85using namespace PatternMatch;
87#define DEBUG_TYPE "gvn"
89STATISTIC(NumGVNInstr,
"Number of instructions deleted");
91STATISTIC(NumGVNPRE,
"Number of instructions PRE'd");
93STATISTIC(NumGVNSimpl,
"Number of instructions simplified");
94STATISTIC(NumGVNEqProp,
"Number of equalities propagated");
96STATISTIC(NumPRELoopLoad,
"Number of loop loads PRE'd");
98 "Number of loads moved to predecessor of a critical edge in PRE");
100STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
101 "Number of blocks speculated as available in "
102 "IsValueFullyAvailableInBlock(), max");
104 "Number of times we we reached gvn-max-block-speculations cut-off "
105 "preventing further exploration");
118 cl::desc(
"Max number of dependences to attempt Load PRE (default = 100)"));
123 cl::desc(
"Max number of blocks we're willing to speculate on (and recurse "
124 "into) when deducing if a value is fully available or not in GVN "
129 cl::desc(
"Max number of visited instructions when trying to find "
130 "dominating value of select dependency (default = 100)"));
134 cl::desc(
"Max number of instructions to scan in each basic block in GVN "
266 return cast<LoadInst>(
Val);
271 return cast<MemIntrinsic>(
Val);
276 return cast<SelectInst>(
Val);
297 Res.
AV = std::move(
AV);
328 e.type =
I->getType();
329 e.opcode =
I->getOpcode();
334 e.varargs.push_back(
lookupOrAdd(GCR->getOperand(0)));
335 e.varargs.push_back(
lookupOrAdd(GCR->getBasePtr()));
336 e.varargs.push_back(
lookupOrAdd(GCR->getDerivedPtr()));
338 for (
Use &
Op :
I->operands())
341 if (
I->isCommutative()) {
346 assert(
I->getNumOperands() >= 2 &&
"Unsupported commutative instruction!");
347 if (
e.varargs[0] >
e.varargs[1])
349 e.commutative =
true;
352 if (
auto *
C = dyn_cast<CmpInst>(
I)) {
355 if (
e.varargs[0] >
e.varargs[1]) {
359 e.opcode = (
C->getOpcode() << 8) | Predicate;
360 e.commutative =
true;
361 }
else if (
auto *
E = dyn_cast<InsertValueInst>(
I)) {
362 e.varargs.append(
E->idx_begin(),
E->idx_end());
363 }
else if (
auto *SVI = dyn_cast<ShuffleVectorInst>(
I)) {
365 e.varargs.append(ShuffleMask.
begin(), ShuffleMask.
end());
374 "Not a comparison!");
377 e.varargs.push_back(lookupOrAdd(LHS));
378 e.varargs.push_back(lookupOrAdd(RHS));
381 if (
e.varargs[0] >
e.varargs[1]) {
385 e.opcode = (
Opcode << 8) | Predicate;
386 e.commutative =
true;
392 assert(EI &&
"Not an ExtractValueInst?");
403 e.varargs.push_back(lookupOrAdd(WO->
getLHS()));
404 e.varargs.push_back(lookupOrAdd(WO->
getRHS()));
412 e.varargs.push_back(lookupOrAdd(
Op));
421 Type *PtrTy =
GEP->getType()->getScalarType();
423 unsigned BitWidth =
DL.getIndexTypeSizeInBits(PtrTy);
426 if (
GEP->collectOffset(
DL,
BitWidth, VariableOffsets, ConstantOffset)) {
430 E.opcode =
GEP->getOpcode();
432 E.varargs.push_back(lookupOrAdd(
GEP->getPointerOperand()));
433 for (
const auto &Pair : VariableOffsets) {
434 E.varargs.push_back(lookupOrAdd(Pair.first));
437 if (!ConstantOffset.isZero())
443 E.opcode =
GEP->getOpcode();
444 E.type =
GEP->getSourceElementType();
446 E.varargs.push_back(lookupOrAdd(
Op));
455GVNPass::ValueTable::ValueTable() =
default;
456GVNPass::ValueTable::ValueTable(
const ValueTable &) =
default;
457GVNPass::ValueTable::ValueTable(
ValueTable &&) =
default;
458GVNPass::ValueTable::~ValueTable() =
default;
464 valueNumbering.insert(std::make_pair(V, num));
465 if (
PHINode *PN = dyn_cast<PHINode>(V))
466 NumberingPhi[num] = PN;
477 if (
C->getFunction()->isPresplitCoroutine()) {
478 valueNumbering[
C] = nextValueNumber;
479 return nextValueNumber++;
485 if (
C->isConvergent()) {
486 valueNumbering[
C] = nextValueNumber;
487 return nextValueNumber++;
490 if (AA->doesNotAccessMemory(
C)) {
492 uint32_t e = assignExpNewValueNum(exp).first;
493 valueNumbering[
C] = e;
497 if (MD && AA->onlyReadsMemory(
C)) {
499 auto ValNum = assignExpNewValueNum(exp);
501 valueNumbering[
C] = ValNum.first;
508 valueNumbering[
C] = nextValueNumber;
509 return nextValueNumber++;
512 if (local_dep.
isDef()) {
517 if (!local_cdep || local_cdep->
arg_size() !=
C->arg_size()) {
518 valueNumbering[
C] = nextValueNumber;
519 return nextValueNumber++;
522 for (
unsigned i = 0, e =
C->arg_size(); i < e; ++i) {
523 uint32_t c_vn = lookupOrAdd(
C->getArgOperand(i));
526 valueNumbering[
C] = nextValueNumber;
527 return nextValueNumber++;
532 valueNumbering[
C] =
v;
545 if (
I.getResult().isNonLocal())
550 if (!
