68#define DEBUG_TYPE "simple-loop-unswitch"
73STATISTIC(NumBranches,
"Number of branches unswitched");
74STATISTIC(NumSwitches,
"Number of switches unswitched");
75STATISTIC(NumSelects,
"Number of selects turned into branches for unswitching");
76STATISTIC(NumGuards,
"Number of guards turned into branches for unswitching");
77STATISTIC(NumTrivial,
"Number of unswitches that are trivial");
79 NumCostMultiplierSkipped,
80 "Number of unswitch candidates that had their cost multiplier skipped");
82 "Number of invariant conditions injected and unswitched");
87 cl::desc(
"Forcibly enables non-trivial loop unswitching rather than "
88 "following the configuration passed into the pass."));
92 cl::desc(
"The cost threshold for unswitching a loop."));
96 cl::desc(
"Enable unswitch cost multiplier that prohibits exponential "
97 "explosion in nontrivial unswitch."));
100 cl::desc(
"Toplevel siblings divisor for cost multiplier."));
103 cl::desc(
"Outer loop size divisor for cost multiplier."));
106 cl::desc(
"Number of unswitch candidates that are ignored when calculating "
107 "cost multiplier."));
110 cl::desc(
"If enabled, simple loop unswitching will also consider "
111 "llvm.experimental.guard intrinsics as unswitch candidates."));
113 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
115 cl::desc(
"If enabled, drop make.implicit metadata in unswitched implicit "
116 "null checks to save time analyzing if we can keep it."));
119 cl::desc(
"Max number of memory uses to explore during "
120 "partial unswitching analysis"),
124 cl::desc(
"If enabled, the freeze instruction will be added to condition "
125 "of loop unswitch to prevent miscompilation."));
128 "simple-loop-unswitch-inject-invariant-conditions",
cl::Hidden,
129 cl::desc(
"Whether we should inject new invariants and unswitch them to "
130 "eliminate some existing (non-invariant) conditions."),
134 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
136 cl::desc(
"Only try to inject loop invariant conditions and "
137 "unswitch on them to eliminate branches that are "
138 "not-taken 1/<this option> times or less."),
154 : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {}
157struct InjectedInvariant {
158 ICmpInst::Predicate Pred;
163 InjectedInvariant(ICmpInst::Predicate Pred,
Value *LHS,
Value *RHS,
164 BasicBlock *InLoopSucc)
165 : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {}
168struct NonTrivialUnswitchCandidate {
170 TinyPtrVector<Value *> Invariants;
171 std::optional<InstructionCost> Cost;
172 std::optional<InjectedInvariant> PendingInjection;
173 NonTrivialUnswitchCandidate(
175 std::optional<InstructionCost> Cost = std::nullopt,
176 std::optional<InjectedInvariant> PendingInjection = std::nullopt)
177 : TI(TI), Invariants(Invariants), Cost(Cost),
178 PendingInjection(PendingInjection) {};
180 bool hasPendingInjection()
const {
return PendingInjection.has_value(); }
204 assert(!L.isLoopInvariant(&Root) &&
205 "Only need to walk the graph if root itself is not invariant.");
218 for (
Value *OpV :
I.operand_values()) {
224 if (L.isLoopInvariant(OpV)) {
235 if (Visited.
insert(OpI).second)
239 }
while (!Worklist.
empty());
254 if (UserI && L.contains(UserI))
272 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
308 if (HasBranchWeights &&
309 static_cast<double>(BranchWeights[
Direction ? 0 : 1]) /
310 static_cast<double>(
sum_of(BranchWeights)) >
312 HasBranchWeights =
false;
318 for (
Value *Inv : Invariants) {
328 Direction ? &NormalSucc : &UnswitchedSucc,
329 HasBranchWeights ? ComputeProfFrom.
getMetadata(LLVMContext::MD_prof)
331 if (!HasBranchWeights)
333 *BR, *BR->getParent()->getParent(),
DEBUG_TYPE);
342 for (
auto *Val :
reverse(ToDuplicate)) {
360 auto *DefiningAccess = MemUse->getDefiningAccess();
362 while (L.contains(DefiningAccess->getBlock())) {
367 MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
381 Direction ? &NormalSucc : &UnswitchedSucc);
398 for (
auto i :
seq<int>(0, PN.getNumOperands())) {
399 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
400 "Found incoming block different from unique predecessor!");
401 PN.setIncomingBlock(i, &OldPH);
418 assert(&ExitBB != &UnswitchedBB &&
419 "Must have different loop exit and unswitched blocks!");
423 PN.getName() +
".split");
424 NewPN->insertBefore(InsertPt);
435 for (
int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
436 if (PN.getIncomingBlock(i) != &OldExitingBB)
442 PN.removeIncomingValue(i);
444 NewPN->addIncoming(
Incoming, &OldPH);
449 PN.replaceAllUsesWith(NewPN);
450 NewPN->addIncoming(&PN, &ExitBB);
463 Loop *OldParentL = L.getParentLoop();
468 L.getExitBlocks(Exits);
469 Loop *NewParentL =
nullptr;
470 for (
auto *ExitBB : Exits)
472 if (!NewParentL || NewParentL->
contains(ExitL))
475 if (NewParentL == OldParentL)
481 "Can only hoist this loop up the nest!");
486 "Parent loop of this loop should contain this loop's preheader!");
501 for (
Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
505 return BB == &Preheader || L.contains(BB);
508 OldContainingL->getBlocksSet().erase(&Preheader);
510 OldContainingL->getBlocksSet().erase(BB);
533 Loop *Current = TopMost;
563 LLVM_DEBUG(
dbgs() <<
" Trying to unswitch branch: " << BI <<
"\n");
570 bool FullUnswitch =
false;
573 if (L.isLoopInvariant(
Cond)) {
579 if (Invariants.
empty()) {
586 bool ExitDirection =
true;
587 int LoopExitSuccIdx = 0;
589 if (L.contains(LoopExitBB)) {
590 ExitDirection =
false;
593 if (L.contains(LoopExitBB)) {
598 auto *ContinueBB = BI.
getSuccessor(1 - LoopExitSuccIdx);
601 LLVM_DEBUG(
dbgs() <<
" Loop exit PHI's aren't loop-invariant!\n");
614 "non-full unswitch!\n");
620 dbgs() <<
" unswitching trivial invariant conditions for: " << BI
622 for (
Value *Invariant : Invariants) {
623 dbgs() <<
" " << *Invariant <<
" == true";
624 if (Invariant != Invariants.back())
656 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
658 "A branch's parent isn't a predecessor!");
659 UnswitchedBB = LoopExitBB;
662 SplitBlock(LoopExitBB, LoopExitBB->begin(), &DT, &LI, MSSAU,
"",
false);
695 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
699 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
702 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
725 Term->eraseFromParent();
735 if (UnswitchedBB == LoopExitBB)
739 *ParentBB, *OldPH, FullUnswitch);
750 for (
Value *Invariant : Invariants)
797 Value *LoopCond =
SI.getCondition();
800 if (!L.isLoopInvariant(LoopCond))
803 auto *ParentBB =
SI.getParent();
810 auto IsTriviallyUnswitchableExitBlock = [&](
BasicBlock &BBToCheck) {
812 if (L.contains(&BBToCheck))
821 auto *TI = BBToCheck.getTerminator();
823 return !isUnreachable || &*BBToCheck.getFirstNonPHIOrDbg() != TI;
827 for (
auto Case :
SI.cases())
828 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
829 ExitCaseIndices.
push_back(Case.getCaseIndex());
833 if (IsTriviallyUnswitchableExitBlock(*
SI.getDefaultDest())) {
834 DefaultExitBB =
SI.getDefaultDest();
835 }
else if (ExitCaseIndices.
