LLVM 22.0.0git
MemCpyOptimizer.cpp
Go to the documentation of this file.
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs various transformations related to eliminating memcpy
10// calls, or transforming sets of stores into memset's.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/ScopeExit.h"
19#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/CFG.h"
27#include "llvm/Analysis/Loads.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Function.h"
41#include "llvm/IR/IRBuilder.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/IR/PassManager.h"
51#include "llvm/IR/Type.h"
52#include "llvm/IR/User.h"
53#include "llvm/IR/Value.h"
55#include "llvm/Support/Debug.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <optional>
62
63using namespace llvm;
64
65#define DEBUG_TYPE "memcpyopt"
66
68 "enable-memcpyopt-without-libcalls", cl::Hidden,
69 cl::desc("Enable memcpyopt even when libcalls are disabled"));
70
71STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
72STATISTIC(NumMemMoveInstr, "Number of memmove instructions deleted");
73STATISTIC(NumMemSetInfer, "Number of memsets inferred");
74STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
75STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
76STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
77STATISTIC(NumStackMove, "Number of stack-move optimizations performed");
78
79namespace {
80
81/// Represents a range of memset'd bytes with the ByteVal value.
82/// This allows us to analyze stores like:
83/// store 0 -> P+1
84/// store 0 -> P+0
85/// store 0 -> P+3
86/// store 0 -> P+2
87/// which sometimes happens with stores to arrays of structs etc. When we see
88/// the first store, we make a range [1, 2). The second store extends the range
89/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
90/// two ranges into [0, 3) which is memset'able.
91struct MemsetRange {
92 // Start/End - A semi range that describes the span that this range covers.
93 // The range is closed at the start and open at the end: [Start, End).
94 int64_t Start, End;
95
96 /// StartPtr - The getelementptr instruction that points to the start of the
97 /// range.
98 Value *StartPtr;
99
100 /// Alignment - The known alignment of the first store.
101 MaybeAlign Alignment;
102
103 /// TheStores - The actual stores that make up this range.
105
106 bool isProfitableToUseMemset(const DataLayout &DL) const;
107};
108
109} // end anonymous namespace
110
111static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy,
112 MemIntrinsic *MemSrc, BatchAAResults &BAA);
113
114bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
115 // If we found more than 4 stores to merge or 16 bytes, use memset.
116 if (TheStores.size() >= 4 || End - Start >= 16)
117 return true;
118
119 // If there is nothing to merge, don't do anything.
120 if (TheStores.size() < 2)
121 return false;
122
123 // If any of the stores are a memset, then it is always good to extend the
124 // memset.
125 for (Instruction *SI : TheStores)
126 if (!isa<StoreInst>(SI))
127 return true;
128
129 // Assume that the code generator is capable of merging pairs of stores
130 // together if it wants to.
131 if (TheStores.size() == 2)
132 return false;
133
134 // If we have fewer than 8 stores, it can still be worthwhile to do this.
135 // For example, merging 4 i8 stores into an i32 store is useful almost always.
136 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
137 // memset will be split into 2 32-bit stores anyway) and doing so can
138 // pessimize the llvm optimizer.
139 //
140 // Since we don't have perfect knowledge here, make some assumptions: assume
141 // the maximum GPR width is the same size as the largest legal integer
142 // size. If so, check to see whether we will end up actually reducing the
143 // number of stores used.
144 unsigned Bytes = unsigned(End - Start);
145 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
146 if (MaxIntSize == 0)
147 MaxIntSize = 1;
148 unsigned NumPointerStores = Bytes / MaxIntSize;
149
150 // Assume the remaining bytes if any are done a byte at a time.
151 unsigned NumByteStores = Bytes % MaxIntSize;
152
153 // If we will reduce the # stores (according to this heuristic), do the
154 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
155 // etc.
156 return TheStores.size() > NumPointerStores + NumByteStores;
157}
158
159namespace {
160
161class MemsetRanges {
162 using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
163
164 /// A sorted list of the memset ranges.
166
167 const DataLayout &DL;
168
169public:
170 MemsetRanges(const DataLayout &DL) : DL(DL) {}
171
173
174 const_iterator begin() const { return Ranges.begin(); }
175 const_iterator end() const { return Ranges.end(); }
176 bool empty() const { return Ranges.empty(); }
177
178 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
179 if (auto *SI = dyn_cast<StoreInst>(Inst))
180 addStore(OffsetFromFirst, SI);
181 else
182 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
183 }
184
185 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
186 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
187 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
188 addRange(OffsetFromFirst, StoreSize.getFixedValue(),
189 SI->getPointerOperand(), SI->getAlign(), SI);
190 }
191
192 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
193 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
194 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
195 }
196
197 void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
198 Instruction *Inst);
199};
200
201} // end anonymous namespace
202
203/// Add a new store to the MemsetRanges data structure. This adds a
204/// new range for the specified store at the specified offset, merging into
205/// existing ranges as appropriate.
206void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
207 MaybeAlign Alignment, Instruction *Inst) {
208 int64_t End = Start + Size;
209
210 range_iterator I = partition_point(
211 Ranges, [=](const MemsetRange &O) { return O.End < Start; });
212
213 // We now know that I == E, in which case we didn't find anything to merge
214 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
215 // to insert a new range. Handle this now.
216 if (I == Ranges.end() || End < I->Start) {
217 MemsetRange &R = *Ranges.insert(I, MemsetRange());
218 R.Start = Start;
219 R.End = End;
220 R.StartPtr = Ptr;
221 R.Alignment = Alignment;
222 R.TheStores.push_back(Inst);
223 return;
224 }
225
226 // This store overlaps with I, add it.
227 I->TheStores.push_back(Inst);
228
229 // At this point, we may have an interval that completely contains our store.
230 // If so, just add it to the interval and return.
231 if (I->Start <= Start && I->End >= End)
232 return;
233
234 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
235 // but is not entirely contained within the range.
236
237 // See if the range extends the start of the range. In this case, it couldn't
238 // possibly cause it to join the prior range, because otherwise we would have
239 // stopped on *it*.
240 if (Start < I->Start) {
241 I->Start = Start;
242 I->StartPtr = Ptr;
243 I->Alignment = Alignment;
244 }
245
246 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
247 // is in or right at the end of I), and that End >= I->Start. Extend I out to
248 // End.
249 if (End > I->End) {
250 I->End = End;
251 range_iterator NextI = I;
252 while (++NextI != Ranges.end() && End >= NextI->Start) {
253 // Merge the range in.
254 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
255 if (NextI->End > I->End)
256 I->End = NextI->End;
257 Ranges.erase(NextI);
258 NextI = I;
259 }
260 }
261}
262
263//===----------------------------------------------------------------------===//
264// MemCpyOptLegacyPass Pass
265//===----------------------------------------------------------------------===//
266
267// Check that V is either not accessible by the caller, or unwinding cannot
268// occur between Start and End.
270 Instruction *End) {
271 assert(Start->getParent() == End->getParent() && "Must be in same block");
272 // Function can't unwind, so it also can't be visible through unwinding.
273 if (Start->getFunction()->doesNotThrow())
274 return false;
275
276 // Object is not visible on unwind.
277 // TODO: Support RequiresNoCaptureBeforeUnwind case.
278 bool RequiresNoCaptureBeforeUnwind;
280 RequiresNoCaptureBeforeUnwind) &&
281 !RequiresNoCaptureBeforeUnwind)
282 return false;
283
284 // Check whether there are any unwinding instructions in the range.
285 return any_of(make_range(Start->getIterator(), End->getIterator()),
286 [](const Instruction &I) { return I.mayThrow(); });
287}
288
289void MemCpyOptPass::eraseInstruction(Instruction *I) {
290 MSSAU->removeMemoryAccess(I);
291 EEA->removeInstruction(I);
292 I->eraseFromParent();
293}
294
295// Check for mod or ref of Loc between Start and End, excluding both boundaries.
296// Start and End must be in the same block.
297// If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
298// intrinsic and store it inside SkippedLifetimeStart.
300 const MemoryUseOrDef *Start,
301 const MemoryUseOrDef *End,
302 Instruction **SkippedLifetimeStart = nullptr) {
303 assert(Start->getBlock() == End->getBlock() && "Only local supported");
304 for (const MemoryAccess &MA :
305 make_range(++Start->getIterator(), End->getIterator())) {
306 Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst();
307 if (isModOrRefSet(AA.getModRefInfo(I, Loc))) {
309 if (II && II->getIntrinsicID() == Intrinsic::lifetime_start &&
310 SkippedLifetimeStart && !*SkippedLifetimeStart) {
311 *SkippedLifetimeStart = I;
312 continue;
313 }
314
315 return true;
316 }
317 }
318 return false;
319}
320
321// Check for mod of Loc between Start and End, excluding both boundaries.
322// Start and End can be in different blocks.
324 MemoryLocation Loc, const MemoryUseOrDef *Start,
325 const MemoryUseOrDef *End) {
326 if (isa<MemoryUse>(End)) {
327 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
328 // Manually check read accesses between Start and End, if they are in the
329 // same block, for clobbers. Otherwise assume Loc is clobbered.
330 return Start->getBlock() != End->getBlock() ||
331 any_of(
332 make_range(std::next(Start->getIterator()), End->getIterator()),
333 [&AA, Loc](const MemoryAccess &Acc) {
334 if (isa<MemoryUse>(&Acc))
335 return false;
336 Instruction *AccInst =
337 cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
338 return isModSet(AA.getModRefInfo(AccInst, Loc));
339 });
340 }
341
342 // TODO: Only walk until we hit Start.
344 End->getDefiningAccess(), Loc, AA);
345 return !MSSA->dominates(Clobber, Start);
346}
347
348/// When scanning forward over instructions, we look for some other patterns to
349/// fold away. In particular, this looks for stores to neighboring locations of
350/// memory. If it sees enough consecutive ones, it attempts to merge them
351/// together into a memcpy/memset.
352Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
353 Value *StartPtr,
354 Value *ByteVal) {
355 const DataLayout &DL = StartInst->getDataLayout();
356
357 // We can't track scalable types
358 if (auto *SI = dyn_cast<StoreInst>(StartInst))
359 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
360 return nullptr;
361
362 // Okay, so we now have a single store that can be splatable. Scan to find
363 // all subsequent stores of the same value to offset from the same pointer.
364 // Join these together into ranges, so we can decide whether contiguous blocks
365 // are stored.
366 MemsetRanges Ranges(DL);
367
368 BasicBlock::iterator BI(StartInst);
369
370 // Keeps track of the last memory use or def before the insertion point for
371 // the new memset. The new MemoryDef for the inserted memsets will be inserted
372 // after MemInsertPoint.