I.getResult().isDef() || cdep !=
nullptr) {
555 CallInst *NonLocalDepCall = dyn_cast<CallInst>(
I.getResult().getInst());
558 cdep = NonLocalDepCall;
567 valueNumbering[
C] = nextValueNumber;
568 return nextValueNumber++;
572 valueNumbering[
C] = nextValueNumber;
573 return nextValueNumber++;
575 for (
unsigned i = 0, e =
C->arg_size(); i < e; ++i) {
576 uint32_t c_vn = lookupOrAdd(
C->getArgOperand(i));
579 valueNumbering[
C] = nextValueNumber;
580 return nextValueNumber++;
585 valueNumbering[
C] =
v;
589 valueNumbering[
C] = nextValueNumber;
590 return nextValueNumber++;
594bool GVNPass::ValueTable::exists(
Value *V)
const {
595 return valueNumbering.count(V) != 0;
602 if (VI != valueNumbering.end())
605 auto *
I = dyn_cast<Instruction>(V);
607 valueNumbering[V] = nextValueNumber;
608 return nextValueNumber++;
612 switch (
I->getOpcode()) {
613 case Instruction::Call:
614 return lookupOrAddCall(cast<CallInst>(
I));
615 case Instruction::FNeg:
616 case Instruction::Add:
617 case Instruction::FAdd:
618 case Instruction::Sub:
619 case Instruction::FSub:
620 case Instruction::Mul:
621 case Instruction::FMul:
622 case Instruction::UDiv:
623 case Instruction::SDiv:
624 case Instruction::FDiv:
625 case Instruction::URem:
626 case Instruction::SRem:
627 case Instruction::FRem:
628 case Instruction::Shl:
629 case Instruction::LShr:
630 case Instruction::AShr:
631 case Instruction::And:
632 case Instruction::Or:
633 case Instruction::Xor:
634 case Instruction::ICmp:
635 case Instruction::FCmp:
636 case Instruction::Trunc:
637 case Instruction::ZExt:
638 case Instruction::SExt:
639 case Instruction::FPToUI:
640 case Instruction::FPToSI:
641 case Instruction::UIToFP:
642 case Instruction::SIToFP:
643 case Instruction::FPTrunc:
644 case Instruction::FPExt:
645 case Instruction::PtrToInt:
646 case Instruction::IntToPtr:
647 case Instruction::AddrSpaceCast:
648 case Instruction::BitCast:
649 case Instruction::Select:
650 case Instruction::Freeze:
651 case Instruction::ExtractElement:
652 case Instruction::InsertElement:
653 case Instruction::ShuffleVector:
654 case Instruction::InsertValue:
657 case Instruction::GetElementPtr:
658 exp = createGEPExpr(cast<GetElementPtrInst>(
I));
660 case Instruction::ExtractValue:
661 exp = createExtractvalueExpr(cast<ExtractValueInst>(
I));
663 case Instruction::PHI:
664 valueNumbering[V] = nextValueNumber;
665 NumberingPhi[nextValueNumber] = cast<PHINode>(V);
666 return nextValueNumber++;
668 valueNumbering[V] = nextValueNumber;
669 return nextValueNumber++;
672 uint32_t e = assignExpNewValueNum(exp).first;
673 valueNumbering[V] = e;
682 assert(VI != valueNumbering.end() &&
"Value not numbered?");
685 return (VI != valueNumbering.end()) ? VI->second : 0;
696 return assignExpNewValueNum(exp).first;
700void GVNPass::ValueTable::clear() {
701 valueNumbering.clear();
702 expressionNumbering.clear();
703 NumberingPhi.clear();
704 PhiTranslateTable.clear();
712void GVNPass::ValueTable::erase(
Value *V) {
713 uint32_t Num = valueNumbering.lookup(V);
714 valueNumbering.erase(V);
717 NumberingPhi.erase(Num);
722void GVNPass::ValueTable::verifyRemoved(
const Value *V)
const {
723 assert(!valueNumbering.contains(V) &&
724 "Inst still occurs in value numbering map!");
766 bool Changed = runImpl(
F, AC, DT, TLI, AA, MemDep, LI, &ORE,
767 MSSA ? &MSSA->getMSSA() :
nullptr);
782 OS, MapClassName2PassName);
785 if (Options.
AllowPRE != std::nullopt)
786 OS << (*Options.
AllowPRE ?
"" :
"no-") <<
"pre;";
791 <<
"split-backedge-load-pre;";
797#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
801 errs() <<
I.first <<
"\n";
832 std::optional<BasicBlock *> UnavailableBB;
836 unsigned NumNewNewSpeculativelyAvailableBBs = 0;
844 while (!Worklist.
empty()) {
848 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator,
bool>
IV =
850 CurrBB, AvailabilityState::SpeculativelyAvailable);
855 if (State == AvailabilityState::Unavailable) {
856 UnavailableBB = CurrBB;
867 ++NumNewNewSpeculativelyAvailableBBs;
873 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
874 State = AvailabilityState::Unavailable;
875 UnavailableBB = CurrBB;
881 NewSpeculativelyAvailableBBs.
insert(CurrBB);
888 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
889 NumNewNewSpeculativelyAvailableBBs);
894 auto MarkAsFixpointAndEnqueueSuccessors =
896 auto It = FullyAvailableBlocks.
find(BB);
897 if (It == FullyAvailableBlocks.
end())
900 case AvailabilityState::Unavailable:
901 case AvailabilityState::Available:
903 case AvailabilityState::SpeculativelyAvailable:
904 State = FixpointState;
907 "Found a speculatively available successor leftover?");
922 while (!Worklist.
empty())
923 MarkAsFixpointAndEnqueueSuccessors(Worklist.
pop_back_val(),
924 AvailabilityState::Unavailable);
931 while (!Worklist.
empty())
932 MarkAsFixpointAndEnqueueSuccessors(Worklist.
pop_back_val(),
933 AvailabilityState::Available);
936 "Must have fixed all the new speculatively available blocks.");
939 return !UnavailableBB;
948 if (V.AV.Val == OldValue)
950 if (V.AV.isSelectValue()) {
951 if (V.AV.V1 == OldValue)
953 if (V.AV.V2 == OldValue)
968 if (ValuesPerBlock.
size() == 1 &&
970 Load->getParent())) {
971 assert(!ValuesPerBlock[0].AV.isUndefValue() &&
972 "Dead BB dominate this block");
973 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
979 SSAUpdate.
Initialize(Load->getType(), Load->getName());
984 if (AV.AV.isUndefValue())
994 if (BB == Load->getParent() &&
995 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
996 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
1010 Type *LoadTy = Load->getType();
1011 const DataLayout &
DL = Load->getModule()->getDataLayout();
1012 if (isSimpleValue()) {
1013 Res = getSimpleValue();
1014 if (Res->
getType() != LoadTy) {
1018 <<
" " << *getSimpleValue() <<
'\n'
1022 }
else if (isCoercedLoadValue()) {
1023 LoadInst *CoercedLoad = getCoercedLoadValue();
1038 if (!CoercedLoad->
hasMetadata(LLVMContext::MD_noundef))
1040 {LLVMContext::MD_dereferenceable,
1041 LLVMContext::MD_dereferenceable_or_null,
1042 LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group});
1044 <<
" " << *getCoercedLoadValue() <<
'\n'
1048 }
else if (isMemIntrinValue()) {
1052 <<
" " << *getMemIntrinValue() <<
'\n'
1055 }
else if (isSelectValue()) {
1058 assert(V1 && V2 &&
"both value operands of the select must be present");
1063 assert(Res &&
"failed to materialize?");
1068 if (
const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1069 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1089 using namespace ore;
1094 R <<
"load of type " << NV(
"Type", Load->getType()) <<
" not eliminated"
1097 for (
auto *U : Load->getPointerOperand()->users()) {
1098 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1099 auto *
I = cast<Instruction>(U);
1100 if (
I->getFunction() == Load->getFunction() && DT->
dominates(
I, Load)) {
1116 for (
auto *U : Load->getPointerOperand()->users()) {
1117 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1118 auto *
I = cast<Instruction>(U);
1119 if (
I->getFunction() == Load->getFunction() &&
1127 OtherAccess =
nullptr;
1139 R <<
" in favor of " << NV(
"OtherAccess", OtherAccess);
1141 R <<
" because it is clobbered by " << NV(
"ClobberedBy", DepInfo.
getInst());
1154 for (
auto *Inst = BB == FromBB ?