empty())
850 if (!ExitL || ExitL->
contains(OuterL))
853 for (
unsigned Index : ExitCaseIndices) {
854 auto CaseI =
SI.case_begin() + Index;
857 if (!ExitL || ExitL->
contains(OuterL))
871 SI.setDefaultDest(
nullptr);
879 ExitCases.reserve(ExitCaseIndices.
size());
883 for (
unsigned Index :
reverse(ExitCaseIndices)) {
884 auto CaseI =
SI.case_begin() + Index;
887 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
895 if (
SI.getNumCases() > 0 &&
897 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
899 CommonSuccBB =
SI.case_begin()->getCaseSuccessor();
900 if (!DefaultExitBB) {
904 if (
SI.getNumCases() == 0)
905 CommonSuccBB =
SI.getDefaultDest();
906 else if (
SI.getDefaultDest() != CommonSuccBB)
907 CommonSuccBB =
nullptr;
936 UnswitchedExitBBs.
insert(DefaultExitBB);
944 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
949 for (
auto &ExitCase :
reverse(ExitCases)) {
957 if (UnswitchedExitBBs.
insert(ExitBB).second)
964 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
973 std::get<1>(ExitCase) = SplitExitBB;
978 for (
auto &ExitCase :
reverse(ExitCases)) {
980 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
982 NewSIW.
addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
993 for (
const auto &Case :
SI.cases())
996 }
else if (DefaultCaseWeight) {
999 for (
const auto &Case :
SI.cases()) {
1002 "case weight must be defined as default case weight is defined");
1017 bool SkippedFirst = DefaultExitBB ==
nullptr;
1018 for (
auto Case :
SI.cases()) {
1020 "Non-common successor!");
1022 if (!SkippedFirst) {
1023 SkippedFirst =
true;
1033 }
else if (DefaultExitBB) {
1035 "If we had no cases we'd have a common successor!");
1040 auto LastCaseI = std::prev(
SI.case_end());
1042 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
1053 for (
auto *UnswitchedExitBB : UnswitchedExitBBs) {
1057 for (
auto SplitUnswitchedPair : SplitExitBBMap) {
1058 DTUpdates.
push_back({DT.
Delete, ParentBB, SplitUnswitchedPair.first});
1070 assert(DT.
verify(DominatorTree::VerificationLevel::Fast));
1115 Visited.
insert(CurrentBB);
1122 if (!
isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1149 if (!BI || BI->isConditional())
1152 CurrentBB = BI->getSuccessor(0);
1164 if (!BI->isConditional() ||
1179 if (BI->isConditional())
1183 CurrentBB = BI->getSuccessor(0);
1188 }
while (L.contains(CurrentBB) && Visited.
insert(CurrentBB).second);
1226 NewBlocks.
reserve(L.getNumBlocks() + ExitBlocks.
size());
1237 VMap[OldBB] = NewBB;
1245 auto It = DominatingSucc.
find(BB);
1246 return It != DominatingSucc.
end() && It->second != UnswitchedSuccBB;
1250 auto *ClonedPH = CloneBlock(LoopPH);
1253 for (
auto *LoopBB : L.blocks())
1254 if (!SkipBlock(LoopBB))
1260 for (
auto *ExitBB : ExitBlocks) {
1261 if (SkipBlock(ExitBB))
1269 auto *MergeBB =
SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
1274 MergeBB->takeName(ExitBB);
1275 ExitBB->setName(
Twine(MergeBB->getName()) +
".split");
1278 auto *ClonedExitBB = CloneBlock(ExitBB);
1279 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1280 "Exit block should have been split to have one successor!");
1281 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1282 "Cloned exit block has the wrong successor!");
1288 std::prev(ClonedExitBB->end())))) {
1296 "Bad instruction in exit block!");
1298 assert(VMap.
lookup(&
I) == &ClonedI &&
"Mismatch in the value map!");
1309 MergePN->insertBefore(InsertPt);
1310 MergePN->setDebugLoc(InsertPt->getDebugLoc());
1311 I.replaceAllUsesWith(MergePN);
1312 MergePN->addIncoming(&
I, ExitBB);
1313 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1322 Module *M = ClonedPH->getParent()->getParent();
1323 for (
auto *ClonedBB : NewBlocks)
1335 for (
auto *LoopBB : L.blocks())
1336 if (SkipBlock(LoopBB))
1339 for (
PHINode &PN : ClonedSuccBB->phis())
1340 PN.removeIncomingValue(LoopBB,
false);
1346 if (SuccBB == UnswitchedSuccBB)
1353 ClonedSuccBB->removePredecessor(ClonedParentBB,
1360 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1363 Value *ClonedConditionToErase =
nullptr;
1365 ClonedConditionToErase = BI->getCondition();
1367 ClonedConditionToErase =
SI->getCondition();
1373 if (ClonedConditionToErase)
1380 for (
PHINode &PN : ClonedSuccBB->phis()) {
1384 for (
int i = PN.getNumOperands() - 1; i >= 0; --i) {
1385 if (PN.getIncomingBlock(i) != ClonedParentBB)
1391 PN.removeIncomingValue(i,
false);
1397 for (
auto *ClonedBB : NewBlocks) {
1399 if (SuccSet.
insert(SuccBB).second)
1415 auto AddClonedBlocksToLoop = [&](
Loop &OrigL,
Loop &ClonedL) {
1416 assert(ClonedL.getBlocks().empty() &&
"Must start with an empty loop!");
1418 for (
auto *BB : OrigL.
blocks()) {
1420 ClonedL.addBlockEntry(ClonedBB);
1433 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1445 LoopsToClone.
push_back({ClonedRootL, ChildL});
1447 Loop *ClonedParentL, *L;
1448 std::tie(ClonedParentL, L) = LoopsToClone.
pop_back_val();
1451 AddClonedBlocksToLoop(*L, *ClonedL);
1453 LoopsToClone.
push_back({ClonedL, ChildL});
1454 }
while (!LoopsToClone.
empty());
1475 Loop *ClonedL =
nullptr;
1487 Loop *ParentL =
nullptr;
1491 for (
auto *ExitBB : ExitBlocks)
1494 ExitLoopMap[ClonedExitBB] = ExitL;
1495 ClonedExitsInLoops.
push_back(ClonedExitBB);
1496 if (!ParentL || (ParentL != ExitL && ParentL->
contains(ExitL)))
1501 "The computed parent loop should always contain (or be) the parent of "
1502 "the original loop.");
1509 for (
auto *BB : OrigL.
blocks())
1511 ClonedLoopBlocks.
insert(ClonedBB);
1522 if (Pred == ClonedPH)
1527 assert(ClonedLoopBlocks.
count(Pred) &&
"Found a predecessor of the loop "
1528 "header other than the preheader "
1529 "that is not part of the loop!");
1534 if (BlocksInClonedLoop.
insert(Pred).second && Pred != ClonedHeader)
1541 if (!BlocksInClonedLoop.
empty()) {
1542 BlocksInClonedLoop.
insert(ClonedHeader);
1544 while (!Worklist.
