LLVM 19.0.0git
TargetInstrInfo.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the target machine instruction set to the code generator.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Uniformity.h"
30#include "llvm/MC/MCInstrInfo.h"
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <utility>
37#include <vector>
38
39namespace llvm {
40
41class DFAPacketizer;
42class InstrItineraryData;
43class LiveIntervals;
44class LiveVariables;
45class MachineLoop;
46class MachineMemOperand;
47class MachineRegisterInfo;
48class MCAsmInfo;
49class MCInst;
50struct MCSchedModel;
51class Module;
52class ScheduleDAG;
53class ScheduleDAGMI;
54class ScheduleHazardRecognizer;
55class SDNode;
56class SelectionDAG;
57class SMSchedule;
58class SwingSchedulerDAG;
59class RegScavenger;
60class TargetRegisterClass;
61class TargetRegisterInfo;
62class TargetSchedModel;
63class TargetSubtargetInfo;
64enum class MachineCombinerPattern;
65enum class MachineTraceStrategy;
66
67template <class T> class SmallVectorImpl;
68
69using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
70
74
76 : Destination(&Dest), Source(&Src) {}
77};
78
79/// Used to describe a register and immediate addition.
80struct RegImmPair {
82 int64_t Imm;
83
84 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
85};
86
87/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
88/// It holds the register values, the scale value and the displacement.
89/// It also holds a descriptor for the expression used to calculate the address
90/// from the operands.
92 enum class Formula {
93 Basic = 0, // BaseReg + ScaledReg * Scale + Displacement
94 SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
95 ZExtScaledReg = 2 // BaseReg + zext(ScaledReg) * Scale + Displacement
96 };
97
100 int64_t Scale = 0;
101 int64_t Displacement = 0;
103 ExtAddrMode() = default;
104};
105
106//---------------------------------------------------------------------------
107///
108/// TargetInstrInfo - Interface to description of machine instruction set
109///
111public:
112 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
113 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
114 : CallFrameSetupOpcode(CFSetupOpcode),
115 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
116 ReturnOpcode(ReturnOpcode) {}
120
121 static bool isGenericOpcode(unsigned Opc) {
122 return Opc <= TargetOpcode::GENERIC_OP_END;
123 }
124
125 static bool isGenericAtomicRMWOpcode(unsigned Opc) {
126 return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
127 Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
128 }
129
130 /// Given a machine instruction descriptor, returns the register
131 /// class constraint for OpNum, or NULL.
132 virtual
133 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
134 const TargetRegisterInfo *TRI,
135 const MachineFunction &MF) const;
136
137 /// Return true if the instruction is trivially rematerializable, meaning it
138 /// has no side effects and requires no operands that aren't always available.
139 /// This means the only allowed uses are constants and unallocatable physical
140 /// registers so that the instructions result is independent of the place
141 /// in the function.
143 return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
144 MI.getNumOperands() == 1) ||
145 (MI.getDesc().isRematerializable() &&
147 }
148
149 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
150 /// of instruction rematerialization or sinking.
151 virtual bool isIgnorableUse(const MachineOperand &MO) const {
152 return false;
153 }
154
155 virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
156 MachineCycleInfo *CI) const {
157 return true;
158 }
159
160protected:
161 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
162 /// set, this hook lets the target specify whether the instruction is actually
163 /// trivially rematerializable, taking into consideration its operands. This
164 /// predicate must return false if the instruction has any side effects other
165 /// than producing a value, or if it requres any address registers that are
166 /// not always available.
167 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
168
169 /// This method commutes the operands of the given machine instruction MI.
170 /// The operands to be commuted are specified by their indices OpIdx1 and
171 /// OpIdx2.
172 ///
173 /// If a target has any instructions that are commutable but require
174 /// converting to different instructions or making non-trivial changes
175 /// to commute them, this method can be overloaded to do that.
176 /// The default implementation simply swaps the commutable operands.
177 ///
178 /// If NewMI is false, MI is modified in place and returned; otherwise, a
179 /// new machine instruction is created and returned.
180 ///
181 /// Do not call this method for a non-commutable instruction.
182 /// Even though the instruction is commutable, the method may still
183 /// fail to commute the operands, null pointer is returned in such cases.
185 unsigned OpIdx1,
186 unsigned OpIdx2) const;
187
188 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
189 /// operand indices to (ResultIdx1, ResultIdx2).
190 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
191 /// predefined to some indices or be undefined (designated by the special
192 /// value 'CommuteAnyOperandIndex').
193 /// The predefined result indices cannot be re-defined.
