LLVM 22.0.0git
CoroFrame.cpp
Go to the documentation of this file.
1//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file contains classes used to discover if for a particular value
9// its definition precedes and its uses follow a suspend block. This is
10// referred to as a suspend crossing value.
11//
12// Using the information discovered we form a Coroutine Frame structure to
13// contain those values. All uses of those values are replaced with appropriate
14// GEP + load from the coroutine frame. At the point of the definition we spill
15// the value into the coroutine frame.
16//===----------------------------------------------------------------------===//
17
18#include "CoroInternal.h"
19#include "llvm/ADT/ScopeExit.h"
22#include "llvm/IR/DIBuilder.h"
23#include "llvm/IR/DebugInfo.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Module.h"
30#include "llvm/Support/Debug.h"
40#include <algorithm>
41#include <optional>
42
43using namespace llvm;
44
45#define DEBUG_TYPE "coro-frame"
46
47namespace {
48class FrameTypeBuilder;
49// Mapping from the to-be-spilled value to all the users that need reload.
50struct FrameDataInfo {
51 // All the values (that are not allocas) that needs to be spilled to the
52 // frame.
53 coro::SpillInfo &Spills;
54 // Allocas contains all values defined as allocas that need to live in the
55 // frame.
57
58 FrameDataInfo(coro::SpillInfo &Spills,
60 : Spills(Spills), Allocas(Allocas) {}
61
62 SmallVector<Value *, 8> getAllDefs() const {
64 for (const auto &P : Spills)
65 Defs.push_back(P.first);
66 for (const auto &A : Allocas)
67 Defs.push_back(A.Alloca);
68 return Defs;
69 }
70
71 uint32_t getFieldIndex(Value *V) const {
72 auto Itr = FieldIndexMap.find(V);
73 assert(Itr != FieldIndexMap.end() &&
74 "Value does not have a frame field index");
75 return Itr->second;
76 }
77
78 void setFieldIndex(Value *V, uint32_t Index) {
79 assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) &&
80 "Cannot set the index for the same field twice.");
81 FieldIndexMap[V] = Index;
82 }
83
84 Align getAlign(Value *V) const {
85 auto Iter = FieldAlignMap.find(V);
86 assert(Iter != FieldAlignMap.end());
87 return Iter->second;
88 }
89
90 void setAlign(Value *V, Align AL) {
91 assert(FieldAlignMap.count(V) == 0);
92 FieldAlignMap.insert({V, AL});
93 }
94
95 uint64_t getDynamicAlign(Value *V) const {
96 auto Iter = FieldDynamicAlignMap.find(V);
97 assert(Iter != FieldDynamicAlignMap.end());
98 return Iter->second;
99 }
100
101 void setDynamicAlign(Value *V, uint64_t Align) {
102 assert(FieldDynamicAlignMap.count(V) == 0);
103 FieldDynamicAlignMap.insert({V, Align});
104 }
105
106 uint64_t getOffset(Value *V) const {
107 auto Iter = FieldOffsetMap.find(V);
108 assert(Iter != FieldOffsetMap.end());
109 return Iter->second;
110 }
111
112 void setOffset(Value *V, uint64_t Offset) {
113 assert(FieldOffsetMap.count(V) == 0);
114 FieldOffsetMap.insert({V, Offset});
115 }
116
117 // Remap the index of every field in the frame, using the final layout index.
118 void updateLayoutIndex(FrameTypeBuilder &B);
119
120private:
121 // LayoutIndexUpdateStarted is used to avoid updating the index of any field
122 // twice by mistake.
123 bool LayoutIndexUpdateStarted = false;
124 // Map from values to their slot indexes on the frame. They will be first set
125 // with their original insertion field index. After the frame is built, their
126 // indexes will be updated into the final layout index.
127 DenseMap<Value *, uint32_t> FieldIndexMap;
128 // Map from values to their alignment on the frame. They would be set after
129 // the frame is built.
130 DenseMap<Value *, Align> FieldAlignMap;
131 DenseMap<Value *, uint64_t> FieldDynamicAlignMap;
132 // Map from values to their offset on the frame. They would be set after
133 // the frame is built.
134 DenseMap<Value *, uint64_t> FieldOffsetMap;
135};
136} // namespace
137
138#ifndef NDEBUG
139static void dumpSpills(StringRef Title, const coro::SpillInfo &Spills) {
140 dbgs() << "------------- " << Title << " --------------\n";
141 for (const auto &E : Spills) {
142 E.first->dump();
143 dbgs() << " user: ";
144 for (auto *I : E.second)
145 I->dump();
146 }
147}
148
150 dbgs() << "------------- Allocas --------------\n";
151 for (const auto &A : Allocas) {
152 A.Alloca->dump();
153 }
154}
155#endif
156
157namespace {
158using FieldIDType = size_t;
159// We cannot rely solely on natural alignment of a type when building a
160// coroutine frame and if the alignment specified on the Alloca instruction
161// differs from the natural alignment of the alloca type we will need to insert
162// padding.
163class FrameTypeBuilder {
164private:
165 struct Field {
166 uint64_t Size;
167 uint64_t Offset;
168 Type *Ty;
169 FieldIDType LayoutFieldIndex;
171 Align TyAlignment;
172 uint64_t DynamicAlignBuffer;
173 };
174
175 const DataLayout &DL;
176 LLVMContext &Context;
177 uint64_t StructSize = 0;
178 Align StructAlign;
179 bool IsFinished = false;
180
181 std::optional<Align> MaxFrameAlignment;
182
184 DenseMap<Value*, unsigned> FieldIndexByKey;
185
186public:
187 FrameTypeBuilder(LLVMContext &Context, const DataLayout &DL,
188 std::optional<Align> MaxFrameAlignment)
189 : DL(DL), Context(Context), MaxFrameAlignment(MaxFrameAlignment) {}
190
191 /// Add a field to this structure for the storage of an `alloca`
192 /// instruction.
193 [[nodiscard]] FieldIDType addFieldForAlloca(AllocaInst *AI,
194 bool IsHeader = false) {
195 Type *Ty = AI->getAllocatedType();
196
197 // Make an array type if this is a static array allocation.
198 if (AI->isArrayAllocation()) {
199 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
200 Ty = ArrayType::get(Ty, CI->getValue().getZExtValue());
201 else
202 report_fatal_error("Coroutines cannot handle non static allocas yet");
203 }
204
205 return addField(Ty, AI->getAlign(), IsHeader);
206 }
207
208 /// We want to put the allocas whose lifetime-ranges are not overlapped
209 /// into one slot of coroutine frame.
210 /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566
211 ///
212 /// cppcoro::task<void> alternative_paths(bool cond) {
213 /// if (cond) {
214 /// big_structure a;
215 /// process(a);
216 /// co_await something();
217 /// } else {
218 /// big_structure b;
219 /// process2(b);
220 /// co_await something();
221 /// }
222 /// }
223 ///
224 /// We want to put variable a and variable b in the same slot to
225 /// reduce the size of coroutine frame.
226 ///
227 /// This function use StackLifetime algorithm to partition the AllocaInsts in
228 /// Spills to non-overlapped sets in order to put Alloca in the same
229 /// non-overlapped set into the same slot in the Coroutine Frame. Then add
230 /// field for the allocas in the same non-overlapped set by using the largest
231 /// type as the field type.
232 ///
233 /// Side Effects: Because We sort the allocas, the order of allocas in the
234 /// frame may be different with the order in the source code.
235 void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData,
236 coro::Shape &Shape, bool OptimizeFrame);
237
238 /// Add a field to this structure.
239 [[nodiscard]] FieldIDType addField(Type *Ty, MaybeAlign MaybeFieldAlignment,
240 bool IsHeader = false,
241 bool IsSpillOfValue = false) {
242 assert(!IsFinished && "adding fields to a finished builder");
243 assert(Ty && "must provide a type for a field");
244
245 // The field size is always the alloc size of the type.
246 uint64_t FieldSize = DL.getTypeAllocSize(Ty);
247
248 // For an alloca with size=0, we don't need to add a field and they
249 // can just point to any index in the frame. Use index 0.
250 if (FieldSize == 0) {
251 return 0;
252 }
253
254 // The field alignment might not be the type alignment, but we need
255 // to remember the type alignment anyway to build the type.
256 // If we are spilling values we don't need to worry about ABI alignment
257 // concerns.
258 Align ABIAlign = DL.getABITypeAlign(Ty);
259 Align TyAlignment = ABIAlign;
260 if (IsSpillOfValue && MaxFrameAlignment && *MaxFrameAlignment < ABIAlign)
261 TyAlignment = *MaxFrameAlignment;
262 Align FieldAlignment = MaybeFieldAlignment.value_or(TyAlignment);
263
264 // The field alignment could be bigger than the max frame case, in that case
265 // we request additional storage to be able to dynamically align the
266 // pointer.
267 uint64_t DynamicAlignBuffer = 0;
268 if (MaxFrameAlignment && (FieldAlignment > *MaxFrameAlignment)) {
269 DynamicAlignBuffer =
270 offsetToAlignment(MaxFrameAlignment->value(), FieldAlignment);
271 FieldAlignment = *MaxFrameAlignment;
272 FieldSize = FieldSize + DynamicAlignBuffer;
273 }
274
275 // Lay out header fields immediately.
276 uint64_t Offset;
277 if (IsHeader) {
278 Offset = alignTo(StructSize, FieldAlignment);
279 StructSize = Offset + FieldSize;
280
281 // Everything else has a flexible offset.
282 } else {
284 }
285
286 Fields.push_back({FieldSize, Offset, Ty, 0, FieldAlignment, TyAlignment,
287 DynamicAlignBuffer});
288 return Fields.size() - 1;
289 }
290
291 /// Finish the layout and create the struct type with the given name.
292 StructType *finish(StringRef Name);
293
294 uint64_t getStructSize() const {
295 assert(IsFinished && "not yet finished!");
296 return StructSize;
297 }
298
299 Align getStructAlign() const {
300 assert(IsFinished && "not yet finished!");
301 return StructAlign;
302 }
303
304 FieldIDType getLayoutFieldIndex(FieldIDType Id) const {
305 assert(IsFinished && "not yet finished!");
306 return Fields[Id].LayoutFieldIndex;
307 }
308
309 Field getLayoutField(FieldIDType Id) const {
310 assert(IsFinished && "not yet finished!");
311 return Fields[Id];
312 }
313};
314} // namespace
315
316void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) {
317 auto Updater = [&](Value *I) {
318 auto Field = B.getLayoutField(getFieldIndex(I));
319 setFieldIndex(I, Field.LayoutFieldIndex);
320 setAlign(I, Field.Alignment);
321 uint64_t dynamicAlign =
322 Field.DynamicAlignBuffer
323 ? Field.DynamicAlignBuffer + Field.Alignment.value()
324 : 0;
325 setDynamicAlign(I, dynamicAlign);
326 setOffset(I, Field.Offset);
327 };
328 LayoutIndexUpdateStarted = true;
329 for (auto &S : Spills)
330 Updater(S.first);
331 for (const auto &A : Allocas)
332 Updater(A.Alloca);
333 LayoutIndexUpdateStarted = false;
334}
335
336void FrameTypeBuilder::addFieldForAllocas(const Function &F,
337 FrameDataInfo &FrameData,
338 coro::Shape &Shape,
339 bool OptimizeFrame) {
340 using AllocaSetType = SmallVector<AllocaInst *, 4>;
341 SmallVector<AllocaSetType, 4> NonOverlapedAllocas;
342
343 // We need to add field for allocas at the end of this function.