373 MemoryUseOrDef *MemInsertPoint = nullptr;
374 for (++BI; !BI->isTerminator(); ++BI) {
375 auto *CurrentAcc =
376 cast_or_null<MemoryUseOrDef>(MSSA->getMemoryAccess(&*BI));
377 if (CurrentAcc)
378 MemInsertPoint = CurrentAcc;
379
380 // Calls that only access inaccessible memory do not block merging
381 // accessible stores.
382 if (auto *CB = dyn_cast<CallBase>(BI)) {
383 if (CB->onlyAccessesInaccessibleMemory())
384 continue;
385 }
386
387 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
388 // If the instruction is readnone, ignore it, otherwise bail out. We
389 // don't even allow readonly here because we don't want something like:
390 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
391 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
392 break;
393 continue;
394 }
395
396 if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
397 // If this is a store, see if we can merge it in.
398 if (!NextStore->isSimple())
399 break;
400
401 Value *StoredVal = NextStore->getValueOperand();
402
403 // Don't convert stores of non-integral pointer types to memsets (which
404 // stores integers).
405 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
406 break;
407
408 // We can't track ranges involving scalable types.
409 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
410 break;
411
412 // Check to see if this stored value is of the same byte-splattable value.
413 Value *StoredByte = isBytewiseValue(StoredVal, DL);
414 if (isa<UndefValue>(ByteVal) && StoredByte)
415 ByteVal = StoredByte;
416 if (ByteVal != StoredByte)
417 break;
418
419 // Check to see if this store is to a constant offset from the start ptr.
420 std::optional<int64_t> Offset =
421 NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, DL);
422 if (!Offset)
423 break;
424
425 Ranges.addStore(*Offset, NextStore);
426 } else {
427 auto *MSI = cast<MemSetInst>(BI);
428
429 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
430 !isa<ConstantInt>(MSI->getLength()))
431 break;
432
433 // Check to see if this store is to a constant offset from the start ptr.
434 std::optional<int64_t> Offset =
435 MSI->getDest()->getPointerOffsetFrom(StartPtr, DL);
436 if (!Offset)
437 break;
438
439 Ranges.addMemSet(*Offset, MSI);
440 }
441 }
442
443 // If we have no ranges, then we just had a single store with nothing that
444 // could be merged in. This is a very common case of course.
445 if (Ranges.empty())
446 return nullptr;
447
448 // If we had at least one store that could be merged in, add the starting
449 // store as well. We try to avoid this unless there is at least something
450 // interesting as a small compile-time optimization.
451 Ranges.addInst(0, StartInst);
452
453 // If we create any memsets, we put it right before the first instruction that
454 // isn't part of the memset block. This ensure that the memset is dominated
455 // by any addressing instruction needed by the start of the block.
456 IRBuilder<> Builder(&*BI);
457
458 // Now that we have full information about ranges, loop over the ranges and
459 // emit memset's for anything big enough to be worthwhile.
460 Instruction *AMemSet = nullptr;
461 for (const MemsetRange &Range : Ranges) {
462 if (Range.TheStores.size() == 1)
463 continue;
464
465 // If it is profitable to lower this range to memset, do so now.
466 if (!Range.isProfitableToUseMemset(DL))
467 continue;
468
469 // Otherwise, we do want to transform this! Create a new memset.
470 // Get the starting pointer of the block.
471 StartPtr = Range.StartPtr;
472
473 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
474 Range.Alignment);
475 AMemSet->mergeDIAssignID(Range.TheStores);
476
477 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
478 : Range.TheStores) dbgs()
479 << *SI << '\n';
480 dbgs() << "With: " << *AMemSet << '\n');
481 if (!Range.TheStores.empty())
482 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
483
484 auto *NewDef = cast<MemoryDef>(
485 MemInsertPoint->getMemoryInst() == &*BI
486 ? MSSAU->createMemoryAccessBefore(AMemSet, nullptr, MemInsertPoint)
487 : MSSAU->createMemoryAccessAfter(AMemSet, nullptr, MemInsertPoint));
488 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
489 MemInsertPoint = NewDef;
490
491 // Zap all the stores.
492 for (Instruction *SI : Range.TheStores)
494
495 ++NumMemSetInfer;
496 }
497
498 return AMemSet;
499}
500
501// This method try to lift a store instruction before position P.
502// It will lift the store and its argument + that anything that
503// may alias with these.
504// The method returns true if it was successful.
505bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
506 // If the store alias this position, early bail out.
507 MemoryLocation StoreLoc = MemoryLocation::get(SI);
508 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
509 return false;
510
511 // Keep track of the arguments of all instruction we plan to lift
512 // so we can make sure to lift them as well if appropriate.
513 DenseSet<Instruction *> Args;
514 auto AddArg = [&](Value *Arg) {
515 auto *I = dyn_cast<Instruction>(Arg);
516 if (I && I->getParent() == SI->getParent()) {
517 // Cannot hoist user of P above P
518 if (I == P)
519 return false;
520 Args.insert(I);
521 }
522 return true;
523 };
524 if (!AddArg(SI->getPointerOperand()))
525 return false;
526
527 // Instruction to lift before P.
528 SmallVector<Instruction *, 8> ToLift{SI};
529
530 // Memory locations of lifted instructions.
531 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
532
533 // Lifted calls.
535
536 const MemoryLocation LoadLoc = MemoryLocation::get(LI);
537
538 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
539 auto *C = &*I;
540
541 // Make sure hoisting does not perform a store that was not guaranteed to
542 // happen.
544 return false;
545
546 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt));
547
548 bool NeedLift = false;
549 if (Args.erase(C))
550 NeedLift = true;
551 else if (MayAlias) {
552 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
553 return isModOrRefSet(AA->getModRefInfo(C, ML));
554 });
555
556 if (!NeedLift)
557 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
558 return isModOrRefSet(AA->getModRefInfo(C, Call));
559 });
560 }
561
562 if (!NeedLift)
563 continue;
564
565 if (MayAlias) {
566 // Since LI is implicitly moved downwards past the lifted instructions,
567 // none of them may modify its source.
568 if (isModSet(AA->getModRefInfo(C, LoadLoc)))
569 return false;
570 else if (const auto *Call = dyn_cast<CallBase>(C)) {
571 // If we can't lift this before P, it's game over.
572 if (isModOrRefSet(AA->getModRefInfo(P, Call)))
573 return false;
574
575 Calls.push_back(Call);
576 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
577 // If we can't lift this before P, it's game over.
578 auto ML = MemoryLocation::get(C);
579 if (isModOrRefSet(AA->getModRefInfo(P, ML)))
580 return false;
581
582 MemLocs.push_back(ML);
583 } else
584 // We don't know how to lift this instruction.
585 return false;
586 }
587
588 ToLift.push_back(C);
589 for (Value *Op : C->operands())
590 if (!AddArg(Op))
591 return false;
592 }
593
594 // Find MSSA insertion point. Normally P will always have a corresponding
595 // memory access before which we can insert. However, with non-standard AA
596 // pipelines, there may be a mismatch between AA and MSSA, in which case we
597 // will scan for a memory access before P. In either case, we know for sure
598 // that at least the load will have a memory access.
599 // TODO: Simplify this once P will be determined by MSSA, in which case the
600 // discrepancy can no longer occur.
601 MemoryUseOrDef *MemInsertPoint = nullptr;
602 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(P)) {
603 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
604 } else {
605 const Instruction *ConstP = P;
606 for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
607 ++LI->getReverseIterator())) {
608 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(&I)) {
609 MemInsertPoint = MA;
610 break;
611 }
612 }
613 }
614
615 // We made it, we need to lift.
616 for (auto *I : llvm::reverse(ToLift)) {
617 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
618 I->moveBefore(P->getIterator());
619 assert(MemInsertPoint && "Must have found insert point");
620 if (MemoryUseOrDef *MA = MSSA->getMemoryAccess(I)) {
621 MSSAU->moveAfter(MA, MemInsertPoint);
622 MemInsertPoint = MA;
623 }
624 }
625
626 return true;
627}
628
629bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI,
630 const DataLayout &DL,
632 if (!LI->isSimple() || !LI->hasOneUse() || LI->getParent() != SI->getParent())
633 return false;
634
635 BatchAAResults BAA(*AA, EEA);
636 auto *T = LI->getType();
637 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
638 // the corresponding libcalls are not available.
639 // TODO: We should really distinguish between libcall availability and
640 // our ability to introduce intrinsics.
641 if (T->isAggregateType() &&
643 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
644 MemoryLocation LoadLoc = MemoryLocation::get(LI);
645
646 // We use alias analysis to check if an instruction may store to
647 // the memory we load from in between the load and the store. If
648 // such an instruction is found, we try to promote there instead
649 // of at the store position.
650 // TODO: Can use MSSA for this.
651 Instruction *P = SI;
652 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
653 if (isModSet(BAA.getModRefInfo(&I, LoadLoc))) {
654 P = &I;
655 break;
656 }
657 }
658
659 // If we found an instruction that may write to the loaded memory,
660 // we can try to promote at this position instead of the store
661 // position if nothing aliases the store memory after this and the store
662 // destination is not in the range.
663 if (P == SI || moveUp(SI, P, LI)) {
664 // If we load from memory that may alias the memory we store to,
665 // memmove must be used to preserve semantic. If not, memcpy can
666 // be used. Also, if we load from constant memory, memcpy can be used
667 // as the constant memory won't be modified.
668 bool UseMemMove = false;
669 if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
670 UseMemMove = true;
671
672 IRBuilder<> Builder(P);
673 Value *Size =
674 Builder.CreateTypeSize(Builder.getInt64Ty(), DL.getTypeStoreSize(T));
675 Instruction *M;
676 if (UseMemMove)
677 M = Builder.CreateMemMove(SI->getPointerOperand(), SI->getAlign(),
678 LI->getPointerOperand(), LI->getAlign(),
679 Size);
680 else
681 M = Builder.CreateMemCpy(SI->getPointerOperand(), SI->getAlign(),
682 LI->getPointerOperand(), LI->getAlign(), Size);
683 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
684
685 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " << *M
686 << "\n");
687
688 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
689 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, nullptr, LastDef);
690 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
691
694 ++NumMemCpyInstr;
695
696 // Make sure we do not invalidate the iterator.
697 BBI = M->getIterator();
698 return true;
699 }
700 }
701
702 // Detect cases where we're performing call slot forwarding, but
703 // happen to be using a load-store pair to implement it, rather than
704 // a memcpy.
705 auto GetCall = [&]() -> CallInst * {
706 // We defer this expensive clobber walk until the cheap checks
707 // have been done on the source inside performCallSlotOptzn.