194 /// The function returns true iff after the result pair redefinition
195 /// the fixed result pair is equal to or equivalent to the source pair of
196 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
197 /// the pairs (x,y) and (y,x) are equivalent.
198 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
199 unsigned CommutableOpIdx1,
200 unsigned CommutableOpIdx2);
201
202public:
203 /// These methods return the opcode of the frame setup/destroy instructions
204 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
205 /// order to abstract away the difference between operating with a frame
206 /// pointer and operating without, through the use of these two instructions.
207 ///
208 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
209 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
210
211 /// Returns true if the argument is a frame pseudo instruction.
212 bool isFrameInstr(const MachineInstr &I) const {
213 return I.getOpcode() == getCallFrameSetupOpcode() ||
214 I.getOpcode() == getCallFrameDestroyOpcode();
215 }
216
217 /// Returns true if the argument is a frame setup pseudo instruction.
218 bool isFrameSetup(const MachineInstr &I) const {
219 return I.getOpcode() == getCallFrameSetupOpcode();
220 }
221
222 /// Returns size of the frame associated with the given frame instruction.
223 /// For frame setup instruction this is frame that is set up space set up
224 /// after the instruction. For frame destroy instruction this is the frame
225 /// freed by the caller.
226 /// Note, in some cases a call frame (or a part of it) may be prepared prior
227 /// to the frame setup instruction. It occurs in the calls that involve
228 /// inalloca arguments. This function reports only the size of the frame part
229 /// that is set up between the frame setup and destroy pseudo instructions.
230 int64_t getFrameSize(const MachineInstr &I) const {
231 assert(isFrameInstr(I) && "Not a frame instruction");
232 assert(I.getOperand(0).getImm() >= 0);
233 return I.getOperand(0).getImm();
234 }
235
236 /// Returns the total frame size, which is made up of the space set up inside
237 /// the pair of frame start-stop instructions and the space that is set up
238 /// prior to the pair.
239 int64_t getFrameTotalSize(const MachineInstr &I) const {
240 if (isFrameSetup(I)) {
241 assert(I.getOperand(1).getImm() >= 0 &&
242 "Frame size must not be negative");
243 return getFrameSize(I) + I.getOperand(1).getImm();
244 }
245 return getFrameSize(I);
246 }
247
248 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
249 unsigned getReturnOpcode() const { return ReturnOpcode; }
250
251 /// Returns the actual stack pointer adjustment made by an instruction
252 /// as part of a call sequence. By default, only call frame setup/destroy
253 /// instructions adjust the stack, but targets may want to override this
254 /// to enable more fine-grained adjustment, or adjust by a different value.
255 virtual int getSPAdjust(const MachineInstr &MI) const;
256
257 /// Return true if the instruction is a "coalescable" extension instruction.
258 /// That is, it's like a copy where it's legal for the source to overlap the
259 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
260 /// expected the pre-extension value is available as a subreg of the result
261 /// register. This also returns the sub-register index in SubIdx.
262 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
263 Register &DstReg, unsigned &SubIdx) const {
264 return false;
265 }
266
267 /// If the specified machine instruction is a direct
268 /// load from a stack slot, return the virtual or physical register number of
269 /// the destination along with the FrameIndex of the loaded stack slot. If
270 /// not, return 0. This predicate must return 0 if the instruction has
271 /// any side effects other than loading from the stack slot.
273 int &FrameIndex) const {
274 return 0;
275 }
276
277 /// Optional extension of isLoadFromStackSlot that returns the number of
278 /// bytes loaded from the stack. This must be implemented if a backend
279 /// supports partial stack slot spills/loads to further disambiguate
280 /// what the load does.
282 int &FrameIndex,
283 unsigned &MemBytes) const {
284 MemBytes = 0;
285 return isLoadFromStackSlot(MI, FrameIndex);
286 }
287
288 /// Check for post-frame ptr elimination stack locations as well.
289 /// This uses a heuristic so it isn't reliable for correctness.
291 int &FrameIndex) const {
292 return 0;
293 }
294
295 /// If the specified machine instruction has a load from a stack slot,
296 /// return true along with the FrameIndices of the loaded stack slot and the
297 /// machine mem operands containing the reference.
298 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
299 /// any instructions that loads from the stack. This is just a hint, as some
300 /// cases may be missed.
301 virtual bool hasLoadFromStackSlot(
302 const MachineInstr &MI,
304
305 /// If the specified machine instruction is a direct
306 /// store to a stack slot, return the virtual or physical register number of
307 /// the source reg along with the FrameIndex of the loaded stack slot. If
308 /// not, return 0. This predicate must return 0 if the instruction has
309 /// any side effects other than storing to the stack slot.