From : BB->getTerminator();
1155 Inst !=
nullptr; Inst = Inst->getPrevNonDebugInstruction()) {
1161 if (
auto *LI = dyn_cast<LoadInst>(Inst))
1162 if (LI->getPointerOperand() == Loc.
Ptr && LI->getType() == LoadTy)
1168std::optional<AvailableValue>
1171 assert(
Load->isUnordered() &&
"rules below are incorrect for ordered access");
1181 if (
StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1183 if (
Address &&
Load->isAtomic() <= DepSI->isAtomic()) {
1195 if (
LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1199 if (DepLoad != Load &&
Address &&
1200 Load->isAtomic() <= DepLoad->isAtomic()) {
1209 Offset = (ClobberOff == std::nullopt || *ClobberOff < 0)
1223 if (
MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1236 dbgs() <<
" is clobbered by " << *DepInst <<
'\n';);
1240 return std::nullopt;
1253 if (
StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1259 return std::nullopt;
1262 if (S->isAtomic() <
Load->isAtomic())
1263 return std::nullopt;
1268 if (
LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1273 return std::nullopt;
1276 if (
LD->isAtomic() <
Load->isAtomic())
1277 return std::nullopt;
1285 if (
auto *Sel = dyn_cast<SelectInst>(DepInst)) {
1286 assert(Sel->getType() ==
Load->getPointerOperandType());
1292 return std::nullopt;
1297 return std::nullopt;
1305 dbgs() <<
" has unknown def " << *DepInst <<
'\n';);
1306 return std::nullopt;
1309void GVNPass::AnalyzeLoadAvailability(
LoadInst *Load, LoadDepVect &Deps,
1310 AvailValInBlkVect &ValuesPerBlock,
1311 UnavailBlkVect &UnavailableBlocks) {
1316 for (
const auto &Dep : Deps) {
1320 if (DeadBlocks.count(DepBB)) {
1328 UnavailableBlocks.push_back(DepBB);
1335 if (
auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) {
1339 ValuesPerBlock.push_back(
1342 UnavailableBlocks.push_back(DepBB);
1346 assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1347 "post condition violation");
1373 if (
Term->getNumSuccessors() != 2 ||
Term->isSpecialTerminator())
1375 auto *SuccBB =
Term->getSuccessor(0);
1376 if (SuccBB == LoadBB)
1377 SuccBB =
Term->getSuccessor(1);
1378 if (!SuccBB->getSinglePredecessor())
1383 if (Inst.isDebugOrPseudoInst())
1385 if (--NumInsts == 0)
1388 if (!Inst.isIdenticalTo(Load))
1397 return cast<LoadInst>(&Inst);
1407void GVNPass::eliminatePartiallyRedundantLoad(
1408 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1411 for (
const auto &AvailableLoad : AvailableLoads) {
1412 BasicBlock *UnavailableBlock = AvailableLoad.first;
1413 Value *LoadPtr = AvailableLoad.second;
1417 Load->isVolatile(),
Load->getAlign(),
Load->getOrdering(),
1419 NewLoad->setDebugLoc(
Load->getDebugLoc());
1423 if (
auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1426 MSSAU->
insertUse(cast<MemoryUse>(NewAccess),
true);
1432 NewLoad->setAAMetadata(Tags);
1434 if (
auto *MD =
Load->getMetadata(LLVMContext::MD_invariant_load))
1435 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1436 if (
auto *InvGroupMD =
Load->getMetadata(LLVMContext::MD_invariant_group))
1437 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1438 if (
auto *RangeMD =
Load->getMetadata(LLVMContext::MD_range))
1439 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1440 if (
auto *AccessMD =
Load->getMetadata(LLVMContext::MD_access_group))
1442 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1451 ValuesPerBlock.push_back(
1458 if (CriticalEdgePredAndLoad) {
1459 auto I = CriticalEdgePredAndLoad->
find(UnavailableBlock);
1460 if (
I != CriticalEdgePredAndLoad->
end()) {
1461 ++NumPRELoadMoved2CEPred;
1468 removeFromLeaderTable(ValNo, OldLoad, OldLoad->
getParent());
1470 removeInstruction(OldLoad);
1479 Load->replaceAllUsesWith(V);
1480 if (isa<PHINode>(V))
1483 I->setDebugLoc(
Load->getDebugLoc());
1484 if (
V->getType()->isPtrOrPtrVectorTy())
1489 <<
"load eliminated by PRE";
1493bool GVNPass::PerformLoadPRE(
LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1494 UnavailBlkVect &UnavailableBlocks) {
1504 UnavailableBlocks.end());
1526 bool MustEnsureSafetyOfSpeculativeExecution =
1531 if (TmpBB == LoadBB)
1533 if (Blockers.count(TmpBB))
1545 MustEnsureSafetyOfSpeculativeExecution =
1546 MustEnsureSafetyOfSpeculativeExecution || ICF->
hasICF(TmpBB);
1557 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1558 for (
BasicBlock *UnavailableBB : UnavailableBlocks)
1559 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1572 dbgs() <<
"COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1573 << Pred->
getName() <<
"': " << *Load <<
'\n');
1584 dbgs() <<
"COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1585 << Pred->
getName() <<
"': " << *Load <<
'\n');
1591 dbgs() <<
"COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1592 << Pred->
getName() <<
"': " << *Load <<
'\n');
1601 <<
"COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1602 << Pred->
getName() <<
"': " << *Load <<
'\n');
1606 if (
LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load))
1607 CriticalEdgePredAndLoad[Pred] = LI;
1612 PredLoads[Pred] =
nullptr;
1617 unsigned NumInsertPreds = PredLoads.
size() + CriticalEdgePredSplit.
size();
1618 unsigned NumUnavailablePreds = NumInsertPreds +
1619 CriticalEdgePredAndLoad.
size();
1620 assert(NumUnavailablePreds != 0 &&
1621 "Fully available value should already be eliminated!");
1622 (void)NumUnavailablePreds;
1628 if (NumInsertPreds > 1)
1633 if (MustEnsureSafetyOfSpeculativeExecution) {
1634 if (CriticalEdgePredSplit.
size())
1637 for (
auto &PL : PredLoads)
1641 for (
auto &CEP : CriticalEdgePredAndLoad)
1648 for (
BasicBlock *OrigPred : CriticalEdgePredSplit) {
1649 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1650 assert(!PredLoads.count(OrigPred) &&
"Split edges shouldn't be in map!");
1651 PredLoads[NewPred] =
nullptr;
1652 LLVM_DEBUG(
dbgs() <<
"Split critical edge " << OrigPred->getName() <<
"->"
1653 << LoadBB->
getName() <<
'\n');
1656 for (
auto &CEP : CriticalEdgePredAndLoad)
1657 PredLoads[CEP.first] =
nullptr;
1660 bool CanDoPRE =
true;
1663 for (
auto &PredLoad : PredLoads) {
1664 BasicBlock *UnavailablePred = PredLoad.first;
1674 Value *LoadPtr =
Load->getPointerOperand();
1676 while (Cur != LoadBB) {
1689 LoadPtr =
Address.translateWithInsertion(LoadBB, UnavailablePred, *DT,
1696 << *
Load->getPointerOperand() <<
"\n");
1701 PredLoad.second = LoadPtr;
1705 while (!NewInsts.