empty()) {
1547 "Didn't put block into the loop set!");
1555 if (ClonedLoopBlocks.
count(Pred) &&
1556 BlocksInClonedLoop.
insert(Pred).second)
1575 for (
auto *BB : OrigL.
blocks()) {
1577 if (!ClonedBB || !BlocksInClonedLoop.
count(ClonedBB))
1589 for (
Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1590 PL->addBlockEntry(ClonedBB);
1597 for (
Loop *ChildL : OrigL) {
1598 auto *ClonedChildHeader =
1600 if (!ClonedChildHeader || !BlocksInClonedLoop.
count(ClonedChildHeader))
1606 for (
auto *ChildLoopBB : ChildL->blocks())
1609 "Child cloned loop has a header within the cloned outer "
1610 "loop but not all of its blocks!");
1625 if (BlocksInClonedLoop.
empty())
1626 UnloopedBlockSet.
insert(ClonedPH);
1627 for (
auto *ClonedBB : ClonedLoopBlocks)
1628 if (!BlocksInClonedLoop.
count(ClonedBB))
1629 UnloopedBlockSet.
insert(ClonedBB);
1635 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1637 return ExitLoopMap.
lookup(
LHS)->getLoopDepth() <
1638 ExitLoopMap.
lookup(
RHS)->getLoopDepth();
1643 while (!UnloopedBlockSet.
empty() && !OrderedClonedExitsInLoops.empty()) {
1644 assert(Worklist.
empty() &&
"Didn't clear worklist!");
1646 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1661 if (!UnloopedBlockSet.
erase(PredBB)) {
1663 (BlocksInClonedLoop.
count(PredBB) || ExitLoopMap.
count(PredBB)) &&
1664 "Predecessor not mapped to a loop!");
1671 bool Inserted = ExitLoopMap.
insert({PredBB, ExitL}).second;
1673 assert(Inserted &&
"Should only visit an unlooped block once!");
1678 }
while (!Worklist.
empty());
1688 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1690 OuterL->addBasicBlockToLoop(BB, LI);
1693 for (
auto &BBAndL : ExitLoopMap) {
1694 auto *BB = BBAndL.first;
1695 auto *OuterL = BBAndL.second;
1697 "Failed to put all blocks into outer loops!");
1704 for (
Loop *ChildL : OrigL) {
1705 auto *ClonedChildHeader =
1707 if (!ClonedChildHeader || BlocksInClonedLoop.
count(ClonedChildHeader))
1711 for (
auto *ChildLoopBB : ChildL->blocks())
1713 "Cloned a child loop header but not all of that loops blocks!");
1717 *ChildL, ExitLoopMap.
lookup(ClonedChildHeader), VMap, LI));
1723 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1728 for (
const auto &VMap : VMaps)
1732 SuccBB->removePredecessor(ClonedBB);
1745 BB->dropAllReferences();
1748 BB->eraseFromParent();
1765 DeathCandidates.
append(L.blocks().begin(), L.blocks().end());
1766 while (!DeathCandidates.
empty()) {
1770 SuccBB->removePredecessor(BB);
1787 for (
Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1788 for (
auto *BB : DeadBlockSet)
1789 ParentL->getBlocksSet().erase(BB);
1791 [&](
BasicBlock *BB) { return DeadBlockSet.count(BB); });
1797 if (!DeadBlockSet.count(ChildL->getHeader()))
1800 assert(llvm::all_of(ChildL->blocks(),
1801 [&](BasicBlock *ChildBB) {
1802 return DeadBlockSet.count(ChildBB);
1804 "If the child loop header is dead all blocks in the child loop must "
1805 "be dead as well!");
1816 for (
auto *BB : DeadBlockSet) {
1818 assert(!DT.getNode(BB) &&
"Should already have cleared domtree!");
1819 LI.changeLoopFor(BB,
nullptr);
1825 BB->dropAllReferences();
1830 for (
auto *BB : DeadBlockSet)
1831 BB->eraseFromParent();
1849 auto *PH = L.getLoopPreheader();
1850 auto *Header = L.getHeader();
1864 assert(L.contains(Pred) &&
"Found a predecessor of the loop header other "
1865 "than the preheader that is not part of the "
1871 if (LoopBlockSet.
insert(Pred).second && Pred != Header)
1876 if (LoopBlockSet.
empty())
1877 return LoopBlockSet;
1880 while (!Worklist.
empty()) {
1882 assert(LoopBlockSet.
count(BB) &&
"Didn't put block into the loop set!");
1894 assert(L.contains(InnerL) &&
1895 "Should not reach a loop *outside* this loop!");
1898 auto *InnerPH = InnerL->getLoopPreheader();
1899 assert(L.contains(InnerPH) &&
"Cannot contain an inner loop block "
1900 "but not contain the inner loop "
1902 if (!LoopBlockSet.
insert(InnerPH).second)
1912 for (
auto *InnerBB : InnerL->blocks()) {
1913 if (InnerBB == BB) {
1915 "Block should already be in the set!");
1919 LoopBlockSet.
insert(InnerBB);
1931 if (L.contains(Pred) && LoopBlockSet.
insert(Pred).second)
1935 assert(LoopBlockSet.
count(Header) &&
"Cannot fail to add the header!");
1939 return LoopBlockSet;
1960 auto *PH = L.getLoopPreheader();
1964 Loop *ParentL =
nullptr;
1968 for (
auto *ExitBB : ExitBlocks)
1972 if (!ParentL || (ParentL != ExitL && ParentL->
contains(ExitL)))
1984 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1986 for (
Loop *IL = L.getParentLoop(); IL != ParentL;
1988 IL->getBlocksSet().erase(PH);
1989 for (
auto *BB : L.blocks())
1990 IL->getBlocksSet().erase(BB);
1992 return BB == PH || L.contains(BB);
1997 L.getParentLoop()->removeChildLoop(&L);
2005 auto &Blocks = L.getBlocksVector();
2007 LoopBlockSet.empty()
2009 : std::stable_partition(
2010 Blocks.begin(), Blocks.end(),
2011 [&](
BasicBlock *BB) { return LoopBlockSet.count(BB); });
2015 if (LoopBlockSet.empty())
2016 UnloopedBlocks.
insert(PH);
2019 for (
auto *BB :
make_range(BlocksSplitI, Blocks.end()))
2020 L.getBlocksSet().erase(BB);
2021 Blocks.erase(BlocksSplitI, Blocks.end());
2031 Loop *PrevExitL = L.getParentLoop();
2033 auto RemoveUnloopedBlocksFromLoop =
2035 for (
auto *BB : UnloopedBlocks)
2036 L.getBlocksSet().erase(BB);
2038 return UnloopedBlocks.count(BB);
2043 while (!UnloopedBlocks.
empty() && !ExitsInLoops.
empty()) {
2044 assert(Worklist.
empty() &&
"Didn't clear worklist!");
2045 assert(NewExitLoopBlocks.empty() &&
"Didn't clear loop set!");
2050 assert(ExitL.
contains(&L) &&
"Exit loop must contain the inner loop!");
2056 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->
getParentLoop())
2057 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2071 if (!UnloopedBlocks.
erase(PredBB)) {
2072 assert((NewExitLoopBlocks.count(PredBB) ||
2074 "Predecessor not in a nested loop (or already visited)!");
2081 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
2083 assert(Inserted &&
"Should only visit an unlooped block once!");
2088 }
while (!Worklist.