311 int &FrameIndex) const {
312 return 0;
313 }
314
315 /// Optional extension of isStoreToStackSlot that returns the number of
316 /// bytes stored to the stack. This must be implemented if a backend
317 /// supports partial stack slot spills/loads to further disambiguate
318 /// what the store does.
320 int &FrameIndex,
321 unsigned &MemBytes) const {
322 MemBytes = 0;
323 return isStoreToStackSlot(MI, FrameIndex);
324 }
325
326 /// Check for post-frame ptr elimination stack locations as well.
327 /// This uses a heuristic, so it isn't reliable for correctness.
329 int &FrameIndex) const {
330 return 0;
331 }
332
333 /// If the specified machine instruction has a store to a stack slot,
334 /// return true along with the FrameIndices of the loaded stack slot and the
335 /// machine mem operands containing the reference.
336 /// If not, return false. Unlike isStoreToStackSlot,
337 /// this returns true for any instructions that stores to the
338 /// stack. This is just a hint, as some cases may be missed.
339 virtual bool hasStoreToStackSlot(
340 const MachineInstr &MI,
342
343 /// Return true if the specified machine instruction
344 /// is a copy of one stack slot to another and has no other effect.
345 /// Provide the identity of the two frame indices.
346 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
347 int &SrcFrameIndex) const {
348 return false;
349 }
350
351 /// Compute the size in bytes and offset within a stack slot of a spilled
352 /// register or subregister.
353 ///
354 /// \param [out] Size in bytes of the spilled value.
355 /// \param [out] Offset in bytes within the stack slot.
356 /// \returns true if both Size and Offset are successfully computed.
357 ///
358 /// Not all subregisters have computable spill slots. For example,
359 /// subregisters registers may not be byte-sized, and a pair of discontiguous
360 /// subregisters has no single offset.
361 ///
362 /// Targets with nontrivial bigendian implementations may need to override
363 /// this, particularly to support spilled vector registers.
364 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
365 unsigned &Size, unsigned &Offset,
366 const MachineFunction &MF) const;
367
368 /// Return true if the given instruction is terminator that is unspillable,
369 /// according to isUnspillableTerminatorImpl.
371 return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
372 }
373
374 /// Returns the size in bytes of the specified MachineInstr, or ~0U
375 /// when this function is not implemented by a target.
376 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
377 return ~0U;
378 }
379
380 /// Return true if the instruction is as cheap as a move instruction.
381 ///
382 /// Targets for different archs need to override this, and different
383 /// micro-architectures can also be finely tuned inside.
384 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
385 return MI.isAsCheapAsAMove();
386 }
387
388 /// Return true if the instruction should be sunk by MachineSink.
389 ///
390 /// MachineSink determines on its own whether the instruction is safe to sink;
391 /// this gives the target a hook to override the default behavior with regards
392 /// to which instructions should be sunk.
393 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
394
395 /// Return false if the instruction should not be hoisted by MachineLICM.
396 ///
397 /// MachineLICM determines on its own whether the instruction is safe to
398 /// hoist; this gives the target a hook to extend this assessment and prevent
399 /// an instruction being hoisted from a given loop for target specific
400 /// reasons.
401 virtual bool shouldHoist(const MachineInstr &MI,
402 const MachineLoop *FromLoop) const {
403 return true;
404 }
405
406 /// Re-issue the specified 'original' instruction at the
407 /// specific location targeting a new destination register.
408 /// The register in Orig->getOperand(0).getReg() will be substituted by
409 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
410 /// SubIdx.
411 virtual void reMaterialize(MachineBasicBlock &MBB,
413 unsigned SubIdx, const MachineInstr &Orig,
414 const TargetRegisterInfo &TRI) const;
415
416 /// Clones instruction or the whole instruction bundle \p Orig and
417 /// insert into \p MBB before \p InsertBefore. The target may update operands
418 /// that are required to be unique.
419 ///
420 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
422 MachineBasicBlock::iterator InsertBefore,
423 const MachineInstr &Orig) const;
424
425 /// This method must be implemented by targets that
426 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
427 /// may be able to convert a two-address instruction into one or more true
428 /// three-address instructions on demand. This allows the X86 target (for
429 /// example) to convert ADD and SHL instructions into LEA instructions if they
430 /// would require register copies due to two-addressness.
431 ///
432 /// This method returns a null pointer if the transformation cannot be
433 /// performed, otherwise it returns the last new instruction.