empty()) {
1715 return !CriticalEdgePredSplit.empty();
1721 LLVM_DEBUG(
dbgs() <<
"GVN REMOVING PRE LOAD: " << *Load <<
'\n');
1723 <<
" INSTS: " << *NewInsts.
back()
1731 I->updateLocationAfterHoist();
1740 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads,
1741 &CriticalEdgePredAndLoad);
1746bool GVNPass::performLoopLoadPRE(
LoadInst *Load,
1747 AvailValInBlkVect &ValuesPerBlock,
1748 UnavailBlkVect &UnavailableBlocks) {
1751 if (!L ||
L->getHeader() !=
Load->getParent())
1756 if (!Preheader || !Latch)
1759 Value *LoadPtr =
Load->getPointerOperand();
1761 if (!
L->isLoopInvariant(LoadPtr))
1771 for (
auto *Blocker : UnavailableBlocks) {
1773 if (!
L->contains(Blocker))
1797 if (Blocker->getTerminator()->mayWriteToMemory())
1800 LoopBlock = Blocker;
1813 AvailableLoads[LoopBlock] = LoadPtr;
1814 AvailableLoads[Preheader] = LoadPtr;
1816 LLVM_DEBUG(
dbgs() <<
"GVN REMOVING PRE LOOP LOAD: " << *Load <<
'\n');
1817 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads,
1825 using namespace ore;
1829 <<
"load of type " << NV(
"Type", Load->getType()) <<
" eliminated"
1830 << setExtraArgs() <<
" in favor of "
1837bool GVNPass::processNonLocalLoad(
LoadInst *Load) {
1839 if (
Load->getParent()->getParent()->hasFnAttribute(
1840 Attribute::SanitizeAddress) ||
1841 Load->getParent()->getParent()->hasFnAttribute(
1842 Attribute::SanitizeHWAddress))
1852 unsigned NumDeps = Deps.size();
1859 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1861 dbgs() <<
" has unknown dependencies\n";);
1865 bool Changed =
false;
1868 dyn_cast<GetElementPtrInst>(
Load->getOperand(0))) {
1869 for (
Use &U :
GEP->indices())
1871 Changed |= performScalarPRE(
I);
1875 AvailValInBlkVect ValuesPerBlock;
1876 UnavailBlkVect UnavailableBlocks;
1877 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1881 if (ValuesPerBlock.empty())
1889 if (UnavailableBlocks.empty()) {
1890 LLVM_DEBUG(
dbgs() <<
"GVN REMOVING NONLOCAL LOAD: " << *Load <<
'\n');
1896 Load->replaceAllUsesWith(V);
1898 if (isa<PHINode>(V))
1904 if (
Load->getDebugLoc() &&
Load->getParent() ==
I->getParent())
1905 I->setDebugLoc(
Load->getDebugLoc());
1906 if (
V->getType()->isPtrOrPtrVectorTy())
1920 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1921 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
1936 Cmp->getFastMathFlags().noNaNs())) {
1944 if (isa<ConstantFP>(
LHS) && !cast<ConstantFP>(
LHS)->
isZero())
1946 if (isa<ConstantFP>(
RHS) && !cast<ConstantFP>(
RHS)->
isZero())
1961 Cmp->getFastMathFlags().noNaNs()) ||
1970 if (isa<ConstantFP>(
LHS) && !cast<ConstantFP>(
LHS)->
isZero())
1972 if (isa<ConstantFP>(
RHS) && !cast<ConstantFP>(
RHS)->
isZero())
1982 auto *I = dyn_cast<Instruction>(U);
1983 return I && I->getParent() == BB;
1987bool GVNPass::processAssumeIntrinsic(
AssumeInst *IntrinsicI) {
1991 if (
Cond->isZero()) {
2009 for (
const auto &Acc : *AL) {
2010 if (
auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
2011 if (!Current->getMemoryInst()->comesBefore(NewS)) {
2012 FirstNonDom = Current;
2026 MSSAU->
insertDef(cast<MemoryDef>(NewDef),
false);
2036 if (isa<Constant>(V)) {
2044 bool Changed =
false;
2051 Changed |= propagateEquality(V, True, Edge,
false);
2057 ReplaceOperandsWithMap[
V] = True;
2079 if (
auto *CmpI = dyn_cast<CmpInst>(V)) {
2081 Value *CmpLHS = CmpI->getOperand(0);
2082 Value *CmpRHS = CmpI->getOperand(1);
2088 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
2090 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
2092 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
2093 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
2104 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
2108 << *CmpLHS <<
" with "
2109 << *CmpRHS <<
" in block "
2115 ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
2128 I->replaceAllUsesWith(Repl);
2133bool GVNPass::processLoad(
LoadInst *L) {
2138 if (!
L->isUnordered())
2141 if (
L->use_empty()) {
2151 return processNonLocalLoad(L);
2158 dbgs() <<
"GVN: load ";
L->printAsOperand(
dbgs());
2159 dbgs() <<
" has unknown dependence\n";);
2163 auto AV = AnalyzeLoadAvailability(L, Dep,
L->getPointerOperand());
2186std::pair<uint32_t, bool>
2187GVNPass::ValueTable::assignExpNewValueNum(
Expression &Exp) {
2189 bool CreateNewValNum = !