empty());
2093 for (
auto *BB : NewExitLoopBlocks)
2095 if (BBL == &L || !L.contains(BBL))
2100 NewExitLoopBlocks.clear();
2106 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2107 for (
auto *BB : UnloopedBlocks)
2109 if (BBL == &L || !L.contains(BBL))
2115 auto &SubLoops = L.getSubLoopsVector();
2116 auto SubLoopsSplitI =
2117 LoopBlockSet.empty()
2119 : std::stable_partition(
2120 SubLoops.begin(), SubLoops.end(), [&](
Loop *SubL) {
2121 return LoopBlockSet.count(SubL->getHeader());
2123 for (
auto *HoistedL :
make_range(SubLoopsSplitI, SubLoops.end())) {
2125 HoistedL->setParentLoop(
nullptr);
2135 if (
auto *NewParentL = LI.
getLoopFor(HoistedL->getLoopPreheader()))
2136 NewParentL->addChildLoop(HoistedL);
2140 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2143 if (Blocks.empty()) {
2144 assert(SubLoops.empty() &&
2145 "Failed to remove all subloops from the original loop!");
2146 if (
Loop *ParentL = L.getParentLoop())
2164template <
typename CallableT>
2176 if (!Callable(
N->getBlock()))
2182 "Cannot visit a node twice when walking a tree!");
2185 }
while (!DomWorklist.
empty());
2189 bool CurrentLoopValid,
bool PartiallyInvariant,
2192 if (!NewLoops.
empty())
2193 U.addSiblingLoops(NewLoops);
2197 if (CurrentLoopValid) {
2198 if (PartiallyInvariant) {
2201 auto &Context = L.getHeader()->getContext();
2204 MDString::get(Context,
"llvm.loop.unswitch.partial.disable"));
2206 Context, L.getLoopID(), {
"llvm.loop.unswitch.partial"},
2207 {DisableUnswitchMD});
2208 L.setLoopID(NewLoopID);
2209 }
else if (InjectedCondition) {
2211 auto &Context = L.getHeader()->getContext();
2214 MDString::get(Context,
"llvm.loop.unswitch.injection.disable"));
2216 Context, L.getLoopID(), {
"llvm.loop.unswitch.injection"},
2217 {DisableUnswitchMD});
2218 L.setLoopID(NewLoopID);
2220 U.revisitCurrentLoop();
2222 U.markLoopAsDeleted(L, LoopName);
2229 LPMUpdater &LoopUpdater,
bool InsertFreeze,
bool InjectedCondition) {
2236 std::string LoopName(L.getName());
2242 "Can only unswitch switches and conditional branch!");
2246 !PartiallyInvariant);
2249 "Cannot have other invariants with full unswitching!");
2252 "Partial unswitching requires an instruction as the condition!");
2265 if (!FullUnswitch) {
2269 PartiallyInvariant) &&
2270 "Only `or`, `and`, an `select`, partially invariant instructions "
2271 "can combine invariants being unswitched.");
2287 for (
auto Case :
SI->cases())
2288 if (Case.getCaseSuccessor() != RetainedSuccBB)
2289 UnswitchedSuccBBs.
insert(Case.getCaseSuccessor());
2291 assert(!UnswitchedSuccBBs.
count(RetainedSuccBB) &&
2292 "Should not unswitch the same successor we are retaining!");
2301 Loop *ParentL = L.getParentLoop();
2310 Loop *OuterExitL = &L;
2312 L.getUniqueExitBlocks(ExitBlocks);
2313 for (
auto *ExitBB : ExitBlocks) {
2317 if (!NewOuterExitL) {
2319 OuterExitL =
nullptr;
2322 if (NewOuterExitL != OuterExitL && NewOuterExitL->
contains(OuterExitL))
2323 OuterExitL = NewOuterExitL;
2345 if (SuccBB->getUniquePredecessor() ||
2347 return PredBB == ParentBB || DT.
dominates(SuccBB, PredBB);
2350 DominatingSucc[BB] = SuccBB;
2369 for (
auto *SuccBB : UnswitchedSuccBBs) {
2372 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2373 DominatingSucc, *VMaps.
back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2378 if (TI.
getMetadata(LLVMContext::MD_make_implicit)) {
2382 TI.
setMetadata(LLVMContext::MD_make_implicit,
nullptr);
2389 TI.
setMetadata(LLVMContext::MD_make_implicit,
nullptr);
2400 NewTI->
insertInto(ParentBB, ParentBB->end());
2423 assert(
SI &&
"Must either be a branch or switch!");
2426 assert(
SI->getDefaultDest() == RetainedSuccBB &&
2427 "Not retaining default successor!");
2428 SI->setDefaultDest(LoopPH);
2429 for (
const auto &Case :
SI->cases())
2430 if (Case.getCaseSuccessor() == RetainedSuccBB)
2431 Case.setSuccessor(LoopPH);
2433 Case.setSuccessor(ClonedPHs.
find(Case.getCaseSuccessor())->second);
2437 SI->getCondition()->getName() +
".fr",
2438 SI->getIterator()));
2459 for (
auto &VMap : VMaps)
2475 "Only one possible unswitched block for a branch!");
2489 "Not retaining default successor!");
2490 for (
const auto &Case : NewSI->
cases())
2491 Case.getCaseSuccessor()->removePredecessor(
2510 assert(BI &&
"Only branches have partial unswitching.");
2512 "Only one possible unswitched block for a branch!");
2516 if (PartiallyInvariant)
2518 *SplitBB, Invariants,
Direction, *ClonedPH, *LoopPH, L, MSSAU);
2521 *SplitBB, Invariants,
Direction, *ClonedPH, *LoopPH,
2531 for (
auto &VMap : VMaps)
2551 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2574 assert(DT.
verify(DominatorTree::VerificationLevel::Fast));
2576 if (BI && !PartiallyInvariant) {
2582 "Only one possible unswitched block for a branch!");
2594 bool ReplaceUnswitched =
2595 FullUnswitch || (Invariants.
size() == 1) || PartiallyInvariant;
2603 for (
Value *Invariant : Invariants) {
2605 "Should not be replacing constant values!");
2615 U.set(ContinueReplacement);
2616 else if (ReplaceUnswitched &&
2618 U.set(UnswitchedReplacement);
2635 auto UpdateLoop = [&](
Loop &UpdateL) {
2637 UpdateL.verifyLoop();
2638 for (
Loop *ChildL : UpdateL) {
2639 ChildL->verifyLoop();
2640 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2641 "Perturbed a child loop's LCSSA form!");
2661 for (
Loop *UpdatedL :
2663 UpdateLoop(*UpdatedL);
2664 if (UpdatedL->isOutermost())
2665 OuterExitL =
nullptr;
2669 if (L.isOutermost())
2670 OuterExitL =
nullptr;
2675 if (OuterExitL != &L)
2676 for (
Loop *OuterL = ParentL; OuterL != OuterExitL;
2678 UpdateLoop(*OuterL);
2691 if (UpdatedL->getParentLoop() == ParentL)
2693 postUnswitch(L, LoopUpdater, LoopName, IsStillLoop, PartiallyInvariant,
2694 InjectedCondition, SibLoops);
2717 auto BBCostIt = BBCostMap.
find(
N.getBlock());
2718 if (BBCostIt == BBCostMap.
end())
2722 auto DTCostIt = DTCostMap.
