
191
192 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
193 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
194 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
195 }
196
197 void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
198 Instruction *Inst);
199};
200
201} // end anonymous namespace
202
203/// Add a new store to the MemsetRanges data structure. This adds a
204/// new range for the specified store at the specified offset, merging into
205/// existing ranges as appropriate.
206void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
207 MaybeAlign Alignment, Instruction *Inst) {
208 int64_t End = Start + Size;
209
210 range_iterator I = partition_point(
211 Ranges, [=](const MemsetRange &O) { return O.End < Start; });
212
213 // We now know that I == E, in which case we didn't find anything to merge
214 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
215 // to insert a new range. Handle this now.
216 if (I == Ranges.end() || End < I->Start) {
217 MemsetRange &R = *Ranges.insert(I, MemsetRange());
218 R.Start = Start;
219 R.End = End;
220 R.StartPtr = Ptr;
221 R.Alignment = Alignment;
222 R.TheStores.push_back(Inst);
223 return;
224 }
225
226 // This store overlaps with I, add it.
227 I->TheStores.push_back(Inst);
228
229 // At this point, we may have an interval that completely contains our store.
230 // If so, just add it to the interval and return.
231 if (I->Start <= Start && I->End >= End)
232 return;
233
234 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
235 // but is not entirely contained within the range.
236
237 // See if the range extends the start of the range. In this case, it couldn't
238 // possibly cause it to join the prior range, because otherwise we would have
239 // stopped on *it*.
240 if (Start < I->Start) {
241 I->Start = Start;
242 I->StartPtr = Ptr;
243 I->Alignment = Alignment;
244 }
245
246 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
247 // is in or right at the end of I), and that End >= I->Start. Extend I out to
248 // End.
249 if (End > I->End) {
250 I->End = End;
251 range_iterator NextI = I;
252 while (++NextI != Ranges.end() && End >= NextI->Start) {
253 // Merge the range in.
254 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
255 if (NextI->End > I->End)
256 I->End = NextI->End;
257 Ranges.erase(NextI);
258 NextI = I;
259 }
260 }
261}
262
263//===----------------------------------------------------------------------===//
264// MemCpyOptLegacyPass Pass
265//===----------------------------------------------------------------------===//
266
267// Check that V is either not accessible by the caller, or unwinding cannot
268// occur between Start and End.
270 Instruction *End) {
271 assert(Start->getParent() == End->getParent() && "Must be in same block");
272 // Function can't unwind, so it also can't be visible through unwinding.
273 if (Start->getFunction()->doesNotThrow())
274 return false;
275
276 // Object is not visible on unwind.
277 // TODO: Support RequiresNoCaptureBeforeUnwind case.
278 bool RequiresNoCaptureBeforeUnwind;
280 RequiresNoCaptureBeforeUnwind) &&
281 !RequiresNoCaptureBeforeUnwind)
282 return false;
283
284 // Check whether there are any unwinding instructions in the range.
285 return any_of(make_range(Start->getIterator(), End->getIterator()),
286 [](const Instruction &I) { return I.mayThrow(); });
287}
288
289void MemCpyOptPass::eraseInstruction(Instruction *I) {
290 MSSAU->removeMemoryAccess(I);
291 EEA->removeInstruction(I);
292 I->eraseFromParent();
293}
294
295// Check for mod or ref of Loc between Start and End, excluding both boundaries.
296// Start and End must be in the same block.
297// If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
298// intrinsic and store it inside SkippedLifetimeStart.
300 const MemoryUseOrDef *Start,
301 const MemoryUseOrDef *End,
302 Instruction **SkippedLifetimeStart = nullptr) {
303 assert(Start->getBlock() == End->getBlock() && "Only local supported");
304 for (const MemoryAccess &MA :
305 make_range(++Start->getIterator(), End->getIterator())) {
306 Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst();
307 if (isModOrRefSet(AA.getModRefInfo(I, Loc))) {
309 if (II && II->getIntrinsicID() == Intrinsic::lifetime_start &&
310 SkippedLifetimeStart && !*SkippedLifetimeStart) {
311 *SkippedLifetimeStart = I;
312 continue;
313 }
314
315 return true;
316 }
317 }
318 return false;
319}
320
321// Check for mod of Loc between Start and End, excluding both boundaries.
322// Start and End can be in different blocks.
324 MemoryLocation Loc, const MemoryUseOrDef *Start,
325 const MemoryUseOrDef *End) {
326 if (isa<MemoryUse>(End)) {
327 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
328 // Manually check read accesses between Start and End, if they are in the
329 // same block, for clobbers. Otherwise assume Loc is clobbered.
330 return Start->getBlock() != End->getBlock() ||
331 any_of(
332 make_range(std::next(Start->getIterator()), End->getIterator()),
333 [&AA, Loc](const MemoryAccess &Acc) {
334 if (isa<MemoryUse>(&Acc))
335 return false;
336 Instruction *AccInst =
337 cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
338 return isModSet(AA.getModRefInfo(AccInst, Loc));
339 });
340 }
341
342 // TODO: Only walk until we hit Start.
344 End->getDefiningAccess(), Loc, AA);
345 return !MSSA->dominates(Clobber, Start);
346}
347
348/// When scanning forward over instructions, we look for some other patterns to
349/// fold away. In particular, this looks for stores to neighboring locations of
350/// memory. If it sees enough consecutive ones, it attempts to merge them
351/// together into a memcpy/memset.
352Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
353 Value *StartPtr,
354 Value *ByteVal) {
355 const DataLayout &DL = StartInst->getDataLayout();
356
357 // We can't track scalable types
358 if (auto *SI = dyn_cast<StoreInst>(StartInst))
359 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
360 return nullptr;
361
362 // Okay, so we now have a single store that can be splatable. Scan to find
363 // all subsequent stores of the same value to offset from the same pointer.
364 // Join these together into ranges, so we can decide whether contiguous blocks
365 // are stored.
366 MemsetRanges Ranges(DL);
367
368 BasicBlock::iterator BI(StartInst);
369
370 // Keeps track of the last memory use or def before the insertion point for
371 // the new memset. The new MemoryDef for the inserted memsets will be inserted
372 // after MemInsertPoint.
373 MemoryUseOrDef *MemInsertPoint = nullptr;
374 for (++BI; !BI->isTerminator(); ++BI) {
375 auto *CurrentAcc =
376 cast_or_null<MemoryUseOrDef>(MSSA->getMemoryAccess(&*BI));
377 if (CurrentAcc)
378 MemInsertPoint = CurrentAcc;
379
380 // Calls that only access inaccessible memory do not block merging
381 // accessible stores.
382 if (auto *CB = dyn_cast<CallBase>(BI)) {
383 if (CB->onlyAccessesInaccessibleMemory())
384 continue;
385 }
386
387 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
388 // If the instruction is readnone, ignore it, otherwise bail out. We
389 // don't even allow readonly here because we don't want something like:
390 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
391 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
392 break;
393 continue;
394 }
395
396 if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
397 // If this is a store, see if we can merge it in.
398 if (!NextStore->isSimple())
399 break;
400
401 Value *StoredVal = NextStore->getValueOperand();
402
403 // Don't convert stores of non-integral pointer types to memsets (which
404 // stores integers).
405 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
406 break;
407
408 // We can't track ranges involving scalable types.
409 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
410 break;
411
412 // Check to see if this stored value is of the same byte-splattable value.
413 Value *StoredByte = isBytewiseValue(StoredVal, DL);
414 if (isa<UndefValue>(ByteVal) && StoredByte)
415 ByteVal = StoredByte;
416 if (ByteVal != StoredByte)
417 break;
418
419 // Check to see if this store is to a constant offset from the start ptr.
420 std::optional<int64_t> Offset =
421 NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, DL);
422 if (!Offset)
423 break;
424
425 Ranges.addStore(*Offset, NextStore);
426 } else {
427 auto *MSI = cast<MemSetInst>(BI);
428
429 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
430 !isa<ConstantInt>(MSI->getLength()))
431 break;
432
433 // Check to see if this store is to a constant offset from the start ptr.
434 std::optional<int64_t> Offset =
435 MSI->getDest()->getPointerOffsetFrom(StartPtr, DL);
436 if (!Offset)
437 break;
438
439 Ranges.addMemSet(*Offset, MSI);
440 }
441 }
442
443 // If we have no ranges, then we just had a single store with nothing that
444 // could be merged in. This is a very common case of course.
445 if (Ranges.empty())
446 return nullptr;
447
448 // If we had at least one store that could be merged in, add the starting
449 // store as well. We try to avoid this unless there is at least something
450 // interesting as a small compile-time optimization.
451 Ranges.addInst(0, StartInst);
452
453 // If we create any memsets, we put it right before the first instruction that
454 // isn't part of the memset block. This ensure that the memset is dominated
455 // by any addressing instruction needed by the start of the block.
456 IRBuilder<> Builder(&*BI);
457
458 // Now that we have full information about ranges, loop over the ranges and
459 // emit memset's for anything big enough to be worthwhile.
460 Instruction *AMemSet = nullptr;
461 for (const MemsetRange &Range : Ranges) {
462 if (Range.TheStores.size() == 1)
463 continue;
464
465 // If it is profitable to lower this range to memset, do so now.
466 if (!Range.isProfitableToUseMemset(DL))
467 continue;
468
469 // Otherwise, we do want to transform this! Create a new memset.
470 // Get the starting pointer of the block.
471 StartPtr = Range.StartPtr;
472
473 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
474 Range.Alignment);
475 AMemSet->mergeDIAssignID(Range.TheStores);
476
477 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
478 : Range.TheStores) dbgs()
479 << *SI << '\n';
480 dbgs() << "With: " << *AMemSet << '\n');
481 if (!Range.TheStores.empty())
482 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
483
484 auto *NewDef = cast<MemoryDef>(
485 MemInsertPoint->getMemoryInst() == &*BI
486 ? MSSAU->createMemoryAccessBefore(AMemSet, nullptr, MemInsertPoint)
487 : MSSAU->createMemoryAccessAfter(AMemSet, nullptr, MemInsertPoint));
488 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
489 MemInsertPoint = NewDef;
490
491 // Zap all the stores.