708 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
709 MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA)))
710 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
711 return nullptr;
712 };
713
714 bool Changed = performCallSlotOptzn(
715 LI, SI, SI->getPointerOperand()->stripPointerCasts(),
717 DL.getTypeStoreSize(SI->getOperand(0)->getType()),
718 std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall);
719 if (Changed) {
722 ++NumMemCpyInstr;
723 return true;
724 }
725
726 // If this is a load-store pair from a stack slot to a stack slot, we
727 // might be able to perform the stack-move optimization just as we do for
728 // memcpys from an alloca to an alloca.
729 if (auto *DestAlloca = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
730 if (auto *SrcAlloca = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
731 if (performStackMoveOptzn(LI, SI, DestAlloca, SrcAlloca,
732 DL.getTypeStoreSize(T), BAA)) {
733 // Avoid invalidating the iterator.
734 BBI = SI->getNextNode()->getIterator();
737 ++NumMemCpyInstr;
738 return true;
739 }
740 }
741 }
742
743 return false;
744}
745
746bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
747 if (!SI->isSimple())
748 return false;
749
750 // Avoid merging nontemporal stores since the resulting
751 // memcpy/memset would not be able to preserve the nontemporal hint.
752 // In theory we could teach how to propagate the !nontemporal metadata to
753 // memset calls. However, that change would force the backend to
754 // conservatively expand !nontemporal memset calls back to sequences of
755 // store instructions (effectively undoing the merging).
756 if (SI->getMetadata(LLVMContext::MD_nontemporal))
757 return false;
758
759 const DataLayout &DL = SI->getDataLayout();
760
761 Value *StoredVal = SI->getValueOperand();
762
763 // Not all the transforms below are correct for non-integral pointers, bail
764 // until we've audited the individual pieces.
765 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
766 return false;
767
768 // Load to store forwarding can be interpreted as memcpy.
769 if (auto *LI = dyn_cast<LoadInst>(StoredVal))
770 return processStoreOfLoad(SI, LI, DL, BBI);
771
772 // The following code creates memset intrinsics out of thin air. Don't do
773 // this if the corresponding libfunc is not available.
774 // TODO: We should really distinguish between libcall availability and
775 // our ability to introduce intrinsics.
776 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
777 return false;
778
779 // There are two cases that are interesting for this code to handle: memcpy
780 // and memset. Right now we only handle memset.
781
782 // Ensure that the value being stored is something that can be memset'able a
783 // byte at a time like "0" or "-1" or any width, as well as things like
784 // 0xA0A0A0A0 and 0.0.
785 Value *V = SI->getOperand(0);
786 Value *ByteVal = isBytewiseValue(V, DL);
787 if (!ByteVal)
788 return false;
789
790 if (Instruction *I =
791 tryMergingIntoMemset(SI, SI->getPointerOperand(), ByteVal)) {
792 BBI = I->getIterator(); // Don't invalidate iterator.
793 return true;
794 }
795
796 // If we have an aggregate, we try to promote it to memset regardless
797 // of opportunity for merging as it can expose optimization opportunities
798 // in subsequent passes.
799 auto *T = V->getType();
800 if (!T->isAggregateType())
801 return false;
802
803 TypeSize Size = DL.getTypeStoreSize(T);
804 if (Size.isScalable())
805 return false;
806
807 IRBuilder<> Builder(SI);
808 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
809 SI->getAlign());
810 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
811
812 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
813
814 // The newly inserted memset is immediately overwritten by the original
815 // store, so we do not need to rename uses.
816 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
817 auto *NewAccess = MSSAU->createMemoryAccessBefore(M, nullptr, StoreDef);
818 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
819
821 NumMemSetInfer++;
822
823 // Make sure we do not invalidate the iterator.
824 BBI = M->getIterator();
825 return true;
826}
827
828bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
829 // See if there is another memset or store neighboring this memset which
830 // allows us to widen out the memset to do a single larger store.
831 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
832 if (Instruction *I =
833 tryMergingIntoMemset(MSI, MSI->getDest(), MSI->getValue())) {
834 BBI = I->getIterator(); // Don't invalidate iterator.
835 return true;
836 }
837 return false;
838}
839
840/// Takes a memcpy and a call that it depends on,
841/// and checks for the possibility of a call slot optimization by having
842/// the call write its result directly into the destination of the memcpy.
843bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
844 Instruction *cpyStore, Value *cpyDest,
845 Value *cpySrc, TypeSize cpySize,
846 Align cpyDestAlign,
847 BatchAAResults &BAA,
848 std::function<CallInst *()> GetC) {
849 // The general transformation to keep in mind is
850 //
851 // call @func(..., src, ...)
852 // memcpy(dest, src, ...)
853 //
854 // ->
855 //
856 // memcpy(dest, src, ...)
857 // call @func(..., dest, ...)
858 //
859 // Since moving the memcpy is technically awkward, we additionally check that
860 // src only holds uninitialized values at the moment of the call, meaning that
861 // the memcpy can be discarded rather than moved.
862
863 // We can't optimize scalable types.
864 if (cpySize.isScalable())
865 return false;
866
867 // Require that src be an alloca. This simplifies the reasoning considerably.
868 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
869 if (!srcAlloca)
870 return false;
871
872 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
873 if (!srcArraySize)
874 return false;
875
876 const DataLayout &DL = cpyLoad->getDataLayout();
877 TypeSize SrcAllocaSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType());
878 // We can't optimize scalable types.
879 if (SrcAllocaSize.isScalable())
880 return false;
881 uint64_t srcSize = SrcAllocaSize * srcArraySize->getZExtValue();
882
883 if (cpySize < srcSize)
884 return false;
885
886 CallInst *C = GetC();
887 if (!C)
888 return false;
889
890 // Lifetime marks shouldn't be operated on.
891 if (Function *F = C->getCalledFunction())
892 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
893 return false;
894
895 if (C->getParent() != cpyStore->getParent()) {
896 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
897 return false;
898 }
899
900 MemoryLocation DestLoc =
901 isa<StoreInst>(cpyStore)
902 ? MemoryLocation::get(cpyStore)
903 : MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));
904
905 // Check that nothing touches the dest of the copy between
906 // the call and the store/memcpy.
907 Instruction *SkippedLifetimeStart = nullptr;
908 if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C),
909 MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
910 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
911 return false;
912 }
913
914 // If we need to move a lifetime.start above the call, make sure that we can
915 // actually do so. If the argument is bitcasted for example, we would have to
916 // move the bitcast as well, which we don't handle.
917 if (SkippedLifetimeStart) {
918 auto *LifetimeArg =
919 dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(0));
920 if (LifetimeArg && LifetimeArg->getParent() == C->getParent() &&
921 C->comesBefore(LifetimeArg))
922 return false;
923 }
924
925 // Check that storing to the first srcSize bytes of dest will not cause a
926 // trap or data race.
927 bool ExplicitlyDereferenceableOnly;
929 ExplicitlyDereferenceableOnly) ||
930 !isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
931 DL, C, AC, DT)) {
932 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
933 return false;
934 }
935
936 // Make sure that nothing can observe cpyDest being written early. There are
937 // a number of cases to consider:
938 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
939 // the transform.
940 // 2. C itself may not access cpyDest (prior to the transform). This is
941 // checked further below.
942 // 3. If cpyDest is accessible to the caller of this function (potentially
943 // captured and not based on an alloca), we need to ensure that we cannot
944 // unwind between C and cpyStore. This is checked here.
945 // 4. If cpyDest is potentially captured, there may be accesses to it from
946 // another thread. In this case, we need to check that cpyStore is
947 // guaranteed to be executed if C is. As it is a non-atomic access, it
948 // renders accesses from other threads undefined.
949 // TODO: This is currently not checked.
950 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
951 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
952 return false;
953 }
954
955 // Check that dest points to memory that is at least as aligned as src.
956 Align srcAlign = srcAlloca->getAlign();
957 bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
958 // If dest is not aligned enough and we can't increase its alignment then
959 // bail out.
960 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
961 LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
962 return false;
963 }
964
965 // Check that src is not accessed except via the call and the memcpy. This
966 // guarantees that it holds only undefined values when passed in (so the final
967 // memcpy can be dropped), that it is not read or written between the call and
968 // the memcpy, and that writing beyond the end of it is undefined.
969 SmallVector<User *, 8> srcUseList(srcAlloca->users());
970 while (!srcUseList.empty()) {
971 User *U = srcUseList.pop_back_val();
972
973 if (isa<AddrSpaceCastInst>(U)) {
974 append_range(srcUseList, U->users());
975 continue;
976 }
978 continue;
979
980 if (U != C && U != cpyLoad) {
981 LLVM_DEBUG(dbgs() << "Call slot: Source accessed by " << *U << "\n");
982 return false;
983 }
984 }
985
986 // Check whether src is captured by the called function, in which case there
987 // may be further indirect uses of src.
988 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
989 return U->stripPointerCasts() == cpySrc &&
990 !C->doesNotCapture(C->getArgOperandNo(&U));
991 });
992
993 // If src is captured, then check whether there are any potential uses of
994 // src through the captured pointer before the lifetime of src ends, either
995 // due to a lifetime.end or a return from the function.
996 if (SrcIsCaptured) {
997 // Check that dest is not captured before/at the call. We have already
998 // checked that src is not captured before it. If either had been captured,
999 // then the call might be comparing the argument against the captured dest
1000 // or src pointer.
1001 Value *DestObj = getUnderlyingObject(cpyDest);
1002 if (!isIdentifiedFunctionLocal(DestObj) ||
1003 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, C, DT,
1004 /* IncludeI */ true))
1005 return false;
1006
1007 MemoryLocation SrcLoc =
1008 MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
1009 for (Instruction &I :
1010 make_range(++C->getIterator(), C->getParent()->end())) {
1011 // Lifetime of srcAlloca ends at lifetime.end.
1012 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1013 if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
1014 II->getArgOperand(0) == srcAlloca)
1015 break;
1016 }
1017
1018 // Lifetime of srcAlloca ends at return.
1019 if (isa<ReturnInst>(&I))
1020 break;
1021
1022 // Ignore the direct read of src in the load.
1023 if (&I == cpyLoad)
1024 continue;
1025
1026 // Check whether this instruction may mod/ref src through the captured
1027 // pointer (we have already any direct mod/refs in the loop above).
1028 // Also bail if we hit a terminator, as we don't want to scan into other
1029 // blocks.
1030 if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator())
1031 return false;
1032 }
1033 }
1034
1035 // Since we're changing the parameter to the callsite, we need to make sure
1036 // that what would be the new parameter dominates the callsite.
1037 bool NeedMoveGEP = false;
1038 if (!DT->dominates(cpyDest, C)) {
1039 // Support moving a constant index GEP before the call.
