LLVM 23.0.0git
CoroFrame.cpp
Go to the documentation of this file.
1//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file contains classes used to discover if for a particular value
9// its definition precedes and its uses follow a suspend block. This is
10// referred to as a suspend crossing value.
11//
12// Using the information discovered we form a Coroutine Frame structure to
13// contain those values. All uses of those values are replaced with appropriate
14// GEP + load from the coroutine frame. At the point of the definition we spill
15// the value into the coroutine frame.
16//===----------------------------------------------------------------------===//
17
18#include "CoroInternal.h"
19#include "llvm/ADT/ScopeExit.h"
22#include "llvm/IR/DIBuilder.h"
23#include "llvm/IR/DebugInfo.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/MDBuilder.h"
29#include "llvm/IR/Module.h"
31#include "llvm/Support/Debug.h"
41#include <algorithm>
42#include <optional>
43
44using namespace llvm;
45
46#define DEBUG_TYPE "coro-frame"
47
48namespace {
49class FrameTypeBuilder;
50// Mapping from the to-be-spilled value to all the users that need reload.
51struct FrameDataInfo {
52 // All the values (that are not allocas) that needs to be spilled to the
53 // frame.
54 coro::SpillInfo &Spills;
55 // Allocas contains all values defined as allocas that need to live in the
56 // frame.
58
59 FrameDataInfo(coro::SpillInfo &Spills,
61 : Spills(Spills), Allocas(Allocas) {}
62
63 SmallVector<Value *, 8> getAllDefs() const {
65 for (const auto &P : Spills)
66 Defs.push_back(P.first);
67 for (const auto &A : Allocas)
68 Defs.push_back(A.Alloca);
69 return Defs;
70 }
71
72 uint32_t getFieldIndex(Value *V) const {
73 auto Itr = FieldIndexMap.find(V);
74 assert(Itr != FieldIndexMap.end() &&
75 "Value does not have a frame field index");
76 return Itr->second;
77 }
78
79 void setFieldIndex(Value *V, uint32_t Index) {
80 assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) &&
81 "Cannot set the index for the same field twice.");
82 FieldIndexMap[V] = Index;
83 }
84
85 Align getAlign(Value *V) const {
86 auto Iter = FieldAlignMap.find(V);
87 assert(Iter != FieldAlignMap.end());
88 return Iter->second;
89 }
90
91 void setAlign(Value *V, Align AL) {
92 assert(FieldAlignMap.count(V) == 0);
93 FieldAlignMap.insert({V, AL});
94 }
95
96 uint64_t getDynamicAlign(Value *V) const {
97 auto Iter = FieldDynamicAlignMap.find(V);
98 assert(Iter != FieldDynamicAlignMap.end());
99 return Iter->second;
100 }
101
102 void setDynamicAlign(Value *V, uint64_t Align) {
103 assert(FieldDynamicAlignMap.count(V) == 0);
104 FieldDynamicAlignMap.insert({V, Align});
105 }
106
107 uint64_t getOffset(Value *V) const {
108 auto Iter = FieldOffsetMap.find(V);
109 assert(Iter != FieldOffsetMap.end());
110 return Iter->second;
111 }
112
113 void setOffset(Value *V, uint64_t Offset) {
114 assert(FieldOffsetMap.count(V) == 0);
115 FieldOffsetMap.insert({V, Offset});
116 }
117
118 // Remap the index of every field in the frame, using the final layout index.
119 void updateLayoutIndex(FrameTypeBuilder &B);
120
121private:
122 // LayoutIndexUpdateStarted is used to avoid updating the index of any field
123 // twice by mistake.
124 bool LayoutIndexUpdateStarted = false;
125 // Map from values to their slot indexes on the frame. They will be first set
126 // with their original insertion field index. After the frame is built, their
127 // indexes will be updated into the final layout index.
128 DenseMap<Value *, uint32_t> FieldIndexMap;
129 // Map from values to their alignment on the frame. They would be set after
130 // the frame is built.
131 DenseMap<Value *, Align> FieldAlignMap;
132 DenseMap<Value *, uint64_t> FieldDynamicAlignMap;
133 // Map from values to their offset on the frame. They would be set after
134 // the frame is built.
135 DenseMap<Value *, uint64_t> FieldOffsetMap;
136};
137} // namespace
138
139#ifndef NDEBUG
140static void dumpSpills(StringRef Title, const coro::SpillInfo &Spills) {
141 dbgs() << "------------- " << Title << " --------------\n";
142 for (const auto &E : Spills) {
143 E.first->dump();
144 dbgs() << " user: ";
145 for (auto *I : E.second)
146 I->dump();
147 }
148}
149
151 dbgs() << "------------- Allocas --------------\n";
152 for (const auto &A : Allocas) {
153 A.Alloca->dump();
154 }
155}
156#endif
157
158namespace {
159using FieldIDType = size_t;
160// We cannot rely solely on natural alignment of a type when building a
161// coroutine frame and if the alignment specified on the Alloca instruction
162// differs from the natural alignment of the alloca type we will need to insert
163// padding.
164class FrameTypeBuilder {
165private:
166 struct Field {
167 uint64_t Size;
168 uint64_t Offset;
169 Type *Ty;
170 FieldIDType LayoutFieldIndex;
172 Align TyAlignment;
173 uint64_t DynamicAlignBuffer;
174 };
175
176 const DataLayout &DL;
177 LLVMContext &Context;
178 uint64_t StructSize = 0;
179 Align StructAlign;
180 bool IsFinished = false;
181
182 std::optional<Align> MaxFrameAlignment;
183
185 DenseMap<Value*, unsigned> FieldIndexByKey;
186
187public:
188 FrameTypeBuilder(LLVMContext &Context, const DataLayout &DL,
189 std::optional<Align> MaxFrameAlignment)
190 : DL(DL), Context(Context), MaxFrameAlignment(MaxFrameAlignment) {}
191
192 /// Add a field to this structure for the storage of an `alloca`
193 /// instruction.
194 [[nodiscard]] FieldIDType addFieldForAlloca(AllocaInst *AI,
195 bool IsHeader = false) {
196 Type *Ty = AI->getAllocatedType();
197
198 // Make an array type if this is a static array allocation.
199 if (AI->isArrayAllocation()) {
200 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
201 Ty = ArrayType::get(Ty, CI->getValue().getZExtValue());
202 else
203 report_fatal_error("Coroutines cannot handle non static allocas yet");
204 }
205
206 return addField(Ty, AI->getAlign(), IsHeader);
207 }
208
209 /// We want to put the allocas whose lifetime-ranges are not overlapped
210 /// into one slot of coroutine frame.
211 /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566
212 ///
213 /// cppcoro::task<void> alternative_paths(bool cond) {
214 /// if (cond) {
215 /// big_structure a;
216 /// process(a);
217 /// co_await something();
218 /// } else {
219 /// big_structure b;
220 /// process2(b);
221 /// co_await something();
222 /// }
223 /// }
224 ///
225 /// We want to put variable a and variable b in the same slot to
226 /// reduce the size of coroutine frame.
227 ///
228 /// This function use StackLifetime algorithm to partition the AllocaInsts in
229 /// Spills to non-overlapped sets in order to put Alloca in the same
230 /// non-overlapped set into the same slot in the Coroutine Frame. Then add
231 /// field for the allocas in the same non-overlapped set by using the largest
232 /// type as the field type.
233 ///
234 /// Side Effects: Because We sort the allocas, the order of allocas in the
235 /// frame may be different with the order in the source code.
236 void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData,
237 coro::Shape &Shape, bool OptimizeFrame);
238
239 /// Add a field to this structure.
240 [[nodiscard]] FieldIDType addField(Type *Ty, MaybeAlign MaybeFieldAlignment,
241 bool IsHeader = false,
242 bool IsSpillOfValue = false) {
243 assert(!IsFinished && "adding fields to a finished builder");
244 assert(Ty && "must provide a type for a field");
245
246 // The field size is always the alloc size of the type.
247 uint64_t FieldSize = DL.getTypeAllocSize(Ty);
248
249 // For an alloca with size=0, we don't need to add a field and they
250 // can just point to any index in the frame. Use index 0.
251 if (FieldSize == 0) {
252 return 0;
253 }
254
255 // The field alignment might not be the type alignment, but we need
256 // to remember the type alignment anyway to build the type.
257 // If we are spilling values we don't need to worry about ABI alignment
258 // concerns.
259 Align ABIAlign = DL.getABITypeAlign(Ty);
260 Align TyAlignment = ABIAlign;
261 if (IsSpillOfValue && MaxFrameAlignment && *MaxFrameAlignment < ABIAlign)
262 TyAlignment = *MaxFrameAlignment;
263 Align FieldAlignment = MaybeFieldAlignment.value_or(TyAlignment);
264
265 // The field alignment could be bigger than the max frame case, in that case
266 // we request additional storage to be able to dynamically align the
267 // pointer.
268 uint64_t DynamicAlignBuffer = 0;
269 if (MaxFrameAlignment && (FieldAlignment > *MaxFrameAlignment)) {
270 DynamicAlignBuffer =
271 offsetToAlignment(MaxFrameAlignment->value(), FieldAlignment);
272 FieldAlignment = *MaxFrameAlignment;
273 FieldSize = FieldSize + DynamicAlignBuffer;
274 }
275
276 // Lay out header fields immediately.
277 uint64_t Offset;
278 if (IsHeader) {
279 Offset = alignTo(StructSize, FieldAlignment);
280 StructSize = Offset + FieldSize;
281
282 // Everything else has a flexible offset.
283 } else {
285 }
286
287 Fields.push_back({FieldSize, Offset, Ty, 0, FieldAlignment, TyAlignment,
288 DynamicAlignBuffer});
289 return Fields.size() - 1;
290 }
291
292 /// Finish the layout and create the struct type with the given name.
293 StructType *finish(StringRef Name);
294
295 uint64_t getStructSize() const {
296 assert(IsFinished && "not yet finished!");
297 return StructSize;
298 }
299
300 Align getStructAlign() const {
301 assert(IsFinished && "not yet finished!");
302 return StructAlign;
303 }
304
305 FieldIDType getLayoutFieldIndex(FieldIDType Id) const {
306 assert(IsFinished && "not yet finished!");
307 return Fields[Id].LayoutFieldIndex;
308 }
309
310 Field getLayoutField(FieldIDType Id) const {
311 assert(IsFinished && "not yet finished!");
312 return Fields[Id];
313 }
314};
315} // namespace
316
317void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) {
318 auto Updater = [&](Value *I) {
319 auto Field = B.getLayoutField(getFieldIndex(I));
320 setFieldIndex(I, Field.LayoutFieldIndex);
321 setAlign(I, Field.Alignment);
322 uint64_t dynamicAlign =
323 Field.DynamicAlignBuffer
324 ? Field.DynamicAlignBuffer + Field.Alignment.value()
325 : 0;
326 setDynamicAlign(I, dynamicAlign);
327 setOffset(I, Field.Offset);
328 };
329 LayoutIndexUpdateStarted = true;
330 for (auto &S : Spills)
331 Updater(S.first);
332 for (const auto &A : Allocas)
333 Updater(A.Alloca);
334 LayoutIndexUpdateStarted = false;
335}
336
337void FrameTypeBuilder::addFieldForAllocas(const Function &F,
338 FrameDataInfo &FrameData,
339 coro::Shape &Shape,
340 bool OptimizeFrame) {
341 using AllocaSetType = SmallVector<AllocaInst *, 4>;
342 SmallVector<AllocaSetType, 4> NonOverlapedAllocas;
343
344 // We need to add field for allocas at the end of this function.
345 llvm::scope_exit AddFieldForAllocasAtExit([&]() {
346 for (auto AllocaList : NonOverlapedAllocas) {
347 auto *LargestAI = *AllocaList.begin();
348 FieldIDType Id = addFieldForAlloca(LargestAI);
349 for (auto *Alloca : AllocaList)
350 FrameData.setFieldIndex(Alloca, Id);
351 }
352 });
353
354 if (!OptimizeFrame) {
355 for (const auto &A : FrameData.Allocas) {
356 AllocaInst *Alloca = A.Alloca;
357 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
358 }
359 return;
360 }
361
362 // Because there are paths from the lifetime.start to coro.end
363 // for each alloca, the liferanges for every alloca is overlaped
364 // in the blocks who contain coro.end and the successor blocks.