492 for (Instruction *SI : Range.TheStores)
494
495 ++NumMemSetInfer;
496 }
497
498 return AMemSet;
499}
500
501// This method try to lift a store instruction before position P.
502// It will lift the store and its argument + that anything that
503// may alias with these.
504// The method returns true if it was successful.
505bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
506 // If the store alias this position, early bail out.
507 MemoryLocation StoreLoc = MemoryLocation::get(SI);
508 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
509 return false;
510
511 // Keep track of the arguments of all instruction we plan to lift
512 // so we can make sure to lift them as well if appropriate.
513 DenseSet<Instruction *> Args;
514 auto AddArg = [&](Value *Arg) {
515 auto *I = dyn_cast<Instruction>(Arg);
516 if (I && I->getParent() == SI->getParent()) {
517 // Cannot hoist user of P above P
518 if (I == P)
519 return false;
520 Args.insert(I);
521 }
522 return true;
523 };
524 if (!AddArg(SI->getPointerOperand()))
525 return false;
526
527 // Instruction to lift before P.
528 SmallVector<Instruction *, 8> ToLift{SI};
529
530 // Memory locations of lifted instructions.
531 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
532
533 // Lifted calls.
535
536 const MemoryLocation LoadLoc = MemoryLocation::get(LI);
537
538 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
539 auto *C = &*I;
540
541 // Make sure hoisting does not perform a store that was not guaranteed to
542 // happen.
544 return false;
545
546 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt));
547
548 bool NeedLift = false;
549 if (Args.erase(C))
550 NeedLift = true;
551 else if (MayAlias) {
552 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
553 return isModOrRefSet(AA->getModRefInfo(C, ML));
554 });
555
556 if (!NeedLift)
557 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
558 return isModOrRefSet(AA->getModRefInfo(C, Call));
559 });
560 }
561
562 if (!NeedLift)
563 continue;
564
565 if (MayAlias) {
566 // Since LI is implicitly moved downwards past the lifted instructions,
567 // none of them may modify its source.
568 if (isModSet(AA->getModRefInfo(C, LoadLoc)))
569 return false;
570 else if (const auto *Call = dyn_cast<CallBase>(C)) {
571 // If we can't lift this before P, it's game over.
572 if (isModOrRefSet(AA->getModRefInfo(P, Call)))
573 return false;
574
575 Calls.push_back(Call);
576 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
577 // If we can't lift this before P, it's game over.
578 auto ML = MemoryLocation::get(C);
579 if (isModOrRefSet(AA->getModRefInfo(P, ML)))
580 return false;
581
582 MemLocs.push_back(ML);
583 } else
584 // We don't know how to lift this instruction.
585 return false;
586 }
587
588 ToLift.push_back(C);
589 for (Value *Op : C->operands())
590 if (!AddArg(Op))
591 return false;
592 }
593
594 // Find MSSA insertion point. Normally P will always have a corresponding
595 // memory access before which we can insert. However, with non-standard AA
596 // pipelines, there may be a mismatch between AA and MSSA, in which case we
597 // will scan for a memory access before P. In either case, we know for sure
598 // that at least the load will have a memory access.
599 // TODO: Simplify this once P will be determined by MSSA, in which case the
600 // discrepancy can no longer occur.
601 MemoryUseOrDef *MemInsertPoint = nullptr;
602 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(P)) {
603 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
604 } else {
605 const Instruction *ConstP = P;
606 for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
607 ++LI->getReverseIterator())) {
608 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(&I)) {
609 MemInsertPoint = MA;
610 break;
611 }
612 }
613 }
614
615 // We made it, we need to lift.
616 for (auto *I : llvm::reverse(ToLift)) {
617 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
618 I->moveBefore(P->getIterator());
619 assert(MemInsertPoint && "Must have found insert point");
620 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(I)) {
621 MSSAU->moveAfter(MA, MemInsertPoint);
622 MemInsertPoint = MA;
623 }
624 }
625
626 return true;
627}
628
629bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI,
630 const DataLayout &DL,
632 if (!LI->isSimple() || !LI->hasOneUse() || LI->getParent() != SI->getParent())
633 return false;
634
635 BatchAAResults BAA(*AA, EEA);
636 auto *T = LI->getType();
637 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
638 // the corresponding libcalls are not available.
639 // TODO: We should really distinguish between libcall availability and
640 // our ability to introduce intrinsics.
641 if (T->isAggregateType() &&
643 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
644 MemoryLocation LoadLoc = MemoryLocation::get(LI);
645
646 // We use alias analysis to check if an instruction may store to
647 // the memory we load from in between the load and the store. If
648 // such an instruction is found, we try to promote there instead
649 // of at the store position.
650 // TODO: Can use MSSA for this.
651 Instruction *P = SI;
652 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
653 if (isModSet(BAA.getModRefInfo(&I, LoadLoc))) {
654 P = &I;
655 break;
656 }
657 }
658
659 // If we found an instruction that may write to the loaded memory,
660 // we can try to promote at this position instead of the store
661 // position if nothing aliases the store memory after this and the store
662 // destination is not in the range.
663 if (P == SI || moveUp(SI, P, LI)) {
664 // If we load from memory that may alias the memory we store to,
665 // memmove must be used to preserve semantic. If not, memcpy can
666 // be used. Also, if we load from constant memory, memcpy can be used
667 // as the constant memory won't be modified.
668 bool UseMemMove = false;
669 if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
670 UseMemMove = true;
671
672 IRBuilder<> Builder(P);
673 Value *Size =
674 Builder.CreateTypeSize(Builder.getInt64Ty(), DL.getTypeStoreSize(T));
675 Instruction *M;
676 if (UseMemMove)
677 M = Builder.CreateMemMove(SI->getPointerOperand(), SI->getAlign(),
678 LI->getPointerOperand(), LI->getAlign(),
679 Size);
680 else
681 M = Builder.CreateMemCpy(SI->getPointerOperand(), SI->getAlign(),
682 LI->getPointerOperand(), LI->getAlign(), Size);
683 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
684
685 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " << *M
686 << "\n");
687
688 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
689 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, nullptr, LastDef);
690 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
691
694 ++NumMemCpyInstr;
695
696 // Make sure we do not invalidate the iterator.
697 BBI = M->getIterator();
698 return true;
699 }
700 }
701
702 // Detect cases where we're performing call slot forwarding, but
703 // happen to be using a load-store pair to implement it, rather than
704 // a memcpy.
705 auto GetCall = [&]() -> CallInst * {
706 // We defer this expensive clobber walk until the cheap checks
707 // have been done on the source inside performCallSlotOptzn.
708 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
709 MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA)))
710 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
711 return nullptr;
712 };
713
714 bool Changed = performCallSlotOptzn(
715 LI, SI, SI->getPointerOperand()->stripPointerCasts(),
717 DL.getTypeStoreSize(SI->getOperand(0)->getType()),
718 std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall);
719 if (Changed) {
722 ++NumMemCpyInstr;
723 return true;
724 }
725
726 // If this is a load-store pair from a stack slot to a stack slot, we
727 // might be able to perform the stack-move optimization just as we do for
728 // memcpys from an alloca to an alloca.
729 if (auto *DestAlloca = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
730 if (auto *SrcAlloca = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
731 if (performStackMoveOptzn(LI, SI, DestAlloca, SrcAlloca,
732 DL.getTypeStoreSize(T), BAA)) {
733 // Avoid invalidating the iterator.
734 BBI = SI->getNextNode()->getIterator();
737 ++NumMemCpyInstr;
738 return true;
739 }
740 }
741 }
742
743 return false;
744}
745
746bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
747 if (!SI->isSimple())
748 return false;
749
750 // Avoid merging nontemporal stores since the resulting
751 // memcpy/memset would not be able to preserve the nontemporal hint.
752 // In theory we could teach how to propagate the !nontemporal metadata to
753 // memset calls. However, that change would force the backend to
754 // conservatively expand !nontemporal memset calls back to sequences of
755 // store instructions (effectively undoing the merging).
756 if (SI->getMetadata(LLVMContext::MD_nontemporal))
757 return false;
758
759 const DataLayout &DL = SI->getDataLayout();
760
761 Value *StoredVal = SI->getValueOperand();
762
763 // Not all the transforms below are correct for non-integral pointers, bail
764 // until we've audited the individual pieces.
765 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
766 return false;
767
768 // Load to store forwarding can be interpreted as memcpy.
769 if (auto *LI = dyn_cast<LoadInst>(StoredVal))
770 return processStoreOfLoad(SI, LI, DL, BBI);
771
772 // The following code creates memset intrinsics out of thin air. Don't do
773 // this if the corresponding libfunc is not available.
774 // TODO: We should really distinguish between libcall availability and
775 // our ability to introduce intrinsics.
776 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
777 return false;
778
779 // There are two cases that are interesting for this code to handle: memcpy
780 // and memset. Right now we only handle memset.
781
782 // Ensure that the value being stored is something that can be memset'able a
783 // byte at a time like "0" or "-1" or any width, as well as things like
784 // 0xA0A0A0A0 and 0.0.
785 Value *V = SI->getOperand(0);
786 Value *ByteVal = isBytewiseValue(V, DL);
787 if (!ByteVal)
788 return false;
789
790 if (Instruction *I =
791 tryMergingIntoMemset(SI, SI->getPointerOperand(), ByteVal)) {
792 BBI = I->getIterator(); // Don't invalidate iterator.
793 return true;
794 }
795
796 // If we have an aggregate, we try to promote it to memset regardless
797 // of opportunity for merging as it can expose optimization opportunities
798 // in subsequent passes.
799 auto *T = V->getType();
800 if (!T->isAggregateType())
801 return false;
802
803 TypeSize Size = DL.getTypeStoreSize(T);
804 if (Size.isScalable())
805 return false;
806
807 IRBuilder<> Builder(SI);
808 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
809 SI->getAlign());
810 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
811
812 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
813
814 // The newly inserted memset is immediately overwritten by the original
815 // store, so we do not need to rename uses.
816 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
817 auto *NewAccess = MSSAU->createMemoryAccessBefore(M, nullptr, StoreDef);
818 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
819
821 NumMemSetInfer++;
822
823 // Make sure we do not invalidate the iterator.
