LLVM 22.0.0git
AArch64RegisterBankInfo.cpp
Go to the documentation of this file.
1//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the RegisterBankInfo class for
10/// AArch64.
11/// \todo This should be generated by TableGen.
12//===----------------------------------------------------------------------===//
13
15#include "AArch64RegisterInfo.h"
16#include "AArch64Subtarget.h"
18#include "llvm/ADT/STLExtras.h"
33#include "llvm/IR/IntrinsicsAArch64.h"
36#include <cassert>
37
38#define GET_TARGET_REGBANK_IMPL
39#include "AArch64GenRegisterBank.inc"
40
41// This file will be TableGen'ed at some point.
42#include "AArch64GenRegisterBankInfo.def"
43
44using namespace llvm;
45static const unsigned CustomMappingID = 1;
46
48 const TargetRegisterInfo &TRI) {
49 static llvm::once_flag InitializeRegisterBankFlag;
50
51 static auto InitializeRegisterBankOnce = [&]() {
52 // We have only one set of register banks, whatever the subtarget
53 // is. Therefore, the initialization of the RegBanks table should be
54 // done only once. Indeed the table of all register banks
55 // (AArch64::RegBanks) is unique in the compiler. At some point, it
56 // will get tablegen'ed and the whole constructor becomes empty.
57
58 const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
59 (void)RBGPR;
60 assert(&AArch64::GPRRegBank == &RBGPR &&
61 "The order in RegBanks is messed up");
62
63 const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
64 (void)RBFPR;
65 assert(&AArch64::FPRRegBank == &RBFPR &&
66 "The order in RegBanks is messed up");
67
68 const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
69 (void)RBCCR;
70 assert(&AArch64::CCRegBank == &RBCCR &&
71 "The order in RegBanks is messed up");
72
73 // The GPR register bank is fully defined by all the registers in
74 // GR64all + its subclasses.
75 assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
76 "Subclass not added?");
77 assert(getMaximumSize(RBGPR.getID()) == 128 &&
78 "GPRs should hold up to 128-bit");
79
80 // The FPR register bank is fully defined by all the registers in
81 // GR64all + its subclasses.
82 assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
83 "Subclass not added?");
84 assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
85 "Subclass not added?");
86 assert(getMaximumSize(RBFPR.getID()) == 512 &&
87 "FPRs should hold up to 512-bit via QQQQ sequence");
88
89 assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
90 "Class not added?");
91 assert(getMaximumSize(RBCCR.getID()) == 32 &&
92 "CCR should hold up to 32-bit");
93
94 // Check that the TableGen'ed like file is in sync we our expectations.
95 // First, the Idx.
98 "PartialMappingIdx's are incorrectly ordered");
102 "PartialMappingIdx's are incorrectly ordered");
103// Now, the content.
104// Check partial mapping.
105#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB) \
106 do { \
107 assert( \
108 checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
109 #Idx " is incorrectly initialized"); \
110 } while (false)
111
112 CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
113 CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
114 CHECK_PARTIALMAP(PMI_GPR128, 0, 128, RBGPR);
115 CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
116 CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
117 CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
118 CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
119 CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
120 CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);
121
122// Check value mapping.
123#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset) \
124 do { \
125 assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size, \
126 PartialMappingIdx::PMI_First##RBName, Size, \
127 Offset) && \
128 #RBName #Size " " #Offset " is incorrectly initialized"); \
129 } while (false)
130
131#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)
132
133 CHECK_VALUEMAP(GPR, 32);
134 CHECK_VALUEMAP(GPR, 64);
135 CHECK_VALUEMAP(GPR, 128);
136 CHECK_VALUEMAP(FPR, 16);
137 CHECK_VALUEMAP(FPR, 32);
138 CHECK_VALUEMAP(FPR, 64);
139 CHECK_VALUEMAP(FPR, 128);
140 CHECK_VALUEMAP(FPR, 256);
141 CHECK_VALUEMAP(FPR, 512);
142
143// Check the value mapping for 3-operands instructions where all the operands
144// map to the same value mapping.
145#define CHECK_VALUEMAP_3OPS(RBName, Size) \
146 do { \
147 CHECK_VALUEMAP_IMPL(RBName, Size, 0); \
148 CHECK_VALUEMAP_IMPL(RBName, Size, 1); \
149 CHECK_VALUEMAP_IMPL(RBName, Size, 2); \
150 } while (false)
151
152 CHECK_VALUEMAP_3OPS(GPR, 32);
153 CHECK_VALUEMAP_3OPS(GPR, 64);
154 CHECK_VALUEMAP_3OPS(GPR, 128);
160
161#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size) \
162 do { \
163 unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min; \
164 unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min; \
165 (void)PartialMapDstIdx; \
166 (void)PartialMapSrcIdx; \
167 const ValueMapping *Map = getCopyMapping(AArch64::RBNameDst##RegBankID, \
168 AArch64::RBNameSrc##RegBankID, \
169 TypeSize::getFixed(Size)); \
170 (void)Map; \
171 assert(Map[0].BreakDown == \
172 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
173 Map[0].NumBreakDowns == 1 && \
174 #RBNameDst #Size " Dst is incorrectly initialized"); \
175 assert(Map[1].BreakDown == \
176 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
177 Map[1].NumBreakDowns == 1 && \
178 #RBNameSrc #Size " Src is incorrectly initialized"); \
179 \
180 } while (false)
181
182 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
184 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
190
191#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize) \
192 do { \
193 unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min; \
194 unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min; \
195 (void)PartialMapDstIdx; \
196 (void)PartialMapSrcIdx; \
197 const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize); \
198 (void)Map; \
199 assert(Map[0].BreakDown == \
200 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
201 Map[0].NumBreakDowns == 1 && "FPR" #DstSize \
202 " Dst is incorrectly initialized"); \
203 assert(Map[1].BreakDown == \
204 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
205 Map[1].NumBreakDowns == 1 && "FPR" #SrcSize \
206 " Src is incorrectly initialized"); \
207 \
208 } while (false)
209
210 CHECK_VALUEMAP_FPEXT(32, 16);
211 CHECK_VALUEMAP_FPEXT(64, 16);
212 CHECK_VALUEMAP_FPEXT(64, 32);
213 CHECK_VALUEMAP_FPEXT(128, 64);
214
215 assert(verify(TRI) && "Invalid register bank information");
216 };
217
218 llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
219}
220
222 const RegisterBank &B,
223 const TypeSize Size) const {
224 // What do we do with different size?