365 // So we choose to skip there blocks when we calculate the liferange
366 // for each alloca. It should be reasonable since there shouldn't be uses
367 // in these blocks and the coroutine frame shouldn't be used outside the
368 // coroutine body.
369 //
370 // Note that the user of coro.suspend may not be SwitchInst. However, this
371 // case seems too complex to handle. And it is harmless to skip these
372 // patterns since it just prevend putting the allocas to live in the same
373 // slot.
374 DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest;
375 for (auto *CoroSuspendInst : Shape.CoroSuspends) {
376 for (auto *U : CoroSuspendInst->users()) {
377 if (auto *ConstSWI = dyn_cast<SwitchInst>(U)) {
378 auto *SWI = const_cast<SwitchInst *>(ConstSWI);
379 DefaultSuspendDest[SWI] = SWI->getDefaultDest();
380 SWI->setDefaultDest(SWI->getSuccessor(1));
381 }
382 }
383 }
384
385 auto ExtractAllocas = [&]() {
386 AllocaSetType Allocas;
387 Allocas.reserve(FrameData.Allocas.size());
388 for (const auto &A : FrameData.Allocas)
389 Allocas.push_back(A.Alloca);
390 return Allocas;
391 };
392 StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(),
393 StackLifetime::LivenessType::May);
394 StackLifetimeAnalyzer.run();
395 auto DoAllocasInterfere = [&](const AllocaInst *AI1, const AllocaInst *AI2) {
396 return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps(
397 StackLifetimeAnalyzer.getLiveRange(AI2));
398 };
399 auto GetAllocaSize = [&](const coro::AllocaInfo &A) {
400 std::optional<TypeSize> RetSize = A.Alloca->getAllocationSize(DL);
401 assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n");
402 assert(!RetSize->isScalable() && "Scalable vectors are not yet supported");
403 return RetSize->getFixedValue();
404 };
405 // Put larger allocas in the front. So the larger allocas have higher
406 // priority to merge, which can save more space potentially. Also each
407 // AllocaSet would be ordered. So we can get the largest Alloca in one
408 // AllocaSet easily.
409 sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) {
410 return GetAllocaSize(Iter1) > GetAllocaSize(Iter2);
411 });
412 for (const auto &A : FrameData.Allocas) {
413 AllocaInst *Alloca = A.Alloca;
414 bool Merged = false;
415 // Try to find if the Alloca does not interfere with any existing
416 // NonOverlappedAllocaSet. If it is true, insert the alloca to that
417 // NonOverlappedAllocaSet.
418 for (auto &AllocaSet : NonOverlapedAllocas) {
419 assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n");
420 bool NoInterference = none_of(AllocaSet, [&](auto Iter) {
421 return DoAllocasInterfere(Alloca, Iter);
422 });
423 // If the alignment of A is multiple of the alignment of B, the address
424 // of A should satisfy the requirement for aligning for B.
425 //
426 // There may be other more fine-grained strategies to handle the alignment
427 // infomation during the merging process. But it seems hard to handle
428 // these strategies and benefit little.
429 bool Alignable = [&]() -> bool {
430 auto *LargestAlloca = *AllocaSet.begin();
431 return LargestAlloca->getAlign().value() % Alloca->getAlign().value() ==
432 0;
433 }();
434 bool CouldMerge = NoInterference && Alignable;
435 if (!CouldMerge)
436 continue;
437 AllocaSet.push_back(Alloca);
438 Merged = true;
439 break;
440 }
441 if (!Merged) {
442 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
443 }
444 }
445 // Recover the default target destination for each Switch statement
446 // reserved.
447 for (auto SwitchAndDefaultDest : DefaultSuspendDest) {
448 SwitchInst *SWI = SwitchAndDefaultDest.first;
449 BasicBlock *DestBB = SwitchAndDefaultDest.second;
450 SWI->setDefaultDest(DestBB);
451 }
452 // This Debug Info could tell us which allocas are merged into one slot.
453 LLVM_DEBUG(for (auto &AllocaSet
454 : NonOverlapedAllocas) {
455 if (AllocaSet.size() > 1) {
456 dbgs() << "In Function:" << F.getName() << "\n";
457 dbgs() << "Find Union Set "
458 << "\n";
459 dbgs() << "\tAllocas are \n";
460 for (auto Alloca : AllocaSet)
461 dbgs() << "\t\t" << *Alloca << "\n";
462 }
463 });
464}
465
466StructType *FrameTypeBuilder::finish(StringRef Name) {
467 assert(!IsFinished && "already finished!");
468
469 // Prepare the optimal-layout field array.
470 // The Id in the layout field is a pointer to our Field for it.
472 LayoutFields.reserve(Fields.size());
473 for (auto &Field : Fields) {
474 LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment,
475 Field.Offset);
476 }
477
478 // Perform layout.
479 auto SizeAndAlign = performOptimizedStructLayout(LayoutFields);
480 StructSize = SizeAndAlign.first;
481 StructAlign = SizeAndAlign.second;
482
483 auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & {
484 return *static_cast<Field *>(const_cast<void*>(LayoutField.Id));
485 };
486
487 // We need to produce a packed struct type if there's a field whose
488 // assigned offset isn't a multiple of its natural type alignment.
489 bool Packed = [&] {
490 for (auto &LayoutField : LayoutFields) {
491 auto &F = getField(LayoutField);
492 if (!isAligned(F.TyAlignment, LayoutField.Offset))
493 return true;
494 }
495 return false;
496 }();
497
498 // Build the struct body.
499 SmallVector<Type*, 16> FieldTypes;
500 FieldTypes.reserve(LayoutFields.size() * 3 / 2);
501 uint64_t LastOffset = 0;
502 for (auto &LayoutField : LayoutFields) {
503 auto &F = getField(LayoutField);
504
505 auto Offset = LayoutField.Offset;
506
507 // Add a padding field if there's a padding gap and we're either
508 // building a packed struct or the padding gap is more than we'd
509 // get from aligning to the field type's natural alignment.
510 assert(Offset >= LastOffset);
511 if (Offset != LastOffset) {
512 if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset)
513 FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context),
514 Offset - LastOffset));
515 }
516
517 F.Offset = Offset;
518 F.LayoutFieldIndex = FieldTypes.size();
519
520 FieldTypes.push_back(F.Ty);
521 if (F.DynamicAlignBuffer) {
522 FieldTypes.push_back(
523 ArrayType::get(Type::getInt8Ty(Context), F.DynamicAlignBuffer));
524 }
525 LastOffset = Offset + F.Size;
526 }
527
528 StructType *Ty = StructType::create(Context, FieldTypes, Name, Packed);
529
530#ifndef NDEBUG
531 // Check that the IR layout matches the offsets we expect.
532 auto Layout = DL.getStructLayout(Ty);
533 for (auto &F : Fields) {
534 assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty);
535 assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset);
536 }
537#endif
538
539 IsFinished = true;
540
541 return Ty;
542}
543
544static void cacheDIVar(FrameDataInfo &FrameData,
546 for (auto *V : FrameData.getAllDefs()) {
547 if (DIVarCache.contains(V))
548 continue;
549
550 auto CacheIt = [&DIVarCache, V](const auto &Container) {
551 auto *I = llvm::find_if(Container, [](auto *DDI) {
552 return DDI->getExpression()->getNumElements() == 0;
553 });
554 if (I != Container.end())
555 DIVarCache.insert({V, (*I)->getVariable()});
556 };
557 CacheIt(findDVRDeclares(V));
558 CacheIt(findDVRDeclareValues(V));
559 }
560}
561
562/// Create name for Type. It uses MDString to store new created string to
563/// avoid memory leak.
565 if (Ty->isIntegerTy()) {
566 // The longest name in common may be '__int_128', which has 9 bits.
567 SmallString<16> Buffer;
568 raw_svector_ostream OS(Buffer);
569 OS << "__int_" << cast<IntegerType>(Ty)->getBitWidth();
570 auto *MDName = MDString::get(Ty->getContext(), OS.str());
571 return MDName->getString();
572 }
573
574 if (Ty->isFloatingPointTy()) {
575 if (Ty->isFloatTy())
576 return "__float_";
577 if (Ty->isDoubleTy())
578 return "__double_";
579 return "__floating_type_";
580 }
581
582 if (Ty->isPointerTy())
583 return "PointerType";
584
585 if (Ty->isStructTy()) {
586 if (!cast<StructType>(Ty)->hasName())
587 return "__LiteralStructType_";
588
589 auto Name = Ty->getStructName();
590
591 SmallString<16> Buffer(Name);
592 for (auto &Iter : Buffer)
593 if (Iter == '.' || Iter == ':')
594 Iter = '_';
595 auto *MDName = MDString::get(Ty->getContext(), Buffer.str());
596 return MDName->getString();
597 }
598
599 return "UnknownType";
600}
601
602static DIType *solveDIType(DIBuilder &Builder, Type *Ty,
603 const DataLayout &Layout, DIScope *Scope,
604 unsigned LineNum,
605 DenseMap<Type *, DIType *> &DITypeCache) {
606 if (DIType *DT = DITypeCache.lookup(Ty))
607 return DT;
608
609 StringRef Name = solveTypeName(Ty);
610
611 DIType *RetType = nullptr;
612
613 if (Ty->isIntegerTy()) {
614 auto BitWidth = cast<IntegerType>(Ty)->getBitWidth();
615 RetType = Builder.createBasicType(Name, BitWidth, dwarf::DW_ATE_signed,
616 llvm::DINode::FlagArtificial);
617 } else if (Ty->isFloatingPointTy()) {
618 RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty),
619 dwarf::DW_ATE_float,
620 llvm::DINode::FlagArtificial);
621 } else if (Ty->isPointerTy()) {
622 // Construct PointerType points to null (aka void *) instead of exploring
623 // pointee type to avoid infinite search problem. For example, we would be
624 // in trouble if we traverse recursively:
625 //
626 // struct Node {
627 // Node* ptr;
628 // };
629 RetType =
630 Builder.createPointerType(nullptr, Layout.getTypeSizeInBits(Ty),
631 Layout.getABITypeAlign(Ty).value() * CHAR_BIT,
632 /*DWARFAddressSpace=*/std::nullopt, Name);
633 } else if (Ty->isStructTy()) {
634 auto *DIStruct = Builder.createStructType(
635 Scope, Name, Scope->getFile(), LineNum, Layout.getTypeSizeInBits(Ty),
636 Layout.getPrefTypeAlign(Ty).value() * CHAR_BIT,
637 llvm::DINode::FlagArtificial, nullptr, llvm::DINodeArray());
638
639 auto *StructTy = cast<StructType>(Ty);
641 for (unsigned I = 0; I < StructTy->getNumElements(); I++) {
642 DIType *DITy = solveDIType(Builder, StructTy->getElementType(I), Layout,
643 DIStruct, LineNum, DITypeCache);
644 assert(DITy);
645 Elements.push_back(Builder.createMemberType(
646 DIStruct, DITy->getName(), DIStruct->getFile(), LineNum,
647 DITy->getSizeInBits(), DITy->getAlignInBits(),
648 Layout.getStructLayout(StructTy)->getElementOffsetInBits(I),
649 llvm::DINode::FlagArtificial, DITy));
650 }
651
652 Builder.replaceArrays(DIStruct, Builder.getOrCreateArray(Elements));
653
654 RetType = DIStruct;
655 } else {
656 LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n");
657 TypeSize Size = Layout.getTypeSizeInBits(Ty);
658 auto *CharSizeType = Builder.createBasicType(
659 Name, 8, dwarf::DW_ATE_unsigned_char, llvm::DINode::FlagArtificial);
660
661 if (Size <= 8)
662 RetType = CharSizeType;
663 else {
664 if (Size % 8 != 0)
665 Size = TypeSize::getFixed(Size + 8 - (Size % 8));
666
667 RetType = Builder.createArrayType(
668 Size, Layout.getPrefTypeAlign(Ty).value(), CharSizeType,
669 Builder.getOrCreateArray(Builder.getOrCreateSubrange(0, Size / 8)));
670 }
671 }
672
673 DITypeCache.insert({Ty, RetType});
674 return RetType;
675}
676
677/// Build artificial debug info for C++ coroutine frames to allow users to
678/// inspect the contents of the frame directly
679///
680/// Create Debug information for coroutine frame with debug name "__coro_frame".
