LLVM 19.0.0git
MachineCombiner.cpp
Go to the documentation of this file.
1//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The machine combiner pass uses machine trace metrics to ensure the combined
10// instructions do not lengthen the critical path or the resource depth.
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/Debug.h"
34
35using namespace llvm;
36
37#define DEBUG_TYPE "machine-combiner"
38
39STATISTIC(NumInstCombined, "Number of machineinst combined");
40
42inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
43 cl::desc("Incremental depth computation will be used for basic "
44 "blocks with more instructions."), cl::init(500));
45
46static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
47 cl::desc("Dump all substituted intrs"),
48 cl::init(false));
49
50#ifdef EXPENSIVE_CHECKS
52 "machine-combiner-verify-pattern-order", cl::Hidden,
54 "Verify that the generated patterns are ordered by increasing latency"),
55 cl::init(true));
56#else
58 "machine-combiner-verify-pattern-order", cl::Hidden,
60 "Verify that the generated patterns are ordered by increasing latency"),
61 cl::init(false));
62#endif
63
64namespace {
65class MachineCombiner : public MachineFunctionPass {
66 const TargetSubtargetInfo *STI = nullptr;
67 const TargetInstrInfo *TII = nullptr;
68 const TargetRegisterInfo *TRI = nullptr;
69 MCSchedModel SchedModel;
70 MachineRegisterInfo *MRI = nullptr;
71 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo
72 MachineTraceMetrics *Traces = nullptr;
73 MachineTraceMetrics::Ensemble *TraceEnsemble = nullptr;
74 MachineBlockFrequencyInfo *MBFI = nullptr;
75 ProfileSummaryInfo *PSI = nullptr;
76 RegisterClassInfo RegClassInfo;
77
78 TargetSchedModel TSchedModel;
79
80 /// True if optimizing for code size.
81 bool OptSize = false;
82
83public:
84 static char ID;
85 MachineCombiner() : MachineFunctionPass(ID) {
87 }
88 void getAnalysisUsage(AnalysisUsage &AU) const override;
89 bool runOnMachineFunction(MachineFunction &MF) override;
90 StringRef getPassName() const override { return "Machine InstCombiner"; }
91
92private:
93 bool combineInstructions(MachineBasicBlock *);
94 MachineInstr *getOperandDef(const MachineOperand &MO);
95 bool isTransientMI(const MachineInstr *MI);
96 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
97 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
99 const MachineBasicBlock &MBB);
100 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
101 MachineTraceMetrics::Trace BlockTrace);
102 bool improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
106 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
107 unsigned Pattern, bool SlackIsAccurate);
108 bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB,
111 unsigned Pattern);
112 bool preservesResourceLen(MachineBasicBlock *MBB,
116 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
118 std::pair<unsigned, unsigned>
119 getLatenciesForInstrSequences(MachineInstr &MI,
122 MachineTraceMetrics::Trace BlockTrace);
123
124 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
125 SmallVector<unsigned, 16> &Patterns);
126 CombinerObjective getCombinerObjective(unsigned Pattern);
127};
128}
129
130char MachineCombiner::ID = 0;
131char &llvm::MachineCombinerID = MachineCombiner::ID;
132
134 "Machine InstCombiner", false, false)
139
140void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
141 AU.setPreservesCFG();
142 AU.addPreserved<MachineDominatorTree>();
143 AU.addRequired<MachineLoopInfo>();
144 AU.addPreserved<MachineLoopInfo>();
145 AU.addRequired<MachineTraceMetrics>();
146 AU.addPreserved<MachineTraceMetrics>();
147 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
148 AU.addRequired<ProfileSummaryInfoWrapperPass>();
150}
151
153MachineCombiner::getOperandDef(const MachineOperand &MO) {
154 MachineInstr *DefInstr = nullptr;
155 // We need a virtual register definition.
156 if (MO.isReg() && MO.getReg().isVirtual())
157 DefInstr = MRI->getUniqueVRegDef(MO.getReg());
158 return DefInstr;
159}
160
161/// Return true if MI is unlikely to generate an actual target instruction.