find(&
N);
2723 if (DTCostIt != DTCostMap.
end())
2724 return DTCostIt->second;
2729 N.begin(),
N.end(), BBCostIt->second,
2731 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2733 bool Inserted = DTCostMap.
insert({&
N, Cost}).second;
2735 assert(Inserted &&
"Should not insert a node while visiting children!");
2770 SI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2772 BasicBlock *ThenBB = CondBr->getSuccessor(0),
2773 *TailBB = CondBr->getSuccessor(1);
2779 Phi->addIncoming(
SI->getTrueValue(), ThenBB);
2780 Phi->addIncoming(
SI->getFalseValue(), HeadBB);
2781 Phi->setDebugLoc(
SI->getDebugLoc());
2782 SI->replaceAllUsesWith(Phi);
2783 SI->eraseFromParent();
2825 GI->
getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2832 GuardedBlock->
setName(
"guarded");
2883 return L.contains(SuccBB);
2885 NumCostMultiplierSkipped++;
2896 auto *ParentL = L.getParentLoop();
2897 int ParentLoopSizeMultiplier = 1;
2899 ParentLoopSizeMultiplier =
2902 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().
size()
2903 : std::distance(LI.
begin(), LI.
end()));
2907 int UnswitchedClones = 0;
2908 for (
const auto &Candidate : UnswitchCandidates) {
2911 bool SkipExitingSuccessors = DT.
dominates(CondBlock, Latch);
2917 if (!SkipExitingSuccessors)
2921 int NonExitingSuccessors =
2923 [SkipExitingSuccessors, &L](
const BasicBlock *SuccBB) {
2924 return !SkipExitingSuccessors || L.contains(SuccBB);
2926 UnswitchedClones +=
Log2_32(NonExitingSuccessors);
2934 unsigned ClonesPower =
2938 int SiblingsMultiplier =
2939 std::max((ParentL ? SiblingsCount
2950 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2954 <<
" (siblings " << SiblingsMultiplier <<
" * parent size "
2955 << ParentLoopSizeMultiplier <<
" * clones "
2956 << (1 << ClonesPower) <<
")"
2957 <<
" for unswitch candidate: " << TI <<
"\n");
2958 return CostMultiplier;
2966 assert(UnswitchCandidates.
empty() &&
"Should be!");
2972 if (L.isLoopInvariant(
Cond)) {
2980 if (!Invariants.
empty())
2981 UnswitchCandidates.
push_back({
I, std::move(Invariants)});
2986 bool CollectGuards =
false;
2989 L.getHeader()->getParent()->getParent(), Intrinsic::experimental_guard);
2990 if (GuardDecl && !GuardDecl->use_empty())
2991 CollectGuards =
true;
2994 for (
auto *BB : L.blocks()) {
2998 for (
auto &
I : *BB) {
3000 auto *
Cond =
SI->getCondition();
3002 if (
Cond->getType()->isIntegerTy(1) && !
SI->getType()->isIntegerTy(1))
3003 AddUnswitchCandidatesForInst(
SI,
Cond);
3004 }
else if (CollectGuards &&
isGuard(&
I)) {
3017 L.isLoopInvariant(
SI->getCondition()) && !BB->getUniqueSuccessor())
3023 if (!BI || !BI->isConditional() ||
3024 BI->getSuccessor(0) == BI->getSuccessor(1))
3027 AddUnswitchCandidatesForInst(BI, BI->getCondition());
3031 !
any_of(UnswitchCandidates, [&L](
auto &TerminatorAndInvariants) {
3032 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
3037 dbgs() <<
"simple-loop-unswitch: Found partially invariant condition "
3038 << *
Info->InstToDuplicate[0] <<
"\n");
3039 PartialIVInfo = *
Info;
3040 PartialIVCondBranch = L.getHeader()->getTerminator();
3044 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
3047 return !UnswitchCandidates.
empty();
3062 if (!L.contains(IfTrue)) {
3068 if (L.isLoopInvariant(
LHS)) {
3076 RHS = ConstantInt::get(
3088 if (L.isLoopInvariant(
LHS) || !L.isLoopInvariant(
RHS))
3094 if (!L.contains(IfTrue) || L.contains(IfFalse))
3098 if (L.getHeader() == IfTrue)
3115 assert(Weights.
size() == 2 &&
"Unexpected profile data!");
3117 auto Num = Weights[Idx];
3118 auto Denom = Weights[0] + Weights[1];
3120 if (Denom == 0 || Num > Denom)
3123 if (LikelyTaken > ActualTaken)
3146static NonTrivialUnswitchCandidate
3150 assert(Candidate.hasPendingInjection() &&
"Nothing to inject!");
3151 BasicBlock *Preheader = L.getLoopPreheader();
3152 assert(Preheader &&
"Loop is not in simplified form?");
3154 "Unswitching branch of inner loop!");
3156 auto Pred = Candidate.PendingInjection->Pred;
3157 auto *
LHS = Candidate.PendingInjection->LHS;
3158 auto *
RHS = Candidate.PendingInjection->RHS;
3159 auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc;
3162 auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1)
3163 : TI->getSuccessor(0);
3165 assert(L.contains(InLoopSucc) &&
"Not supported yet!");
3166 assert(!L.contains(OutOfLoopSucc) &&
"Not supported yet!");
3167 auto &Ctx = BB->getContext();
3171 if (
LHS->getType() !=
RHS->getType()) {
3172 if (
LHS->getType()->getIntegerBitWidth() <
3173 RHS->getType()->getIntegerBitWidth())
3174 LHS = Builder.CreateZExt(
LHS,
RHS->getType(),
LHS->getName() +
".wide");
3176 RHS = Builder.CreateZExt(
RHS,
LHS->getType(),
RHS->getName() +
".wide");
3180 auto *InjectedCond =
3185 BB->getParent(), InLoopSucc);
3186 Builder.SetInsertPoint(TI);
3188 Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock);
3190 Builder.SetInsertPoint(CheckBlock);
3191 Builder.CreateCondBr(TI->getCondition(), TI->getSuccessor(0),
3192 TI->getSuccessor(1));
3193 TI->eraseFromParent();
3196 for (
auto &
I : *InLoopSucc) {
3200 auto *Inc = PN->getIncomingValueForBlock(BB);
3201 PN->addIncoming(Inc, CheckBlock);
3203 OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock);
3215 L.addBasicBlockToLoop(CheckBlock, LI);
3227 LLVM_DEBUG(
dbgs() <<
"Injected a new loop-invariant branch " << *InvariantBr
3228 <<
" and considering it for unswitching.");
3229 ++NumInvariantConditionsInjected;
3230 return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond },
3252 if (Compares.
size() < 2)
3260 InjectedInvariant ToInject(NonStrictPred,
LHS,
RHS, InLoopSucc);
3261 NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS },
3262 std::nullopt, std::move(ToInject));
3263 UnswitchCandidates.
push_back(std::move(Candidate));
3293 auto *Latch = L.getLoopLatch();
3297 assert(L.getLoopPreheader() &&
"Must have a preheader!");
3302 for (
auto *DTN = DT.
getNode(Latch); L.contains(DTN->getBlock());
3303 DTN = DTN->getIDom()) {
3306 BasicBlock *IfTrue =
nullptr, *IfFalse =
nullptr;
3307 auto *BB = DTN->getBlock();
3311 auto *Term = BB->getTerminator();
3315 if (!