225 // copy are same size.
226 // Will introduce other hooks for different size:
227 // * extract cost.
228 // * build_sequence cost.
229
230 // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
231 // FIXME: This should be deduced from the scheduling model.
232 if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
233 // FMOVXDr or FMOVWSr.
234 return 5;
235 if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
236 // FMOVDXr or FMOVSWr.
237 return 4;
238
240}
241
242const RegisterBank &
244 LLT Ty) const {
245 switch (RC.getID()) {
246 case AArch64::GPR64sponlyRegClassID:
247 return getRegBank(AArch64::GPRRegBankID);
248 default:
250 }
251}
252
255 const MachineInstr &MI) const {
256 const MachineFunction &MF = *MI.getParent()->getParent();
257 const TargetSubtargetInfo &STI = MF.getSubtarget();
258 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
259 const MachineRegisterInfo &MRI = MF.getRegInfo();
260
261 switch (MI.getOpcode()) {
262 case TargetOpcode::G_OR: {
263 // 32 and 64-bit or can be mapped on either FPR or
264 // GPR for the same cost.
265 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
266 if (Size != 32 && Size != 64)
267 break;
268
269 // If the instruction has any implicit-defs or uses,
270 // do not mess with it.
271 if (MI.getNumOperands() != 3)
272 break;
273 InstructionMappings AltMappings;
274 const InstructionMapping &GPRMapping = getInstructionMapping(
275 /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
276 /*NumOperands*/ 3);
277 const InstructionMapping &FPRMapping = getInstructionMapping(
278 /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
279 /*NumOperands*/ 3);
280
281 AltMappings.push_back(&GPRMapping);
282 AltMappings.push_back(&FPRMapping);
283 return AltMappings;
284 }
285 case TargetOpcode::G_BITCAST: {
286 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
287 if (Size != 32 && Size != 64)
288 break;
289
290 // If the instruction has any implicit-defs or uses,
291 // do not mess with it.
292 if (MI.getNumOperands() != 2)
293 break;
294
295 InstructionMappings AltMappings;
296 const InstructionMapping &GPRMapping = getInstructionMapping(
297 /*ID*/ 1, /*Cost*/ 1,
298 getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
299 /*NumOperands*/ 2);
300 const InstructionMapping &FPRMapping = getInstructionMapping(
301 /*ID*/ 2, /*Cost*/ 1,
302 getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
303 /*NumOperands*/ 2);
304 const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
305 /*ID*/ 3,
306 /*Cost*/
307 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
309 getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
310 /*NumOperands*/ 2);
311 const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
312 /*ID*/ 3,
313 /*Cost*/
314 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
316 getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
317 /*NumOperands*/ 2);
318
319 AltMappings.push_back(&GPRMapping);
320 AltMappings.push_back(&FPRMapping);
321 AltMappings.push_back(&GPRToFPRMapping);
322 AltMappings.push_back(&FPRToGPRMapping);
323 return AltMappings;
324 }
325 case TargetOpcode::G_LOAD: {
326 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
327 if (Size != 64)
328 break;
329
330 // If the instruction has any implicit-defs or uses,
331 // do not mess with it.
332 if (MI.getNumOperands() != 2)
333 break;
334
335 InstructionMappings AltMappings;
336 const InstructionMapping &GPRMapping = getInstructionMapping(
337 /*ID*/ 1, /*Cost*/ 1,
340 // Addresses are GPR 64-bit.
342 /*NumOperands*/ 2);
343 const InstructionMapping &FPRMapping = getInstructionMapping(
344 /*ID*/ 2, /*Cost*/ 1,
347 // Addresses are GPR 64-bit.
349 /*NumOperands*/ 2);
350
351 AltMappings.push_back(&GPRMapping);
352 AltMappings.push_back(&FPRMapping);
353 return AltMappings;
354 }
355 default:
356 break;
357 }
359}
360
361void AArch64RegisterBankInfo::applyMappingImpl(
362 MachineIRBuilder &Builder, const OperandsMapper &OpdMapper) const {
363 MachineInstr &MI = OpdMapper.getMI();
364 MachineRegisterInfo &MRI = OpdMapper.getMRI();
365
366 switch (MI.getOpcode()) {
367 case TargetOpcode::G_OR:
368 case TargetOpcode::G_BITCAST:
369 case TargetOpcode::G_LOAD:
370 // Those ID must match getInstrAlternativeMappings.
371 assert((OpdMapper.getInstrMapping().getID() >= 1 &&
372 OpdMapper.getInstrMapping().getID() <= 4) &&
373 "Don't know how to handle that ID");
374 return applyDefaultMapping(OpdMapper);
375 case TargetOpcode::G_INSERT_VECTOR_ELT: {
376 // Extend smaller gpr operands to 32 bit.
377 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
378 auto Ext = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(2).getReg());
379 MRI.setRegBank(Ext.getReg(0), getRegBank(AArch64::GPRRegBankID));
380 MI.getOperand(2).setReg(Ext.getReg(0));
381 return applyDefaultMapping(OpdMapper);
382 }
383 case AArch64::G_DUP: {
384 // Extend smaller gpr to 32-bits
385 assert(MRI.getType(MI.getOperand(1).getReg()).getSizeInBits() < 32 &&
386 "Expected sources smaller than 32-bits");
387 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
388
389 Register ConstReg;
390 auto ConstMI = MRI.getVRegDef(MI.getOperand(1).getReg());
391 if (ConstMI->getOpcode() == TargetOpcode::G_CONSTANT) {
392 auto CstVal = ConstMI->getOperand(1).getCImm()->getValue();
393 ConstReg =
394 Builder.buildConstant(LLT::scalar(32), CstVal.sext(32)).getReg(0);
395 } else {
396 ConstReg = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(1).getReg())
397 .getReg(0);
398 }
399 MRI.setRegBank(ConstReg, getRegBank(AArch64::GPRRegBankID));
400 MI.getOperand(1).setReg(ConstReg);
401 return applyDefaultMapping(OpdMapper);
402 }
403 default:
404 llvm_unreachable("Don't know how to handle that operation");
405 }
406}
407
409AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
410 const MachineInstr &MI) const {
411 const unsigned Opc = MI.getOpcode();
412 const MachineFunction &MF = *MI.getParent()->getParent();
413 const MachineRegisterInfo &MRI = MF.getRegInfo();
414
415 unsigned NumOperands = MI.getNumOperands();
416 assert(NumOperands <= 3 &&
417 "This code is for instructions with 3 or less operands");
418
419 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
420 TypeSize Size = Ty.getSizeInBits();
422
424
425#ifndef NDEBUG
426 // Make sure all the operands are using similar size and type.