162bool MachineCombiner::isTransientMI(const MachineInstr *MI) {
163 if (!MI->isCopy())
164 return MI->isTransient();
165
166 // If MI is a COPY, check if its src and dst registers can be coalesced.
167 Register Dst = MI->getOperand(0).getReg();
168 Register Src = MI->getOperand(1).getReg();
169
170 if (!MI->isFullCopy()) {
171 // If src RC contains super registers of dst RC, it can also be coalesced.
172 if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical())
173 return false;
174
175 auto SrcSub = MI->getOperand(1).getSubReg();
176 auto SrcRC = MRI->getRegClass(Src);
177 auto DstRC = MRI->getRegClass(Dst);
178 return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr;
179 }
180
181 if (Src.isPhysical() && Dst.isPhysical())
182 return Src == Dst;
183
184 if (Src.isVirtual() && Dst.isVirtual()) {
185 auto SrcRC = MRI->getRegClass(Src);
186 auto DstRC = MRI->getRegClass(Dst);
187 return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC);
188 }
189
190 if (Src.isVirtual())
191 std::swap(Src, Dst);
192
193 // Now Src is physical register, Dst is virtual register.
194 auto DstRC = MRI->getRegClass(Dst);
195 return DstRC->contains(Src);
196}
197
198/// Computes depth of instructions in vector \InsInstr.
199///
200/// \param InsInstrs is a vector of machine instructions
201/// \param InstrIdxForVirtReg is a dense map of virtual register to index
202/// of defining machine instruction in \p InsInstrs
203/// \param BlockTrace is a trace of machine instructions
204///
205/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
206unsigned
207MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
208 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
210 const MachineBasicBlock &MBB) {
211 SmallVector<unsigned, 16> InstrDepth;
212 // For each instruction in the new sequence compute the depth based on the
213 // operands. Use the trace information when possible. For new operands which
214 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
215 for (auto *InstrPtr : InsInstrs) { // for each Use
216 unsigned IDepth = 0;
217 for (const MachineOperand &MO : InstrPtr->all_uses()) {
218 // Check for virtual register operand.
219 if (!MO.getReg().isVirtual())
220 continue;
221 unsigned DepthOp = 0;
222 unsigned LatencyOp = 0;
224 InstrIdxForVirtReg.find(MO.getReg());
225 if (II != InstrIdxForVirtReg.end()) {
226 // Operand is new virtual register not in trace
227 assert(II->second < InstrDepth.size() && "Bad Index");
228 MachineInstr *DefInstr = InsInstrs[II->second];
229 assert(DefInstr &&
230 "There must be a definition for a new virtual register");
231 DepthOp = InstrDepth[II->second];
232 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
233 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
234 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
235 InstrPtr, UseIdx);
236 } else {
237 MachineInstr *DefInstr = getOperandDef(MO);
238 if (DefInstr && (TII->getMachineCombinerTraceStrategy() !=
239 MachineTraceStrategy::TS_Local ||
240 DefInstr->getParent() == &MBB)) {
241 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
242 if (!isTransientMI(DefInstr))
243 LatencyOp = TSchedModel.computeOperandLatency(
244 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
245 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
246 }
247 }
248 IDepth = std::max(IDepth, DepthOp + LatencyOp);
249 }
250 InstrDepth.push_back(IDepth);
251 }
252 unsigned NewRootIdx = InsInstrs.size() - 1;
253 return InstrDepth[NewRootIdx];
254}
255
256/// Computes instruction latency as max of latency of defined operands.
257///
258/// \param Root is a machine instruction that could be replaced by NewRoot.
259/// It is used to compute a more accurate latency information for NewRoot in
260/// case there is a dependent instruction in the same trace (\p BlockTrace)
261/// \param NewRoot is the instruction for which the latency is computed
262/// \param BlockTrace is a trace of machine instructions
263///
264/// \returns Latency of \p NewRoot
265unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
266 MachineTraceMetrics::Trace BlockTrace) {
267 // Check each definition in NewRoot and compute the latency
268 unsigned NewRootLatency = 0;
269
270 for (const MachineOperand &MO : NewRoot->all_defs()) {
271 // Check for virtual register operand.
