95#define DEBUG_TYPE "licm"
97STATISTIC(NumCreatedBlocks,
"Number of blocks created");
98STATISTIC(NumClonedBranches,
"Number of branches cloned");
99STATISTIC(NumSunk,
"Number of instructions sunk out of loop");
100STATISTIC(NumHoisted,
"Number of instructions hoisted out of loop");
101STATISTIC(NumMovedLoads,
"Number of load insts hoisted or sunk");
102STATISTIC(NumMovedCalls,
"Number of call insts hoisted or sunk");
103STATISTIC(NumPromotionCandidates,
"Number of promotion candidates");
104STATISTIC(NumLoadPromoted,
"Number of load-only promotions");
105STATISTIC(NumLoadStorePromoted,
"Number of load and store promotions");
107 "Number min/max expressions hoisted out of the loop");
112 cl::desc(
"Disable memory promotion in LICM pass"));
116 cl::desc(
"Enable control flow (and PHI) hoisting in LICM"));
120 cl::desc(
"Force thread model single in LICM pass"));
124 cl::desc(
"Max num uses visited for identifying load "
125 "invariance in loop using invariant start (default = 8)"));
137 cl::desc(
"Enable imprecision in LICM in pathological cases, in exchange "
138 "for faster compile. Caps the MemorySSA clobbering calls."));
145 cl::desc(
"[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
146 "effect. When MSSA in LICM is enabled, then this is the maximum "
147 "number of accesses allowed to be present in a loop in order to "
148 "enable memory promotion."));
170 bool InvariantGroup);
192 std::pair<SmallSetVector<Value *, 8>,
bool>;
197struct LoopInvariantCodeMotion {
203 LoopInvariantCodeMotion(
unsigned LicmMssaOptCap,
204 unsigned LicmMssaNoAccForPromotionCap,
205 bool LicmAllowSpeculation)
206 : LicmMssaOptCap(LicmMssaOptCap),
207 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
208 LicmAllowSpeculation(LicmAllowSpeculation) {}
211 unsigned LicmMssaOptCap;
212 unsigned LicmMssaNoAccForPromotionCap;
213 bool LicmAllowSpeculation;
216struct LegacyLICMPass :
public LoopPass {
221 bool LicmAllowSpeculation =
true)
222 :
LoopPass(
ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
223 LicmAllowSpeculation) {
232 <<
L->getHeader()->getNameOrAsOperand() <<
"\n");
236 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
237 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
242 return LICM.runOnLoop(
243 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
244 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
245 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
246 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*
F),
247 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*
F),
248 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*
F),
249 SE ? &SE->getSE() :
nullptr, MSSA, &ORE);
270 LoopInvariantCodeMotion LICM;
287 if (!LICM.runOnLoop(&L, &AR.
AA, &AR.
LI, &AR.
DT, &AR.
AC, &AR.
TLI, &AR.
TTI,
300 OS, MapClassName2PassName);
323 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.
AA, &AR.
LI, &AR.
DT, &AR.
AC,
341 OS, MapClassName2PassName);
348char LegacyLICMPass::ID = 0;
361 unsigned LicmMssaNoAccForPromotionCap,
362 bool LicmAllowSpeculation) {
363 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
364 LicmAllowSpeculation);
373 unsigned LicmMssaOptCap,
unsigned LicmMssaNoAccForPromotionCap,
bool IsSink,
375 : LicmMssaOptCap(LicmMssaOptCap),
376 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
378 unsigned AccessCapCount = 0;
379 for (
auto *BB : L.getBlocks())
381 for (
const auto &MA : *Accesses) {
401 bool Changed =
false;
403 assert(L->isLCSSAForm(*DT) &&
"Loop is not in LCSSA form.");
422 return llvm::any_of(*BB, [](Instruction &I) {
423 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
424 return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
448 if (
L->hasDedicatedExits())
452 TLI,
TTI, L, MSSAU, &SafetyInfo, Flags, ORE)
454 MSSAU, &SafetyInfo,
Flags, ORE);
455 Flags.setIsSink(
false);
458 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
459 LicmAllowSpeculation);
469 !
Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
472 L->getUniqueExitBlocks(ExitBlocks);
479 if (!HasCatchSwitch) {
485 InsertPts.
push_back(&*ExitBlock->getFirstInsertionPt());
493 bool Promoted =
false;
496 LocalPromoted =
false;
497 for (
auto [PointerMustAliases, HasReadsOutsideSet] :
500 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts,
PIC, LI,
501 DT, AC, TLI,
TTI, L, MSSAU, &SafetyInfo, ORE,
502 LicmAllowSpeculation, HasReadsOutsideSet);
504 Promoted |= LocalPromoted;
505 }
while (LocalPromoted);
523 assert(
L->isLCSSAForm(*DT) &&
"Loop not left in LCSSA form after LICM!");
524 assert((
L->isOutermost() ||
L->getParentLoop()->isLCSSAForm(*DT)) &&
525 "Parent loop not left in LCSSA form after LICM!");
548 assert(
N !=
nullptr && AA !=
nullptr && LI !=
nullptr && DT !=
nullptr &&
549 CurLoop !=
nullptr && SafetyInfo !=
nullptr &&
550 "Unexpected input to sinkRegion.");
557 bool Changed =
false;
585 bool FreeInLoop =
false;
586 bool LoopNestMode = OutermostLoop !=
nullptr;
587 if (!