1040 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1041 if (GEP && GEP->hasAllConstantIndices() &&
1042 DT->dominates(GEP->getPointerOperand(), C))
1043 NeedMoveGEP = true;
1044 else
1045 return false;
1046 }
1047
1048 // In addition to knowing that the call does not access src in some
1049 // unexpected manner, for example via a global, which we deduce from
1050 // the use analysis, we also need to know that it does not sneakily
1051 // access dest. We rely on AA to figure this out for us.
1052 MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize));
1053 ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize);
1054 // If necessary, perform additional analysis.
1055 if (isModOrRefSet(MR))
1056 MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT);
1057 if (isModOrRefSet(MR))
1058 return false;
1059
1060 // We can't create address space casts here because we don't know if they're
1061 // safe for the target.
1062 if (cpySrc->getType() != cpyDest->getType())
1063 return false;
1064 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1065 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1066 cpySrc->getType() != C->getArgOperand(ArgI)->getType())
1067 return false;
1068
1069 // All the checks have passed, so do the transformation.
1070 bool changedArgument = false;
1071 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1072 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1073 changedArgument = true;
1074 C->setArgOperand(ArgI, cpyDest);
1075 }
1076
1077 if (!changedArgument)
1078 return false;
1079
1080 // If the destination wasn't sufficiently aligned then increase its alignment.
1081 if (!isDestSufficientlyAligned) {
1082 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1083 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1084 }
1085
1086 if (NeedMoveGEP) {
1087 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1088 GEP->moveBefore(C->getIterator());
1089 }
1090
1091 if (SkippedLifetimeStart) {
1092 SkippedLifetimeStart->moveBefore(C->getIterator());
1093 MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
1094 MSSA->getMemoryAccess(C));
1095 }
1096
1097 combineAAMetadata(C, cpyLoad);
1098 if (cpyLoad != cpyStore)
1099 combineAAMetadata(C, cpyStore);
1100
1101 ++NumCallSlot;
1102 return true;
1103}
1104
1105/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1106/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1107bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1108 MemCpyInst *MDep,
1109 BatchAAResults &BAA) {
1110 // We can only optimize non-volatile memcpy's.
1111 if (MDep->isVolatile())
1112 return false;
1113
1114 // If dep instruction is reading from our current input, then it is a noop
1115 // transfer and substituting the input won't change this instruction. Just
1116 // ignore the input and let someone else zap MDep. This handles cases like:
1117 // memcpy(a <- a)
1118 // memcpy(b <- a)
1119 // This also avoids infinite loops.
1120 if (BAA.isMustAlias(MDep->getDest(), MDep->getSource()))
1121 return false;
1122
1123 int64_t MForwardOffset = 0;
1124 const DataLayout &DL = M->getModule()->getDataLayout();
1125 // We can only transforms memcpy's where the dest of one is the source of the
1126 // other, or they have an offset in a range.
1127 if (M->getSource() != MDep->getDest()) {
1128 std::optional<int64_t> Offset =
1129 M->getSource()->getPointerOffsetFrom(MDep->getDest(), DL);
1130 if (!Offset || *Offset < 0)
1131 return false;
1132 MForwardOffset = *Offset;
1133 }
1134
1135 Value *CopyLength = M->getLength();
1136
1137 // The length of the memcpy's must be the same, or the preceding one must be
1138 // larger than the following one, or the contents of the overread must be
1139 // undefined bytes of a defined size.
1140 if (MForwardOffset != 0 || MDep->getLength() != CopyLength) {
1141 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1142 auto *MLen = dyn_cast<ConstantInt>(CopyLength);
1143 // This could be converted to a runtime test (%CopyLength =
1144 // min(max(0, MDepLen - MForwardOffset), MLen)), but it is
1145 // unclear if that is useful
1146 if (!MDepLen || !MLen)
1147 return false;
1148 if (MDepLen->getZExtValue() < MLen->getZExtValue() + MForwardOffset) {
1149 if (!overreadUndefContents(MSSA, M, MDep, BAA))
1150 return false;
1151 if (MDepLen->getZExtValue() <= (uint64_t)MForwardOffset)
1152 return false; // Should not reach here (there is obviously no aliasing
1153 // with MDep), so just bail in case it had incomplete info
1154 // somehow
1155 CopyLength = ConstantInt::get(CopyLength->getType(),
1156 MDepLen->getZExtValue() - MForwardOffset);
1157 }
1158 }
1159
1160 IRBuilder<> Builder(M);
1161 auto *CopySource = MDep->getSource();
1162 Instruction *NewCopySource = nullptr;
1163 auto CleanupOnRet = llvm::make_scope_exit([&] {
1164 if (NewCopySource && NewCopySource->use_empty())
1165 // Safety: It's safe here because we will only allocate more instructions
1166 // after finishing all BatchAA queries, but we have to be careful if we
1167 // want to do something like this in another place. Then we'd probably
1168 // have to delay instruction removal until all transforms on an
1169 // instruction finished.
1170 eraseInstruction(NewCopySource);
1171 });
1172 MaybeAlign CopySourceAlign = MDep->getSourceAlign();
1173 auto MCopyLoc = MemoryLocation::getForSource(MDep);
1174 // Truncate the size of the MDep access to just the bytes read
1175 if (MDep->getLength() != CopyLength) {
1176 auto *ConstLength = cast<ConstantInt>(CopyLength);
1177 MCopyLoc = MCopyLoc.getWithNewSize(
1178 LocationSize::precise(ConstLength->getZExtValue()));
1179 }
1180
1181 // When the forwarding offset is greater than 0, we transform
1182 // memcpy(d1 <- s1)
1183 // memcpy(d2 <- d1+o)
1184 // to
1185 // memcpy(d2 <- s1+o)
1186 if (MForwardOffset > 0) {
1187 // The copy destination of `M` maybe can serve as the source of copying.
1188 std::optional<int64_t> MDestOffset =
1189 M->getRawDest()->getPointerOffsetFrom(MDep->getRawSource(), DL);
1190 if (MDestOffset == MForwardOffset)
1191 CopySource = M->getDest();
1192 else {
1193 CopySource = Builder.CreateInBoundsPtrAdd(
1194 CopySource, Builder.getInt64(MForwardOffset));
1195 NewCopySource = dyn_cast<Instruction>(CopySource);
1196 }
1197 // We need to update `MCopyLoc` if an offset exists.
1198 MCopyLoc = MCopyLoc.getWithNewPtr(CopySource);
1199 if (CopySourceAlign)
1200 CopySourceAlign = commonAlignment(*CopySourceAlign, MForwardOffset);
1201 }
1202
1203 // Verify that the copied-from memory doesn't change in between the two
1204 // transfers. For example, in:
1205 // memcpy(a <- b)
1206 // *b = 42;
1207 // memcpy(c <- a)
1208 // It would be invalid to transform the second memcpy into memcpy(c <- b).
1209 //
1210 // TODO: If the code between M and MDep is transparent to the destination "c",
1211 // then we could still perform the xform by moving M up to the first memcpy.
1212 if (writtenBetween(MSSA, BAA, MCopyLoc, MSSA->getMemoryAccess(MDep),
1213 MSSA->getMemoryAccess(M)))
1214 return false;
1215
1216 // No need to create `memcpy(a <- a)`.
1217 if (BAA.isMustAlias(M->getDest(), CopySource)) {
1218 // Remove the instruction we're replacing.
1220 ++NumMemCpyInstr;
1221 return true;
1222 }
1223
1224 // If the dest of the second might alias the source of the first, then the
1225 // source and dest might overlap. In addition, if the source of the first
1226 // points to constant memory, they won't overlap by definition. Otherwise, we
1227 // still want to eliminate the intermediate value, but we have to generate a
1228 // memmove instead of memcpy.
1229 bool UseMemMove = false;
1231 // Don't convert llvm.memcpy.inline into memmove because memmove can be
1232 // lowered as a call, and that is not allowed for llvm.memcpy.inline (and
1233 // there is no inline version of llvm.memmove)
1234 if (M->isForceInlined())
1235 return false;
1236 UseMemMove = true;
1237 }
1238
1239 // If all checks passed, then we can transform M.
1240 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1241 << *MDep << '\n'
1242 << *M << '\n');
1243
1244 // TODO: Is this worth it if we're creating a less aligned memcpy? For
1245 // example we could be moving from movaps -> movq on x86.
1246 Instruction *NewM;
1247 if (UseMemMove)
1248 NewM = Builder.CreateMemMove(M->getDest(), M->getDestAlign(), CopySource,
1249 CopySourceAlign, CopyLength, M->isVolatile());
1250 else if (M->isForceInlined())
1251 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1252 // never allowed since that would allow the latter to be lowered as a call
1253 // to an external function.
1254 NewM = Builder.CreateMemCpyInline(M->getDest(), M->getDestAlign(),
1255 CopySource, CopySourceAlign, CopyLength,
1256 M->isVolatile());
1257 else
1258 NewM = Builder.CreateMemCpy(M->getDest(), M->getDestAlign(), CopySource,
1259 CopySourceAlign, CopyLength, M->isVolatile());
1260
1261 NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID);
1262
1263 assert(isa<MemoryDef>(MSSA->getMemoryAccess(M)));
1264 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(M));
1265 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1266 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1267
1268 // Remove the instruction we're replacing.
1270 ++NumMemCpyInstr;
1271 return true;
1272}
1273
1274/// We've found that the (upward scanning) memory dependence of \p MemCpy is
1275/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1276/// weren't copied over by \p MemCpy.
1277///
1278/// In other words, transform:
1279/// \code
1280/// memset(dst, c, dst_size);
1281/// ...
1282/// memcpy(dst, src, src_size);
1283/// \endcode
1284/// into:
1285/// \code
1286/// ...
1287/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1288/// memcpy(dst, src, src_size);
1289/// \endcode
1290///
1291/// The memset is sunk to just before the memcpy to ensure that src_size is
1292/// present when emitting the simplified memset.
1293bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1294 MemSetInst *MemSet,
1295 BatchAAResults &BAA) {
1296 // We can only transform memset/memcpy with the same destination.
1297 if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1298 return false;
1299
1300 // Don't perform the transform if src_size may be zero. In that case, the
1301 // transform is essentially a complex no-op and may lead to an infinite
1302 // loop if BasicAA is smart enough to understand that dst and dst + src_size
1303 // are still MustAlias after the transform.
1304 Value *SrcSize = MemCpy->getLength();
1305 if (!isKnownNonZero(SrcSize,
1306 SimplifyQuery(MemCpy->getDataLayout(), DT, AC, MemCpy)))
1307 return false;
1308
1309 // Check that src and dst of the memcpy aren't the same. While memcpy
1310 // operands cannot partially overlap, exact equality is allowed.