681/// The debug information for the fields of coroutine frame is constructed from
682/// the following way:
683/// 1. For all the value in the Frame, we search the use of dbg.declare to find
684/// the corresponding debug variables for the value. If we can find the
685/// debug variable, we can get full and accurate debug information.
686/// 2. If we can't get debug information in step 1 and 2, we could only try to
687/// build the DIType by Type. We did this in solveDIType. We only handle
688/// integer, float, double, integer type and struct type for now.
690 FrameDataInfo &FrameData) {
691 DISubprogram *DIS = F.getSubprogram();
692 // If there is no DISubprogram for F, it implies the function is compiled
693 // without debug info. So we also don't generate debug info for the frame.
694
695 if (!DIS || !DIS->getUnit())
696 return;
697
699 DIS->getUnit()->getSourceLanguage().getUnversionedName())) ||
700 DIS->getUnit()->getEmissionKind() !=
702 return;
703
704 assert(Shape.ABI == coro::ABI::Switch &&
705 "We could only build debug infomation for C++ coroutine now.\n");
706
707 DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false);
708
709 DIFile *DFile = DIS->getFile();
710 unsigned LineNum = DIS->getLine();
711
712 DICompositeType *FrameDITy = DBuilder.createStructType(
713 DIS->getUnit(), Twine(F.getName() + ".coro_frame_ty").str(),
714 DFile, LineNum, Shape.FrameSize * 8,
715 Shape.FrameAlign.value() * 8, llvm::DINode::FlagArtificial, nullptr,
716 llvm::DINodeArray());
717 StructType *FrameTy = Shape.FrameTy;
719 DataLayout Layout = F.getDataLayout();
720
722 cacheDIVar(FrameData, DIVarCache);
723
724 unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume;
725 unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy;
726 unsigned IndexIndex = Shape.SwitchLowering.IndexField;
727
729 NameCache.insert({ResumeIndex, "__resume_fn"});
730 NameCache.insert({DestroyIndex, "__destroy_fn"});
731 NameCache.insert({IndexIndex, "__coro_index"});
732
733 Type *ResumeFnTy = FrameTy->getElementType(ResumeIndex),
734 *DestroyFnTy = FrameTy->getElementType(DestroyIndex),
735 *IndexTy = FrameTy->getElementType(IndexIndex);
736
738 TyCache.insert(
739 {ResumeIndex, DBuilder.createPointerType(
740 nullptr, Layout.getTypeSizeInBits(ResumeFnTy))});
741 TyCache.insert(
742 {DestroyIndex, DBuilder.createPointerType(
743 nullptr, Layout.getTypeSizeInBits(DestroyFnTy))});
744
745 /// FIXME: If we fill the field `SizeInBits` with the actual size of
746 /// __coro_index in bits, then __coro_index wouldn't show in the debugger.
747 TyCache.insert({IndexIndex, DBuilder.createBasicType(
748 "__coro_index",
749 (Layout.getTypeSizeInBits(IndexTy) < 8)
750 ? 8
751 : Layout.getTypeSizeInBits(IndexTy),
752 dwarf::DW_ATE_unsigned_char)});
753
754 for (auto *V : FrameData.getAllDefs()) {
755 auto It = DIVarCache.find(V);
756 if (It == DIVarCache.end())
757 continue;
758
759 auto Index = FrameData.getFieldIndex(V);
760
761 NameCache.insert({Index, It->second->getName()});
762 TyCache.insert({Index, It->second->getType()});
763 }
764
765 // Cache from index to (Align, Offset Pair)
767 // The Align and Offset of Resume function and Destroy function are fixed.
768 OffsetCache.insert({ResumeIndex, {8, 0}});
769 OffsetCache.insert({DestroyIndex, {8, 8}});
770 OffsetCache.insert(
771 {IndexIndex,
773
774 for (auto *V : FrameData.getAllDefs()) {
775 auto Index = FrameData.getFieldIndex(V);
776
777 OffsetCache.insert(
778 {Index, {FrameData.getAlign(V).value(), FrameData.getOffset(V)}});
779 }
780
781 DenseMap<Type *, DIType *> DITypeCache;
782 // This counter is used to avoid same type names. e.g., there would be
783 // many i32 and i64 types in one coroutine. And we would use i32_0 and
784 // i32_1 to avoid the same type. Since it makes no sense the name of the
785 // fields confilicts with each other.
786 unsigned UnknownTypeNum = 0;
787 for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) {
788 auto OCIt = OffsetCache.find(Index);
789 if (OCIt == OffsetCache.end())
790 continue;
791
792 std::string Name;
793 uint64_t SizeInBits;
794 uint32_t AlignInBits;
795 uint64_t OffsetInBits;
796 DIType *DITy = nullptr;
797
798 Type *Ty = FrameTy->getElementType(Index);
799 assert(Ty->isSized() && "We can't handle type which is not sized.\n");
800 SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedValue();
801 AlignInBits = OCIt->second.first * 8;
802 OffsetInBits = OCIt->second.second * 8;
803
804 if (auto It = NameCache.find(Index); It != NameCache.end()) {
805 Name = It->second.str();
806 DITy = TyCache[Index];
807 } else {
808 DITy = solveDIType(DBuilder, Ty, Layout, FrameDITy, LineNum, DITypeCache);
809 assert(DITy && "SolveDIType shouldn't return nullptr.\n");
810 Name = DITy->getName().str();
811 Name += "_" + std::to_string(UnknownTypeNum);
812 UnknownTypeNum++;
813 }
814
815 Elements.push_back(DBuilder.createMemberType(
816 FrameDITy, Name, DFile, LineNum, SizeInBits, AlignInBits, OffsetInBits,
817 llvm::DINode::FlagArtificial, DITy));
818 }
819
820 DBuilder.replaceArrays(FrameDITy, DBuilder.getOrCreateArray(Elements));
821
822 auto *FrameDIVar =
823 DBuilder.createAutoVariable(DIS, "__coro_frame", DFile, LineNum,
824 FrameDITy, true, DINode::FlagArtificial);
825
826 // Subprogram would have ContainedNodes field which records the debug
827 // variables it contained. So we need to add __coro_frame to the
828 // ContainedNodes of it.
829 //
830 // If we don't add __coro_frame to the RetainedNodes, user may get
831 // `no symbol __coro_frame in context` rather than `__coro_frame`
832 // is optimized out, which is more precise.
833 auto RetainedNodes = DIS->getRetainedNodes();
834 SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(),
835 RetainedNodes.end());
836 RetainedNodesVec.push_back(FrameDIVar);
837 DIS->replaceOperandWith(7, (MDTuple::get(F.getContext(), RetainedNodesVec)));
838
839 // Construct the location for the frame debug variable. The column number
840 // is fake but it should be fine.
841 DILocation *DILoc =
842 DILocation::get(DIS->getContext(), LineNum, /*Column=*/1, DIS);
843 assert(FrameDIVar->isValidLocationForIntrinsic(DILoc));
844
845 DbgVariableRecord *NewDVR =
846 new DbgVariableRecord(ValueAsMetadata::get(Shape.FramePtr), FrameDIVar,
847 DBuilder.createExpression(), DILoc,
850 It->getParent()->insertDbgRecordBefore(NewDVR, It);
851}
852
853// Build a struct that will keep state for an active coroutine.
854// struct f.frame {
855// ResumeFnTy ResumeFnAddr;
856// ResumeFnTy DestroyFnAddr;
857// ... promise (if present) ...
858// int ResumeIndex;
859// ... spills ...
860// };
862 FrameDataInfo &FrameData,
863 bool OptimizeFrame) {
864 LLVMContext &C = F.getContext();
865 const DataLayout &DL = F.getDataLayout();
866
867 // We will use this value to cap the alignment of spilled values.
868 std::optional<Align> MaxFrameAlignment;
869 if (Shape.ABI == coro::ABI::Async)
870 MaxFrameAlignment = Shape.AsyncLowering.getContextAlignment();
871 FrameTypeBuilder B(C, DL, MaxFrameAlignment);
872
873 AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
874 std::optional<FieldIDType> SwitchIndexFieldId;
875
876 if (Shape.ABI == coro::ABI::Switch) {
877 auto *FnPtrTy = PointerType::getUnqual(C);
878
879 // Add header fields for the resume and destroy functions.
880 // We can rely on these being perfectly packed.
881 (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true);
882 (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true);
883
884 // PromiseAlloca field needs to be explicitly added here because it's
885 // a header field with a fixed offset based on its alignment. Hence it
886 // needs special handling and cannot be added to FrameData.Allocas.
887 if (PromiseAlloca)
888 FrameData.setFieldIndex(
889 PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true));
890
891 // Add a field to store the suspend index. This doesn't need to
892 // be in the header.
893 unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
894 Type *IndexType = Type::getIntNTy(C, IndexBits);
895
896 SwitchIndexFieldId = B.addField(IndexType, std::nullopt);
897 } else {
898 assert(PromiseAlloca == nullptr && "lowering doesn't support promises");
899 }
900
901 // Because multiple allocas may own the same field slot,
902 // we add allocas to field here.
903 B.addFieldForAllocas(F, FrameData, Shape, OptimizeFrame);
904 // Add PromiseAlloca to Allocas list so that
905 // 1. updateLayoutIndex could update its index after
906 // `performOptimizedStructLayout`
907 // 2. it is processed in insertSpills.
908 if (Shape.ABI == coro::ABI::Switch && PromiseAlloca)
909 // We assume that the promise alloca won't be modified before
910 // CoroBegin and no alias will be create before CoroBegin.
911 FrameData.Allocas.emplace_back(
912 PromiseAlloca, DenseMap<Instruction *, std::optional<APInt>>{}, false);
913 // Create an entry for every spilled value.
914 for (auto &S : FrameData.Spills) {
915 Type *FieldType = S.first->getType();
916 MaybeAlign MA;
917 // For byval arguments, we need to store the pointed value in the frame,
918 // instead of the pointer itself.
919 if (const Argument *A = dyn_cast<Argument>(S.first)) {
920 if (A->hasByValAttr()) {
921 FieldType = A->getParamByValType();
922 MA = A->getParamAlign();
923 }
924 }
925 FieldIDType Id =
926 B.addField(FieldType, MA, false /*header*/, true /*IsSpillOfValue*/);
927 FrameData.setFieldIndex(S.first, Id);
928 }
929
930 StructType *FrameTy = [&] {
931 SmallString<32> Name(F.getName());
932 Name.append(".Frame");
933 return B.finish(Name);
934 }();
935
936 FrameData.updateLayoutIndex(B);
937 Shape.FrameAlign = B.getStructAlign();
938 Shape.FrameSize = B.getStructSize();
939
940 switch (Shape.ABI) {
941 case coro::ABI::Switch: {
942 // In the switch ABI, remember the switch-index field.
943 auto IndexField = B.getLayoutField(*SwitchIndexFieldId);
944 Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex;
945 Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value();
946 Shape.SwitchLowering.IndexOffset = IndexField.Offset;
947
948 // Also round the frame size up to a multiple of its alignment, as is
949 // generally expected in C/C++.
950 Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign);
951 break;
952 }
953
954 // In the retcon ABI, remember whether the frame is inline in the storage.
957 auto Id = Shape.getRetconCoroId();
959 = (B.getStructSize() <= Id->getStorageSize() &&
960 B.getStructAlign() <= Id->getStorageAlignment());
961 break;
962 }
963 case coro::ABI::Async: {
966 // Also make the final context size a multiple of the context alignment to
967 // make allocation easier for allocators.
971 if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) {
973 "The alignment requirment of frame variables cannot be higher than "
974 "the alignment of the async function context");
975 }
976 break;
977 }
978 }
979
980 return FrameTy;
981}
982
983/// If MaybeArgument is a byval Argument, return its byval type. Also removes
984/// the captures attribute, so that the argument *value* may be stored directly
985/// on the coroutine frame.
986static Type *extractByvalIfArgument(Value *MaybeArgument) {
987 if (auto *Arg = dyn_cast<Argument>(MaybeArgument)) {
988 Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::Captures);
989
990 if (Arg->hasByValAttr())
991 return Arg->getParamByValType();
992 }
993 return nullptr;
994}
995
996/// Store Def into the coroutine frame.
