LLVM 20.0.0git
InstCombineCompares.cpp
Go to the documentation of this file.
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitICmp and visitFCmp functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APSInt.h"
15#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/Statistic.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/InstrTypes.h"
30#include <bitset>
31
32using namespace llvm;
33using namespace PatternMatch;
34
35#define DEBUG_TYPE "instcombine"
36
37// How many times is a select replaced by one of its operands?
38STATISTIC(NumSel, "Number of select opts");
39
40
41/// Compute Result = In1+In2, returning true if the result overflowed for this
42/// type.
43static bool addWithOverflow(APInt &Result, const APInt &In1,
44 const APInt &In2, bool IsSigned = false) {
45 bool Overflow;
46 if (IsSigned)
47 Result = In1.sadd_ov(In2, Overflow);
48 else
49 Result = In1.uadd_ov(In2, Overflow);
50
51 return Overflow;
52}
53
54/// Compute Result = In1-In2, returning true if the result overflowed for this
55/// type.
56static bool subWithOverflow(APInt &Result, const APInt &In1,
57 const APInt &In2, bool IsSigned = false) {
58 bool Overflow;
59 if (IsSigned)
60 Result = In1.ssub_ov(In2, Overflow);
61 else
62 Result = In1.usub_ov(In2, Overflow);
63
64 return Overflow;
65}
66
67/// Given an icmp instruction, return true if any use of this comparison is a
68/// branch on sign bit comparison.
69static bool hasBranchUse(ICmpInst &I) {
70 for (auto *U : I.users())
71 if (isa<BranchInst>(U))
72 return true;
73 return false;
74}
75
76/// Returns true if the exploded icmp can be expressed as a signed comparison
77/// to zero and updates the predicate accordingly.
78/// The signedness of the comparison is preserved.
79/// TODO: Refactor with decomposeBitTestICmp()?
80static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
81 if (!ICmpInst::isSigned(Pred))
82 return false;
83
84 if (C.isZero())
85 return ICmpInst::isRelational(Pred);
86
87 if (C.isOne()) {
88 if (Pred == ICmpInst::ICMP_SLT) {
89 Pred = ICmpInst::ICMP_SLE;
90 return true;
91 }
92 } else if (C.isAllOnes()) {
93 if (Pred == ICmpInst::ICMP_SGT) {
94 Pred = ICmpInst::ICMP_SGE;
95 return true;
96 }
97 }
98
99 return false;
100}
101
102/// This is called when we see this pattern:
103/// cmp pred (load (gep GV, ...)), cmpcst
104/// where GV is a global variable with a constant initializer. Try to simplify
105/// this into some simple computation that does not need the load. For example
106/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
107///
108/// If AndCst is non-null, then the loaded value is masked with that constant
109/// before doing the comparison. This handles cases like "A[i]&4 == 0".
112 ConstantInt *AndCst) {
113 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
114 GV->getValueType() != GEP->getSourceElementType() || !GV->isConstant() ||
116 return nullptr;
117
119 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
120 return nullptr;
121
122 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
123 // Don't blow up on huge arrays.
124 if (ArrayElementCount > MaxArraySizeForCombine)
125 return nullptr;
126
127 // There are many forms of this optimization we can handle, for now, just do
128 // the simple index into a single-dimensional array.
129 //
130 // Require: GEP GV, 0, i {{, constant indices}}
131 if (GEP->getNumOperands() < 3 || !isa<ConstantInt>(GEP->getOperand(1)) ||
132 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
133 isa<Constant>(GEP->getOperand(2)))
134 return nullptr;
135
136 // Check that indices after the variable are constants and in-range for the
137 // type they index. Collect the indices. This is typically for arrays of
138 // structs.
139 SmallVector<unsigned, 4> LaterIndices;
140
141 Type *EltTy = Init->getType()->getArrayElementType();
142 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
143 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
144 if (!Idx)
145 return nullptr; // Variable index.
146
147 uint64_t IdxVal = Idx->getZExtValue();
148 if ((unsigned)IdxVal != IdxVal)
149 return nullptr; // Too large array index.
150
151 if (StructType *STy = dyn_cast<StructType>(EltTy))
152 EltTy = STy->getElementType(IdxVal);
153 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
154 if (IdxVal >= ATy->getNumElements())
155 return nullptr;
156 EltTy = ATy->getElementType();
157 } else {
158 return nullptr; // Unknown type.
159 }
160
161 LaterIndices.push_back(IdxVal);
162 }
163
164 enum { Overdefined = -3, Undefined = -2 };
165
166 // Variables for our state machines.
167
168 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
169 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
170 // and 87 is the second (and last) index. FirstTrueElement is -2 when
171 // undefined, otherwise set to the first true element. SecondTrueElement is
172 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
173 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
174
175 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
176 // form "i != 47 & i != 87". Same state transitions as for true elements.
177 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
178
179 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
180 /// define a state machine that triggers for ranges of values that the index
181 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
182 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
183 /// index in the range (inclusive). We use -2 for undefined here because we
184 /// use relative comparisons and don't want 0-1 to match -1.
185 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
186
187 // MagicBitvector - This is a magic bitvector where we set a bit if the
188 // comparison is true for element 'i'. If there are 64 elements or less in
189 // the array, this will fully represent all the comparison results.
190 uint64_t MagicBitvector = 0;
191
192 // Scan the array and see if one of our patterns matches.
193 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
194 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
195 Constant *Elt = Init->getAggregateElement(i);
196 if (!Elt)
197 return nullptr;
198
199 // If this is indexing an array of structures, get the structure element.
200 if (!LaterIndices.empty()) {
201 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
202 if (!Elt)
203 return nullptr;
204 }
205
206 // If the element is masked, handle it.
207 if (AndCst) {
208 Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL);
209 if (!Elt)
210 return nullptr;
211 }
212
213 // Find out if the comparison would be true or false for the i'th element.
215 CompareRHS, DL, &TLI);
216 if (!C)
217 return nullptr;
218
219 // If the result is undef for this element, ignore it.
220 if (isa<UndefValue>(C)) {
221 // Extend range state machines to cover this element in case there is an
222 // undef in the middle of the range.
223 if (TrueRangeEnd == (int)i - 1)
224 TrueRangeEnd = i;
225 if (FalseRangeEnd == (int)i - 1)
226 FalseRangeEnd = i;
227 continue;
228 }
229
230 // If we can't compute the result for any of the elements, we have to give
231 // up evaluating the entire conditional.
232 if (!isa<ConstantInt>(C))
233 return nullptr;
234
235 // Otherwise, we know if the comparison is true or false for this element,
236 // update our state machines.
237 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
238
239 // State machine for single/double/range index comparison.
240 if (IsTrueForElt) {
241 // Update the TrueElement state machine.
242 if (FirstTrueElement == Undefined)
243 FirstTrueElement = TrueRangeEnd = i; // First true element.
244 else {
245 // Update double-compare state machine.
246 if (SecondTrueElement == Undefined)
247 SecondTrueElement = i;
248 else
249 SecondTrueElement = Overdefined;
250
251 // Update range state machine.
252 if (TrueRangeEnd == (int)i - 1)
253 TrueRangeEnd = i;
254 else
255 TrueRangeEnd = Overdefined;
256 }
257 } else {
258 // Update the FalseElement state machine.
259 if (FirstFalseElement == Undefined)
260 FirstFalseElement = FalseRangeEnd = i; // First false element.
261 else {
262 // Update double-compare state machine.
263 if (SecondFalseElement == Undefined)
264 SecondFalseElement = i;
265 else
266 SecondFalseElement = Overdefined;
267
268 // Update range state machine.
269 if (FalseRangeEnd == (int)i - 1)
270 FalseRangeEnd = i;
271 else
272 FalseRangeEnd = Overdefined;
273 }
274 }
275
276 // If this element is in range, update our magic bitvector.
277 if (i < 64 && IsTrueForElt)
278 MagicBitvector |= 1ULL << i;
279
280 // If all of our states become overdefined, bail out early. Since the
281 // predicate is expensive, only check it every 8 elements. This is only
282 // really useful for really huge arrays.
283 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
284 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
285 FalseRangeEnd == Overdefined)
286 return nullptr;
287 }
288
289 // Now that we've scanned the entire array, emit our new comparison(s). We
290 // order the state machines in complexity of the generated code.
291 Value *Idx = GEP->getOperand(2);
292
293 // If the index is larger than the pointer offset size of the target, truncate
294 // the index down like the GEP would do implicitly. We don't have to do this
295 // for an inbounds GEP because the index can't be out of range.
296 if (!GEP->isInBounds()) {
297 Type *PtrIdxTy = DL.getIndexType(GEP->getType());
298 unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth();
299 if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize)
300 Idx = Builder.CreateTrunc(Idx, PtrIdxTy);
301 }
302
303 // If inbounds keyword is not present, Idx * ElementSize can overflow.
304 // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
305 // Then, there are two possible values for Idx to match offset 0:
306 // 0x00..00, 0x80..00.
307 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
308 // comparison is false if Idx was 0x80..00.
309 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
310 unsigned ElementSize =
311 DL.getTypeAllocSize(Init->getType()->getArrayElementType());
312 auto MaskIdx = [&](Value *Idx) {
313 if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) {
314 Value *Mask = Constant::getAllOnesValue(Idx->getType());
315 Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize));
316 Idx = Builder.CreateAnd(Idx, Mask);
317 }
318 return Idx;
319 };
320
321 // If the comparison is only true for one or two elements, emit direct
322 // comparisons.
323 if (SecondTrueElement != Overdefined) {
324 Idx = MaskIdx(Idx);
325 // None true -> false.
326 if (FirstTrueElement == Undefined)
327 return replaceInstUsesWith(ICI, Builder.getFalse());
328
329 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
330
331 // True for one element -> 'i == 47'.
332 if (SecondTrueElement == Undefined)
333 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
334
335 // True for two elements -> 'i == 47 | i == 72'.
336 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
337 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
338 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
339 return BinaryOperator::CreateOr(C1, C2);
340 }
341
342 // If the comparison is only false for one or two elements, emit direct
343 // comparisons.
344 if (SecondFalseElement != Overdefined) {
345 Idx = MaskIdx(Idx);
346 // None false -> true.
347 if (FirstFalseElement == Undefined)
348 return replaceInstUsesWith(ICI, Builder.getTrue());
349
350 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
351
352 // False for one element -> 'i != 47'.
353 if (SecondFalseElement == Undefined)
354 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
355
356 // False for two elements -> 'i != 47 & i != 72'.
357 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
358 Value *SecondFalseIdx =
359 ConstantInt::get(Idx->getType(), SecondFalseElement);
360 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
361 return BinaryOperator::CreateAnd(C1, C2);
362 }
363
364 // If the comparison can be replaced with a range comparison for the elements
365 // where it is true, emit the range check.
366 if (TrueRangeEnd != Overdefined) {
367 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
368 Idx = MaskIdx(Idx);
369
370 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
371 if (FirstTrueElement) {
372 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
373 Idx = Builder.CreateAdd(Idx, Offs);
374 }
375
376 Value *End =
377 ConstantInt::get(Idx->getType(), TrueRangeEnd - FirstTrueElement + 1);
378 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
379 }
380
381 // False range check.
382 if (FalseRangeEnd != Overdefined) {
383 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
384 Idx = MaskIdx(Idx);
385 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
386 if (FirstFalseElement) {
387 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
388 Idx = Builder.CreateAdd(Idx, Offs);
389 }
390
391 Value *End =
392 ConstantInt::get(Idx->getType(), FalseRangeEnd - FirstFalseElement);
393 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
394 }
395
396 // If a magic bitvector captures the entire comparison state
397 // of this load, replace it with computation that does:
398 // ((magic_cst >> i) & 1) != 0
399 {
400 Type *Ty = nullptr;
401
402 // Look for an appropriate type:
403 // - The type of Idx if the magic fits
404 // - The smallest fitting legal type
405 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
406 Ty = Idx->getType();
407 else
408 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
409
410 if (Ty) {
411 Idx = MaskIdx(Idx);
412 Value *V = Builder.CreateIntCast(Idx, Ty, false);
413 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
414 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
415 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
416 }
417 }
418
419 return nullptr;
420}
421
422/// Returns true if we can rewrite Start as a GEP with pointer Base
423/// and some integer offset. The nodes that need to be re-written
424/// for this transformation will be added to Explored.
426 const DataLayout &DL,
427 SetVector<Value *> &Explored) {
428 SmallVector<Value *, 16> WorkList(1, Start);
429 Explored.insert(Base);
430
431 // The following traversal gives us an order which can be used
432 // when doing the final transformation. Since in the final
433 // transformation we create the PHI replacement instructions first,
434 // we don't have to get them in any particular order.
435 //
436 // However, for other instructions we will have to traverse the
437 // operands of an instruction first, which means that we have to
438 // do a post-order traversal.
439 while (!WorkList.empty()) {
441
442 while (!WorkList.empty()) {
443 if (Explored.size() >= 100)
444 return false;
445
446 Value *V = WorkList.back();
447
448 if (Explored.contains(V)) {
449 WorkList.pop_back();
450 continue;
451 }
452
453 if (!isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
454 // We've found some value that we can't explore which is different from
455 // the base. Therefore we can't do this transformation.
456 return false;
457
458 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
459 // Only allow inbounds GEPs with at most one variable offset.
460 auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(V); };
461 if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1)
462 return false;
463
464 NW = NW.intersectForOffsetAdd(GEP->getNoWrapFlags());
465 if (!Explored.contains(GEP->getOperand(0)))
466 WorkList.push_back(GEP->getOperand(0));
467 }
468
469 if (WorkList.back() == V) {
470 WorkList.pop_back();
471 // We've finished visiting this node, mark it as such.
472 Explored.insert(V);
473 }
474
475 if (auto *PN = dyn_cast<PHINode>(V)) {
476 // We cannot transform PHIs on unsplittable basic blocks.
477 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
478 return false;
479 Explored.insert(PN);
480 PHIs.insert(PN);
481 }
482 }
483
484 // Explore the PHI nodes further.
485 for (auto *PN : PHIs)
486 for (Value *Op : PN->incoming_values())
487 if (!Explored.contains(Op))
488 WorkList.push_back(Op);
489 }
490
491 // Make sure that we can do this. Since we can't insert GEPs in a basic
492 // block before a PHI node, we can't easily do this transformation if
493 // we have PHI node users of transformed instructions.
494 for (Value *Val : Explored) {
495 for (Value *Use : Val->uses()) {
496
497 auto *PHI = dyn_cast<PHINode>(Use);
498 auto *Inst = dyn_cast<Instruction>(Val);
499
500 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
501 !Explored.contains(PHI))
502 continue;
503
504 if (PHI->getParent() == Inst->getParent())
505 return false;
506 }
507 }
508 return true;
509}
510
511// Sets the appropriate insert point on Builder where we can add
512// a replacement Instruction for V (if that is possible).
513static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
514 bool Before = true) {
515 if (auto *PHI = dyn_cast<PHINode>(V)) {
516 BasicBlock *Parent = PHI->getParent();
517 Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt());
518 return;
519 }
520 if (auto *I = dyn_cast<Instruction>(V)) {
521 if (!Before)
522 I = &*std::next(I->getIterator());
523 Builder.SetInsertPoint(I);
524 return;
525 }
526 if (auto *A = dyn_cast<Argument>(V)) {
527 // Set the insertion point in the entry block.
528 BasicBlock &Entry = A->getParent()->getEntryBlock();
529 Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt());
530 return;
531 }
532 // Otherwise, this is a constant and we don't need to set a new
533 // insertion point.
534 assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
535}
536
537/// Returns a re-written value of Start as an indexed GEP using Base as a
538/// pointer.
540 const DataLayout &DL,
541 SetVector<Value *> &Explored,
542 InstCombiner &IC) {
543 // Perform all the substitutions. This is a bit tricky because we can
544 // have cycles in our use-def chains.
545 // 1. Create the PHI nodes without any incoming values.
546 // 2. Create all the other values.
547 // 3. Add the edges for the PHI nodes.
548 // 4. Emit GEPs to get the original pointers.
549 // 5. Remove the original instructions.
550 Type *IndexType = IntegerType::get(
551 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
552
554 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
555
556 // Create the new PHI nodes, without adding any incoming values.
557 for (Value *Val : Explored) {
558 if (Val == Base)
559 continue;
560 // Create empty phi nodes. This avoids cyclic dependencies when creating
561 // the remaining instructions.
562 if (auto *PHI = dyn_cast<PHINode>(Val))
563 NewInsts[PHI] =
564 PHINode::Create(IndexType, PHI->getNumIncomingValues(),
565 PHI->getName() + ".idx", PHI->getIterator());
566 }
567 IRBuilder<> Builder(Base->getContext());
568
569 // Create all the other instructions.
570 for (Value *Val : Explored) {
571 if (NewInsts.contains(Val))
572 continue;
573
574 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
575 setInsertionPoint(Builder, GEP);
576 Value *Op = NewInsts[GEP->getOperand(0)];
577 Value *OffsetV = emitGEPOffset(&Builder, DL, GEP);
578 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
579 NewInsts[GEP] = OffsetV;
580 else
581 NewInsts[GEP] = Builder.CreateAdd(
582 Op, OffsetV, GEP->getOperand(0)->getName() + ".add",
583 /*NUW=*/NW.hasNoUnsignedWrap(),
584 /*NSW=*/NW.hasNoUnsignedSignedWrap());
585 continue;
586 }
587 if (isa<PHINode>(Val))
588 continue;
589
590 llvm_unreachable("Unexpected instruction type");
591 }
592
593 // Add the incoming values to the PHI nodes.