e;
2190 if (CreateNewValNum) {
2191 Expressions.push_back(Exp);
2192 if (ExprIdx.size() < nextValueNumber + 1)
2193 ExprIdx.resize(nextValueNumber * 2);
2194 e = nextValueNumber;
2195 ExprIdx[nextValueNumber++] = nextExprNumber++;
2197 return {
e, CreateNewValNum};
2204 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2205 while (Vals && Vals->BB == BB)
2214 auto FindRes = PhiTranslateTable.find({Num, Pred});
2215 if (FindRes != PhiTranslateTable.end())
2216 return FindRes->second;
2217 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
2218 PhiTranslateTable.insert({{Num, Pred}, NewNum});
2229 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2231 Call = dyn_cast<CallInst>(Vals->Val);
2232 if (Call && Call->getParent() == PhiBlock)
2237 if (AA->doesNotAccessMemory(Call))
2240 if (!MD || !AA->onlyReadsMemory(Call))
2252 if (
D.getResult().isNonFuncLocal())
2263 if (
PHINode *PN = NumberingPhi[Num]) {
2264 for (
unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2265 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2275 if (!areAllValsInBB(Num, PhiBlock, Gvn))
2278 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2282 for (
unsigned i = 0; i <
Exp.varargs.size(); i++) {
2286 if ((i > 1 &&
Exp.opcode == Instruction::InsertValue) ||
2287 (i > 0 &&
Exp.opcode == Instruction::ExtractValue) ||
2288 (i > 1 &&
Exp.opcode == Instruction::ShuffleVector))
2290 Exp.varargs[i] = phiTranslate(Pred, PhiBlock,
Exp.varargs[i], Gvn);
2293 if (
Exp.commutative) {
2294 assert(
Exp.varargs.size() >= 2 &&
"Unsupported commutative instruction!");
2295 if (
Exp.varargs[0] >
Exp.varargs[1]) {
2298 if (
Opcode == Instruction::ICmp ||
Opcode == Instruction::FCmp)
2305 if (
uint32_t NewNum = expressionNumbering[Exp]) {
2306 if (
Exp.opcode == Instruction::Call && NewNum != Num)
2307 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2315void GVNPass::ValueTable::eraseTranslateCacheEntry(
2318 PhiTranslateTable.erase({Num, Pred});
2327 LeaderTableEntry Vals = LeaderTable[num];
2328 if (!Vals.Val)
return nullptr;
2330 Value *Val =
nullptr;
2333 if (isa<Constant>(Val))
return Val;
2336 LeaderTableEntry* Next = Vals.Next;
2339 if (isa<Constant>(Next->Val))
return Next->Val;
2340 if (!Val) Val = Next->Val;
2359 const BasicBlock *Pred =
E.getEnd()->getSinglePredecessor();
2360 assert((!Pred || Pred ==
E.getStart()) &&
2361 "No edge between these basic blocks!");
2362 return Pred !=
nullptr;
2365void GVNPass::assignBlockRPONumber(
Function &
F) {
2366 BlockRPONumber.clear();
2370 BlockRPONumber[BB] = NextBlockNumber++;
2371 InvalidBlockRPONumbers =
false;
2374bool GVNPass::replaceOperandsForInBlockEquality(
Instruction *Instr)
const {
2375 bool Changed =
false;
2376 for (
unsigned OpNum = 0; OpNum <
Instr->getNumOperands(); ++OpNum) {
2378 auto it = ReplaceOperandsWithMap.find(Operand);
2379 if (it != ReplaceOperandsWithMap.end()) {
2381 << *it->second <<
" in instruction " << *Instr <<
'\n');
2382 Instr->setOperand(OpNum, it->second);
2394bool GVNPass::propagateEquality(
Value *LHS,
Value *RHS,
2396 bool DominatesByEdge) {
2398 Worklist.
push_back(std::make_pair(LHS, RHS));
2399 bool Changed =
false;
2404 while (!Worklist.
empty()) {
2405 std::pair<Value*, Value*> Item = Worklist.
pop_back_val();
2406 LHS = Item.first;
RHS = Item.second;
2413 if (isa<Constant>(LHS) && isa<Constant>(RHS))
2417 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2419 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) &&
"Unexpected value!");
2426 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2427 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2446 if (RootDominatesEnd && !isa<Instruction>(RHS))
2447 addToLeaderTable(LVN, RHS, Root.
getEnd());
2453 unsigned NumReplacements =
2458 Changed |= NumReplacements > 0;
2459 NumGVNEqProp += NumReplacements;
2478 bool isKnownFalse = !isKnownTrue;
2493 if (
CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2494 Value *Op0 =
Cmp->getOperand(0), *Op1 =
Cmp->getOperand(1);
2501 Worklist.
push_back(std::make_pair(Op0, Op1));
2513 if (Num < NextNum) {
2515 if (NotCmp && isa<Instruction>(NotCmp)) {
2516 unsigned NumReplacements =
2521 Changed |= NumReplacements > 0;
2522 NumGVNEqProp += NumReplacements;
2532 if (RootDominatesEnd)
2533 addToLeaderTable(Num, NotVal, Root.
getEnd());
2546 if (isa<DbgInfoIntrinsic>(
I))
2555 bool Changed =
false;
2556 if (!
I->use_empty()) {
2560 I->replaceAllUsesWith(V);
2568 if (MD &&
V->getType()->isPtrOrPtrVectorTy())
2575 if (
auto *Assume = dyn_cast<AssumeInst>(
I))
2576 return processAssumeIntrinsic(Assume);
2578 if (
LoadInst *Load = dyn_cast<LoadInst>(
I)) {
2579 if (processLoad(Load))
2583 addToLeaderTable(Num, Load,
Load->getParent());
2590 if (!BI->isConditional())
2593 if (isa<Constant>(BI->getCondition()))
2594 return processFoldableCondBr(BI);
2596 Value *BranchCond = BI->getCondition();
2600 if (TrueSucc == FalseSucc)
2604 bool Changed =
false;
2608 Changed |= propagateEquality(BranchCond, TrueVal, TrueE,
true);
2612 Changed |= propagateEquality(BranchCond, FalseVal, FalseE,
true);
2619 Value *SwitchCond =
SI->getCondition();
2621 bool Changed =
false;
2625 for (
unsigned i = 0, n =
SI->getNumSuccessors(); i != n; ++i)
2626 ++SwitchEdges[
SI->getSuccessor(i)];
2632 if (SwitchEdges.
lookup(Dst) == 1) {
2634 Changed |= propagateEquality(SwitchCond, i->getCaseValue(),
E,
true);
2642 if (
I->getType()->isVoidTy())
2650 if (isa<AllocaInst>(
I) ||
I->isTerminator() || isa<PHINode>(
I)) {
2651 addToLeaderTable(Num,
I,
I->getParent());
2658 if (Num >= NextNum) {
2659 addToLeaderTable(Num,
I,
I->getParent());
2665 Value *Repl = findLeader(
I->getParent(), Num);
2668 addToLeaderTable(Num,
I,
I->getParent());
2702 InvalidBlockRPONumbers =
true;
2704 MSSAU = MSSA ? &Updater :
nullptr;
2706 bool Changed =
false;
2707 bool ShouldContinue =
true;
2717 Changed |= removedBlock;
2720 unsigned Iteration = 0;
2721 while (ShouldContinue) {
2724 ShouldContinue = iterateOnFunction(
F);
2725 Changed |= ShouldContinue;
2732 assignValNumForDeadCode();
2733 bool PREChanged =
true;
2734 while (PREChanged) {
2735 PREChanged = performPRE(
F);
2736 Changed |= PREChanged;
2745 cleanupGlobalSets();
2760 "We expect InstrsToErase to be empty across iterations");
2761 if (DeadBlocks.count(BB))
2765 ReplaceOperandsWithMap.clear();
2766 bool ChangedFunction =
false;
2774 for (
PHINode *PN : PHINodesToRemove) {
2776 removeInstruction(PN);
2781 if (!ReplaceOperandsWithMap.empty())
2782 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2783 ChangedFunction |= processInstruction(&*BI);
2785 if (InstrsToErase.