1311 if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1312 return false;
1313
1314 // We know that dst up to src_size is not written. We now need to make sure
1315 // that dst up to dst_size is not accessed. (If we did not move the memset,
1316 // checking for reads would be sufficient.)
1318 MSSA->getMemoryAccess(MemSet),
1319 MSSA->getMemoryAccess(MemCpy)))
1320 return false;
1321
1322 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1323 Value *Dest = MemCpy->getRawDest();
1324 Value *DestSize = MemSet->getLength();
1325
1326 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1327 return false;
1328
1329 // If the sizes are the same, simply drop the memset instead of generating
1330 // a replacement with zero size.
1331 if (DestSize == SrcSize) {
1332 eraseInstruction(MemSet);
1333 return true;
1334 }
1335
1336 // By default, create an unaligned memset.
1337 Align Alignment = Align(1);
1338 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1339 // of the sum.
1340 const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
1341 MemCpy->getDestAlign().valueOrOne());
1342 if (DestAlign > 1)
1343 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1344 Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());
1345
1346 IRBuilder<> Builder(MemCpy);
1347
1348 // Preserve the debug location of the old memset for the code emitted here
1349 // related to the new memset. This is correct according to the rules in
1350 // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an
1351 // instruction location", given that we move the memset within the basic
1352 // block.
1353 assert(MemSet->getParent() == MemCpy->getParent() &&
1354 "Preserving debug location based on moving memset within BB.");
1355 Builder.SetCurrentDebugLocation(MemSet->getDebugLoc());
1356
1357 // If the sizes have different types, zext the smaller one.
1358 if (DestSize->getType() != SrcSize->getType()) {
1359 if (DestSize->getType()->getIntegerBitWidth() >
1360 SrcSize->getType()->getIntegerBitWidth())
1361 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1362 else
1363 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1364 }
1365
1366 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1367 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1368 Value *MemsetLen = Builder.CreateSelect(
1369 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1370 // FIXME (#167968): we could explore estimating the branch_weights based on
1371 // value profiling data about the 2 sizes.
1372 if (auto *SI = dyn_cast<SelectInst>(MemsetLen))
1374 Instruction *NewMemSet =
1375 Builder.CreateMemSet(Builder.CreatePtrAdd(Dest, SrcSize),
1376 MemSet->getOperand(1), MemsetLen, Alignment);
1377
1378 assert(isa<MemoryDef>(MSSA->getMemoryAccess(MemCpy)) &&
1379 "MemCpy must be a MemoryDef");
1380 // The new memset is inserted before the memcpy, and it is known that the
1381 // memcpy's defining access is the memset about to be removed.
1382 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(MemCpy));
1383 auto *NewAccess =
1384 MSSAU->createMemoryAccessBefore(NewMemSet, nullptr, LastDef);
1385 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1386
1387 eraseInstruction(MemSet);
1388 return true;
1389}
1390
1391/// Determine whether the pointer V had only undefined content (due to Def),
1392/// either because it was freshly alloca'd or started its lifetime.
1394 MemoryDef *Def) {
1395 if (MSSA->isLiveOnEntryDef(Def))
1397
1398 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst()))
1399 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1400 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)))
1401 return II->getArgOperand(0) == Alloca;
1402
1403 return false;
1404}
1405
1406// If the memcpy is larger than the previous, but the memory was undef prior to
1407// that, we can just ignore the tail. Technically we're only interested in the
1408// bytes from 0..MemSrcOffset and MemSrcLength+MemSrcOffset..CopySize here, but
1409// as we can't easily represent this location (hasUndefContents uses mustAlias
1410// which cannot deal with offsets), we use the full 0..CopySize range.
1411static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy,
1412 MemIntrinsic *MemSrc, BatchAAResults &BAA) {
1413 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1414 MemoryUseOrDef *MemSrcAccess = MSSA->getMemoryAccess(MemSrc);
1416 MemSrcAccess->getDefiningAccess(), MemCpyLoc, BAA);
1417 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1418 if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD))
1419 return true;
1420 return false;
1421}
1422
1423/// Transform memcpy to memset when its source was just memset.
1424/// In other words, turn:
1425/// \code
1426/// memset(dst1, c, dst1_size);
1427/// memcpy(dst2, dst1, dst2_size);
1428/// \endcode
1429/// into:
1430/// \code
1431/// memset(dst1, c, dst1_size);
1432/// memset(dst2, c, dst2_size);
1433/// \endcode
1434/// When dst2_size <= dst1_size.
1435bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1436 MemSetInst *MemSet,
1437 BatchAAResults &BAA) {
1438 Value *MemSetSize = MemSet->getLength();
1439 Value *CopySize = MemCpy->getLength();
1440
1441 int64_t MOffset = 0;
1442 const DataLayout &DL = MemCpy->getModule()->getDataLayout();
1443 // We can only transforms memcpy's where the dest of one is the source of the
1444 // other, or they have a known offset.
1445 if (MemCpy->getSource() != MemSet->getDest()) {
1446 std::optional<int64_t> Offset =
1447 MemCpy->getSource()->getPointerOffsetFrom(MemSet->getDest(), DL);
1448 if (!Offset || *Offset < 0)
1449 return false;
1450 MOffset = *Offset;
1451 }
1452
1453 if (MOffset != 0 || MemSetSize != CopySize) {
1454 // Make sure the memcpy doesn't read any more than what the memset wrote,
1455 // other than undef. Don't worry about sizes larger than i64.
1456 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1457 auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
1458 if (!CMemSetSize || !CCopySize ||
1459 CCopySize->getZExtValue() + MOffset > CMemSetSize->getZExtValue()) {
1460 if (!overreadUndefContents(MSSA, MemCpy, MemSet, BAA))
1461 return false;
1462
1463 if (CMemSetSize && CCopySize) {
1464 // If both have constant sizes and offsets, clip the memcpy to the
1465 // bounds of the memset if applicable.
1466 assert(CCopySize->getZExtValue() + MOffset >
1467 CMemSetSize->getZExtValue());
1468 if (MOffset == 0)
1469 CopySize = MemSetSize;
1470 else
1471 CopySize =
1472 ConstantInt::get(CopySize->getType(),
1473 CMemSetSize->getZExtValue() <= (uint64_t)MOffset
1474 ? 0
1475 : CMemSetSize->getZExtValue() - MOffset);
1476 }
1477 }
1478 }
1479
1480 IRBuilder<> Builder(MemCpy);
1481 Instruction *NewM =
1482 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1483 CopySize, MemCpy->getDestAlign());
1484 auto *LastDef = cast<MemoryDef>(MSSA->getMemoryAccess(MemCpy));
1485 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1486 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1487
1488 return true;
1489}
1490
1491// Attempts to optimize the pattern whereby memory is copied from an alloca to
1492// another alloca, where the two allocas don't have conflicting mod/ref. If
1493// successful, the two allocas can be merged into one and the transfer can be
1494// deleted. This pattern is generated frequently in Rust, due to the ubiquity of
1495// move operations in that language.
1496//
1497// Once we determine that the optimization is safe to perform, we replace all
1498// uses of the destination alloca with the source alloca. We also "shrink wrap"
1499// the lifetime markers of the single merged alloca to before the first use
1500// and after the last use. Note that the "shrink wrapping" procedure is a safe
1501// transformation only because we restrict the scope of this optimization to
1502// allocas that aren't captured.
1503bool MemCpyOptPass::performStackMoveOptzn(Instruction *Load, Instruction *Store,
1504 AllocaInst *DestAlloca,
1505 AllocaInst *SrcAlloca, TypeSize Size,
1506 BatchAAResults &BAA) {
1507 LLVM_DEBUG(dbgs() << "Stack Move: Attempting to optimize:\n"
1508 << *Store << "\n");
1509
1510 // Make sure the two allocas are in the same address space.
1511 if (SrcAlloca->getAddressSpace() != DestAlloca->getAddressSpace()) {
1512 LLVM_DEBUG(dbgs() << "Stack Move: Address space mismatch\n");
1513 return false;
1514 }
1515
1516 // Check that copy is full with static size.
1517 const DataLayout &DL = DestAlloca->getDataLayout();
1518 std::optional<TypeSize> SrcSize = SrcAlloca->getAllocationSize(DL);
1519 if (!SrcSize || Size != *SrcSize) {
1520 LLVM_DEBUG(dbgs() << "Stack Move: Source alloca size mismatch\n");
1521 return false;
1522 }
1523 std::optional<TypeSize> DestSize = DestAlloca->getAllocationSize(DL);
1524 if (!DestSize || Size != *DestSize) {
1525 LLVM_DEBUG(dbgs() << "Stack Move: Destination alloca size mismatch\n");
1526 return false;
1527 }
1528
1529 if (!SrcAlloca->isStaticAlloca() || !DestAlloca->isStaticAlloca())
1530 return false;
1531
1532 // Check that src and dest are never captured, unescaped allocas. Also
1533 // find the nearest common dominator and postdominator for all users in
1534 // order to shrink wrap the lifetimes, and instructions with noalias metadata
1535 // to remove them.
1536
1537 SmallVector<Instruction *, 4> LifetimeMarkers;
1538 SmallPtrSet<Instruction *, 4> AAMetadataInstrs;
1539 bool SrcNotDom = false;
1540
1541 auto CaptureTrackingWithModRef =
1542 [&](Instruction *AI, function_ref<bool(Instruction *)> ModRefCallback,
1543 bool &AddressCaptured) -> bool {
1544 SmallVector<Instruction *, 8> Worklist;
1545 Worklist.push_back(AI);
1546 unsigned MaxUsesToExplore = getDefaultMaxUsesToExploreForCaptureTracking();
1547 Worklist.reserve(MaxUsesToExplore);
1548 SmallPtrSet<const Use *, 20> Visited;
1549 while (!Worklist.empty()) {
1550 Instruction *I = Worklist.pop_back_val();
1551 for (const Use &U : I->uses()) {
1552 auto *UI = cast<Instruction>(U.getUser());
1553 // If any use that isn't dominated by SrcAlloca exists, we move src
1554 // alloca to the entry before the transformation.