344 auto AddFieldForAllocasAtExit = make_scope_exit([&]() {
345 for (auto AllocaList : NonOverlapedAllocas) {
346 auto *LargestAI = *AllocaList.begin();
347 FieldIDType Id = addFieldForAlloca(LargestAI);
348 for (auto *Alloca : AllocaList)
349 FrameData.setFieldIndex(Alloca, Id);
350 }
351 });
352
353 if (!OptimizeFrame) {
354 for (const auto &A : FrameData.Allocas) {
355 AllocaInst *Alloca = A.Alloca;
356 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
357 }
358 return;
359 }
360
361 // Because there are paths from the lifetime.start to coro.end
362 // for each alloca, the liferanges for every alloca is overlaped
363 // in the blocks who contain coro.end and the successor blocks.
364 // So we choose to skip there blocks when we calculate the liferange
365 // for each alloca. It should be reasonable since there shouldn't be uses
366 // in these blocks and the coroutine frame shouldn't be used outside the
367 // coroutine body.
368 //
369 // Note that the user of coro.suspend may not be SwitchInst. However, this
370 // case seems too complex to handle. And it is harmless to skip these
371 // patterns since it just prevend putting the allocas to live in the same
372 // slot.
373 DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest;
374 for (auto *CoroSuspendInst : Shape.CoroSuspends) {
375 for (auto *U : CoroSuspendInst->users()) {
376 if (auto *ConstSWI = dyn_cast<SwitchInst>(U)) {
377 auto *SWI = const_cast<SwitchInst *>(ConstSWI);
378 DefaultSuspendDest[SWI] = SWI->getDefaultDest();
379 SWI->setDefaultDest(SWI->getSuccessor(1));
380 }
381 }
382 }
383
384 auto ExtractAllocas = [&]() {
385 AllocaSetType Allocas;
386 Allocas.reserve(FrameData.Allocas.size());
387 for (const auto &A : FrameData.Allocas)
388 Allocas.push_back(A.Alloca);
389 return Allocas;
390 };
391 StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(),
392 StackLifetime::LivenessType::May);
393 StackLifetimeAnalyzer.run();
394 auto DoAllocasInterfere = [&](const AllocaInst *AI1, const AllocaInst *AI2) {
395 return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps(
396 StackLifetimeAnalyzer.getLiveRange(AI2));
397 };
398 auto GetAllocaSize = [&](const coro::AllocaInfo &A) {
399 std::optional<TypeSize> RetSize = A.Alloca->getAllocationSize(DL);
400 assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n");
401 assert(!RetSize->isScalable() && "Scalable vectors are not yet supported");
402 return RetSize->getFixedValue();
403 };
404 // Put larger allocas in the front. So the larger allocas have higher
405 // priority to merge, which can save more space potentially. Also each
406 // AllocaSet would be ordered. So we can get the largest Alloca in one
407 // AllocaSet easily.
408 sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) {
409 return GetAllocaSize(Iter1) > GetAllocaSize(Iter2);
410 });
411 for (const auto &A : FrameData.Allocas) {
412 AllocaInst *Alloca = A.Alloca;
413 bool Merged = false;
414 // Try to find if the Alloca does not interfere with any existing
415 // NonOverlappedAllocaSet. If it is true, insert the alloca to that
416 // NonOverlappedAllocaSet.
417 for (auto &AllocaSet : NonOverlapedAllocas) {
418 assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n");
419 bool NoInterference = none_of(AllocaSet, [&](auto Iter) {
420 return DoAllocasInterfere(Alloca, Iter);
421 });
422 // If the alignment of A is multiple of the alignment of B, the address
423 // of A should satisfy the requirement for aligning for B.
424 //
425 // There may be other more fine-grained strategies to handle the alignment
426 // infomation during the merging process. But it seems hard to handle
427 // these strategies and benefit little.
428 bool Alignable = [&]() -> bool {
429 auto *LargestAlloca = *AllocaSet.begin();
430 return LargestAlloca->getAlign().value() % Alloca->getAlign().value() ==
431 0;
432 }();
433 bool CouldMerge = NoInterference && Alignable;
434 if (!CouldMerge)
435 continue;
436 AllocaSet.push_back(Alloca);
437 Merged = true;
438 break;
439 }
440 if (!Merged) {
441 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
442 }
443 }
444 // Recover the default target destination for each Switch statement
445 // reserved.
446 for (auto SwitchAndDefaultDest : DefaultSuspendDest) {
447 SwitchInst *SWI = SwitchAndDefaultDest.first;
448 BasicBlock *DestBB = SwitchAndDefaultDest.second;
449 SWI->setDefaultDest(DestBB);
450 }
451 // This Debug Info could tell us which allocas are merged into one slot.
452 LLVM_DEBUG(for (auto &AllocaSet
453 : NonOverlapedAllocas) {
454 if (AllocaSet.size() > 1) {
455 dbgs() << "In Function:" << F.getName() << "\n";
456 dbgs() << "Find Union Set "
457 << "\n";
458 dbgs() << "\tAllocas are \n";
459 for (auto Alloca : AllocaSet)
460 dbgs() << "\t\t" << *Alloca << "\n";
461 }
462 });
463}
464
465StructType *FrameTypeBuilder::finish(StringRef Name) {
466 assert(!IsFinished && "already finished!");
467
468 // Prepare the optimal-layout field array.
469 // The Id in the layout field is a pointer to our Field for it.
471 LayoutFields.reserve(Fields.size());
472 for (auto &Field : Fields) {
473 LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment,
474 Field.Offset);
475 }
476
477 // Perform layout.
478 auto SizeAndAlign = performOptimizedStructLayout(LayoutFields);
479 StructSize = SizeAndAlign.first;
480 StructAlign = SizeAndAlign.second;
481
482 auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & {
483 return *static_cast<Field *>(const_cast<void*>(LayoutField.Id));
484 };
485
486 // We need to produce a packed struct type if there's a field whose
487 // assigned offset isn't a multiple of its natural type alignment.
488 bool Packed = [&] {
489 for (auto &LayoutField : LayoutFields) {
490 auto &F = getField(LayoutField);
491 if (!isAligned(F.TyAlignment, LayoutField.Offset))
492 return true;
493 }
494 return false;
495 }();
496
497 // Build the struct body.
498 SmallVector<Type*, 16> FieldTypes;
499 FieldTypes.reserve(LayoutFields.size() * 3 / 2);
500 uint64_t LastOffset = 0;
501 for (auto &LayoutField : LayoutFields) {
502 auto &F = getField(LayoutField);
503
504 auto Offset = LayoutField.Offset;
505
506 // Add a padding field if there's a padding gap and we're either
507 // building a packed struct or the padding gap is more than we'd
508 // get from aligning to the field type's natural alignment.
509 assert(Offset >= LastOffset);
510 if (Offset != LastOffset) {
511 if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset)
512 FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context),
513 Offset - LastOffset));
514 }
515
516 F.Offset = Offset;
517 F.LayoutFieldIndex = FieldTypes.size();
518
519 FieldTypes.push_back(F.Ty);
520 if (F.DynamicAlignBuffer) {
521 FieldTypes.push_back(
522 ArrayType::get(Type::getInt8Ty(Context), F.DynamicAlignBuffer));
523 }
524 LastOffset = Offset + F.Size;
525 }
526
527 StructType *Ty = StructType::create(Context, FieldTypes, Name, Packed);
528
529#ifndef NDEBUG
530 // Check that the IR layout matches the offsets we expect.
531 auto Layout = DL.getStructLayout(Ty);
532 for (auto &F : Fields) {
533 assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty);
534 assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset);
535 }
536#endif
537
538 IsFinished = true;
539
540 return Ty;
541}
542
543static void cacheDIVar(FrameDataInfo &FrameData,
545 for (auto *V : FrameData.getAllDefs()) {
546 if (DIVarCache.contains(V))
547 continue;
548
549 auto CacheIt = [&DIVarCache, V](const auto &Container) {
550 auto *I = llvm::find_if(Container, [](auto *DDI) {
551 return DDI->getExpression()->getNumElements() == 0;
552 });
553 if (I != Container.end())
554 DIVarCache.insert({V, (*I)->getVariable()});
555 };
556 CacheIt(findDVRDeclares(V));
557 }
558}
559
560/// Create name for Type. It uses MDString to store new created string to
561/// avoid memory leak.
563 if (Ty->isIntegerTy()) {
564 // The longest name in common may be '__int_128', which has 9 bits.
565 SmallString<16> Buffer;
566 raw_svector_ostream OS(Buffer);
567 OS << "__int_" << cast<IntegerType>(Ty)->getBitWidth();
568 auto *MDName = MDString::get(Ty->getContext(), OS.str());
569 return MDName->getString();
570 }
571
572 if (Ty->isFloatingPointTy()) {
573 if (Ty->isFloatTy())
574 return "__float_";
575 if (Ty->isDoubleTy())
576 return "__double_";
577 return "__floating_type_";
578 }
579
580 if (Ty->isPointerTy())
581 return "PointerType";
582
583 if (Ty->isStructTy()) {
584 if (!cast<StructType>(Ty)->hasName())
585 return "__LiteralStructType_";
586
587 auto Name = Ty->getStructName();
588
589 SmallString<16> Buffer(Name);
590 for (auto &Iter : Buffer)
591 if (Iter == '.' || Iter == ':')
592 Iter = '_';
593 auto *MDName = MDString::get(Ty->getContext(), Buffer.str());
594 return MDName->getString();
595 }
596
597 return "UnknownType";
598}
599
600static DIType *solveDIType(DIBuilder &Builder, Type *Ty,
601 const DataLayout &Layout, DIScope *Scope,
602 unsigned LineNum,
603 DenseMap<Type *, DIType *> &DITypeCache) {
604 if (DIType *DT = DITypeCache.lookup(Ty))
605 return DT;
606
607 StringRef Name = solveTypeName(Ty);
608
609 DIType *RetType = nullptr;
610
611 if (Ty->isIntegerTy()) {
612 auto BitWidth = cast<IntegerType>(Ty)->getBitWidth();
613 RetType = Builder.createBasicType(Name, BitWidth, dwarf::DW_ATE_signed,
614 llvm::DINode::FlagArtificial);
615 } else if (Ty->isFloatingPointTy()) {
616 RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty),
617 dwarf::DW_ATE_float,
618 llvm::DINode::FlagArtificial);
619 } else if (Ty->isPointerTy()) {
620 // Construct PointerType points to null (aka void *) instead of exploring
621 // pointee type to avoid infinite search problem. For example, we would be
622 // in trouble if we traverse recursively:
623 //
624 // struct Node {
625 // Node* ptr;
626 // };
627 RetType =
628 Builder.createPointerType(nullptr, Layout.getTypeSizeInBits(Ty),
629 Layout.getABITypeAlign(Ty).value() * CHAR_BIT,
630 /*DWARFAddressSpace=*/std::nullopt, Name);
631 } else if (Ty->isStructTy()) {
632 auto *DIStruct = Builder.createStructType(
633 Scope, Name, Scope->getFile(), LineNum, Layout.getTypeSizeInBits(Ty),
634 Layout.getPrefTypeAlign(Ty).value() * CHAR_BIT,
635 llvm::DINode::FlagArtificial, nullptr, llvm::DINodeArray());
636
637 auto *StructTy = cast<StructType>(Ty);
639 for (unsigned I = 0; I < StructTy->getNumElements(); I++) {
640 DIType *DITy = solveDIType(Builder, StructTy->getElementType(I), Layout,
641 DIStruct, LineNum, DITypeCache);
642 assert(DITy);
643 Elements.push_back(Builder.createMemberType(
644 DIStruct, DITy->getName(), DIStruct->getFile(), LineNum,
645 DITy->getSizeInBits(), DITy->getAlignInBits(),
646 Layout.getStructLayout(StructTy)->getElementOffsetInBits(I),
647 llvm::DINode::FlagArtificial, DITy));
648 }
649
650 Builder.replaceArrays(DIStruct, Builder.getOrCreateArray(Elements));
651
652 RetType = DIStruct;
653 } else {
654 LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n");
655 TypeSize Size = Layout.getTypeSizeInBits(Ty);
656 auto *CharSizeType = Builder.createBasicType(
657 Name, 8, dwarf::DW_ATE_unsigned_char, llvm::DINode::FlagArtificial);
658
659 if (Size <= 8)
660 RetType = CharSizeType;
661 else {
662 if (Size % 8 != 0)
663 Size = TypeSize::getFixed(Size + 8 - (Size % 8));
664
665 RetType = Builder.createArrayType(
666 Size, Layout.getPrefTypeAlign(Ty).value(), CharSizeType,
667 Builder.getOrCreateArray(Builder.getOrCreateSubrange(0, Size / 8)));
668 }
669 }
670
671 DITypeCache.insert({Ty, RetType});
672 return RetType;
673}
674
675/// Build artificial debug info for C++ coroutine frames to allow users to
676/// inspect the contents of the frame directly
677///
678/// Create Debug information for coroutine frame with debug name "__coro_frame".