empty()) {
2791 NumGVNInstr += InstrsToErase.
size();
2794 bool AtStart = BI == BB->
begin();
2798 for (
auto *
I : InstrsToErase) {
2799 assert(
I->getParent() == BB &&
"Removing instruction from wrong block?");
2803 removeInstruction(
I);
2805 InstrsToErase.clear();
2813 return ChangedFunction;
2824 for (
unsigned i = 0, e =
Instr->getNumOperands(); i != e; ++i) {
2826 if (isa<Argument>(
Op) || isa<Constant>(
Op) || isa<GlobalValue>(
Op))
2838 if (
Value *V = findLeader(Pred, TValNo)) {
2839 Instr->setOperand(i, V);
2862 addToLeaderTable(Num, Instr, Pred);
2866bool GVNPass::performScalarPRE(
Instruction *CurInst) {
2867 if (isa<AllocaInst>(CurInst) || CurInst->
isTerminator() ||
2870 isa<DbgInfoIntrinsic>(CurInst))
2877 if (isa<CmpInst>(CurInst))
2887 if (isa<GetElementPtrInst>(CurInst))
2890 if (
auto *CallB = dyn_cast<CallBase>(CurInst)) {
2892 if (CallB->isInlineAsm())
2904 unsigned NumWith = 0;
2905 unsigned NumWithout = 0;
2910 if (InvalidBlockRPONumbers)
2911 assignBlockRPONumber(*CurrentBlock->
getParent());
2922 assert(BlockRPONumber.count(
P) && BlockRPONumber.count(CurrentBlock) &&
2923 "Invalid BlockRPONumber map.");
2924 if (BlockRPONumber[
P] >= BlockRPONumber[CurrentBlock]) {
2930 Value *predV = findLeader(
P, TValNo);
2935 }
else if (predV == CurInst) {
2947 if (NumWithout > 1 || NumWith == 0)
2955 if (NumWithout != 0) {
2974 toSplit.push_back(std::make_pair(PREPred->
getTerminator(), SuccNum));
2978 PREInstr = CurInst->
clone();
2979 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2982 verifyRemoved(PREInstr);
2991 assert(PREInstr !=
nullptr || NumWithout == 0);
2997 CurInst->
getName() +
".pre-phi");
2998 Phi->insertBefore(CurrentBlock->begin());
2999 for (
unsigned i = 0, e = predMap.
size(); i != e; ++i) {
3000 if (
Value *V = predMap[i].first) {
3004 Phi->addIncoming(V, predMap[i].second);
3006 Phi->addIncoming(PREInstr, PREPred);
3013 addToLeaderTable(ValNo, Phi, CurrentBlock);
3016 if (MD &&
Phi->getType()->isPtrOrPtrVectorTy())
3019 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
3022 removeInstruction(CurInst);
3031 bool Changed =
false;
3034 if (CurrentBlock == &
F.getEntryBlock())
3038 if (CurrentBlock->isEHPad())
3042 BE = CurrentBlock->end();
3045 Changed |= performScalarPRE(CurInst);
3049 if (splitCriticalEdges())
3066 InvalidBlockRPONumbers =
true;
3073bool GVNPass::splitCriticalEdges() {
3074 if (toSplit.empty())
3077 bool Changed =
false;
3079 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
3083 }
while (!toSplit.empty());
3087 InvalidBlockRPONumbers =
true;
3093bool GVNPass::iterateOnFunction(
Function &
F) {
3094 cleanupGlobalSets();
3097 bool Changed =
false;
3104 Changed |= processBlock(BB);
3109void GVNPass::cleanupGlobalSets() {
3111 LeaderTable.
clear();
3112 BlockRPONumber.clear();
3113 TableAllocator.
Reset();
3115 InvalidBlockRPONumbers =
true;
3126 I->eraseFromParent();
3131void GVNPass::verifyRemoved(
const Instruction *Inst)
const {
3136 for (
const auto &
I : LeaderTable) {
3137 const LeaderTableEntry *
Node = &
I.second;
3138 assert(
Node->Val != Inst &&
"Inst still in value numbering scope!");
3140 while (
Node->Next) {
3142 assert(
Node->Val != Inst &&
"Inst still in value numbering scope!");
3156 while (!NewDead.
empty()) {
3158 if (DeadBlocks.count(
D))
3164 DeadBlocks.insert(Dom.
begin(), Dom.
end());
3169 if (DeadBlocks.count(S))
3172 bool AllPredDead =
true;
3174 if (!DeadBlocks.count(
P)) {
3175 AllPredDead =
false;
3196 if (DeadBlocks.count(
B))
3203 if (!DeadBlocks.count(
P))
3209 DeadBlocks.insert(
P = S);
3215 if (!DeadBlocks.count(
P))
3239bool GVNPass::processFoldableCondBr(
BranchInst *BI) {
3253 if (DeadBlocks.count(DeadRoot))
3257 DeadRoot = splitCriticalEdges(BI->
getParent(), DeadRoot);
3259 addDeadBlock(DeadRoot);
3267void GVNPass::assignValNumForDeadCode() {
3271 addToLeaderTable(ValNum, &Inst, BB);
3286 if (skipFunction(
F))
3289 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3290 return Impl.runImpl(
3291 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
F),
3292 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3293 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
F),
3294 getAnalysis<AAResultsWrapperPass>().getAAResults(),
3295 Impl.isMemDepEnabled()
3296 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3298 getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
3299 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3300 MSSAWP ? &MSSAWP->getMSSA() :
nullptr);
3308 if (Impl.isMemDepEnabled())
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static RegisterPass< DebugifyFunctionPass > DF("debugify-function", "Attach debug info to a function")
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static bool hasUsersIn(Value *V, BasicBlock *BB)
static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, DominatorTree *DT, OptimizationRemarkEmitter *ORE)
Try to locate the three instruction involved in a missed load-elimination case that is due to an inte...
static void reportLoadElim(LoadInst *Load, Value *AvailableValue, OptimizationRemarkEmitter *ORE)
static cl::opt< uint32_t > MaxNumInsnsPerBlock("gvn-max-num-insns", cl::Hidden, cl::init(100), cl::desc("Max number of instructions to scan in each basic block in GVN " "(default = 100)"))
static cl::opt< bool > GVNEnableMemDep("enable-gvn-memdep", cl::init(true))
static cl::opt< bool > GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", cl::init(true))
static cl::opt< uint32_t > MaxNumDeps("gvn-max-num-deps", cl::Hidden, cl::init(100), cl::desc("Max number of dependences to attempt Load PRE (default = 100)"))
static Value * ConstructSSAForLoadSet(LoadInst *Load, SmallVectorImpl< AvailableValueInBlock > &ValuesPerBlock, GVNPass &gvn)
Given a set of loads specified by ValuesPerBlock, construct SSA form, allowing us to eliminate Load.