1555 if (!DT->dominates(SrcAlloca, UI))
1556 SrcNotDom = true;
1557
1558 if (Visited.size() >= MaxUsesToExplore) {
1559 LLVM_DEBUG(
1560 dbgs()
1561 << "Stack Move: Exceeded max uses to see ModRef, bailing\n");
1562 return false;
1563 }
1564 if (!Visited.insert(&U).second)
1565 continue;
1566 UseCaptureInfo CI = DetermineUseCaptureKind(U, AI);
1568 return false;
1569 AddressCaptured |= capturesAddress(CI.UseCC);
1570
1571 if (UI->mayReadOrWriteMemory()) {
1572 if (UI->isLifetimeStartOrEnd()) {
1573 // We note the locations of these intrinsic calls so that we can
1574 // delete them later if the optimization succeeds, this is safe
1575 // since both llvm.lifetime.start and llvm.lifetime.end intrinsics
1576 // practically fill all the bytes of the alloca with an undefined
1577 // value, although conceptually marked as alive/dead.
1578 LifetimeMarkers.push_back(UI);
1579 continue;
1580 }
1581 AAMetadataInstrs.insert(UI);
1582
1583 if (!ModRefCallback(UI))
1584 return false;
1585 }
1586
1587 if (capturesAnything(CI.ResultCC)) {
1588 Worklist.push_back(UI);
1589 continue;
1590 }
1591 }
1592 }
1593 return true;
1594 };
1595
1596 // Check that dest has no Mod/Ref, from the alloca to the Store. And collect
1597 // modref inst for the reachability check.
1598 ModRefInfo DestModRef = ModRefInfo::NoModRef;
1599 MemoryLocation DestLoc(DestAlloca, LocationSize::precise(Size));
1600 SmallVector<BasicBlock *, 8> ReachabilityWorklist;
1601 auto DestModRefCallback = [&](Instruction *UI) -> bool {
1602 // We don't care about the store itself.
1603 if (UI == Store)
1604 return true;
1605 ModRefInfo Res = BAA.getModRefInfo(UI, DestLoc);
1606 DestModRef |= Res;
1607 if (isModOrRefSet(Res)) {
1608 // Instructions reachability checks.
1609 // FIXME: adding the Instruction version isPotentiallyReachableFromMany on
1610 // lib/Analysis/CFG.cpp (currently only for BasicBlocks) might be helpful.
1611 if (UI->getParent() == Store->getParent()) {
1612 // The same block case is special because it's the only time we're
1613 // looking within a single block to see which instruction comes first.
1614 // Once we start looking at multiple blocks, the first instruction of
1615 // the block is reachable, so we only need to determine reachability
1616 // between whole blocks.
1617 BasicBlock *BB = UI->getParent();
1618
1619 // If A comes before B, then B is definitively reachable from A.
1620 if (UI->comesBefore(Store))
1621 return false;
1622
1623 // If the user's parent block is entry, no predecessor exists.
1624 if (BB->isEntryBlock())
1625 return true;
1626
1627 // Otherwise, continue doing the normal per-BB CFG walk.
1628 ReachabilityWorklist.append(succ_begin(BB), succ_end(BB));
1629 } else {
1630 ReachabilityWorklist.push_back(UI->getParent());
1631 }
1632 }
1633 return true;
1634 };
1635
1636 bool DestAddressCaptured = false;
1637 if (!CaptureTrackingWithModRef(DestAlloca, DestModRefCallback,
1638 DestAddressCaptured))
1639 return false;
1640 // Bailout if Dest may have any ModRef before Store.
1641 if (!ReachabilityWorklist.empty() &&
1642 isPotentiallyReachableFromMany(ReachabilityWorklist, Store->getParent(),
1643 nullptr, DT, nullptr))
1644 return false;
1645
1646 // Check that, from after the Load to the end of the BB,
1647 // - if the dest has any Mod, src has no Ref, and
1648 // - if the dest has any Ref, src has no Mod except full-sized lifetimes.
1649 MemoryLocation SrcLoc(SrcAlloca, LocationSize::precise(Size));
1650
1651 auto SrcModRefCallback = [&](Instruction *UI) -> bool {
1652 // Any ModRef post-dominated by Load doesn't matter, also Load and Store
1653 // themselves can be ignored.
1654 if (PDT->dominates(Load, UI) || UI == Load || UI == Store)
1655 return true;
1656 ModRefInfo Res = BAA.getModRefInfo(UI, SrcLoc);
1657 if ((isModSet(DestModRef) && isRefSet(Res)) ||
1658 (isRefSet(DestModRef) && isModSet(Res)))
1659 return false;
1660
1661 return true;
1662 };
1663
1664 bool SrcAddressCaptured = false;
1665 if (!CaptureTrackingWithModRef(SrcAlloca, SrcModRefCallback,
1666 SrcAddressCaptured))
1667 return false;
1668
1669 // If both the source and destination address are captured, the fact that they
1670 // are no longer two separate allocations may be observed.
1671 if (DestAddressCaptured && SrcAddressCaptured)
1672 return false;
1673
1674 // We can do the transformation. First, move the SrcAlloca to the start of the
1675 // BB.
1676 if (SrcNotDom)
1677 SrcAlloca->moveBefore(*SrcAlloca->getParent(),
1678 SrcAlloca->getParent()->getFirstInsertionPt());
1679 // Align the allocas appropriately.
1680 SrcAlloca->setAlignment(
1681 std::max(SrcAlloca->getAlign(), DestAlloca->getAlign()));
1682
1683 // Merge the two allocas.
1684 DestAlloca->replaceAllUsesWith(SrcAlloca);
1685 eraseInstruction(DestAlloca);
1686
1687 // Drop metadata on the source alloca.
1688 SrcAlloca->dropUnknownNonDebugMetadata();
1689
1690 // TODO: Reconstruct merged lifetime markers.
1691 // Remove all other lifetime markers. if the original lifetime intrinsics
1692 // exists.
1693 if (!LifetimeMarkers.empty()) {
1694 for (Instruction *I : LifetimeMarkers)
1696 }
1697
1698 // As this transformation can cause memory accesses that didn't previously
1699 // alias to begin to alias one another, we remove !alias.scope, !noalias,
1700 // !tbaa and !tbaa_struct metadata from any uses of either alloca.
1701 // This is conservative, but more precision doesn't seem worthwhile
1702 // right now.
1703 for (Instruction *I : AAMetadataInstrs) {
1704 I->setMetadata(LLVMContext::MD_alias_scope, nullptr);
1705 I->setMetadata(LLVMContext::MD_noalias, nullptr);
1706 I->setMetadata(LLVMContext::MD_tbaa, nullptr);
1707 I->setMetadata(LLVMContext::MD_tbaa_struct, nullptr);
1708 }
1709
1710 LLVM_DEBUG(dbgs() << "Stack Move: Performed staack-move optimization\n");
1711 NumStackMove++;
1712 return true;
1713}
1714
1715static bool isZeroSize(Value *Size) {
1716 if (auto *I = dyn_cast<Instruction>(Size))
1717 if (auto *Res = simplifyInstruction(I, I->getDataLayout()))
1718 Size = Res;
1719 // Treat undef/poison size like zero.
1720 if (auto *C = dyn_cast<Constant>(Size))
1721 return isa<UndefValue>(C) || C->isNullValue();
1722 return false;
1723}
1724
1725/// Perform simplification of memcpy's. If we have memcpy A
1726/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1727/// B to be a memcpy from X to Z (or potentially a memmove, depending on
1728/// circumstances). This allows later passes to remove the first memcpy
1729/// altogether.
1730bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1731 // We can only optimize non-volatile memcpy's.
1732 if (M->isVolatile())
1733 return false;
1734
1735 // If the source and destination of the memcpy are the same, then zap it.
1736 if (M->getSource() == M->getDest()) {
1737 ++BBI;
1739 return true;
1740 }
1741
1742 // If the size is zero, remove the memcpy.
1743 if (isZeroSize(M->getLength())) {
1744 ++BBI;
1746 return true;
1747 }
1748
1749 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1750 if (!MA)
1751 // Degenerate case: memcpy marked as not accessing memory.
1752 return false;
1753
1754 // If copying from a constant, try to turn the memcpy into a memset.
1755 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
1756 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1757 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1758 M->getDataLayout())) {
1759 IRBuilder<> Builder(M);
1760 Instruction *NewM = Builder.CreateMemSet(
1761 M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false);
1762 auto *LastDef = cast<MemoryDef>(MA);
1763 auto *NewAccess =
1764 MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1765 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1766
1768 ++NumCpyToSet;
1769 return true;
1770 }
1771
1772 BatchAAResults BAA(*AA, EEA);
1773 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
1774 MemoryAccess *AnyClobber = MA->getDefiningAccess();
1775 MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1776 const MemoryAccess *DestClobber =
1777 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA);
1778
1779 // Try to turn a partially redundant memset + memcpy into
1780 // smaller memset + memcpy. We don't need the memcpy size for this.
1781 // The memcpy must post-dom the memset, so limit this to the same basic
1782 // block. A non-local generalization is likely not worthwhile.
1783 if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1784 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1785 if (DestClobber->getBlock() == M->getParent())
1786 if (processMemSetMemCpyDependence(M, MDep, BAA))
1787 return true;
1788
1789 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1790 AnyClobber, MemoryLocation::getForSource(M), BAA);
1791
1792 // There are five possible optimizations we can do for memcpy:
1793 // a) memcpy-memcpy xform which exposes redundance for DSE.
1794 // b) call-memcpy xform for return slot optimization.
1795 // c) memcpy from freshly alloca'd space or space that has just started
1796 // its lifetime copies undefined data, and we can therefore eliminate
1797 // the memcpy in favor of the data that was already at the destination.
1798 // d) memcpy from a just-memset'd source can be turned into memset.
1799 // e) elimination of memcpy via stack-move optimization.
1800 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1801 if (Instruction *MI = MD->getMemoryInst()) {
1802 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1803 if (auto *C = dyn_cast<CallInst>(MI)) {
1804 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1805 TypeSize::getFixed(CopySize->getZExtValue()),
1806 M->getDestAlign().valueOrOne(), BAA,
1807 [C]() -> CallInst * { return C; })) {
1808 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1809 << " call: " << *C << "\n"
1810 << " memcpy: " << *M << "\n");
1812 ++NumMemCpyInstr;
1813 return true;
1814 }
1815 }
1816 }
1817 if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1818 if (processMemCpyMemCpyDependence(M, MDep, BAA))
1819 return true;
1820 if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1821 if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
1822 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1824 ++NumCpyToSet;
1825 return true;
1826 }
1827 }
1828 }
1829
1830 if (hasUndefContents(MSSA, BAA, M->getSource(), MD)) {
1831 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1833 ++NumMemCpyInstr;
1834 return true;
1835 }
1836 }
1837
1838 // If the transfer is from a stack slot to a stack slot, then we may be able
1839 // to perform the stack-move optimization. See the comments in
1840 // performStackMoveOptzn() for more details.