824 BBI = M->getIterator();
825 return true;
826}
827
828bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
829 // See if there is another memset or store neighboring this memset which
830 // allows us to widen out the memset to do a single larger store.
831 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
832 if (Instruction *I =
833 tryMergingIntoMemset(MSI, MSI->getDest(), MSI->getValue())) {
834 BBI = I->getIterator(); // Don't invalidate iterator.
835 return true;
836 }
837 return false;
838}
839
840/// Takes a memcpy and a call that it depends on,
841/// and checks for the possibility of a call slot optimization by having
842/// the call write its result directly into the destination of the memcpy.
843bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
844 Instruction *cpyStore, Value *cpyDest,
845 Value *cpySrc, TypeSize cpySize,
846 Align cpyDestAlign,
847 BatchAAResults &BAA,
848 std::function<CallInst *()> GetC) {
849 // The general transformation to keep in mind is
850 //
851 // call @func(..., src, ...)
852 // memcpy(dest, src, ...)
853 //
854 // ->
855 //
856 // memcpy(dest, src, ...)
857 // call @func(..., dest, ...)
858 //
859 // Since moving the memcpy is technically awkward, we additionally check that
860 // src only holds uninitialized values at the moment of the call, meaning that
861 // the memcpy can be discarded rather than moved.
862
863 // We can't optimize scalable types.
864 if (cpySize.isScalable())
865 return false;
866
867 // Require that src be an alloca. This simplifies the reasoning considerably.
868 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
869 if (!srcAlloca)
870 return false;
871
872 const DataLayout &DL = cpyLoad->getDataLayout();
873 // We can't optimize scalable types or variable-length allocas.
874 std::optional<TypeSize> SrcAllocaSize = srcAlloca->getAllocationSize(DL);
875 if (!SrcAllocaSize || SrcAllocaSize->isScalable())
876 return false;
877 uint64_t srcSize = SrcAllocaSize->getFixedValue();
878
879 if (cpySize < srcSize)
880 return false;
881
882 CallInst *C = GetC();
883 if (!C)
884 return false;
885
886 // Lifetime marks shouldn't be operated on.
887 if (Function *F = C->getCalledFunction())
888 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
889 return false;
890
891 if (C->getParent() != cpyStore->getParent()) {
892 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
893 return false;
894 }
895
896 MemoryLocation DestLoc =
897 isa<StoreInst>(cpyStore)
898 ? MemoryLocation::get(cpyStore)
899 : MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));
900
901 // Check that nothing touches the dest of the copy between
902 // the call and the store/memcpy.
903 Instruction *SkippedLifetimeStart = nullptr;
904 if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C),
905 MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
906 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
907 return false;
908 }
909
910 // If we need to move a lifetime.start above the call, make sure that we can
911 // actually do so. If the argument is bitcasted for example, we would have to
912 // move the bitcast as well, which we don't handle.
913 if (SkippedLifetimeStart) {
914 auto *LifetimeArg =
915 dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(0));
916 if (LifetimeArg && LifetimeArg->getParent() == C->getParent() &&
917 C->comesBefore(LifetimeArg))
918 return false;
919 }
920
921 // Check that storing to the first srcSize bytes of dest will not cause a
922 // trap or data race.
923 bool ExplicitlyDereferenceableOnly;
925 ExplicitlyDereferenceableOnly) ||
926 !isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
927 DL, C, AC, DT)) {
928 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
929 return false;
930 }
931
932 // Make sure that nothing can observe cpyDest being written early. There are
933 // a number of cases to consider:
934 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
935 // the transform.
936 // 2. C itself may not access cpyDest (prior to the transform). This is
937 // checked further below.
938 // 3. If cpyDest is accessible to the caller of this function (potentially
939 // captured and not based on an alloca), we need to ensure that we cannot
940 // unwind between C and cpyStore. This is checked here.
941 // 4. If cpyDest is potentially captured, there may be accesses to it from
942 // another thread. In this case, we need to check that cpyStore is
943 // guaranteed to be executed if C is. As it is a non-atomic access, it
944 // renders accesses from other threads undefined.
945 // TODO: This is currently not checked.
946 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
947 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
948 return false;
949 }
950
951 // Check that dest points to memory that is at least as aligned as src.
952 Align srcAlign = srcAlloca->getAlign();
953 bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
954 // If dest is not aligned enough and we can't increase its alignment then
955 // bail out.
956 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
957 LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
958 return false;
959 }
960
961 // Check that src is not accessed except via the call and the memcpy. This
962 // guarantees that it holds only undefined values when passed in (so the final
963 // memcpy can be dropped), that it is not read or written between the call and
964 // the memcpy, and that writing beyond the end of it is undefined.
965 SmallVector<User *, 8> srcUseList(srcAlloca->users());
966 while (!srcUseList.empty()) {
967 User *U = srcUseList.pop_back_val();
968
969 if (isa<AddrSpaceCastInst>(U)) {
970 append_range(srcUseList, U->users());
971 continue;
972 }
974 continue;
975
976 if (U != C && U != cpyLoad) {
977 LLVM_DEBUG(dbgs() << "Call slot: Source accessed by " << *U << "\n");
978 return false;
979 }
980 }
981
982 // Check whether src is captured by the called function, in which case there
983 // may be further indirect uses of src.
984 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
985 return U->stripPointerCasts() == cpySrc &&
986 !C->doesNotCapture(C->getArgOperandNo(&U));
987 });
988
989 // If src is captured, then check whether there are any potential uses of
990 // src through the captured pointer before the lifetime of src ends, either
991 // due to a lifetime.end or a return from the function.
992 if (SrcIsCaptured) {
993 // Check that dest is not captured before/at the call. We have already
994 // checked that src is not captured before it. If either had been captured,
995 // then the call might be comparing the argument against the captured dest
996 // or src pointer.
997 Value *DestObj = getUnderlyingObject(cpyDest);
998 if (!isIdentifiedFunctionLocal(DestObj) ||
999 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, C, DT,
1000 /* IncludeI */ true))
1001 return false;
1002
1003 MemoryLocation SrcLoc =
1004 MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
1005 for (Instruction &I :
1006 make_range(++C->getIterator(), C->getParent()->end())) {
1007 // Lifetime of srcAlloca ends at lifetime.end.
1008 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1009 if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
1010 II->getArgOperand(0) == srcAlloca)
1011 break;
1012 }
1013
1014 // Lifetime of srcAlloca ends at return.
1015 if (isa<ReturnInst>(&I))
1016 break;
1017
1018 // Ignore the direct read of src in the load.
1019 if (&I == cpyLoad)
1020 continue;
1021
1022 // Check whether this instruction may mod/ref src through the captured
1023 // pointer (we have already any direct mod/refs in the loop above).
1024 // Also bail if we hit a terminator, as we don't want to scan into other
1025 // blocks.
1026 if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator())
1027 return false;
1028 }
1029 }
1030
1031 // Since we're changing the parameter to the callsite, we need to make sure
1032 // that what would be the new parameter dominates the callsite.
1033 bool NeedMoveGEP = false;
1034 if (!DT->dominates(cpyDest, C)) {
1035 // Support moving a constant index GEP before the call.
1036 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1037 if (GEP && GEP->hasAllConstantIndices() &&
1038 DT->dominates(GEP->getPointerOperand(), C))
1039 NeedMoveGEP = true;
1040 else
1041 return false;
1042 }
1043
1044 // In addition to knowing that the call does not access src in some
1045 // unexpected manner, for example via a global, which we deduce from
1046 // the use analysis, we also need to know that it does not sneakily
1047 // access dest. We rely on AA to figure this out for us.
1048 MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize));
1049 ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize);
1050 // If necessary, perform additional analysis.
1051 if (isModOrRefSet(MR))
1052 MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT);
1053 if (isModOrRefSet(MR))
1054 return false;
1055
1056 // We can't create address space casts here because we don't know if they're
1057 // safe for the target.
1058 if (cpySrc->getType() != cpyDest->getType())
1059 return false;
1060 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1061 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1062 cpySrc->getType() != C->getArgOperand(ArgI)->getType())
1063 return false;
1064
1065 // All the checks have passed, so do the transformation.
1066 bool changedArgument = false;
1067 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1068 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1069 changedArgument = true;
1070 C->setArgOperand(ArgI, cpyDest);
1071 }
1072
1073 if (!changedArgument)
1074 return false;
1075
1076 // If the destination wasn't sufficiently aligned then increase its alignment.
1077 if (!isDestSufficientlyAligned) {
1078 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1079 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1080 }
1081
1082 if (NeedMoveGEP) {
1083 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1084 GEP->moveBefore(C->getIterator());
1085 }
1086
1087 if (SkippedLifetimeStart) {
1088 SkippedLifetimeStart->moveBefore(C->getIterator());
1089 MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
1090 MSSA->getMemoryAccess(C));
1091 }
1092
1093 combineAAMetadata(C, cpyLoad);
1094 if (cpyLoad != cpyStore)
1095 combineAAMetadata(C, cpyStore);
1096
1097 ++NumCallSlot;
1098 return true;
1099}
1100
1101/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1102/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1103bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1104 MemCpyInst *MDep,
1105 BatchAAResults &BAA) {
1106 // We can only optimize non-volatile memcpy's.
1107 if (MDep->isVolatile())
1108 return false;
1109
1110 // If dep instruction is reading from our current input, then it is a noop
1111 // transfer and substituting the input won't change this instruction. Just
1112 // ignore the input and let someone else zap MDep. This handles cases like:
1113 // memcpy(a <- a)
1114 // memcpy(b <- a)
1115 // This also avoids infinite loops.
1116 if (BAA.isMustAlias(MDep->getDest(), MDep->getSource()))
1117 return false;
1118
1119 int64_t MForwardOffset = 0;
1120 const DataLayout &DL = M->getModule()->getDataLayout();
1121 // We can only transforms memcpy's where the dest of one is the source of the
1122 // other, or they have an offset in a range.