427 // Should probably be checked by the machine verifier.
428 // This code won't catch cases where the number of lanes is
429 // different between the operands.
430 // If we want to go to that level of details, it is probably
431 // best to check that the types are the same, period.
432 // Currently, we just check that the register banks are the same
433 // for each types.
434 for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
435 LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
436 assert(
438 RBIdx, OpTy.getSizeInBits()) ==
440 "Operand has incompatible size");
441 bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
442 (void)OpIsFPR;
443 assert(IsFPR == OpIsFPR && "Operand has incompatible type");
444 }
445#endif // End NDEBUG.
446
448 getValueMapping(RBIdx, Size), NumOperands);
449}
450
451/// \returns true if a given intrinsic only uses and defines FPRs.
453 const MachineInstr &MI) {
454 // TODO: Add more intrinsics.
456 default:
457 return false;
458 case Intrinsic::aarch64_neon_uaddlv:
459 case Intrinsic::aarch64_neon_uaddv:
460 case Intrinsic::aarch64_neon_saddv:
461 case Intrinsic::aarch64_neon_umaxv:
462 case Intrinsic::aarch64_neon_smaxv:
463 case Intrinsic::aarch64_neon_uminv:
464 case Intrinsic::aarch64_neon_sminv:
465 case Intrinsic::aarch64_neon_faddv:
466 case Intrinsic::aarch64_neon_fmaxv:
467 case Intrinsic::aarch64_neon_fminv:
468 case Intrinsic::aarch64_neon_fmaxnmv:
469 case Intrinsic::aarch64_neon_fminnmv:
470 case Intrinsic::aarch64_neon_fmulx:
471 case Intrinsic::aarch64_neon_frecpe:
472 case Intrinsic::aarch64_neon_frecps:
473 case Intrinsic::aarch64_neon_frecpx:
474 case Intrinsic::aarch64_neon_frsqrte:
475 case Intrinsic::aarch64_neon_frsqrts:
476 case Intrinsic::aarch64_neon_facge:
477 case Intrinsic::aarch64_neon_facgt:
478 case Intrinsic::aarch64_neon_fabd:
479 case Intrinsic::aarch64_sisd_fabd:
480 case Intrinsic::aarch64_neon_sqrdmlah:
481 case Intrinsic::aarch64_neon_sqrdmlsh:
482 case Intrinsic::aarch64_neon_sqrdmulh:
483 case Intrinsic::aarch64_neon_sqadd:
484 case Intrinsic::aarch64_neon_sqsub:
485 case Intrinsic::aarch64_crypto_sha1h:
486 case Intrinsic::aarch64_crypto_sha1c:
487 case Intrinsic::aarch64_crypto_sha1p:
488 case Intrinsic::aarch64_crypto_sha1m:
489 case Intrinsic::aarch64_sisd_fcvtxn:
490 return true;
491 case Intrinsic::aarch64_neon_saddlv: {
492 const LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
493 return SrcTy.getElementType().getSizeInBits() >= 16 &&
494 SrcTy.getElementCount().getFixedValue() >= 4;
495 }
496 }
497}
498
499bool AArch64RegisterBankInfo::isPHIWithFPConstraints(
500 const MachineInstr &MI, const MachineRegisterInfo &MRI,
501 const AArch64RegisterInfo &TRI, const unsigned Depth) const {
502 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
503 return false;
504
505 return any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
506 [&](const MachineInstr &UseMI) {
507 if (onlyUsesFP(UseMI, MRI, TRI, Depth + 1))
508 return true;
509 return isPHIWithFPConstraints(UseMI, MRI, TRI, Depth + 1);
510 });
511}
512
513bool AArch64RegisterBankInfo::hasFPConstraints(const MachineInstr &MI,
516 unsigned Depth) const {
517 unsigned Op = MI.getOpcode();
518 if (Op == TargetOpcode::G_INTRINSIC && isFPIntrinsic(MRI, MI))
519 return true;
520
521 // Do we have an explicit floating point instruction?
523 return true;
524
525 // No. Check if we have a copy-like instruction. If we do, then we could
526 // still be fed by floating point instructions.
527 if (Op != TargetOpcode::COPY && !MI.isPHI() &&
529 return false;
530
531 // Check if we already know the register bank.
532 auto *RB = getRegBank(MI.getOperand(0).getReg(), MRI, TRI);
533 if (RB == &AArch64::FPRRegBank)
534 return true;
535 if (RB == &AArch64::GPRRegBank)
536 return false;
537
538 // We don't know anything.
539 //
540 // If we have a phi, we may be able to infer that it will be assigned a FPR
541 // based off of its inputs.