272 if (!MO.getReg().isVirtual())
273 continue;
274 // Get the first instruction that uses MO
275 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
276 RI++;
277 if (RI == MRI->reg_end())
278 continue;
279 MachineInstr *UseMO = RI->getParent();
280 unsigned LatencyOp = 0;
281 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
282 LatencyOp = TSchedModel.computeOperandLatency(
283 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
284 UseMO->findRegisterUseOperandIdx(MO.getReg()));
285 } else {
286 LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
287 }
288 NewRootLatency = std::max(NewRootLatency, LatencyOp);
289 }
290 return NewRootLatency;
291}
292
293CombinerObjective MachineCombiner::getCombinerObjective(unsigned Pattern) {
294 // TODO: If C++ ever gets a real enum class, make this part of the
295 // MachineCombinerPattern class.
296 switch (Pattern) {
297 case MachineCombinerPattern::REASSOC_AX_BY:
298 case MachineCombinerPattern::REASSOC_AX_YB:
299 case MachineCombinerPattern::REASSOC_XA_BY:
300 case MachineCombinerPattern::REASSOC_XA_YB:
301 return CombinerObjective::MustReduceDepth;
302 default:
303 return TII->getCombinerObjective(Pattern);
304 }
305}
306
307/// Estimate the latency of the new and original instruction sequence by summing
308/// up the latencies of the inserted and deleted instructions. This assumes
309/// that the inserted and deleted instructions are dependent instruction chains,
310/// which might not hold in all cases.
311std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
314 MachineTraceMetrics::Trace BlockTrace) {
315 assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
316 unsigned NewRootLatency = 0;
317 // NewRoot is the last instruction in the \p InsInstrs vector.
318 MachineInstr *NewRoot = InsInstrs.back();
319 for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
320 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
321 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
322
323 unsigned RootLatency = 0;
324 for (auto *I : DelInstrs)
325 RootLatency += TSchedModel.computeInstrLatency(I);
326
327 return {NewRootLatency, RootLatency};
328}
329
330bool MachineCombiner::reduceRegisterPressure(
333 SmallVectorImpl<MachineInstr *> &DelInstrs, unsigned Pattern) {
334 // FIXME: for now, we don't do any check for the register pressure patterns.
335 // We treat them as always profitable. But we can do better if we make
336 // RegPressureTracker class be aware of TIE attribute. Then we can get an
337 // accurate compare of register pressure with DelInstrs or InsInstrs.
338 return true;
339}
340
341/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
342/// The new code sequence ends in MI NewRoot. A necessary condition for the new
343/// sequence to replace the old sequence is that it cannot lengthen the critical
344/// path. The definition of "improve" may be restricted by specifying that the
345/// new path improves the data dependency chain (MustReduceDepth).
346bool MachineCombiner::improvesCriticalPathLen(
351 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned Pattern,
352 bool SlackIsAccurate) {
353 // Get depth and latency of NewRoot and Root.
354 unsigned NewRootDepth =
355 getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace, *MBB);
356 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
357
358 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: "
359 << NewRootDepth << "\tRootDepth: " << RootDepth);
360
361 // For a transform such as reassociation, the cost equation is
362 // conservatively calculated so that we must improve the depth (data
363 // dependency cycles) in the critical path to proceed with the transform.
364 // Being conservative also protects against inaccuracies in the underlying
365 // machine trace metrics and CPU models.
366 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
367 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
368 LLVM_DEBUG(NewRootDepth < RootDepth
369 ? dbgs() << "\t and it does it\n"
370 : dbgs() << "\t but it does NOT do it\n");
371 return NewRootDepth < RootDepth;
372 }
373
374 // A more flexible cost calculation for the critical path includes the slack
375 // of the original code sequence. This may allow the transform to proceed
376 // even if the instruction depths (data dependency cycles) become worse.