434 ///
435 /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
436 /// replacing \p MI with new instructions, even though this function does not
437 /// remove MI.
439 LiveVariables *LV,
440 LiveIntervals *LIS) const {
441 return nullptr;
442 }
443
444 // This constant can be used as an input value of operand index passed to
445 // the method findCommutedOpIndices() to tell the method that the
446 // corresponding operand index is not pre-defined and that the method
447 // can pick any commutable operand.
448 static const unsigned CommuteAnyOperandIndex = ~0U;
449
450 /// This method commutes the operands of the given machine instruction MI.
451 ///
452 /// The operands to be commuted are specified by their indices OpIdx1 and
453 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
454 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
455 /// any arbitrarily chosen commutable operand. If both arguments are set to
456 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
457 /// operands; then commutes them if such operands could be found.
458 ///
459 /// If NewMI is false, MI is modified in place and returned; otherwise, a
460 /// new machine instruction is created and returned.
461 ///
462 /// Do not call this method for a non-commutable instruction or
463 /// for non-commuable operands.
464 /// Even though the instruction is commutable, the method may still
465 /// fail to commute the operands, null pointer is returned in such cases.
467 commuteInstruction(MachineInstr &MI, bool NewMI = false,
468 unsigned OpIdx1 = CommuteAnyOperandIndex,
469 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
470
471 /// Returns true iff the routine could find two commutable operands in the
472 /// given machine instruction.
473 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
474 /// If any of the INPUT values is set to the special value
475 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
476 /// operand, then returns its index in the corresponding argument.
477 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
478 /// looks for 2 commutable operands.
479 /// If INPUT values refer to some operands of MI, then the method simply
480 /// returns true if the corresponding operands are commutable and returns
481 /// false otherwise.
482 ///
483 /// For example, calling this method this way:
484 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
485 /// findCommutedOpIndices(MI, Op1, Op2);
486 /// can be interpreted as a query asking to find an operand that would be
487 /// commutable with the operand#1.
488 virtual bool findCommutedOpIndices(const MachineInstr &MI,
489 unsigned &SrcOpIdx1,
490 unsigned &SrcOpIdx2) const;
491
492 /// Returns true if the target has a preference on the operands order of
493 /// the given machine instruction. And specify if \p Commute is required to
494 /// get the desired operands order.
495 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
496 return false;
497 }
498
499 /// A pair composed of a register and a sub-register index.
500 /// Used to give some type checking when modeling Reg:SubReg.
503 unsigned SubReg;
504
506 : Reg(Reg), SubReg(SubReg) {}
507
508 bool operator==(const RegSubRegPair& P) const {
509 return Reg == P.Reg && SubReg == P.SubReg;
510 }
511 bool operator!=(const RegSubRegPair& P) const {
512 return !(*this == P);
513 }
514 };
515
516 /// A pair composed of a pair of a register and a sub-register index,
517 /// and another sub-register index.
518 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
520 unsigned SubIdx;
521
523 unsigned SubIdx = 0)
525 };
526
527 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
528 /// and \p DefIdx.
529 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
530 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
531 /// flag are not added to this list.
532 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
533 /// two elements:
534 /// - %1:sub1, sub0
535 /// - %2<:0>, sub1
536 ///
537 /// \returns true if it is possible to build such an input sequence
538 /// with the pair \p MI, \p DefIdx. False otherwise.
539 ///
540 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
541 ///
542 /// \note The generic implementation does not provide any support for
543 /// MI.isRegSequenceLike(). In other words, one has to override
544 /// getRegSequenceLikeInputs for target specific instructions.
545 bool
546 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
547 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
548
549 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
550 /// and \p DefIdx.
551 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
552 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
553 /// - %1:sub1, sub0
554 ///
555 /// \returns true if it is possible to build such an input sequence
556 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
557 /// False otherwise.
558 ///
559 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
560 ///
561 /// \note The generic implementation does not provide any support for
562 /// MI.isExtractSubregLike(). In other words, one has to override
563 /// getExtractSubregLikeInputs for target specific instructions.
564 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
565 RegSubRegPairAndIdx &InputReg) const;
566
567 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
568 /// and \p DefIdx.
569 /// \p [out] BaseReg and \p [out] InsertedReg contain
570 /// the equivalent inputs of INSERT_SUBREG.
571 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
572 /// - BaseReg: %0:sub0
573 /// - InsertedReg: %1:sub1, sub3
574 ///
575 /// \returns true if it is possible to build such an input sequence
576 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
577 /// False otherwise.