542 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
543 return false;
544
545 return any_of(MI.explicit_uses(), [&](const MachineOperand &Op) {
546 return Op.isReg() &&
547 onlyDefinesFP(*MRI.getVRegDef(Op.getReg()), MRI, TRI, Depth + 1);
548 });
549}
550
551bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
554 unsigned Depth) const {
555 switch (MI.getOpcode()) {
556 case TargetOpcode::G_FPTOSI:
557 case TargetOpcode::G_FPTOUI:
558 case TargetOpcode::G_FPTOSI_SAT:
559 case TargetOpcode::G_FPTOUI_SAT:
560 case TargetOpcode::G_FCMP:
561 case TargetOpcode::G_LROUND:
562 case TargetOpcode::G_LLROUND:
563 return true;
564 case TargetOpcode::G_INTRINSIC:
566 case Intrinsic::aarch64_neon_fcvtas:
567 case Intrinsic::aarch64_neon_fcvtau:
568 case Intrinsic::aarch64_neon_fcvtzs:
569 case Intrinsic::aarch64_neon_fcvtzu:
570 case Intrinsic::aarch64_neon_fcvtms:
571 case Intrinsic::aarch64_neon_fcvtmu:
572 case Intrinsic::aarch64_neon_fcvtns:
573 case Intrinsic::aarch64_neon_fcvtnu:
574 case Intrinsic::aarch64_neon_fcvtps:
575 case Intrinsic::aarch64_neon_fcvtpu:
576 return true;
577 default:
578 break;
579 }
580 break;
581 default:
582 break;
583 }
584 return hasFPConstraints(MI, MRI, TRI, Depth);
585}
586
587bool AArch64RegisterBankInfo::onlyDefinesFP(const MachineInstr &MI,
590 unsigned Depth) const {
591 switch (MI.getOpcode()) {
592 case AArch64::G_DUP:
593 case TargetOpcode::G_SITOFP:
594 case TargetOpcode::G_UITOFP:
595 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
596 case TargetOpcode::G_INSERT_VECTOR_ELT:
597 case TargetOpcode::G_BUILD_VECTOR:
598 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
599 return true;
600 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
602 case Intrinsic::aarch64_neon_ld1x2:
603 case Intrinsic::aarch64_neon_ld1x3:
604 case Intrinsic::aarch64_neon_ld1x4:
605 case Intrinsic::aarch64_neon_ld2:
606 case Intrinsic::aarch64_neon_ld2lane:
607 case Intrinsic::aarch64_neon_ld2r:
608 case Intrinsic::aarch64_neon_ld3:
609 case Intrinsic::aarch64_neon_ld3lane:
610 case Intrinsic::aarch64_neon_ld3r:
611 case Intrinsic::aarch64_neon_ld4:
612 case Intrinsic::aarch64_neon_ld4lane:
613 case Intrinsic::aarch64_neon_ld4r:
614 return true;
615 default:
616 break;
617 }
618 break;
619 default:
620 break;
621 }
622 return hasFPConstraints(MI, MRI, TRI, Depth);
623}
624
625bool AArch64RegisterBankInfo::prefersFPUse(const MachineInstr &MI,
628 unsigned Depth) const {
629 switch (MI.getOpcode()) {
630 case TargetOpcode::G_SITOFP:
631 case TargetOpcode::G_UITOFP:
632 return MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() ==
633 MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
634 }
635 return onlyDefinesFP(MI, MRI, TRI, Depth);
636}
637
638bool AArch64RegisterBankInfo::isLoadFromFPType(const MachineInstr &MI) const {
639 // GMemOperation because we also want to match indexed loads.
640 auto *MemOp = cast<GMemOperation>(&MI);
641 const Value *LdVal = MemOp->getMMO().getValue();
642 if (!LdVal)
643 return false;
644
645 Type *EltTy = nullptr;
646 if (const GlobalValue *GV = dyn_cast<GlobalValue>(LdVal)) {
647 EltTy = GV->getValueType();
648 // Look at the first element of the struct to determine the type we are
649 // loading
650 while (StructType *StructEltTy = dyn_cast<StructType>(EltTy)) {
651 if (StructEltTy->getNumElements() == 0)
652 break;
653 EltTy = StructEltTy->getTypeAtIndex(0U);
654 }
655 // Look at the first element of the array to determine its type
656 if (isa<ArrayType>(EltTy))
657 EltTy = EltTy->getArrayElementType();
658 } else if (!isa<Constant>(LdVal)) {
659 // FIXME: grubbing around uses is pretty ugly, but with no more
660 // `getPointerElementType` there's not much else we can do.
661 for (const auto *LdUser : LdVal->users()) {
662 if (isa<LoadInst>(LdUser)) {
663 EltTy = LdUser->getType();
664 break;
665 }
666 if (isa<StoreInst>(LdUser) && LdUser->getOperand(1) == LdVal) {
667 EltTy = LdUser->getOperand(0)->getType();
668 break;
669 }
670 }
671 }
672 return EltTy && EltTy->isFPOrFPVectorTy();
673}
674
677 const unsigned Opc = MI.getOpcode();
678
679 // Try the default logic for non-generic instructions that are either copies
680 // or already have some operands assigned to banks.
681 if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
682 Opc == TargetOpcode::G_PHI) {
685 if (Mapping.isValid())
686 return Mapping;
687 }
688
689 const MachineFunction &MF = *MI.getParent()->getParent();
690 const MachineRegisterInfo &MRI = MF.getRegInfo();
693
694 switch (Opc) {
695 // G_{F|S|U}REM are not listed because they are not legal.
696 // Arithmetic ops.
697 case TargetOpcode::G_ADD:
698 case TargetOpcode::G_SUB:
699 case TargetOpcode::G_PTR_ADD:
700 case TargetOpcode::G_MUL:
701 case TargetOpcode::G_SDIV:
702 case TargetOpcode::G_UDIV:
703 // Bitwise ops.
704 case TargetOpcode::G_AND:
705 case TargetOpcode::G_OR:
706 case TargetOpcode::G_XOR:
707 // Floating point ops.
708 case TargetOpcode::G_FADD:
709 case TargetOpcode::G_FSUB:
710 case TargetOpcode::G_FMUL:
711 case TargetOpcode::G_FDIV:
712 case TargetOpcode::G_FMAXIMUM:
713 case TargetOpcode::G_FMINIMUM:
714 return getSameKindOfOperandsMapping(MI);
715 case TargetOpcode::G_FPEXT: {
716 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
717 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
719 DefaultMappingID, /*Cost*/ 1,
720 getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
721 /*NumOperands*/ 2);
722 }
723 // Shifts.