I.mayHaveSideEffects() &&
589 SafetyInfo,
TTI, FreeInLoop, LoopNestMode) &&
591 if (
sink(
I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
615 bool Changed =
false;
619 while (!Worklist.
empty()) {
622 MSSAU, SafetyInfo,
Flags, ORE, CurLoop);
635class ControlFlowHoister {
654 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
656 void registerPossiblyHoistableBranch(
BranchInst *BI) {
668 TrueDest == FalseDest)
680 if (TrueDestSucc.
count(FalseDest)) {
681 CommonSucc = FalseDest;
682 }
else if (FalseDestSucc.
count(TrueDest)) {
683 CommonSucc = TrueDest;
687 if (TrueDestSucc.
size() == 1)
688 CommonSucc = *TrueDestSucc.
begin();
692 else if (!TrueDestSucc.
empty()) {
696 assert(It !=
F->end() &&
"Could not find successor in function");
708 if (CommonSucc && DT->
dominates(BI, CommonSucc))
709 HoistableBranches[BI] = CommonSucc;
712 bool canHoistPHI(
PHINode *PN) {
721 PredecessorBlocks.
insert(PredBB);
729 for (
auto &Pair : HoistableBranches) {
730 if (Pair.second == BB) {
733 if (Pair.first->getSuccessor(0) == BB) {
734 PredecessorBlocks.
erase(Pair.first->getParent());
735 PredecessorBlocks.
erase(Pair.first->getSuccessor(1));
736 }
else if (Pair.first->getSuccessor(1) == BB) {
737 PredecessorBlocks.
erase(Pair.first->getParent());
738 PredecessorBlocks.
erase(Pair.first->getSuccessor(0));
740 PredecessorBlocks.
erase(Pair.first->getSuccessor(0));
741 PredecessorBlocks.
erase(Pair.first->getSuccessor(1));
747 return PredecessorBlocks.
empty();
754 if (HoistDestinationMap.
count(BB))
755 return HoistDestinationMap[BB];
758 auto HasBBAsSuccessor =
760 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
761 Pair.first->getSuccessor(1) == BB);
763 auto It =
llvm::find_if(HoistableBranches, HasBBAsSuccessor);
767 if (It == HoistableBranches.end()) {
770 <<
" as hoist destination for "
772 HoistDestinationMap[BB] = InitialPreheader;
773 return InitialPreheader;
776 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
777 HoistableBranches.end() &&
778 "BB is expected to be the target of at most one branch");
783 BasicBlock *CommonSucc = HoistableBranches[BI];
787 auto CreateHoistedBlock = [&](
BasicBlock *Orig) {
788 if (HoistDestinationMap.
count(Orig))
789 return HoistDestinationMap[Orig];
792 HoistDestinationMap[Orig] =
New;
798 <<
" as hoist destination for " << Orig->getName()
802 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
803 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
804 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
811 assert(TargetSucc &&
"Expected hoist target to have a single successor");
826 if (HoistTarget == InitialPreheader) {
837 for (
auto &Pair : HoistDestinationMap)
838 if (Pair.second == InitialPreheader && Pair.first != BI->
getParent())
839 Pair.second = HoistCommonSucc;
849 "Hoisting blocks should not have destroyed preheader");
850 return HoistDestinationMap[BB];
867 bool AllowSpeculation) {
869 assert(
N !=
nullptr && AA !=
nullptr && LI !=
nullptr && DT !=
nullptr &&
870 CurLoop !=
nullptr && SafetyInfo !=
nullptr &&
871 "Unexpected input to hoistRegion.");
873 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
884 bool Changed =
false;
888 if (!LoopNestMode &&
inSubLoop(BB, CurLoop, LI))
896 &
I,
I.getModule()->getDataLayout(), TLI)) {
900 I.replaceAllUsesWith(
C);
917 I, DT, TLI, CurLoop, SafetyInfo, ORE,
920 hoist(
I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
929 if (
I.getOpcode() == Instruction::FDiv &&
I.hasAllowReciprocal() &&
931 auto Divisor =
I.getOperand(1);
933 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
934 ReciprocalDivisor->setFastMathFlags(
I.getFastMathFlags());
936 ReciprocalDivisor->insertBefore(&
I);
939 BinaryOperator::CreateFMul(
I.getOperand(0), ReciprocalDivisor);
940 Product->setFastMathFlags(
I.getFastMathFlags());
942 Product->insertAfter(&
I);