578 ///
579 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
580 ///
581 /// \note The generic implementation does not provide any support for
582 /// MI.isInsertSubregLike(). In other words, one has to override
583 /// getInsertSubregLikeInputs for target specific instructions.
584 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
585 RegSubRegPair &BaseReg,
586 RegSubRegPairAndIdx &InsertedReg) const;
587
588 /// Return true if two machine instructions would produce identical values.
589 /// By default, this is only true when the two instructions
590 /// are deemed identical except for defs. If this function is called when the
591 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
592 /// aggressive checks.
593 virtual bool produceSameValue(const MachineInstr &MI0,
594 const MachineInstr &MI1,
595 const MachineRegisterInfo *MRI = nullptr) const;
596
597 /// \returns true if a branch from an instruction with opcode \p BranchOpc
598 /// bytes is capable of jumping to a position \p BrOffset bytes away.
599 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
600 int64_t BrOffset) const {
601 llvm_unreachable("target did not implement");
602 }
603
604 /// \returns The block that branch instruction \p MI jumps to.
606 llvm_unreachable("target did not implement");
607 }
608
609 /// Insert an unconditional indirect branch at the end of \p MBB to \p
610 /// NewDestBB. Optionally, insert the clobbered register restoring in \p
611 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
612 /// the offset of the position to insert the new branch.
614 MachineBasicBlock &NewDestBB,
615 MachineBasicBlock &RestoreBB,
616 const DebugLoc &DL, int64_t BrOffset = 0,
617 RegScavenger *RS = nullptr) const {
618 llvm_unreachable("target did not implement");
619 }
620
621 /// Analyze the branching code at the end of MBB, returning
622 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
623 /// implemented for a target). Upon success, this returns false and returns
624 /// with the following information in various cases:
625 ///
626 /// 1. If this block ends with no branches (it just falls through to its succ)
627 /// just return false, leaving TBB/FBB null.
628 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
629 /// the destination block.
630 /// 3. If this block ends with a conditional branch and it falls through to a
631 /// successor block, it sets TBB to be the branch destination block and a
632 /// list of operands that evaluate the condition. These operands can be
633 /// passed to other TargetInstrInfo methods to create new branches.
634 /// 4. If this block ends with a conditional branch followed by an
635 /// unconditional branch, it returns the 'true' destination in TBB, the
636 /// 'false' destination in FBB, and a list of operands that evaluate the
637 /// condition. These operands can be passed to other TargetInstrInfo
638 /// methods to create new branches.
639 ///
640 /// Note that removeBranch and insertBranch must be implemented to support
641 /// cases where this method returns success.
642 ///
643 /// If AllowModify is true, then this routine is allowed to modify the basic
644 /// block (e.g. delete instructions after the unconditional branch).
645 ///
646 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
647 /// before calling this function.
649 MachineBasicBlock *&FBB,
651 bool AllowModify = false) const {
652 return true;
653 }
654
655 /// Represents a predicate at the MachineFunction level. The control flow a
656 /// MachineBranchPredicate represents is:
657 ///
658 /// Reg = LHS `Predicate` RHS == ConditionDef
659 /// if Reg then goto TrueDest else goto FalseDest
660 ///
663 PRED_EQ, // True if two values are equal
664 PRED_NE, // True if two values are not equal
665 PRED_INVALID // Sentinel value
666 };
667
674
675 /// SingleUseCondition is true if ConditionDef is dead except for the
676 /// branch(es) at the end of the basic block.
677 ///
678 bool SingleUseCondition = false;
679
680 explicit MachineBranchPredicate() = default;
681 };
682
683 /// Analyze the branching code at the end of MBB and parse it into the
684 /// MachineBranchPredicate structure if possible. Returns false on success
685 /// and true on failure.
686 ///
687 /// If AllowModify is true, then this routine is allowed to modify the basic
688 /// block (e.g. delete instructions after the unconditional branch).
689 ///
692 bool AllowModify = false) const {
693 return true;
694 }
695
696 /// Remove the branching code at the end of the specific MBB.
697 /// This is only invoked in cases where analyzeBranch returns success. It
698 /// returns the number of instructions that were removed.
699 /// If \p BytesRemoved is non-null, report the change in code size from the
700 /// removed instructions.
702 int *BytesRemoved = nullptr) const {
703 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
704 }
705
706 /// Insert branch code into the end of the specified MachineBasicBlock. The
707 /// operands to this method are the same as those returned by analyzeBranch.
708 /// This is only invoked in cases where analyzeBranch returns success. It
709 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
710 /// report the change in code size from the added instructions.