1123 if (M->getSource() != MDep->getDest()) {
1124 std::optional<int64_t> Offset =
1125 M->getSource()->getPointerOffsetFrom(MDep->getDest(), DL);
1126 if (!Offset || *Offset < 0)
1127 return false;
1128 MForwardOffset = *Offset;
1129 }
1130
1131 Value *CopyLength = M->getLength();
1132
1133 // The length of the memcpy's must be the same, or the preceding one must be
1134 // larger than the following one, or the contents of the overread must be
1135 // undefined bytes of a defined size.
1136 if (MForwardOffset != 0 || MDep->getLength() != CopyLength) {
1137 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1138 auto *MLen = dyn_cast<ConstantInt>(CopyLength);
1139 // This could be converted to a runtime test (%CopyLength =
1140 // min(max(0, MDepLen - MForwardOffset), MLen)), but it is
1141 // unclear if that is useful
1142 if (!MDepLen || !MLen)
1143 return false;
1144 if (MDepLen->getZExtValue() < MLen->getZExtValue() + MForwardOffset) {
1145 if (!overreadUndefContents(MSSA, M, MDep, BAA))
1146 return false;
1147 if (MDepLen->getZExtValue() <= (uint64_t)MForwardOffset)
1148 return false; // Should not reach here (there is obviously no aliasing
1149 // with MDep), so just bail in case it had incomplete info
1150 // somehow
1151 CopyLength = ConstantInt::get(CopyLength->getType(),
1152 MDepLen->getZExtValue() - MForwardOffset);
1153 }
1154 }
1155
1156 IRBuilder<> Builder(M);
1157 auto *CopySource = MDep->getSource();
1158 Instruction *NewCopySource = nullptr;
1159 llvm::scope_exit CleanupOnRet([&] {
1160 if (NewCopySource && NewCopySource->use_empty())
1161 // Safety: It's safe here because we will only allocate more instructions
1162 // after finishing all BatchAA queries, but we have to be careful if we
1163 // want to do something like this in another place. Then we'd probably
1164 // have to delay instruction removal until all transforms on an
1165 // instruction finished.
1166 eraseInstruction(NewCopySource);
1167 });
1168 MaybeAlign CopySourceAlign = MDep->getSourceAlign();
1169 auto MCopyLoc = MemoryLocation::getForSource(MDep);
1170 // Truncate the size of the MDep access to just the bytes read
1171 if (MDep->getLength() != CopyLength) {
1172 auto *ConstLength = cast<ConstantInt>(CopyLength);
1173 MCopyLoc = MCopyLoc.getWithNewSize(
1174 LocationSize::precise(ConstLength->getZExtValue()));
1175 }
1176
1177 // When the forwarding offset is greater than 0, we transform
1178 // memcpy(d1 <- s1)
1179 // memcpy(d2 <- d1+o)
1180 // to
1181 // memcpy(d2 <- s1+o)
1182 if (MForwardOffset > 0) {
1183 // The copy destination of `M` maybe can serve as the source of copying.
1184 std::optional<int64_t> MDestOffset =
1185 M->getRawDest()->getPointerOffsetFrom(MDep->getRawSource(), DL);
1186 if (MDestOffset == MForwardOffset)
1187 CopySource = M->getDest();
1188 else {
1189 CopySource = Builder.CreateInBoundsPtrAdd(
1190 CopySource, Builder.getInt64(MForwardOffset));
1191 NewCopySource = dyn_cast<Instruction>(CopySource);
1192 }
1193 // We need to update `MCopyLoc` if an offset exists.
1194 MCopyLoc = MCopyLoc.getWithNewPtr(CopySource);
1195 if (CopySourceAlign)
1196 CopySourceAlign = commonAlignment(*CopySourceAlign, MForwardOffset);
1197 }
1198
1199 // Verify that the copied-from memory doesn't change in between the two
1200 // transfers. For example, in:
1201 // memcpy(a <- b)
1202 // *b = 42;
1203 // memcpy(c <- a)
1204 // It would be invalid to transform the second memcpy into memcpy(c <- b).
1205 //
1206 // TODO: If the code between M and MDep is transparent to the destination "c",
1207 // then we could still perform the xform by moving M up to the first memcpy.
1208 if (writtenBetween(MSSA, BAA, MCopyLoc, MSSA->getMemoryAccess(MDep),
1209 MSSA->getMemoryAccess(M)))
1210 return false;
1211
1212 // No need to create `memcpy(a <- a)`.
1213 if (BAA.isMustAlias(M->getDest(), CopySource)) {
1214 // Remove the instruction we're replacing.
1216 ++NumMemCpyInstr;
1217 return true;
1218 }
1219
1220 // If the dest of the second might alias the source of the first, then the
1221 // source and dest might overlap. In addition, if the source of the first
1222 // points to constant memory, they won't overlap by definition. Otherwise, we
1223 // still want to eliminate the intermediate value, but we have to generate a
1224 // memmove instead of memcpy.
1225 bool UseMemMove = false;
1227 // Don't convert llvm.memcpy.inline into memmove because memmove can be
1228 // lowered as a call, and that is not allowed for llvm.memcpy.inline (and
1229 // there is no inline version of llvm.memmove)
1230 if (M->isForceInlined())
1231 return false;
1232 UseMemMove = true;
1233 }
1234
1235 // If all checks passed, then we can transform M.
1236 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1237 << *MDep << '\n'
1238 << *M << '\n');
1239
1240 // TODO: Is this worth it if we're creating a less aligned memcpy? For
1241 // example we could be moving from movaps -> movq on x86.
1242 Instruction *NewM;
1243 if (UseMemMove)
1244 NewM = Builder.CreateMemMove(M->getDest(), M->getDestAlign(), CopySource,
1245 CopySourceAlign, CopyLength, M->isVolatile());
1246 else if (M->isForceInlined())
1247 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1248 // never allowed since that would allow the latter to be lowered as a call
1249 // to an external function.
1250 NewM = Builder.CreateMemCpyInline(M->getDest(), M->getDestAlign(),
1251 CopySource, CopySourceAlign, CopyLength,
1252 M->isVolatile());
1253 else
1254 NewM = Builder.CreateMemCpy(M->getDest(), M->getDestAlign(), CopySource,
1255 CopySourceAlign, CopyLength, M->isVolatile());
1256
1257 NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID);
1258
1259 assert(isa<MemoryDef>(MSSA->getMemoryAccess(M)));
1260 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(M));
1261 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1262 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1263
1264 // Remove the instruction we're replacing.
1266 ++NumMemCpyInstr;
1267 return true;
1268}
1269
1270/// We've found that the (upward scanning) memory dependence of \p MemCpy is
1271/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1272/// weren't copied over by \p MemCpy.
1273///
1274/// In other words, transform:
1275/// \code
1276/// memset(dst, c, dst_size);
1277/// ...
1278/// memcpy(dst, src, src_size);
1279/// \endcode
1280/// into:
1281/// \code
1282/// ...
1283/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1284/// memcpy(dst, src, src_size);
1285/// \endcode
1286///
1287/// The memset is sunk to just before the memcpy to ensure that src_size is
1288/// present when emitting the simplified memset.
1289bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1290 MemSetInst *MemSet,
1291 BatchAAResults &BAA) {
1292 // We can only transform memset/memcpy with the same destination.
1293 if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1294 return false;
1295
1296 // Don't perform the transform if src_size may be zero. In that case, the
1297 // transform is essentially a complex no-op and may lead to an infinite
1298 // loop if BasicAA is smart enough to understand that dst and dst + src_size
1299 // are still MustAlias after the transform.
1300 Value *SrcSize = MemCpy->getLength();
1301 if (!isKnownNonZero(SrcSize,
1302 SimplifyQuery(MemCpy->getDataLayout(), DT, AC, MemCpy)))
1303 return false;
1304
1305 // Check that src and dst of the memcpy aren't the same. While memcpy
1306 // operands cannot partially overlap, exact equality is allowed.
1307 if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1308 return false;
1309
1310 // We know that dst up to src_size is not written. We now need to make sure
1311 // that dst up to dst_size is not accessed. (If we did not move the memset,
1312 // checking for reads would be sufficient.)
1314 MSSA->getMemoryAccess(MemSet),
1315 MSSA->getMemoryAccess(MemCpy)))
1316 return false;
1317
1318 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1319 Value *Dest = MemCpy->getRawDest();
1320 Value *DestSize = MemSet->getLength();
1321
1322 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1323 return false;
1324
1325 // If the sizes are the same, simply drop the memset instead of generating
1326 // a replacement with zero size.
1327 if (DestSize == SrcSize) {
1328 eraseInstruction(MemSet);
1329 return true;
1330 }
1331
1332 // By default, create an unaligned memset.
1333 Align Alignment = Align(1);
1334 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1335 // of the sum.
1336 const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
1337 MemCpy->getDestAlign().valueOrOne());
1338 if (DestAlign > 1)
1339 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1340 Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());
1341
1342 IRBuilder<> Builder(MemCpy);
1343
1344 // Preserve the debug location of the old memset for the code emitted here
1345 // related to the new memset. This is correct according to the rules in
1346 // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an
1347 // instruction location", given that we move the memset within the basic
1348 // block.
1349 assert(MemSet->getParent() == MemCpy->getParent() &&
1350 "Preserving debug location based on moving memset within BB.");
1351 Builder.SetCurrentDebugLocation(MemSet->getDebugLoc());
1352
1353 // If the sizes have different types, zext the smaller one.
1354 if (DestSize->getType() != SrcSize->getType()) {
1355 if (DestSize->getType()->getIntegerBitWidth() >
1356 SrcSize->getType()->getIntegerBitWidth())
1357 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1358 else
1359 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1360 }
1361
1362 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1363 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1364 Value *MemsetLen = Builder.CreateSelect(
1365 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1366 // FIXME (#167968): we could explore estimating the branch_weights based on
1367 // value profiling data about the 2 sizes.
1368 if (auto *SI = dyn_cast<SelectInst>(MemsetLen))
1370 Instruction *NewMemSet =
1371 Builder.CreateMemSet(Builder.CreatePtrAdd(Dest, SrcSize),
1372 MemSet->getOperand(1), MemsetLen, Alignment);
1373
1374 assert(isa<MemoryDef>(MSSA->getMemoryAccess(MemCpy)) &&
1375 "MemCpy must be a MemoryDef");
1376 // The new memset is inserted before the memcpy, and it is known that the
1377 // memcpy's defining access is the memset about to be removed.