594 for (Value *Val : Explored) {
595 if (Val == Base)
596 continue;
597 // All the instructions have been created, we can now add edges to the
598 // phi nodes.
599 if (auto *PHI = dyn_cast<PHINode>(Val)) {
600 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
601 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
602 Value *NewIncoming = PHI->getIncomingValue(I);
603
604 auto It = NewInsts.find(NewIncoming);
605 if (It != NewInsts.end())
606 NewIncoming = It->second;
607
608 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
609 }
610 }
611 }
612
613 for (Value *Val : Explored) {
614 if (Val == Base)
615 continue;
616
617 setInsertionPoint(Builder, Val, false);
618 // Create GEP for external users.
619 Value *NewVal = Builder.CreateGEP(Builder.getInt8Ty(), Base, NewInsts[Val],
620 Val->getName() + ".ptr", NW);
621 IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal);
622 // Add old instruction to worklist for DCE. We don't directly remove it
623 // here because the original compare is one of the users.
624 IC.addToWorklist(cast<Instruction>(Val));
625 }
626
627 return NewInsts[Start];
628}
629
630/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
631/// We can look through PHIs, GEPs and casts in order to determine a common base
632/// between GEPLHS and RHS.
635 const DataLayout &DL,
636 InstCombiner &IC) {
637 // FIXME: Support vector of pointers.
638 if (GEPLHS->getType()->isVectorTy())
639 return nullptr;
640
641 if (!GEPLHS->hasAllConstantIndices())
642 return nullptr;
643
644 APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0);
645 Value *PtrBase =
647 /*AllowNonInbounds*/ false);
648
649 // Bail if we looked through addrspacecast.
650 if (PtrBase->getType() != GEPLHS->getType())
651 return nullptr;
652
653 // The set of nodes that will take part in this transformation.
654 SetVector<Value *> Nodes;
655 GEPNoWrapFlags NW = GEPLHS->getNoWrapFlags();
656 if (!canRewriteGEPAsOffset(RHS, PtrBase, NW, DL, Nodes))
657 return nullptr;
658
659 // We know we can re-write this as
660 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
661 // Since we've only looked through inbouds GEPs we know that we
662 // can't have overflow on either side. We can therefore re-write
663 // this as:
664 // OFFSET1 cmp OFFSET2
665 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, NW, DL, Nodes, IC);
666
667 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
668 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
669 // offset. Since Index is the offset of LHS to the base pointer, we will now
670 // compare the offsets instead of comparing the pointers.
672 IC.Builder.getInt(Offset), NewRHS);
673}
674
675/// Fold comparisons between a GEP instruction and something else. At this point
676/// we know that the GEP is on the LHS of the comparison.
679 // Don't transform signed compares of GEPs into index compares. Even if the
680 // GEP is inbounds, the final add of the base pointer can have signed overflow
681 // and would change the result of the icmp.
682 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
683 // the maximum signed value for the pointer type.
685 return nullptr;
686
687 // Look through bitcasts and addrspacecasts. We do not however want to remove
688 // 0 GEPs.
689 if (!isa<GetElementPtrInst>(RHS))
691
692 auto CanFold = [Cond](GEPNoWrapFlags NW) {
694 return true;
695
696 // Unsigned predicates can be folded if the GEPs have *any* nowrap flags.
698 return NW != GEPNoWrapFlags::none();
699 };
700
701 auto NewICmp = [Cond](GEPNoWrapFlags NW, Value *Op1, Value *Op2) {
702 if (!NW.hasNoUnsignedWrap()) {
703 // Convert signed to unsigned comparison.
704 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Op1, Op2);
705 }
706
707 auto *I = new ICmpInst(Cond, Op1, Op2);
708 I->setSameSign(NW.hasNoUnsignedSignedWrap());
709 return I;
710 };
711
712 Value *PtrBase = GEPLHS->getOperand(0);
713 if (PtrBase == RHS && CanFold(GEPLHS->getNoWrapFlags())) {
714 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
715 Value *Offset = EmitGEPOffset(GEPLHS);
716 return NewICmp(GEPLHS->getNoWrapFlags(), Offset,
717 Constant::getNullValue(Offset->getType()));
718 }
719
720 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
721 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
722 !NullPointerIsDefined(I.getFunction(),
724 // For most address spaces, an allocation can't be placed at null, but null
725 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
726 // the only valid inbounds address derived from null, is null itself.
727 // Thus, we have four cases to consider:
728 // 1) Base == nullptr, Offset == 0 -> inbounds, null
729 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
730 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
731 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
732 //
733 // (Note if we're indexing a type of size 0, that simply collapses into one
734 // of the buckets above.)
735 //
736 // In general, we're allowed to make values less poison (i.e. remove
737 // sources of full UB), so in this case, we just select between the two
738 // non-poison cases (1 and 4 above).
739 //
740 // For vectors, we apply the same reasoning on a per-lane basis.
741 auto *Base = GEPLHS->getPointerOperand();
742 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
743 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
745 }
746 return new ICmpInst(Cond, Base,
748 cast<Constant>(RHS), Base->getType()));
749 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
750 // If the base pointers are different, but the indices are the same, just
751 // compare the base pointer.
752 if (PtrBase != GEPRHS->getOperand(0)) {
753 bool IndicesTheSame =
754 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
755 GEPLHS->getPointerOperand()->getType() ==
756 GEPRHS->getPointerOperand()->getType() &&
757 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
758 if (IndicesTheSame)
759 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
760 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
761 IndicesTheSame = false;
762 break;
763 }
764
765 // If all indices are the same, just compare the base pointers.
766 Type *BaseType = GEPLHS->getOperand(0)->getType();
767 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
768 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
769
770 // If we're comparing GEPs with two base pointers that only differ in type
771 // and both GEPs have only constant indices or just one use, then fold
772 // the compare with the adjusted indices.
773 // FIXME: Support vector of pointers.
774 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
775 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
776 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
777 PtrBase->stripPointerCasts() ==
778 GEPRHS->getOperand(0)->stripPointerCasts() &&
779 !GEPLHS->getType()->isVectorTy()) {
780 Value *LOffset = EmitGEPOffset(GEPLHS);
781 Value *ROffset = EmitGEPOffset(GEPRHS);
782
783 // If we looked through an addrspacecast between different sized address
784 // spaces, the LHS and RHS pointers are different sized
785 // integers. Truncate to the smaller one.
786 Type *LHSIndexTy = LOffset->getType();
787 Type *RHSIndexTy = ROffset->getType();
788 if (LHSIndexTy != RHSIndexTy) {
789 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() <
790 RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) {
791 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
792 } else
793 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
794 }
795
797 LOffset, ROffset);
798 return replaceInstUsesWith(I, Cmp);
799 }
800
801 // Otherwise, the base pointers are different and the indices are
802 // different. Try convert this to an indexed compare by looking through
803 // PHIs/casts.
804 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
805 }
806
807 GEPNoWrapFlags NW = GEPLHS->getNoWrapFlags() & GEPRHS->getNoWrapFlags();
808 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
809 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
810 // If the GEPs only differ by one index, compare it.
811 unsigned NumDifferences = 0; // Keep track of # differences.
812 unsigned DiffOperand = 0; // The operand that differs.
813 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
814 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
815 Type *LHSType = GEPLHS->getOperand(i)->getType();
816 Type *RHSType = GEPRHS->getOperand(i)->getType();
817 // FIXME: Better support for vector of pointers.
818 if (LHSType->getPrimitiveSizeInBits() !=
819 RHSType->getPrimitiveSizeInBits() ||
820 (GEPLHS->getType()->isVectorTy() &&
821 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
822 // Irreconcilable differences.
823 NumDifferences = 2;
824 break;
825 }
826
827 if (NumDifferences++) break;
828 DiffOperand = i;
829 }
830
831 if (NumDifferences == 0) // SAME GEP?
832 return replaceInstUsesWith(I, // No comparison is needed here.
833 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
834
835 else if (NumDifferences == 1 && CanFold(NW)) {
836 Value *LHSV = GEPLHS->getOperand(DiffOperand);
837 Value *RHSV = GEPRHS->getOperand(DiffOperand);
838 return NewICmp(NW, LHSV, RHSV);
839 }
840 }
841
842 if (CanFold(NW)) {
843 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
844 Value *L = EmitGEPOffset(GEPLHS, /*RewriteGEP=*/true);
845 Value *R = EmitGEPOffset(GEPRHS, /*RewriteGEP=*/true);
846 return NewICmp(NW, L, R);
847 }
848 }
849
850 // Try convert this to an indexed compare by looking through PHIs/casts as a
851 // last resort.
852 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
853}
854
856 // It would be tempting to fold away comparisons between allocas and any
857 // pointer not based on that alloca (e.g. an argument). However, even
858 // though such pointers cannot alias, they can still compare equal.
859 //
860 // But LLVM doesn't specify where allocas get their memory, so if the alloca
861 // doesn't escape we can argue that it's impossible to guess its value, and we
862 // can therefore act as if any such guesses are wrong.
863 //
864 // However, we need to ensure that this folding is consistent: We can't fold
865 // one comparison to false, and then leave a different comparison against the
866 // same value alone (as it might evaluate to true at runtime, leading to a
867 // contradiction). As such, this code ensures that all comparisons are folded
868 // at the same time, and there are no other escapes.
869
870 struct CmpCaptureTracker : public CaptureTracker {
871 AllocaInst *Alloca;
872 bool Captured = false;
873 /// The value of the map is a bit mask of which icmp operands the alloca is
874 /// used in.
876
877 CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {}
878
879 void tooManyUses() override { Captured = true; }
880
881 bool captured(const Use *U) override {
882 auto *ICmp = dyn_cast<ICmpInst>(U->getUser());
883 // We need to check that U is based *only* on the alloca, and doesn't
884 // have other contributions from a select/phi operand.
885 // TODO: We could check whether getUnderlyingObjects() reduces to one
886 // object, which would allow looking through phi nodes.
887 if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) {
888 // Collect equality icmps of the alloca, and don't treat them as
889 // captures.
890 ICmps[ICmp] |= 1u << U->getOperandNo();
891 return false;
892 }
893
894 Captured = true;
895 return true;
896 }
897 };
898
899 CmpCaptureTracker Tracker(Alloca);
900 PointerMayBeCaptured(Alloca, &Tracker);
901 if (Tracker.Captured)
902 return false;
903
904 bool Changed = false;
905 for (auto [ICmp, Operands] : Tracker.ICmps) {
906 switch (Operands) {
907 case 1:
908 case 2: {
909 // The alloca is only used in one icmp operand. Assume that the
910 // equality is false.
911 auto *Res = ConstantInt::get(
912 ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE);
913 replaceInstUsesWith(*ICmp, Res);
915 Changed = true;
916 break;
917 }
918 case 3:
919 // Both icmp operands are based on the alloca, so this is comparing
920 // pointer offsets, without leaking any information about the address
921 // of the alloca. Ignore such comparisons.
922 break;
923 default:
924 llvm_unreachable("Cannot happen");
925 }
926 }
927
928 return Changed;
929}
930
931/// Fold "icmp pred (X+C), X".
933 CmpPredicate Pred) {
934 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
935 // so the values can never be equal. Similarly for all other "or equals"
936 // operators.
937 assert(!!C && "C should not be zero!");
938
939 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
940 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
941 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
942 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
943 Constant *R = ConstantInt::get(X->getType(),
944 APInt::getMaxValue(C.getBitWidth()) - C);
945 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
946 }
947
948 // (X+1) >u X --> X <u (0-1) --> X != 255
949 // (X+2) >u X --> X <u (0-2) --> X <u 254
950 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
951 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
952 return new ICmpInst(ICmpInst::ICMP_ULT, X,
953 ConstantInt::get(X->getType(), -C));
954
955 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
956
957 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
958 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
959 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
960 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
961 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
962 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
963 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
964 return new ICmpInst(ICmpInst::ICMP_SGT, X,
965 ConstantInt::get(X->getType(), SMax - C));
966
967 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
968 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
969 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
970 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
971 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
972 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
973
974 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
975 return new ICmpInst(ICmpInst::ICMP_SLT, X,
976 ConstantInt::get(X->getType(), SMax - (C - 1)));
977}
978
979/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
980/// (icmp eq/ne A, Log2(AP2/AP1)) ->
981/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
983 const APInt &AP1,
984 const APInt &AP2) {
985 assert(I.isEquality() && "Cannot fold icmp gt/lt");
986
987 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
988 if (I.getPredicate() == I.ICMP_NE)
989 Pred = CmpInst::getInversePredicate(Pred);
990 return new ICmpInst(Pred, LHS, RHS);
991 };
992
993 // Don't bother doing any work for cases which InstSimplify handles.
994 if (AP2.isZero())
995 return nullptr;
996
997 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
998 if (IsAShr) {
999 if (AP2.isAllOnes())
1000 return nullptr;
1001 if (AP2.isNegative() != AP1.isNegative())
1002 return nullptr;
1003 if (AP2.sgt(AP1))
1004 return nullptr;
1005 }
1006
1007 if (!AP1)
1008 // 'A' must be large enough to shift out the highest set bit.
1009 return getICmp(I.ICMP_UGT, A,
1010 ConstantInt::get(A->getType(), AP2.logBase2()));
1011
1012 if (AP1 == AP2)
1013 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1014
1015 int Shift;
1016 if (IsAShr && AP1.isNegative())
1017 Shift = AP1.countl_one() - AP2.countl_one();
1018 else
1019 Shift = AP1.countl_zero() - AP2.countl_zero();
1020
1021 if (Shift > 0) {
1022 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1023 // There are multiple solutions if we are comparing against -1 and the LHS
1024 // of the ashr is not a power of two.
1025 if (AP1.isAllOnes() && !AP2.isPowerOf2())
1026 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1027 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1028 } else if (AP1 == AP2.lshr(Shift)) {
1029 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1030 }
1031 }
1032
1033 // Shifting const2 will never be equal to const1.
1034 // FIXME: This should always be handled by InstSimplify?
1035 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1036 return replaceInstUsesWith(I, TorF);
1037}
1038
1039/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1040/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1042 const APInt &AP1,
1043 const APInt &AP2) {
1044 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1045
1046 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1047 if (I.getPredicate() == I.ICMP_NE)
1048 Pred = CmpInst::getInversePredicate(Pred);
1049 return new ICmpInst(Pred, LHS, RHS);
1050 };
1051
1052 // Don't bother doing any work for cases which InstSimplify handles.
1053 if (AP2.isZero())
1054 return nullptr;
1055
1056 unsigned AP2TrailingZeros = AP2.countr_zero();
1057
1058 if (!AP1 && AP2TrailingZeros != 0)
1059 return getICmp(
1060 I.ICMP_UGE, A,
1061 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1062
1063 if (AP1 == AP2)
1064 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1065
1066 // Get the distance between the lowest bits that are set.
1067 int Shift = AP1.countr_zero() - AP2TrailingZeros;
1068
1069 if (Shift > 0 && AP2.shl(Shift) == AP1)
1070 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1071
1072 // Shifting const2 will never be equal to const1.
1073 // FIXME: This should always be handled by InstSimplify?
1074 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1075 return replaceInstUsesWith(I, TorF);
1076}
1077
1078/// The caller has matched a pattern of the form:
1079/// I = icmp ugt (add (add A, B), CI2), CI1
1080/// If this is of the form:
1081/// sum = a + b
1082/// if (sum+128 >u 255)
1083/// Then replace it with llvm.sadd.with.overflow.i8.
1084///
1086 ConstantInt *CI2, ConstantInt *CI1,
1087 InstCombinerImpl &IC) {
1088 // The transformation we're trying to do here is to transform this into an
1089 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1090 // with a narrower add, and discard the add-with-constant that is part of the
1091 // range check (if we can't eliminate it, this isn't profitable).
1092
1093 // In order to eliminate the add-with-constant, the compare can be its only
1094 // use.
1095 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1096 if (!AddWithCst->hasOneUse())
1097 return nullptr;
1098
1099 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1100 if (!CI2->getValue().isPowerOf2())
1101 return nullptr;
1102 unsigned NewWidth = CI2->getValue().countr_zero();
1103 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1104 return nullptr;
1105
1106 // The width of the new add formed is 1 more than the bias.
1107 ++NewWidth;
1108
1109 // Check to see that CI1 is an all-ones value with NewWidth bits.
1110 if (CI1->getBitWidth() == NewWidth ||
1111 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1112 return nullptr;
1113
1114 // This is only really a signed overflow check if the inputs have been
1115 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1116 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1117 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1118 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1119 return nullptr;
1120
1121 // In order to replace the original add with a narrower
1122 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1123 // and truncates that discard the high bits of the add. Verify that this is
1124 // the case.
1125 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1126 for (User *U : OrigAdd->users()) {
1127 if (U == AddWithCst)
1128 continue;
1129
1130 // Only accept truncates for now. We would really like a nice recursive
1131 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1132 // chain to see which bits of a value are actually demanded. If the
1133 // original add had another add which was then immediately truncated, we
1134 // could still do the transformation.