943 I.replaceAllUsesWith(Product);
946 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
947 SafetyInfo, MSSAU, SE, ORE);
948 HoistedInstructions.
push_back(ReciprocalDivisor);
954 using namespace PatternMatch;
955 return I.use_empty() &&
956 match(&
I, m_Intrinsic<Intrinsic::invariant_start>());
958 auto MustExecuteWithoutWritesBefore = [&](
Instruction &
I) {
962 if ((IsInvariantStart(
I) ||
isGuard(&
I)) &&
964 MustExecuteWithoutWritesBefore(
I)) {
965 hoist(
I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
972 if (
PHINode *PN = dyn_cast<PHINode>(&
I)) {
973 if (CFH.canHoistPHI(PN)) {
979 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
999 CFH.registerPossiblyHoistableBranch(BI);
1014 [&](
Use &U) { return DT->dominates(I, U); })) {
1020 "New hoist point expected to dominate old hoist point");
1025 <<
": " << *
I <<
"\n");
1037#ifdef EXPENSIVE_CHECKS
1039 assert(DT->
verify(DominatorTree::VerificationLevel::Fast) &&
1040 "Dominator tree verification failed");
1074 unsigned BitcastsVisited = 0;
1077 while (
Addr->getType() != PtrInt8Ty) {
1078 auto *BC = dyn_cast<BitCastInst>(
Addr);
1082 Addr = BC->getOperand(0);
1086 if (isa<Constant>(
Addr))
1089 unsigned UsesVisited = 0;
1092 for (
auto *U :
Addr->users()) {
1126 return (isa<LoadInst>(
I) || isa<StoreInst>(
I) || isa<CallInst>(
I) ||
1127 isa<FenceInst>(
I) || isa<CastInst>(
I) || isa<UnaryOperator>(
I) ||
1128 isa<BinaryOperator>(
I) || isa<SelectInst>(
I) ||
1129 isa<GetElementPtrInst>(
I) || isa<CmpInst>(
I) ||
1130 isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
1131 isa<ShuffleVectorInst>(
I) || isa<ExtractValueInst>(
I) ||
1132 isa<InsertValueInst>(
I) || isa<FreezeInst>(
I));
1136 for (
auto *BB :
L->getBlocks())
1145 for (
auto *BB :
L->getBlocks())
1148 for (
const auto &Acc : *Accs) {
1149 if (isa<MemoryPhi>(&Acc))
1151 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1152 if (MUD->getMemoryInst() !=
I || NotAPhi++ == 1)
1162 bool TargetExecutesOncePerLoop,
1166 if (!isHoistableAndSinkableInst(
I))
1171 if (
LoadInst *LI = dyn_cast<LoadInst>(&
I)) {
1172 if (!LI->isUnordered())
1179 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1182 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1191 bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group);
1194 MSSA, MU, CurLoop,
I,
Flags, InvariantGroup);
1197 if (ORE && Invalidated && CurLoop->
isLoopInvariant(LI->getPointerOperand()))
1200 DEBUG_TYPE,
"LoadWithLoopInvariantAddressInvalidated", LI)
1201 <<
"failed to move load with loop-invariant address "
1202 "because the loop may invalidate its value";
1205 return !Invalidated;
1206 }
else if (
CallInst *CI = dyn_cast<CallInst>(&
I)) {
1208 if (isa<DbgInfoIntrinsic>(
I))
1219 if (CI->isConvergent())
1222 using namespace PatternMatch;
1223 if (
match(CI, m_Intrinsic<Intrinsic::assume>()))
1237 for (
Value *Op : CI->args())
1238 if (Op->getType()->isPointerTy() &&
1248 if (isReadOnly(MSSAU, CurLoop))
1256 }
else if (
auto *FI = dyn_cast<FenceInst>(&
I)) {
1259 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1260 }
else if (
auto *
SI = dyn_cast<StoreInst>(&
I)) {
1261 if (!
SI->isUnordered())
1269 if (isOnlyMemoryAccess(
SI, CurLoop, MSSAU))
1273 if (
Flags.tooManyMemoryAccesses() ||
Flags.tooManyClobberingCalls())
1283 for (
const auto &MA : *Accesses)
1284 if (
const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1295 }
else if (
const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1296 if (
auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1298 assert(!LI->isUnordered() &&
"Expected unordered load");
1302 if (
auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1313 Flags.incrementClobberingCalls();
1316 !CurLoop->
contains(Source->getBlock());
1319 assert(!
I.mayReadOrWriteMemory() &&
"unhandled aliasing");
1345 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(&
I)) {
1352 for (
const User *U :
GEP->users()) {
1356 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1374 bool LoopNestMode) {
1377 for (
const User *U :
I.users()) {
1379 if (
const PHINode *PN = dyn_cast<PHINode>(UI)) {
1387 if (isa<CallInst>(
I))
1388 if (!BlockColors.empty() &&
1389 BlockColors.find(
const_cast<BasicBlock *
>(BB))->second.size() != 1)
1393 while (isa<PHINode>(UI) && UI->
hasOneUser() &&
1397 UI = cast<Instruction>(UI->
user_back());
1417 if (
auto *CI = dyn_cast<CallInst>(&
I)) {
1424 for (
unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1425 BundleIdx != BundleEnd; ++BundleIdx) {
1433 if (!BlockColors.empty()) {
1434 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1435 assert(CV.
size() == 1 &&
"non-unique color for exit block!");
1448 if (!