724 case TargetOpcode::G_SHL:
725 case TargetOpcode::G_LSHR:
726 case TargetOpcode::G_ASHR: {
727 LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
728 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
729 if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
732 return getSameKindOfOperandsMapping(MI);
733 }
734 case TargetOpcode::COPY: {
735 Register DstReg = MI.getOperand(0).getReg();
736 Register SrcReg = MI.getOperand(1).getReg();
737 // Check if one of the register is not a generic register.
738 if ((DstReg.isPhysical() || !MRI.getType(DstReg).isValid()) ||
739 (SrcReg.isPhysical() || !MRI.getType(SrcReg).isValid())) {
740 const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
741 const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
742 if (!DstRB)
743 DstRB = SrcRB;
744 else if (!SrcRB)
745 SrcRB = DstRB;
746 // If both RB are null that means both registers are generic.
747 // We shouldn't be here.
748 assert(DstRB && SrcRB && "Both RegBank were nullptr");
749 TypeSize Size = getSizeInBits(DstReg, MRI, TRI);
751 DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
752 getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
753 // We only care about the mapping of the destination.
754 /*NumOperands*/ 1);
755 }
756 // Both registers are generic, use G_BITCAST.
757 [[fallthrough]];
758 }
759 case TargetOpcode::G_BITCAST: {
760 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
761 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
762 TypeSize Size = DstTy.getSizeInBits();
763 bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
764 bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
765 const RegisterBank &DstRB =
766 DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
767 const RegisterBank &SrcRB =
768 SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
770 DefaultMappingID, copyCost(DstRB, SrcRB, Size),
771 getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
772 // We only care about the mapping of the destination for COPY.
773 /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
774 }
775 default:
776 break;
777 }
778
779 unsigned NumOperands = MI.getNumOperands();
780 unsigned MappingID = DefaultMappingID;
781
782 // Track the size and bank of each register. We don't do partial mappings.
783 SmallVector<unsigned, 4> OpSize(NumOperands);
784 SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
785 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
786 auto &MO = MI.getOperand(Idx);
787 if (!MO.isReg() || !MO.getReg())
788 continue;
789
790 LLT Ty = MRI.getType(MO.getReg());
791 if (!Ty.isValid())
792 continue;
793 OpSize[Idx] = Ty.getSizeInBits().getKnownMinValue();
794
795 // As a top-level guess, vectors including both scalable and non-scalable
796 // ones go in FPRs, scalars and pointers in GPRs.
797 // For floating-point instructions, scalars go in FPRs.
798 if (Ty.isVector())
799 OpRegBankIdx[Idx] = PMI_FirstFPR;
801 Ty.getSizeInBits() > 64)
802 OpRegBankIdx[Idx] = PMI_FirstFPR;
803 else
804 OpRegBankIdx[Idx] = PMI_FirstGPR;
805 }
806
807 unsigned Cost = 1;
808 // Some of the floating-point instructions have mixed GPR and FPR operands:
809 // fine-tune the computed mapping.
810 switch (Opc) {
811 case AArch64::G_DUP: {
812 Register ScalarReg = MI.getOperand(1).getReg();
813 LLT ScalarTy = MRI.getType(ScalarReg);
814 auto ScalarDef = MRI.getVRegDef(ScalarReg);
815 // We want to select dup(load) into LD1R.
816 if (ScalarDef->getOpcode() == TargetOpcode::G_LOAD)
817 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
818 // s8 is an exception for G_DUP, which we always want on gpr.
819 else if (ScalarTy.getSizeInBits() != 8 &&
820 (getRegBank(ScalarReg, MRI, TRI) == &AArch64::FPRRegBank ||
821 onlyDefinesFP(*ScalarDef, MRI, TRI)))
822 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
823 else {
824 if (ScalarTy.getSizeInBits() < 32 &&
825 getRegBank(ScalarReg, MRI, TRI) == &AArch64::GPRRegBank) {
826 // Calls applyMappingImpl()
827 MappingID = CustomMappingID;
828 }
829 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
830 }
831 break;
832 }
833 case TargetOpcode::G_TRUNC: {
834 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
835 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
836 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
837 break;
838 }
839 case TargetOpcode::G_SITOFP:
840 case TargetOpcode::G_UITOFP: {
841 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
842 break;
843 // Integer to FP conversions don't necessarily happen between GPR -> FPR
844 // regbanks. They can also be done within an FPR register.
845 Register SrcReg = MI.getOperand(1).getReg();
846 if (getRegBank(SrcReg, MRI, TRI) == &AArch64::FPRRegBank &&
847 MRI.getType(SrcReg).getSizeInBits() ==
848 MRI.getType(MI.getOperand(0).getReg()).getSizeInBits())
849 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
850 else
851 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
852 break;
853 }
854 case TargetOpcode::G_FPTOSI_SAT:
855 case TargetOpcode::G_FPTOUI_SAT: {
856 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
857 if (DstType.isVector())
858 break;
859 if (DstType == LLT::scalar(16)) {
860 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
861 break;
862 }
863 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
864 break;
865 }
866 case TargetOpcode::G_FPTOSI:
867 case TargetOpcode::G_FPTOUI:
868 case TargetOpcode::G_INTRINSIC_LRINT:
869 case TargetOpcode::G_INTRINSIC_LLRINT:
870 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
871 break;
872 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
873 break;
874 case TargetOpcode::G_FCMP: {
875 // If the result is a vector, it must use a FPR.
877 MRI.getType(MI.getOperand(0).getReg()).isVector() ? PMI_FirstFPR
878 : PMI_FirstGPR;
879 OpRegBankIdx = {Idx0,
880 /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
881 break;
882 }
883 case TargetOpcode::G_BITCAST:
884 // This is going to be a cross register bank copy and this is expensive.
885 if (OpRegBankIdx[0] != OpRegBankIdx[1])
886 Cost = copyCost(
887 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
888 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
889 TypeSize::getFixed(OpSize[0]));
890 break;
891 case TargetOpcode::G_LOAD: {
892 // Loading in vector unit is slightly more expensive.
893 // This is actually only true for the LD1R and co instructions,
894 // but anyway for the fast mode this number does not matter and
895 // for the greedy mode the cost of the cross bank copy will
896 // offset this number.