1135 TruncInst *TI = dyn_cast<TruncInst>(U);
1136 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1137 return nullptr;
1138 }
1139
1140 // If the pattern matches, truncate the inputs to the narrower type and
1141 // use the sadd_with_overflow intrinsic to efficiently compute both the
1142 // result and the overflow bit.
1143 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1145 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1146
1147 InstCombiner::BuilderTy &Builder = IC.Builder;
1148
1149 // Put the new code above the original add, in case there are any uses of the
1150 // add between the add and the compare.
1151 Builder.SetInsertPoint(OrigAdd);
1152
1153 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1154 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1155 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1156 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1157 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1158
1159 // The inner add was the result of the narrow add, zero extended to the
1160 // wider type. Replace it with the result computed by the intrinsic.
1161 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1162 IC.eraseInstFromFunction(*OrigAdd);
1163
1164 // The original icmp gets replaced with the overflow value.
1165 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1166}
1167
1168/// If we have:
1169/// icmp eq/ne (urem/srem %x, %y), 0
1170/// iff %y is a power-of-two, we can replace this with a bit test:
1171/// icmp eq/ne (and %x, (add %y, -1)), 0
1173 // This fold is only valid for equality predicates.
1174 if (!I.isEquality())
1175 return nullptr;
1176 CmpPredicate Pred;
1177 Value *X, *Y, *Zero;
1178 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1179 m_CombineAnd(m_Zero(), m_Value(Zero)))))
1180 return nullptr;
1181 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1182 return nullptr;
1183 // This may increase instruction count, we don't enforce that Y is a constant.
1184 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1185 Value *Masked = Builder.CreateAnd(X, Mask);
1186 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1187}
1188
1189/// Fold equality-comparison between zero and any (maybe truncated) right-shift
1190/// by one-less-than-bitwidth into a sign test on the original value.
1192 Instruction *Val;
1193 CmpPredicate Pred;
1194 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1195 return nullptr;
1196
1197 Value *X;
1198 Type *XTy;
1199
1200 Constant *C;
1201 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1202 XTy = X->getType();
1203 unsigned XBitWidth = XTy->getScalarSizeInBits();
1205 APInt(XBitWidth, XBitWidth - 1))))
1206 return nullptr;
1207 } else if (isa<BinaryOperator>(Val) &&
1209 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1210 /*AnalyzeForSignBitExtraction=*/true))) {
1211 XTy = X->getType();
1212 } else
1213 return nullptr;
1214
1215 return ICmpInst::Create(Instruction::ICmp,
1219}
1220
1221// Handle icmp pred X, 0
1223 CmpInst::Predicate Pred = Cmp.getPredicate();
1224 if (!match(Cmp.getOperand(1), m_Zero()))
1225 return nullptr;
1226
1227 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1228 if (Pred == ICmpInst::ICMP_SGT) {
1229 Value *A, *B;
1230 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1232 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1234 return new ICmpInst(Pred, A, Cmp.getOperand(1));
1235 }
1236 }
1237
1239 return New;
1240
1241 // Given:
1242 // icmp eq/ne (urem %x, %y), 0
1243 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1244 // icmp eq/ne %x, 0
1245 Value *X, *Y;
1246 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1247 ICmpInst::isEquality(Pred)) {
1248 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1249 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1250 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1251 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1252 }
1253
1254 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are
1255 // odd/non-zero/there is no overflow.
1256 if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) &&
1257 ICmpInst::isEquality(Pred)) {
1258
1259 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1260 // if X % 2 != 0
1261 // (icmp eq/ne Y)
1262 if (XKnown.countMaxTrailingZeros() == 0)
1263 return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1264
1265 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1266 // if Y % 2 != 0
1267 // (icmp eq/ne X)
1268 if (YKnown.countMaxTrailingZeros() == 0)
1269 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1270
1271 auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0));
1272 if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) {
1273 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
1274 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()`
1275 // but to avoid unnecessary work, first just if this is an obvious case.
1276
1277 // if X non-zero and NoOverflow(X * Y)
1278 // (icmp eq/ne Y)
1279 if (!XKnown.One.isZero() || isKnownNonZero(X, Q))
1280 return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1281
1282 // if Y non-zero and NoOverflow(X * Y)
1283 // (icmp eq/ne X)
1284 if (!YKnown.One.isZero() || isKnownNonZero(Y, Q))
1285 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1286 }
1287 // Note, we are skipping cases:
1288 // if Y % 2 != 0 AND X % 2 != 0
1289 // (false/true)
1290 // if X non-zero and Y non-zero and NoOverflow(X * Y)
1291 // (false/true)
1292 // Those can be simplified later as we would have already replaced the (icmp
1293 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that
1294 // will fold to a constant elsewhere.
1295 }
1296 return nullptr;
1297}
1298
1299/// Fold icmp Pred X, C.
1300/// TODO: This code structure does not make sense. The saturating add fold
1301/// should be moved to some other helper and extended as noted below (it is also
1302/// possible that code has been made unnecessary - do we canonicalize IR to
1303/// overflow/saturating intrinsics or not?).
1305 // Match the following pattern, which is a common idiom when writing
1306 // overflow-safe integer arithmetic functions. The source performs an addition
1307 // in wider type and explicitly checks for overflow using comparisons against
1308 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1309 //
1310 // TODO: This could probably be generalized to handle other overflow-safe
1311 // operations if we worked out the formulas to compute the appropriate magic
1312 // constants.
1313 //
1314 // sum = a + b
1315 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1316 CmpInst::Predicate Pred = Cmp.getPredicate();
1317 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1318 Value *A, *B;
1319 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1320 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1321 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1322 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1323 return Res;
1324
1325 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1326 Constant *C = dyn_cast<Constant>(Op1);
1327 if (!C)
1328 return nullptr;
1329
1330 if (auto *Phi = dyn_cast<PHINode>(Op0))
1331 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1333 for (Value *V : Phi->incoming_values()) {
1334 Constant *Res =
1335 ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL);
1336 if (!Res)
1337 return nullptr;
1338 Ops.push_back(Res);
1339 }
1341 PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands());
1342 for (auto [V, Pred] : zip(Ops, Phi->blocks()))
1343 NewPhi->addIncoming(V, Pred);
1344 return replaceInstUsesWith(Cmp, NewPhi);
1345 }
1346
1348 return R;
1349
1350 return nullptr;
1351}
1352
1353/// Canonicalize icmp instructions based on dominating conditions.
1355 // We already checked simple implication in InstSimplify, only handle complex
1356 // cases here.
1357 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1358 const APInt *C;
1359 if (!match(Y, m_APInt(C)))
1360 return nullptr;
1361
1362 CmpInst::Predicate Pred = Cmp.getPredicate();
1364
1365 auto handleDomCond = [&](ICmpInst::Predicate DomPred,
1366 const APInt *DomC) -> Instruction * {
1367 // We have 2 compares of a variable with constants. Calculate the constant
1368 // ranges of those compares to see if we can transform the 2nd compare:
1369 // DomBB:
1370 // DomCond = icmp DomPred X, DomC
1371 // br DomCond, CmpBB, FalseBB
1372 // CmpBB:
1373 // Cmp = icmp Pred X, C
1374 ConstantRange DominatingCR =
1375 ConstantRange::makeExactICmpRegion(DomPred, *DomC);
1376 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1377 ConstantRange Difference = DominatingCR.difference(CR);
1378 if (Intersection.isEmptySet())
1379 return replaceInstUsesWith(Cmp, Builder.getFalse());
1380 if (Difference.isEmptySet())
1381 return replaceInstUsesWith(Cmp, Builder.getTrue());
1382
1383 // Canonicalizing a sign bit comparison that gets used in a branch,
1384 // pessimizes codegen by generating branch on zero instruction instead
1385 // of a test and branch. So we avoid canonicalizing in such situations
1386 // because test and branch instruction has better branch displacement
1387 // than compare and branch instruction.
1388 bool UnusedBit;
1389 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1390 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1391 return nullptr;
1392
1393 // Avoid an infinite loop with min/max canonicalization.
1394 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1395 if (Cmp.hasOneUse() &&
1396 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1397 return nullptr;
1398
1399 if (const APInt *EqC = Intersection.getSingleElement())
1400 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1401 if (const APInt *NeC = Difference.getSingleElement())
1402 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1403 return nullptr;
1404 };
1405
1406 for (BranchInst *BI : DC.conditionsFor(X)) {
1407 CmpPredicate DomPred;
1408 const APInt *DomC;
1409 if (!match(BI->getCondition(),
1410 m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))))
1411 continue;
1412
1413 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
1414 if (DT.dominates(Edge0, Cmp.getParent())) {
1415 if (auto *V = handleDomCond(DomPred, DomC))
1416 return V;
1417 } else {
1418 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
1419 if (DT.dominates(Edge1, Cmp.getParent()))
1420 if (auto *V =
1421 handleDomCond(CmpInst::getInversePredicate(DomPred), DomC))
1422 return V;
1423 }
1424 }
1425
1426 return nullptr;
1427}
1428
1429/// Fold icmp (trunc X), C.
1431 TruncInst *Trunc,
1432 const APInt &C) {
1433 ICmpInst::Predicate Pred = Cmp.getPredicate();
1434 Value *X = Trunc->getOperand(0);
1435 Type *SrcTy = X->getType();
1436 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1437 SrcBits = SrcTy->getScalarSizeInBits();
1438
1439 // Match (icmp pred (trunc nuw/nsw X), C)
1440 // Which we can convert to (icmp pred X, (sext/zext C))
1441 if (shouldChangeType(Trunc->getType(), SrcTy)) {
1442 if (Trunc->hasNoSignedWrap())
1443 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.sext(SrcBits)));
1444 if (!Cmp.isSigned() && Trunc->hasNoUnsignedWrap())
1445 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.zext(SrcBits)));
1446 }
1447
1448 if (C.isOne() && C.getBitWidth() > 1) {
1449 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1450 Value *V = nullptr;
1451 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1452 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1453 ConstantInt::get(V->getType(), 1));
1454 }
1455
1456 // TODO: Handle any shifted constant by subtracting trailing zeros.
1457 // TODO: Handle non-equality predicates.
1458 Value *Y;
1459 if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) {
1460 // (trunc (1 << Y) to iN) == 0 --> Y u>= N
1461 // (trunc (1 << Y) to iN) != 0 --> Y u< N
1462 if (C.isZero()) {
1463 auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT;
1464 return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits));
1465 }
1466 // (trunc (1 << Y) to iN) == 2**C --> Y == C
1467 // (trunc (1 << Y) to iN) != 2**C --> Y != C
1468 if (C.isPowerOf2())
1469 return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2()));
1470 }
1471
1472 if (Cmp.isEquality() && Trunc->hasOneUse()) {
1473 // Canonicalize to a mask and wider compare if the wide type is suitable:
1474 // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1475 if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1476 Constant *Mask =
1477 ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits));
1478 Value *And = Builder.CreateAnd(X, Mask);
1479 Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits));
1480 return new ICmpInst(Pred, And, WideC);
1481 }
1482
1483 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1484 // of the high bits truncated out of x are known.
1485 KnownBits Known = computeKnownBits(X, 0, &Cmp);
1486
1487 // If all the high bits are known, we can do this xform.
1488 if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) {
1489 // Pull in the high bits from known-ones set.
1490 APInt NewRHS = C.zext(SrcBits);
1491 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1492 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS));
1493 }
1494 }
1495
1496 // Look through truncated right-shift of the sign-bit for a sign-bit check:
1497 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
1498 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1499 Value *ShOp;
1500 const APInt *ShAmtC;
1501 bool TrueIfSigned;
1502 if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1503 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1504 DstBits == SrcBits - ShAmtC->getZExtValue()) {
1505 return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1507 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1509 }
1510
1511 return nullptr;
1512}
1513
1514/// Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y).
1515/// Fold icmp (trunc nuw/nsw X), (zext/sext Y).
1518 const SimplifyQuery &Q) {
1519 Value *X, *Y;
1520 CmpPredicate Pred;
1521 bool YIsSExt = false;
1522 // Try to match icmp (trunc X), (trunc Y)
1523 if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) {
1524 unsigned NoWrapFlags = cast<TruncInst>(Cmp.getOperand(0))->getNoWrapKind() &
1525 cast<TruncInst>(Cmp.getOperand(1))->getNoWrapKind();
1526 if (Cmp.isSigned()) {
1527 // For signed comparisons, both truncs must be nsw.
1528 if (!(NoWrapFlags & TruncInst::NoSignedWrap))
1529 return nullptr;
1530 } else {
1531 // For unsigned and equality comparisons, either both must be nuw or
1532 // both must be nsw, we don't care which.
1533 if (!NoWrapFlags)
1534 return nullptr;
1535 }
1536
1537 if (X->getType() != Y->getType() &&
1538 (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse()))
1539 return nullptr;
1540 if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) &&
1541 isDesirableIntType(Y->getType()->getScalarSizeInBits())) {
1542 std::swap(X, Y);
1543 Pred = Cmp.getSwappedPredicate(Pred);
1544 }
1545 YIsSExt = !(NoWrapFlags & TruncInst::NoUnsignedWrap);
1546 }
1547 // Try to match icmp (trunc nuw X), (zext Y)
1548 else if (!Cmp.isSigned() &&
1549 match(&Cmp, m_c_ICmp(Pred, m_NUWTrunc(m_Value(X)),
1550 m_OneUse(m_ZExt(m_Value(Y)))))) {
1551 // Can fold trunc nuw + zext for unsigned and equality predicates.
1552 }
1553 // Try to match icmp (trunc nsw X), (sext Y)
1554 else if (match(&Cmp, m_c_ICmp(Pred, m_NSWTrunc(m_Value(X)),
1556 // Can fold trunc nsw + zext/sext for all predicates.
1557 YIsSExt =
1558 isa<SExtInst>(Cmp.getOperand(0)) || isa<SExtInst>(Cmp.getOperand(1));
1559 } else
1560 return nullptr;
1561
1562 Type *TruncTy = Cmp.getOperand(0)->getType();
1563 unsigned TruncBits = TruncTy->getScalarSizeInBits();
1564
1565 // If this transform will end up changing from desirable types -> undesirable
1566 // types skip it.
1567 if (isDesirableIntType(TruncBits) &&
1568 !isDesirableIntType(X->getType()->getScalarSizeInBits()))
1569 return nullptr;
1570
1571 Value *NewY = Builder.CreateIntCast(Y, X->getType(), YIsSExt);
1572 return new ICmpInst(Pred, X, NewY);
1573}
1574
1575/// Fold icmp (xor X, Y), C.
1578 const APInt &C) {
1579 if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C))
1580 return I;
1581
1582 Value *X = Xor->getOperand(0);
1583 Value *Y = Xor->getOperand(1);
1584 const APInt *XorC;
1585 if (!match(Y, m_APInt(XorC)))
1586 return nullptr;
1587
1588 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1589 // fold the xor.
1590 ICmpInst::Predicate Pred = Cmp.getPredicate();
1591 bool TrueIfSigned = false;
1592 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1593
1594 // If the sign bit of the XorCst is not set, there is no change to
1595 // the operation, just stop using the Xor.
1596 if (!XorC->isNegative())
1597 return replaceOperand(Cmp, 0, X);
1598
1599 // Emit the opposite comparison.
1600 if (TrueIfSigned)
1601 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1602 ConstantInt::getAllOnesValue(X->getType()));
1603 else
1604 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1605 ConstantInt::getNullValue(X->getType()));
1606 }
1607
1608 if (Xor->hasOneUse()) {
1609 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1610 if (!Cmp.isEquality() && XorC->isSignMask()) {
1611 Pred = Cmp.getFlippedSignednessPredicate();
1612 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1613 }
1614
1615 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1616 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1617 Pred = Cmp.getFlippedSignednessPredicate();
1618 Pred = Cmp.getSwappedPredicate(Pred);
1619 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1620 }
1621 }
1622
1623 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1624 if (Pred == ICmpInst::ICMP_UGT) {
1625 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1626 if (*XorC == ~C && (C + 1).isPowerOf2())
1627 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1628 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1629 if (*XorC == C && (C + 1).isPowerOf2())
1630 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1631 }
1632 if (Pred == ICmpInst::ICMP_ULT) {
1633 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1634 if (*XorC == -C && C.isPowerOf2())
1635 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1636 ConstantInt::get(X->getType(), ~C));
1637 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1638 if (*XorC == C && (-C).isPowerOf2())
1639 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1640 ConstantInt::get(X->getType(), ~C));
1641 }
1642 return nullptr;
1643}
1644
1645/// For power-of-2 C:
1646/// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1)
1647/// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1)
1650 const APInt &C) {
1651 CmpInst::Predicate Pred = Cmp.getPredicate();
1652 APInt PowerOf2;
1653 if (Pred == ICmpInst::ICMP_ULT)
1654 PowerOf2 = C;
1655 else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue())
1656 PowerOf2 = C + 1;
1657 else
1658 return nullptr;
1659 if (!PowerOf2.isPowerOf2())
1660 return nullptr;
1661 Value *X;
1662 const APInt *ShiftC;
1664 m_AShr(m_Deferred(X), m_APInt(ShiftC))))))
1665 return nullptr;
1666 uint64_t Shift = ShiftC->getLimitedValue();
1667 Type *XType = X->getType();
1668 if (Shift == 0 || PowerOf2.isMinSignedValue())
1669 return nullptr;
1670 Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2));
1671 APInt Bound =
1672 Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1);
1673 return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound));
1674}
1675
1676/// Fold icmp (and (sh X, Y), C2), C1.