1841 auto *DestAlloca = dyn_cast<AllocaInst>(M->getDest());
1842 if (!DestAlloca)
1843 return false;
1844 auto *SrcAlloca = dyn_cast<AllocaInst>(M->getSource());
1845 if (!SrcAlloca)
1846 return false;
1847 ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength());
1848 if (Len == nullptr)
1849 return false;
1850 if (performStackMoveOptzn(M, M, DestAlloca, SrcAlloca,
1851 TypeSize::getFixed(Len->getZExtValue()), BAA)) {
1852 // Avoid invalidating the iterator.
1853 BBI = M->getNextNode()->getIterator();
1855 ++NumMemCpyInstr;
1856 return true;
1857 }
1858
1859 return false;
1860}
1861
1862/// Memmove calls with overlapping src/dest buffers that come after a memset may
1863/// be removed.
1864bool MemCpyOptPass::isMemMoveMemSetDependency(MemMoveInst *M) {
1865 const auto &DL = M->getDataLayout();
1866 MemoryUseOrDef *MemMoveAccess = MSSA->getMemoryAccess(M);
1867 if (!MemMoveAccess)
1868 return false;
1869
1870 // The memmove is of form memmove(x, x + A, B).
1871 MemoryLocation SourceLoc = MemoryLocation::getForSource(M);
1872 auto *MemMoveSourceOp = M->getSource();
1873 auto *Source = dyn_cast<GEPOperator>(MemMoveSourceOp);
1874 if (!Source)
1875 return false;
1876
1877 APInt Offset(DL.getIndexTypeSizeInBits(Source->getType()), 0);
1878 LocationSize MemMoveLocSize = SourceLoc.Size;
1879 if (Source->getPointerOperand() != M->getDest() ||
1880 !MemMoveLocSize.hasValue() ||
1881 !Source->accumulateConstantOffset(DL, Offset) || Offset.isNegative()) {
1882 return false;
1883 }
1884
1885 uint64_t MemMoveSize = MemMoveLocSize.getValue();
1886 LocationSize TotalSize =
1887 LocationSize::precise(Offset.getZExtValue() + MemMoveSize);
1888 MemoryLocation CombinedLoc(M->getDest(), TotalSize);
1889
1890 // The first dominating clobbering MemoryAccess for the combined location
1891 // needs to be a memset.
1892 BatchAAResults BAA(*AA);
1893 MemoryAccess *FirstDef = MemMoveAccess->getDefiningAccess();
1894 auto *DestClobber = dyn_cast<MemoryDef>(
1895 MSSA->getWalker()->getClobberingMemoryAccess(FirstDef, CombinedLoc, BAA));
1896 if (!DestClobber)
1897 return false;
1898
1899 auto *MS = dyn_cast_or_null<MemSetInst>(DestClobber->getMemoryInst());
1900 if (!MS)
1901 return false;
1902
1903 // Memset length must be sufficiently large.
1904 auto *MemSetLength = dyn_cast<ConstantInt>(MS->getLength());
1905 if (!MemSetLength || MemSetLength->getZExtValue() < MemMoveSize)
1906 return false;
1907
1908 // The destination buffer must have been memset'd.
1909 if (!BAA.isMustAlias(MS->getDest(), M->getDest()))
1910 return false;
1911
1912 return true;
1913}
1914
1915/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1916/// not to alias.
1917bool MemCpyOptPass::processMemMove(MemMoveInst *M, BasicBlock::iterator &BBI) {
1918 // See if the source could be modified by this memmove potentially.
1919 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) {
1920 // On the off-chance the memmove clobbers src with previously memset'd
1921 // bytes, the memmove may be redundant.
1922 if (!M->isVolatile() && isMemMoveMemSetDependency(M)) {
1923 LLVM_DEBUG(dbgs() << "Removed redundant memmove.\n");
1924 ++BBI;
1926 ++NumMemMoveInstr;
1927 return true;
1928 }
1929 return false;
1930 }
1931
1932 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1933 << "\n");
1934
1935 // If not, then we know we can transform this.
1936 Type *ArgTys[3] = {M->getRawDest()->getType(), M->getRawSource()->getType(),
1937 M->getLength()->getType()};
1938 M->setCalledFunction(Intrinsic::getOrInsertDeclaration(
1939 M->getModule(), Intrinsic::memcpy, ArgTys));
1940
1941 // For MemorySSA nothing really changes (except that memcpy may imply stricter
1942 // aliasing guarantees).
1943
1944 ++NumMoveToCpy;
1945 return true;
1946}
1947
1948/// This is called on every byval argument in call sites.
1949bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1950 const DataLayout &DL = CB.getDataLayout();
1951 // Find out what feeds this byval argument.
1952 Value *ByValArg = CB.getArgOperand(ArgNo);
1953 Type *ByValTy = CB.getParamByValType(ArgNo);
1954 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1955 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1956 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1957 if (!CallAccess)
1958 return false;
1959 MemCpyInst *MDep = nullptr;
1960 BatchAAResults BAA(*AA, EEA);
1961 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1962 CallAccess->getDefiningAccess(), Loc, BAA);
1963 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1964 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1965
1966 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1967 // a memcpy, see if we can byval from the source of the memcpy instead of the
1968 // result.
1969 if (!MDep || MDep->isVolatile() ||
1970 ByValArg->stripPointerCasts() != MDep->getDest())
1971 return false;
1972
1973 // The length of the memcpy must be larger or equal to the size of the byval.
1974 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1975 if (!C1 || !TypeSize::isKnownGE(
1976 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1977 return false;
1978
1979 // Get the alignment of the byval. If the call doesn't specify the alignment,
1980 // then it is some target specific value that we can't know.
1981 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1982 if (!ByValAlign)
1983 return false;
1984
1985 // If it is greater than the memcpy, then we check to see if we can force the
1986 // source of the memcpy to the alignment we need. If we fail, we bail out.
1987 MaybeAlign MemDepAlign = MDep->getSourceAlign();
1988 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1989 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1990 DT) < *ByValAlign)
1991 return false;
1992
1993 // The type of the memcpy source must match the byval argument
1994 if (MDep->getSource()->getType() != ByValArg->getType())
1995 return false;
1996
1997 // Verify that the copied-from memory doesn't change in between the memcpy and
1998 // the byval call.
1999 // memcpy(a <- b)
2000 // *b = 42;
2001 // foo(*a)
2002 // It would be invalid to transform the second memcpy into foo(*b).
2003 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
2004 MSSA->getMemoryAccess(MDep), CallAccess))
2005 return false;
2006
2007 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
2008 << " " << *MDep << "\n"
2009 << " " << CB << "\n");
2010
2011 // Otherwise we're good! Update the byval argument.
2012 combineAAMetadata(&CB, MDep);
2013 CB.setArgOperand(ArgNo, MDep->getSource());
2014 ++NumMemCpyInstr;
2015 return true;
2016}
2017
2018/// This is called on memcpy dest pointer arguments attributed as immutable
2019/// during call. Try to use memcpy source directly if all of the following
2020/// conditions are satisfied.
2021/// 1. The memcpy dst is neither modified during the call nor captured by the
2022/// call.
2023/// 2. The memcpy dst is an alloca with known alignment & size.
2024/// 2-1. The memcpy length == the alloca size which ensures that the new
2025/// pointer is dereferenceable for the required range
2026/// 2-2. The src pointer has alignment >= the alloca alignment or can be
2027/// enforced so.
2028/// 3. The memcpy dst and src is not modified between the memcpy and the call.
2029/// (if MSSA clobber check is safe.)
2030/// 4. The memcpy src is not modified during the call. (ModRef check shows no
2031/// Mod.)
2032bool MemCpyOptPass::processImmutArgument(CallBase &CB, unsigned ArgNo) {
2033 BatchAAResults BAA(*AA, EEA);
2034 Value *ImmutArg = CB.getArgOperand(ArgNo);
2035
2036 // 1. Ensure passed argument is immutable during call.
2037 if (!CB.doesNotCapture(ArgNo))
2038 return false;
2039
2040 // We know that the argument is readonly at this point, but the function
2041 // might still modify the same memory through a different pointer. Exclude
2042 // this either via noalias, or alias analysis.
2043 if (!CB.paramHasAttr(ArgNo, Attribute::NoAlias) &&
2044 isModSet(
2046 return false;
2047
2048 const DataLayout &DL = CB.getDataLayout();
2049
2050 // 2. Check that arg is alloca
2051 // TODO: Even if the arg gets back to branches, we can remove memcpy if all
2052 // the alloca alignments can be enforced to source alignment.
2053 auto *AI = dyn_cast<AllocaInst>(ImmutArg->stripPointerCasts());
2054 if (!AI)
2055 return false;
2056
2057 std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL);
2058 // Can't handle unknown size alloca.
2059 // (e.g. Variable Length Array, Scalable Vector)
2060 if (!AllocaSize || AllocaSize->isScalable())
2061 return false;
2062 MemoryLocation Loc(ImmutArg, LocationSize::precise(*AllocaSize));
2063 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
2064 if (!CallAccess)
2065 return false;
2066
2067 MemCpyInst *MDep = nullptr;
2068 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
2069 CallAccess->getDefiningAccess(), Loc, BAA);
2070 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
2071 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
2072
2073 // If the immut argument isn't fed by a memcpy, ignore it. If it is fed by
2074 // a memcpy, check that the arg equals the memcpy dest.
2075 if (!MDep || MDep->isVolatile() || AI != MDep->getDest())
2076 return false;
2077
2078 // The type of the memcpy source must match the immut argument
2079 if (MDep->getSource()->getType() != ImmutArg->getType())
2080 return false;
2081
2082 // 2-1. The length of the memcpy must be equal to the size of the alloca.
2083 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
2084 if (!MDepLen || AllocaSize != MDepLen->getValue())
2085 return false;
2086
2087 // 2-2. the memcpy source align must be larger than or equal the alloca's
2088 // align. If not so, we check to see if we can force the source of the memcpy
2089 // to the alignment we need. If we fail, we bail out.
2090 Align MemDepAlign = MDep->getSourceAlign().valueOrOne();
2091 Align AllocaAlign = AI->getAlign();
2092 if (MemDepAlign < AllocaAlign &&
2093 getOrEnforceKnownAlignment(MDep->getSource(), AllocaAlign, DL, &CB, AC,
2094 DT) < AllocaAlign)
2095 return false;
2096
2097 // 3. Verify that the source doesn't change in between the memcpy and
2098 // the call.
2099 // memcpy(a <- b)
2100 // *b = 42;
2101 // foo(*a)
2102 // It would be invalid to transform the second memcpy into foo(*b).
2103 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
2104 MSSA->getMemoryAccess(MDep), CallAccess))
2105 return false;
2106
2107 // 4. The memcpy src must not be modified during the call.