1378 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(MemCpy));
1379 auto *NewAccess =
1380 MSSAU->createMemoryAccessBefore(NewMemSet, nullptr, LastDef);
1381 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1382
1383 eraseInstruction(MemSet);
1384 return true;
1385}
1386
1387/// Determine whether the pointer V had only undefined content (due to Def),
1388/// either because it was freshly alloca'd or started its lifetime.
1390 MemoryDef *Def) {
1391 if (MSSA->isLiveOnEntryDef(Def))
1393
1394 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst()))
1395 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1396 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)))
1397 return II->getArgOperand(0) == Alloca;
1398
1399 return false;
1400}
1401
1402// If the memcpy is larger than the previous, but the memory was undef prior to
1403// that, we can just ignore the tail. Technically we're only interested in the
1404// bytes from 0..MemSrcOffset and MemSrcLength+MemSrcOffset..CopySize here, but
1405// as we can't easily represent this location (hasUndefContents uses mustAlias
1406// which cannot deal with offsets), we use the full 0..CopySize range.
1407static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy,
1408 MemIntrinsic *MemSrc, BatchAAResults &BAA) {
1409 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1410 MemoryUseOrDef *MemSrcAccess = MSSA->getMemoryAccess(MemSrc);
1412 MemSrcAccess->getDefiningAccess(), MemCpyLoc, BAA);
1413 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1414 if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD))
1415 return true;
1416 return false;
1417}
1418
1419/// Transform memcpy to memset when its source was just memset.
1420/// In other words, turn:
1421/// \code
1422/// memset(dst1, c, dst1_size);
1423/// memcpy(dst2, dst1, dst2_size);
1424/// \endcode
1425/// into:
1426/// \code
1427/// memset(dst1, c, dst1_size);
1428/// memset(dst2, c, dst2_size);
1429/// \endcode
1430/// When dst2_size <= dst1_size.
1431bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1432 MemSetInst *MemSet,
1433 BatchAAResults &BAA) {
1434 Value *MemSetSize = MemSet->getLength();
1435 Value *CopySize = MemCpy->getLength();
1436
1437 int64_t MOffset = 0;
1438 const DataLayout &DL = MemCpy->getModule()->getDataLayout();
1439 // We can only transforms memcpy's where the dest of one is the source of the
1440 // other, or they have a known offset.
1441 if (MemCpy->getSource() != MemSet->getDest()) {
1442 std::optional<int64_t> Offset =
1443 MemCpy->getSource()->getPointerOffsetFrom(MemSet->getDest(), DL);
1444 if (!Offset || *Offset < 0)
1445 return false;
1446 MOffset = *Offset;
1447 }
1448
1449 if (MOffset != 0 || MemSetSize != CopySize) {
1450 // Make sure the memcpy doesn't read any more than what the memset wrote,
1451 // other than undef. Don't worry about sizes larger than i64.
1452 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1453 auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
1454 if (!CMemSetSize || !CCopySize ||
1455 CCopySize->getZExtValue() + MOffset > CMemSetSize->getZExtValue()) {
1456 if (!overreadUndefContents(MSSA, MemCpy, MemSet, BAA))
1457 return false;
1458
1459 if (CMemSetSize && CCopySize) {
1460 // If both have constant sizes and offsets, clip the memcpy to the
1461 // bounds of the memset if applicable.
1462 assert(CCopySize->getZExtValue() + MOffset >
1463 CMemSetSize->getZExtValue());
1464 if (MOffset == 0)
1465 CopySize = MemSetSize;
1466 else
1467 CopySize =
1468 ConstantInt::get(CopySize->getType(),
1469 CMemSetSize->getZExtValue() <= (uint64_t)MOffset
1470 ? 0
1471 : CMemSetSize->getZExtValue() - MOffset);
1472 }
1473 }
1474 }
1475
1476 IRBuilder<> Builder(MemCpy);
1477 Instruction *NewM =
1478 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1479 CopySize, MemCpy->getDestAlign());
1480 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(MemCpy));
1481 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1482 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1483
1484 return true;
1485}
1486
1487// Attempts to optimize the pattern whereby memory is copied from an alloca to
1488// another alloca, where the two allocas don't have conflicting mod/ref. If
1489// successful, the two allocas can be merged into one and the transfer can be
1490// deleted. This pattern is generated frequently in Rust, due to the ubiquity of
1491// move operations in that language.
1492//
1493// Once we determine that the optimization is safe to perform, we replace all
1494// uses of the destination alloca with the source alloca. We also "shrink wrap"
1495// the lifetime markers of the single merged alloca to before the first use
1496// and after the last use. Note that the "shrink wrapping" procedure is a safe
1497// transformation only because we restrict the scope of this optimization to
1498// allocas that aren't captured.
1499bool MemCpyOptPass::performStackMoveOptzn(Instruction *Load, Instruction *Store,
1500 AllocaInst *DestAlloca,
1501 AllocaInst *SrcAlloca, TypeSize Size,
1502 BatchAAResults &BAA) {
1503 LLVM_DEBUG(dbgs() << "Stack Move: Attempting to optimize:\n"
1504 << *Store << "\n");
1505
1506 // Make sure the two allocas are in the same address space.
1507 if (SrcAlloca->getAddressSpace() != DestAlloca->getAddressSpace()) {
1508 LLVM_DEBUG(dbgs() << "Stack Move: Address space mismatch\n");
1509 return false;
1510 }
1511
1512 // Check that copy is full with static size.
1513 const DataLayout &DL = DestAlloca->getDataLayout();
1514 std::optional<TypeSize> SrcSize = SrcAlloca->getAllocationSize(DL);
1515 std::optional<TypeSize> DestSize = DestAlloca->getAllocationSize(DL);
1516 if (!SrcSize || !DestSize)
1517 return false;
1518 if (*SrcSize != *DestSize)
1519 if (!SrcSize->isFixed() || !DestSize->isFixed())
1520 return false;
1521 if (Size != *DestSize) {
1522 LLVM_DEBUG(dbgs() << "Stack Move: Destination alloca size mismatch\n");
1523 return false;
1524 }
1525
1526 if (!SrcAlloca->isStaticAlloca() || !DestAlloca->isStaticAlloca())
1527 return false;
1528
1529 // Check if it will be legal to combine allocas without breaking dominator.
1530 bool MoveSrc = !DT->dominates(SrcAlloca, DestAlloca);
1531 if (MoveSrc) {
1532 if (!DT->dominates(DestAlloca, SrcAlloca))
1533 return false;
1534 }
1535
1536 // Check that src and dest are never captured, unescaped allocas. Also
1537 // find the nearest common dominator and postdominator for all users in
1538 // order to shrink wrap the lifetimes, and instructions with noalias metadata
1539 // to remove them.
1540
1541 SmallVector<Instruction *, 4> LifetimeMarkers;
1542 SmallPtrSet<Instruction *, 4> AAMetadataInstrs;
1543
1544 auto CaptureTrackingWithModRef =
1545 [&](Instruction *AI, function_ref<bool(Instruction *)> ModRefCallback,
1546 bool &AddressCaptured) -> bool {
1547 SmallVector<Instruction *, 8> Worklist;
1548 Worklist.push_back(AI);
1549 unsigned MaxUsesToExplore = getDefaultMaxUsesToExploreForCaptureTracking();
1550 Worklist.reserve(MaxUsesToExplore);
1551 SmallPtrSet<const Use *, 20> Visited;
1552 while (!Worklist.empty()) {
1553 Instruction *I = Worklist.pop_back_val();
1554 for (const Use &U : I->uses()) {
1555 auto *UI = cast<Instruction>(U.getUser());
1556
1557 if (Visited.size() >= MaxUsesToExplore) {
1558 LLVM_DEBUG(
1559 dbgs()
1560 << "Stack Move: Exceeded max uses to see ModRef, bailing\n");
1561 return false;
1562 }
1563 if (!Visited.insert(&U).second)
1564 continue;
1565 UseCaptureInfo CI = DetermineUseCaptureKind(U, AI);
1567 return false;
1568 AddressCaptured |= capturesAddress(CI.UseCC);
1569
1570 if (UI->mayReadOrWriteMemory()) {
1571 if (UI->isLifetimeStartOrEnd()) {
1572 // We note the locations of these intrinsic calls so that we can
1573 // delete them later if the optimization succeeds, this is safe
1574 // since both llvm.lifetime.start and llvm.lifetime.end intrinsics
1575 // practically fill all the bytes of the alloca with an undefined
1576 // value, although conceptually marked as alive/dead.
1577 LifetimeMarkers.push_back(UI);
1578 continue;
1579 }
1580 AAMetadataInstrs.insert(UI);
1581
1582 if (!ModRefCallback(UI))
1583 return false;
1584 }
1585
1586 if (capturesAnything(CI.ResultCC)) {
1587 Worklist.push_back(UI);
1588 continue;
1589 }
1590 }
1591 }
1592 return true;
1593 };
1594
1595 // Check that dest has no Mod/Ref, from the alloca to the Store. And collect
1596 // modref inst for the reachability check.
1597 ModRefInfo DestModRef = ModRefInfo::NoModRef;
1598 MemoryLocation DestLoc(DestAlloca, LocationSize::precise(Size));
1599 SmallVector<BasicBlock *, 8> ReachabilityWorklist;
1600 auto DestModRefCallback = [&](Instruction *UI) -> bool {
1601 // We don't care about the store itself.
1602 if (UI == Store)
1603 return true;
1604 ModRefInfo Res = BAA.getModRefInfo(UI, DestLoc);
1605 DestModRef |= Res;
1606 if (isModOrRefSet(Res)) {
1607 // Instructions reachability checks.
1608 // FIXME: adding the Instruction version isPotentiallyReachableFromMany on
1609 // lib/Analysis/CFG.cpp (currently only for BasicBlocks) might be helpful.
1610 if (UI->getParent() == Store->getParent()) {
1611 // The same block case is special because it's the only time we're
1612 // looking within a single block to see which instruction comes first.