897 // FIXME: Should be derived from the scheduling model.
898 if (OpRegBankIdx[0] != PMI_FirstGPR) {
899 Cost = 2;
900 break;
901 }
902
903 if (cast<GLoad>(MI).isAtomic()) {
904 // Atomics always use GPR destinations. Don't refine any further.
905 OpRegBankIdx[0] = PMI_FirstGPR;
906 break;
907 }
908
909 // Try to guess the type of the load from the MMO.
910 if (isLoadFromFPType(MI)) {
911 OpRegBankIdx[0] = PMI_FirstFPR;
912 break;
913 }
914
915 // Check if that load feeds fp instructions.
916 // In that case, we want the default mapping to be on FPR
917 // instead of blind map every scalar to GPR.
918 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
919 [&](const MachineInstr &UseMI) {
920 // If we have at least one direct or indirect use
921 // in a FP instruction,
922 // assume this was a floating point load in the IR. If it was
923 // not, we would have had a bitcast before reaching that
924 // instruction.
925 //
926 // Int->FP conversion operations are also captured in
927 // prefersFPUse().
928
929 if (isPHIWithFPConstraints(UseMI, MRI, TRI))
930 return true;
931
932 return onlyUsesFP(UseMI, MRI, TRI) ||
933 prefersFPUse(UseMI, MRI, TRI);
934 }))
935 OpRegBankIdx[0] = PMI_FirstFPR;
936 break;
937 }
938 case TargetOpcode::G_STORE:
939 // Check if that store is fed by fp instructions.
940 if (OpRegBankIdx[0] == PMI_FirstGPR) {
941 Register VReg = MI.getOperand(0).getReg();
942 if (!VReg)
943 break;
944 MachineInstr *DefMI = MRI.getVRegDef(VReg);
945 if (onlyDefinesFP(*DefMI, MRI, TRI))
946 OpRegBankIdx[0] = PMI_FirstFPR;
947 break;
948 }
949 break;
950 case TargetOpcode::G_INDEXED_STORE:
951 if (OpRegBankIdx[1] == PMI_FirstGPR) {
952 Register VReg = MI.getOperand(1).getReg();
953 if (!VReg)
954 break;
955 MachineInstr *DefMI = MRI.getVRegDef(VReg);
956 if (onlyDefinesFP(*DefMI, MRI, TRI))
957 OpRegBankIdx[1] = PMI_FirstFPR;
958 break;
959 }
960 break;
961 case TargetOpcode::G_INDEXED_SEXTLOAD:
962 case TargetOpcode::G_INDEXED_ZEXTLOAD:
963 // These should always be GPR.
964 OpRegBankIdx[0] = PMI_FirstGPR;
965 break;
966 case TargetOpcode::G_INDEXED_LOAD: {
967 if (isLoadFromFPType(MI))
968 OpRegBankIdx[0] = PMI_FirstFPR;
969 break;
970 }
971 case TargetOpcode::G_SELECT: {
972 // If the destination is FPR, preserve that.
973 if (OpRegBankIdx[0] != PMI_FirstGPR)
974 break;
975
976 // If we're taking in vectors, we have no choice but to put everything on
977 // FPRs, except for the condition. The condition must always be on a GPR.
978 LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
979 if (SrcTy.isVector()) {
981 break;
982 }
983
984 // Try to minimize the number of copies. If we have more floating point
985 // constrained values than not, then we'll put everything on FPR. Otherwise,
986 // everything has to be on GPR.
987 unsigned NumFP = 0;
988
989 // Check if the uses of the result always produce floating point values.
990 //
991 // For example:
992 //
993 // %z = G_SELECT %cond %x %y
994 // fpr = G_FOO %z ...
995 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
996 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
997 ++NumFP;
998
999 // Check if the defs of the source values always produce floating point
1000 // values.
1001 //
1002 // For example:
1003 //
1004 // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
1005 // %z = G_SELECT %cond %x %y
1006 //
1007 // Also check whether or not the sources have already been decided to be
1008 // FPR. Keep track of this.
1009 //
1010 // This doesn't check the condition, since it's just whatever is in NZCV.
1011 // This isn't passed explicitly in a register to fcsel/csel.
1012 for (unsigned Idx = 2; Idx < 4; ++Idx) {
1013 Register VReg = MI.getOperand(Idx).getReg();
1014 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1015 if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
1016 onlyDefinesFP(*DefMI, MRI, TRI))
1017 ++NumFP;
1018 }
1019
1020 // If we have more FP constraints than not, then move everything over to
1021 // FPR.
1022 if (NumFP >= 2)
1024
1025 break;
1026 }
1027 case TargetOpcode::G_UNMERGE_VALUES: {
1028 // If the first operand belongs to a FPR register bank, then make sure that
1029 // we preserve that.
1030 if (OpRegBankIdx[0] != PMI_FirstGPR)
1031 break;
1032
1033 LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
1034 // UNMERGE into scalars from a vector should always use FPR.
1035 // Likewise if any of the uses are FP instructions.
1036 if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
1037 any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1038 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
1039 // Set the register bank of every operand to FPR.
1040 for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
1041 Idx < NumOperands; ++Idx)
1042 OpRegBankIdx[Idx] = PMI_FirstFPR;
1043 }
1044 break;
1045 }
1046 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1047 // Destination and source need to be FPRs.
1048 OpRegBankIdx[0] = PMI_FirstFPR;
1049 OpRegBankIdx[1] = PMI_FirstFPR;
1050
1051 // Index needs to be a GPR.
1052 OpRegBankIdx[2] = PMI_FirstGPR;
1053 break;
1054 case TargetOpcode::G_INSERT_VECTOR_ELT:
1055 OpRegBankIdx[0] = PMI_FirstFPR;
1056 OpRegBankIdx[1] = PMI_FirstFPR;
1057
1058 // The element may be either a GPR or FPR. Preserve that behaviour.
1059 if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
1060 OpRegBankIdx[2] = PMI_FirstFPR;
1061 else {
1062 // If the type is i8/i16, and the regank will be GPR, then we change the
1063 // type to i32 in applyMappingImpl.