2109 return false;
2110
2111 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to Immut src:\n"
2112 << " " << *MDep << "\n"
2113 << " " << CB << "\n");
2114
2115 // Otherwise we're good! Update the immut argument.
2116 combineAAMetadata(&CB, MDep);
2117 CB.setArgOperand(ArgNo, MDep->getSource());
2118 ++NumMemCpyInstr;
2119 return true;
2120}
2121
2122/// Executes one iteration of MemCpyOptPass.
2123bool MemCpyOptPass::iterateOnFunction(Function &F) {
2124 bool MadeChange = false;
2125
2126 // Walk all instruction in the function.
2127 for (BasicBlock &BB : F) {
2128 // Skip unreachable blocks. For example processStore assumes that an
2129 // instruction in a BB can't be dominated by a later instruction in the
2130 // same BB (which is a scenario that can happen for an unreachable BB that
2131 // has itself as a predecessor).
2132 if (!DT->isReachableFromEntry(&BB))
2133 continue;
2134
2135 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
2136 // Avoid invalidating the iterator.
2137 Instruction *I = &*BI++;
2138
2139 bool RepeatInstruction = false;
2140
2141 if (auto *SI = dyn_cast<StoreInst>(I))
2142 MadeChange |= processStore(SI, BI);
2143 else if (auto *M = dyn_cast<MemSetInst>(I))
2144 RepeatInstruction = processMemSet(M, BI);
2145 else if (auto *M = dyn_cast<MemCpyInst>(I))
2146 RepeatInstruction = processMemCpy(M, BI);
2147 else if (auto *M = dyn_cast<MemMoveInst>(I))
2148 RepeatInstruction = processMemMove(M, BI);
2149 else if (auto *CB = dyn_cast<CallBase>(I)) {
2150 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) {
2151 if (CB->isByValArgument(i))
2152 MadeChange |= processByValArgument(*CB, i);
2153 else if (CB->onlyReadsMemory(i))
2154 MadeChange |= processImmutArgument(*CB, i);
2155 }
2156 }
2157
2158 // Reprocess the instruction if desired.
2159 if (RepeatInstruction) {
2160 if (BI != BB.begin())
2161 --BI;
2162 MadeChange = true;
2163 }
2164 }
2165 }
2166
2167 return MadeChange;
2168}
2169
2171 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2172 auto *AA = &AM.getResult<AAManager>(F);
2173 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
2174 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
2175 auto *PDT = &AM.getResult<PostDominatorTreeAnalysis>(F);
2176 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
2177
2178 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, PDT, &MSSA->getMSSA());
2179 if (!MadeChange)
2180 return PreservedAnalyses::all();
2181
2185 return PA;
2186}
2187
2189 AliasAnalysis *AA_, AssumptionCache *AC_,
2190 DominatorTree *DT_, PostDominatorTree *PDT_,
2191 MemorySSA *MSSA_) {
2192 bool MadeChange = false;
2193 TLI = TLI_;
2194 AA = AA_;
2195 AC = AC_;
2196 DT = DT_;
2197 PDT = PDT_;
2198 MSSA = MSSA_;
2199 MemorySSAUpdater MSSAU_(MSSA_);
2200 MSSAU = &MSSAU_;
2201 EarliestEscapeAnalysis EEA_(*DT);
2202 EEA = &EEA_;
2203
2204 while (true) {
2205 if (!iterateOnFunction(F))
2206 break;
2207 MadeChange = true;
2208 }
2209
2210 if (VerifyMemorySSA)
2211 MSSA_->verifyMemorySSA();
2212
2213 return MadeChange;
2214}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
static bool runImpl(Function &F, const TargetLowering &TLI, AssumptionCache *AC)
Definition ExpandFp.cpp:993
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
Definition LICM.cpp:1450
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, Instruction *End)
static bool isZeroSize(Value *Size)
static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, MemoryDef *Def)
Determine whether the pointer V had only undefined content (due to Def), either because it was freshl...
static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End, Instruction **SkippedLifetimeStart=nullptr)
static bool overreadUndefContents(MemorySSA *MSSA, MemCpyInst *MemCpy, MemIntrinsic *MemSrc, BatchAAResults &BAA)
static cl::opt< bool > EnableMemCpyOptWithoutLibcalls("enable-memcpyopt-without-libcalls", cl::Hidden, cl::desc("Enable memcpyopt even when libcalls are disabled"))
static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End)
This file provides utility analysis objects describing memory locations.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
static void addRange(SmallVectorImpl< ConstantInt * > &EndPoints, ConstantInt *Low, ConstantInt *High)
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
if(PassOpts->AAPipeline)
This file contains the declarations for profiling metadata utility functions.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
A manager for alias analyses.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
void setAlignment(Align Align)
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
iterator end()
Definition BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT)
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool doesNotCapture(unsigned OpNo) const
Determine whether this data operand is not captured.
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
MaybeAlign getParamAlign(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
bool onlyReadsMemory(unsigned OpNo) const
Type * getParamByValType(unsigned ArgNo) const
Extract the byval type for a call or parameter.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
unsigned arg_size() const
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
Context-sensitive CaptureAnalysis provider, which computes and caches the earliest common dominator c...
LLVM_ABI void mergeDIAssignID(ArrayRef< const Instruction * > SourceInstructions)
Merge the DIAssignID metadata from this instruction and those attached to instructions in SourceInstr...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs={})
Drop all unknown metadata except for debug locations.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Value * getPointerOperand()
bool isSimple() const
Align getAlign() const
Return the alignment of the access that is being performed.
bool hasValue() const
static LocationSize precise(uint64_t Value)
TypeSize getValue() const
This class wraps the llvm.memcpy intrinsic.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
bool runImpl(Function &F, TargetLibraryInfo *TLI, AAResults *AA, AssumptionCache *AC, DominatorTree *DT, PostDominatorTree *PDT, MemorySSA *MSSA)
Value * getLength() const
Value * getRawDest() const
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
MaybeAlign getDestAlign() const
This is the common base class for memset/memcpy/memmove.
bool isVolatile() const
Value * getValue() const
Value * getRawSource() const
Return the arguments to the instruction.
MaybeAlign getSourceAlign() const
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it,...
BasicBlock * getBlock() const
Definition MemorySSA.h:162
AllAccessType::self_iterator getIterator()
Get the iterators for the all access list and the defs only list We default to the all access list.
Definition MemorySSA.h:181
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
Definition MemorySSA.h:371
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
static LLVM_ABI MemoryLocation getForSource(const MemTransferInst *MTI)
Return a location representing the source of a memory transfer.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
static MemoryLocation getBeforeOrAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location before or after Ptr, while remaining within the underl...
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
An analysis that produces MemorySSA for a function.
Definition MemorySSA.h:936
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Definition MemorySSA.h:1053
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition MemorySSA.h:702
LLVM_ABI bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
LLVM_ABI MemorySSAWalker * getWalker()
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition MemorySSA.h:720
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Definition MemorySSA.h:740
Class that has the common methods + fields of memory uses/defs.
Definition MemorySSA.h:250
MemoryAccess * getDefiningAccess() const
Get the access that produces the memory state used by this Use.
Definition MemorySSA.h:260
Instruction * getMemoryInst() const
Get the instruction that this MemoryUse represents.
Definition MemorySSA.h:257
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition Module.h:278
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
size_type size() const
Definition SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
void reserve(size_type N)
typename SuperClass::const_iterator const_iterator
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
LLVM_ABI unsigned getIntegerBitWidth() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
Value * getOperand(unsigned i) const
Definition User.h:232
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
Definition Value.cpp:1052
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
const ParentTy * getParent() const
Definition ilist_node.h:34
reverse_self_iterator getReverseIterator()
Definition ilist_node.h:126
self_iterator getIterator()
Definition ilist_node.h:123
CallInst * Call
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
Abstract Attribute helper functions.
Definition Attributor.h:165
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
@ User
could "use" a pointer
bool empty() const
Definition BasicBlock.h:101
iterator end() const
Definition BasicBlock.h:89
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
LLVM_ABI iterator begin() const
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
bool capturesAddress(CaptureComponents CC)
Definition ModRef.h:327
LLVM_ABI bool isPotentiallyReachableFromMany(SmallVectorImpl< BasicBlock * > &Worklist, const BasicBlock *StopBB, const SmallPtrSetImpl< BasicBlock * > *ExclusionSet, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether there is at least one path from a block in 'Worklist' to 'StopBB' without passing t...
Definition CFG.cpp:240
LLVM_ABI void setExplicitlyUnknownBranchWeightsIfProfiled(Instruction &I, StringRef PassName, const Function *F=nullptr)
Like setExplicitlyUnknownBranchWeights(...), but only sets unknown branch weights in the new instruct...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
auto partition_point(R &&Range, Predicate P)
Binary search for the first iterator in a range where a predicate is false.
Definition STLExtras.h:2071
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
auto cast_or_null(const Y &Val)
Definition Casting.h:714
LLVM_ABI unsigned getDefaultMaxUsesToExploreForCaptureTracking()
getDefaultMaxUsesToExploreForCaptureTracking - Return default value of the maximal number of uses to ...
LLVM_ABI bool PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI=false, unsigned MaxUsesToExplore=0, const LoopInfo *LI=nullptr)
PointerMayBeCapturedBefore - Return true if this pointer value may be captured by the enclosing funct...
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to ensure that the alignment of V is at least PrefAlign bytes.
Definition Local.cpp:1566
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool isModOrRefSet(const ModRefInfo MRI)
Definition ModRef.h:43
LLVM_ABI bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind)
Return true if Object memory is not visible after an unwind, in the sense that program semantics cann...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
Definition ModRef.h:28
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition MemorySSA.cpp:84
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
DWARFExpression::Operation Op
LLVM_ABI bool isIdentifiedFunctionLocal(const Value *V)
Return true if V is umabigously identified at the function-level.
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI void combineAAMetadata(Instruction *K, const Instruction *J)
Combine metadata of two instructions, where instruction J is a memory access that has been merged int...
Definition Local.cpp:3099
bool capturesAnything(CaptureComponents CC)
Definition ModRef.h:319
LLVM_ABI UseCaptureInfo DetermineUseCaptureKind(const Use &U, const Value *Base)
Determine what kind of capture behaviour U may exhibit.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
bool capturesAnyProvenance(CaptureComponents CC)
Definition ModRef.h:340
bool isRefSet(const ModRefInfo MRI)
Definition ModRef.h:52
LLVM_ABI bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly)
Return true if the Object is writable, in the sense that any location based on this pointer that can ...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition Alignment.h:130
CaptureComponents UseCC
Components captured by this use.
CaptureComponents ResultCC
Components captured by the return value of the user of this Use.