1679 const APInt &C1,
1680 const APInt &C2) {
1681 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1682 if (!Shift || !Shift->isShift())
1683 return nullptr;
1684
1685 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1686 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1687 // code produced by the clang front-end, for bitfield access.
1688 // This seemingly simple opportunity to fold away a shift turns out to be
1689 // rather complicated. See PR17827 for details.
1690 unsigned ShiftOpcode = Shift->getOpcode();
1691 bool IsShl = ShiftOpcode == Instruction::Shl;
1692 const APInt *C3;
1693 if (match(Shift->getOperand(1), m_APInt(C3))) {
1694 APInt NewAndCst, NewCmpCst;
1695 bool AnyCmpCstBitsShiftedOut;
1696 if (ShiftOpcode == Instruction::Shl) {
1697 // For a left shift, we can fold if the comparison is not signed. We can
1698 // also fold a signed comparison if the mask value and comparison value
1699 // are not negative. These constraints may not be obvious, but we can
1700 // prove that they are correct using an SMT solver.
1701 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1702 return nullptr;
1703
1704 NewCmpCst = C1.lshr(*C3);
1705 NewAndCst = C2.lshr(*C3);
1706 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1707 } else if (ShiftOpcode == Instruction::LShr) {
1708 // For a logical right shift, we can fold if the comparison is not signed.
1709 // We can also fold a signed comparison if the shifted mask value and the
1710 // shifted comparison value are not negative. These constraints may not be
1711 // obvious, but we can prove that they are correct using an SMT solver.
1712 NewCmpCst = C1.shl(*C3);
1713 NewAndCst = C2.shl(*C3);
1714 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1715 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1716 return nullptr;
1717 } else {
1718 // For an arithmetic shift, check that both constants don't use (in a
1719 // signed sense) the top bits being shifted out.
1720 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1721 NewCmpCst = C1.shl(*C3);
1722 NewAndCst = C2.shl(*C3);
1723 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1724 if (NewAndCst.ashr(*C3) != C2)
1725 return nullptr;
1726 }
1727
1728 if (AnyCmpCstBitsShiftedOut) {
1729 // If we shifted bits out, the fold is not going to work out. As a
1730 // special case, check to see if this means that the result is always
1731 // true or false now.
1732 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1733 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1734 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1735 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1736 } else {
1737 Value *NewAnd = Builder.CreateAnd(
1738 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1739 return new ICmpInst(Cmp.getPredicate(),
1740 NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1741 }
1742 }
1743
1744 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1745 // preferable because it allows the C2 << Y expression to be hoisted out of a
1746 // loop if Y is invariant and X is not.
1747 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1748 !Shift->isArithmeticShift() &&
1749 ((!IsShl && C2.isOne()) || !isa<Constant>(Shift->getOperand(0)))) {
1750 // Compute C2 << Y.
1751 Value *NewShift =
1752 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1753 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1754
1755 // Compute X & (C2 << Y).
1756 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1757 return new ICmpInst(Cmp.getPredicate(), NewAnd, Cmp.getOperand(1));
1758 }
1759
1760 return nullptr;
1761}
1762
1763/// Fold icmp (and X, C2), C1.
1766 const APInt &C1) {
1767 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1768
1769 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1770 // TODO: We canonicalize to the longer form for scalars because we have
1771 // better analysis/folds for icmp, and codegen may be better with icmp.
1772 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1773 match(And->getOperand(1), m_One()))
1774 return new TruncInst(And->getOperand(0), Cmp.getType());
1775
1776 const APInt *C2;
1777 Value *X;
1778 if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1779 return nullptr;
1780
1781 // (and X, highmask) s> [0, ~highmask] --> X s> ~highmask
1782 if (Cmp.getPredicate() == ICmpInst::ICMP_SGT && C1.ule(~*C2) &&
1783 C2->isNegatedPowerOf2())
1784 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1785 ConstantInt::get(X->getType(), ~*C2));
1786 // (and X, highmask) s< [1, -highmask] --> X s< -highmask
1787 if (Cmp.getPredicate() == ICmpInst::ICMP_SLT && !C1.isSignMask() &&
1788 (C1 - 1).ule(~*C2) && C2->isNegatedPowerOf2() && !C2->isSignMask())
1789 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1790 ConstantInt::get(X->getType(), -*C2));
1791
1792 // Don't perform the following transforms if the AND has multiple uses
1793 if (!And->hasOneUse())
1794 return nullptr;
1795
1796 if (Cmp.isEquality() && C1.isZero()) {
1797 // Restrict this fold to single-use 'and' (PR10267).
1798 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1799 if (C2->isSignMask()) {
1800 Constant *Zero = Constant::getNullValue(X->getType());
1801 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1802 return new ICmpInst(NewPred, X, Zero);
1803 }
1804
1805 APInt NewC2 = *C2;
1806 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And);
1807 // Set high zeros of C2 to allow matching negated power-of-2.
1808 NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(),
1809 Know.countMinLeadingZeros());
1810
1811 // Restrict this fold only for single-use 'and' (PR10267).
1812 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1813 if (NewC2.isNegatedPowerOf2()) {
1814 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2);
1815 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1816 return new ICmpInst(NewPred, X, NegBOC);
1817 }
1818 }
1819
1820 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1821 // the input width without changing the value produced, eliminate the cast:
1822 //
1823 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1824 //
1825 // We can do this transformation if the constants do not have their sign bits
1826 // set or if it is an equality comparison. Extending a relational comparison
1827 // when we're checking the sign bit would not work.
1828 Value *W;
1829 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1830 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1831 // TODO: Is this a good transform for vectors? Wider types may reduce
1832 // throughput. Should this transform be limited (even for scalars) by using
1833 // shouldChangeType()?
1834 if (!Cmp.getType()->isVectorTy()) {
1835 Type *WideType = W->getType();
1836 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1837 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1838 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1839 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1840 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1841 }
1842 }
1843
1844 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1845 return I;
1846
1847 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1848 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1849 //
1850 // iff pred isn't signed
1851 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1852 match(And->getOperand(1), m_One())) {
1853 Constant *One = cast<Constant>(And->getOperand(1));
1854 Value *Or = And->getOperand(0);
1855 Value *A, *B, *LShr;
1856 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1857 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1858 unsigned UsesRemoved = 0;
1859 if (And->hasOneUse())
1860 ++UsesRemoved;
1861 if (Or->hasOneUse())
1862 ++UsesRemoved;
1863 if (LShr->hasOneUse())
1864 ++UsesRemoved;
1865
1866 // Compute A & ((1 << B) | 1)
1867 unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3;
1868 if (UsesRemoved >= RequireUsesRemoved) {
1869 Value *NewOr =
1870 Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1871 /*HasNUW=*/true),
1872 One, Or->getName());
1873 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1874 return new ICmpInst(Cmp.getPredicate(), NewAnd, Cmp.getOperand(1));
1875 }
1876 }
1877 }
1878
1879 // (icmp eq (and (bitcast X to int), ExponentMask), ExponentMask) -->
1880 // llvm.is.fpclass(X, fcInf|fcNan)
1881 // (icmp ne (and (bitcast X to int), ExponentMask), ExponentMask) -->
1882 // llvm.is.fpclass(X, ~(fcInf|fcNan))
1883 Value *V;
1884 if (!Cmp.getParent()->getParent()->hasFnAttribute(
1885 Attribute::NoImplicitFloat) &&
1886 Cmp.isEquality() &&
1888 Type *FPType = V->getType()->getScalarType();
1889 if (FPType->isIEEELikeFPTy() && C1 == *C2) {
1890 APInt ExponentMask =
1891 APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt();
1892 if (C1 == ExponentMask) {
1893 unsigned Mask = FPClassTest::fcNan | FPClassTest::fcInf;
1894 if (isICMP_NE)
1895 Mask = ~Mask & fcAllFlags;
1896 return replaceInstUsesWith(Cmp, Builder.createIsFPClass(V, Mask));
1897 }
1898 }
1899 }
1900
1901 return nullptr;
1902}
1903
1904/// Fold icmp (and X, Y), C.
1907 const APInt &C) {
1908 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1909 return I;
1910
1911 const ICmpInst::Predicate Pred = Cmp.getPredicate();
1912 bool TrueIfNeg;
1913 if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1914 // ((X - 1) & ~X) < 0 --> X == 0
1915 // ((X - 1) & ~X) >= 0 --> X != 0
1916 Value *X;
1917 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1918 match(And->getOperand(1), m_Not(m_Specific(X)))) {
1919 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1920 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1921 }
1922 // (X & -X) < 0 --> X == MinSignedC
1923 // (X & -X) > -1 --> X != MinSignedC
1924 if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) {
1925 Constant *MinSignedC = ConstantInt::get(
1926 X->getType(),
1927 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits()));
1928 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1929 return new ICmpInst(NewPred, X, MinSignedC);
1930 }
1931 }
1932
1933 // TODO: These all require that Y is constant too, so refactor with the above.
1934
1935 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1936 Value *X = And->getOperand(0);
1937 Value *Y = And->getOperand(1);
1938 if (auto *C2 = dyn_cast<ConstantInt>(Y))
1939 if (auto *LI = dyn_cast<LoadInst>(X))
1940 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1941 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1942 if (Instruction *Res =
1943 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1944 return Res;
1945
1946 if (!Cmp.isEquality())
1947 return nullptr;
1948
1949 // X & -C == -C -> X > u ~C
1950 // X & -C != -C -> X <= u ~C
1951 // iff C is a power of 2
1952 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1953 auto NewPred =
1955 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1956 }
1957
1958 // If we are testing the intersection of 2 select-of-nonzero-constants with no
1959 // common bits set, it's the same as checking if exactly one select condition
1960 // is set:
1961 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B
1962 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B)
1963 // TODO: Generalize for non-constant values.
1964 // TODO: Handle signed/unsigned predicates.
1965 // TODO: Handle other bitwise logic connectors.
1966 // TODO: Extend to handle a non-zero compare constant.
1967 if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) {
1968 assert(Cmp.isEquality() && "Not expecting non-equality predicates");
1969 Value *A, *B;
1970 const APInt *TC, *FC;
1971 if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) &&
1972 match(Y,
1973 m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) &&
1974 !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) {
1975 Value *R = Builder.CreateXor(A, B);
1976 if (Pred == CmpInst::ICMP_NE)
1977 R = Builder.CreateNot(R);
1978 return replaceInstUsesWith(Cmp, R);
1979 }
1980 }
1981
1982 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X)
1983 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X)
1984 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X)
1985 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X)
1987 X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) {
1988 Value *TruncY = Builder.CreateTrunc(Y, X->getType());
1989 if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) {
1990 Value *And = Builder.CreateAnd(TruncY, X);
1992 }
1993 return BinaryOperator::CreateAnd(TruncY, X);
1994 }
1995
1996 // (icmp eq/ne (and (shl -1, X), Y), 0)
1997 // -> (icmp eq/ne (lshr Y, X), 0)
1998 // We could technically handle any C == 0 or (C < 0 && isOdd(C)) but it seems
1999 // highly unlikely the non-zero case will ever show up in code.
2000 if (C.isZero() &&
2002 m_Value(Y))))) {
2003 Value *LShr = Builder.CreateLShr(Y, X);
2004 return new ICmpInst(Pred, LShr, Constant::getNullValue(LShr->getType()));
2005 }
2006
2007 // (icmp eq/ne (and (add A, Addend), Msk), C)
2008 // -> (icmp eq/ne (and A, Msk), (and (sub C, Addend), Msk))
2009 {
2010 Value *A;
2011 const APInt *Addend, *Msk;
2012 if (match(And, m_And(m_OneUse(m_Add(m_Value(A), m_APInt(Addend))),
2013 m_APInt(Msk))) &&
2014 Msk->isMask() && C.ule(*Msk)) {
2015 APInt NewComperand = (C - *Addend) & *Msk;
2016 Value* MaskA = Builder.CreateAnd(A, ConstantInt::get(A->getType(), *Msk));
2017 return new ICmpInst(
2018 Pred, MaskA,
2019 Constant::getIntegerValue(MaskA->getType(), NewComperand));
2020 }
2021 }
2022
2023 return nullptr;
2024}
2025
2026/// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0.
2028 InstCombiner::BuilderTy &Builder) {
2029 // Are we using xors or subs to bitwise check for a pair or pairs of
2030 // (in)equalities? Convert to a shorter form that has more potential to be
2031 // folded even further.
2032 // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4)
2033 // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4)
2034 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 -->
2035 // (X1 == X2) && (X3 == X4) && (X5 == X6)
2036 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 -->
2037 // (X1 != X2) || (X3 != X4) || (X5 != X6)
2039 SmallVector<Value *, 16> WorkList(1, Or);
2040
2041 while (!WorkList.empty()) {
2042 auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) {
2043 Value *Lhs, *Rhs;
2044
2045 if (match(OrOperatorArgument,
2046 m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) {
2047 CmpValues.emplace_back(Lhs, Rhs);
2048 return;
2049 }
2050
2051 if (match(OrOperatorArgument,
2052 m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) {
2053 CmpValues.emplace_back(Lhs, Rhs);
2054 return;
2055 }
2056
2057 WorkList.push_back(OrOperatorArgument);
2058 };
2059
2060 Value *CurrentValue = WorkList.pop_back_val();
2061 Value *OrOperatorLhs, *OrOperatorRhs;
2062
2063 if (!match(CurrentValue,
2064 m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) {
2065 return nullptr;
2066 }
2067
2068 MatchOrOperatorArgument(OrOperatorRhs);
2069 MatchOrOperatorArgument(OrOperatorLhs);
2070 }
2071
2072 ICmpInst::Predicate Pred = Cmp.getPredicate();
2073 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2074 Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first,
2075 CmpValues.rbegin()->second);
2076
2077 for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) {
2078 Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second);
2079 LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp);
2080 }
2081
2082 return LhsCmp;
2083}
2084
2085/// Fold icmp (or X, Y), C.
2088 const APInt &C) {
2089 ICmpInst::Predicate Pred = Cmp.getPredicate();
2090 if (C.isOne()) {
2091 // icmp slt signum(V) 1 --> icmp slt V, 1
2092 Value *V = nullptr;
2093 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
2094 return new ICmpInst(ICmpInst::ICMP_SLT, V,
2095 ConstantInt::get(V->getType(), 1));
2096 }
2097
2098 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
2099
2100 // (icmp eq/ne (or disjoint x, C0), C1)
2101 // -> (icmp eq/ne x, C0^C1)
2102 if (Cmp.isEquality() && match(OrOp1, m_ImmConstant()) &&
2103 cast<PossiblyDisjointInst>(Or)->isDisjoint()) {
2104 Value *NewC =
2105 Builder.CreateXor(OrOp1, ConstantInt::get(OrOp1->getType(), C));
2106 return new ICmpInst(Pred, OrOp0, NewC);
2107 }
2108
2109 const APInt *MaskC;
2110 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
2111 if (*MaskC == C && (C + 1).isPowerOf2()) {
2112 // X | C == C --> X <=u C
2113 // X | C != C --> X >u C
2114 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
2116 return new ICmpInst(Pred, OrOp0, OrOp1);
2117 }
2118
2119 // More general: canonicalize 'equality with set bits mask' to
2120 // 'equality with clear bits mask'.
2121 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
2122 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
2123 if (Or->hasOneUse()) {
2124 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
2125 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
2126 return new ICmpInst(Pred, And, NewC);
2127 }
2128 }
2129
2130 // (X | (X-1)) s< 0 --> X s< 1
2131 // (X | (X-1)) s> -1 --> X s> 0
2132 Value *X;
2133 bool TrueIfSigned;
2134 if (isSignBitCheck(Pred, C, TrueIfSigned) &&
2136 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
2137 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
2138 return new ICmpInst(NewPred, X, NewC);
2139 }
2140
2141 const APInt *OrC;
2142 // icmp(X | OrC, C) --> icmp(X, 0)
2143 if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) {
2144 switch (Pred) {
2145 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0
2146 case ICmpInst::ICMP_SLT:
2147 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0
2148 case ICmpInst::ICMP_SGE:
2149 if (OrC->sge(C))
2150 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2151 break;
2152 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0
2153 case ICmpInst::ICMP_SLE:
2154 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0
2155 case ICmpInst::ICMP_SGT:
2156 if (OrC->sgt(C))
2158 ConstantInt::getNullValue(X->getType()));
2159 break;
2160 default:
2161 break;
2162 }
2163 }
2164
2165 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
2166 return nullptr;
2167
2168 Value *P, *Q;
2170 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
2171 // -> and (icmp eq P, null), (icmp eq Q, null).
2172 Value *CmpP =
2173 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
2174 Value *CmpQ =
2176 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2177 return BinaryOperator::Create(BOpc, CmpP, CmpQ);
2178 }
2179
2180 if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder))
2181 return replaceInstUsesWith(Cmp, V);
2182
2183 return nullptr;
2184}
2185
2186/// Fold icmp (mul X, Y), C.