997static void createStoreIntoFrame(IRBuilder<> &Builder, Value *Def,
998 Type *ByValTy, const coro::Shape &Shape,
999 const FrameDataInfo &FrameData) {
1000 auto Index = FrameData.getFieldIndex(Def);
1001 auto *G = Builder.CreateConstInBoundsGEP2_32(
1002 Shape.FrameTy, Shape.FramePtr, 0, Index,
1003 Def->getName() + Twine(".spill.addr"));
1004 auto SpillAlignment = Align(FrameData.getAlign(Def));
1005
1006 // For byval arguments, store the pointed-to value in the frame.
1007 if (ByValTy)
1008 Builder.CreateAlignedStore(Builder.CreateLoad(ByValTy, Def), G,
1009 SpillAlignment);
1010 else
1011 Builder.CreateAlignedStore(Def, G, SpillAlignment);
1012}
1013
1014/// Returns a GEP into the coroutine frame at the offset where Orig is located.
1015static Value *createGEPToFramePointer(const FrameDataInfo &FrameData,
1016 IRBuilder<> &Builder, coro::Shape &Shape,
1017 Value *Orig) {
1018 LLVMContext &Ctx = Shape.CoroBegin->getContext();
1019 FieldIDType Index = FrameData.getFieldIndex(Orig);
1020 SmallVector<Value *, 3> Indices = {
1021 ConstantInt::get(Type::getInt32Ty(Ctx), 0),
1022 ConstantInt::get(Type::getInt32Ty(Ctx), Index),
1023 };
1024
1025 // If Orig is an array alloca, preserve the original type by adding an extra
1026 // zero offset.
1027 if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
1029 auto Count = CI->getValue().getZExtValue();
1030 if (Count > 1)
1031 Indices.push_back(ConstantInt::get(Type::getInt32Ty(Ctx), 0));
1032 } else {
1033 report_fatal_error("Coroutines cannot handle non static allocas yet");
1034 }
1035 }
1036
1037 auto *GEP = Builder.CreateInBoundsGEP(Shape.FrameTy, Shape.FramePtr, Indices);
1038 if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
1039 if (FrameData.getDynamicAlign(Orig) != 0) {
1040 assert(FrameData.getDynamicAlign(Orig) == AI->getAlign().value());
1041 auto *M = AI->getModule();
1042 auto *IntPtrTy = M->getDataLayout().getIntPtrType(AI->getType());
1043 auto *PtrValue = Builder.CreatePtrToInt(GEP, IntPtrTy);
1044 auto *AlignMask = ConstantInt::get(IntPtrTy, AI->getAlign().value() - 1);
1045 PtrValue = Builder.CreateAdd(PtrValue, AlignMask);
1046 PtrValue = Builder.CreateAnd(PtrValue, Builder.CreateNot(AlignMask));
1047 return Builder.CreateIntToPtr(PtrValue, AI->getType());
1048 }
1049 // If the type of GEP is not equal to the type of AllocaInst, it implies
1050 // that the AllocaInst may be reused in the Frame slot of other AllocaInst.
1051 // Note: If the strategy dealing with alignment changes, this cast must be
1052 // refined
1053 if (GEP->getType() != Orig->getType())
1054 GEP = Builder.CreateAddrSpaceCast(GEP, Orig->getType(),
1055 Orig->getName() + Twine(".cast"));
1056 }
1057 return GEP;
1058}
1059
1060/// Find dbg.declare or dbg.declare_value records referencing `Def`. If none are
1061/// found, walk up the load chain to find one.
1062template <DbgVariableRecord::LocationType record_type>
1063static TinyPtrVector<DbgVariableRecord *>
1065 static_assert(record_type == DbgVariableRecord::LocationType::Declare ||
1067 constexpr auto FindFunc =
1071
1072 TinyPtrVector<DbgVariableRecord *> Records = FindFunc(Def);
1073
1074 if (!F.getSubprogram())
1075 return Records;
1076
1077 Value *CurDef = Def;
1078 while (Records.empty() && isa<LoadInst>(CurDef)) {
1079 auto *LdInst = cast<LoadInst>(CurDef);
1080 if (!LdInst->getType()->isPointerTy())
1081 break;
1082 CurDef = LdInst->getPointerOperand();
1083 if (!isa<AllocaInst, LoadInst>(CurDef))
1084 break;
1085 Records = FindFunc(CurDef);
1086 }
1087
1088 return Records;
1089}
1090
1091// Replace all alloca and SSA values that are accessed across suspend points
1092// with GetElementPointer from coroutine frame + loads and stores. Create an
1093// AllocaSpillBB that will become the new entry block for the resume parts of
1094// the coroutine:
1095//
1096// %hdl = coro.begin(...)
1097// whatever
1098//
1099// becomes:
1100//
1101// %hdl = coro.begin(...)
1102// br label %AllocaSpillBB
1103//
1104// AllocaSpillBB:
1105// ; geps corresponding to allocas that were moved to coroutine frame
1106// br label PostSpill
1107//
1108// PostSpill:
1109// whatever
1110//
1111//
1112static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape) {
1113 LLVMContext &C = Shape.CoroBegin->getContext();
1114 Function *F = Shape.CoroBegin->getFunction();
1115 IRBuilder<> Builder(C);
1116 StructType *FrameTy = Shape.FrameTy;
1117 DominatorTree DT(*F);
1119
1120 MDBuilder MDB(C);
1121 // Create a TBAA tag for accesses to certain coroutine frame slots, so that
1122 // subsequent alias analysis will understand they do not intersect with
1123 // user memory.
1124 // We do this only if a suitable TBAA root already exists in the module.
1125 MDNode *TBAATag = nullptr;
1126 if (auto *CppTBAAStr = MDString::getIfExists(C, "Simple C++ TBAA")) {
1127 auto *TBAARoot = MDNode::getIfExists(C, CppTBAAStr);
1128 // Create a "fake" scalar type; all other types defined in the source
1129 // language will be assumed non-aliasing with this type.
1130 MDNode *Scalar = MDB.createTBAAScalarTypeNode(
1131 (F->getName() + ".Frame Slot").str(), TBAARoot);
1132 TBAATag = MDB.createTBAAStructTagNode(Scalar, Scalar, 0);
1133 }
1134 for (auto const &E : FrameData.Spills) {
1135 Value *Def = E.first;
1136 Type *ByValTy = extractByvalIfArgument(Def);
1137
1138 Builder.SetInsertPoint(coro::getSpillInsertionPt(Shape, Def, DT));
1139 createStoreIntoFrame(Builder, Def, ByValTy, Shape, FrameData);
1140
1141 BasicBlock *CurrentBlock = nullptr;
1142 Value *CurrentReload = nullptr;
1143 for (auto *U : E.second) {
1144 // If we have not seen the use block, create a load instruction to reload
1145 // the spilled value from the coroutine frame. Populates the Value pointer
1146 // reference provided with the frame GEP.
1147 if (CurrentBlock != U->getParent()) {
1148 CurrentBlock = U->getParent();
1149 Builder.SetInsertPoint(CurrentBlock,
1150 CurrentBlock->getFirstInsertionPt());
1151
1152 auto *GEP = createGEPToFramePointer(FrameData, Builder, Shape, E.first);
1153 GEP->setName(E.first->getName() + Twine(".reload.addr"));
1154 if (ByValTy) {
1155 CurrentReload = GEP;
1156 } else {
1157 auto SpillAlignment = Align(FrameData.getAlign(Def));
1158 auto *LI = Builder.CreateAlignedLoad(
1159 FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP,
1160 SpillAlignment, E.first->getName() + Twine(".reload"));
1161 if (TBAATag)
1162 LI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1163 CurrentReload = LI;
1164 }
1165
1168
1169 auto SalvageOne = [&](DbgVariableRecord *DDI) {
1170 // This dbg.declare is preserved for all coro-split function
1171 // fragments. It will be unreachable in the main function, and
1172 // processed by coro::salvageDebugInfo() by the Cloner.
1174 ValueAsMetadata::get(CurrentReload), DDI->getVariable(),
1175 DDI->getExpression(), DDI->getDebugLoc(),
1177 Builder.GetInsertPoint()->getParent()->insertDbgRecordBefore(
1178 NewDVR, Builder.GetInsertPoint());
1179 // This dbg.declare is for the main function entry point. It
1180 // will be deleted in all coro-split functions.
1181 coro::salvageDebugInfo(ArgToAllocaMap, *DDI, false /*UseEntryValue*/);
1182 };
1183 for_each(DVRs, SalvageOne);
1184 }
1185
1186 TinyPtrVector<DbgVariableRecord *> DVRDeclareValues =
1189
1190 auto SalvageOneCoro = [&](auto *DDI) {
1191 // This dbg.declare_value is preserved for all coro-split function
1192 // fragments. It will be unreachable in the main function, and
1193 // processed by coro::salvageDebugInfo() by the Cloner. However, convert
1194 // it to a dbg.declare to make sure future passes don't have to deal
1195 // with a dbg.declare_value.
1196 auto *VAM = ValueAsMetadata::get(CurrentReload);
1197 Type *Ty = VAM->getValue()->getType();
1198 // If the metadata type is not a pointer, emit a dbg.value instead.
1200 ValueAsMetadata::get(CurrentReload), DDI->getVariable(),
1201 DDI->getExpression(), DDI->getDebugLoc(),
1204 Builder.GetInsertPoint()->getParent()->insertDbgRecordBefore(
1205 NewDVR, Builder.GetInsertPoint());
1206 // This dbg.declare_value is for the main function entry point. It
1207 // will be deleted in all coro-split functions.
1208 coro::salvageDebugInfo(ArgToAllocaMap, *DDI, false /*UseEntryValue*/);
1209 };
1210 for_each(DVRDeclareValues, SalvageOneCoro);
1211
1212 // If we have a single edge PHINode, remove it and replace it with a
1213 // reload from the coroutine frame. (We already took care of multi edge
1214 // PHINodes by normalizing them in the rewritePHIs function).
1215 if (auto *PN = dyn_cast<PHINode>(U)) {
1216 assert(PN->getNumIncomingValues() == 1 &&
1217 "unexpected number of incoming "
1218 "values in the PHINode");
1219 PN->replaceAllUsesWith(CurrentReload);
1220 PN->eraseFromParent();
1221 continue;
1222 }
1223
1224 // Replace all uses of CurrentValue in the current instruction with
1225 // reload.
1226 U->replaceUsesOfWith(Def, CurrentReload);
1227 // Instructions are added to Def's user list if the attached
1228 // debug records use Def. Update those now.
1229 for (DbgVariableRecord &DVR : filterDbgVars(U->getDbgRecordRange()))
1230 DVR.replaceVariableLocationOp(Def, CurrentReload, true);
1231 }
1232 }
1233
1234 BasicBlock *FramePtrBB = Shape.getInsertPtAfterFramePtr()->getParent();
1235
1236 auto SpillBlock = FramePtrBB->splitBasicBlock(
1237 Shape.getInsertPtAfterFramePtr(), "AllocaSpillBB");
1238 SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill");
1239 Shape.AllocaSpillBlock = SpillBlock;
1240
1241 // retcon and retcon.once lowering assumes all uses have been sunk.
1242 if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
1243 Shape.ABI == coro::ABI::Async) {
1244 // If we found any allocas, replace all of their remaining uses with Geps.
1245 Builder.SetInsertPoint(SpillBlock, SpillBlock->begin());
1246 for (const auto &P : FrameData.Allocas) {
1247 AllocaInst *Alloca = P.Alloca;
1248 auto *G = createGEPToFramePointer(FrameData, Builder, Shape, Alloca);
1249
1250 // Remove any lifetime intrinsics, now that these are no longer allocas.
1251 for (User *U : make_early_inc_range(Alloca->users())) {
1252 auto *I = cast<Instruction>(U);
1253 if (I->isLifetimeStartOrEnd())
1254 I->eraseFromParent();
1255 }
1256
1257 // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G))
1258 // here, as we are changing location of the instruction.
1259 G->takeName(Alloca);
1260 Alloca->replaceAllUsesWith(G);
1261 Alloca->eraseFromParent();
1262 }
1263 return;
1264 }
1265
1266 // If we found any alloca, replace all of their remaining uses with GEP
1267 // instructions. To remain debugbility, we replace the uses of allocas for
1268 // dbg.declares and dbg.values with the reload from the frame.