679/// The debug information for the fields of coroutine frame is constructed from
680/// the following way:
681/// 1. For all the value in the Frame, we search the use of dbg.declare to find
682/// the corresponding debug variables for the value. If we can find the
683/// debug variable, we can get full and accurate debug information.
684/// 2. If we can't get debug information in step 1 and 2, we could only try to
685/// build the DIType by Type. We did this in solveDIType. We only handle
686/// integer, float, double, integer type and struct type for now.
688 FrameDataInfo &FrameData) {
689 DISubprogram *DIS = F.getSubprogram();
690 // If there is no DISubprogram for F, it implies the function is compiled
691 // without debug info. So we also don't generate debug info for the frame.
692
693 if (!DIS || !DIS->getUnit())
694 return;
695
697 DIS->getUnit()->getSourceLanguage().getUnversionedName())) ||
698 DIS->getUnit()->getEmissionKind() !=
700 return;
701
702 assert(Shape.ABI == coro::ABI::Switch &&
703 "We could only build debug infomation for C++ coroutine now.\n");
704
705 DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false);
706
707 DIFile *DFile = DIS->getFile();
708 unsigned LineNum = DIS->getLine();
709
710 DICompositeType *FrameDITy = DBuilder.createStructType(
711 DIS->getUnit(), Twine(F.getName() + ".coro_frame_ty").str(),
712 DFile, LineNum, Shape.FrameSize * 8,
713 Shape.FrameAlign.value() * 8, llvm::DINode::FlagArtificial, nullptr,
714 llvm::DINodeArray());
715 StructType *FrameTy = Shape.FrameTy;
717 DataLayout Layout = F.getDataLayout();
718
720 cacheDIVar(FrameData, DIVarCache);
721
722 unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume;
723 unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy;
724 unsigned IndexIndex = Shape.SwitchLowering.IndexField;
725
727 NameCache.insert({ResumeIndex, "__resume_fn"});
728 NameCache.insert({DestroyIndex, "__destroy_fn"});
729 NameCache.insert({IndexIndex, "__coro_index"});
730
731 Type *ResumeFnTy = FrameTy->getElementType(ResumeIndex),
732 *DestroyFnTy = FrameTy->getElementType(DestroyIndex),
733 *IndexTy = FrameTy->getElementType(IndexIndex);
734
736 TyCache.insert(
737 {ResumeIndex, DBuilder.createPointerType(
738 nullptr, Layout.getTypeSizeInBits(ResumeFnTy))});
739 TyCache.insert(
740 {DestroyIndex, DBuilder.createPointerType(
741 nullptr, Layout.getTypeSizeInBits(DestroyFnTy))});
742
743 /// FIXME: If we fill the field `SizeInBits` with the actual size of
744 /// __coro_index in bits, then __coro_index wouldn't show in the debugger.
745 TyCache.insert({IndexIndex, DBuilder.createBasicType(
746 "__coro_index",
747 (Layout.getTypeSizeInBits(IndexTy) < 8)
748 ? 8
749 : Layout.getTypeSizeInBits(IndexTy),
750 dwarf::DW_ATE_unsigned_char)});
751
752 for (auto *V : FrameData.getAllDefs()) {
753 auto It = DIVarCache.find(V);
754 if (It == DIVarCache.end())
755 continue;
756
757 auto Index = FrameData.getFieldIndex(V);
758
759 NameCache.insert({Index, It->second->getName()});
760 TyCache.insert({Index, It->second->getType()});
761 }
762
763 // Cache from index to (Align, Offset Pair)
765 // The Align and Offset of Resume function and Destroy function are fixed.
766 OffsetCache.insert({ResumeIndex, {8, 0}});
767 OffsetCache.insert({DestroyIndex, {8, 8}});
768 OffsetCache.insert(
769 {IndexIndex,
771
772 for (auto *V : FrameData.getAllDefs()) {
773 auto Index = FrameData.getFieldIndex(V);
774
775 OffsetCache.insert(
776 {Index, {FrameData.getAlign(V).value(), FrameData.getOffset(V)}});
777 }
778
779 DenseMap<Type *, DIType *> DITypeCache;
780 // This counter is used to avoid same type names. e.g., there would be
781 // many i32 and i64 types in one coroutine. And we would use i32_0 and
782 // i32_1 to avoid the same type. Since it makes no sense the name of the
783 // fields confilicts with each other.
784 unsigned UnknownTypeNum = 0;
785 for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) {
786 auto OCIt = OffsetCache.find(Index);
787 if (OCIt == OffsetCache.end())
788 continue;
789
790 std::string Name;
791 uint64_t SizeInBits;
792 uint32_t AlignInBits;
793 uint64_t OffsetInBits;
794 DIType *DITy = nullptr;
795
796 Type *Ty = FrameTy->getElementType(Index);
797 assert(Ty->isSized() && "We can't handle type which is not sized.\n");
798 SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedValue();
799 AlignInBits = OCIt->second.first * 8;
800 OffsetInBits = OCIt->second.second * 8;
801
802 if (auto It = NameCache.find(Index); It != NameCache.end()) {
803 Name = It->second.str();
804 DITy = TyCache[Index];
805 } else {
806 DITy = solveDIType(DBuilder, Ty, Layout, FrameDITy, LineNum, DITypeCache);
807 assert(DITy && "SolveDIType shouldn't return nullptr.\n");
808 Name = DITy->getName().str();
809 Name += "_" + std::to_string(UnknownTypeNum);
810 UnknownTypeNum++;
811 }
812
813 Elements.push_back(DBuilder.createMemberType(
814 FrameDITy, Name, DFile, LineNum, SizeInBits, AlignInBits, OffsetInBits,
815 llvm::DINode::FlagArtificial, DITy));
816 }
817
818 DBuilder.replaceArrays(FrameDITy, DBuilder.getOrCreateArray(Elements));
819
820 auto *FrameDIVar =
821 DBuilder.createAutoVariable(DIS, "__coro_frame", DFile, LineNum,
822 FrameDITy, true, DINode::FlagArtificial);
823
824 // Subprogram would have ContainedNodes field which records the debug
825 // variables it contained. So we need to add __coro_frame to the
826 // ContainedNodes of it.
827 //
828 // If we don't add __coro_frame to the RetainedNodes, user may get
829 // `no symbol __coro_frame in context` rather than `__coro_frame`
830 // is optimized out, which is more precise.
831 auto RetainedNodes = DIS->getRetainedNodes();
832 SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(),
833 RetainedNodes.end());
834 RetainedNodesVec.push_back(FrameDIVar);
835 DIS->replaceOperandWith(7, (MDTuple::get(F.getContext(), RetainedNodesVec)));
836
837 // Construct the location for the frame debug variable. The column number
838 // is fake but it should be fine.
839 DILocation *DILoc =
840 DILocation::get(DIS->getContext(), LineNum, /*Column=*/1, DIS);
841 assert(FrameDIVar->isValidLocationForIntrinsic(DILoc));
842
843 DbgVariableRecord *NewDVR =
844 new DbgVariableRecord(ValueAsMetadata::get(Shape.FramePtr), FrameDIVar,
845 DBuilder.createExpression(), DILoc,
848 It->getParent()->insertDbgRecordBefore(NewDVR, It);
849}
850
851// Build a struct that will keep state for an active coroutine.
852// struct f.frame {
853// ResumeFnTy ResumeFnAddr;
854// ResumeFnTy DestroyFnAddr;
855// ... promise (if present) ...
856// int ResumeIndex;
857// ... spills ...
858// };
860 FrameDataInfo &FrameData,
861 bool OptimizeFrame) {
862 LLVMContext &C = F.getContext();
863 const DataLayout &DL = F.getDataLayout();
864
865 // We will use this value to cap the alignment of spilled values.
866 std::optional<Align> MaxFrameAlignment;
867 if (Shape.ABI == coro::ABI::Async)
868 MaxFrameAlignment = Shape.AsyncLowering.getContextAlignment();
869 FrameTypeBuilder B(C, DL, MaxFrameAlignment);
870
871 AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
872 std::optional<FieldIDType> SwitchIndexFieldId;
873
874 if (Shape.ABI == coro::ABI::Switch) {
875 auto *FnPtrTy = PointerType::getUnqual(C);
876
877 // Add header fields for the resume and destroy functions.
878 // We can rely on these being perfectly packed.
879 (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true);
880 (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true);
881
882 // PromiseAlloca field needs to be explicitly added here because it's
883 // a header field with a fixed offset based on its alignment. Hence it
884 // needs special handling and cannot be added to FrameData.Allocas.
885 if (PromiseAlloca)
886 FrameData.setFieldIndex(
887 PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true));
888
889 // Add a field to store the suspend index. This doesn't need to
890 // be in the header.
891 unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
892 Type *IndexType = Type::getIntNTy(C, IndexBits);
893
894 SwitchIndexFieldId = B.addField(IndexType, std::nullopt);
895 } else {
896 assert(PromiseAlloca == nullptr && "lowering doesn't support promises");
897 }
898
899 // Because multiple allocas may own the same field slot,
900 // we add allocas to field here.
901 B.addFieldForAllocas(F, FrameData, Shape, OptimizeFrame);
902 // Add PromiseAlloca to Allocas list so that
903 // 1. updateLayoutIndex could update its index after
904 // `performOptimizedStructLayout`
905 // 2. it is processed in insertSpills.
906 if (Shape.ABI == coro::ABI::Switch && PromiseAlloca)
907 // We assume that the promise alloca won't be modified before
908 // CoroBegin and no alias will be create before CoroBegin.
909 FrameData.Allocas.emplace_back(
910 PromiseAlloca, DenseMap<Instruction *, std::optional<APInt>>{}, false);
911 // Create an entry for every spilled value.
912 for (auto &S : FrameData.Spills) {
913 Type *FieldType = S.first->getType();
914 MaybeAlign MA;
915 // For byval arguments, we need to store the pointed value in the frame,
916 // instead of the pointer itself.