I.getName().empty())
1449 New->setName(
I.getName() +
".le");
1456 if (
auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1459 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1472 for (
Use &Op : New->operands())
1474 auto *OInst = cast<Instruction>(Op.get());
1477 OInst->getName() +
".lcssa", &ExitBlock.
front());
1489 I.eraseFromParent();
1498 I.moveBefore(&Dest);
1512 "Expect only trivially replaceable PHI");
1515 auto It = SunkCopies.
find(ExitBlock);
1516 if (It != SunkCopies.
end())
1520 *
I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1535 if (isa<IndirectBrInst>(BBPred->getTerminator()))
1552 assert(ExitBlockSet.
count(ExitBB) &&
"Expect the PHI is in an exit block.");
1588 while (!PredBBs.
empty()) {
1591 "Expect all predecessors are in the loop");
1594 ExitBB, PredBB,
".split.loop.exit", DT, LI, MSSAU,
true);
1598 if (!BlockColors.empty())
1616 bool Changed =
false;
1623 auto *
User = cast<Instruction>(*UI);
1624 Use &U = UI.getUse();
1662 UI =
I.user_begin();
1666 if (VisitedUsers.
empty())
1671 <<
"sinking " <<
ore::NV(
"Inst", &
I);
1673 if (isa<LoadInst>(
I))
1675 else if (isa<CallInst>(
I))
1695 for (
auto *UI :
Users) {
1696 auto *
User = cast<Instruction>(UI);
1703 "The LCSSA PHI is not in an exit block!");
1707 PN, &
I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1737 if ((
I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(
I)) &&
1742 I.dropUBImplyingAttrsAndUnknownMetadata();
1744 if (isa<PHINode>(
I))
1751 I.updateLocationAfterHoist();
1753 if (isa<LoadInst>(
I))
1755 else if (isa<CallInst>(
I))
1768 if (AllowSpeculation &&
1772 bool GuaranteedToExecute =
1775 if (!GuaranteedToExecute) {
1776 auto *LI = dyn_cast<LoadInst>(&Inst);
1780 DEBUG_TYPE,
"LoadWithLoopInvariantAddressCondExecuted", LI)
1781 <<
"failed to hoist load with loop-invariant address "
1782 "because load is conditionally executed";
1786 return GuaranteedToExecute;
1800 bool UnorderedAtomic;
1803 bool CanInsertStoresInExitBlocks;
1817 I->getName() +
".lcssa", &BB->
front());
1832 LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(
PIC), MSSAU(MSSAU),
1833 LI(li),
DL(
std::
move(dl)), Alignment(Alignment),
1834 UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1835 SafetyInfo(SafetyInfo),
1836 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks),
Uses(Insts) {}
1838 void insertStoresInLoopExitBlocks() {
1844 for (
unsigned i = 0, e = LoopExitBlocks.
size(); i != e; ++i) {
1846 Value *LiveInValue =
SSA.GetValueInMiddleOfBlock(ExitBlock);
1847 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1848 Value *
Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1851 if (UnorderedAtomic)
1862 NewID = cast_or_null<DIAssignID>(
1867 NewSI->
setMetadata(LLVMContext::MD_DIAssignID, NewID);
1875 if (!MSSAInsertPoint) {
1882 MSSAInsertPts[i] = NewMemAcc;
1883 MSSAU.
insertDef(cast<MemoryDef>(NewMemAcc),
true);
1888 void doExtraRewritesBeforeFinalDeletion()
override {
1889 if (CanInsertStoresInExitBlocks)
1890 insertStoresInLoopExitBlocks();
1893 void instructionDeleted(
Instruction *
I)
const override {
1899 if (isa<StoreInst>(
I))
1900 return CanInsertStoresInExitBlocks;
1905bool isNotCapturedBeforeOrInLoop(
const Value *V,
const Loop *L,
1913 L->getHeader()->getTerminator(), DT);
1920 bool RequiresNoCaptureBeforeUnwind;
1924 return !RequiresNoCaptureBeforeUnwind ||
1925 isNotCapturedBeforeOrInLoop(
Object, L, DT);
1931 if (isa<AllocaInst>(
Object))
1935 if (
auto *
A = dyn_cast<Argument>(
Object))
1936 return A->hasByValAttr();
1938 if (
auto *
G = dyn_cast<GlobalVariable>(
Object))
1939 return !