LHS->getType()->isIntegerTy())
3327 LHS = Zext->getOperand(0);
3328 CandidatesULT[
LHS].push_back(
Desc);
3332 for (
auto &It : CandidatesULT)
3339 if (!L.isSafeToClone())
3341 for (
auto *BB : L.blocks())
3342 for (
auto &
I : *BB) {
3343 if (
I.getType()->isTokenTy() &&
I.isUsedOutsideOfBlock(BB))
3346 assert(!CB->cannotDuplicate() &&
"Checked by L.isSafeToClone().");
3347 if (CB->isConvergent())
3364 L.getUniqueExitBlocks(ExitBlocks);
3369 for (
auto *ExitBB : ExitBlocks) {
3370 auto It = ExitBB->getFirstNonPHIIt();
3372 LLVM_DEBUG(
dbgs() <<
"Cannot unswitch because of cleanuppad/catchswitch "
3400 L.getHeader()->getParent()->hasMinSize()
3404 for (
auto *BB : L.blocks()) {
3406 for (
auto &
I : *BB) {
3411 assert(Cost >= 0 &&
"Must not have negative costs!");
3413 assert(LoopCost >= 0 &&
"Must not have negative loop costs!");
3414 BBCostMap[BB] = Cost;
3447 if (!Visited.
insert(SuccBB).second)
3455 if (!FullUnswitch) {
3459 if (SuccBB == BI.getSuccessor(1))
3462 if (SuccBB == BI.getSuccessor(0))
3465 SuccBB == BI.getSuccessor(0)) ||
3467 SuccBB == BI.getSuccessor(1)))
3475 if (SuccBB->getUniquePredecessor() ||
3477 return PredBB == &BB || DT.
dominates(SuccBB, PredBB);
3480 assert(Cost <= LoopCost &&
3481 "Non-duplicated cost should never exceed total loop cost!");
3490 int SuccessorsCount =
isGuard(&TI) ? 2 : Visited.
size();
3491 assert(SuccessorsCount > 1 &&
3492 "Cannot unswitch a condition without multiple distinct successors!");
3493 return (LoopCost - Cost) * (SuccessorsCount - 1);
3496 std::optional<NonTrivialUnswitchCandidate> Best;
3497 for (
auto &Candidate : UnswitchCandidates) {
3502 !BI || Candidate.hasPendingInjection() ||
3503 (Invariants.
size() == 1 &&
3505 InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch);
3509 int CostMultiplier =
3513 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3514 CandidateCost *= CostMultiplier;
3516 <<
" (multiplier: " << CostMultiplier <<
")"
3517 <<
" for unswitch candidate: " << TI <<
"\n");
3520 <<
" for unswitch candidate: " << TI <<
"\n");
3523 if (!Best || CandidateCost < Best->Cost) {
3525 Best->Cost = CandidateCost;
3528 assert(Best &&
"Must be!");
3555 Cond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
3569 PartialIVCondBranch, L, LI,
AA, MSSAU);
3572 PartialIVCondBranch, L, DT, LI,
AA,
3575 if (UnswitchCandidates.
empty())
3579 dbgs() <<
"Considering " << UnswitchCandidates.
size()
3580 <<
" non-trivial loop invariant conditions for unswitching.\n");
3583 UnswitchCandidates, L, DT, LI, AC,
TTI, PartialIVInfo);
3585 assert(Best.TI &&
"Failed to find loop unswitch candidate");
3586 assert(Best.Cost &&
"Failed to compute cost");
3589 LLVM_DEBUG(
dbgs() <<
"Cannot unswitch, lowest cost found: " << *Best.Cost
3594 bool InjectedCondition =
false;
3595 if (Best.hasPendingInjection()) {
3597 InjectedCondition =
true;
3599 assert(!Best.hasPendingInjection() &&
3600 "All injections should have been done by now!");
3602 if (Best.TI != PartialIVCondBranch)
3612 SI->getCondition(), &AC, L.getLoopPreheader()->getTerminator(), &DT);
3622 LLVM_DEBUG(
dbgs() <<
" Unswitching non-trivial (cost = " << Best.Cost
3623 <<
") terminator: " << *Best.TI <<
"\n");
3625 LI, AC, SE, MSSAU, LoopUpdater, InsertFreeze,
3656 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3657 "Loops must be in LCSSA form before unswitching.");
3660 if (!L.isLoopSimplifyForm())
3673 const Function *
F = L.getHeader()->getParent();
3686 bool ContinueWithNonTrivial =
3688 if (!ContinueWithNonTrivial)
3692 if (
F->hasOptSize())
3717 Function &
F = *L.getHeader()->getParent();
3719 LLVM_DEBUG(
dbgs() <<
"Unswitching loop in " <<
F.getName() <<
": " << L
3722 std::optional<MemorySSAUpdater> MSSAU;
3729 &AR.
SE, MSSAU ? &*MSSAU :
nullptr, U))
3748 OS, MapClassName2PassName);
3751 OS << (NonTrivial ?
"" :
"no-") <<
"nontrivial;";
3752 OS << (Trivial ?
"" :
"no-") <<
"trivial";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
This file defines the DenseMap class.
This file defines a set of templates that efficiently compute a dominator tree over a generic graph.
static Value * getCondition(Instruction *I)
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
This header provides classes for managing per-loop analyses.
Loop::LoopBounds::Direction Direction
This header provides classes for managing a pipeline of passes over loops in LLVM IR.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
Provides some synthesis utilities to produce sequences of values.
This file implements a set that has insertion order iteration characteristics.
static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, BasicBlock &OldExitingBB, BasicBlock &OldPH)
Rewrite the PHI nodes in an unswitched loop exit basic block.
static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, LoopInfo &LI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU)
This routine scans the loop to find a branch or switch which occurs before any side effects occur.
static SmallPtrSet< const BasicBlock *, 16 > recomputeLoopBlockSet(Loop &L, LoopInfo &LI)
Recompute the set of blocks in a loop after unswitching.
static int CalculateUnswitchCostMultiplier(const Instruction &TI, const Loop &L, const LoopInfo &LI, const DominatorTree &DT, ArrayRef< NonTrivialUnswitchCandidate > UnswitchCandidates)
Cost multiplier is a way to limit potentially exponential behavior of loop-unswitch.
static void buildPartialInvariantUnswitchConditionalBranch(BasicBlock &BB, ArrayRef< Value * > ToDuplicate, bool Direction, BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, MemorySSAUpdater *MSSAU)
Copy a set of loop invariant values, and conditionally branch on them.
static TinyPtrVector< Value * > collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, const LoopInfo &LI)
Collect all of the loop invariant input values transitively used by the homogeneous instruction graph...
static void deleteDeadClonedBlocks(Loop &L, ArrayRef< BasicBlock * > ExitBlocks, ArrayRef< std::unique_ptr< ValueToValueMapTy > > VMaps, DominatorTree &DT, MemorySSAUpdater *MSSAU)
void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable)
Helper to visit a dominator subtree, invoking a callable on each node.
static BranchInst * turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, AssumptionCache *AC)
Turns a select instruction into implicit control flow branch, making the following replacement:
static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI)
void postUnswitch(Loop &L, LPMUpdater &U, StringRef LoopName, bool CurrentLoopValid, bool PartiallyInvariant, bool InjectedCondition, ArrayRef< Loop * > NewLoops)
static bool shouldTryInjectInvariantCondition(const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS, const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L)
Returns true, if predicate described by ( Pred, LHS, RHS ) succeeding into blocks ( IfTrue,...