711 ///
712 /// It is also invoked by tail merging to add unconditional branches in
713 /// cases where analyzeBranch doesn't apply because there was no original
714 /// branch to analyze. At least this much must be implemented, else tail
715 /// merging needs to be disabled.
716 ///
717 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
718 /// before calling this function.
722 const DebugLoc &DL,
723 int *BytesAdded = nullptr) const {
724 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
725 }
726
728 MachineBasicBlock *DestBB,
729 const DebugLoc &DL,
730 int *BytesAdded = nullptr) const {
731 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
732 BytesAdded);
733 }
734
735 /// Object returned by analyzeLoopForPipelining. Allows software pipelining
736 /// implementations to query attributes of the loop being pipelined and to
737 /// apply target-specific updates to the loop once pipelining is complete.
739 public:
741 /// Return true if the given instruction should not be pipelined and should
742 /// be ignored. An example could be a loop comparison, or induction variable
743 /// update with no users being pipelined.
744 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
745
746 /// Return true if the proposed schedule should used. Otherwise return
747 /// false to not pipeline the loop. This function should be used to ensure
748 /// that pipelined loops meet target-specific quality heuristics.
750 return true;
751 }
752
753 /// Create a condition to determine if the trip count of the loop is greater
754 /// than TC, where TC is always one more than for the previous prologue or
755 /// 0 if this is being called for the outermost prologue.
756 ///
757 /// If the trip count is statically known to be greater than TC, return
758 /// true. If the trip count is statically known to be not greater than TC,
759 /// return false. Otherwise return nullopt and fill out Cond with the test
760 /// condition.
761 ///
762 /// Note: This hook is guaranteed to be called from the innermost to the
763 /// outermost prologue of the loop being software pipelined.
764 virtual std::optional<bool>
767
768 /// Modify the loop such that the trip count is
769 /// OriginalTC + TripCountAdjust.
770 virtual void adjustTripCount(int TripCountAdjust) = 0;
771
772 /// Called when the loop's preheader has been modified to NewPreheader.
773 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
774
775 /// Called when the loop is being removed. Any instructions in the preheader
776 /// should be removed.
777 ///
778 /// Once this function is called, no other functions on this object are
779 /// valid; the loop has been removed.
780 virtual void disposed() = 0;
781 };
782
783 /// Analyze loop L, which must be a single-basic-block loop, and if the
784 /// conditions can be understood enough produce a PipelinerLoopInfo object.
785 virtual std::unique_ptr<PipelinerLoopInfo>
787 return nullptr;
788 }
789
790 /// Analyze the loop code, return true if it cannot be understood. Upon
791 /// success, this function returns false and returns information about the
792 /// induction variable and compare instruction used at the end.
793 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
794 MachineInstr *&CmpInst) const {
795 return true;
796 }
797
798 /// Generate code to reduce the loop iteration by one and check if the loop
799 /// is finished. Return the value/register of the new loop count. We need
800 /// this function when peeling off one or more iterations of a loop. This
801 /// function assumes the nth iteration is peeled first.
803 MachineBasicBlock &PreHeader,
804 MachineInstr *IndVar, MachineInstr &Cmp,
807 unsigned Iter, unsigned MaxIter) const {
808 llvm_unreachable("Target didn't implement ReduceLoopCount");
809 }
810
811 /// Delete the instruction OldInst and everything after it, replacing it with
812 /// an unconditional branch to NewDest. This is used by the tail merging pass.
814 MachineBasicBlock *NewDest) const;
815
816 /// Return true if it's legal to split the given basic
817 /// block at the specified instruction (i.e. instruction would be the start
818 /// of a new basic block).
821 return true;
822 }
823
824 /// Return true if it's profitable to predicate
825 /// instructions with accumulated instruction latency of "NumCycles"
826 /// of the specified basic block, where the probability of the instructions
827 /// being executed is given by Probability, and Confidence is a measure
828 /// of our confidence that it will be properly predicted.
829 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
830 unsigned ExtraPredCycles,
831 BranchProbability Probability) const {
832 return false;
833 }
834
835 /// Second variant of isProfitableToIfCvt. This one
836 /// checks for the case where two basic blocks from true and false path
837 /// of a if-then-else (diamond) are predicated on mutually exclusive
838 /// predicates, where the probability of the true path being taken is given
839 /// by Probability, and Confidence is a measure of our confidence that it
840 /// will be properly predicted.