1269 // Note: We cannot replace the alloca with GEP instructions indiscriminately,
1270 // as some of the uses may not be dominated by CoroBegin.
1271 Builder.SetInsertPoint(Shape.AllocaSpillBlock,
1272 Shape.AllocaSpillBlock->begin());
1273 SmallVector<Instruction *, 4> UsersToUpdate;
1274 for (const auto &A : FrameData.Allocas) {
1275 AllocaInst *Alloca = A.Alloca;
1276 UsersToUpdate.clear();
1277 for (User *U : make_early_inc_range(Alloca->users())) {
1278 auto *I = cast<Instruction>(U);
1279 // It is meaningless to retain the lifetime intrinsics refer for the
1280 // member of coroutine frames and the meaningless lifetime intrinsics
1281 // are possible to block further optimizations.
1282 if (I->isLifetimeStartOrEnd())
1283 I->eraseFromParent();
1284 else if (DT.dominates(Shape.CoroBegin, I))
1285 UsersToUpdate.push_back(I);
1286 }
1287
1288 if (UsersToUpdate.empty())
1289 continue;
1290 auto *G = createGEPToFramePointer(FrameData, Builder, Shape, Alloca);
1291 G->setName(Alloca->getName() + Twine(".reload.addr"));
1292
1293 SmallVector<DbgVariableRecord *> DbgVariableRecords;
1294 findDbgUsers(Alloca, DbgVariableRecords);
1295 for (auto *DVR : DbgVariableRecords)
1296 DVR->replaceVariableLocationOp(Alloca, G);
1297
1298 for (Instruction *I : UsersToUpdate)
1299 I->replaceUsesOfWith(Alloca, G);
1300 }
1301 Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr());
1302 for (const auto &A : FrameData.Allocas) {
1303 AllocaInst *Alloca = A.Alloca;
1304 if (A.MayWriteBeforeCoroBegin) {
1305 // isEscaped really means potentially modified before CoroBegin.
1306 if (Alloca->isArrayAllocation())
1308 "Coroutines cannot handle copying of array allocas yet");
1309
1310 auto *G = createGEPToFramePointer(FrameData, Builder, Shape, Alloca);
1311 auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca);
1312 Builder.CreateStore(Value, G);
1313 }
1314 // For each alias to Alloca created before CoroBegin but used after
1315 // CoroBegin, we recreate them after CoroBegin by applying the offset
1316 // to the pointer in the frame.
1317 for (const auto &Alias : A.Aliases) {
1318 auto *FramePtr =
1319 createGEPToFramePointer(FrameData, Builder, Shape, Alloca);
1320 auto &Value = *Alias.second;
1321 auto ITy = IntegerType::get(C, Value.getBitWidth());
1322 auto *AliasPtr =
1323 Builder.CreatePtrAdd(FramePtr, ConstantInt::get(ITy, Value));
1324 Alias.first->replaceUsesWithIf(
1325 AliasPtr, [&](Use &U) { return DT.dominates(Shape.CoroBegin, U); });
1326 }
1327 }
1328
1329 // PromiseAlloca is not collected in FrameData.Allocas. So we don't handle
1330 // the case that the PromiseAlloca may have writes before CoroBegin in the
1331 // above codes. And it may be problematic in edge cases. See
1332 // https://github.com/llvm/llvm-project/issues/57861 for an example.
1333 if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) {
1335 // If there is memory accessing to promise alloca before CoroBegin;
1336 bool HasAccessingPromiseBeforeCB = llvm::any_of(PA->uses(), [&](Use &U) {
1337 auto *Inst = dyn_cast<Instruction>(U.getUser());
1338 if (!Inst || DT.dominates(Shape.CoroBegin, Inst))
1339 return false;
1340
1341 if (auto *CI = dyn_cast<CallInst>(Inst)) {
1342 // It is fine if the call wouldn't write to the Promise.
1343 // This is possible for @llvm.coro.id intrinsics, which
1344 // would take the promise as the second argument as a
1345 // marker.
1346 if (CI->onlyReadsMemory() ||
1347 CI->onlyReadsMemory(CI->getArgOperandNo(&U)))
1348 return false;
1349 return true;
1350 }
1351
1352 return isa<StoreInst>(Inst) ||
1353 // It may take too much time to track the uses.
1354 // Be conservative about the case the use may escape.
1355 isa<GetElementPtrInst>(Inst) ||
1356 // There would always be a bitcast for the promise alloca
1357 // before we enabled Opaque pointers. And now given
1358 // opaque pointers are enabled by default. This should be
1359 // fine.
1360 isa<BitCastInst>(Inst);
1361 });
1362 if (HasAccessingPromiseBeforeCB) {
1363 Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr());
1364 auto *G = createGEPToFramePointer(FrameData, Builder, Shape, PA);
1365 auto *Value = Builder.CreateLoad(PA->getAllocatedType(), PA);
1366 Builder.CreateStore(Value, G);
1367 }
1368 }
1369}
1370
1371// Moves the values in the PHIs in SuccBB that correspong to PredBB into a new
1372// PHI in InsertedBB.
1374 BasicBlock *InsertedBB,
1375 BasicBlock *PredBB,
1376 PHINode *UntilPHI = nullptr) {
1377 auto *PN = cast<PHINode>(&SuccBB->front());
1378 do {
1379 int Index = PN->getBasicBlockIndex(InsertedBB);
1380 Value *V = PN->getIncomingValue(Index);
1381 PHINode *InputV = PHINode::Create(
1382 V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName());
1383 InputV->insertBefore(InsertedBB->begin());
1384 InputV->addIncoming(V, PredBB);
1385 PN->setIncomingValue(Index, InputV);
1386 PN = dyn_cast<PHINode>(PN->getNextNode());
1387 } while (PN != UntilPHI);
1388}
1389
1390// Rewrites the PHI Nodes in a cleanuppad.
1391static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB,
1392 CleanupPadInst *CleanupPad) {
1393 // For every incoming edge to a CleanupPad we will create a new block holding
1394 // all incoming values in single-value PHI nodes. We will then create another
1395 // block to act as a dispather (as all unwind edges for related EH blocks
1396 // must be the same).
1397 //
1398 // cleanuppad:
1399 // %2 = phi i32[%0, %catchswitch], [%1, %catch.1]
1400 // %3 = cleanuppad within none []
1401 //
1402 // It will create:
1403 //
1404 // cleanuppad.corodispatch
1405 // %2 = phi i8[0, %catchswitch], [1, %catch.1]
1406 // %3 = cleanuppad within none []
1407 // switch i8 % 2, label %unreachable
1408 // [i8 0, label %cleanuppad.from.catchswitch
1409 // i8 1, label %cleanuppad.from.catch.1]
1410 // cleanuppad.from.catchswitch:
1411 // %4 = phi i32 [%0, %catchswitch]
1412 // br %label cleanuppad
1413 // cleanuppad.from.catch.1:
1414 // %6 = phi i32 [%1, %catch.1]
1415 // br %label cleanuppad
1416 // cleanuppad:
1417 // %8 = phi i32 [%4, %cleanuppad.from.catchswitch],
1418 // [%6, %cleanuppad.from.catch.1]
1419
1420 // Unreachable BB, in case switching on an invalid value in the dispatcher.
1421 auto *UnreachBB = BasicBlock::Create(
1422 CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent());
1423 IRBuilder<> Builder(UnreachBB);
1424 Builder.CreateUnreachable();
1425
1426 // Create a new cleanuppad which will be the dispatcher.
1427 auto *NewCleanupPadBB =
1428 BasicBlock::Create(CleanupPadBB->getContext(),
1429 CleanupPadBB->getName() + Twine(".corodispatch"),
1430 CleanupPadBB->getParent(), CleanupPadBB);
1431 Builder.SetInsertPoint(NewCleanupPadBB);
1432 auto *SwitchType = Builder.getInt8Ty();
1433 auto *SetDispatchValuePN =
1434 Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB));
1435 CleanupPad->removeFromParent();
1436 CleanupPad->insertAfter(SetDispatchValuePN->getIterator());
1437 auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB,
1438 pred_size(CleanupPadBB));
1439
1440 int SwitchIndex = 0;
1441 SmallVector<BasicBlock *, 8> Preds(predecessors(CleanupPadBB));
1442 for (BasicBlock *Pred : Preds) {
1443 // Create a new cleanuppad and move the PHI values to there.
1444 auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(),
1445 CleanupPadBB->getName() +
1446 Twine(".from.") + Pred->getName(),
1447 CleanupPadBB->getParent(), CleanupPadBB);
1448 updatePhiNodes(CleanupPadBB, Pred, CaseBB);
1449 CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") +
1450 Pred->getName());
1451 Builder.SetInsertPoint(CaseBB);
1452 Builder.CreateBr(CleanupPadBB);
1453 movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB);
1454
1455 // Update this Pred to the new unwind point.
1456 setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB);
1457
1458 // Setup the switch in the dispatcher.
1459 auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex);
1460 SetDispatchValuePN->addIncoming(SwitchConstant, Pred);
1461 SwitchOnDispatch->addCase(SwitchConstant, CaseBB);
1462 SwitchIndex++;
1463 }
1464}
1465
1468 for (auto &BB : F) {
1469 for (auto &Phi : BB.phis()) {
1470 if (Phi.getNumIncomingValues() == 1) {
1471 Worklist.push_back(&Phi);
1472 } else
1473 break;
1474 }
1475 }
1476 while (!Worklist.empty()) {
1477 auto *Phi = Worklist.pop_back_val();
1478 auto *OriginalValue = Phi->getIncomingValue(0);
1479 Phi->replaceAllUsesWith(OriginalValue);
1480 }
1481}
1482
1483static void rewritePHIs(BasicBlock &BB) {
1484 // For every incoming edge we will create a block holding all
1485 // incoming values in a single PHI nodes.
1486 //
1487 // loop:
1488 // %n.val = phi i32[%n, %entry], [%inc, %loop]
1489 //
1490 // It will create:
1491 //
1492 // loop.from.entry:
1493 // %n.loop.pre = phi i32 [%n, %entry]
1494 // br %label loop
1495 // loop.from.loop:
1496 // %inc.loop.pre = phi i32 [%inc, %loop]
1497 // br %label loop
1498 //
1499 // After this rewrite, further analysis will ignore any phi nodes with more
1500 // than one incoming edge.
1501
1502 // TODO: Simplify PHINodes in the basic block to remove duplicate
1503 // predecessors.
1504
1505 // Special case for CleanupPad: all EH blocks must have the same unwind edge
1506 // so we need to create an additional "dispatcher" block.
1507 if (!BB.empty()) {
1508 if (auto *CleanupPad =
1511 for (BasicBlock *Pred : Preds) {
1512 if (CatchSwitchInst *CS =
1513 dyn_cast<CatchSwitchInst>(Pred->getTerminator())) {
1514 // CleanupPad with a CatchSwitch predecessor: therefore this is an
1515 // unwind destination that needs to be handle specially.
1516 assert(CS->getUnwindDest() == &BB);
1517 (void)CS;
1518 rewritePHIsForCleanupPad(&BB, CleanupPad);
1519 return;
1520 }
1521 }
1522 }
1523 }
1524
1525 LandingPadInst *LandingPad = nullptr;
1526 PHINode *ReplPHI = nullptr;
1527 if (!BB.empty()) {
1528 if ((LandingPad =
1530 // ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
1531 // We replace the original landing pad with a PHINode that will collect the
1532 // results from all of them.
1533 ReplPHI = PHINode::Create(LandingPad->getType(), 1, "");
1534 ReplPHI->insertBefore(LandingPad->getIterator());
1535 ReplPHI->takeName(LandingPad);
1536 LandingPad->replaceAllUsesWith(ReplPHI);
1537 // We will erase the original landing pad at the end of this function after
1538 // ehAwareSplitEdge cloned it in the transition blocks.
1539 }
1540 }
1541
1543 for (BasicBlock *Pred : Preds) {
1544 auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
1545 IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
1546
1547 // Stop the moving of values at ReplPHI, as this is either null or the PHI
1548 // that replaced the landing pad.
1549 movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI);
1550 }
1551
1552 if (LandingPad) {
1553 // Calls to ehAwareSplitEdge function cloned the original lading pad.
1554 // No longer need it.