2189 const APInt &C) {
2190 ICmpInst::Predicate Pred = Cmp.getPredicate();
2191 Type *MulTy = Mul->getType();
2192 Value *X = Mul->getOperand(0);
2193
2194 // If there's no overflow:
2195 // X * X == 0 --> X == 0
2196 // X * X != 0 --> X != 0
2197 if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) &&
2198 (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap()))
2199 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2200
2201 const APInt *MulC;
2202 if (!match(Mul->getOperand(1), m_APInt(MulC)))
2203 return nullptr;
2204
2205 // If this is a test of the sign bit and the multiply is sign-preserving with
2206 // a constant operand, use the multiply LHS operand instead:
2207 // (X * +MulC) < 0 --> X < 0
2208 // (X * -MulC) < 0 --> X > 0
2209 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
2210 if (MulC->isNegative())
2211 Pred = ICmpInst::getSwappedPredicate(Pred);
2212 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2213 }
2214
2215 if (MulC->isZero())
2216 return nullptr;
2217
2218 // If the multiply does not wrap or the constant is odd, try to divide the
2219 // compare constant by the multiplication factor.
2220 if (Cmp.isEquality()) {
2221 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC
2222 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2223 Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC));
2224 return new ICmpInst(Pred, X, NewC);
2225 }
2226
2227 // C % MulC == 0 is weaker than we could use if MulC is odd because it
2228 // correct to transform if MulC * N == C including overflow. I.e with i8
2229 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we
2230 // miss that case.
2231 if (C.urem(*MulC).isZero()) {
2232 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC
2233 // (mul X, OddC) eq/ne N * C --> X eq/ne N
2234 if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) {
2235 Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC));
2236 return new ICmpInst(Pred, X, NewC);
2237 }
2238 }
2239 }
2240
2241 // With a matching no-overflow guarantee, fold the constants:
2242 // (X * MulC) < C --> X < (C / MulC)
2243 // (X * MulC) > C --> X > (C / MulC)
2244 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE?
2245 Constant *NewC = nullptr;
2246 if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) {
2247 // MININT / -1 --> overflow.
2248 if (C.isMinSignedValue() && MulC->isAllOnes())
2249 return nullptr;
2250 if (MulC->isNegative())
2251 Pred = ICmpInst::getSwappedPredicate(Pred);
2252
2253 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2254 NewC = ConstantInt::get(
2256 } else {
2257 assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) &&
2258 "Unexpected predicate");
2259 NewC = ConstantInt::get(
2261 }
2262 } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) {
2263 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) {
2264 NewC = ConstantInt::get(
2266 } else {
2267 assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
2268 "Unexpected predicate");
2269 NewC = ConstantInt::get(
2271 }
2272 }
2273
2274 return NewC ? new ICmpInst(Pred, X, NewC) : nullptr;
2275}
2276
2277/// Fold icmp (shl nuw C2, Y), C.
2279 const APInt &C) {
2280 Value *Y;
2281 const APInt *C2;
2282 if (!match(Shl, m_NUWShl(m_APInt(C2), m_Value(Y))))
2283 return nullptr;
2284
2285 Type *ShiftType = Shl->getType();
2286 unsigned TypeBits = C.getBitWidth();
2287 ICmpInst::Predicate Pred = Cmp.getPredicate();
2288 if (Cmp.isUnsigned()) {
2289 if (C2->isZero() || C2->ugt(C))
2290 return nullptr;
2291 APInt Div, Rem;
2292 APInt::udivrem(C, *C2, Div, Rem);
2293 bool CIsPowerOf2 = Rem.isZero() && Div.isPowerOf2();
2294
2295 // (1 << Y) pred C -> Y pred Log2(C)
2296 if (!CIsPowerOf2) {
2297 // (1 << Y) < 30 -> Y <= 4
2298 // (1 << Y) <= 30 -> Y <= 4
2299 // (1 << Y) >= 30 -> Y > 4
2300 // (1 << Y) > 30 -> Y > 4
2301 if (Pred == ICmpInst::ICMP_ULT)
2302 Pred = ICmpInst::ICMP_ULE;
2303 else if (Pred == ICmpInst::ICMP_UGE)
2304 Pred = ICmpInst::ICMP_UGT;
2305 }
2306
2307 unsigned CLog2 = Div.logBase2();
2308 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2309 } else if (Cmp.isSigned() && C2->isOne()) {
2310 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2311 // (1 << Y) > 0 -> Y != 31
2312 // (1 << Y) > C -> Y != 31 if C is negative.
2313 if (Pred == ICmpInst::ICMP_SGT && C.sle(0))
2314 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2315
2316 // (1 << Y) < 0 -> Y == 31
2317 // (1 << Y) < 1 -> Y == 31
2318 // (1 << Y) < C -> Y == 31 if C is negative and not signed min.
2319 // Exclude signed min by subtracting 1 and lower the upper bound to 0.
2320 if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0))
2321 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2322 }
2323
2324 return nullptr;
2325}
2326
2327/// Fold icmp (shl X, Y), C.
2329 BinaryOperator *Shl,
2330 const APInt &C) {
2331 const APInt *ShiftVal;
2332 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2333 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2334
2335 ICmpInst::Predicate Pred = Cmp.getPredicate();
2336 // (icmp pred (shl nuw&nsw X, Y), Csle0)
2337 // -> (icmp pred X, Csle0)
2338 //
2339 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op
2340 // so X's must be what is used.
2341 if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap())
2342 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2343
2344 // (icmp eq/ne (shl nuw|nsw X, Y), 0)
2345 // -> (icmp eq/ne X, 0)
2346 if (ICmpInst::isEquality(Pred) && C.isZero() &&
2347 (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap()))
2348 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2349
2350 // (icmp slt (shl nsw X, Y), 0/1)
2351 // -> (icmp slt X, 0/1)
2352 // (icmp sgt (shl nsw X, Y), 0/-1)
2353 // -> (icmp sgt X, 0/-1)
2354 //
2355 // NB: sge/sle with a constant will canonicalize to sgt/slt.
2356 if (Shl->hasNoSignedWrap() &&
2357 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT))
2358 if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne()))
2359 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2360
2361 const APInt *ShiftAmt;
2362 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2363 return foldICmpShlLHSC(Cmp, Shl, C);
2364
2365 // Check that the shift amount is in range. If not, don't perform undefined
2366 // shifts. When the shift is visited, it will be simplified.
2367 unsigned TypeBits = C.getBitWidth();
2368 if (ShiftAmt->uge(TypeBits))
2369 return nullptr;
2370
2371 Value *X = Shl->getOperand(0);
2372 Type *ShType = Shl->getType();
2373
2374 // NSW guarantees that we are only shifting out sign bits from the high bits,
2375 // so we can ASHR the compare constant without needing a mask and eliminate
2376 // the shift.
2377 if (Shl->hasNoSignedWrap()) {
2378 if (Pred == ICmpInst::ICMP_SGT) {
2379 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2380 APInt ShiftedC = C.ashr(*ShiftAmt);
2381 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2382 }
2383 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2384 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2385 APInt ShiftedC = C.ashr(*ShiftAmt);
2386 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2387 }
2388 if (Pred == ICmpInst::ICMP_SLT) {
2389 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2390 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2391 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2392 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2393 assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2394 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2395 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2396 }
2397 }
2398
2399 // NUW guarantees that we are only shifting out zero bits from the high bits,
2400 // so we can LSHR the compare constant without needing a mask and eliminate
2401 // the shift.
2402 if (Shl->hasNoUnsignedWrap()) {
2403 if (Pred == ICmpInst::ICMP_UGT) {
2404 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2405 APInt ShiftedC = C.lshr(*ShiftAmt);
2406 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2407 }
2408 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2409 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2410 APInt ShiftedC = C.lshr(*ShiftAmt);
2411 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2412 }
2413 if (Pred == ICmpInst::ICMP_ULT) {
2414 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2415 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2416 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2417 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2418 assert(C.ugt(0) && "ult 0 should have been eliminated");
2419 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2420 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2421 }
2422 }
2423
2424 if (Cmp.isEquality() && Shl->hasOneUse()) {
2425 // Strength-reduce the shift into an 'and'.
2426 Constant *Mask = ConstantInt::get(
2427 ShType,
2428 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2429 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2430 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2431 return new ICmpInst(Pred, And, LShrC);
2432 }
2433
2434 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2435 bool TrueIfSigned = false;
2436 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2437 // (X << 31) <s 0 --> (X & 1) != 0
2438 Constant *Mask = ConstantInt::get(
2439 ShType,
2440 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2441 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2442 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2443 And, Constant::getNullValue(ShType));
2444 }
2445
2446 // Simplify 'shl' inequality test into 'and' equality test.
2447 if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2448 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2449 if ((C + 1).isPowerOf2() &&
2450 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2451 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2452 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2454 And, Constant::getNullValue(ShType));
2455 }
2456 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2457 if (C.isPowerOf2() &&
2458 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2459 Value *And =
2460 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2461 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2463 And, Constant::getNullValue(ShType));
2464 }
2465 }
2466
2467 // Transform (icmp pred iM (shl iM %v, N), C)
2468 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2469 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2470 // This enables us to get rid of the shift in favor of a trunc that may be
2471 // free on the target. It has the additional benefit of comparing to a
2472 // smaller constant that may be more target-friendly.
2473 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2474 if (Shl->hasOneUse() && Amt != 0 &&
2475 shouldChangeType(ShType->getScalarSizeInBits(), TypeBits - Amt)) {
2476 ICmpInst::Predicate CmpPred = Pred;
2477 APInt RHSC = C;
2478
2479 if (RHSC.countr_zero() < Amt && ICmpInst::isStrictPredicate(CmpPred)) {
2480 // Try the flipped strictness predicate.
2481 // e.g.:
2482 // icmp ult i64 (shl X, 32), 8589934593 ->
2483 // icmp ule i64 (shl X, 32), 8589934592 ->
2484 // icmp ule i32 (trunc X, i32), 2 ->
2485 // icmp ult i32 (trunc X, i32), 3
2486 if (auto FlippedStrictness =
2488 Pred, ConstantInt::get(ShType->getContext(), C))) {
2489 CmpPred = FlippedStrictness->first;
2490 RHSC = cast<ConstantInt>(FlippedStrictness->second)->getValue();
2491 }
2492 }
2493
2494 if (RHSC.countr_zero() >= Amt) {
2495 Type *TruncTy = ShType->getWithNewBitWidth(TypeBits - Amt);
2496 Constant *NewC =
2497 ConstantInt::get(TruncTy, RHSC.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2498 return new ICmpInst(CmpPred,
2499 Builder.CreateTrunc(X, TruncTy, "", /*IsNUW=*/false,
2500 Shl->hasNoSignedWrap()),
2501 NewC);
2502 }
2503 }
2504
2505 return nullptr;
2506}
2507
2508/// Fold icmp ({al}shr X, Y), C.
2510 BinaryOperator *Shr,
2511 const APInt &C) {
2512 // An exact shr only shifts out zero bits, so:
2513 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2514 Value *X = Shr->getOperand(0);
2515 CmpInst::Predicate Pred = Cmp.getPredicate();
2516 if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2517 return new ICmpInst(Pred, X, Cmp.getOperand(1));
2518
2519 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2520 const APInt *ShiftValC;
2521 if (match(X, m_APInt(ShiftValC))) {
2522 if (Cmp.isEquality())
2523 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2524
2525 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
2526 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0
2527 bool TrueIfSigned;
2528 if (!IsAShr && ShiftValC->isNegative() &&
2529 isSignBitCheck(Pred, C, TrueIfSigned))
2530 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE,
2531 Shr->getOperand(1),
2532 ConstantInt::getNullValue(X->getType()));
2533
2534 // If the shifted constant is a power-of-2, test the shift amount directly:
2535 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2536 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2537 if (!IsAShr && ShiftValC->isPowerOf2() &&
2538 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2539 bool IsUGT = Pred == CmpInst::ICMP_UGT;
2540 assert(ShiftValC->uge(C) && "Expected simplify of compare");
2541 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
2542
2543 unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero();
2544 unsigned ShiftLZ = ShiftValC->countl_zero();
2545 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2546 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2547 return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2548 }
2549 }
2550
2551 const APInt *ShiftAmtC;
2552 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2553 return nullptr;
2554
2555 // Check that the shift amount is in range. If not, don't perform undefined
2556 // shifts. When the shift is visited it will be simplified.
2557 unsigned TypeBits = C.getBitWidth();
2558 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2559 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2560 return nullptr;
2561
2562 bool IsExact = Shr->isExact();
2563 Type *ShrTy = Shr->getType();
2564 // TODO: If we could guarantee that InstSimplify would handle all of the
2565 // constant-value-based preconditions in the folds below, then we could assert
2566 // those conditions rather than checking them. This is difficult because of
2567 // undef/poison (PR34838).
2568 if (IsAShr && Shr->hasOneUse()) {
2569 if (IsExact && (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) &&
2570 (C - 1).isPowerOf2() && C.countLeadingZeros() > ShAmtVal) {
2571 // When C - 1 is a power of two and the transform can be legally
2572 // performed, prefer this form so the produced constant is close to a
2573 // power of two.
2574 // icmp slt/ult (ashr exact X, ShAmtC), C
2575 // --> icmp slt/ult X, (C - 1) << ShAmtC) + 1
2576 APInt ShiftedC = (C - 1).shl(ShAmtVal) + 1;
2577 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2578 }
2579 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2580 // When ShAmtC can be shifted losslessly:
2581 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2582 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2583 APInt ShiftedC = C.shl(ShAmtVal);
2584 if (ShiftedC.ashr(ShAmtVal) == C)
2585 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2586 }
2587 if (Pred == CmpInst::ICMP_SGT) {
2588 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2589 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2590 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2591 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2592 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2593 }
2594 if (Pred == CmpInst::ICMP_UGT) {
2595 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2596 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2597 // clause accounts for that pattern.
2598 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2599 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2600 (C + 1).shl(ShAmtVal).isMinSignedValue())
2601 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2602 }
2603
2604 // If the compare constant has significant bits above the lowest sign-bit,
2605 // then convert an unsigned cmp to a test of the sign-bit:
2606 // (ashr X, ShiftC) u> C --> X s< 0
2607 // (ashr X, ShiftC) u< C --> X s> -1
2608 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2609 if (Pred == CmpInst::ICMP_UGT) {
2610 return new ICmpInst(CmpInst::ICMP_SLT, X,
2612 }
2613 if (Pred == CmpInst::ICMP_ULT) {
2614 return new ICmpInst(CmpInst::ICMP_SGT, X,
2616 }
2617 }
2618 } else if (!IsAShr) {
2619 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2620 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2621 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2622 APInt ShiftedC = C.shl(ShAmtVal);
2623 if (ShiftedC.lshr(ShAmtVal) == C)
2624 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2625 }
2626 if (Pred == CmpInst::ICMP_UGT) {
2627 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2628 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2629 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2630 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2631 }
2632 }
2633
2634 if (!Cmp.isEquality())
2635 return nullptr;
2636
2637 // Handle equality comparisons of shift-by-constant.
2638
2639 // If the comparison constant changes with the shift, the comparison cannot
2640 // succeed (bits of the comparison constant cannot match the shifted value).
2641 // This should be known by InstSimplify and already be folded to true/false.
2642 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2643 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2644 "Expected icmp+shr simplify did not occur.");
2645
2646 // If the bits shifted out are known zero, compare the unshifted value:
2647 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2648 if (Shr->isExact())
2649 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2650
2651 if (C.isZero()) {
2652 // == 0 is u< 1.
2653 if (Pred == CmpInst::ICMP_EQ)
2654 return new ICmpInst(CmpInst::ICMP_ULT, X,
2655 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2656 else
2657 return new ICmpInst(CmpInst::ICMP_UGT, X,
2658 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2659 }
2660
2661 if (Shr->hasOneUse()) {
2662 // Canonicalize the shift into an 'and':
2663 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2664 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2665 Constant *Mask = ConstantInt::get(ShrTy, Val);
2666 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2667 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2668 }
2669
2670 return nullptr;
2671}
2672
2674 BinaryOperator *SRem,
2675 const APInt &C) {
2676 // Match an 'is positive' or 'is negative' comparison of remainder by a
2677 // constant power-of-2 value:
2678 // (X % pow2C) sgt/slt 0
2679 const ICmpInst::Predicate Pred = Cmp.getPredicate();
2680 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2681 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2682 return nullptr;
2683
2684 // TODO: The one-use check is standard because we do not typically want to
2685 // create longer instruction sequences, but this might be a special-case
2686 // because srem is not good for analysis or codegen.
2687 if (!SRem->hasOneUse())
2688 return nullptr;
2689
2690 const APInt *DivisorC;
2691 if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2692 return nullptr;
2693
2694 // For cmp_sgt/cmp_slt only zero valued C is handled.
2695 // For cmp_eq/cmp_ne only positive valued C is handled.
2696 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2697 !C.isZero()) ||
2698 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2699 !C.isStrictlyPositive()))
2700 return nullptr;
2701
2702 // Mask off the sign bit and the modulo bits (low-bits).