917 if (const Argument *A = dyn_cast<Argument>(S.first)) {
918 if (A->hasByValAttr()) {
919 FieldType = A->getParamByValType();
920 MA = A->getParamAlign();
921 }
922 }
923 FieldIDType Id =
924 B.addField(FieldType, MA, false /*header*/, true /*IsSpillOfValue*/);
925 FrameData.setFieldIndex(S.first, Id);
926 }
927
928 StructType *FrameTy = [&] {
929 SmallString<32> Name(F.getName());
930 Name.append(".Frame");
931 return B.finish(Name);
932 }();
933
934 FrameData.updateLayoutIndex(B);
935 Shape.FrameAlign = B.getStructAlign();
936 Shape.FrameSize = B.getStructSize();
937
938 switch (Shape.ABI) {
939 case coro::ABI::Switch: {
940 // In the switch ABI, remember the switch-index field.
941 auto IndexField = B.getLayoutField(*SwitchIndexFieldId);
942 Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex;
943 Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value();
944 Shape.SwitchLowering.IndexOffset = IndexField.Offset;
945
946 // Also round the frame size up to a multiple of its alignment, as is
947 // generally expected in C/C++.
948 Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign);
949 break;
950 }
951
952 // In the retcon ABI, remember whether the frame is inline in the storage.
955 auto Id = Shape.getRetconCoroId();
957 = (B.getStructSize() <= Id->getStorageSize() &&
958 B.getStructAlign() <= Id->getStorageAlignment());
959 break;
960 }
961 case coro::ABI::Async: {
964 // Also make the final context size a multiple of the context alignment to
965 // make allocation easier for allocators.
969 if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) {
971 "The alignment requirment of frame variables cannot be higher than "
972 "the alignment of the async function context");
973 }
974 break;
975 }
976 }
977
978 return FrameTy;
979}
980
981// Replace all alloca and SSA values that are accessed across suspend points
982// with GetElementPointer from coroutine frame + loads and stores. Create an
983// AllocaSpillBB that will become the new entry block for the resume parts of
984// the coroutine:
985//
986// %hdl = coro.begin(...)
987// whatever
988//
989// becomes:
990//
991// %hdl = coro.begin(...)
992// br label %AllocaSpillBB
993//
994// AllocaSpillBB:
995// ; geps corresponding to allocas that were moved to coroutine frame
996// br label PostSpill
997//
998// PostSpill:
999// whatever
1000//
1001//
1002static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape) {
1003 LLVMContext &C = Shape.CoroBegin->getContext();
1004 Function *F = Shape.CoroBegin->getFunction();
1005 IRBuilder<> Builder(C);
1006 StructType *FrameTy = Shape.FrameTy;
1007 Value *FramePtr = Shape.FramePtr;
1008 DominatorTree DT(*F);
1010
1011 // Create a GEP with the given index into the coroutine frame for the original
1012 // value Orig. Appends an extra 0 index for array-allocas, preserving the
1013 // original type.
1014 auto GetFramePointer = [&](Value *Orig) -> Value * {
1015 FieldIDType Index = FrameData.getFieldIndex(Orig);
1016 SmallVector<Value *, 3> Indices = {
1017 ConstantInt::get(Type::getInt32Ty(C), 0),
1018 ConstantInt::get(Type::getInt32Ty(C), Index),
1019 };
1020
1021 if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
1022 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
1023 auto Count = CI->getValue().getZExtValue();
1024 if (Count > 1) {
1025 Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
1026 }
1027 } else {
1028 report_fatal_error("Coroutines cannot handle non static allocas yet");
1029 }
1030 }
1031
1033 Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices));
1034 if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
1035 if (FrameData.getDynamicAlign(Orig) != 0) {
1036 assert(FrameData.getDynamicAlign(Orig) == AI->getAlign().value());
1037 auto *M = AI->getModule();
1038 auto *IntPtrTy = M->getDataLayout().getIntPtrType(AI->getType());
1039 auto *PtrValue = Builder.CreatePtrToInt(GEP, IntPtrTy);
1040 auto *AlignMask =
1041 ConstantInt::get(IntPtrTy, AI->getAlign().value() - 1);
1042 PtrValue = Builder.CreateAdd(PtrValue, AlignMask);
1043 PtrValue = Builder.CreateAnd(PtrValue, Builder.CreateNot(AlignMask));
1044 return Builder.CreateIntToPtr(PtrValue, AI->getType());
1045 }
1046 // If the type of GEP is not equal to the type of AllocaInst, it implies
1047 // that the AllocaInst may be reused in the Frame slot of other
1048 // AllocaInst. So We cast GEP to the AllocaInst here to re-use
1049 // the Frame storage.
1050 //
1051 // Note: If we change the strategy dealing with alignment, we need to refine
1052 // this casting.
1053 if (GEP->getType() != Orig->getType())
1054 return Builder.CreateAddrSpaceCast(GEP, Orig->getType(),
1055 Orig->getName() + Twine(".cast"));
1056 }
1057 return GEP;
1058 };
1059
1060 for (auto const &E : FrameData.Spills) {
1061 Value *Def = E.first;
1062 auto SpillAlignment = Align(FrameData.getAlign(Def));
1063 // Create a store instruction storing the value into the
1064 // coroutine frame.
1065 BasicBlock::iterator InsertPt = coro::getSpillInsertionPt(Shape, Def, DT);
1066
1067 Type *ByValTy = nullptr;
1068 if (auto *Arg = dyn_cast<Argument>(Def)) {
1069 // If we're spilling an Argument, make sure we clear 'captures'
1070 // from the coroutine function.
1071 Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::Captures);
1072
1073 if (Arg->hasByValAttr())
1074 ByValTy = Arg->getParamByValType();
1075 }
1076
1077 auto Index = FrameData.getFieldIndex(Def);
1078 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1079 auto *G = Builder.CreateConstInBoundsGEP2_32(
1080 FrameTy, FramePtr, 0, Index, Def->getName() + Twine(".spill.addr"));
1081 if (ByValTy) {
1082 // For byval arguments, we need to store the pointed value in the frame,
1083 // instead of the pointer itself.
1084 auto *Value = Builder.CreateLoad(ByValTy, Def);
1085 Builder.CreateAlignedStore(Value, G, SpillAlignment);
1086 } else {
1087 Builder.CreateAlignedStore(Def, G, SpillAlignment);
1088 }
1089
1090 BasicBlock *CurrentBlock = nullptr;
1091 Value *CurrentReload = nullptr;
1092 for (auto *U : E.second) {
1093 // If we have not seen the use block, create a load instruction to reload
1094 // the spilled value from the coroutine frame. Populates the Value pointer
1095 // reference provided with the frame GEP.
1096 if (CurrentBlock != U->getParent()) {
1097 CurrentBlock = U->getParent();
1098 Builder.SetInsertPoint(CurrentBlock,
1099 CurrentBlock->getFirstInsertionPt());
1100
1101 auto *GEP = GetFramePointer(E.first);
1102 GEP->setName(E.first->getName() + Twine(".reload.addr"));
1103 if (ByValTy)
1104 CurrentReload = GEP;
1105 else
1106 CurrentReload = Builder.CreateAlignedLoad(
1107 FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP,
1108 SpillAlignment, E.first->getName() + Twine(".reload"));
1109
1111 // Try best to find dbg.declare. If the spill is a temp, there may not
1112 // be a direct dbg.declare. Walk up the load chain to find one from an
1113 // alias.
1114 if (F->getSubprogram()) {
1115 auto *CurDef = Def;
1116 while (DVRs.empty() && isa<LoadInst>(CurDef)) {
1117 auto *LdInst = cast<LoadInst>(CurDef);
1118 // Only consider ptr to ptr same type load.
1119 if (LdInst->getPointerOperandType() != LdInst->getType())
1120 break;
1121 CurDef = LdInst->getPointerOperand();
1122 if (!isa<AllocaInst, LoadInst>(CurDef))
1123 break;
1124 DVRs = findDVRDeclares(CurDef);
1125 }
1126 }
1127
1128 auto SalvageOne = [&](DbgVariableRecord *DDI) {
1129 // This dbg.declare is preserved for all coro-split function
1130 // fragments. It will be unreachable in the main function, and
1131 // processed by coro::salvageDebugInfo() by the Cloner.
1133 ValueAsMetadata::get(CurrentReload), DDI->getVariable(),
1134 DDI->getExpression(), DDI->getDebugLoc(),
1136 Builder.GetInsertPoint()->getParent()->insertDbgRecordBefore(
1137 NewDVR, Builder.GetInsertPoint());
1138 // This dbg.declare is for the main function entry point. It
1139 // will be deleted in all coro-split functions.
1140 coro::salvageDebugInfo(ArgToAllocaMap, *DDI, false /*UseEntryValue*/);
1141 };
1142 for_each(DVRs, SalvageOne);
1143 }
1144
1145 // If we have a single edge PHINode, remove it and replace it with a
1146 // reload from the coroutine frame. (We already took care of multi edge
1147 // PHINodes by normalizing them in the rewritePHIs function).
1148 if (auto *PN = dyn_cast<PHINode>(U)) {
1149 assert(PN->getNumIncomingValues() == 1 &&
1150 "unexpected number of incoming "
1151 "values in the PHINode");
1152 PN->replaceAllUsesWith(CurrentReload);
1153 PN->eraseFromParent();
1154 continue;
1155 }
1156
1157 // Replace all uses of CurrentValue in the current instruction with
1158 // reload.
1159 U->replaceUsesOfWith(Def, CurrentReload);
1160 // Instructions are added to Def's user list if the attached
1161 // debug records use Def. Update those now.
1162 for (DbgVariableRecord &DVR : filterDbgVars(U->getDbgRecordRange()))
1163 DVR.replaceVariableLocationOp(Def, CurrentReload, true);
1164 }
1165 }
1166
1167 BasicBlock *FramePtrBB = Shape.getInsertPtAfterFramePtr()->getParent();
1168
1169 auto SpillBlock = FramePtrBB->splitBasicBlock(
1170 Shape.getInsertPtAfterFramePtr(), "AllocaSpillBB");
1171 SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill");
1172 Shape.AllocaSpillBlock = SpillBlock;
1173
1174 // retcon and retcon.once lowering assumes all uses have been sunk.
1175 if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
1176 Shape.ABI == coro::ABI::Async) {
1177 // If we found any allocas, replace all of their remaining uses with Geps.
1178 Builder.SetInsertPoint(SpillBlock, SpillBlock->begin());
1179 for (const auto &P : FrameData.Allocas) {
1180 AllocaInst *Alloca = P.Alloca;
1181 auto *G = GetFramePointer(Alloca);
1182
1183 // Remove any lifetime intrinsics, now that these are no longer allocas.
1184 for (User *U : make_early_inc_range(Alloca->users())) {
1185 auto *I = cast<Instruction>(U);
1186 if (I->isLifetimeStartOrEnd())
1187 I->eraseFromParent();
1188 }
1189
1190 // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G))
1191 // here, as we are changing location of the instruction.
1192 G->takeName(Alloca);
1193 Alloca->replaceAllUsesWith(G);
1194 Alloca->eraseFromParent();
1195 }
1196 return;
1197 }
1198
1199 // If we found any alloca, replace all of their remaining uses with GEP
1200 // instructions. To remain debugbility, we replace the uses of allocas for
1201 // dbg.declares and dbg.values with the reload from the frame.
1202 // Note: We cannot replace the alloca with GEP instructions indiscriminately,
1203 // as some of the uses may not be dominated by CoroBegin.