static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(ArrayRef< NonTrivialUnswitchCandidate > UnswitchCandidates, const Loop &L, const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo)
static Value * skipTrivialSelect(Value *Cond)
static Loop * getTopMostExitingLoop(const BasicBlock *ExitBB, const LoopInfo &LI)
static bool collectUnswitchCandidatesWithInjections(SmallVectorImpl< NonTrivialUnswitchCandidate > &UnswitchCandidates, IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L, const DominatorTree &DT, const LoopInfo &LI, AAResults &AA, const MemorySSAUpdater *MSSAU)
Collect unswitch candidates by invariant conditions that are not immediately present in the loop.
static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, Constant &Replacement)
static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU)
Unswitch a trivial branch if the condition is loop invariant.
static bool collectUnswitchCandidates(SmallVectorImpl< NonTrivialUnswitchCandidate > &UnswitchCandidates, IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, const Loop &L, const LoopInfo &LI, AAResults &AA, const MemorySSAUpdater *MSSAU)
static InstructionCost computeDomSubtreeCost(DomTreeNode &N, const SmallDenseMap< BasicBlock *, InstructionCost, 4 > &BBCostMap, SmallDenseMap< DomTreeNode *, InstructionCost, 4 > &DTCostMap)
Recursively compute the cost of a dominator subtree based on the per-block cost map provided.
static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT, AssumptionCache &AC)
static void canonicalizeForInvariantConditionInjection(CmpPredicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue, BasicBlock *&IfFalse, const Loop &L)
Tries to canonicalize condition described by:
static bool areLoopExitPHIsLoopInvariant(const Loop &L, const BasicBlock &ExitingBB, const BasicBlock &ExitBB)
Check that all the LCSSA PHI nodes in the loop exit block have trivial incoming values along this edg...
static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, BasicBlock &UnswitchedBB, BasicBlock &OldExitingBB, BasicBlock &OldPH, bool FullUnswitch)
Rewrite the PHI nodes in the loop exit basic block and the split off unswitched block.
static bool insertCandidatesWithPendingInjections(SmallVectorImpl< NonTrivialUnswitchCandidate > &UnswitchCandidates, Loop &L, ICmpInst::Predicate Pred, ArrayRef< CompareDesc > Compares, const DominatorTree &DT)
Given chain of loop branch conditions looking like: br (Variant < Invariant1) br (Variant < Invariant...
static NonTrivialUnswitchCandidate injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, MemorySSAUpdater *MSSAU)
Materialize pending invariant condition of the given candidate into IR.
static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, LoopInfo &LI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU)
Unswitch a trivial switch if the condition is loop invariant.
static void unswitchNontrivialInvariants(Loop &L, Instruction &TI, ArrayRef< Value * > Invariants, IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition)
static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef< BasicBlock * > ExitBlocks, LoopInfo &LI, SmallVectorImpl< Loop * > &HoistedLoops, ScalarEvolution *SE)
Rebuild a loop after unswitching removes some subset of blocks and edges.
static bool unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, AAResults &AA, TargetTransformInfo &TTI, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, LPMUpdater &LoopUpdater)
static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, AAResults &AA, TargetTransformInfo &TTI, bool Trivial, bool NonTrivial, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, LPMUpdater &LoopUpdater)
Unswitch control flow predicated on loop invariant conditions.
static BasicBlock * buildClonedLoopBlocks(Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, ArrayRef< BasicBlock * > ExitBlocks, BasicBlock *ParentBB, BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, const SmallDenseMap< BasicBlock *, BasicBlock *, 16 > &DominatingSucc, ValueToValueMapTy &VMap, SmallVectorImpl< DominatorTree::UpdateType > &DTUpdates, AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution *SE)
Build the cloned blocks for an unswitched copy of the given loop.
static void deleteDeadBlocksFromLoop(Loop &L, SmallVectorImpl< BasicBlock * > &ExitBlocks, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution *SE, LPMUpdater &LoopUpdater)
bool shouldTryInjectBasingOnMetadata(const BranchInst *BI, const BasicBlock *TakenSucc)
Returns true, if metadata on BI allows us to optimize branching into TakenSucc via injection of invar...
static BranchInst * turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU)
Turns a llvm.experimental.guard intrinsic into implicit control flow branch, making the following rep...
static Loop * cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, const ValueToValueMapTy &VMap, LoopInfo &LI)
Recursively clone the specified loop and all of its children.
static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution *SE)
Hoist the current loop up to the innermost loop containing a remaining exit.
static void buildClonedLoops(Loop &OrigL, ArrayRef< BasicBlock * > ExitBlocks, const ValueToValueMapTy &VMap, LoopInfo &LI, SmallVectorImpl< Loop * > &NonChildClonedLoops)
Build the cloned loops of an original loop from unswitching.
static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, ArrayRef< Value * > Invariants, bool Direction, BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, const Instruction *I, AssumptionCache *AC, const DominatorTree &DT, const BranchInst &ComputeProfFrom)
Copy a set of loop invariant values Invariants and insert them at the end of BB and conditionally bra...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
InstListType::iterator iterator
Instruction iterators...
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static LLVM_ABI bool isStrictPredicate(Predicate predicate)
This is a static version that you can use without an instruction available.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This is an important base class in LLVM.
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
static DebugLoc getCompilerGenerated()
static DebugLoc getDropped()
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void applyUpdates(ArrayRef< UpdateType > Updates)
Inform the dominator tree about a sequence of CFG edge insertions and deletions and perform a batch u...
void insertEdge(NodeT *From, NodeT *To)
Inform the dominator tree about a CFG edge insertion and update the tree.
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void deleteEdge(NodeT *From, NodeT *To)
Inform the dominator tree about a CFG edge deletion and update the tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This class represents a freeze function that returns random concrete value if an operand is either a ...
This implementation of LoopSafetyInfo use ImplicitControlFlowTracking to give precise answers on "may...
bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const override
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Value * CreateFreeze(Value *V, const Twine &Name="")
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void dropLocation()
Drop the instruction's debug location.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool isTerminator() const
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
A wrapper class for inspecting calls to intrinsic functions.
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
void markLoopAsDeleted(Loop &L, llvm::StringRef Name)
Loop passes should use this method to indicate they have deleted a loop from the nest.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBlocks() const
Get the number of blocks in this loop in constant time.
BlockT * getHeader() const
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void reserveBlocks(unsigned size)
interface to do reserve() for Blocks
iterator_range< block_iterator > blocks() const
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
LoopT * removeChildLoop(iterator I)
This removes the specified child from being a subloop of this loop.
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * removeLoop(iterator I)
This removes the specified top-level loop from this loop info object.
void changeLoopFor(BlockT *BB, LoopT *L)
Change the top-level loop that contains BB to the specified loop.
unsigned getLoopDepth(const BlockT *BB) const
Return the loop nesting level of the specified block.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void destroy(LoopT *L)
Destroy a loop that has been removed from the LoopInfo nest.
Represents a single loop in the control flow graph.
StringRef getName() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
An analysis that produces MemorySSA for a function.
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
LLVM_ABI void removeEdge(BasicBlock *From, BasicBlock *To)
Update the MemoryPhi in To following an edge deletion between From and To.