G->isConstant();
1951 isNotCapturedBeforeOrInLoop(
Object, L, DT)) ||
1971 bool HasReadsOutsideSet) {
1973 assert(LI !=
nullptr && DT !=
nullptr && CurLoop !=
nullptr &&
1974 SafetyInfo !=
nullptr &&
1975 "Unexpected Input to promoteLoopAccessesToScalars");
1978 dbgs() <<
"Trying to promote set of must-aliased pointers:\n";
1979 for (
Value *
Ptr : PointerMustAliases)
1980 dbgs() <<
" " << *
Ptr <<
"\n";
1982 ++NumPromotionCandidates;
1984 Value *SomePtr = *PointerMustAliases.
begin();
2024 bool DereferenceableInPH =
false;
2025 bool StoreIsGuanteedToExecute =
false;
2026 bool FoundLoadToPromote =
false;
2032 } StoreSafety = StoreSafetyUnknown;
2040 bool SawUnorderedAtomic =
false;
2041 bool SawNotAtomic =
false;
2048 if (HasReadsOutsideSet)
2049 StoreSafety = StoreUnsafe;
2058 if (!isNotVisibleOnUnwindInLoop(
Object, CurLoop, DT))
2059 StoreSafety = StoreUnsafe;
2065 Type *AccessTy =
nullptr;
2066 for (
Value *ASIV : PointerMustAliases) {
2067 for (
Use &U : ASIV->uses()) {
2069 Instruction *UI = dyn_cast<Instruction>(U.getUser());
2075 if (
LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2076 if (!Load->isUnordered())
2079 SawUnorderedAtomic |= Load->isAtomic();
2080 SawNotAtomic |= !Load->isAtomic();
2081 FoundLoadToPromote =
true;
2083 Align InstAlignment = Load->getAlign();
2089 if (!DereferenceableInPH || (InstAlignment > Alignment))
2091 *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2093 DereferenceableInPH =
true;
2094 Alignment = std::max(Alignment, InstAlignment);
2096 }
else if (
const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2101 if (!Store->isUnordered())
2104 SawUnorderedAtomic |= Store->isAtomic();
2105 SawNotAtomic |= !Store->isAtomic();
2112 Align InstAlignment = Store->getAlign();
2113 bool GuaranteedToExecute =
2115 StoreIsGuanteedToExecute |= GuaranteedToExecute;
2116 if (GuaranteedToExecute) {
2117 DereferenceableInPH =
true;
2118 if (StoreSafety == StoreSafetyUnknown)
2119 StoreSafety = StoreSafe;
2120 Alignment = std::max(Alignment, InstAlignment);
2129 if (StoreSafety == StoreSafetyUnknown &&
2131 return DT->
dominates(Store->getParent(), Exit);
2133 StoreSafety = StoreSafe;
2137 if (!DereferenceableInPH) {
2139 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2140 Store->getAlign(), MDL, Preheader->
getTerminator(), AC, DT, TLI);
2151 if (LoopUses.
empty()) {
2154 }
else if (AATags) {
2166 if (SawUnorderedAtomic && SawNotAtomic)
2176 if (!DereferenceableInPH) {
2177 LLVM_DEBUG(
dbgs() <<
"Not promoting: Not dereferenceable in preheader\n");
2185 if (StoreSafety == StoreSafetyUnknown) {
2187 if (isWritableObject(
Object) &&
2188 isThreadLocalObject(
Object, CurLoop, DT,
TTI))
2189 StoreSafety = StoreSafe;
2194 if (StoreSafety != StoreSafe && !FoundLoadToPromote)
2199 if (StoreSafety == StoreSafe) {
2200 LLVM_DEBUG(
dbgs() <<
"LICM: Promoting load/store of the value: " << *SomePtr
2202 ++NumLoadStorePromoted;
2204 LLVM_DEBUG(
dbgs() <<
"LICM: Promoting load of the value: " << *SomePtr
2212 <<
"Moving accesses to memory location out of the loop";
2216 std::vector<const DILocation *> LoopUsesLocs;
2217 for (
auto *U : LoopUses)
2218 LoopUsesLocs.push_back(U->getDebugLoc().get());
2224 LoopPromoter Promoter(SomePtr, LoopUses,
SSA, ExitBlocks, InsertPts,
2225 MSSAInsertPts,
PIC, MSSAU, *LI,
DL, Alignment,
2226 SawUnorderedAtomic, AATags, *SafetyInfo,
2227 StoreSafety == StoreSafe);
2232 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) {
2236 if (SawUnorderedAtomic)
2245 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2247 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2256 Promoter.run(LoopUses);
2261 if (PreheaderLoad && PreheaderLoad->
use_empty())
2271 for (
const auto &Access : *Accesses)
2272 if (
const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2273 Fn(MUD->getMemoryInst());
2283 auto IsPotentiallyPromotable = [L](
const Instruction *
I) {
2284 if (
const auto *
SI = dyn_cast<StoreInst>(
I))
2285 return L->isLoopInvariant(
SI->getPointerOperand());
2286 if (
const auto *LI = dyn_cast<LoadInst>(
I))
2287 return L->isLoopInvariant(LI->getPointerOperand());
2294 if (IsPotentiallyPromotable(
I)) {
2295 AttemptingPromotion.
insert(
I);
2303 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2315 ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA);
2324 return !Pair.getPointer()->isRef();
2331 for (
auto [Set, HasReadsOutsideSet] : Sets) {
2333 for (
const auto &ASI : *Set)
2334 PointerMustAliases.
insert(ASI.getValue());
2335 Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet);
2344 bool InvariantGroup) {
2346 if (!