377
378 // Account for the latency of the inserted and deleted instructions by
379 unsigned NewRootLatency, RootLatency;
380 if (TII->accumulateInstrSeqToRootLatency(*Root)) {
381 std::tie(NewRootLatency, RootLatency) =
382 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
383 } else {
384 NewRootLatency = TSchedModel.computeInstrLatency(InsInstrs.back());
385 RootLatency = TSchedModel.computeInstrLatency(Root);
386 }
387
388 unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
389 unsigned NewCycleCount = NewRootDepth + NewRootLatency;
390 unsigned OldCycleCount =
391 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
392 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
393 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
394 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
395 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
396 << "\n\tRootDepth + RootLatency + RootSlack = "
397 << OldCycleCount;);
398 LLVM_DEBUG(NewCycleCount <= OldCycleCount
399 ? dbgs() << "\n\t It IMPROVES PathLen because"
400 : dbgs() << "\n\t It DOES NOT improve PathLen because");
401 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
402 << ", OldCycleCount = " << OldCycleCount << "\n");
403
404 return NewCycleCount <= OldCycleCount;
405}
406
407/// helper routine to convert instructions into SC
408void MachineCombiner::instr2instrSC(
411 for (auto *InstrPtr : Instrs) {
412 unsigned Opc = InstrPtr->getOpcode();
413 unsigned Idx = TII->get(Opc).getSchedClass();
414 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
415 InstrsSC.push_back(SC);
416 }
417}
418
419/// True when the new instructions do not increase resource length
420bool MachineCombiner::preservesResourceLen(
424 if (!TSchedModel.hasInstrSchedModel())
425 return true;
426
427 // Compute current resource length
428
429 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
430 SmallVector <const MachineBasicBlock *, 1> MBBarr;
431 MBBarr.push_back(MBB);
432 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
433
434 // Deal with SC rather than Instructions.
437
438 instr2instrSC(InsInstrs, InsInstrsSC);
439 instr2instrSC(DelInstrs, DelInstrsSC);
440
441 ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC};
442 ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC};
443
444 // Compute new resource length.
445 unsigned ResLenAfterCombine =
446 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
447
448 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
449 << ResLenBeforeCombine
450 << " and after: " << ResLenAfterCombine << "\n";);
452 ResLenAfterCombine <=
453 ResLenBeforeCombine + TII->getExtendResourceLenLimit()
454 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n"
455 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource "
456 "Length\n");
457
458 return ResLenAfterCombine <=
459 ResLenBeforeCombine + TII->getExtendResourceLenLimit();
460}
461
462/// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
463/// depths if requested.
464///
465/// \param MBB basic block to insert instructions in
466/// \param MI current machine instruction
467/// \param InsInstrs new instructions to insert in \p MBB
468/// \param DelInstrs instruction to delete from \p MBB
469/// \param TraceEnsemble is a pointer to the machine trace information
470/// \param RegUnits set of live registers, needed to compute instruction depths
471/// \param TII is target instruction info, used to call target hook
472/// \param Pattern is used to call target hook finalizeInsInstrs
473/// \param IncrementalUpdate if true, compute instruction depths incrementally,
474/// otherwise invalidate the trace
475static void
479 MachineTraceMetrics::Ensemble *TraceEnsemble,
480 SparseSet<LiveRegUnit> &RegUnits,
481 const TargetInstrInfo *TII, unsigned Pattern,
482 bool IncrementalUpdate) {
483 // If we want to fix up some placeholder for some target, do it now.
484 // We need this because in genAlternativeCodeSequence, we have not decided the
485 // better pattern InsInstrs or DelInstrs, so we don't want generate some
486 // sideeffect to the function. For example we need to delay the constant pool
487 // entry creation here after InsInstrs is selected as better pattern.
488 // Otherwise the constant pool entry created for InsInstrs will not be deleted
489 // even if InsInstrs is not the better pattern.
490 TII->finalizeInsInstrs(MI, Pattern, InsInstrs);
491
492 for (auto *InstrPtr : InsInstrs)
494
495 for (auto *InstrPtr : DelInstrs) {
496 InstrPtr->eraseFromParent();
497 // Erase all LiveRegs defined by the removed instruction
498 for (auto *I = RegUnits.begin(); I != RegUnits.end();) {
499 if (I->MI == InstrPtr)
500 I = RegUnits.erase(I);
501 else
502 I++;
503 }
504 }
505
506 if (IncrementalUpdate)
507 for (auto *InstrPtr : InsInstrs)
508 TraceEnsemble->updateDepth(MBB, *InstrPtr, RegUnits);
509 else
510 TraceEnsemble->invalidate(MBB);
511
512 NumInstCombined++;
513}
514
515// Check that the difference between original and new latency is decreasing for
516// later patterns. This helps to discover sub-optimal pattern orderings.