1555 LandingPad->eraseFromParent();
1556 }
1557}
1558
1559static void rewritePHIs(Function &F) {
1561
1562 for (BasicBlock &BB : F)
1563 if (auto *PN = dyn_cast<PHINode>(&BB.front()))
1564 if (PN->getNumIncomingValues() > 1)
1565 WorkList.push_back(&BB);
1566
1567 for (BasicBlock *BB : WorkList)
1568 rewritePHIs(*BB);
1569}
1570
1571// Splits the block at a particular instruction unless it is the first
1572// instruction in the block with a single predecessor.
1574 auto *BB = I->getParent();
1575 if (&BB->front() == I) {
1576 if (BB->getSinglePredecessor()) {
1577 BB->setName(Name);
1578 return BB;
1579 }
1580 }
1581 return BB->splitBasicBlock(I, Name);
1582}
1583
1584// Split above and below a particular instruction so that it
1585// will be all alone by itself in a block.
1586static void splitAround(Instruction *I, const Twine &Name) {
1587 splitBlockIfNotFirst(I, Name);
1588 splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
1589}
1590
1591/// After we split the coroutine, will the given basic block be along
1592/// an obvious exit path for the resumption function?
1594 unsigned depth = 3) {
1595 // If we've bottomed out our depth count, stop searching and assume
1596 // that the path might loop back.
1597 if (depth == 0) return false;
1598
1599 // If this is a suspend block, we're about to exit the resumption function.
1600 if (coro::isSuspendBlock(BB))
1601 return true;
1602
1603 // Recurse into the successors.
1604 for (auto *Succ : successors(BB)) {
1605 if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1))
1606 return false;
1607 }
1608
1609 // If none of the successors leads back in a loop, we're on an exit/abort.
1610 return true;
1611}
1612
1614 // Look for a free that isn't sufficiently obviously followed by
1615 // either a suspend or a termination, i.e. something that will leave
1616 // the coro resumption frame.
1617 for (auto *U : AI->users()) {
1618 auto FI = dyn_cast<CoroAllocaFreeInst>(U);
1619 if (!FI) continue;
1620
1621 if (!willLeaveFunctionImmediatelyAfter(FI->getParent()))
1622 return true;
1623 }
1624
1625 // If we never found one, we don't need a stack save.
1626 return false;
1627}
1628
1629/// Turn each of the given local allocas into a normal (dynamic) alloca
1630/// instruction.
1632 SmallVectorImpl<Instruction*> &DeadInsts) {
1633 for (auto *AI : LocalAllocas) {
1634 IRBuilder<> Builder(AI);
1635
1636 // Save the stack depth. Try to avoid doing this if the stackrestore
1637 // is going to immediately precede a return or something.
1638 Value *StackSave = nullptr;
1640 StackSave = Builder.CreateStackSave();
1641
1642 // Allocate memory.
1643 auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize());
1644 Alloca->setAlignment(AI->getAlignment());
1645
1646 for (auto *U : AI->users()) {
1647 // Replace gets with the allocation.
1648 if (isa<CoroAllocaGetInst>(U)) {
1649 U->replaceAllUsesWith(Alloca);
1650
1651 // Replace frees with stackrestores. This is safe because
1652 // alloca.alloc is required to obey a stack discipline, although we
1653 // don't enforce that structurally.
1654 } else {
1655 auto FI = cast<CoroAllocaFreeInst>(U);
1656 if (StackSave) {
1657 Builder.SetInsertPoint(FI);
1658 Builder.CreateStackRestore(StackSave);
1659 }
1660 }
1661 DeadInsts.push_back(cast<Instruction>(U));
1662 }
1663
1664 DeadInsts.push_back(AI);
1665 }
1666}
1667
1668/// Get the current swifterror value.
1670 coro::Shape &Shape) {
1671 // Make a fake function pointer as a sort of intrinsic.
1672 auto FnTy = FunctionType::get(ValueTy, {}, false);
1673 auto Fn = ConstantPointerNull::get(Builder.getPtrTy());
1674
1675 auto Call = Builder.CreateCall(FnTy, Fn, {});
1676 Shape.SwiftErrorOps.push_back(Call);
1677
1678 return Call;
1679}
1680
1681/// Set the given value as the current swifterror value.
1682///
1683/// Returns a slot that can be used as a swifterror slot.
1685 coro::Shape &Shape) {
1686 // Make a fake function pointer as a sort of intrinsic.
1687 auto FnTy = FunctionType::get(Builder.getPtrTy(),
1688 {V->getType()}, false);
1689 auto Fn = ConstantPointerNull::get(Builder.getPtrTy());
1690
1691 auto Call = Builder.CreateCall(FnTy, Fn, { V });
1692 Shape.SwiftErrorOps.push_back(Call);
1693
1694 return Call;
1695}
1696
1697/// Set the swifterror value from the given alloca before a call,
1698/// then put in back in the alloca afterwards.
1699///
1700/// Returns an address that will stand in for the swifterror slot
1701/// until splitting.
1703 AllocaInst *Alloca,
1704 coro::Shape &Shape) {
1705 auto ValueTy = Alloca->getAllocatedType();
1706 IRBuilder<> Builder(Call);
1707
1708 // Load the current value from the alloca and set it as the
1709 // swifterror value.
1710 auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca);
1711 auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape);
1712
1713 // Move to after the call. Since swifterror only has a guaranteed
1714 // value on normal exits, we can ignore implicit and explicit unwind
1715 // edges.
1716 if (isa<CallInst>(Call)) {
1717 Builder.SetInsertPoint(Call->getNextNode());
1718 } else {
1719 auto Invoke = cast<InvokeInst>(Call);
1720 Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg());
1721 }
1722
1723 // Get the current swifterror value and store it to the alloca.
1724 auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape);
1725 Builder.CreateStore(ValueAfterCall, Alloca);
1726
1727 return Addr;
1728}
1729
1730/// Eliminate a formerly-swifterror alloca by inserting the get/set
1731/// intrinsics and attempting to MemToReg the alloca away.
1733 coro::Shape &Shape) {
1734 for (Use &Use : llvm::make_early_inc_range(Alloca->uses())) {
1735 // swifterror values can only be used in very specific ways.
1736 // We take advantage of that here.
1737 auto User = Use.getUser();
1739 continue;
1740
1742 auto Call = cast<Instruction>(User);
1743
1744 auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape);
1745
1746 // Use the returned slot address as the call argument.
1747 Use.set(Addr);
1748 }
1749
1750 // All the uses should be loads and stores now.
1751 assert(isAllocaPromotable(Alloca));
1752}
1753
1754/// "Eliminate" a swifterror argument by reducing it to the alloca case
1755/// and then loading and storing in the prologue and epilog.
1756///
1757/// The argument keeps the swifterror flag.
1759 coro::Shape &Shape,
1760 SmallVectorImpl<AllocaInst*> &AllocasToPromote) {
1761 IRBuilder<> Builder(&F.getEntryBlock(),
1762 F.getEntryBlock().getFirstNonPHIOrDbg());
1763
1764 auto ArgTy = cast<PointerType>(Arg.getType());
1765 auto ValueTy = PointerType::getUnqual(F.getContext());
1766
1767 // Reduce to the alloca case:
1768
1769 // Create an alloca and replace all uses of the arg with it.
1770 auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace());
1771 Arg.replaceAllUsesWith(Alloca);
1772
1773 // Set an initial value in the alloca. swifterror is always null on entry.
1774 auto InitialValue = Constant::getNullValue(ValueTy);
1775 Builder.CreateStore(InitialValue, Alloca);
1776
1777 // Find all the suspends in the function and save and restore around them.
1778 for (auto *Suspend : Shape.CoroSuspends) {
1779 (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape);
1780 }
1781
1782 // Find all the coro.ends in the function and restore the error value.
1783 for (auto *End : Shape.CoroEnds) {
1784 Builder.SetInsertPoint(End);
1785 auto FinalValue = Builder.CreateLoad(ValueTy, Alloca);
1786 (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape);
1787 }
1788
1789 // Now we can use the alloca logic.
1790 AllocasToPromote.push_back(Alloca);
1791 eliminateSwiftErrorAlloca(F, Alloca, Shape);
1792}
1793
1794/// Eliminate all problematic uses of swifterror arguments and allocas
1795/// from the function. We'll fix them up later when splitting the function.
1797 SmallVector<AllocaInst*, 4> AllocasToPromote;
1798
1799 // Look for a swifterror argument.
1800 for (auto &Arg : F.args()) {
1801 if (!Arg.hasSwiftErrorAttr()) continue;
1802
1803 eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote);
1804 break;
1805 }
1806
1807 // Look for swifterror allocas.
1808 for (auto &Inst : F.getEntryBlock()) {
1809 auto Alloca = dyn_cast<AllocaInst>(&Inst);
1810 if (!Alloca || !Alloca->isSwiftError()) continue;
1811
1812 // Clear the swifterror flag.
1813 Alloca->setSwiftError(false);
1814
1815 AllocasToPromote.push_back(Alloca);
1816 eliminateSwiftErrorAlloca(F, Alloca, Shape);
1817 }
1818
1819 // If we have any allocas to promote, compute a dominator tree and
1820 // promote them en masse.
1821 if (!AllocasToPromote.empty()) {
1822 DominatorTree DT(F);
1823 PromoteMemToReg(AllocasToPromote, DT);
1824 }
1825}
1826
1827/// For each local variable that all of its user are only used inside one of
1828/// suspended region, we sink their lifetime.start markers to the place where
1829/// after the suspend block. Doing so minimizes the lifetime of each variable,
1830/// hence minimizing the amount of data we end up putting on the frame.
1832 SuspendCrossingInfo &Checker,
1833 const DominatorTree &DT) {
1834 if (F.hasOptNone())
1835 return;
1836
1837 // Collect all possible basic blocks which may dominate all uses of allocas.
1839 DomSet.insert(&F.getEntryBlock());
1840 for (auto *CSI : Shape.CoroSuspends) {
1841 BasicBlock *SuspendBlock = CSI->getParent();
1842 assert(coro::isSuspendBlock(SuspendBlock) &&
1843 SuspendBlock->getSingleSuccessor() &&
1844 "should have split coro.suspend into its own block");
1845 DomSet.insert(SuspendBlock->getSingleSuccessor());
1846 }
1847
1848 for (Instruction &I : instructions(F)) {
1850 if (!AI)
1851 continue;
1852
1853 for (BasicBlock *DomBB : DomSet) {
1854 bool Valid = true;
1856
1857 auto isLifetimeStart = [](Instruction* I) {
1858 if (auto* II = dyn_cast<IntrinsicInst>(I))
1859 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1860 return false;
1861 };
1862
1863 auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) {
1864 if (isLifetimeStart(U)) {
1865 Lifetimes.push_back(U);
1866 return true;
1867 }
1868 if (!U->hasOneUse() || U->stripPointerCasts() != AI)
1869 return false;
1870 if (isLifetimeStart(U->user_back())) {
1871 Lifetimes.push_back(U->user_back());
1872 return true;
1873 }
1874 return false;
1875 };
1876
1877 for (User *U : AI->users()) {
1879 // For all users except lifetime.start markers, if they are all
1880 // dominated by one of the basic blocks and do not cross
1881 // suspend points as well, then there is no need to spill the
1882 // instruction.
1883 if (!DT.dominates(DomBB, UI->getParent()) ||
1884 Checker.isDefinitionAcrossSuspend(DomBB, UI)) {
1885 // Skip lifetime.start, GEP and bitcast used by lifetime.start
1886 // markers.
1887 if (collectLifetimeStart(UI, AI))
1888 continue;
1889 Valid = false;
1890 break;
1891 }
1892 }
1893 // Sink lifetime.start markers to dominate block when they are
1894 // only used outside the region.
1895 if (Valid && Lifetimes.size() != 0) {
1896 auto *NewLifetime = Lifetimes[0]->clone();
1897 NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(0), AI);
1898 NewLifetime->insertBefore(DomBB->getTerminator()->getIterator());
1899
1900 // All the outsided lifetime.start markers are no longer necessary.