1613 // Once we start looking at multiple blocks, the first instruction of
1614 // the block is reachable, so we only need to determine reachability
1615 // between whole blocks.
1616 BasicBlock *BB = UI->getParent();
1617
1618 // If A comes before B, then B is definitively reachable from A.
1619 if (UI->comesBefore(Store))
1620 return false;
1621
1622 // If the user's parent block is entry, no predecessor exists.
1623 if (BB->isEntryBlock())
1624 return true;
1625
1626 // Otherwise, continue doing the normal per-BB CFG walk.
1627 ReachabilityWorklist.append(succ_begin(BB), succ_end(BB));
1628 } else {
1629 ReachabilityWorklist.push_back(UI->getParent());
1630 }
1631 }
1632 return true;
1633 };
1634
1635 bool DestAddressCaptured = false;
1636 if (!CaptureTrackingWithModRef(DestAlloca, DestModRefCallback,
1637 DestAddressCaptured))
1638 return false;
1639 // Bailout if Dest may have any ModRef before Store.
1640 if (!ReachabilityWorklist.empty() &&
1641 isPotentiallyReachableFromMany(ReachabilityWorklist, Store->getParent(),
1642 nullptr, DT, nullptr))
1643 return false;
1644
1645 // Check that, from after the Load to the end of the BB,
1646 // - if the dest has any Mod, src has no Ref, and
1647 // - if the dest has any Ref, src has no Mod except full-sized lifetimes.
1648 MemoryLocation SrcLoc(SrcAlloca, LocationSize::precise(Size));
1649
1650 auto SrcModRefCallback = [&](Instruction *UI) -> bool {
1651 // Any ModRef post-dominated by Load doesn't matter, also Load and Store
1652 // themselves can be ignored.
1653 if (PDT->dominates(Load, UI) || UI == Load || UI == Store)
1654 return true;
1655 ModRefInfo Res = BAA.getModRefInfo(UI, SrcLoc);
1656 if ((isModSet(DestModRef) && isRefSet(Res)) ||
1657 (isRefSet(DestModRef) && isModSet(Res)))
1658 return false;
1659
1660 return true;
1661 };
1662
1663 bool SrcAddressCaptured = false;
1664 if (!CaptureTrackingWithModRef(SrcAlloca, SrcModRefCallback,
1665 SrcAddressCaptured))
1666 return false;
1667
1668 // If both the source and destination address are captured, the fact that they
1669 // are no longer two separate allocations may be observed.
1670 if (DestAddressCaptured && SrcAddressCaptured)
1671 return false;
1672
1673 // We can now do the transformation. First move the Src if it was after Dest.
1674 if (MoveSrc)
1675 SrcAlloca->moveBefore(DestAlloca->getIterator());
1676
1677 // Align the allocas appropriately.
1678 SrcAlloca->setAlignment(
1679 std::max(SrcAlloca->getAlign(), DestAlloca->getAlign()));
1680
1681 // Size the allocas appropriately.
1682 if (*SrcSize != *DestSize) {
1683 // Only possible if both sizes are fixed (due to earlier check)
1684 // Set Src to the type and array size of Dest if Dest was larger
1685 if (DestSize->getFixedValue() > SrcSize->getFixedValue()) {
1686 SrcAlloca->setAllocatedType(DestAlloca->getAllocatedType());
1687 SrcAlloca->setOperand(0, DestAlloca->getArraySize());
1688 }
1689 }
1690
1691 // Merge the two allocas.
1692 DestAlloca->replaceAllUsesWith(SrcAlloca);
1693 eraseInstruction(DestAlloca);
1694
1695 // Drop metadata on the source alloca.
1696 SrcAlloca->dropUnknownNonDebugMetadata();
1697
1698 // TODO: Reconstruct merged lifetime markers.
1699 // Remove all other lifetime markers. if the original lifetime intrinsics
1700 // exists.
1701 if (!LifetimeMarkers.empty()) {
1702 for (Instruction *I : LifetimeMarkers)
1704 }
1705
1706 // As this transformation can cause memory accesses that didn't previously
1707 // alias to begin to alias one another, we remove !alias.scope, !noalias,
1708 // !tbaa and !tbaa_struct metadata from any uses of either alloca.
1709 // This is conservative, but more precision doesn't seem worthwhile
1710 // right now.
1711 for (Instruction *I : AAMetadataInstrs) {
1712 I->setMetadata(LLVMContext::MD_alias_scope, nullptr);
1713 I->setMetadata(LLVMContext::MD_noalias, nullptr);
1714 I->setMetadata(LLVMContext::MD_tbaa, nullptr);
1715 I->setMetadata(LLVMContext::MD_tbaa_struct, nullptr);
1716 }
1717
1718 LLVM_DEBUG(dbgs() << "Stack Move: Performed stack-move optimization\n");
1719 NumStackMove++;
1720 return true;
1721}
1722
1723static bool isZeroSize(Value *Size) {
1724 if (auto *I = dyn_cast<Instruction>(Size))
1725 if (auto *Res = simplifyInstruction(I, I->getDataLayout()))
1726 Size = Res;
1727 // Treat undef/poison size like zero.
1728 if (auto *C = dyn_cast<Constant>(Size))
1729 return isa<UndefValue>(C) || C->isNullValue();
1730 return false;
1731}
1732
1733/// Perform simplification of memcpy's. If we have memcpy A
1734/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1735/// B to be a memcpy from X to Z (or potentially a memmove, depending on
1736/// circumstances). This allows later passes to remove the first memcpy
1737/// altogether.
1738bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1739 // We can only optimize non-volatile memcpy's.
1740 if (M->isVolatile())
1741 return false;
1742
1743 // If the source and destination of the memcpy are the same, then zap it.
1744 if (M->getSource() == M->getDest()) {
1745 ++BBI;
1747 return true;
1748 }
1749
1750 // If the size is zero, remove the memcpy.
1751 if (isZeroSize(M->getLength())) {
1752 ++BBI;
1754 return true;
1755 }
1756
1757 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1758 if (!MA)
1759 // Degenerate case: memcpy marked as not accessing memory.
1760 return false;
1761
1762 // If copying from a constant, try to turn the memcpy into a memset.
1763 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
1764 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1765 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1766 M->getDataLayout())) {
1767 IRBuilder<> Builder(M);
1768 Instruction *NewM = Builder.CreateMemSet(
1769 M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false);
1770 auto *LastDef = cast<MemoryDef>(MA);
1771 auto *NewAccess =
1772 MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1773 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1774
1776 ++NumCpyToSet;
1777 return true;
1778 }
1779
1780 BatchAAResults BAA(*AA, EEA);
1781 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
1782 MemoryAccess *AnyClobber = MA->getDefiningAccess();
1783 MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1784 const MemoryAccess *DestClobber =
1785 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA);
1786
1787 // Try to turn a partially redundant memset + memcpy into
1788 // smaller memset + memcpy. We don't need the memcpy size for this.
1789 // The memcpy must post-dom the memset, so limit this to the same basic
1790 // block. A non-local generalization is likely not worthwhile.
1791 if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1792 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1793 if (DestClobber->getBlock() == M->getParent())
1794 if (processMemSetMemCpyDependence(M, MDep, BAA))
1795 return true;
1796
1797 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1798 AnyClobber, MemoryLocation::getForSource(M), BAA);
1799
1800 // There are five possible optimizations we can do for memcpy:
1801 // a) memcpy-memcpy xform which exposes redundance for DSE.
1802 // b) call-memcpy xform for return slot optimization.
1803 // c) memcpy from freshly alloca'd space or space that has just started
1804 // its lifetime copies undefined data, and we can therefore eliminate
1805 // the memcpy in favor of the data that was already at the destination.
1806 // d) memcpy from a just-memset'd source can be turned into memset.
1807 // e) elimination of memcpy via stack-move optimization.
1808 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1809 if (Instruction *MI = MD->getMemoryInst()) {
1810 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1811 if (auto *C = dyn_cast<CallInst>(MI)) {
1812 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1813 TypeSize::getFixed(CopySize->getZExtValue()),
1814 M->getDestAlign().valueOrOne(), BAA,
1815 [C]() -> CallInst * { return C; })) {
1816 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1817 << " call: " << *C << "\n"
1818 << " memcpy: " << *M << "\n");
1820 ++NumMemCpyInstr;
1821 return true;
1822 }
1823 }
1824 }
1825 if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1826 if (processMemCpyMemCpyDependence(M, MDep, BAA))
1827 return true;
1828 if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1829 if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
1830 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1832 ++NumCpyToSet;
1833 return true;
1834 }
1835 }
1836 }
1837
1838 if (hasUndefContents(MSSA, BAA, M->getSource(), MD)) {
1839 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1841 ++NumMemCpyInstr;
1842 return true;
1843 }
1844 }
1845
1846 // If the transfer is from a stack slot to a stack slot, then we may be able
1847 // to perform the stack-move optimization. See the comments in
1848 // performStackMoveOptzn() for more details.
1849 auto *DestAlloca = dyn_cast<AllocaInst>(M->getDest());
1850 if (!DestAlloca)
1851 return false;
1852 auto *SrcAlloca = dyn_cast<AllocaInst>(M->getSource());
1853 if (!SrcAlloca)
1854 return false;
1855 ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength());
1856 if (Len == nullptr)
1857 return false;
1858 if (performStackMoveOptzn(M, M, DestAlloca, SrcAlloca,
1859 TypeSize::getFixed(Len->getZExtValue()), BAA)) {
1860 // Avoid invalidating the iterator.
1861 BBI = M->getNextNode()->getIterator();
1863 ++NumMemCpyInstr;
1864 return true;
1865 }
1866
1867 return false;
1868}
1869
1870/// Memmove calls with overlapping src/dest buffers that come after a memset may
1871/// be removed.
1872bool MemCpyOptPass::isMemMoveMemSetDependency(MemMoveInst *M) {
1873 const auto &DL = M->getDataLayout();
1874 MemoryUseOrDef *MemMoveAccess = MSSA->getMemoryAccess(M);
1875 if (!MemMoveAccess)
1876 return false;
1877
1878 // The memmove is of form memmove(x, x + A, B).