2703 Type *Ty = SRem->getType();
2705 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2706 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2707
2708 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2709 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2710
2711 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2712 // bit is set. Example:
2713 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2714 if (Pred == ICmpInst::ICMP_SGT)
2716
2717 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2718 // bit is set. Example:
2719 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2720 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2721}
2722
2723/// Fold icmp (udiv X, Y), C.
2725 BinaryOperator *UDiv,
2726 const APInt &C) {
2727 ICmpInst::Predicate Pred = Cmp.getPredicate();
2728 Value *X = UDiv->getOperand(0);
2729 Value *Y = UDiv->getOperand(1);
2730 Type *Ty = UDiv->getType();
2731
2732 const APInt *C2;
2733 if (!match(X, m_APInt(C2)))
2734 return nullptr;
2735
2736 assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2737
2738 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2739 if (Pred == ICmpInst::ICMP_UGT) {
2740 assert(!C.isMaxValue() &&
2741 "icmp ugt X, UINT_MAX should have been simplified already.");
2742 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2743 ConstantInt::get(Ty, C2->udiv(C + 1)));
2744 }
2745
2746 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2747 if (Pred == ICmpInst::ICMP_ULT) {
2748 assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2749 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2750 ConstantInt::get(Ty, C2->udiv(C)));
2751 }
2752
2753 return nullptr;
2754}
2755
2756/// Fold icmp ({su}div X, Y), C.
2758 BinaryOperator *Div,
2759 const APInt &C) {
2760 ICmpInst::Predicate Pred = Cmp.getPredicate();
2761 Value *X = Div->getOperand(0);
2762 Value *Y = Div->getOperand(1);
2763 Type *Ty = Div->getType();
2764 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2765
2766 // If unsigned division and the compare constant is bigger than
2767 // UMAX/2 (negative), there's only one pair of values that satisfies an
2768 // equality check, so eliminate the division:
2769 // (X u/ Y) == C --> (X == C) && (Y == 1)
2770 // (X u/ Y) != C --> (X != C) || (Y != 1)
2771 // Similarly, if signed division and the compare constant is exactly SMIN:
2772 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2773 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2774 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2775 (!DivIsSigned || C.isMinSignedValue())) {
2776 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2777 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2778 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2779 return BinaryOperator::Create(Logic, XBig, YOne);
2780 }
2781
2782 // Fold: icmp pred ([us]div X, C2), C -> range test
2783 // Fold this div into the comparison, producing a range check.
2784 // Determine, based on the divide type, what the range is being
2785 // checked. If there is an overflow on the low or high side, remember
2786 // it, otherwise compute the range [low, hi) bounding the new value.
2787 // See: InsertRangeTest above for the kinds of replacements possible.
2788 const APInt *C2;
2789 if (!match(Y, m_APInt(C2)))
2790 return nullptr;
2791
2792 // FIXME: If the operand types don't match the type of the divide
2793 // then don't attempt this transform. The code below doesn't have the
2794 // logic to deal with a signed divide and an unsigned compare (and
2795 // vice versa). This is because (x /s C2) <s C produces different
2796 // results than (x /s C2) <u C or (x /u C2) <s C or even
2797 // (x /u C2) <u C. Simply casting the operands and result won't
2798 // work. :( The if statement below tests that condition and bails
2799 // if it finds it.
2800 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2801 return nullptr;
2802
2803 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2804 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2805 // division-by-constant cases should be present, we can not assert that they
2806 // have happened before we reach this icmp instruction.
2807 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2808 return nullptr;
2809
2810 // Compute Prod = C * C2. We are essentially solving an equation of
2811 // form X / C2 = C. We solve for X by multiplying C2 and C.
2812 // By solving for X, we can turn this into a range check instead of computing
2813 // a divide.
2814 APInt Prod = C * *C2;
2815
2816 // Determine if the product overflows by seeing if the product is not equal to
2817 // the divide. Make sure we do the same kind of divide as in the LHS
2818 // instruction that we're folding.
2819 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2820
2821 // If the division is known to be exact, then there is no remainder from the
2822 // divide, so the covered range size is unit, otherwise it is the divisor.
2823 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2824
2825 // Figure out the interval that is being checked. For example, a comparison
2826 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2827 // Compute this interval based on the constants involved and the signedness of
2828 // the compare/divide. This computes a half-open interval, keeping track of
2829 // whether either value in the interval overflows. After analysis each
2830 // overflow variable is set to 0 if it's corresponding bound variable is valid
2831 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2832 int LoOverflow = 0, HiOverflow = 0;
2833 APInt LoBound, HiBound;
2834
2835 if (!DivIsSigned) { // udiv
2836 // e.g. X/5 op 3 --> [15, 20)
2837 LoBound = Prod;
2838 HiOverflow = LoOverflow = ProdOV;
2839 if (!HiOverflow) {
2840 // If this is not an exact divide, then many values in the range collapse
2841 // to the same result value.
2842 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2843 }
2844 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2845 if (C.isZero()) { // (X / pos) op 0
2846 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2847 LoBound = -(RangeSize - 1);
2848 HiBound = RangeSize;
2849 } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2850 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2851 HiOverflow = LoOverflow = ProdOV;
2852 if (!HiOverflow)
2853 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2854 } else { // (X / pos) op neg
2855 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2856 HiBound = Prod + 1;
2857 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2858 if (!LoOverflow) {
2859 APInt DivNeg = -RangeSize;
2860 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2861 }
2862 }
2863 } else if (C2->isNegative()) { // Divisor is < 0.
2864 if (Div->isExact())
2865 RangeSize.negate();
2866 if (C.isZero()) { // (X / neg) op 0
2867 // e.g. X/-5 op 0 --> [-4, 5)
2868 LoBound = RangeSize + 1;
2869 HiBound = -RangeSize;
2870 if (HiBound == *C2) { // -INTMIN = INTMIN
2871 HiOverflow = 1; // [INTMIN+1, overflow)
2872 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2873 }
2874 } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2875 // e.g. X/-5 op 3 --> [-19, -14)
2876 HiBound = Prod + 1;
2877 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2878 if (!LoOverflow)
2879 LoOverflow =
2880 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2881 } else { // (X / neg) op neg
2882 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2883 LoOverflow = HiOverflow = ProdOV;
2884 if (!HiOverflow)
2885 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2886 }
2887
2888 // Dividing by a negative swaps the condition. LT <-> GT
2889 Pred = ICmpInst::getSwappedPredicate(Pred);
2890 }
2891
2892 switch (Pred) {
2893 default:
2894 llvm_unreachable("Unhandled icmp predicate!");
2895 case ICmpInst::ICMP_EQ:
2896 if (LoOverflow && HiOverflow)
2897 return replaceInstUsesWith(Cmp, Builder.getFalse());
2898 if (HiOverflow)
2899 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2900 X, ConstantInt::get(Ty, LoBound));
2901 if (LoOverflow)
2902 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2903 X, ConstantInt::get(Ty, HiBound));
2904 return replaceInstUsesWith(
2905 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2906 case ICmpInst::ICMP_NE:
2907 if (LoOverflow && HiOverflow)
2908 return replaceInstUsesWith(Cmp, Builder.getTrue());
2909 if (HiOverflow)
2910 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2911 X, ConstantInt::get(Ty, LoBound));
2912 if (LoOverflow)
2913 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2914 X, ConstantInt::get(Ty, HiBound));
2915 return replaceInstUsesWith(
2916 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2917 case ICmpInst::ICMP_ULT:
2918 case ICmpInst::ICMP_SLT:
2919 if (LoOverflow == +1) // Low bound is greater than input range.
2920 return replaceInstUsesWith(Cmp, Builder.getTrue());
2921 if (LoOverflow == -1) // Low bound is less than input range.
2922 return replaceInstUsesWith(Cmp, Builder.getFalse());
2923 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2924 case ICmpInst::ICMP_UGT:
2925 case ICmpInst::ICMP_SGT:
2926 if (HiOverflow == +1) // High bound greater than input range.
2927 return replaceInstUsesWith(Cmp, Builder.getFalse());
2928 if (HiOverflow == -1) // High bound less than input range.
2929 return replaceInstUsesWith(Cmp, Builder.getTrue());
2930 if (Pred == ICmpInst::ICMP_UGT)
2931 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2932 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2933 }
2934
2935 return nullptr;
2936}
2937
2938/// Fold icmp (sub X, Y), C.
2940 BinaryOperator *Sub,
2941 const APInt &C) {
2942 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2943 ICmpInst::Predicate Pred = Cmp.getPredicate();
2944 Type *Ty = Sub->getType();
2945
2946 // (SubC - Y) == C) --> Y == (SubC - C)
2947 // (SubC - Y) != C) --> Y != (SubC - C)
2948 Constant *SubC;
2949 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2950 return new ICmpInst(Pred, Y,
2951 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2952 }
2953
2954 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2955 const APInt *C2;
2956 APInt SubResult;
2957 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2958 bool HasNSW = Sub->hasNoSignedWrap();
2959 bool HasNUW = Sub->hasNoUnsignedWrap();
2960 if (match(X, m_APInt(C2)) &&
2961 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2962 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2963 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2964
2965 // X - Y == 0 --> X == Y.
2966 // X - Y != 0 --> X != Y.
2967 // TODO: We allow this with multiple uses as long as the other uses are not
2968 // in phis. The phi use check is guarding against a codegen regression
2969 // for a loop test. If the backend could undo this (and possibly
2970 // subsequent transforms), we would not need this hack.
2971 if (Cmp.isEquality() && C.isZero() &&
2972 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2973 return new ICmpInst(Pred, X, Y);
2974
2975 // The following transforms are only worth it if the only user of the subtract
2976 // is the icmp.
2977 // TODO: This is an artificial restriction for all of the transforms below
2978 // that only need a single replacement icmp. Can these use the phi test
2979 // like the transform above here?
2980 if (!Sub->hasOneUse())
2981 return nullptr;
2982
2983 if (Sub->hasNoSignedWrap()) {
2984 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2985 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2986 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2987
2988 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2989 if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2990 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2991
2992 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2993 if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2994 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2995
2996 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2997 if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2998 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2999 }
3000
3001 if (!match(X, m_APInt(C2)))
3002 return nullptr;
3003
3004 // C2 - Y <u C -> (Y | (C - 1)) == C2
3005 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
3006 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
3007 (*C2 & (C - 1)) == (C - 1))
3008 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
3009
3010 // C2 - Y >u C -> (Y | C) != C2
3011 // iff C2 & C == C and C + 1 is a power of 2
3012 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
3013 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
3014
3015 // We have handled special cases that reduce.
3016 // Canonicalize any remaining sub to add as:
3017 // (C2 - Y) > C --> (Y + ~C2) < ~C
3018 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
3019 HasNUW, HasNSW);
3020 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
3021}
3022
3023static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0,
3024 Value *Op1, IRBuilderBase &Builder,
3025 bool HasOneUse) {
3026 auto FoldConstant = [&](bool Val) {
3027 Constant *Res = Val ? Builder.getTrue() : Builder.getFalse();
3028 if (Op0->getType()->isVectorTy())
3030 cast<VectorType>(Op0->getType())->getElementCount(), Res);
3031 return Res;
3032 };
3033
3034 switch (Table.to_ulong()) {
3035 case 0: // 0 0 0 0
3036 return FoldConstant(false);
3037 case 1: // 0 0 0 1
3038 return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr;
3039 case 2: // 0 0 1 0
3040 return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr;
3041 case 3: // 0 0 1 1
3042 return Builder.CreateNot(Op0);
3043 case 4: // 0 1 0 0
3044 return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr;
3045 case 5: // 0 1 0 1
3046 return Builder.CreateNot(Op1);
3047 case 6: // 0 1 1 0
3048 return Builder.CreateXor(Op0, Op1);
3049 case 7: // 0 1 1 1
3050 return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr;
3051 case 8: // 1 0 0 0
3052 return Builder.CreateAnd(Op0, Op1);
3053 case 9: // 1 0 0 1
3054 return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr;
3055 case 10: // 1 0 1 0
3056 return Op1;
3057 case 11: // 1 0 1 1
3058 return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr;
3059 case 12: // 1 1 0 0
3060 return Op0;
3061 case 13: // 1 1 0 1
3062 return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr;
3063 case 14: // 1 1 1 0
3064 return Builder.CreateOr(Op0, Op1);
3065 case 15: // 1 1 1 1
3066 return FoldConstant(true);
3067 default:
3068 llvm_unreachable("Invalid Operation");
3069 }
3070 return nullptr;
3071}
3072
3073/// Fold icmp (add X, Y), C.
3076 const APInt &C) {
3077 Value *Y = Add->getOperand(1);
3078 Value *X = Add->getOperand(0);
3079
3080 Value *Op0, *Op1;
3081 Instruction *Ext0, *Ext1;
3082 const CmpInst::Predicate Pred = Cmp.getPredicate();
3083 if (match(Add,
3086 m_ZExtOrSExt(m_Value(Op1))))) &&
3087 Op0->getType()->isIntOrIntVectorTy(1) &&
3088 Op1->getType()->isIntOrIntVectorTy(1)) {
3089 unsigned BW = C.getBitWidth();
3090 std::bitset<4> Table;
3091 auto ComputeTable = [&](bool Op0Val, bool Op1Val) {
3092 int Res = 0;
3093 if (Op0Val)
3094 Res += isa<ZExtInst>(Ext0) ? 1 : -1;
3095 if (Op1Val)
3096 Res += isa<ZExtInst>(Ext1) ? 1 : -1;
3097 return ICmpInst::compare(APInt(BW, Res, true), C, Pred);
3098 };
3099
3100 Table[0] = ComputeTable(false, false);
3101 Table[1] = ComputeTable(false, true);
3102 Table[2] = ComputeTable(true, false);
3103 Table[3] = ComputeTable(true, true);
3104 if (auto *Cond =
3105 createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse()))
3106 return replaceInstUsesWith(Cmp, Cond);
3107 }
3108 const APInt *C2;
3109 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
3110 return nullptr;
3111
3112 // Fold icmp pred (add X, C2), C.
3113 Type *Ty = Add->getType();
3114
3115 // If the add does not wrap, we can always adjust the compare by subtracting
3116 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
3117 // are canonicalized to SGT/SLT/UGT/ULT.
3118 if ((Add->hasNoSignedWrap() &&
3119 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
3120 (Add->hasNoUnsignedWrap() &&
3121 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
3122 bool Overflow;
3123 APInt NewC =
3124 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
3125 // If there is overflow, the result must be true or false.
3126 // TODO: Can we assert there is no overflow because InstSimplify always
3127 // handles those cases?
3128 if (!Overflow)
3129 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
3130 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
3131 }
3132
3133 if (ICmpInst::isUnsigned(Pred) && Add->hasNoSignedWrap() &&
3134 C.isNonNegative() && (C - *C2).isNonNegative() &&
3135 computeConstantRange(X, /*ForSigned=*/true).add(*C2).isAllNonNegative())
3136 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), X,
3137 ConstantInt::get(Ty, C - *C2));
3138
3139 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
3140 const APInt &Upper = CR.getUpper();
3141 const APInt &Lower = CR.getLower();
3142 if (Cmp.isSigned()) {
3143 if (Lower.isSignMask())
3144 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
3145 if (Upper.isSignMask())
3146 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
3147 } else {
3148 if (Lower.isMinValue())
3149 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
3150 if (Upper.isMinValue())
3151 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
3152 }
3153
3154 // This set of folds is intentionally placed after folds that use no-wrapping
3155 // flags because those folds are likely better for later analysis/codegen.
3158
3159 // Fold compare with offset to opposite sign compare if it eliminates offset:
3160 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
3161 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
3162 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
3163
3164 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
3165 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
3166 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
3167
3168 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
3169 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
3170 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
3171
3172 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
3173 if (Pred == CmpInst::ICMP_SLT && C == *C2)
3174 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
3175
3176 // (X + -1) <u C --> X <=u C (if X is never null)
3177 if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) {
3178 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
3179 if (llvm::isKnownNonZero(X, Q))
3180 return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C));
3181 }
3182
3183 if (!Add->hasOneUse())
3184 return nullptr;
3185
3186 // X+C <u C2 -> (X & -C2) == C
3187 // iff C & (C2-1) == 0
3188 // C2 is a power of 2
3189 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
3191 ConstantExpr::getNeg(cast<Constant>(Y)));
3192
3193 // X+C2 <u C -> (X & C) == 2C
3194 // iff C == -(C2)
3195 // C2 is a power of 2
3196 if (Pred == ICmpInst::ICMP_ULT && C2->isPowerOf2() && C == -*C2)
3198 ConstantInt::get(Ty, C * 2));
3199
3200 // X+C >u C2 -> (X & ~C2) != C
3201 // iff C & C2 == 0
3202 // C2+1 is a power of 2
3203 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
3205 ConstantExpr::getNeg(cast<Constant>(Y)));
3206
3207 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
3208 // to the ult form.