LLVM_ABI void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, ArrayRef< BasicBlock * > ExitBlocks, const ValueToValueMapTy &VM, bool IgnoreIncomingWithNoClones=false)
Update MemorySSA after a loop was cloned, given the blocks in RPO order, the exit blocks and a 1:1 ma...
LLVM_ABI void removeDuplicatePhiEdgesBetween(const BasicBlock *From, const BasicBlock *To)
Update the MemoryPhi in To to have a single incoming edge from From, following a CFG change that repl...
LLVM_ABI void removeBlocks(const SmallSetVector< BasicBlock *, 8 > &DeadBlocks)
Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
LLVM_ABI void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was spliced into From and To.
LLVM_ABI MemoryAccess * createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point, bool CreationMustSucceed=true)
Create a MemoryAccess in MemorySSA at a specified point in a block.
LLVM_ABI void applyInsertUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT)
Apply CFG insert updates, analogous with the DT edge updates.
LLVM_ABI void applyUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT, bool UpdateDTFirst=false)
Apply CFG updates, analogous with the DT edge updates.
LLVM_ABI void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where)
LLVM_ABI void updateExitBlocksForClonedLoop(ArrayRef< BasicBlock * > ExitBlocks, const ValueToValueMapTy &VMap, DominatorTree &DT)
Update phi nodes in exit block successors following cloning.
Encapsulates MemorySSA, including all data associated with memory accesses.
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
const DefsList * getBlockDefs(const BasicBlock *BB) const
Return the list of MemoryDef's and MemoryPhi's for a given basic block.
A Module instance is used to store all the information related to an LLVM module.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
The main scalar evolution driver.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI void forgetTopmostLoop(const Loop *L)
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
This class represents the LLVM 'select' instruction.
size_type size() const
Determine the number of elements in the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
LLVM_ABI Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
LLVM_ABI CaseWeightOpt getSuccessorWeight(unsigned idx)
std::optional< uint32_t > CaseWeightOpt
LLVM_ABI SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
unsigned getSuccessorIndex() const
Returns successor index for current case successor.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
ConstantIntT * getCaseValue() const
Resolves case value for current case.
BasicBlock * getDefaultDest() const
static SwitchInst * Create(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore=nullptr)
void setDefaultDest(BasicBlock *DefaultCase)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
void push_back(EltTy NewVal)
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
A Use represents the edge between a Value definition and its users.
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
LLVM Value Representation.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
bool match(Val *V, const Pattern &P)
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
LogicalOp_match< LHS, RHS, Instruction::Or > m_LogicalOr(const LHS &L, const RHS &R)
Matches L || R either in the form of L | R or L ?
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
LLVM_ABI BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, bool MapAtoms=true)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
static cl::opt< int > UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, cl::desc("The cost threshold for unswitching a loop."))
auto successors(const MachineBasicBlock *BB)
LLVM_ABI void setExplicitlyUnknownBranchWeightsIfProfiled(Instruction &I, Function &F, StringRef PassName)
Like setExplicitlyUnknownBranchWeights(...), but only sets unknown branch weights in the new instruct...
static cl::opt< bool > EnableNonTrivialUnswitch("enable-nontrivial-unswitch", cl::init(false), cl::Hidden, cl::desc("Forcibly enables non-trivial loop unswitching rather than " "following the configuration passed into the pass."))
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI MDNode * findOptionMDForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for a loop.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
DomTreeNodeBase< BasicBlock > DomTreeNode
AnalysisManager< Loop, LoopStandardAnalysisResults & > LoopAnalysisManager
The loop analysis manager.
static cl::opt< bool > EnableUnswitchCostMultiplier("enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, cl::desc("Enable unswitch cost multiplier that prohibits exponential " "explosion in nontrivial unswitch."))
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
void RemapDbgRecordRange(Module *M, iterator_range< DbgRecordIterator > Range, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Remap the Values used in the DbgRecords Range using the value map VM.
auto reverse(ContainerTy &&C)
static cl::opt< bool > DropNonTrivialImplicitNullChecks("simple-loop-unswitch-drop-non-trivial-implicit-null-checks", cl::init(false), cl::Hidden, cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " "null checks to save time analyzing if we can keep it."))
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
static cl::opt< unsigned > InjectInvariantConditionHotnesThreshold("simple-loop-unswitch-inject-invariant-condition-hotness-threshold", cl::Hidden, cl::desc("Only try to inject loop invariant conditions and " "unswitch on them to eliminate branches that are " "not-taken 1/<this option> times or less."), cl::init(16))
static cl::opt< int > UnswitchSiblingsToplevelDiv("unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, cl::desc("Toplevel siblings divisor for cost multiplier."))
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
void sort(IteratorTy Start, IteratorTy End)
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
static cl::opt< bool > InjectInvariantConditions("simple-loop-unswitch-inject-invariant-conditions", cl::Hidden, cl::desc("Whether we should inject new invariants and unswitch them to " "eliminate some existing (non-invariant) conditions."), cl::init(true))
LLVM_ABI bool VerifyLoopInfo
Enable verification of loop info.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
FunctionAddr VTableAddr Next
LLVM_ABI bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
auto sum_of(R &&Range, E Init=E{0})
Returns the sum of all values in Range with Init initial value.
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
static cl::opt< int > UnswitchNumInitialUnscaledCandidates("unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, cl::desc("Number of unswitch candidates that are ignored when calculating " "cost multiplier."))
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
LLVM_ABI PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
static cl::opt< bool > EstimateProfile("simple-loop-unswitch-estimate-profile", cl::Hidden, cl::init(true))
LLVM_ABI llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef< llvm::StringRef > RemovePrefixes, llvm::ArrayRef< llvm::MDNode * > AddAttrs)
Create a new LoopID after the loop has been transformed.
static cl::opt< unsigned > MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", cl::desc("Max number of memory uses to explore during " "partial unswitching analysis"), cl::init(100), cl::Hidden)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
auto predecessors(const MachineBasicBlock *BB)
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
bool pred_empty(const BasicBlock *BB)
LLVM_ABI Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
static cl::opt< bool > FreezeLoopUnswitchCond("freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, cl::desc("If enabled, the freeze instruction will be added to condition " "of loop unswitch to prevent miscompilation."))
LLVM_ABI std::optional< IVConditionInfo > hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, const MemorySSA &MSSA, AAResults &AA)
Check if the loop header has a conditional branch that is not loop-invariant, because it involves loa...
LLVM_ABI bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put loop into LCSSA form.
static cl::opt< bool > UnswitchGuards("simple-loop-unswitch-guards", cl::init(true), cl::Hidden, cl::desc("If enabled, simple loop unswitching will also consider " "llvm.experimental.guard intrinsics as unswitch candidates."))
LLVM_ABI void mapAtomInstance(const DebugLoc &DL, ValueToValueMapTy &VMap)
Mark a cloned instruction as a new instance so that its source loc can be updated when remapped.
static cl::opt< int > UnswitchParentBlocksDiv("unswitch-parent-blocks-div", cl::init(8), cl::Hidden, cl::desc("Outer loop size divisor for cost multiplier."))
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
Struct to hold information about a partially invariant condition.
SmallVector< Instruction * > InstToDuplicate
Instructions that need to be duplicated and checked for the unswitching condition.
Constant * KnownValue
Constant to indicate for which value the condition is invariant.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
TargetTransformInfo & TTI
A CRTP mix-in to automatically provide informational APIs needed for passes.