1879 MemoryLocation SourceLoc = MemoryLocation::getForSource(M);
1880 auto *MemMoveSourceOp = M->getSource();
1881 auto *Source = dyn_cast<GEPOperator>(MemMoveSourceOp);
1882 if (!Source)
1883 return false;
1884
1885 APInt Offset(DL.getIndexTypeSizeInBits(Source->getType()), 0);
1886 LocationSize MemMoveLocSize = SourceLoc.Size;
1887 if (Source->getPointerOperand() != M->getDest() ||
1888 !MemMoveLocSize.hasValue() ||
1889 !Source->accumulateConstantOffset(DL, Offset) || Offset.isNegative()) {
1890 return false;
1891 }
1892
1893 uint64_t MemMoveSize = MemMoveLocSize.getValue();
1894 LocationSize TotalSize =
1895 LocationSize::precise(Offset.getZExtValue() + MemMoveSize);
1896 MemoryLocation CombinedLoc(M->getDest(), TotalSize);
1897
1898 // The first dominating clobbering MemoryAccess for the combined location
1899 // needs to be a memset.
1900 BatchAAResults BAA(*AA);
1901 MemoryAccess *FirstDef = MemMoveAccess->getDefiningAccess();
1902 auto *DestClobber = dyn_cast<MemoryDef>(
1903 MSSA->getWalker()->getClobberingMemoryAccess(FirstDef, CombinedLoc, BAA));
1904 if (!DestClobber)
1905 return false;
1906
1907 auto *MS = dyn_cast_or_null<MemSetInst>(DestClobber->getMemoryInst());
1908 if (!MS)
1909 return false;
1910
1911 // Memset length must be sufficiently large.
1912 auto *MemSetLength = dyn_cast<ConstantInt>(MS->getLength());
1913 if (!MemSetLength || MemSetLength->getZExtValue() < MemMoveSize)
1914 return false;
1915
1916 // The destination buffer must have been memset'd.
1917 if (!BAA.isMustAlias(MS->getDest(), M->getDest()))
1918 return false;
1919
1920 return true;
1921}
1922
1923/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1924/// not to alias.
1925bool MemCpyOptPass::processMemMove(MemMoveInst *M, BasicBlock::iterator &BBI) {
1926 // See if the source could be modified by this memmove potentially.
1927 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) {
1928 // On the off-chance the memmove clobbers src with previously memset'd
1929 // bytes, the memmove may be redundant.
1930 if (!M->isVolatile() && isMemMoveMemSetDependency(M)) {
1931 LLVM_DEBUG(dbgs() << "Removed redundant memmove.\n");
1932 ++BBI;
1934 ++NumMemMoveInstr;
1935 return true;
1936 }
1937 return false;
1938 }
1939
1940 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1941 << "\n");
1942
1943 // If not, then we know we can transform this.
1944 Type *ArgTys[3] = {M->getRawDest()->getType(), M->getRawSource()->getType(),
1945 M->getLength()->getType()};
1946 M->setCalledFunction(Intrinsic::getOrInsertDeclaration(
1947 M->getModule(), Intrinsic::memcpy, ArgTys));
1948
1949 // For MemorySSA nothing really changes (except that memcpy may imply stricter
1950 // aliasing guarantees).
1951
1952 ++NumMoveToCpy;
1953 return true;
1954}
1955
1956/// This is called on every byval argument in call sites.
1957bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1958 const DataLayout &DL = CB.getDataLayout();
1959 // Find out what feeds this byval argument.
1960 Value *ByValArg = CB.getArgOperand(ArgNo);
1961 Type *ByValTy = CB.getParamByValType(ArgNo);
1962 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1963 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1964 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1965 if (!CallAccess)
1966 return false;
1967 MemCpyInst *MDep = nullptr;
1968 BatchAAResults BAA(*AA, EEA);
1969 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1970 CallAccess->getDefiningAccess(), Loc, BAA);
1971 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1972 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1973
1974 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1975 // a memcpy, see if we can byval from the source of the memcpy instead of the
1976 // result.
1977 if (!MDep || MDep->isVolatile() ||
1978 ByValArg->stripPointerCasts() != MDep->getDest())
1979 return false;
1980
1981 // The length of the memcpy must be larger or equal to the size of the byval.
1982 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1983 if (!C1 || !TypeSize::isKnownGE(
1984 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1985 return false;
1986
1987 // Get the alignment of the byval. If the call doesn't specify the alignment,
1988 // then it is some target specific value that we can't know.
1989 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1990 if (!ByValAlign)
1991 return false;
1992
1993 // If it is greater than the memcpy, then we check to see if we can force the
1994 // source of the memcpy to the alignment we need. If we fail, we bail out.
1995 MaybeAlign MemDepAlign = MDep->getSourceAlign();
1996 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1997 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1998 DT) < *ByValAlign)
1999 return false;
2000
2001 // The type of the memcpy source must match the byval argument
2002 if (MDep->getSource()->getType() != ByValArg->getType())
2003 return false;
2004
2005 // Verify that the copied-from memory doesn't change in between the memcpy and
2006 // the byval call.
2007 // memcpy(a <- b)
2008 // *b = 42;
2009 // foo(*a)
2010 // It would be invalid to transform the second memcpy into foo(*b).
2011 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
2012 MSSA->getMemoryAccess(MDep), CallAccess))
2013 return false;
2014
2015 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
2016 << " " << *MDep << "\n"
2017 << " " << CB << "\n");
2018
2019 // Otherwise we're good! Update the byval argument.
2020 combineAAMetadata(&CB, MDep);
2021 CB.setArgOperand(ArgNo, MDep->getSource());
2022 ++NumMemCpyInstr;
2023 return true;
2024}
2025
2026/// This is called on memcpy dest pointer arguments attributed as immutable
2027/// during call. Try to use memcpy source directly if all of the following
2028/// conditions are satisfied.
2029/// 1. The memcpy dst is neither modified during the call nor captured by the
2030/// call.
2031/// 2. The memcpy dst is an alloca with known alignment & size.
2032/// 2-1. The memcpy length == the alloca size which ensures that the new
2033/// pointer is dereferenceable for the required range
2034/// 2-2. The src pointer has alignment >= the alloca alignment or can be
2035/// enforced so.
2036/// 3. The memcpy dst and src is not modified between the memcpy and the call.
2037/// (if MSSA clobber check is safe.)
2038/// 4. The memcpy src is not modified during the call. (ModRef check shows no
2039/// Mod.)
2040bool MemCpyOptPass::processImmutArgument(CallBase &CB, unsigned ArgNo) {
2041 BatchAAResults BAA(*AA, EEA);
2042 Value *ImmutArg = CB.getArgOperand(ArgNo);
2043
2044 // 1. Ensure passed argument is immutable during call.
2045 if (!CB.doesNotCapture(ArgNo))
2046 return false;
2047
2048 // We know that the argument is readonly at this point, but the function
2049 // might still modify the same memory through a different pointer. Exclude
2050 // this either via noalias, or alias analysis.
2051 if (!CB.paramHasAttr(ArgNo, Attribute::NoAlias) &&
2052 isModSet(
2054 return false;
2055
2056 const DataLayout &DL = CB.getDataLayout();
2057
2058 // 2. Check that arg is alloca
2059 // TODO: Even if the arg gets back to branches, we can remove memcpy if all
2060 // the alloca alignments can be enforced to source alignment.
2061 auto *AI = dyn_cast<AllocaInst>(ImmutArg->stripPointerCasts());
2062 if (!AI)
2063 return false;
2064
2065 std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL);
2066 // Can't handle unknown size alloca.
2067 // (e.g. Variable Length Array, Scalable Vector)
2068 if (!AllocaSize || AllocaSize->isScalable())
2069 return false;
2070 MemoryLocation Loc(ImmutArg, LocationSize::precise(*AllocaSize));
2071 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
2072 if (!CallAccess)
2073 return false;
2074
2075 MemCpyInst *MDep = nullptr;
2076 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
2077 CallAccess->getDefiningAccess(), Loc, BAA);
2078 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
2079 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
2080
2081 // If the immut argument isn't fed by a memcpy, ignore it. If it is fed by
2082 // a memcpy, check that the arg equals the memcpy dest.
2083 if (!MDep || MDep->isVolatile() || AI != MDep->getDest())
2084 return false;
2085
2086 // The type of the memcpy source must match the immut argument
2087 if (MDep->getSource()->getType() != ImmutArg->getType())
2088 return false;
2089
2090 // 2-1. The length of the memcpy must be equal to the size of the alloca.
2091 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
2092 if (!MDepLen || AllocaSize != MDepLen->getValue())
2093 return false;
2094
2095 // 2-2. the memcpy source align must be larger than or equal the alloca's
2096 // align. If not so, we check to see if we can force the source of the memcpy
2097 // to the alignment we need. If we fail, we bail out.
2098 Align MemDepAlign = MDep->getSourceAlign().valueOrOne();
2099 Align AllocaAlign = AI->getAlign();
2100 if (MemDepAlign < AllocaAlign &&
2101 getOrEnforceKnownAlignment(MDep->getSource(), AllocaAlign, DL, &CB, AC,
2102 DT) < AllocaAlign)
2103 return false;
2104
2105 // 3. Verify that the source doesn't change in between the memcpy and
2106 // the call.
2107 // memcpy(a <- b)
2108 // *b = 42;
2109 // foo(*a)
2110 // It would be invalid to transform the second memcpy into foo(*b).
2111 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
2112 MSSA->getMemoryAccess(MDep), CallAccess))
2113 return false;
2114
2115 // 4. The memcpy src must not be modified during the call.
2117 return false;
2118
2119 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to Immut src:\n"
2120 << " " << *MDep << "\n"
2121 << " " << CB << "\n");
2122
2123 // Otherwise we're good! Update the immut argument.
2124 combineAAMetadata(&CB, MDep);
2125 CB.setArgOperand(ArgNo, MDep->getSource());
2126 ++NumMemCpyInstr;
2127 return true;
2128}
2129
2130/// Executes one iteration of MemCpyOptPass.