3209 // X+C2 >u C -> X+(C2-C-1) <u ~C
3210 if (Pred == ICmpInst::ICMP_UGT)
3211 return new ICmpInst(ICmpInst::ICMP_ULT,
3212 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
3213 ConstantInt::get(Ty, ~C));
3214
3215 // zext(V) + C2 pred C -> V + C3 pred' C4
3216 Value *V;
3217 if (match(X, m_ZExt(m_Value(V)))) {
3218 Type *NewCmpTy = V->getType();
3219 unsigned NewCmpBW = NewCmpTy->getScalarSizeInBits();
3220 if (shouldChangeType(Ty, NewCmpTy)) {
3221 if (CR.getActiveBits() <= NewCmpBW) {
3222 ConstantRange SrcCR = CR.truncate(NewCmpBW);
3223 CmpInst::Predicate EquivPred;
3224 APInt EquivInt;
3225 APInt EquivOffset;
3226
3227 SrcCR.getEquivalentICmp(EquivPred, EquivInt, EquivOffset);
3228 return new ICmpInst(
3229 EquivPred,
3230 EquivOffset.isZero()
3231 ? V
3232 : Builder.CreateAdd(V, ConstantInt::get(NewCmpTy, EquivOffset)),
3233 ConstantInt::get(NewCmpTy, EquivInt));
3234 }
3235 }
3236 }
3237
3238 return nullptr;
3239}
3240
3242 Value *&RHS, ConstantInt *&Less,
3243 ConstantInt *&Equal,
3244 ConstantInt *&Greater) {
3245 // TODO: Generalize this to work with other comparison idioms or ensure
3246 // they get canonicalized into this form.
3247
3248 // select i1 (a == b),
3249 // i32 Equal,
3250 // i32 (select i1 (a < b), i32 Less, i32 Greater)
3251 // where Equal, Less and Greater are placeholders for any three constants.
3252 CmpPredicate PredA;
3253 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
3254 !ICmpInst::isEquality(PredA))
3255 return false;
3256 Value *EqualVal = SI->getTrueValue();
3257 Value *UnequalVal = SI->getFalseValue();
3258 // We still can get non-canonical predicate here, so canonicalize.
3259 if (PredA == ICmpInst::ICMP_NE)
3260 std::swap(EqualVal, UnequalVal);
3261 if (!match(EqualVal, m_ConstantInt(Equal)))
3262 return false;
3263 CmpPredicate PredB;
3264 Value *LHS2, *RHS2;
3265 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
3266 m_ConstantInt(Less), m_ConstantInt(Greater))))
3267 return false;
3268 // We can get predicate mismatch here, so canonicalize if possible:
3269 // First, ensure that 'LHS' match.
3270 if (LHS2 != LHS) {
3271 // x sgt y <--> y slt x
3272 std::swap(LHS2, RHS2);
3273 PredB = ICmpInst::getSwappedPredicate(PredB);
3274 }
3275 if (LHS2 != LHS)
3276 return false;
3277 // We also need to canonicalize 'RHS'.
3278 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
3279 // x sgt C-1 <--> x sge C <--> not(x slt C)
3280 auto FlippedStrictness =
3282 PredB, cast<Constant>(RHS2));
3283 if (!FlippedStrictness)
3284 return false;
3285 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
3286 "basic correctness failure");
3287 RHS2 = FlippedStrictness->second;
3288 // And kind-of perform the result swap.
3289 std::swap(Less, Greater);
3290 PredB = ICmpInst::ICMP_SLT;
3291 }
3292 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
3293}
3294
3297 ConstantInt *C) {
3298
3299 assert(C && "Cmp RHS should be a constant int!");
3300 // If we're testing a constant value against the result of a three way
3301 // comparison, the result can be expressed directly in terms of the
3302 // original values being compared. Note: We could possibly be more
3303 // aggressive here and remove the hasOneUse test. The original select is
3304 // really likely to simplify or sink when we remove a test of the result.
3305 Value *OrigLHS, *OrigRHS;
3306 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
3307 if (Cmp.hasOneUse() &&
3308 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
3309 C3GreaterThan)) {
3310 assert(C1LessThan && C2Equal && C3GreaterThan);
3311
3312 bool TrueWhenLessThan = ICmpInst::compare(
3313 C1LessThan->getValue(), C->getValue(), Cmp.getPredicate());
3314 bool TrueWhenEqual = ICmpInst::compare(C2Equal->getValue(), C->getValue(),
3315 Cmp.getPredicate());
3316 bool TrueWhenGreaterThan = ICmpInst::compare(
3317 C3GreaterThan->getValue(), C->getValue(), Cmp.getPredicate());
3318
3319 // This generates the new instruction that will replace the original Cmp
3320 // Instruction. Instead of enumerating the various combinations when
3321 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
3322 // false, we rely on chaining of ORs and future passes of InstCombine to
3323 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
3324
3325 // When none of the three constants satisfy the predicate for the RHS (C),
3326 // the entire original Cmp can be simplified to a false.
3328 if (TrueWhenLessThan)
3330 OrigLHS, OrigRHS));
3331 if (TrueWhenEqual)
3333 OrigLHS, OrigRHS));
3334 if (TrueWhenGreaterThan)
3336 OrigLHS, OrigRHS));
3337
3338 return replaceInstUsesWith(Cmp, Cond);
3339 }
3340 return nullptr;
3341}
3342
3344 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
3345 if (!Bitcast)
3346 return nullptr;
3347
3348 ICmpInst::Predicate Pred = Cmp.getPredicate();
3349 Value *Op1 = Cmp.getOperand(1);
3350 Value *BCSrcOp = Bitcast->getOperand(0);
3351 Type *SrcType = Bitcast->getSrcTy();
3352 Type *DstType = Bitcast->getType();
3353
3354 // Make sure the bitcast doesn't change between scalar and vector and
3355 // doesn't change the number of vector elements.
3356 if (SrcType->isVectorTy() == DstType->isVectorTy() &&
3357 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
3358 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
3359 Value *X;
3360 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
3361 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
3362 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
3363 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
3364 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
3365 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
3366 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
3367 match(Op1, m_Zero()))
3368 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3369
3370 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
3371 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
3372 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
3373
3374 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
3375 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
3376 return new ICmpInst(Pred, X,
3377 ConstantInt::getAllOnesValue(X->getType()));
3378 }
3379
3380 // Zero-equality checks are preserved through unsigned floating-point casts:
3381 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
3382 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
3383 if (match(BCSrcOp, m_UIToFP(m_Value(X))))
3384 if (Cmp.isEquality() && match(Op1, m_Zero()))
3385 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3386
3387 const APInt *C;
3388 bool TrueIfSigned;
3389 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse()) {
3390 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
3391 // the FP extend/truncate because that cast does not change the sign-bit.
3392 // This is true for all standard IEEE-754 types and the X86 80-bit type.
3393 // The sign-bit is always the most significant bit in those types.
3394 if (isSignBitCheck(Pred, *C, TrueIfSigned) &&
3395 (match(BCSrcOp, m_FPExt(m_Value(X))) ||
3396 match(BCSrcOp, m_FPTrunc(m_Value(X))))) {
3397 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
3398 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
3399 Type *XType = X->getType();
3400
3401 // We can't currently handle Power style floating point operations here.
3402 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
3403 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
3404 if (auto *XVTy = dyn_cast<VectorType>(XType))
3405 NewType = VectorType::get(NewType, XVTy->getElementCount());
3406 Value *NewBitcast = Builder.CreateBitCast(X, NewType);
3407 if (TrueIfSigned)
3408 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
3409 ConstantInt::getNullValue(NewType));
3410 else
3411 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
3413 }
3414 }
3415
3416 // icmp eq/ne (bitcast X to int), special fp -> llvm.is.fpclass(X, class)
3417 Type *FPType = SrcType->getScalarType();
3418 if (!Cmp.getParent()->getParent()->hasFnAttribute(
3419 Attribute::NoImplicitFloat) &&
3420 Cmp.isEquality() && FPType->isIEEELikeFPTy()) {
3421 FPClassTest Mask = APFloat(FPType->getFltSemantics(), *C).classify();
3422 if (Mask & (fcInf | fcZero)) {
3423 if (Pred == ICmpInst::ICMP_NE)
3424 Mask = ~Mask;
3425 return replaceInstUsesWith(Cmp,
3426 Builder.createIsFPClass(BCSrcOp, Mask));
3427 }
3428 }
3429 }
3430 }
3431
3432 const APInt *C;
3433 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
3434 !SrcType->isIntOrIntVectorTy())
3435 return nullptr;
3436
3437 // If this is checking if all elements of a vector compare are set or not,
3438 // invert the casted vector equality compare and test if all compare
3439 // elements are clear or not. Compare against zero is generally easier for
3440 // analysis and codegen.
3441 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3442 // Example: are all elements equal? --> are zero elements not equal?
3443 // TODO: Try harder to reduce compare of 2 freely invertible operands?
3444 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) {
3445 if (Value *NotBCSrcOp =
3446 getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) {
3447 Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType);
3448 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3449 }
3450 }
3451
3452 // If this is checking if all elements of an extended vector are clear or not,
3453 // compare in a narrow type to eliminate the extend:
3454 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3455 Value *X;
3456 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3457 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3458 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3459 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3460 Value *NewCast = Builder.CreateBitCast(X, NewType);
3461 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3462 }
3463 }
3464
3465 // Folding: icmp <pred> iN X, C
3466 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3467 // and C is a splat of a K-bit pattern
3468 // and SC is a constant vector = <C', C', C', ..., C'>
3469 // Into:
3470 // %E = extractelement <M x iK> %vec, i32 C'
3471 // icmp <pred> iK %E, trunc(C)
3472 Value *Vec;
3473 ArrayRef<int> Mask;
3474 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3475 // Check whether every element of Mask is the same constant
3476 if (all_equal(Mask)) {
3477 auto *VecTy = cast<VectorType>(SrcType);
3478 auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3479 if (C->isSplat(EltTy->getBitWidth())) {
3480 // Fold the icmp based on the value of C
3481 // If C is M copies of an iK sized bit pattern,
3482 // then:
3483 // => %E = extractelement <N x iK> %vec, i32 Elem
3484 // icmp <pred> iK %SplatVal, <pattern>
3485 Value *Elem = Builder.getInt32(Mask[0]);
3486 Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3487 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3488 return new ICmpInst(Pred, Extract, NewC);
3489 }
3490 }
3491 }
3492 return nullptr;
3493}
3494
3495/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3496/// where X is some kind of instruction.
3498 const APInt *C;
3499
3500 if (match(Cmp.getOperand(1), m_APInt(C))) {
3501 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3502 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3503 return I;
3504
3505 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3506 // For now, we only support constant integers while folding the
3507 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3508 // similar to the cases handled by binary ops above.
3509 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3510 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3511 return I;
3512
3513 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3514 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3515 return I;
3516
3517 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3519 return I;
3520
3521 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y
3522 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y
3523 // TODO: This checks one-use, but that is not strictly necessary.
3524 Value *Cmp0 = Cmp.getOperand(0);
3525 Value *X, *Y;
3526 if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() &&
3527 (match(Cmp0,
3528 m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>(
3529 m_Value(X), m_Value(Y)))) ||
3530 match(Cmp0,
3531 m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
3532 m_Value(X), m_Value(Y))))))
3533 return new ICmpInst(Cmp.getPredicate(), X, Y);
3534 }
3535
3536 if (match(Cmp.getOperand(1), m_APIntAllowPoison(C)))
3538
3539 return nullptr;
3540}
3541
3542/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3543/// icmp eq/ne BO, C.
3545 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3546 // TODO: Some of these folds could work with arbitrary constants, but this
3547 // function is limited to scalar and vector splat constants.
3548 if (!Cmp.isEquality())
3549 return nullptr;
3550
3551 ICmpInst::Predicate Pred = Cmp.getPredicate();
3552 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3553 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3554 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3555
3556 switch (BO->getOpcode()) {
3557 case Instruction::SRem:
3558 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3559 if (C.isZero() && BO->hasOneUse()) {
3560 const APInt *BOC;
3561 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3562 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3563 return new ICmpInst(Pred, NewRem,
3565 }
3566 }
3567 break;
3568 case Instruction::Add: {
3569 // (A + C2) == C --> A == (C - C2)
3570 // (A + C2) != C --> A != (C - C2)
3571 // TODO: Remove the one-use limitation? See discussion in D58633.
3572 if (Constant *C2 = dyn_cast<Constant>(BOp1)) {
3573 if (BO->hasOneUse())
3574 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2));
3575 } else if (C.isZero()) {
3576 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3577 // efficiently invertible, or if the add has just this one use.
3578 if (Value *NegVal = dyn_castNegVal(BOp1))
3579 return new ICmpInst(Pred, BOp0, NegVal);
3580 if (Value *NegVal = dyn_castNegVal(BOp0))
3581 return new ICmpInst(Pred, NegVal, BOp1);
3582 if (BO->hasOneUse()) {
3583 // (add nuw A, B) != 0 -> (or A, B) != 0
3584 if (match(BO, m_NUWAdd(m_Value(), m_Value()))) {
3585 Value *Or = Builder.CreateOr(BOp0, BOp1);
3586 return new ICmpInst(Pred, Or, Constant::getNullValue(BO->getType()));
3587 }
3588 Value *Neg = Builder.CreateNeg(BOp1);
3589 Neg->takeName(BO);
3590 return new ICmpInst(Pred, BOp0, Neg);
3591 }
3592 }
3593 break;
3594 }
3595 case Instruction::Xor:
3596 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3597 // For the xor case, we can xor two constants together, eliminating
3598 // the explicit xor.
3599 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3600 } else if (C.isZero()) {
3601 // Replace ((xor A, B) != 0) with (A != B)
3602 return new ICmpInst(Pred, BOp0, BOp1);
3603 }
3604 break;
3605 case Instruction::Or: {
3606 const APInt *BOC;
3607 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3608 // Comparing if all bits outside of a constant mask are set?
3609 // Replace (X | C) == -1 with (X & ~C) == ~C.
3610 // This removes the -1 constant.
3611 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3612 Value *And = Builder.CreateAnd(BOp0, NotBOC);
3613 return new ICmpInst(Pred, And, NotBOC);
3614 }
3615 // (icmp eq (or (select cond, 0, NonZero), Other), 0)
3616 // -> (and cond, (icmp eq Other, 0))
3617 // (icmp ne (or (select cond, NonZero, 0), Other), 0)
3618 // -> (or cond, (icmp ne Other, 0))
3619 Value *Cond, *TV, *FV, *Other, *Sel;
3620 if (C.isZero() &&
3621 match(BO,
3624 m_Value(FV))),
3625 m_Value(Other)))) &&
3626 Cond->getType() == Cmp.getType()) {
3627 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
3628 // Easy case is if eq/ne matches whether 0 is trueval/falseval.
3629 if (Pred == ICmpInst::ICMP_EQ
3630 ? (match(TV, m_Zero()) && isKnownNonZero(FV, Q))
3631 : (match(FV, m_Zero()) && isKnownNonZero(TV, Q))) {
3632 Value *Cmp = Builder.CreateICmp(
3633 Pred, Other, Constant::getNullValue(Other->getType()));
3635 Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or, Cmp,
3636 Cond);
3637 }
3638 // Harder case is if eq/ne matches whether 0 is falseval/trueval. In this
3639 // case we need to invert the select condition so we need to be careful to
3640 // avoid creating extra instructions.
3641 // (icmp ne (or (select cond, 0, NonZero), Other), 0)
3642 // -> (or (not cond), (icmp ne Other, 0))
3643 // (icmp eq (or (select cond, NonZero, 0), Other), 0)
3644 // -> (and (not cond), (icmp eq Other, 0))
3645 //
3646 // Only do this if the inner select has one use, in which case we are
3647 // replacing `select` with `(not cond)`. Otherwise, we will create more
3648 // uses. NB: Trying to freely invert cond doesn't make sense here, as if
3649 // cond was freely invertable, the select arms would have been inverted.
3650 if (Sel->hasOneUse() &&
3651 (Pred == ICmpInst::ICMP_EQ
3652 ? (match(FV, m_Zero()) && isKnownNonZero(TV, Q))
3653 : (match(TV, m_Zero()) && isKnownNonZero(FV, Q)))) {
3654 Value *NotCond = Builder.CreateNot(Cond);
3655 Value *Cmp = Builder.CreateICmp(
3656 Pred, Other, Constant::getNullValue(Other->getType()));
3658 Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or, Cmp,
3659 NotCond);
3660 }
3661 }
3662 break;
3663 }
3664 case Instruction::UDiv:
3665 case Instruction::SDiv:
3666 if (BO->isExact()) {
3667 // div exact X, Y eq/ne 0 -> X eq/ne 0
3668 // div exact X, Y eq/ne 1 -> X eq/ne Y
3669 // div exact X, Y eq/ne C ->
3670 // if Y * C never-overflow && OneUse:
3671 // -> Y * C eq/ne X
3672 if (C.isZero())
3673 return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType()));
3674 else if (C.isOne())
3675 return new ICmpInst(Pred, BOp0, BOp1);
3676 else if (BO->hasOneUse()) {
3678 Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1,
3679 Cmp.getOperand(1), BO);
3681 Value *YC =
3682 Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C));
3683 return new ICmpInst(Pred, YC, BOp0);
3684 }
3685 }
3686 }
3687 if (BO->getOpcode() == Instruction::UDiv && C.isZero()) {
3688 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3689 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3690 return new ICmpInst(NewPred, BOp1, BOp0);
3691 }
3692 break;
3693 default:
3694 break;
3695 }
3696 return nullptr;
3697}
3698
3700 const APInt &CRhs,
3701 InstCombiner::BuilderTy &Builder,
3702 const SimplifyQuery &Q) {
3703 assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop &&
3704 "Non-ctpop intrin in ctpop fold");
3705 if (!CtpopLhs->hasOneUse())
3706 return nullptr;
3707
3708 // Power of 2 test:
3709 // isPow2OrZero : ctpop(X) u< 2
3710 // isPow2 : ctpop(X) == 1
3711 // NotPow2OrZero: ctpop(X) u> 1
3712 // NotPow2 : ctpop(X) != 1
3713 // If we know any bit of X can be folded to:
3714 // IsPow2 : X & (~Bit) == 0
3715 // NotPow2 : X & (~Bit) != 0
3716 const ICmpInst::Predicate Pred = I.getPredicate();
3717 if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) ||
3718 (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) {
3719 Value *Op = CtpopLhs->getArgOperand(0);
3720 KnownBits OpKnown = computeKnownBits(Op, Q.DL,
3721 /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT);
3722 // No need to check for count > 1, that should be already constant folded.