Flags.getIsSink()) {
2349 if (
Flags.tooManyClobberingCalls())
2353 Flags.incrementClobberingCalls();
2365 CurLoop->
contains(Source->getBlock()) &&
2366 !(InvariantGroup && Source->getBlock() == CurLoop->
getHeader() && isa<MemoryPhi>(Source));
2386 if (
Flags.tooManyMemoryAccesses())
2400 for (
const auto &MA : *Accesses)
2401 if (
const auto *MD = dyn_cast<MemoryDef>(&MA))
2410 bool IsLogical =
false;
2411 using namespace PatternMatch;
2412 Value *Cond1, *Cond2;
2433 if (L.isLoopInvariant(
LHS)) {
2437 if (L.isLoopInvariant(
LHS) || !L.isLoopInvariant(
RHS))
2444 Value *LHS1, *LHS2, *RHS1, *RHS2;
2445 if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) ||
2446 !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2))
2448 if (P1 != P2 || LHS1 != LHS2)
2455 "Relational predicate is either less (or equal) or greater (or equal)!");
2457 ? (UseMin ? Intrinsic::smin : Intrinsic::smax)
2458 : (UseMin ? Intrinsic::umin : Intrinsic::umax);
2459 auto *Preheader = L.getLoopPreheader();
2460 assert(Preheader &&
"Loop is not in simplify form?");
2469 id, RHS1, RHS2,
nullptr,
StringRef(
"invariant.") +
2471 (UseMin ?
"min" :
"max"));
2478 I.replaceAllUsesWith(NewCond);
2489 assert(CurLoop->
contains(BB) &&
"Only valid if BB is IN the loop");
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
SmallPtrSet< MachineInstr *, 2 > Uses
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
static cl::opt< bool > SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), cl::desc("Force thread model single in LICM pass"))
static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, LoopInfo *LI, const Loop *CurLoop, LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU)
static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < min(INV_1, INV_2)),...
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, TargetTransformInfo *TTI, bool &FreeInLoop, bool LoopNestMode)
Return true if the only users of this instruction are outside of the loop.
static Instruction * cloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU)
static cl::opt< bool > ControlFlowHoisting("licm-control-flow-hoisting", cl::Hidden, cl::init(false), cl::desc("Enable control flow (and PHI) hoisting in LICM"))
static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, Loop *CurLoop, Instruction &I, SinkAndHoistLICMFlags &Flags, bool InvariantGroup)
static SmallVector< PointersAndHasReadsOutsideSet, 0 > collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L)
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
When an instruction is found to only use loop invariant operands that is safe to hoist,...
static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo)
static void moveInstructionBefore(Instruction &I, Instruction &Dest, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE)
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE)
When an instruction is found to only be used outside of the loop, this function moves it to the exit ...
static cl::opt< uint32_t > MaxNumUsesTraversed("licm-max-num-uses-traversed", cl::Hidden, cl::init(8), cl::desc("Max num uses visited for identifying load " "invariance in loop using invariant start (default = 8)"))
static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, function_ref< void(Instruction *)> Fn)
static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, Loop *CurLoop)
static Instruction * sinkThroughTriviallyReplaceablePHI(PHINode *TPN, Instruction *I, LoopInfo *LI, SmallDenseMap< BasicBlock *, Instruction *, 32 > &SunkCopies, const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, MemorySSAUpdater &MSSAU)
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI)
Little predicate that returns true if the specified basic block is in a subloop of the current one,...
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
static bool isSafeToExecuteUnconditionally(Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, const Instruction *CtxI, AssumptionCache *AC, bool AllowSpeculation)
Only sink or hoist an instruction if it is not a trapping instruction, or if the instruction is known...
static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I)
Returns true if a PHINode is a trivially replaceable with an Instruction.
std::pair< SmallSetVector< Value *, 8 >, bool > PointersAndHasReadsOutsideSet
static cl::opt< bool > DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), cl::desc("Disable memory promotion in LICM pass"))
Memory promotion is enabled by default.
static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, const TargetTransformInfo *TTI)
Return true if the instruction is free in the loop.
static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU)
This file defines the interface for the loop nest analysis.
Machine Loop Invariant Code Motion
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
PassInstrumentationCallbacks PIC
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file provides a priority worklist.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines generic set operations that may be used on set's of different types,...
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Check whether or not an instruction may read or write the optionally specified memory location.
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, bool IgnoreLocals=false)
Returns a bitmask that should be unconditionally applied to the ModRef info of a memory location.
MemoryEffects getMemoryEffects(const CallBase *Call)
Return the behavior of the given call site.
void add(Value *Ptr, LocationSize Size, const AAMDNodes &AAInfo)
These methods are used to add different types of instructions to the alias sets.