1204 Builder.SetInsertPoint(Shape.AllocaSpillBlock,
1205 Shape.AllocaSpillBlock->begin());
1206 SmallVector<Instruction *, 4> UsersToUpdate;
1207 for (const auto &A : FrameData.Allocas) {
1208 AllocaInst *Alloca = A.Alloca;
1209 UsersToUpdate.clear();
1210 for (User *U : make_early_inc_range(Alloca->users())) {
1211 auto *I = cast<Instruction>(U);
1212 // It is meaningless to retain the lifetime intrinsics refer for the
1213 // member of coroutine frames and the meaningless lifetime intrinsics
1214 // are possible to block further optimizations.
1215 if (I->isLifetimeStartOrEnd())
1216 I->eraseFromParent();
1217 else if (DT.dominates(Shape.CoroBegin, I))
1218 UsersToUpdate.push_back(I);
1219 }
1220
1221 if (UsersToUpdate.empty())
1222 continue;
1223 auto *G = GetFramePointer(Alloca);
1224 G->setName(Alloca->getName() + Twine(".reload.addr"));
1225
1226 SmallVector<DbgVariableRecord *> DbgVariableRecords;
1227 findDbgUsers(Alloca, DbgVariableRecords);
1228 for (auto *DVR : DbgVariableRecords)
1229 DVR->replaceVariableLocationOp(Alloca, G);
1230
1231 for (Instruction *I : UsersToUpdate)
1232 I->replaceUsesOfWith(Alloca, G);
1233 }
1234 Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr());
1235 for (const auto &A : FrameData.Allocas) {
1236 AllocaInst *Alloca = A.Alloca;
1237 if (A.MayWriteBeforeCoroBegin) {
1238 // isEscaped really means potentially modified before CoroBegin.
1239 if (Alloca->isArrayAllocation())
1241 "Coroutines cannot handle copying of array allocas yet");
1242
1243 auto *G = GetFramePointer(Alloca);
1244 auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca);
1245 Builder.CreateStore(Value, G);
1246 }
1247 // For each alias to Alloca created before CoroBegin but used after
1248 // CoroBegin, we recreate them after CoroBegin by applying the offset
1249 // to the pointer in the frame.
1250 for (const auto &Alias : A.Aliases) {
1251 auto *FramePtr = GetFramePointer(Alloca);
1252 auto &Value = *Alias.second;
1253 auto ITy = IntegerType::get(C, Value.getBitWidth());
1254 auto *AliasPtr =
1255 Builder.CreatePtrAdd(FramePtr, ConstantInt::get(ITy, Value));
1256 Alias.first->replaceUsesWithIf(
1257 AliasPtr, [&](Use &U) { return DT.dominates(Shape.CoroBegin, U); });
1258 }
1259 }
1260
1261 // PromiseAlloca is not collected in FrameData.Allocas. So we don't handle
1262 // the case that the PromiseAlloca may have writes before CoroBegin in the
1263 // above codes. And it may be problematic in edge cases. See
1264 // https://github.com/llvm/llvm-project/issues/57861 for an example.
1265 if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) {
1267 // If there is memory accessing to promise alloca before CoroBegin;
1268 bool HasAccessingPromiseBeforeCB = llvm::any_of(PA->uses(), [&](Use &U) {
1269 auto *Inst = dyn_cast<Instruction>(U.getUser());
1270 if (!Inst || DT.dominates(Shape.CoroBegin, Inst))
1271 return false;
1272
1273 if (auto *CI = dyn_cast<CallInst>(Inst)) {
1274 // It is fine if the call wouldn't write to the Promise.
1275 // This is possible for @llvm.coro.id intrinsics, which
1276 // would take the promise as the second argument as a
1277 // marker.
1278 if (CI->onlyReadsMemory() ||
1279 CI->onlyReadsMemory(CI->getArgOperandNo(&U)))
1280 return false;
1281 return true;
1282 }
1283
1284 return isa<StoreInst>(Inst) ||
1285 // It may take too much time to track the uses.
1286 // Be conservative about the case the use may escape.
1287 isa<GetElementPtrInst>(Inst) ||
1288 // There would always be a bitcast for the promise alloca
1289 // before we enabled Opaque pointers. And now given
1290 // opaque pointers are enabled by default. This should be
1291 // fine.
1292 isa<BitCastInst>(Inst);
1293 });
1294 if (HasAccessingPromiseBeforeCB) {
1295 Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr());
1296 auto *G = GetFramePointer(PA);
1297 auto *Value = Builder.CreateLoad(PA->getAllocatedType(), PA);
1298 Builder.CreateStore(Value, G);
1299 }
1300 }
1301}
1302
1303// Moves the values in the PHIs in SuccBB that correspong to PredBB into a new
1304// PHI in InsertedBB.
1306 BasicBlock *InsertedBB,
1307 BasicBlock *PredBB,
1308 PHINode *UntilPHI = nullptr) {
1309 auto *PN = cast<PHINode>(&SuccBB->front());
1310 do {
1311 int Index = PN->getBasicBlockIndex(InsertedBB);
1312 Value *V = PN->getIncomingValue(Index);
1313 PHINode *InputV = PHINode::Create(
1314 V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName());
1315 InputV->insertBefore(InsertedBB->begin());
1316 InputV->addIncoming(V, PredBB);
1317 PN->setIncomingValue(Index, InputV);
1318 PN = dyn_cast<PHINode>(PN->getNextNode());
1319 } while (PN != UntilPHI);
1320}
1321
1322// Rewrites the PHI Nodes in a cleanuppad.
1323static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB,
1324 CleanupPadInst *CleanupPad) {
1325 // For every incoming edge to a CleanupPad we will create a new block holding
1326 // all incoming values in single-value PHI nodes. We will then create another
1327 // block to act as a dispather (as all unwind edges for related EH blocks
1328 // must be the same).
1329 //
1330 // cleanuppad:
1331 // %2 = phi i32[%0, %catchswitch], [%1, %catch.1]
1332 // %3 = cleanuppad within none []
1333 //
1334 // It will create:
1335 //
1336 // cleanuppad.corodispatch
1337 // %2 = phi i8[0, %catchswitch], [1, %catch.1]
1338 // %3 = cleanuppad within none []
1339 // switch i8 % 2, label %unreachable
1340 // [i8 0, label %cleanuppad.from.catchswitch
1341 // i8 1, label %cleanuppad.from.catch.1]
1342 // cleanuppad.from.catchswitch:
1343 // %4 = phi i32 [%0, %catchswitch]
1344 // br %label cleanuppad
1345 // cleanuppad.from.catch.1:
1346 // %6 = phi i32 [%1, %catch.1]
1347 // br %label cleanuppad
1348 // cleanuppad:
1349 // %8 = phi i32 [%4, %cleanuppad.from.catchswitch],
1350 // [%6, %cleanuppad.from.catch.1]
1351
1352 // Unreachable BB, in case switching on an invalid value in the dispatcher.
1353 auto *UnreachBB = BasicBlock::Create(
1354 CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent());
1355 IRBuilder<> Builder(UnreachBB);
1356 Builder.CreateUnreachable();
1357
1358 // Create a new cleanuppad which will be the dispatcher.
1359 auto *NewCleanupPadBB =
1360 BasicBlock::Create(CleanupPadBB->getContext(),
1361 CleanupPadBB->getName() + Twine(".corodispatch"),
1362 CleanupPadBB->getParent(), CleanupPadBB);
1363 Builder.SetInsertPoint(NewCleanupPadBB);
1364 auto *SwitchType = Builder.getInt8Ty();
1365 auto *SetDispatchValuePN =
1366 Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB));
1367 CleanupPad->removeFromParent();
1368 CleanupPad->insertAfter(SetDispatchValuePN->getIterator());
1369 auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB,
1370 pred_size(CleanupPadBB));
1371
1372 int SwitchIndex = 0;
1373 SmallVector<BasicBlock *, 8> Preds(predecessors(CleanupPadBB));
1374 for (BasicBlock *Pred : Preds) {
1375 // Create a new cleanuppad and move the PHI values to there.
1376 auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(),
1377 CleanupPadBB->getName() +
1378 Twine(".from.") + Pred->getName(),
1379 CleanupPadBB->getParent(), CleanupPadBB);
1380 updatePhiNodes(CleanupPadBB, Pred, CaseBB);
1381 CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") +
1382 Pred->getName());
1383 Builder.SetInsertPoint(CaseBB);
1384 Builder.CreateBr(CleanupPadBB);
1385 movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB);
1386
1387 // Update this Pred to the new unwind point.
1388 setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB);
1389
1390 // Setup the switch in the dispatcher.
1391 auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex);
1392 SetDispatchValuePN->addIncoming(SwitchConstant, Pred);
1393 SwitchOnDispatch->addCase(SwitchConstant, CaseBB);
1394 SwitchIndex++;
1395 }
1396}
1397
1400 for (auto &BB : F) {
1401 for (auto &Phi : BB.phis()) {
1402 if (Phi.getNumIncomingValues() == 1) {
1403 Worklist.push_back(&Phi);
1404 } else
1405 break;
1406 }
1407 }
1408 while (!Worklist.empty()) {
1409 auto *Phi = Worklist.pop_back_val();
1410 auto *OriginalValue = Phi->getIncomingValue(0);
1411 Phi->replaceAllUsesWith(OriginalValue);
1412 }
1413}
1414
1415static void rewritePHIs(BasicBlock &BB) {
1416 // For every incoming edge we will create a block holding all
1417 // incoming values in a single PHI nodes.
1418 //
1419 // loop:
1420 // %n.val = phi i32[%n, %entry], [%inc, %loop]
1421 //
1422 // It will create:
1423 //
1424 // loop.from.entry:
1425 // %n.loop.pre = phi i32 [%n, %entry]
1426 // br %label loop
1427 // loop.from.loop:
1428 // %inc.loop.pre = phi i32 [%inc, %loop]
1429 // br %label loop
1430 //
1431 // After this rewrite, further analysis will ignore any phi nodes with more
1432 // than one incoming edge.
1433
1434 // TODO: Simplify PHINodes in the basic block to remove duplicate
1435 // predecessors.
1436
1437 // Special case for CleanupPad: all EH blocks must have the same unwind edge
1438 // so we need to create an additional "dispatcher" block.
1439 if (!BB.empty()) {
1440 if (auto *CleanupPad =
1443 for (BasicBlock *Pred : Preds) {
1444 if (CatchSwitchInst *CS =
1445 dyn_cast<CatchSwitchInst>(Pred->getTerminator())) {
1446 // CleanupPad with a CatchSwitch predecessor: therefore this is an
1447 // unwind destination that needs to be handle specially.
1448 assert(CS->getUnwindDest() == &BB);
1449 (void)CS;
1450 rewritePHIsForCleanupPad(&BB, CleanupPad);
1451 return;
1452 }
1453 }
1454 }
1455 }
1456
1457 LandingPadInst *LandingPad = nullptr;
1458 PHINode *ReplPHI = nullptr;
1459 if (!BB.empty()) {
1460 if ((LandingPad =
1462 // ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
1463 // We replace the original landing pad with a PHINode that will collect the
1464 // results from all of them.
1465 ReplPHI = PHINode::Create(LandingPad->getType(), 1, "");
1466 ReplPHI->insertBefore(LandingPad->getIterator());
1467 ReplPHI->takeName(LandingPad);
1468 LandingPad->replaceAllUsesWith(ReplPHI);
1469 // We will erase the original landing pad at the end of this function after
1470 // ehAwareSplitEdge cloned it in the transition blocks.
1471 }
1472 }
1473
1475 for (BasicBlock *Pred : Preds) {
1476 auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
1477 IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
1478
1479 // Stop the moving of values at ReplPHI, as this is either null or the PHI
1480 // that replaced the landing pad.