2131bool MemCpyOptPass::iterateOnFunction(Function &F) {
2132 bool MadeChange = false;
2133
2134 // Walk all instruction in the function.
2135 for (BasicBlock &BB : F) {
2136 // Skip unreachable blocks. For example processStore assumes that an
2137 // instruction in a BB can't be dominated by a later instruction in the
2138 // same BB (which is a scenario that can happen for an unreachable BB that
2139 // has itself as a predecessor).
2140 if (!DT->isReachableFromEntry(&BB))
2141 continue;
2142
2143 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
2144 // Avoid invalidating the iterator.
2145 Instruction *I = &*BI++;
2146
2147 bool RepeatInstruction = false;
2148
2149 if (auto *SI = dyn_cast<StoreInst>(I))
2150 MadeChange |= processStore(SI, BI);
2151 else if (auto *M = dyn_cast<MemSetInst>(I))
2152 RepeatInstruction = processMemSet(M, BI);
2153 else if (auto *M = dyn_cast<MemCpyInst>(I))
2154 RepeatInstruction = processMemCpy(M, BI);
2155 else if (auto *M = dyn_cast<MemMoveInst>(I))
2156 RepeatInstruction = processMemMove(M, BI);
2157 else if (auto *CB = dyn_cast<CallBase>(I)) {
2158 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) {
2159 if (CB->isByValArgument(i))
2160 MadeChange |= processByValArgument(*CB, i);
2161 else if (CB->onlyReadsMemory(i))
2162 MadeChange |= processImmutArgument(*CB, i);
2163 }
2164 }
2165
2166 // Reprocess the instruction if desired.
2167 if (RepeatInstruction) {
2168 if (BI != BB.begin())
2169 --BI;
2170 MadeChange = true;
2171 }
2172 }
2173 }
2174
2175 return MadeChange;
2176}
2177
2179 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2180 auto *AA = &AM.getResult<AAManager>(F);
2181 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
2182 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
2183 auto *PDT = &AM.getResult<PostDominatorTreeAnalysis>(F);
2184 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
2185
2186 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, PDT, &MSSA->getMSSA());
2187 if (!MadeChange)
2188 return PreservedAnalyses::all();
2189
2193 return PA;
2194}
2195
2196bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
2197 AliasAnalysis *AA_, AssumptionCache *AC_,
2198 DominatorTree *DT_, PostDominatorTree *PDT_,
2199 MemorySSA *MSSA_) {
2200 bool MadeChange = false;
2201 TLI = TLI_;
2202 AA = AA_;
2203 AC = AC_;
2204 DT = DT_;
2205 PDT = PDT_;
2206 MSSA = MSSA_;
2207 MemorySSAUpdater MSSAU_(MSSA_);
2208 MSSAU = &MSSAU_;
2209 EarliestEscapeAnalysis EEA_(*DT);
2210 EEA = &EEA_;
2211
2212 while (true) {
2213 if (!iterateOnFunction(F))
2214 break;
2215 MadeChange = true;
2216 }
2217
2218 if (VerifyMemorySSA)
2219 MSSA_->verifyMemorySSA();
2220
2221 return MadeChange;
2222}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
static bool runImpl(Function &F, const TargetLowering &TLI, const LibcallLoweringInfo &Libcalls, AssumptionCache *AC)
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
Definition LICM.cpp:1450
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, Instruction *End)
static bool isZeroSize(Value *Size)
static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, MemoryDef *Def)
Determine whether the pointer V had only undefined content (due to Def), either because it was freshl...
static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End, Instruction **SkippedLifetimeStart=nullptr)
static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy, MemIntrinsic *MemSrc, BatchAAResults &BAA)
static cl::opt< bool > EnableMemCpyOptWithoutLibcalls("enable-memcpyopt-without-libcalls", cl::Hidden, cl::desc("Enable memcpyopt even when libcalls are disabled"))
static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End)
This file provides utility analysis objects describing memory locations.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
static void addRange(SmallVectorImpl< ConstantInt * > &EndPoints, ConstantInt *Low, ConstantInt *High)
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
if(PassOpts->AAPipeline)
This file contains the declarations for profiling metadata utility functions.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
A manager for alias analyses.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
void setAllocatedType(Type *Ty)
for use only in special circumstances that need to generically transform a whole instruction (eg: IR ...
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
iterator end()
Definition BasicBlock.h:483
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:470
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT)
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool doesNotCapture(unsigned OpNo) const
Determine whether this data operand is not captured.
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
MaybeAlign getParamAlign(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
bool onlyReadsMemory(unsigned OpNo) const
Type * getParamByValType(unsigned ArgNo) const
Extract the byval type for a call or parameter.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
unsigned arg_size() const
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
Context-sensitive CaptureAnalysis provider, which computes and caches the earliest common dominator c...
LLVM_ABI void mergeDIAssignID(ArrayRef< const Instruction * > SourceInstructions)
Merge the DIAssignID metadata from this instruction and those attached to instructions in SourceInstr...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs={})
Drop all unknown metadata except for debug locations.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Value * getPointerOperand()
bool isSimple() const
Align getAlign() const
Return the alignment of the access that is being performed.
bool hasValue() const
static LocationSize precise(uint64_t Value)
TypeSize getValue() const
This class wraps the llvm.memcpy intrinsic.
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Value * getLength() const
Value * getRawDest() const
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
MaybeAlign getDestAlign() const
This is the common base class for memset/memcpy/memmove.
bool isVolatile() const
Value * getValue() const
Value * getRawSource() const
Return the arguments to the instruction.
MaybeAlign getSourceAlign() const
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
BasicBlock * getBlock() const
Definition MemorySSA.h:162
AllAccessType::self_iterator getIterator()
Get the iterators for the all access list and the defs only list We default to the all access list.
Definition MemorySSA.h:181
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
Definition MemorySSA.h:371
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
static LLVM_ABI MemoryLocation getForSource(const MemTransferInst *MTI)
Return a location representing the source of a memory transfer.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
static MemoryLocation getBeforeOrAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location before or after Ptr, while remaining within the underl...
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
An analysis that produces MemorySSA for a function.
Definition MemorySSA.h:936
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Definition MemorySSA.h:1053
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition MemorySSA.h:702
LLVM_ABI bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
LLVM_ABI MemorySSAWalker * getWalker()
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition MemorySSA.h:720
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Definition MemorySSA.h:740
Class that has the common methods + fields of memory uses/defs.
Definition MemorySSA.h:250
MemoryAccess * getDefiningAccess() const
Get the access that produces the memory state used by this Use.
Definition MemorySSA.h:260
Instruction * getMemoryInst() const
Get the instruction that this MemoryUse represents.
Definition MemorySSA.h:257
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition Module.h:278
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
void reserve(size_type N)
typename SuperClass::const_iterator const_iterator
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
LLVM_ABI unsigned getIntegerBitWidth() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
void setOperand(unsigned i, Value *Val)
Definition User.h:212
Value * getOperand(unsigned i) const
Definition User.h:207
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:553
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
Definition Value.cpp:1058
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
const ParentTy * getParent() const
Definition ilist_node.h:34
reverse_self_iterator getReverseIterator()
Definition ilist_node.h:126
self_iterator getIterator()
Definition ilist_node.h:123
CallInst * Call
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
Abstract Attribute helper functions.
Definition Attributor.h:165
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
@ User
could "use" a pointer
bool empty() const
Definition BasicBlock.h:101
iterator end() const
Definition BasicBlock.h:89
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
LLVM_ABI iterator begin() const
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool capturesAddress(CaptureComponents CC)
Definition ModRef.h:332
LLVM_ABI bool isPotentiallyReachableFromMany(SmallVectorImpl< BasicBlock * > &Worklist, const BasicBlock *StopBB, const SmallPtrSetImpl< BasicBlock * > *ExclusionSet, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether there is at least one path from a block in 'Worklist' to 'StopBB' without passing t...
Definition CFG.cpp:240
LLVM_ABI void setExplicitlyUnknownBranchWeightsIfProfiled(Instruction &I, StringRef PassName, const Function *F=nullptr)
Like setExplicitlyUnknownBranchWeights(...), but only sets unknown branch weights in the new instruct...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
scope_exit(Callable) -> scope_exit< Callable >
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
auto partition_point(R &&Range, Predicate P)
Binary search for the first iterator in a range where a predicate is false.
Definition STLExtras.h:2119
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
auto cast_or_null(const Y &Val)
Definition Casting.h:714
LLVM_ABI unsigned getDefaultMaxUsesToExploreForCaptureTracking()
getDefaultMaxUsesToExploreForCaptureTracking - Return default value of the maximal number of uses to ...
LLVM_ABI bool PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI=false, unsigned MaxUsesToExplore=0, const LoopInfo *LI=nullptr)
PointerMayBeCapturedBefore - Return true if this pointer value may be captured by the enclosing funct...
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to ensure that the alignment of V is at least PrefAlign bytes.
Definition Local.cpp:1579
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool isModOrRefSet(const ModRefInfo MRI)
Definition ModRef.h:43
LLVM_ABI bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind)
Return true if Object memory is not visible after an unwind, in the sense that program semantics cann...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
Definition ModRef.h:28
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition MemorySSA.cpp:84
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
DWARFExpression::Operation Op
LLVM_ABI bool isIdentifiedFunctionLocal(const Value *V)
Return true if V is umabigously identified at the function-level.
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI void combineAAMetadata(Instruction *K, const Instruction *J)
Combine metadata of two instructions, where instruction J is a memory access that has been merged int...
Definition Local.cpp:3116
bool capturesAnything(CaptureComponents CC)
Definition ModRef.h:324
LLVM_ABI UseCaptureInfo DetermineUseCaptureKind(const Use &U, const Value *Base)
Determine what kind of capture behaviour U may exhibit.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
bool capturesAnyProvenance(CaptureComponents CC)
Definition ModRef.h:345
bool isRefSet(const ModRefInfo MRI)
Definition ModRef.h:52
LLVM_ABI bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly)
Return true if the Object is writable, in the sense that any location based on this pointer that can ...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition Alignment.h:130
CaptureComponents UseCC
Components captured by this use.
CaptureComponents ResultCC
Components captured by the return value of the user of this Use.