A container for analyses that lazily runs them and caches their results.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
void replaceSuccessorsPhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block's successors to refer to basic block New instead of basic bl...
iterator begin()
Instruction iterator methods.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const Instruction & front() const
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
bool canSplitPredecessors() const
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Value * getArgOperand(unsigned i) const
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
static Constant * get(Type *Ty, double V)
This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in...
This is the shared class of boolean and integer constants.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
This is an important base class in LLVM.
static const DILocation * getMergedLocations(ArrayRef< const DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
A parsed version of the target data layout string in and methods for querying it.
TypeSize getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type.
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This implementation of LoopSafetyInfo use ImplicitControlFlowTracking to give precise answers on "may...
bool doesNotWriteMemoryBefore(const BasicBlock *BB, const Loop *CurLoop) const
Returns true if we could not execute a memory-modifying instruction before we enter BB under assumpti...
void removeInstruction(const Instruction *Inst)
Inform safety info that we are planning to remove the instruction Inst from its block.
bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const override
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
bool anyBlockMayThrow() const override
Returns true iff any block of the loop for which this info is contains an instruction that may throw ...
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
void insertInstructionTo(const Instruction *Inst, const BasicBlock *BB)
Inform the safety info that we are planning to insert a new instruction Inst into the basic block BB.
static bool isGE(Predicate P)
Return true if the predicate is SGE or UGE.
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
static bool isLE(Predicate P)
Return true if the predicate is SLE or ULE.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
void mergeDIAssignID(ArrayRef< const Instruction * > SourceInstructions)
Merge the DIAssignID metadata from this instruction and those attached to instructions in SourceInstr...
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
const BasicBlock * getParent() const
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
This is an important class for using LLVM in a threaded context.
PreservedAnalyses run(LoopNest &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
This is an alternative analysis pass to BranchProbabilityInfoWrapperPass.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this load instruction.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getHeader() const
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
void getUniqueExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all unique successor blocks of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
The legacy pass manager's analysis pass to compute loop information.
bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, const BasicBlock *ExitBB) const
This class represents a loop nest and can be used to query its properties.
Function * getParent() const
Return the function to which the loop-nest belongs.
Loop & getOutermostLoop() const
Return the outermost loop in the loop nest.
Captures loop safety information.
void copyColors(BasicBlock *New, BasicBlock *Old)
Copy colors of block Old into the block New.
const DenseMap< BasicBlock *, ColorVector > & getBlockColors() const
Returns block colors map that is used to update funclet operand bundles.
virtual bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const =0
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
BasicBlock * getBlock() const
Summary of how a function affects memory in the program.
bool onlyAccessesArgPointees() const
Whether this function only (at most) accesses argument memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
An analysis that produces MemorySSA for a function.
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
void insertDef(MemoryDef *Def, bool RenameUses=false)
Insert a definition into the MemorySSA IR.
MemoryAccess * createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point)
Create a MemoryAccess in MemorySSA at a specified point in a block, with a specified clobbering defin...
void insertUse(MemoryUse *Use, bool RenameUses=false)
void removeMemoryAccess(MemoryAccess *, bool OptimizePhis=false)
Remove a MemoryAccess from MemorySSA, including updating all definitions and uses.
MemoryUseOrDef * createMemoryAccessAfter(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt)
void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where)
void wireOldPredecessorsToNewImmediatePredecessor(BasicBlock *Old, BasicBlock *New, ArrayRef< BasicBlock * > Preds, bool IdenticalEdgesWereMerged=true)
A new empty BasicBlock (New) now branches directly to Old.
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Legacy analysis pass which computes MemorySSA.
Encapsulates MemorySSA, including all data associated with memory accesses.
const AccessList * getBlockAccesses(const BasicBlock *BB) const
Return the list of MemoryAccess's for a given basic block.
MemorySSAWalker * getSkipSelfWalker()
bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
void ensureOptimizedUses()
By default, uses are not optimized during MemorySSA construction.
const DefsList * getBlockDefs(const BasicBlock *BB) const
Return the list of MemoryDef's and MemoryPhi's for a given basic block.
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in the same basic block, determine whether MemoryAccess A dominates MemoryA...
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Class that has the common methods + fields of memory uses/defs.
MemoryAccess * getDefiningAccess() const
Get the access that produces the memory state used by this Use.
Represents read-only accesses to memory.
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingBlock(unsigned i, BasicBlock *BB)
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
PointerIntPair - This class implements a pair of a pointer and small integer.
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
PredIteratorCache - This class is an extremely trivial cache for predecessor iterator queries.
size_t size(BasicBlock *BB) const
ArrayRef< BasicBlock * > get(BasicBlock *BB)
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
bool empty() const
Determine if the PriorityWorklist is empty or not.
bool insert(const T &X)
Insert a new element into the PriorityWorklist.
Helper class for SSA formation on a set of values defined in multiple blocks.
The main scalar evolution driver.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
bool remove(const value_type &X)
Remove an item from the set vector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
Flags controlling how much is checked when sinking or hoisting instructions.