517void MachineCombiner::verifyPatternOrder(MachineBasicBlock *MBB,
518 MachineInstr &Root,
519 SmallVector<unsigned, 16> &Patterns) {
520 long PrevLatencyDiff = std::numeric_limits<long>::max();
521 (void)PrevLatencyDiff; // Variable is used in assert only.
522 for (auto P : Patterns) {
525 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
526 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
527 InstrIdxForVirtReg);
528 // Found pattern, but did not generate alternative sequence.
529 // This can happen e.g. when an immediate could not be materialized
530 // in a single instruction.
531 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
532 continue;
533
534 unsigned NewRootLatency, RootLatency;
535 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
536 Root, InsInstrs, DelInstrs, TraceEnsemble->getTrace(MBB));
537 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
538 assert(CurrentLatencyDiff <= PrevLatencyDiff &&
539 "Current pattern is better than previous pattern.");
540 PrevLatencyDiff = CurrentLatencyDiff;
541 }
542}
543
544/// Substitute a slow code sequence with a faster one by
545/// evaluating instruction combining pattern.
546/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
547/// combining based on machine trace metrics. Only combine a sequence of
548/// instructions when this neither lengthens the critical path nor increases
549/// resource pressure. When optimizing for codesize always combine when the new
550/// sequence is shorter.
551bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
552 bool Changed = false;
553 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
554
555 bool IncrementalUpdate = false;
556 auto BlockIter = MBB->begin();
557 decltype(BlockIter) LastUpdate;
558 // Check if the block is in a loop.
559 const MachineLoop *ML = MLI->getLoopFor(MBB);
560 if (!TraceEnsemble)
561 TraceEnsemble = Traces->getEnsemble(TII->getMachineCombinerTraceStrategy());
562
563 SparseSet<LiveRegUnit> RegUnits;
564 RegUnits.setUniverse(TRI->getNumRegUnits());
565
566 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
567
568 bool DoRegPressureReduce =
569 TII->shouldReduceRegisterPressure(MBB, &RegClassInfo);
570
571 while (BlockIter != MBB->end()) {
572 auto &MI = *BlockIter++;
574 // The motivating example is:
575 //
576 // MUL Other MUL_op1 MUL_op2 Other
577 // \ / \ | /
578 // ADD/SUB => MADD/MSUB
579 // (=Root) (=NewRoot)
580
581 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
582 // usually beneficial for code size it unfortunately can hurt performance
583 // when the ADD is on the critical path, but the MUL is not. With the
584 // substitution the MUL becomes part of the critical path (in form of the
585 // MADD) and can lengthen it on architectures where the MADD latency is
586 // longer than the ADD latency.
587 //
588 // For each instruction we check if it can be the root of a combiner
589 // pattern. Then for each pattern the new code sequence in form of MI is
590 // generated and evaluated. When the efficiency criteria (don't lengthen
591 // critical path, don't use more resources) is met the new sequence gets
592 // hooked up into the basic block before the old sequence is removed.
593 //
594 // The algorithm does not try to evaluate all patterns and pick the best.
595 // This is only an artificial restriction though. In practice there is
596 // mostly one pattern, and getMachineCombinerPatterns() can order patterns
597 // based on an internal cost heuristic. If
598 // machine-combiner-verify-pattern-order is enabled, all patterns are
599 // checked to ensure later patterns do not provide better latency savings.
600
601 if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce))
602 continue;
603
605 verifyPatternOrder(MBB, MI, Patterns);
606
607 for (const auto P : Patterns) {
610 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
611 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
612 InstrIdxForVirtReg);
613 // Found pattern, but did not generate alternative sequence.
614 // This can happen e.g. when an immediate could not be materialized
615 // in a single instruction.