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, DominatorTree *DT)
There is an edge from 'Src' to 'Dst'.
static bool impliesEquivalanceIfFalse(CmpInst *Cmp)
static bool IsValueFullyAvailableInBlock(BasicBlock *BB, DenseMap< BasicBlock *, AvailabilityState > &FullyAvailableBlocks)
Return true if we can prove that the value we're analyzing is fully available in the specified block.
static Value * findDominatingValue(const MemoryLocation &Loc, Type *LoadTy, Instruction *From, AAResults *AA)
static bool isLifetimeStart(const Instruction *Inst)
static cl::opt< bool > GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", cl::init(false))
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl)
static void replaceValuesPerBlockEntry(SmallVectorImpl< AvailableValueInBlock > &ValuesPerBlock, Value *OldValue, Value *NewValue)
If the specified OldValue exists in ValuesPerBlock, replace its value with NewValue.
static bool impliesEquivalanceIfTrue(CmpInst *Cmp)
@ Unavailable
We know the block is not fully available. This is a fixpoint.
@ Available
We know the block is fully available. This is a fixpoint.
@ SpeculativelyAvailable
We do not know whether the block is fully available or not, but we are currently speculating that it ...
static cl::opt< bool > GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden)
static cl::opt< uint32_t > MaxNumVisitedInsts("gvn-max-num-visited-insts", cl::Hidden, cl::init(100), cl::desc("Max number of visited instructions when trying to find " "dominating value of select dependency (default = 100)"))
static cl::opt< uint32_t > MaxBBSpeculations("gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::desc("Max number of blocks we're willing to speculate on (and recurse " "into) when deducing if a value is fully available or not in GVN " "(default = 600)"))
static bool liesBetween(const Instruction *From, Instruction *Between, const Instruction *To, DominatorTree *DT)
Assuming To can be reached from both From and Between, does Between lie on every path from From to To...
static cl::opt< bool > GVNEnableLoadPRE("enable-load-pre", cl::init(true))
This file provides the interface for LLVM's Global Value Numbering pass which eliminates fully redund...
This is the interface for a simple mod/ref and alias analysis over globals.
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
This file implements a map that provides insertion order iteration.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Module.h This file contains the declarations for the Module class.
ppc ctr loops PowerPC CTR Loops Verify
This header defines various interfaces for pass management in LLVM.
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This defines the Use class.
static constexpr uint32_t Opcode
static const uint32_t IV[8]
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
A container for analyses that lazily runs them and caches their results.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
This represents the llvm.assume intrinsic.
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
const BasicBlock * getEnd() const
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
LLVMContext & getContext() const
Get the context in which this basic block lives.
bool isEHPad() const
Return true if this basic block is an exception handling block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
Conditional or Unconditional Branch instruction.
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
void Reset()
Deallocate all but the current slab and reset the current pointer to the beginning of it,...
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
static ConstantInt * getTrue(LLVMContext &Context)
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
static ConstantInt * getFalse(LLVMContext &Context)
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&... Args)
Analysis pass which computes a DominatorTree.
void getDescendants(NodeT *R, SmallVectorImpl< NodeT * > &Result) const
Get all nodes dominated by R, including R itself.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Class representing an expression and its matching format.
FunctionPass class - This class is used to implement most global optimizations.
Represents calls to the gc.relocate intrinsic.
This class holds the mapping between values and value numbers.
uint32_t lookupOrAddCmp(unsigned Opcode, CmpInst::Predicate Pred, Value *LHS, Value *RHS)
Returns the value number of the given comparison, assigning it a new number if it did not have one be...
uint32_t getNextUnusedValueNumber()
uint32_t lookupOrAdd(Value *V)
lookup_or_add - Returns the value number for the specified value, assigning it a new number if it did...
uint32_t lookup(Value *V, bool Verify=true) const
Returns the value number of the specified value.
void setAliasAnalysis(AAResults *A)
void clear()
Remove all entries from the ValueTable.
bool exists(Value *V) const
Returns true if a value number exists for the specified value.
uint32_t phiTranslate(const BasicBlock *BB, const BasicBlock *PhiBlock, uint32_t Num, GVNPass &Gvn)
Wrap phiTranslateImpl to provide caching functionality.
void setMemDep(MemoryDependenceResults *M)
void erase(Value *v)
Remove a value from the value numbering.
void add(Value *V, uint32_t num)
add - Insert a value into the table with a specified value number.
void setDomTree(DominatorTree *D)
void eraseTranslateCacheEntry(uint32_t Num, const BasicBlock &CurrBlock)
Erase stale entry from phiTranslate cache so phiTranslate can be computed again.
void verifyRemoved(const Value *) const
verifyRemoved - Verify that the value is removed from all internal data structures.
The core GVN pass object.
friend class gvn::GVNLegacyPass
bool isPREEnabled() const
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Run the pass over the function.
AAResults * getAliasAnalysis() const
bool isLoadPREEnabled() const
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
DominatorTree & getDominatorTree() const
bool isLoadInLoopPREEnabled() const
bool isLoadPRESplitBackedgeEnabled() const
void markInstructionForDeletion(Instruction *I)
This removes the specified instruction from our various maps and marks it for deletion.
bool isMemDepEnabled() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Legacy wrapper pass to provide the GlobalsAAResult object.
This class allows to keep track on instructions with implicit control flow.
bool isDominatedByICFIFromSameBlock(const Instruction *Insn)
Returns true if the first ICFI of Insn's block exists and dominates Insn.
bool hasICF(const BasicBlock *BB)
Returns true if at least one instruction from the given basic block has implicit control flow.
void clear()
Invalidates all information from this tracking.
void removeUsersOf(const Instruction *Inst)
Notifies this tracking that we are going to replace all uses of Inst.
void insertInstructionTo(const Instruction *Inst, const BasicBlock *BB)
Notifies this tracking that we are going to insert a new instruction Inst to the basic block BB.
void removeInstruction(const Instruction *Inst)
Notifies this tracking that we are going to remove the instruction Inst It makes all necessary update...
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
const BasicBlock * getParent() const
bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
bool isTerminator() const
bool mayReadFromMemory() const LLVM_READONLY
Return true if this instruction may read memory.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs)
Drop all unknown metadata except for debug locations.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Analysis pass that exposes the LoopInfo for a function.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
The legacy pass manager's analysis pass to compute loop information.
Represents a single loop in the control flow graph.
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
A memory dependence query can return one of three different answers.
bool isClobber() const
Tests if this MemDepResult represents a query that is an instruction clobber dependency.
bool isNonLocal() const
Tests if this MemDepResult represents a query that is transparent to the start of the block,...
bool isDef() const
Tests if this MemDepResult represents a query that is an instruction definition dependency.
bool isLocal() const
Tests if this MemDepResult represents a valid local query (Clobber/Def).
Instruction * getInst() const
If this is a normal dependency, returns the instruction that is depended on.
This is the common base class for memset/memcpy/memmove.
An analysis that produces MemoryDependenceResults for a function.
Provides a lazy, caching interface for making common memory aliasing information queries,...
std::vector< NonLocalDepEntry > NonLocalDepInfo
void invalidateCachedPredecessors()
Clears the PredIteratorCache info.
void invalidateCachedPointerInfo(Value *Ptr)
Invalidates cached information about the specified pointer, because it may be too conservative in mem...
std::optional< int32_t > getClobberOffset(LoadInst *DepInst) const
Return the clobber offset to dependent instruction.
void removeInstruction(Instruction *InstToRemove)
Removes an instruction from the dependence analysis, updating the dependence of instructions that pre...