3723 if (OpKnown.countMinPopulation() == 1) {
3724 Value *And = Builder.CreateAnd(
3725 Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One)));
3726 return new ICmpInst(
3727 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT)
3730 And, Constant::getNullValue(Op->getType()));
3731 }
3732 }
3733
3734 return nullptr;
3735}
3736
3737/// Fold an equality icmp with LLVM intrinsic and constant operand.
3739 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3740 Type *Ty = II->getType();
3741 unsigned BitWidth = C.getBitWidth();
3742 const ICmpInst::Predicate Pred = Cmp.getPredicate();
3743
3744 switch (II->getIntrinsicID()) {
3745 case Intrinsic::abs:
3746 // abs(A) == 0 -> A == 0
3747 // abs(A) == INT_MIN -> A == INT_MIN
3748 if (C.isZero() || C.isMinSignedValue())
3749 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3750 break;
3751
3752 case Intrinsic::bswap:
3753 // bswap(A) == C -> A == bswap(C)
3754 return new ICmpInst(Pred, II->getArgOperand(0),
3755 ConstantInt::get(Ty, C.byteSwap()));
3756
3757 case Intrinsic::bitreverse:
3758 // bitreverse(A) == C -> A == bitreverse(C)
3759 return new ICmpInst(Pred, II->getArgOperand(0),
3760 ConstantInt::get(Ty, C.reverseBits()));
3761
3762 case Intrinsic::ctlz:
3763 case Intrinsic::cttz: {
3764 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3765 if (C == BitWidth)
3766 return new ICmpInst(Pred, II->getArgOperand(0),
3768
3769 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3770 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3771 // Limit to one use to ensure we don't increase instruction count.
3772 unsigned Num = C.getLimitedValue(BitWidth);
3773 if (Num != BitWidth && II->hasOneUse()) {
3774 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3775 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3776 : APInt::getHighBitsSet(BitWidth, Num + 1);
3777 APInt Mask2 = IsTrailing
3780 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3781 ConstantInt::get(Ty, Mask2));
3782 }
3783 break;
3784 }
3785
3786 case Intrinsic::ctpop: {
3787 // popcount(A) == 0 -> A == 0 and likewise for !=
3788 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3789 bool IsZero = C.isZero();
3790 if (IsZero || C == BitWidth)
3791 return new ICmpInst(Pred, II->getArgOperand(0),
3792 IsZero ? Constant::getNullValue(Ty)
3794
3795 break;
3796 }
3797
3798 case Intrinsic::fshl:
3799 case Intrinsic::fshr:
3800 if (II->getArgOperand(0) == II->getArgOperand(1)) {
3801 const APInt *RotAmtC;
3802 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3803 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3804 if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3805 return new ICmpInst(Pred, II->getArgOperand(0),
3806 II->getIntrinsicID() == Intrinsic::fshl
3807 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3808 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3809 }
3810 break;
3811
3812 case Intrinsic::umax:
3813 case Intrinsic::uadd_sat: {
3814 // uadd.sat(a, b) == 0 -> (a | b) == 0
3815 // umax(a, b) == 0 -> (a | b) == 0
3816 if (C.isZero() && II->hasOneUse()) {
3817 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3818 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3819 }
3820 break;
3821 }
3822
3823 case Intrinsic::ssub_sat:
3824 // ssub.sat(a, b) == 0 -> a == b
3825 if (C.isZero())
3826 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
3827 break;
3828 case Intrinsic::usub_sat: {
3829 // usub.sat(a, b) == 0 -> a <= b
3830 if (C.isZero()) {
3831 ICmpInst::Predicate NewPred =
3833 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3834 }
3835 break;
3836 }
3837 default:
3838 break;
3839 }
3840
3841 return nullptr;
3842}
3843
3844/// Fold an icmp with LLVM intrinsics
3845static Instruction *
3847 InstCombiner::BuilderTy &Builder) {
3848 assert(Cmp.isEquality());
3849
3850 ICmpInst::Predicate Pred = Cmp.getPredicate();
3851 Value *Op0 = Cmp.getOperand(0);
3852 Value *Op1 = Cmp.getOperand(1);
3853 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3854 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3855 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3856 return nullptr;
3857
3858 switch (IIOp0->getIntrinsicID()) {
3859 case Intrinsic::bswap:
3860 case Intrinsic::bitreverse:
3861 // If both operands are byte-swapped or bit-reversed, just compare the
3862 // original values.
3863 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3864 case Intrinsic::fshl:
3865 case Intrinsic::fshr: {
3866 // If both operands are rotated by same amount, just compare the
3867 // original values.
3868 if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3869 break;
3870 if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3871 break;
3872 if (IIOp0->getOperand(2) == IIOp1->getOperand(2))
3873 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3874
3875 // rotate(X, AmtX) == rotate(Y, AmtY)
3876 // -> rotate(X, AmtX - AmtY) == Y
3877 // Do this if either both rotates have one use or if only one has one use
3878 // and AmtX/AmtY are constants.
3879 unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse();
3880 if (OneUses == 2 ||
3881 (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) &&
3882 match(IIOp1->getOperand(2), m_ImmConstant()))) {
3883 Value *SubAmt =
3884 Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2));
3885 Value *CombinedRotate = Builder.CreateIntrinsic(
3886 Op0->getType(), IIOp0->getIntrinsicID(),
3887 {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt});
3888 return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate);
3889 }
3890 } break;
3891 default:
3892 break;
3893 }
3894
3895 return nullptr;
3896}
3897
3898/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3899/// where X is some kind of instruction and C is AllowPoison.
3900/// TODO: Move more folds which allow poison to this function.
3903 const APInt &C) {
3904 const ICmpInst::Predicate Pred = Cmp.getPredicate();
3905 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3906 switch (II->getIntrinsicID()) {
3907 default:
3908 break;
3909 case Intrinsic::fshl:
3910 case Intrinsic::fshr:
3911 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3912 // (rot X, ?) == 0/-1 --> X == 0/-1
3913 if (C.isZero() || C.isAllOnes())
3914 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3915 }
3916 break;
3917 }
3918 }
3919
3920 return nullptr;
3921}
3922
3923/// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3925 BinaryOperator *BO,
3926 const APInt &C) {
3927 switch (BO->getOpcode()) {
3928 case Instruction::Xor:
3929 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3930 return I;
3931 break;
3932 case Instruction::And:
3933 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3934 return I;
3935 break;
3936 case Instruction::Or:
3937 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3938 return I;
3939 break;
3940 case Instruction::Mul:
3941 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3942 return I;
3943 break;
3944 case Instruction::Shl:
3945 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3946 return I;
3947 break;
3948 case Instruction::LShr:
3949 case Instruction::AShr:
3950 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3951 return I;
3952 break;
3953 case Instruction::SRem:
3954 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3955 return I;
3956 break;
3957 case Instruction::UDiv:
3958 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3959 return I;
3960 [[fallthrough]];
3961 case Instruction::SDiv:
3962 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3963 return I;
3964 break;
3965 case Instruction::Sub:
3966 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3967 return I;
3968 break;
3969 case Instruction::Add:
3970 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3971 return I;
3972 break;
3973 default:
3974 break;
3975 }
3976
3977 // TODO: These folds could be refactored to be part of the above calls.
3978 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3979}
3980
3981static Instruction *
3983 const APInt &C,
3984 InstCombiner::BuilderTy &Builder) {
3985 // This transform may end up producing more than one instruction for the
3986 // intrinsic, so limit it to one user of the intrinsic.
3987 if (!II->hasOneUse())
3988 return nullptr;
3989
3990 // Let Y = [add/sub]_sat(X, C) pred C2
3991 // SatVal = The saturating value for the operation
3992 // WillWrap = Whether or not the operation will underflow / overflow
3993 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2
3994 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2)
3995 //
3996 // When (SatVal pred C2) is true, then
3997 // Y = WillWrap ? true : ((X binop C) pred C2)
3998 // => Y = WillWrap || ((X binop C) pred C2)
3999 // else
4000 // Y = WillWrap ? false : ((X binop C) pred C2)
4001 // => Y = !WillWrap ? ((X binop C) pred C2) : false
4002 // => Y = !WillWrap && ((X binop C) pred C2)
4003 Value *Op0 = II->getOperand(0);
4004 Value *Op1 = II->getOperand(1);
4005
4006 const APInt *COp1;
4007 // This transform only works when the intrinsic has an integral constant or
4008 // splat vector as the second operand.
4009 if (!match(Op1, m_APInt(COp1)))
4010 return nullptr;
4011
4012 APInt SatVal;
4013 switch (II->getIntrinsicID()) {
4014 default:
4016 "This function only works with usub_sat and uadd_sat for now!");
4017 case Intrinsic::uadd_sat:
4018 SatVal = APInt::getAllOnes(C.getBitWidth());
4019 break;
4020 case Intrinsic::usub_sat:
4021 SatVal = APInt::getZero(C.getBitWidth());
4022 break;
4023 }
4024
4025 // Check (SatVal pred C2)
4026 bool SatValCheck = ICmpInst::compare(SatVal, C, Pred);
4027
4028 // !WillWrap.
4030 II->getBinaryOp(), *COp1, II->getNoWrapKind());
4031
4032 // WillWrap.
4033 if (SatValCheck)
4034 C1 = C1.inverse();
4035
4037 if (II->getBinaryOp() == Instruction::Add)
4038 C2 = C2.sub(*COp1);
4039 else
4040 C2 = C2.add(*COp1);
4041
4042 Instruction::BinaryOps CombiningOp =
4043 SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And;
4044
4045 std::optional<ConstantRange> Combination;
4046 if (CombiningOp == Instruction::BinaryOps::Or)
4047 Combination = C1.exactUnionWith(C2);
4048 else /* CombiningOp == Instruction::BinaryOps::And */
4049 Combination = C1.exactIntersectWith(C2);
4050
4051 if (!Combination)
4052 return nullptr;
4053
4054 CmpInst::Predicate EquivPred;
4055 APInt EquivInt;
4056 APInt EquivOffset;
4057
4058 Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset);
4059
4060 return new ICmpInst(
4061 EquivPred,
4062 Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)),
4063 ConstantInt::get(Op1->getType(), EquivInt));
4064}
4065
4066static Instruction *
4068 const APInt &C,
4069 InstCombiner::BuilderTy &Builder) {
4070 std::optional<ICmpInst::Predicate> NewPredicate = std::nullopt;
4071 switch (Pred) {
4072 case ICmpInst::ICMP_EQ:
4073 case ICmpInst::ICMP_NE:
4074 if (C.isZero())
4075 NewPredicate = Pred;
4076 else if (C.isOne())
4077 NewPredicate =
4079 else if (C.isAllOnes())
4080 NewPredicate =
4082 break;
4083
4084 case ICmpInst::ICMP_SGT:
4085 if (C.isAllOnes())
4086 NewPredicate = ICmpInst::ICMP_UGE;
4087 else if (C.isZero())
4088 NewPredicate = ICmpInst::ICMP_UGT;
4089 break;
4090
4091 case ICmpInst::ICMP_SLT:
4092 if (C.isZero())
4093 NewPredicate = ICmpInst::ICMP_ULT;
4094 else if (C.isOne())
4095 NewPredicate = ICmpInst::ICMP_ULE;
4096 break;
4097
4098 case ICmpInst::ICMP_ULT:
4099 if (C.ugt(1))
4100 NewPredicate = ICmpInst::ICMP_UGE;
4101 break;
4102
4103 case ICmpInst::ICMP_UGT:
4104 if (!C.isZero() && !C.isAllOnes())
4105 NewPredicate = ICmpInst::ICMP_ULT;
4106 break;
4107
4108 default:
4109 break;
4110 }
4111
4112 if (!NewPredicate)
4113 return nullptr;
4114
4115 if (I->getIntrinsicID() == Intrinsic::scmp)
4116 NewPredicate = ICmpInst::getSignedPredicate(*NewPredicate);
4117 Value *LHS = I->getOperand(0);
4118 Value *RHS = I->getOperand(1);
4119 return new ICmpInst(*NewPredicate, LHS, RHS);
4120}
4121
4122/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
4125 const APInt &C) {
4126 ICmpInst::Predicate Pred = Cmp.getPredicate();
4127
4128 // Handle folds that apply for any kind of icmp.
4129 switch (II->getIntrinsicID()) {
4130 default:
4131 break;
4132 case Intrinsic::uadd_sat:
4133 case Intrinsic::usub_sat:
4134 if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant(
4135 Pred, cast<SaturatingInst>(II), C, Builder))
4136 return Folded;
4137 break;
4138 case Intrinsic::ctpop: {
4139 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
4140 if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q))
4141 return R;
4142 } break;
4143 case Intrinsic::scmp:
4144 case Intrinsic::ucmp:
4145 if (auto *Folded = foldICmpOfCmpIntrinsicWithConstant(Pred, II, C, Builder))
4146 return Folded;
4147 break;
4148 }
4149
4150 if (Cmp.isEquality())
4151 return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
4152
4153 Type *Ty = II->getType();
4154 unsigned BitWidth = C.getBitWidth();
4155 switch (II->getIntrinsicID()) {
4156 case Intrinsic::ctpop: {
4157 // (ctpop X > BitWidth - 1) --> X == -1
4158 Value *X = II->getArgOperand(0);
4159 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
4160 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
4162 // (ctpop X < BitWidth) --> X != -1
4163 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
4164 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
4166 break;
4167 }
4168 case Intrinsic::ctlz: {
4169 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
4170 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
4171 unsigned Num = C.getLimitedValue();
4172 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
4173 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
4174 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4175 }
4176
4177 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
4178 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
4179 unsigned Num = C.getLimitedValue();
4181 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
4182 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4183 }
4184 break;
4185 }
4186 case Intrinsic::cttz: {
4187 // Limit to one use to ensure we don't increase instruction count.
4188 if (!II->hasOneUse())
4189 return nullptr;
4190
4191 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
4192 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
4193 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
4194 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
4195 Builder.CreateAnd(II->getArgOperand(0), Mask),
4197 }
4198
4199 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
4200 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
4201 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
4202 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
4203 Builder.CreateAnd(II->getArgOperand(0), Mask),
4205 }
4206 break;
4207 }
4208 case Intrinsic::ssub_sat:
4209 // ssub.sat(a, b) spred 0 -> a spred b
4210 if (ICmpInst::isSigned(Pred)) {
4211 if (C.isZero())
4212 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
4213 // X s<= 0 is cannonicalized to X s< 1
4214 if (Pred == ICmpInst::ICMP_SLT && C.isOne())
4215 return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0),
4216 II->getArgOperand(1));
4217 // X s>= 0 is cannonicalized to X s> -1
4218 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
4219 return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0),
4220 II->getArgOperand(1));
4221 }
4222 break;
4223 default:
4224 break;
4225 }
4226
4227 return nullptr;
4228}
4229
4230/// Handle icmp with constant (but not simple integer constant) RHS.
4232 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4233 Constant *RHSC = dyn_cast<Constant>(Op1);
4234 Instruction *LHSI = dyn_cast<Instruction>(Op0);
4235 if (!RHSC || !LHSI)
4236 return nullptr;
4237
4238 switch (LHSI->getOpcode()) {
4239 case Instruction::PHI:
4240 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
4241 return NV;
4242 break;
4243 case Instruction::IntToPtr:
4244 // icmp pred inttoptr(X), null -> icmp pred X, 0
4245 if (RHSC->isNullValue() &&
4246 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
4247 return new ICmpInst(
4248 I.getPredicate(), LHSI->getOperand(0),
4250 break;
4251
4252 case Instruction::Load:
4253 // Try to optimize things like "A[i] > 4" to index computations.
4254 if (GetElementPtrInst *GEP =
4255 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
4256 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4257 if (Instruction *Res =
4258 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
4259 return Res;
4260 break;
4261 }
4262
4263 return nullptr;
4264}
4265
4267 Value *RHS, const ICmpInst &I) {
4268 // Try to fold the comparison into the select arms, which will cause the
4269 // select to be converted into a logical and/or.
4270 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
4271 if (Value *Res = simplifyICmpInst(Pred,