841 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
842 unsigned ExtraTCycles,
843 MachineBasicBlock &FMBB, unsigned NumFCycles,
844 unsigned ExtraFCycles,
845 BranchProbability Probability) const {
846 return false;
847 }
848
849 /// Return true if it's profitable for if-converter to duplicate instructions
850 /// of specified accumulated instruction latencies in the specified MBB to
851 /// enable if-conversion.
852 /// The probability of the instructions being executed is given by
853 /// Probability, and Confidence is a measure of our confidence that it
854 /// will be properly predicted.
856 unsigned NumCycles,
857 BranchProbability Probability) const {
858 return false;
859 }
860
861 /// Return the increase in code size needed to predicate a contiguous run of
862 /// NumInsts instructions.
864 unsigned NumInsts) const {
865 return 0;
866 }
867
868 /// Return an estimate for the code size reduction (in bytes) which will be
869 /// caused by removing the given branch instruction during if-conversion.
870 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
871 return getInstSizeInBytes(MI);
872 }
873
874 /// Return true if it's profitable to unpredicate
875 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
876 /// exclusive predicates.
877 /// e.g.
878 /// subeq r0, r1, #1
879 /// addne r0, r1, #1
880 /// =>
881 /// sub r0, r1, #1
882 /// addne r0, r1, #1
883 ///
884 /// This may be profitable is conditional instructions are always executed.
886 MachineBasicBlock &FMBB) const {
887 return false;
888 }
889
890 /// Return true if it is possible to insert a select
891 /// instruction that chooses between TrueReg and FalseReg based on the
892 /// condition code in Cond.
893 ///
894 /// When successful, also return the latency in cycles from TrueReg,
895 /// FalseReg, and Cond to the destination register. In most cases, a select
896 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
897 ///
898 /// Some x86 implementations have 2-cycle cmov instructions.
899 ///
900 /// @param MBB Block where select instruction would be inserted.
901 /// @param Cond Condition returned by analyzeBranch.
902 /// @param DstReg Virtual dest register that the result should write to.
903 /// @param TrueReg Virtual register to select when Cond is true.
904 /// @param FalseReg Virtual register to select when Cond is false.
905 /// @param CondCycles Latency from Cond+Branch to select output.
906 /// @param TrueCycles Latency from TrueReg to select output.
907 /// @param FalseCycles Latency from FalseReg to select output.
910 Register TrueReg, Register FalseReg,
911 int &CondCycles, int &TrueCycles,
912 int &FalseCycles) const {
913 return false;
914 }
915
916 /// Insert a select instruction into MBB before I that will copy TrueReg to
917 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
918 ///
919 /// This function can only be called after canInsertSelect() returned true.
920 /// The condition in Cond comes from analyzeBranch, and it can be assumed
921 /// that the same flags or registers required by Cond are available at the
922 /// insertion point.
923 ///
924 /// @param MBB Block where select instruction should be inserted.
925 /// @param I Insertion point.
926 /// @param DL Source location for debugging.
927 /// @param DstReg Virtual register to be defined by select instruction.
928 /// @param Cond Condition as computed by analyzeBranch.
929 /// @param TrueReg Virtual register to copy when Cond is true.
930 /// @param FalseReg Virtual register to copy when Cons is false.
934 Register TrueReg, Register FalseReg) const {
935 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
936 }
937
938 /// Analyze the given select instruction, returning true if
939 /// it cannot be understood. It is assumed that MI->isSelect() is true.
940 ///
941 /// When successful, return the controlling condition and the operands that
942 /// determine the true and false result values.
943 ///
944 /// Result = SELECT Cond, TrueOp, FalseOp
945 ///
946 /// Some targets can optimize select instructions, for example by predicating
947 /// the instruction defining one of the operands. Such targets should set
948 /// Optimizable.
949 ///
950 /// @param MI Select instruction to analyze.
951 /// @param Cond Condition controlling the select.
952 /// @param TrueOp Operand number of the value selected when Cond is true.
953 /// @param FalseOp Operand number of the value selected when Cond is false.
954 /// @param Optimizable Returned as true if MI is optimizable.
955 /// @returns False on success.
956 virtual bool analyzeSelect(const MachineInstr &MI,
958 unsigned &TrueOp, unsigned &FalseOp,
959 bool &Optimizable) const {
960 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
961 return true;
962 }
963
964 /// Given a select instruction that was understood by
965 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
966 /// merging it with one of its operands. Returns NULL on failure.
967 ///
968 /// When successful, returns the new select instruction. The client is
969 /// responsible for deleting MI.
970 ///
971 /// If both sides of the select can be optimized, PreferFalse is used to pick
972 /// a side.