1481 movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI);
1482 }
1483
1484 if (LandingPad) {
1485 // Calls to ehAwareSplitEdge function cloned the original lading pad.
1486 // No longer need it.
1487 LandingPad->eraseFromParent();
1488 }
1489}
1490
1491static void rewritePHIs(Function &F) {
1493
1494 for (BasicBlock &BB : F)
1495 if (auto *PN = dyn_cast<PHINode>(&BB.front()))
1496 if (PN->getNumIncomingValues() > 1)
1497 WorkList.push_back(&BB);
1498
1499 for (BasicBlock *BB : WorkList)
1500 rewritePHIs(*BB);
1501}
1502
1503// Splits the block at a particular instruction unless it is the first
1504// instruction in the block with a single predecessor.
1506 auto *BB = I->getParent();
1507 if (&BB->front() == I) {
1508 if (BB->getSinglePredecessor()) {
1509 BB->setName(Name);
1510 return BB;
1511 }
1512 }
1513 return BB->splitBasicBlock(I, Name);
1514}
1515
1516// Split above and below a particular instruction so that it
1517// will be all alone by itself in a block.
1518static void splitAround(Instruction *I, const Twine &Name) {
1519 splitBlockIfNotFirst(I, Name);
1520 splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
1521}
1522
1523/// After we split the coroutine, will the given basic block be along
1524/// an obvious exit path for the resumption function?
1526 unsigned depth = 3) {
1527 // If we've bottomed out our depth count, stop searching and assume
1528 // that the path might loop back.
1529 if (depth == 0) return false;
1530
1531 // If this is a suspend block, we're about to exit the resumption function.
1532 if (coro::isSuspendBlock(BB))
1533 return true;
1534
1535 // Recurse into the successors.
1536 for (auto *Succ : successors(BB)) {
1537 if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1))
1538 return false;
1539 }
1540
1541 // If none of the successors leads back in a loop, we're on an exit/abort.
1542 return true;
1543}
1544
1546 // Look for a free that isn't sufficiently obviously followed by
1547 // either a suspend or a termination, i.e. something that will leave
1548 // the coro resumption frame.
1549 for (auto *U : AI->users()) {
1550 auto FI = dyn_cast<CoroAllocaFreeInst>(U);
1551 if (!FI) continue;
1552
1553 if (!willLeaveFunctionImmediatelyAfter(FI->getParent()))
1554 return true;
1555 }
1556
1557 // If we never found one, we don't need a stack save.
1558 return false;
1559}
1560
1561/// Turn each of the given local allocas into a normal (dynamic) alloca
1562/// instruction.
1564 SmallVectorImpl<Instruction*> &DeadInsts) {
1565 for (auto *AI : LocalAllocas) {
1566 IRBuilder<> Builder(AI);
1567
1568 // Save the stack depth. Try to avoid doing this if the stackrestore
1569 // is going to immediately precede a return or something.
1570 Value *StackSave = nullptr;
1572 StackSave = Builder.CreateStackSave();
1573
1574 // Allocate memory.
1575 auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize());
1576 Alloca->setAlignment(AI->getAlignment());
1577
1578 for (auto *U : AI->users()) {
1579 // Replace gets with the allocation.
1580 if (isa<CoroAllocaGetInst>(U)) {
1581 U->replaceAllUsesWith(Alloca);
1582
1583 // Replace frees with stackrestores. This is safe because
1584 // alloca.alloc is required to obey a stack discipline, although we
1585 // don't enforce that structurally.
1586 } else {
1587 auto FI = cast<CoroAllocaFreeInst>(U);
1588 if (StackSave) {
1589 Builder.SetInsertPoint(FI);
1590 Builder.CreateStackRestore(StackSave);
1591 }
1592 }
1593 DeadInsts.push_back(cast<Instruction>(U));
1594 }
1595
1596 DeadInsts.push_back(AI);
1597 }
1598}
1599
1600/// Get the current swifterror value.
1602 coro::Shape &Shape) {
1603 // Make a fake function pointer as a sort of intrinsic.
1604 auto FnTy = FunctionType::get(ValueTy, {}, false);
1605 auto Fn = ConstantPointerNull::get(Builder.getPtrTy());
1606
1607 auto Call = Builder.CreateCall(FnTy, Fn, {});
1608 Shape.SwiftErrorOps.push_back(Call);
1609
1610 return Call;
1611}
1612
1613/// Set the given value as the current swifterror value.
1614///
1615/// Returns a slot that can be used as a swifterror slot.
1617 coro::Shape &Shape) {
1618 // Make a fake function pointer as a sort of intrinsic.
1619 auto FnTy = FunctionType::get(Builder.getPtrTy(),
1620 {V->getType()}, false);
1621 auto Fn = ConstantPointerNull::get(Builder.getPtrTy());
1622
1623 auto Call = Builder.CreateCall(FnTy, Fn, { V });
1624 Shape.SwiftErrorOps.push_back(Call);
1625
1626 return Call;
1627}
1628
1629/// Set the swifterror value from the given alloca before a call,
1630/// then put in back in the alloca afterwards.
1631///
1632/// Returns an address that will stand in for the swifterror slot
1633/// until splitting.
1635 AllocaInst *Alloca,
1636 coro::Shape &Shape) {
1637 auto ValueTy = Alloca->getAllocatedType();
1638 IRBuilder<> Builder(Call);
1639
1640 // Load the current value from the alloca and set it as the
1641 // swifterror value.
1642 auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca);
1643 auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape);
1644
1645 // Move to after the call. Since swifterror only has a guaranteed
1646 // value on normal exits, we can ignore implicit and explicit unwind
1647 // edges.
1648 if (isa<CallInst>(Call)) {
1649 Builder.SetInsertPoint(Call->getNextNode());
1650 } else {
1651 auto Invoke = cast<InvokeInst>(Call);
1652 Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg());
1653 }
1654
1655 // Get the current swifterror value and store it to the alloca.
1656 auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape);
1657 Builder.CreateStore(ValueAfterCall, Alloca);
1658
1659 return Addr;
1660}
1661
1662/// Eliminate a formerly-swifterror alloca by inserting the get/set
1663/// intrinsics and attempting to MemToReg the alloca away.
1665 coro::Shape &Shape) {
1666 for (Use &Use : llvm::make_early_inc_range(Alloca->uses())) {
1667 // swifterror values can only be used in very specific ways.
1668 // We take advantage of that here.
1669 auto User = Use.getUser();
1671 continue;
1672
1674 auto Call = cast<Instruction>(User);
1675
1676 auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape);
1677
1678 // Use the returned slot address as the call argument.
1679 Use.set(Addr);
1680 }
1681
1682 // All the uses should be loads and stores now.
1683 assert(isAllocaPromotable(Alloca));
1684}
1685
1686/// "Eliminate" a swifterror argument by reducing it to the alloca case
1687/// and then loading and storing in the prologue and epilog.
1688///
1689/// The argument keeps the swifterror flag.
1691 coro::Shape &Shape,
1692 SmallVectorImpl<AllocaInst*> &AllocasToPromote) {
1693 IRBuilder<> Builder(&F.getEntryBlock(),
1694 F.getEntryBlock().getFirstNonPHIOrDbg());
1695
1696 auto ArgTy = cast<PointerType>(Arg.getType());
1697 auto ValueTy = PointerType::getUnqual(F.getContext());
1698
1699 // Reduce to the alloca case:
1700
1701 // Create an alloca and replace all uses of the arg with it.
1702 auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace());
1703 Arg.replaceAllUsesWith(Alloca);
1704
1705 // Set an initial value in the alloca. swifterror is always null on entry.
1706 auto InitialValue = Constant::getNullValue(ValueTy);
1707 Builder.CreateStore(InitialValue, Alloca);
1708
1709 // Find all the suspends in the function and save and restore around them.
1710 for (auto *Suspend : Shape.CoroSuspends) {
1711 (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape);
1712 }
1713
1714 // Find all the coro.ends in the function and restore the error value.
1715 for (auto *End : Shape.CoroEnds) {
1716 Builder.SetInsertPoint(End);
1717 auto FinalValue = Builder.CreateLoad(ValueTy, Alloca);
1718 (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape);
1719 }
1720
1721 // Now we can use the alloca logic.
1722 AllocasToPromote.push_back(Alloca);
1723 eliminateSwiftErrorAlloca(F, Alloca, Shape);
1724}
1725
1726/// Eliminate all problematic uses of swifterror arguments and allocas
1727/// from the function. We'll fix them up later when splitting the function.
1729 SmallVector<AllocaInst*, 4> AllocasToPromote;
1730
1731 // Look for a swifterror argument.
1732 for (auto &Arg : F.args()) {
1733 if (!Arg.hasSwiftErrorAttr()) continue;
1734
1735 eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote);
1736 break;
1737 }
1738
1739 // Look for swifterror allocas.
1740 for (auto &Inst : F.getEntryBlock()) {
1741 auto Alloca = dyn_cast<AllocaInst>(&Inst);
1742 if (!Alloca || !Alloca->isSwiftError()) continue;
1743
1744 // Clear the swifterror flag.
1745 Alloca->setSwiftError(false);
1746
1747 AllocasToPromote.push_back(Alloca);
1748 eliminateSwiftErrorAlloca(F, Alloca, Shape);
1749 }
1750
1751 // If we have any allocas to promote, compute a dominator tree and
1752 // promote them en masse.
1753 if (!AllocasToPromote.empty()) {
1754 DominatorTree DT(F);
1755 PromoteMemToReg(AllocasToPromote, DT);
1756 }
1757}
1758
1759/// For each local variable that all of its user are only used inside one of
1760/// suspended region, we sink their lifetime.start markers to the place where
1761/// after the suspend block. Doing so minimizes the lifetime of each variable,
1762/// hence minimizing the amount of data we end up putting on the frame.
1764 SuspendCrossingInfo &Checker,
1765 const DominatorTree &DT) {
1766 if (F.hasOptNone())
1767 return;
1768
1769 // Collect all possible basic blocks which may dominate all uses of allocas.
1771 DomSet.insert(&F.getEntryBlock());
1772 for (auto *CSI : Shape.CoroSuspends) {
1773 BasicBlock *SuspendBlock = CSI->getParent();
1774 assert(coro::isSuspendBlock(SuspendBlock) &&
1775 SuspendBlock->getSingleSuccessor() &&
1776 "should have split coro.suspend into its own block");
1777 DomSet.insert(SuspendBlock->getSingleSuccessor());
1778 }
1779
1780 for (Instruction &I : instructions(F)) {
1782 if (!AI)
1783 continue;
1784
1785 for (BasicBlock *DomBB : DomSet) {
1786 bool Valid = true;
1788
1789 auto isLifetimeStart = [](Instruction* I) {
1790 if (auto* II = dyn_cast<IntrinsicInst>(I))
1791 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1792 return false;
1793 };
1794
1795 auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) {
1796 if (isLifetimeStart(U)) {
1797 Lifetimes.push_back(U);
1798 return true;
1799 }
1800 if (!U->hasOneUse() || U->stripPointerCasts() != AI)
1801 return false;
1802 if (isLifetimeStart(U->user_back())) {
1803 Lifetimes.push_back(U->user_back());
1804 return true;
1805 }
1806 return false;
1807 };
1808
1809 for (User *U : AI->users()) {
1811 // For all users except lifetime.start markers, if they are all
1812 // dominated by one of the basic blocks and do not cross
1813 // suspend points as well, then there is no need to spill the
1814 // instruction.