1901 for (Instruction *S : Lifetimes)
1902 S->eraseFromParent();
1903
1904 break;
1905 }
1906 }
1907 }
1908}
1909
1910static std::optional<std::pair<Value &, DIExpression &>>
1912 bool UseEntryValue, Function *F, Value *Storage,
1913 DIExpression *Expr, bool SkipOutermostLoad) {
1914 IRBuilder<> Builder(F->getContext());
1915 auto InsertPt = F->getEntryBlock().getFirstInsertionPt();
1916 while (isa<IntrinsicInst>(InsertPt))
1917 ++InsertPt;
1918 Builder.SetInsertPoint(&F->getEntryBlock(), InsertPt);
1919
1920 while (auto *Inst = dyn_cast_or_null<Instruction>(Storage)) {
1921 if (auto *LdInst = dyn_cast<LoadInst>(Inst)) {
1922 Storage = LdInst->getPointerOperand();
1923 // FIXME: This is a heuristic that works around the fact that
1924 // LLVM IR debug intrinsics cannot yet distinguish between
1925 // memory and value locations: Because a dbg.declare(alloca) is
1926 // implicitly a memory location no DW_OP_deref operation for the
1927 // last direct load from an alloca is necessary. This condition
1928 // effectively drops the *last* DW_OP_deref in the expression.
1929 if (!SkipOutermostLoad)
1931 } else if (auto *StInst = dyn_cast<StoreInst>(Inst)) {
1932 Storage = StInst->getValueOperand();
1933 } else {
1935 SmallVector<Value *, 0> AdditionalValues;
1937 *Inst, Expr ? Expr->getNumLocationOperands() : 0, Ops,
1938 AdditionalValues);
1939 if (!Op || !AdditionalValues.empty()) {
1940 // If salvaging failed or salvaging produced more than one location
1941 // operand, give up.
1942 break;
1943 }
1944 Storage = Op;
1945 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, /*StackValue*/ false);
1946 }
1947 SkipOutermostLoad = false;
1948 }
1949 if (!Storage)
1950 return std::nullopt;
1951
1952 auto *StorageAsArg = dyn_cast<Argument>(Storage);
1953
1954 const bool IsSingleLocationExpression = Expr->isSingleLocationExpression();
1955 // Use an EntryValue when requested (UseEntryValue) for swift async Arguments.
1956 // Entry values in variadic expressions are not supported.
1957 const bool WillUseEntryValue =
1958 UseEntryValue && StorageAsArg &&
1959 StorageAsArg->hasAttribute(Attribute::SwiftAsync) &&
1960 !Expr->isEntryValue() && IsSingleLocationExpression;
1961
1962 if (WillUseEntryValue)
1964
1965 // If the coroutine frame is an Argument, store it in an alloca to improve
1966 // its availability (e.g. registers may be clobbered).
1967 // Avoid this if the value is guaranteed to be available through other means
1968 // (e.g. swift ABI guarantees).
1969 // Avoid this if multiple location expressions are involved, as LLVM does not
1970 // know how to prepend a deref in this scenario.
1971 if (StorageAsArg && !WillUseEntryValue && IsSingleLocationExpression) {
1972 auto &Cached = ArgToAllocaMap[StorageAsArg];
1973 if (!Cached) {
1974 Cached = Builder.CreateAlloca(Storage->getType(), 0, nullptr,
1975 Storage->getName() + ".debug");
1976 Builder.CreateStore(Storage, Cached);
1977 }
1978 Storage = Cached;
1979 // FIXME: LLVM lacks nuanced semantics to differentiate between
1980 // memory and direct locations at the IR level. The backend will
1981 // turn a dbg.declare(alloca, ..., DIExpression()) into a memory
1982 // location. Thus, if there are deref and offset operations in the
1983 // expression, we need to add a DW_OP_deref at the *start* of the
1984 // expression to first load the contents of the alloca before
1985 // adjusting it with the expression.
1987 }
1988
1989 Expr = Expr->foldConstantMath();
1990 return {{*Storage, *Expr}};
1991}
1992
1995 DbgVariableRecord &DVR, bool UseEntryValue) {
1996
1997 Function *F = DVR.getFunction();
1998 // Follow the pointer arithmetic all the way to the incoming
1999 // function argument and convert into a DIExpression.
2000 bool SkipOutermostLoad = DVR.isDbgDeclare() || DVR.isDbgDeclareValue();
2001 Value *OriginalStorage = DVR.getVariableLocationOp(0);
2002
2003 auto SalvagedInfo =
2004 ::salvageDebugInfoImpl(ArgToAllocaMap, UseEntryValue, F, OriginalStorage,
2005 DVR.getExpression(), SkipOutermostLoad);
2006 if (!SalvagedInfo)
2007 return;
2008
2009 Value *Storage = &SalvagedInfo->first;
2010 DIExpression *Expr = &SalvagedInfo->second;
2011
2012 DVR.replaceVariableLocationOp(OriginalStorage, Storage);
2013 DVR.setExpression(Expr);
2014 // We only hoist dbg.declare and dbg.declare_value today since it doesn't make
2015 // sense to hoist dbg.value since it does not have the same function wide
2016 // guarantees that dbg.declare does.
2019 std::optional<BasicBlock::iterator> InsertPt;
2020 if (auto *I = dyn_cast<Instruction>(Storage)) {
2021 InsertPt = I->getInsertionPointAfterDef();
2022 // Update DILocation only if variable was not inlined.
2023 DebugLoc ILoc = I->getDebugLoc();
2024 DebugLoc DVRLoc = DVR.getDebugLoc();
2025 if (ILoc && DVRLoc &&
2026 DVRLoc->getScope()->getSubprogram() ==
2027 ILoc->getScope()->getSubprogram())
2028 DVR.setDebugLoc(ILoc);
2029 } else if (isa<Argument>(Storage))
2030 InsertPt = F->getEntryBlock().begin();
2031 if (InsertPt) {
2032 DVR.removeFromParent();
2033 // If there is a dbg.declare_value being reinserted, insert it as a
2034 // dbg.declare instead, so that subsequent passes don't have to deal with
2035 // a dbg.declare_value.
2037 auto *MD = DVR.getRawLocation();
2038 if (auto *VAM = dyn_cast<ValueAsMetadata>(MD)) {
2039 Type *Ty = VAM->getValue()->getType();
2040 if (Ty->isPointerTy())
2042 else
2044 }
2045 }
2046 (*InsertPt)->getParent()->insertDbgRecordBefore(&DVR, *InsertPt);
2047 }
2048 }
2049}
2050
2053 // Don't eliminate swifterror in async functions that won't be split.
2054 if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty())
2056
2057 if (Shape.ABI == coro::ABI::Switch &&
2060 }
2061
2062 // Make sure that all coro.save, coro.suspend and the fallthrough coro.end
2063 // intrinsics are in their own blocks to simplify the logic of building up
2064 // SuspendCrossing data.
2065 for (auto *CSI : Shape.CoroSuspends) {
2066 if (auto *Save = CSI->getCoroSave())
2067 splitAround(Save, "CoroSave");
2068 splitAround(CSI, "CoroSuspend");
2069 }
2070
2071 // Put CoroEnds into their own blocks.
2072 for (AnyCoroEndInst *CE : Shape.CoroEnds) {
2073 splitAround(CE, "CoroEnd");
2074
2075 // Emit the musttail call function in a new block before the CoroEnd.
2076 // We do this here so that the right suspend crossing info is computed for
2077 // the uses of the musttail call function call. (Arguments to the coro.end
2078 // instructions would be ignored)
2079 if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(CE)) {
2080 auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction();
2081 if (!MustTailCallFn)
2082 continue;
2083 IRBuilder<> Builder(AsyncEnd);
2084 SmallVector<Value *, 8> Args(AsyncEnd->args());
2085 auto Arguments = ArrayRef<Value *>(Args).drop_front(3);
2087 AsyncEnd->getDebugLoc(), MustTailCallFn, TTI, Arguments, Builder);
2088 splitAround(Call, "MustTailCall.Before.CoroEnd");
2089 }
2090 }
2091
2092 // Later code makes structural assumptions about single predecessors phis e.g
2093 // that they are not live across a suspend point.
2095
2096 // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
2097 // never have its definition separated from the PHI by the suspend point.
2098 rewritePHIs(F);
2099}
2100
2101void coro::BaseABI::buildCoroutineFrame(bool OptimizeFrame) {
2102 SuspendCrossingInfo Checker(F, Shape.CoroSuspends, Shape.CoroEnds);
2104
2105 const DominatorTree DT(F);
2106 if (Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon &&
2108 sinkLifetimeStartMarkers(F, Shape, Checker, DT);
2109
2110 // All values (that are not allocas) that needs to be spilled to the frame.
2111 coro::SpillInfo Spills;
2112 // All values defined as allocas that need to live in the frame.
2114
2115 // Collect the spills for arguments and other not-materializable values.
2116 coro::collectSpillsFromArgs(Spills, F, Checker);
2117 SmallVector<Instruction *, 4> DeadInstructions;
2119 coro::collectSpillsAndAllocasFromInsts(Spills, Allocas, DeadInstructions,
2120 LocalAllocas, F, Checker, DT, Shape);
2121 coro::collectSpillsFromDbgInfo(Spills, F, Checker);
2122
2123 LLVM_DEBUG(dumpAllocas(Allocas));
2124 LLVM_DEBUG(dumpSpills("Spills", Spills));
2125
2126 if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
2127 Shape.ABI == coro::ABI::Async)
2128 sinkSpillUsesAfterCoroBegin(DT, Shape.CoroBegin, Spills, Allocas);
2129
2130 // Build frame
2131 FrameDataInfo FrameData(Spills, Allocas);
2132 Shape.FrameTy = buildFrameType(F, Shape, FrameData, OptimizeFrame);
2133 Shape.FramePtr = Shape.CoroBegin;
2134 // For now, this works for C++ programs only.
2135 buildFrameDebugInfo(F, Shape, FrameData);
2136 // Insert spills and reloads
2137 insertSpills(FrameData, Shape);
2138 lowerLocalAllocas(LocalAllocas, DeadInstructions);
2139
2140 for (auto *I : DeadInstructions)
2141 I->eraseFromParent();
2142}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
Rewrite undef for false bool rewritePHIs(Function &F, UniformityInfo &UA, DominatorTree *DT)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static void cleanupSinglePredPHIs(Function &F)
static TinyPtrVector< DbgVariableRecord * > findDbgRecordsThroughLoads(Function &F, Value *Def)
Find dbg.declare or dbg.declare_value records referencing Def.
static void createStoreIntoFrame(IRBuilder<> &Builder, Value *Def, Type *ByValTy, const coro::Shape &Shape, const FrameDataInfo &FrameData)
Store Def into the coroutine frame.
static void eliminateSwiftError(Function &F, coro::Shape &Shape)
Eliminate all problematic uses of swifterror arguments and allocas from the function.
static void lowerLocalAllocas(ArrayRef< CoroAllocaAllocInst * > LocalAllocas, SmallVectorImpl< Instruction * > &DeadInsts)
Turn each of the given local allocas into a normal (dynamic) alloca instruction.
static Value * emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V, coro::Shape &Shape)
Set the given value as the current swifterror value.
static Value * emitSetAndGetSwiftErrorValueAround(Instruction *Call, AllocaInst *Alloca, coro::Shape &Shape)
Set the swifterror value from the given alloca before a call, then put in back in the alloca afterwar...
static void cacheDIVar(FrameDataInfo &FrameData, DenseMap< Value *, DILocalVariable * > &DIVarCache)
static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI)
static void dumpAllocas(const SmallVectorImpl< coro::AllocaInfo > &Allocas)
static void splitAround(Instruction *I, const Twine &Name)
static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca, coro::Shape &Shape)
Eliminate a formerly-swifterror alloca by inserting the get/set intrinsics and attempting to MemToReg...
static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB, BasicBlock *InsertedBB, BasicBlock *PredBB, PHINode *UntilPHI=nullptr)
static void dumpSpills(StringRef Title, const coro::SpillInfo &Spills)
static DIType * solveDIType(DIBuilder &Builder, Type *Ty, const DataLayout &Layout, DIScope *Scope, unsigned LineNum, DenseMap< Type *, DIType * > &DITypeCache)
static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB, unsigned depth=3)
After we split the coroutine, will the given basic block be along an obvious exit path for the resump...
static StructType * buildFrameType(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData, bool OptimizeFrame)
static void eliminateSwiftErrorArgument(Function &F, Argument &Arg, coro::Shape &Shape, SmallVectorImpl< AllocaInst * > &AllocasToPromote)
"Eliminate" a swifterror argument by reducing it to the alloca case and then loading and storing in t...
static void buildFrameDebugInfo(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData)
Build artificial debug info for C++ coroutine frames to allow users to inspect the contents of the fr...
static Value * createGEPToFramePointer(const FrameDataInfo &FrameData, IRBuilder<> &Builder, coro::Shape &Shape, Value *Orig)
Returns a GEP into the coroutine frame at the offset where Orig is located.
static BasicBlock * splitBlockIfNotFirst(Instruction *I, const Twine &Name)
static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB, CleanupPadInst *CleanupPad)
static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape, SuspendCrossingInfo &Checker, const DominatorTree &DT)
For each local variable that all of its user are only used inside one of suspended region,...
static Type * extractByvalIfArgument(Value *MaybeArgument)
If MaybeArgument is a byval Argument, return its byval type.
static StringRef solveTypeName(Type *Ty)
Create name for Type.
static Value * emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy, coro::Shape &Shape)
Get the current swifterror value.
static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape)
static bool isLifetimeStart(const Instruction *Inst)
Definition GVN.cpp:1210
Hexagon Common GEP
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
This file provides an interface for laying out a sequence of fields as a struct in a way that attempt...