1064 LLT Ty = MRI.getType(MI.getOperand(2).getReg());
1065 if (Ty.getSizeInBits() == 8 || Ty.getSizeInBits() == 16) {
1066 // Calls applyMappingImpl()
1067 MappingID = CustomMappingID;
1068 }
1069 OpRegBankIdx[2] = PMI_FirstGPR;
1070 }
1071
1072 // Index needs to be a GPR.
1073 OpRegBankIdx[3] = PMI_FirstGPR;
1074 break;
1075 case TargetOpcode::G_EXTRACT: {
1076 // For s128 sources we have to use fpr unless we know otherwise.
1077 auto Src = MI.getOperand(1).getReg();
1078 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
1079 if (SrcTy.getSizeInBits() != 128)
1080 break;
1081 auto Idx = MRI.getRegClassOrNull(Src) == &AArch64::XSeqPairsClassRegClass
1082 ? PMI_FirstGPR
1083 : PMI_FirstFPR;
1084 OpRegBankIdx[0] = Idx;
1085 OpRegBankIdx[1] = Idx;
1086 break;
1087 }
1088 case TargetOpcode::G_BUILD_VECTOR: {
1089 // If the first source operand belongs to a FPR register bank, then make
1090 // sure that we preserve that.
1091 if (OpRegBankIdx[1] != PMI_FirstGPR)
1092 break;
1093 Register VReg = MI.getOperand(1).getReg();
1094 if (!VReg)
1095 break;
1096
1097 // Get the instruction that defined the source operand reg, and check if
1098 // it's a floating point operation. Or, if it's a type like s16 which
1099 // doesn't have a exact size gpr register class. The exception is if the
1100 // build_vector has all constant operands, which may be better to leave as
1101 // gpr without copies, so it can be matched in imported patterns.
1102 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1103 unsigned DefOpc = DefMI->getOpcode();
1104 const LLT SrcTy = MRI.getType(VReg);
1105 if (all_of(MI.operands(), [&](const MachineOperand &Op) {
1106 return Op.isDef() || MRI.getVRegDef(Op.getReg())->getOpcode() ==
1107 TargetOpcode::G_CONSTANT;
1108 }))
1109 break;
1111 SrcTy.getSizeInBits() < 32 ||
1112 getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank) {
1113 // Have a floating point op.
1114 // Make sure every operand gets mapped to a FPR register class.
1115 unsigned NumOperands = MI.getNumOperands();
1116 for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
1117 OpRegBankIdx[Idx] = PMI_FirstFPR;
1118 }
1119 break;
1120 }
1121 case TargetOpcode::G_VECREDUCE_FADD:
1122 case TargetOpcode::G_VECREDUCE_FMUL:
1123 case TargetOpcode::G_VECREDUCE_FMAX:
1124 case TargetOpcode::G_VECREDUCE_FMIN:
1125 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1126 case TargetOpcode::G_VECREDUCE_FMINIMUM:
1127 case TargetOpcode::G_VECREDUCE_ADD:
1128 case TargetOpcode::G_VECREDUCE_MUL:
1129 case TargetOpcode::G_VECREDUCE_AND:
1130 case TargetOpcode::G_VECREDUCE_OR:
1131 case TargetOpcode::G_VECREDUCE_XOR:
1132 case TargetOpcode::G_VECREDUCE_SMAX:
1133 case TargetOpcode::G_VECREDUCE_SMIN:
1134 case TargetOpcode::G_VECREDUCE_UMAX:
1135 case TargetOpcode::G_VECREDUCE_UMIN:
1136 // Reductions produce a scalar value from a vector, the scalar should be on
1137 // FPR bank.
1138 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
1139 break;
1140 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1141 case TargetOpcode::G_VECREDUCE_SEQ_FMUL:
1142 // These reductions also take a scalar accumulator input.
1143 // Assign them FPR for now.
1144 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR, PMI_FirstFPR};
1145 break;
1146 case TargetOpcode::G_INTRINSIC:
1147 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1148 switch (cast<GIntrinsic>(MI).getIntrinsicID()) {
1149 case Intrinsic::aarch64_neon_fcvtas:
1150 case Intrinsic::aarch64_neon_fcvtau:
1151 case Intrinsic::aarch64_neon_fcvtzs:
1152 case Intrinsic::aarch64_neon_fcvtzu:
1153 case Intrinsic::aarch64_neon_fcvtms:
1154 case Intrinsic::aarch64_neon_fcvtmu:
1155 case Intrinsic::aarch64_neon_fcvtns:
1156 case Intrinsic::aarch64_neon_fcvtnu:
1157 case Intrinsic::aarch64_neon_fcvtps:
1158 case Intrinsic::aarch64_neon_fcvtpu: {
1159 OpRegBankIdx[2] = PMI_FirstFPR;
1160 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) {
1161 OpRegBankIdx[0] = PMI_FirstFPR;
1162 break;
1163 }
1164 TypeSize DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
1165 TypeSize SrcSize = getSizeInBits(MI.getOperand(2).getReg(), MRI, TRI);
1166 if (((DstSize == SrcSize) || STI.hasFeature(AArch64::FeatureFPRCVT)) &&
1167 all_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1168 [&](const MachineInstr &UseMI) {
1169 return onlyUsesFP(UseMI, MRI, TRI) ||
1170 prefersFPUse(UseMI, MRI, TRI);
1171 }))
1172 OpRegBankIdx[0] = PMI_FirstFPR;
1173 else
1174 OpRegBankIdx[0] = PMI_FirstGPR;
1175 break;
1176 }
1177 case Intrinsic::aarch64_neon_vcvtfxs2fp:
1178 case Intrinsic::aarch64_neon_vcvtfxu2fp:
1179 case Intrinsic::aarch64_neon_vcvtfp2fxs:
1180 case Intrinsic::aarch64_neon_vcvtfp2fxu:
1181 // Override these intrinsics, because they would have a partial
1182 // mapping. This is needed for 'half' types, which otherwise don't
1183 // get legalised correctly.