SinkAndHoistLICMFlags(unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, Loop &L, MemorySSA &MSSA)
unsigned LicmMssaNoAccForPromotionCap
A version of PriorityWorklist that selects small size optimized data structures for the vector and ma...
bool erase(PtrType Ptr)
erase - If the set contains the specified pointer, remove it and return true, otherwise return false.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
static unsigned getPointerOperandIndex()
StringRef - Represent a constant reference to a string, i.e.
Provides information about what library functions are available for the current target.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
The instances of the Type class are immutable: once they are created, they are never changed.
static IntegerType * getInt8Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUser() const
Return true if there is exactly one user of this value.
std::string getNameOrAsOperand() const
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVMContext & getContext() const
All values hold a context through their type.
user_iterator_impl< User > user_iterator
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
SmallVector< DomTreeNode *, 16 > collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop)
Does a BFS from a given node to all of its children inside a given loop.
Interval::succ_iterator succ_end(Interval *I)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, Loop *CurLoop, MemorySSAUpdater &MSSAU, bool TargetExecutesOncePerLoop, SinkAndHoistLICMFlags &LICMFlags, OptimizationRemarkEmitter *ORE=nullptr)
Returns true if is legal to hoist or sink this instruction disregarding the possible introduction of ...
void set_intersect(S1Ty &S1, const S2Ty &S2)
set_intersect(A, B) - Compute A := A ^ B Identical to set_intersection, except that it works on set<>...
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
void initializeLegacyLICMPassPass(PassRegistry &)
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
bool PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, bool StoreCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI=false, unsigned MaxUsesToExplore=0, const LoopInfo *LI=nullptr)
PointerMayBeCapturedBefore - Return true if this pointer value may be captured by the enclosing funct...
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments and pointer casts from the specified value,...
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
bool isNoAliasCall(const Value *V)
Return true if this pointer is returned by a noalias function.
Interval::pred_iterator pred_end(Interval *I)
bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, AssumptionCache *, TargetLibraryInfo *, Loop *, MemorySSAUpdater &, ScalarEvolution *, ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, bool, bool AllowSpeculation)
Walk the specified region of the CFG (defined by all blocks dominated by the specified block,...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
auto reverse(ContainerTy &&C)
bool isModSet(const ModRefInfo MRI)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
bool isModOrRefSet(const ModRefInfo MRI)
bool isNotVisibleOnUnwind(const Value *Object, bool &RequiresNoCaptureBeforeUnwind)
Return true if Object memory is not visible after an unwind, in the sense that program semantics cann...
void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
bool VerifyMemorySSA
Enables verification of MemorySSA.
bool salvageKnowledge(Instruction *I, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Calls BuildAssumeFromInst and if the resulting llvm.assume is valid insert if before I.
bool hasDisableLICMTransformsHint(const Loop *L)
Look for the loop attribute that disables the LICM transformation heuristics.
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
bool promoteLoopAccessesToScalars(const SmallSetVector< Value *, 8 > &, SmallVectorImpl< BasicBlock * > &, SmallVectorImpl< Instruction * > &, SmallVectorImpl< MemoryAccess * > &, PredIteratorCache &, LoopInfo *, DominatorTree *, AssumptionCache *AC, const TargetLibraryInfo *, TargetTransformInfo *, Loop *, MemorySSAUpdater &, ICFLoopSafetyInfo *, OptimizationRemarkEmitter *, bool AllowSpeculation, bool HasReadsOutsideSet)
Try to promote memory values to scalars by sinking stores out of the loop and moving loads to before ...
bool isIdentifiedFunctionLocal(const Value *V)
Return true if V is umabigously identified at the function-level.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
auto predecessors(const MachineBasicBlock *BB)
bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, TargetLibraryInfo *, TargetTransformInfo *, Loop *CurLoop, MemorySSAUpdater &, ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, Loop *OutermostLoop=nullptr)
Walk the specified region of the CFG (defined by all blocks dominated by the specified block,...
cl::opt< unsigned > SetLicmMssaNoAccForPromotionCap
unsigned pred_size(const MachineBasicBlock *BB)
cl::opt< unsigned > SetLicmMssaOptCap
bool sinkRegionForLoopNest(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *, TargetLibraryInfo *, TargetTransformInfo *, Loop *, MemorySSAUpdater &, ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *)
Call sinkRegion on loops contained within the specified loop in order from innermost to outermost.
Type * getLoadStoreType(Value *I)
A helper function that returns the type of a load or store instruction.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
AAMDNodes merge(const AAMDNodes &Other) const
Given two sets of AAMDNodes applying to potentially different locations, determine the best AAMDNodes...
This struct is a compact representation of a valid (non-zero power of two) alignment.
unsigned MssaNoAccForPromotionCap
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
TargetTransformInfo & TTI
A lightweight accessor for an operand bundle meant to be passed around by value.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
A CRTP mix-in to automatically provide informational APIs needed for passes.