1815 if (!DT.dominates(DomBB, UI->getParent()) ||
1816 Checker.isDefinitionAcrossSuspend(DomBB, UI)) {
1817 // Skip lifetime.start, GEP and bitcast used by lifetime.start
1818 // markers.
1819 if (collectLifetimeStart(UI, AI))
1820 continue;
1821 Valid = false;
1822 break;
1823 }
1824 }
1825 // Sink lifetime.start markers to dominate block when they are
1826 // only used outside the region.
1827 if (Valid && Lifetimes.size() != 0) {
1828 auto *NewLifetime = Lifetimes[0]->clone();
1829 NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(0), AI);
1830 NewLifetime->insertBefore(DomBB->getTerminator()->getIterator());
1831
1832 // All the outsided lifetime.start markers are no longer necessary.
1833 for (Instruction *S : Lifetimes)
1834 S->eraseFromParent();
1835
1836 break;
1837 }
1838 }
1839 }
1840}
1841
1842static std::optional<std::pair<Value &, DIExpression &>>
1844 bool UseEntryValue, Function *F, Value *Storage,
1845 DIExpression *Expr, bool SkipOutermostLoad) {
1846 IRBuilder<> Builder(F->getContext());
1847 auto InsertPt = F->getEntryBlock().getFirstInsertionPt();
1848 while (isa<IntrinsicInst>(InsertPt))
1849 ++InsertPt;
1850 Builder.SetInsertPoint(&F->getEntryBlock(), InsertPt);
1851
1852 while (auto *Inst = dyn_cast_or_null<Instruction>(Storage)) {
1853 if (auto *LdInst = dyn_cast<LoadInst>(Inst)) {
1854 Storage = LdInst->getPointerOperand();
1855 // FIXME: This is a heuristic that works around the fact that
1856 // LLVM IR debug intrinsics cannot yet distinguish between
1857 // memory and value locations: Because a dbg.declare(alloca) is
1858 // implicitly a memory location no DW_OP_deref operation for the
1859 // last direct load from an alloca is necessary. This condition
1860 // effectively drops the *last* DW_OP_deref in the expression.
1861 if (!SkipOutermostLoad)
1863 } else if (auto *StInst = dyn_cast<StoreInst>(Inst)) {
1864 Storage = StInst->getValueOperand();
1865 } else {
1867 SmallVector<Value *, 0> AdditionalValues;
1869 *Inst, Expr ? Expr->getNumLocationOperands() : 0, Ops,
1870 AdditionalValues);
1871 if (!Op || !AdditionalValues.empty()) {
1872 // If salvaging failed or salvaging produced more than one location
1873 // operand, give up.
1874 break;
1875 }
1876 Storage = Op;
1877 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, /*StackValue*/ false);
1878 }
1879 SkipOutermostLoad = false;
1880 }
1881 if (!Storage)
1882 return std::nullopt;
1883
1884 auto *StorageAsArg = dyn_cast<Argument>(Storage);
1885 const bool IsSwiftAsyncArg =
1886 StorageAsArg && StorageAsArg->hasAttribute(Attribute::SwiftAsync);
1887
1888 // Swift async arguments are described by an entry value of the ABI-defined
1889 // register containing the coroutine context.
1890 // Entry values in variadic expressions are not supported.
1891 if (IsSwiftAsyncArg && UseEntryValue && !Expr->isEntryValue() &&
1894
1895 // If the coroutine frame is an Argument, store it in an alloca to improve
1896 // its availability (e.g. registers may be clobbered).
1897 // Avoid this if the value is guaranteed to be available through other means
1898 // (e.g. swift ABI guarantees).
1899 if (StorageAsArg && !IsSwiftAsyncArg) {
1900 auto &Cached = ArgToAllocaMap[StorageAsArg];
1901 if (!Cached) {
1902 Cached = Builder.CreateAlloca(Storage->getType(), 0, nullptr,
1903 Storage->getName() + ".debug");
1904 Builder.CreateStore(Storage, Cached);
1905 }
1906 Storage = Cached;
1907 // FIXME: LLVM lacks nuanced semantics to differentiate between
1908 // memory and direct locations at the IR level. The backend will
1909 // turn a dbg.declare(alloca, ..., DIExpression()) into a memory
1910 // location. Thus, if there are deref and offset operations in the
1911 // expression, we need to add a DW_OP_deref at the *start* of the
1912 // expression to first load the contents of the alloca before
1913 // adjusting it with the expression.
1915 }
1916
1917 Expr = Expr->foldConstantMath();
1918 return {{*Storage, *Expr}};
1919}
1920
1923 DbgVariableRecord &DVR, bool UseEntryValue) {
1924
1925 Function *F = DVR.getFunction();
1926 // Follow the pointer arithmetic all the way to the incoming
1927 // function argument and convert into a DIExpression.
1928 bool SkipOutermostLoad = DVR.isDbgDeclare();
1929 Value *OriginalStorage = DVR.getVariableLocationOp(0);
1930
1931 auto SalvagedInfo =
1932 ::salvageDebugInfoImpl(ArgToAllocaMap, UseEntryValue, F, OriginalStorage,
1933 DVR.getExpression(), SkipOutermostLoad);
1934 if (!SalvagedInfo)
1935 return;
1936
1937 Value *Storage = &SalvagedInfo->first;
1938 DIExpression *Expr = &SalvagedInfo->second;
1939
1940 DVR.replaceVariableLocationOp(OriginalStorage, Storage);
1941 DVR.setExpression(Expr);
1942 // We only hoist dbg.declare today since it doesn't make sense to hoist
1943 // dbg.value since it does not have the same function wide guarantees that
1944 // dbg.declare does.
1946 std::optional<BasicBlock::iterator> InsertPt;
1947 if (auto *I = dyn_cast<Instruction>(Storage)) {
1948 InsertPt = I->getInsertionPointAfterDef();
1949 // Update DILocation only if variable was not inlined.
1950 DebugLoc ILoc = I->getDebugLoc();
1951 DebugLoc DVRLoc = DVR.getDebugLoc();
1952 if (ILoc && DVRLoc &&
1953 DVRLoc->getScope()->getSubprogram() ==
1954 ILoc->getScope()->getSubprogram())
1955 DVR.setDebugLoc(ILoc);
1956 } else if (isa<Argument>(Storage))
1957 InsertPt = F->getEntryBlock().begin();
1958 if (InsertPt) {
1959 DVR.removeFromParent();
1960 (*InsertPt)->getParent()->insertDbgRecordBefore(&DVR, *InsertPt);
1961 }
1962 }
1963}
1964
1967 // Don't eliminate swifterror in async functions that won't be split.
1968 if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty())
1970
1971 if (Shape.ABI == coro::ABI::Switch &&
1974 }
1975
1976 // Make sure that all coro.save, coro.suspend and the fallthrough coro.end
1977 // intrinsics are in their own blocks to simplify the logic of building up
1978 // SuspendCrossing data.
1979 for (auto *CSI : Shape.CoroSuspends) {
1980 if (auto *Save = CSI->getCoroSave())
1981 splitAround(Save, "CoroSave");
1982 splitAround(CSI, "CoroSuspend");
1983 }
1984
1985 // Put CoroEnds into their own blocks.
1986 for (AnyCoroEndInst *CE : Shape.CoroEnds) {
1987 splitAround(CE, "CoroEnd");
1988
1989 // Emit the musttail call function in a new block before the CoroEnd.
1990 // We do this here so that the right suspend crossing info is computed for
1991 // the uses of the musttail call function call. (Arguments to the coro.end
1992 // instructions would be ignored)
1993 if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(CE)) {
1994 auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction();
1995 if (!MustTailCallFn)
1996 continue;
1997 IRBuilder<> Builder(AsyncEnd);
1998 SmallVector<Value *, 8> Args(AsyncEnd->args());
1999 auto Arguments = ArrayRef<Value *>(Args).drop_front(3);
2001 AsyncEnd->getDebugLoc(), MustTailCallFn, TTI, Arguments, Builder);
2002 splitAround(Call, "MustTailCall.Before.CoroEnd");
2003 }
2004 }
2005
2006 // Later code makes structural assumptions about single predecessors phis e.g
2007 // that they are not live across a suspend point.
2009
2010 // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
2011 // never have its definition separated from the PHI by the suspend point.
2012 rewritePHIs(F);
2013}
2014
2015void coro::BaseABI::buildCoroutineFrame(bool OptimizeFrame) {
2016 SuspendCrossingInfo Checker(F, Shape.CoroSuspends, Shape.CoroEnds);
2018
2019 const DominatorTree DT(F);
2020 if (Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon &&
2022 sinkLifetimeStartMarkers(F, Shape, Checker, DT);
2023
2024 // All values (that are not allocas) that needs to be spilled to the frame.
2025 coro::SpillInfo Spills;
2026 // All values defined as allocas that need to live in the frame.
2028
2029 // Collect the spills for arguments and other not-materializable values.
2030 coro::collectSpillsFromArgs(Spills, F, Checker);
2031 SmallVector<Instruction *, 4> DeadInstructions;
2033 coro::collectSpillsAndAllocasFromInsts(Spills, Allocas, DeadInstructions,
2034 LocalAllocas, F, Checker, DT, Shape);
2035 coro::collectSpillsFromDbgInfo(Spills, F, Checker);
2036
2037 LLVM_DEBUG(dumpAllocas(Allocas));
2038 LLVM_DEBUG(dumpSpills("Spills", Spills));
2039
2040 if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
2041 Shape.ABI == coro::ABI::Async)
2042 sinkSpillUsesAfterCoroBegin(DT, Shape.CoroBegin, Spills, Allocas);
2043
2044 // Build frame
2045 FrameDataInfo FrameData(Spills, Allocas);
2046 Shape.FrameTy = buildFrameType(F, Shape, FrameData, OptimizeFrame);
2047 Shape.FramePtr = Shape.CoroBegin;
2048 // For now, this works for C++ programs only.
2049 buildFrameDebugInfo(F, Shape, FrameData);
2050 // Insert spills and reloads
2051 insertSpills(FrameData, Shape);
2052 lowerLocalAllocas(LocalAllocas, DeadInstructions);
2053
2054 for (auto *I : DeadInstructions)
2055 I->eraseFromParent();
2056}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
Rewrite undef for false bool rewritePHIs(Function &F, UniformityInfo &UA, DominatorTree *DT)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static void cleanupSinglePredPHIs(Function &F)
static void eliminateSwiftError(Function &F, coro::Shape &Shape)
Eliminate all problematic uses of swifterror arguments and allocas from the function.
static void lowerLocalAllocas(ArrayRef< CoroAllocaAllocInst * > LocalAllocas, SmallVectorImpl< Instruction * > &DeadInsts)
Turn each of the given local allocas into a normal (dynamic) alloca instruction.
static Value * emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V, coro::Shape &Shape)
Set the given value as the current swifterror value.
static Value * emitSetAndGetSwiftErrorValueAround(Instruction *Call, AllocaInst *Alloca, coro::Shape &Shape)
Set the swifterror value from the given alloca before a call, then put in back in the alloca afterwar...
static void cacheDIVar(FrameDataInfo &FrameData, DenseMap< Value *, DILocalVariable * > &DIVarCache)
static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI)
static void dumpAllocas(const SmallVectorImpl< coro::AllocaInfo > &Allocas)
static void splitAround(Instruction *I, const Twine &Name)
static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca, coro::Shape &Shape)
Eliminate a formerly-swifterror alloca by inserting the get/set intrinsics and attempting to MemToReg...
static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB, BasicBlock *InsertedBB, BasicBlock *PredBB, PHINode *UntilPHI=nullptr)
static void dumpSpills(StringRef Title, const coro::SpillInfo &Spills)
static DIType * solveDIType(DIBuilder &Builder, Type *Ty, const DataLayout &Layout, DIScope *Scope, unsigned LineNum, DenseMap< Type *, DIType * > &DITypeCache)
static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB, unsigned depth=3)
After we split the coroutine, will the given basic block be along an obvious exit path for the resump...
static StructType * buildFrameType(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData, bool OptimizeFrame)
static void eliminateSwiftErrorArgument(Function &F, Argument &Arg, coro::Shape &Shape, SmallVectorImpl< AllocaInst * > &AllocasToPromote)
"Eliminate" a swifterror argument by reducing it to the alloca case and then loading and storing in t...
static void buildFrameDebugInfo(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData)
Build artificial debug info for C++ coroutine frames to allow users to inspect the contents of the fr...
static BasicBlock * splitBlockIfNotFirst(Instruction *I, const Twine &Name)
static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB, CleanupPadInst *CleanupPad)
static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape, SuspendCrossingInfo &Checker, const DominatorTree &DT)
For each local variable that all of its user are only used inside one of suspended region,...
static StringRef solveTypeName(Type *Ty)
Create name for Type.
static Value * emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy, coro::Shape &Shape)
Get the current swifterror value.
static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape)
static bool isLifetimeStart(const Instruction *Inst)
Definition GVN.cpp:1210
Hexagon Common GEP
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
This file provides an interface for laying out a sequence of fields as a struct in a way that attempt...