616 if (InsInstrs.empty())
617 continue;
618
620 dbgs() << "\tFor the Pattern (" << (int)P
621 << ") these instructions could be removed\n";
622 for (auto const *InstrPtr : DelInstrs)
623 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
624 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
625 dbgs() << "\tThese instructions could replace the removed ones\n";
626 for (auto const *InstrPtr : InsInstrs)
627 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
628 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
629 });
630
631 if (IncrementalUpdate && LastUpdate != BlockIter) {
632 // Update depths since the last incremental update.
633 TraceEnsemble->updateDepths(LastUpdate, BlockIter, RegUnits);
634 LastUpdate = BlockIter;
635 }
636
637 if (DoRegPressureReduce &&
638 getCombinerObjective(P) ==
639 CombinerObjective::MustReduceRegisterPressure) {
640 if (MBB->size() > inc_threshold) {
641 // Use incremental depth updates for basic blocks above threshold
642 IncrementalUpdate = true;
643 LastUpdate = BlockIter;
644 }
645 if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) {
646 // Replace DelInstrs with InsInstrs.
647 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
648 RegUnits, TII, P, IncrementalUpdate);
649 Changed |= true;
650
651 // Go back to previous instruction as it may have ILP reassociation
652 // opportunity.
653 BlockIter--;
654 break;
655 }
656 }
657
658 if (ML && TII->isThroughputPattern(P)) {
659 LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n");
660 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
661 RegUnits, TII, P, IncrementalUpdate);
662 // Eagerly stop after the first pattern fires.
663 Changed = true;
664 break;
665 } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) {
666 LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize ("
667 << InsInstrs.size() << " < "
668 << DelInstrs.size() << ")\n");
669 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
670 RegUnits, TII, P, IncrementalUpdate);
671 // Eagerly stop after the first pattern fires.
672 Changed = true;
673 break;
674 } else {
675 // For big basic blocks, we only compute the full trace the first time
676 // we hit this. We do not invalidate the trace, but instead update the
677 // instruction depths incrementally.
678 // NOTE: Only the instruction depths up to MI are accurate. All other
679 // trace information is not updated.
680 MachineTraceMetrics::Trace BlockTrace = TraceEnsemble->getTrace(MBB);
681 Traces->verifyAnalysis();
682 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
683 InstrIdxForVirtReg, P,
684 !IncrementalUpdate) &&
685 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
686 if (MBB->size() > inc_threshold) {
687 // Use incremental depth updates for basic blocks above treshold
688 IncrementalUpdate = true;
689 LastUpdate = BlockIter;
690 }
691
692 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
693 RegUnits, TII, P, IncrementalUpdate);
694
695 // Eagerly stop after the first pattern fires.
696 Changed = true;
697 break;
698 }
699 // Cleanup instructions of the alternative code sequence. There is no
700 // use for them.
702 for (auto *InstrPtr : InsInstrs)
703 MF->deleteMachineInstr(InstrPtr);
704 }
705 InstrIdxForVirtReg.clear();
706 }
707 }
708
709 if (Changed && IncrementalUpdate)
710 Traces->invalidate(MBB);
711 return Changed;
712}
713
714bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
715 STI = &MF.getSubtarget();
716 TII = STI->getInstrInfo();
717 TRI = STI->getRegisterInfo();
718 SchedModel = STI->getSchedModel();
719 TSchedModel.init(STI);
720 MRI = &MF.getRegInfo();
721 MLI = &getAnalysis<MachineLoopInfo>();
722 Traces = &getAnalysis<MachineTraceMetrics>();
723 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
724 MBFI = (PSI && PSI->hasProfileSummary()) ?
725 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
726 nullptr;
727 TraceEnsemble = nullptr;
728 OptSize = MF.getFunction().hasOptSize();
729 RegClassInfo.runOnMachineFunction(MF);
730
731 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
732 if (!TII->useMachineCombiner()) {
734 dbgs()
735 << " Skipping pass: Target does not support machine combiner\n");
736 return false;
737 }
738
739 bool Changed = false;
740
741 // Try to combine instructions.