1184 OpRegBankIdx[0] = PMI_FirstFPR;
1185 OpRegBankIdx[2] = PMI_FirstFPR;
1186 // OpRegBankIdx[1] is the intrinsic ID.
1187 // OpRegBankIdx[3] is an integer immediate.
1188 break;
1189 default: {
1190 // Check if we know that the intrinsic has any constraints on its register
1191 // banks. If it does, then update the mapping accordingly.
1192 unsigned Idx = 0;
1193 if (onlyDefinesFP(MI, MRI, TRI))
1194 for (const auto &Op : MI.defs()) {
1195 if (Op.isReg())
1196 OpRegBankIdx[Idx] = PMI_FirstFPR;
1197 ++Idx;
1198 }
1199 else
1200 Idx += MI.getNumExplicitDefs();
1201
1202 if (onlyUsesFP(MI, MRI, TRI))
1203 for (const auto &Op : MI.explicit_uses()) {
1204 if (Op.isReg())
1205 OpRegBankIdx[Idx] = PMI_FirstFPR;
1206 ++Idx;
1207 }
1208 break;
1209 }
1210 }
1211 break;
1212 }
1213 case TargetOpcode::G_LROUND:
1214 case TargetOpcode::G_LLROUND: {
1215 // Source is always floating point and destination is always integer.
1216 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
1217 break;
1218 }
1219 }
1220
1221 // Finally construct the computed mapping.
1222 SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
1223 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
1224 if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
1225 LLT Ty = MRI.getType(MI.getOperand(Idx).getReg());
1226 if (!Ty.isValid())
1227 continue;
1228 auto Mapping =
1229 getValueMapping(OpRegBankIdx[Idx], TypeSize::getFixed(OpSize[Idx]));
1230 if (!Mapping->isValid())
1232
1233 OpdsMapping[Idx] = Mapping;
1234 }
1235 }
1236
1237 return getInstructionMapping(MappingID, Cost, getOperandsMapping(OpdsMapping),
1238 NumOperands);
1239}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define CHECK_VALUEMAP(RBName, Size)
static bool isFPIntrinsic(const MachineRegisterInfo &MRI, const MachineInstr &MI)
#define CHECK_VALUEMAP_3OPS(RBName, Size)
static const unsigned CustomMappingID
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)
#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)
#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)
This file declares the targeting of the RegisterBankInfo class for AArch64.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
IRTranslator LLVM IR MI
Implement a low-level type suitable for MachineInstr level instruction selection.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
ppc ctr loops verify
static const MCPhysReg FPR[]
FPR - The set of FP registers that should be allocated for arguments on Darwin and AIX.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static unsigned getRegBankBaseIdxOffset(unsigned RBIdx, TypeSize Size)
static const RegisterBankInfo::ValueMapping * getCopyMapping(unsigned DstBankID, unsigned SrcBankID, TypeSize Size)
Get the pointer to the ValueMapping of the operands of a copy instruction from the SrcBankID register...
static bool checkPartialMappingIdx(PartialMappingIdx FirstAlias, PartialMappingIdx LastAlias, ArrayRef< PartialMappingIdx > Order)
static const RegisterBankInfo::PartialMapping PartMappings[]
static const RegisterBankInfo::ValueMapping * getFPExtMapping(unsigned DstSize, unsigned SrcSize)
Get the instruction mapping for G_FPEXT.
static const RegisterBankInfo::ValueMapping * getValueMapping(PartialMappingIdx RBIdx, TypeSize Size)
Get the pointer to the ValueMapping representing the RegisterBank at RBIdx with a size of Size.
static const RegisterBankInfo::ValueMapping ValMappings[]
InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const override
Get the alternative mappings for MI.
unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const override
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const override
Get a register bank that covers RC.
AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
const InstructionMapping & getInstrMapping(const MachineInstr &MI) const override
Get the mapping of the different operands of MI on the register bank.
const AArch64RegisterInfo * getRegisterInfo() const override
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Helper class to build MachineInstr.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Helper class that represents how the value of an instruction may be mapped and what is the related co...
bool isValid() const
Check whether this object is valid.
virtual InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const
Get the alternative mappings for MI.
const InstructionMapping & getInstructionMapping(unsigned ID, unsigned Cost, const ValueMapping *OperandsMapping, unsigned NumOperands) const
Method to get a uniquely generated InstructionMapping.
static void applyDefaultMapping(const OperandsMapper &OpdMapper)
Helper method to apply something that is like the default mapping.
const InstructionMapping & getInvalidInstructionMapping() const
Method to get a uniquely generated invalid InstructionMapping.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
unsigned getMaximumSize(unsigned RegBankID) const
Get the maximum size in bits that fits in the given register bank.
TypeSize getSizeInBits(Register Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const
Get the size in bits of Reg.
virtual const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const
Get a register bank that covers RC.
const ValueMapping * getOperandsMapping(Iterator Begin, Iterator End) const
Get the uniquely generated array of ValueMapping for the elements of between Begin and End.
static const unsigned DefaultMappingID
Identifier used when the related instruction mapping instance is generated by target independent code...
SmallVector< const InstructionMapping *, 4 > InstructionMappings
Convenient type to represent the alternatives for mapping an instruction.
virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const InstructionMapping & getInstrMappingImpl(const MachineInstr &MI) const
Try to get the mapping of MI.
This class implements the register bank concept.
LLVM_ABI bool covers(const TargetRegisterClass &RC) const
Check whether this register bank covers RC.
unsigned getID() const
Get the identifier of this register bank.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
unsigned getID() const
Return the register class ID number.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
Type * getArrayElementType() const
Definition Type.h:408
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
iterator_range< user_iterator > users()
Definition Value.h:426
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
bool isPreISelGenericOptimizationHint(unsigned Opcode)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
DWARFExpression::Operation Op
void call_once(once_flag &flag, Function &&F, Args &&... ArgList)
Execute the function specified as a parameter once.
Definition Threading.h:86
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isPreISelGenericFloatingPointOpcode(unsigned Opc)
Returns whether opcode Opc is a pre-isel generic floating-point opcode, having only floating-point op...
Definition Utils.cpp:1744
The llvm::once_flag structure.
Definition Threading.h:67