#define P(N)
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallString class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static const unsigned FramePtr
an instruction to allocate memory on the stack
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
void setSwiftError(bool V)
Specify whether this alloca is used to represent a swifterror.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
PointerType * getType() const
Overload to return most specific pointer type.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
bool empty() const
Definition BasicBlock.h:481
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
const Instruction & front() const
Definition BasicBlock.h:482
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This represents the llvm.coro.alloca.alloc instruction.
Definition CoroInstr.h:758
void clearPromise()
Definition CoroInstr.h:159
LLVM_ABI DIDerivedType * createMemberType(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNo, Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits, DINode::DIFlags Flags, DIType *Ty, DINodeArray Annotations=nullptr)
Create debugging information entry for a member.
LLVM_ABI DIDerivedType * createPointerType(DIType *PointeeTy, uint64_t SizeInBits, uint32_t AlignInBits=0, std::optional< unsigned > DWARFAddressSpace=std::nullopt, StringRef Name="", DINodeArray Annotations=nullptr)
Create debugging information entry for a pointer.
LLVM_ABI DIBasicType * createBasicType(StringRef Name, uint64_t SizeInBits, unsigned Encoding, DINode::DIFlags Flags=DINode::FlagZero, uint32_t NumExtraInhabitants=0)
Create debugging information entry for a basic type.
LLVM_ABI DICompositeType * createStructType(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNumber, Metadata *SizeInBits, uint32_t AlignInBits, DINode::DIFlags Flags, DIType *DerivedFrom, DINodeArray Elements, unsigned RunTimeLang=0, DIType *VTableHolder=nullptr, StringRef UniqueIdentifier="", DIType *Specification=nullptr, uint32_t NumExtraInhabitants=0)
Create debugging information entry for a struct.
LLVM_ABI DINodeArray getOrCreateArray(ArrayRef< Metadata * > Elements)
Get a DINodeArray, create one if required.
LLVM_ABI DIExpression * createExpression(ArrayRef< uint64_t > Addr={})
Create a new descriptor for the specified variable which has a complex address expression for its add...
LLVM_ABI DILocalVariable * createAutoVariable(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNo, DIType *Ty, bool AlwaysPreserve=false, DINode::DIFlags Flags=DINode::FlagZero, uint32_t AlignInBits=0)
Create a new descriptor for an auto variable.
LLVM_ABI void replaceArrays(DICompositeType *&T, DINodeArray Elements, DINodeArray TParams=DINodeArray())
Replace arrays on a composite type.
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
LLVM_ABI DIExpression * foldConstantMath()
Try to shorten an expression with constant math operations that can be evaluated at compile time.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
LLVM_ABI bool isSingleLocationExpression() const
Return whether the evaluated expression makes use of a single location at the start of the expression...
Base class for scope-like contexts.
DIFile * getFile() const
Subprogram description. Uses SubclassData1.
Base class for types.
StringRef getName() const
uint64_t getSizeInBits() const
LLVM_ABI uint32_t getAlignInBits() const
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition DataLayout.h:760
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
LLVM_ABI void removeFromParent()
LLVM_ABI Function * getFunction()
DebugLoc getDebugLoc() const
void setDebugLoc(DebugLoc Loc)
Record of a variable value-assignment, aka a non instruction representation of the dbg....
void setExpression(DIExpression *NewExpr)
DIExpression * getExpression() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
LLVM_ABI void replaceVariableLocationOp(Value *OldValue, Value *NewValue, bool AllowEmpty=false)
A debug info location.
Definition DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:194
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:167
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:158
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:222
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2783
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void insertAfter(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately after the specified instruction.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
The landingpad instruction holds all of the information necessary to generate correct exception handl...
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
LLVMContext & getContext() const
Definition Metadata.h:1242
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1526
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition Module.h:278
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
StringRef str() const
Explicit conversion to StringRef.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::string str() const
str - Get the contents as an std::string.
Definition StringRef.h:225
TypeSize getElementOffsetInBits(unsigned Idx) const
Definition DataLayout.h:748
Class to represent struct types.
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition Type.cpp:620
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const
void setDefaultDest(BasicBlock *DefaultCase)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM_ABI std::string str() const
Return the twine contents as a std::string.
Definition Twine.cpp:17
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
static LLVM_ABI ValueAsMetadata * get(Value *V)
Definition Metadata.cpp:503
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
std::function< bool(Instruction &I)> IsMaterializable
Definition ABI.h:64
Function & F
Definition ABI.h:59
virtual void buildCoroutineFrame(bool OptimizeFrame)
coro::Shape & Shape
Definition ABI.h:60
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
A raw_ostream that writes to an SmallVector or SmallString.
StringRef str() const
Return a StringRef for the vector contents.
CallInst * Call
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
SmallMapVector< Value *, SmallVector< Instruction *, 2 >, 8 > SpillInfo
Definition SpillUtils.h:20
@ Async
The "async continuation" lowering, where each suspend point creates a single continuation function.
Definition CoroShape.h:48
@ RetconOnce
The "unique returned-continuation" lowering, where each suspend point creates a single continuation f...
Definition CoroShape.h:43
@ Retcon
The "returned-continuation" lowering, where each suspend point creates a single continuation function...
Definition CoroShape.h:36
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
Definition CoroShape.h:31
BasicBlock::iterator getSpillInsertionPt(const coro::Shape &, Value *Def, const DominatorTree &DT)
bool isSuspendBlock(BasicBlock *BB)
void normalizeCoroutine(Function &F, coro::Shape &Shape, TargetTransformInfo &TTI)
CallInst * createMustTailCall(DebugLoc Loc, Function *MustTailCallFn, TargetTransformInfo &TTI, ArrayRef< Value * > Arguments, IRBuilder<> &)
void sinkSpillUsesAfterCoroBegin(const DominatorTree &DT, CoroBeginInst *CoroBegin, coro::SpillInfo &Spills, SmallVectorImpl< coro::AllocaInfo > &Allocas)
Async and Retcon{Once} conventions assume that all spill uses can be sunk after the coro....
LLVM_ABI void doRematerializations(Function &F, SuspendCrossingInfo &Checker, std::function< bool(Instruction &)> IsMaterializable)
void collectSpillsFromArgs(SpillInfo &Spills, Function &F, const SuspendCrossingInfo &Checker)
void collectSpillsFromDbgInfo(SpillInfo &Spills, Function &F, const SuspendCrossingInfo &Checker)
void salvageDebugInfo(SmallDenseMap< Argument *, AllocaInst *, 4 > &ArgToAllocaMap, DbgVariableRecord &DVR, bool UseEntryValue)
Attempts to rewrite the location operand of debug records in terms of the coroutine frame pointer,...
void collectSpillsAndAllocasFromInsts(SpillInfo &Spills, SmallVector< AllocaInfo, 8 > &Allocas, SmallVector< Instruction *, 4 > &DeadInstructions, SmallVector< CoroAllocaAllocInst *, 4 > &LocalAllocas, Function &F, const SuspendCrossingInfo &Checker, const DominatorTree &DT, const coro::Shape &Shape)
bool isCPlusPlus(SourceLanguage S)
Definition Dwarf.h:512
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1720
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI void PromoteMemToReg(ArrayRef< AllocaInst * > Allocas, DominatorTree &DT, AssumptionCache *AC=nullptr)
Promote the specified list of alloca instructions into scalar registers, inserting PHI nodes as appro...
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
Definition MathExtras.h:361
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:134
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:634
auto pred_size(const MachineBasicBlock *BB)
LLVM_ABI bool isAllocaPromotable(const AllocaInst *AI)
Return true if this alloca is legal for promotion.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1734
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1741
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
LLVM_ABI BasicBlock * ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad=nullptr, PHINode *LandingPadReplacement=nullptr, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
Split the edge connect the specficed blocks in the case that Succ is an Exception Handling Block.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2274
uint64_t offsetToAlignment(uint64_t Value, Align Alignment)
Returns the offset to the next integer (mod 2**64) that is greater than or equal to Value and is a mu...
Definition Alignment.h:186
TargetTransformInfo TTI
LLVM_ABI std::pair< uint64_t, Align > performOptimizedStructLayout(MutableArrayRef< OptimizedStructLayoutField > Fields)
Compute a layout for a struct containing the given fields, making a best-effort attempt to minimize t...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
LLVM_ABI void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *Until=nullptr)
Replaces all uses of OldPred with the NewPred block in all PHINodes in a block.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1760
LLVM_ABI TinyPtrVector< DbgVariableRecord * > findDVRDeclares(Value *V)
Finds dbg.declare records declaring local variables as living in the memory that 'V' points to.
Definition DebugInfo.cpp:49
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ)
Sets the unwind edge of an instruction to a particular successor.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
Align Alignment
The required alignment of this field.
uint64_t Offset
The offset of this field in the final layout.
uint64_t Size
The required size of this field in bytes.
static constexpr uint64_t FlexibleOffset
A special value for Offset indicating that the field can be moved anywhere.
AsyncLoweringStorage AsyncLowering
Definition CoroShape.h:157
StructType * FrameTy
Definition CoroShape.h:116
AnyCoroIdRetconInst * getRetconCoroId() const
Definition CoroShape.h:165
CoroIdInst * getSwitchCoroId() const
Definition CoroShape.h:160
SmallVector< AnyCoroSuspendInst *, 4 > CoroSuspends
Definition CoroShape.h:59
uint64_t FrameSize
Definition CoroShape.h:118
AllocaInst * getPromiseAlloca() const
Definition CoroShape.h:246
SwitchLoweringStorage SwitchLowering
Definition CoroShape.h:155
CoroBeginInst * CoroBegin
Definition CoroShape.h:54
BasicBlock::iterator getInsertPtAfterFramePtr() const
Definition CoroShape.h:252
RetconLoweringStorage RetconLowering
Definition CoroShape.h:156
SmallVector< AnyCoroEndInst *, 4 > CoroEnds
Definition CoroShape.h:55
SmallVector< CallInst *, 2 > SwiftErrorOps
Definition CoroShape.h:64
BasicBlock * AllocaSpillBlock
Definition CoroShape.h:120