#define P(N)
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallString class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static const unsigned FramePtr
an instruction to allocate memory on the stack
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
void setSwiftError(bool V)
Specify whether this alloca is used to represent a swifterror.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
PointerType * getType() const
Overload to return most specific pointer type.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:470
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
bool empty() const
Definition BasicBlock.h:492
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
const Instruction & front() const
Definition BasicBlock.h:493
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This represents the llvm.coro.alloca.alloc instruction.
Definition CoroInstr.h:758
void clearPromise()
Definition CoroInstr.h:159
LLVM_ABI DIDerivedType * createMemberType(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNo, Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits, DINode::DIFlags Flags, DIType *Ty, DINodeArray Annotations=nullptr)
Create debugging information entry for a member.
LLVM_ABI DIDerivedType * createPointerType(DIType *PointeeTy, uint64_t SizeInBits, uint32_t AlignInBits=0, std::optional< unsigned > DWARFAddressSpace=std::nullopt, StringRef Name="", DINodeArray Annotations=nullptr)
Create debugging information entry for a pointer.
LLVM_ABI DIBasicType * createBasicType(StringRef Name, uint64_t SizeInBits, unsigned Encoding, DINode::DIFlags Flags=DINode::FlagZero, uint32_t NumExtraInhabitants=0, uint32_t DataSizeInBits=0)
Create debugging information entry for a basic type.
LLVM_ABI DICompositeType * createStructType(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNumber, Metadata *SizeInBits, uint32_t AlignInBits, DINode::DIFlags Flags, DIType *DerivedFrom, DINodeArray Elements, unsigned RunTimeLang=0, DIType *VTableHolder=nullptr, StringRef UniqueIdentifier="", DIType *Specification=nullptr, uint32_t NumExtraInhabitants=0)
Create debugging information entry for a struct.
LLVM_ABI DINodeArray getOrCreateArray(ArrayRef< Metadata * > Elements)
Get a DINodeArray, create one if required.
LLVM_ABI DIExpression * createExpression(ArrayRef< uint64_t > Addr={})
Create a new descriptor for the specified variable which has a complex address expression for its add...
LLVM_ABI DILocalVariable * createAutoVariable(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNo, DIType *Ty, bool AlwaysPreserve=false, DINode::DIFlags Flags=DINode::FlagZero, uint32_t AlignInBits=0)
Create a new descriptor for an auto variable.
LLVM_ABI void replaceArrays(DICompositeType *&T, DINodeArray Elements, DINodeArray TParams=DINodeArray())
Replace arrays on a composite type.
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
LLVM_ABI DIExpression * foldConstantMath()
Try to shorten an expression with constant math operations that can be evaluated at compile time.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
LLVM_ABI bool isSingleLocationExpression() const
Return whether the evaluated expression makes use of a single location at the start of the expression...
Base class for scope-like contexts.
DIFile * getFile() const
Subprogram description. Uses SubclassData1.
Base class for types.
StringRef getName() const
uint64_t getSizeInBits() const
LLVM_ABI uint32_t getAlignInBits() const
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition DataLayout.h:771
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
LLVM_ABI void removeFromParent()
DebugLoc getDebugLoc() const
void setDebugLoc(DebugLoc Loc)
LLVM_ABI Function * getFunction()
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType Type
Classification of the debug-info record that this DbgVariableRecord represents.
LLVM_ABI void replaceVariableLocationOp(Value *OldValue, Value *NewValue, bool AllowEmpty=false)
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
void setExpression(DIExpression *NewExpr)
DIExpression * getExpression() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
A debug info location.
Definition DebugLoc.h:123
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2775
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void insertAfter(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately after the specified instruction.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
The landingpad instruction holds all of the information necessary to generate correct exception handl...
LLVM_ABI MDNode * createTBAAScalarTypeNode(StringRef Name, MDNode *Parent, uint64_t Offset=0)
Return metadata for a TBAA scalar type node with the given name, an offset and a parent in the TBAA t...
LLVM_ABI MDNode * createTBAAStructTagNode(MDNode *BaseType, MDNode *AccessType, uint64_t Offset, bool IsConstant=false)
Return metadata for a TBAA tag node with the given base type, access type and offset relative to the ...
Metadata node.
Definition Metadata.h:1080
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1572
LLVMContext & getContext() const
Definition Metadata.h:1244
static MDTuple * getIfExists(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1576
static LLVM_ABI MDString * getIfExists(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:624
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:614
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1529
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition Module.h:278
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
StringRef str() const
Explicit conversion to StringRef.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::string str() const
str - Get the contents as an std::string.
Definition StringRef.h:225
TypeSize getElementOffsetInBits(unsigned Idx) const
Definition DataLayout.h:759
Class to represent struct types.
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition Type.cpp:619
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const
void setDefaultDest(BasicBlock *DefaultCase)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM_ABI std::string str() const
Return the twine contents as a std::string.
Definition Twine.cpp:17
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
static LLVM_ABI ValueAsMetadata * get(Value *V)
Definition Metadata.cpp:509
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:553
LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.h:259
iterator_range< user_iterator > users()
Definition Value.h:426
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:403
std::function< bool(Instruction &I)> IsMaterializable
Definition ABI.h:64
Function & F
Definition ABI.h:59
virtual void buildCoroutineFrame(bool OptimizeFrame)
coro::Shape & Shape
Definition ABI.h:60
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
A raw_ostream that writes to an SmallVector or SmallString.
StringRef str() const
Return a StringRef for the vector contents.
CallInst * Call
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
SmallMapVector< Value *, SmallVector< Instruction *, 2 >, 8 > SpillInfo
Definition SpillUtils.h:18
@ Async
The "async continuation" lowering, where each suspend point creates a single continuation function.
Definition CoroShape.h:48
@ RetconOnce
The "unique returned-continuation" lowering, where each suspend point creates a single continuation f...
Definition CoroShape.h:43
@ Retcon
The "returned-continuation" lowering, where each suspend point creates a single continuation function...
Definition CoroShape.h:36
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
Definition CoroShape.h:31
BasicBlock::iterator getSpillInsertionPt(const coro::Shape &, Value *Def, const DominatorTree &DT)
bool isSuspendBlock(BasicBlock *BB)
void normalizeCoroutine(Function &F, coro::Shape &Shape, TargetTransformInfo &TTI)
CallInst * createMustTailCall(DebugLoc Loc, Function *MustTailCallFn, TargetTransformInfo &TTI, ArrayRef< Value * > Arguments, IRBuilder<> &)
void sinkSpillUsesAfterCoroBegin(const DominatorTree &DT, CoroBeginInst *CoroBegin, coro::SpillInfo &Spills, SmallVectorImpl< coro::AllocaInfo > &Allocas)
Async and Retcon{Once} conventions assume that all spill uses can be sunk after the coro....
LLVM_ABI void doRematerializations(Function &F, SuspendCrossingInfo &Checker, std::function< bool(Instruction &)> IsMaterializable)
void collectSpillsFromArgs(SpillInfo &Spills, Function &F, const SuspendCrossingInfo &Checker)
void collectSpillsFromDbgInfo(SpillInfo &Spills, Function &F, const SuspendCrossingInfo &Checker)
void salvageDebugInfo(SmallDenseMap< Argument *, AllocaInst *, 4 > &ArgToAllocaMap, DbgVariableRecord &DVR, bool UseEntryValue)
Attempts to rewrite the location operand of debug records in terms of the coroutine frame pointer,...
void collectSpillsAndAllocasFromInsts(SpillInfo &Spills, SmallVector< AllocaInfo, 8 > &Allocas, SmallVector< Instruction *, 4 > &DeadInstructions, SmallVector< CoroAllocaAllocInst *, 4 > &LocalAllocas, Function &F, const SuspendCrossingInfo &Checker, const DominatorTree &DT, const coro::Shape &Shape)
bool isCPlusPlus(SourceLanguage S)
Definition Dwarf.h:512
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1730
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI void PromoteMemToReg(ArrayRef< AllocaInst * > Allocas, DominatorTree &DT, AssumptionCache *AC=nullptr)
Promote the specified list of alloca instructions into scalar registers, inserting PHI nodes as appro...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
Definition MathExtras.h:350
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:134
auto successors(const MachineBasicBlock *BB)
scope_exit(Callable) -> scope_exit< Callable >
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
auto pred_size(const MachineBasicBlock *BB)
LLVM_ABI bool isAllocaPromotable(const AllocaInst *AI)
Return true if this alloca is legal for promotion.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:163
LLVM_ABI BasicBlock * ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad=nullptr, PHINode *LandingPadReplacement=nullptr, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
Split the edge connect the specficed blocks in the case that Succ is an Exception Handling Block.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2287
uint64_t offsetToAlignment(uint64_t Value, Align Alignment)
Returns the offset to the next integer (mod 2**64) that is greater than or equal to Value and is a mu...
Definition Alignment.h:186
TargetTransformInfo TTI
LLVM_ABI std::pair< uint64_t, Align > performOptimizedStructLayout(MutableArrayRef< OptimizedStructLayoutField > Fields)
Compute a layout for a struct containing the given fields, making a best-effort attempt to minimize t...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
LLVM_ABI TinyPtrVector< DbgVariableRecord * > findDVRDeclareValues(Value *V)
As above, for DVRDeclareValues.
Definition DebugInfo.cpp:65
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
LLVM_ABI void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *Until=nullptr)
Replaces all uses of OldPred with the NewPred block in all PHINodes in a block.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
LLVM_ABI TinyPtrVector< DbgVariableRecord * > findDVRDeclares(Value *V)
Finds dbg.declare records declaring local variables as living in the memory that 'V' points to.
Definition DebugInfo.cpp:48
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ)
Sets the unwind edge of an instruction to a particular successor.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
Align Alignment
The required alignment of this field.
uint64_t Offset
The offset of this field in the final layout.
uint64_t Size
The required size of this field in bytes.
static constexpr uint64_t FlexibleOffset
A special value for Offset indicating that the field can be moved anywhere.
AsyncLoweringStorage AsyncLowering
Definition CoroShape.h:157
StructType * FrameTy
Definition CoroShape.h:116
AnyCoroIdRetconInst * getRetconCoroId() const
Definition CoroShape.h:165
CoroIdInst * getSwitchCoroId() const
Definition CoroShape.h:160
SmallVector< AnyCoroSuspendInst *, 4 > CoroSuspends
Definition CoroShape.h:59
uint64_t FrameSize
Definition CoroShape.h:118
AllocaInst * getPromiseAlloca() const
Definition CoroShape.h:246
SwitchLoweringStorage SwitchLowering
Definition CoroShape.h:155
CoroBeginInst * CoroBegin
Definition CoroShape.h:54
BasicBlock::iterator getInsertPtAfterFramePtr() const
Definition CoroShape.h:252
RetconLoweringStorage RetconLowering
Definition CoroShape.h:156
SmallVector< AnyCoroEndInst *, 4 > CoroEnds
Definition CoroShape.h:55
SmallVector< CallInst *, 2 > SwiftErrorOps
Definition CoroShape.h:64
BasicBlock * AllocaSpillBlock
Definition CoroShape.h:120