742 for (auto &MBB : MF)
743 Changed |= combineInstructions(&MBB);
744
745 return Changed;
746}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:371
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
static int getLatency(LLVMDisasmContext *DC, const MCInst &Inst)
Gets latency information for Inst, based on DC information.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
===- LazyMachineBlockFrequencyInfo.h - Lazy Block Frequency -*- C++ -*–===//
#define I(x, y, z)
Definition: MD5.cpp:58
static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, MachineTraceMetrics::Ensemble *TraceEnsemble, SparseSet< LiveRegUnit > &RegUnits, const TargetInstrInfo *TII, unsigned Pattern, bool IncrementalUpdate)
Inserts InsInstrs and deletes DelInstrs.
static cl::opt< bool > VerifyPatternOrder("machine-combiner-verify-pattern-order", cl::Hidden, cl::desc("Verify that the generated patterns are ordered by increasing latency"), cl::init(false))
static cl::opt< unsigned > inc_threshold("machine-combiner-inc-threshold", cl::Hidden, cl::desc("Incremental depth computation will be used for basic " "blocks with more instructions."), cl::init(500))
static cl::opt< bool > dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, cl::desc("Dump all substituted intrs"), cl::init(false))
#define DEBUG_TYPE
unsigned const TargetRegisterInfo * TRI
#define P(N)
if(VerifyEach)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
iterator end()
Definition: DenseMap.h:84
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:681
The core instruction combiner logic.
Definition: InstCombiner.h:47
This is an alternative analysis pass to MachineBlockFrequencyInfo.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
void deleteMachineInstr(MachineInstr *MI)
DeleteMachineInstr - Delete the given MachineInstr.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
int findRegisterUseOperandIdx(Register Reg, bool isKill=false, const TargetRegisterInfo *TRI=nullptr) const
Returns the operand index that is a use of the specific register or -1 if it is not found.
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:329
int findRegisterDefOperandIdx(Register Reg, bool isDead=false, bool Overlap=false, const TargetRegisterInfo *TRI=nullptr) const
Returns the operand index that is a def of the specified register or -1 if it is not found.
iterator_range< filtered_mop_iterator > all_defs()
Returns an iterator range over all operands that are (explicit or implicit) register defs.
Definition: MachineInstr.h:733
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
reg_begin/reg_end - Provide iteration support to walk over all definitions and uses of a register wit...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A trace ensemble is a collection of traces selected using the same strategy, for example 'minimum res...
void invalidate(const MachineBasicBlock *MBB)
Invalidate traces through BadMBB.
void updateDepth(TraceBlockInfo &TBI, const MachineInstr &, SparseSet< LiveRegUnit > &RegUnits)
Updates the depth of an machine instruction, given RegUnits.
A trace represents a plausible sequence of executed basic blocks that passes through the current basi...
InstrCycles getInstrCycles(const MachineInstr &MI) const
Return the depth and height of MI.
unsigned getInstrSlack(const MachineInstr &MI) const
Return the slack of MI.
bool isDepInTrace(const MachineInstr &DefMI, const MachineInstr &UseMI) const
A dependence is useful if the basic block of the defining instruction is part of the trace of the use...
unsigned getResourceLength(ArrayRef< const MachineBasicBlock * > Extrablocks=std::nullopt, ArrayRef< const MCSchedClassDesc * > ExtraInstrs=std::nullopt, ArrayRef< const MCSchedClassDesc * > RemoveInstrs=std::nullopt) const
Return the resource length of the trace.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
SparseSet - Fast set implementation for objects that can be identified by small unsigned keys.
Definition: SparseSet.h:124
iterator erase(iterator I)
erase - Erases an existing element identified by a valid iterator.
Definition: SparseSet.h:289
const_iterator begin() const
Definition: SparseSet.h:174
const_iterator end() const
Definition: SparseSet.h:175
void setUniverse(unsigned U)
setUniverse - Set the universe size which determines the largest key the set can hold.
Definition: SparseSet.h:155
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
TargetSubtargetInfo - Generic base class for all target subtargets.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ SC
CHAIN = SC CHAIN, Imm128 - System call.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
char & MachineCombinerID
This pass performs instruction combining using trace metrics to estimate critical-path and resource d...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
void initializeMachineCombinerPass(PassRegistry &)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Definition: MCSchedule.h:118
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:253
unsigned Depth
Earliest issue cycle as determined by data dependencies and instruction latencies from the beginning ...