MemDepResult getDependency(Instruction *QueryInst)
Returns the instruction on which a memory operation depends.
const NonLocalDepInfo & getNonLocalCallDependency(CallBase *QueryCall)
Perform a full dependency query for the specified call, returning the set of blocks that the value is...
void getNonLocalPointerDependency(Instruction *QueryInst, SmallVectorImpl< NonLocalDepResult > &Result)
Perform a full dependency query for an access to the QueryInst's specified memory location,...
A wrapper analysis pass for the legacy pass manager that exposes a MemoryDepnedenceResults instance.
Representation for a specific memory location.
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
const Value * Ptr
The address of the start of the location.
An analysis that produces MemorySSA for a function.
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
MemoryUseOrDef * createMemoryAccessBefore(Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt)
Create a MemoryAccess in MemorySSA before an existing MemoryAccess.
void insertDef(MemoryDef *Def, bool RenameUses=false)
Insert a definition into the MemorySSA IR.
MemoryAccess * createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point)
Create a MemoryAccess in MemorySSA at a specified point in a block.
void insertUse(MemoryUse *Use, bool RenameUses=false)
void removeMemoryAccess(MemoryAccess *, bool OptimizePhis=false)
Remove a MemoryAccess from MemorySSA, including updating all definitions and uses.
Legacy analysis pass which computes MemorySSA.
Encapsulates MemorySSA, including all data associated with memory accesses.
const AccessList * getBlockAccesses(const BasicBlock *BB) const
Return the list of MemoryAccess's for a given basic block.
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Class that has the common methods + fields of memory uses/defs.
This is an entry in the NonLocalDepInfo cache.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PHITransAddr - An address value which tracks and handles phi translation.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserve()
Mark an analysis as preserved.
Helper class for SSA formation on a set of values defined in multiple blocks.
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Value * GetValueInMiddleOfBlock(BasicBlock *BB)
Construct SSA form, materializing a value that is live in the middle of the specified block.
bool HasValueForBlock(BasicBlock *BB) const
Return true if the SSAUpdater already has a value for the specified block.
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
This class represents the LLVM 'select' instruction.
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
static IntegerType * getInt8Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
void deleteValue()
Delete a pointer to a generic Value.
StringRef getName() const
Return a constant reference to the value's name.
Represents an op.with.overflow intrinsic.
An efficient, type-erasing, non-owning reference to a callable.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
GVNLegacyPass(bool NoMemDepAnalysis=!GVNEnableMemDep)
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
An opaque object representing a hash code.
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
std::unique_ptr< ValueIDNum[]> ValueTable
Type for a table of values in a block.
@ C
The default llvm calling convention, compatible with C.
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
Value * getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingStore/Load returned an offset, this function can be used to actually perf...
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the store at D...
Value * getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL)
If analyzeLoadFromClobberingMemInst returned an offset, this function can be used to actually perform...
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the load at De...
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *DepMI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the memory int...
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, const DataLayout &DL)
Return true if CoerceAvailableValueToLoadType would succeed if it was called.
initializer< Ty > init(const Ty &Val)
A private "module" namespace for types and utilities used by GVN.
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
This is an optimization pass for GlobalISel generic memory operations.
Interval::succ_iterator succ_end(Interval *I)
hash_code hash_value(const FixedPointSemantics &Val)
Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ)
Search for the specified successor of basic block BB and return its position in the terminator instru...
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
void initializeGVNLegacyPassPass(PassRegistry &)
Interval::pred_iterator pred_end(Interval *I)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
bool isModSet(const ModRefInfo MRI)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
void patchReplacementInstruction(Instruction *I, Value *Repl)
Patch the replacement so that it is not more restrictive than the value being replaced.
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Edge)
Replace each use of 'From' with 'To' if that use is dominated by the given edge.
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
bool VerifyMemorySSA
Enables verification of MemorySSA.
bool salvageKnowledge(Instruction *I, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Calls BuildAssumeFromInst and if the resulting llvm.assume is valid insert if before I.
bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
BasicBlock * SplitCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If this edge is a critical edge, insert a new node to split the critical edge.
FunctionPass * createGVNPass(bool NoMemDepAnalysis=false)
Create a legacy GVN pass.
bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Return true if the specified edge is a critical edge.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
constexpr unsigned BitWidth
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
iterator_range< df_iterator< T > > depth_first(const T &G)
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool EliminateDuplicatePHINodes(BasicBlock *BB)
Check for and eliminate duplicate PHI nodes in this block.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
bool isPotentiallyReachable(const Instruction *From, const Instruction *To, const SmallPtrSetImpl< BasicBlock * > *ExclusionSet=nullptr, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether instruction 'To' is reachable from 'From', without passing through any blocks in Ex...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Option class for critical edge splitting.
static GVNPass::Expression getTombstoneKey()
static bool isEqual(const GVNPass::Expression &LHS, const GVNPass::Expression &RHS)
static unsigned getHashValue(const GVNPass::Expression &e)
static GVNPass::Expression getEmptyKey()
An information struct used to provide DenseMap with the various necessary components for a given valu...
A set of parameters to control various transforms performed by GVN pass.
std::optional< bool > AllowLoadPRESplitBackedge
std::optional< bool > AllowPRE
std::optional< bool > AllowLoadInLoopPRE
std::optional< bool > AllowMemDep
std::optional< bool > AllowLoadPRE
SmallVector< uint32_t, 4 > varargs
bool operator==(const Expression &other) const
friend hash_code hash_value(const Expression &Value)
Expression(uint32_t o=~2U)
A CRTP mix-in to automatically provide informational APIs needed for passes.
Represents an AvailableValue which can be rematerialized at the end of the associated BasicBlock.
static AvailableValueInBlock get(BasicBlock *BB, Value *V, unsigned Offset=0)
static AvailableValueInBlock getUndef(BasicBlock *BB)
static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV)
Value * MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const
Emit code at the end of this block to adjust the value defined here to the specified type.
AvailableValue AV
AV - The actual available value.
static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel, Value *V1, Value *V2)
BasicBlock * BB
BB - The basic block in question.
Represents a particular available value that we know how to materialize.
unsigned Offset
Offset - The byte offset in Val that is interesting for the load query.
bool isSimpleValue() const
static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2)
bool isCoercedLoadValue() const
static AvailableValue get(Value *V, unsigned Offset=0)
ValType Kind
Kind of the live-out value.
LoadInst * getCoercedLoadValue() const
static AvailableValue getLoad(LoadInst *Load, unsigned Offset=0)
static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset=0)
bool isUndefValue() const
bool isSelectValue() const
Value * Val
Val - The value that is live out of the block.
Value * V1
V1, V2 - The dominating non-clobbered values of SelectVal.
Value * MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, GVNPass &gvn) const
Emit code at the specified insertion point to adjust the value defined here to the specified type.
static AvailableValue getUndef()
SelectInst * getSelectValue() const
Value * getSimpleValue() const
bool isMemIntrinValue() const
MemIntrinsic * getMemIntrinValue() const