973 ///
974 /// @param MI Optimizable select instruction.
975 /// @param NewMIs Set that record all MIs in the basic block up to \p
976 /// MI. Has to be updated with any newly created MI or deleted ones.
977 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
978 /// @returns Optimized instruction or NULL.
981 bool PreferFalse = false) const {
982 // This function must be implemented if Optimizable is ever set.
983 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
984 }
985
986 /// Emit instructions to copy a pair of physical registers.
987 ///
988 /// This function should support copies within any legal register class as
989 /// well as any cross-class copies created during instruction selection.
990 ///
991 /// The source and destination registers may overlap, which may require a
992 /// careful implementation when multiple copy instructions are required for
993 /// large registers. See for example the ARM target.
996 MCRegister DestReg, MCRegister SrcReg,
997 bool KillSrc) const {
998 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
999 }
1000
1001 /// Allow targets to tell MachineVerifier whether a specific register
1002 /// MachineOperand can be used as part of PC-relative addressing.
1003 /// PC-relative addressing modes in many CISC architectures contain
1004 /// (non-PC) registers as offsets or scaling values, which inherently
1005 /// tags the corresponding MachineOperand with OPERAND_PCREL.
1006 ///
1007 /// @param MO The MachineOperand in question. MO.isReg() should always
1008 /// be true.
1009 /// @return Whether this operand is allowed to be used PC-relatively.
1010 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1011 return false;
1012 }
1013
1014 /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1015 /// using a jump table, otherwise -1.
1016 virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1017
1018protected:
1019 /// Target-dependent implementation for IsCopyInstr.
1020 /// If the specific machine instruction is a instruction that moves/copies
1021 /// value from one register to another register return destination and source
1022 /// registers as machine operands.
1023 virtual std::optional<DestSourcePair>
1025 return std::nullopt;
1026 }
1027
1028 virtual std::optional<DestSourcePair>
1030 return std::nullopt;
1031 }
1032
1033 /// Return true if the given terminator MI is not expected to spill. This
1034 /// sets the live interval as not spillable and adjusts phi node lowering to
1035 /// not introduce copies after the terminator. Use with care, these are
1036 /// currently used for hardware loop intrinsics in very controlled situations,
1037 /// created prior to registry allocation in loops that only have single phi
1038 /// users for the terminators value. They may run out of registers if not used
1039 /// carefully.
1040 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1041 return false;
1042 }
1043
1044public:
1045 /// If the specific machine instruction is a instruction that moves/copies
1046 /// value from one register to another register return destination and source
1047 /// registers as machine operands.
1048 /// For COPY-instruction the method naturally returns destination and source
1049 /// registers as machine operands, for all other instructions the method calls
1050 /// target-dependent implementation.
1051 std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1052 if (MI.isCopy()) {
1053 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1054 }
1055 return isCopyInstrImpl(MI);
1056 }
1057
1058 // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1059 // ultimately generates a copy instruction.
1060 std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1061 if (auto IsCopyInstr = isCopyInstr(MI))
1062 return IsCopyInstr;
1063 return isCopyLikeInstrImpl(MI);
1064 }
1065
1066 bool isFullCopyInstr(const MachineInstr &MI) const {
1067 auto DestSrc = isCopyInstr(MI);
1068 if (!DestSrc)
1069 return false;
1070
1071 const MachineOperand *DestRegOp = DestSrc->Destination;
1072 const MachineOperand *SrcRegOp = DestSrc->Source;
1073 return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1074 }
1075
1076 /// If the specific machine instruction is an instruction that adds an
1077 /// immediate value and a register, and stores the result in the given
1078 /// register \c Reg, return a pair of the source register and the offset
1079 /// which has been added.
1080 virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1081 Register Reg) const {
1082 return std::nullopt;
1083 }
1084
1085 /// Returns true if MI is an instruction that defines Reg to have a constant
1086 /// value and the value is recorded in ImmVal. The ImmVal is a result that
1087 /// should be interpreted as modulo size of Reg.
1089 const Register Reg,
1090 int64_t &ImmVal) const {
1091 return false;
1092 }
1093
1094 /// Store the specified register of the given register class to the specified
1095 /// stack frame index. The store instruction is to be added to the given
1096 /// machine basic block before the specified machine instruction. If isKill
1097 /// is true, the register operand is the last use and must be marked kill. If
1098 /// \p SrcReg is being directly spilled as part of assigning a virtual
1099 /// register, \p VReg is the register being assigned. This additional register
1100 /// argument is needed for certain targets when invoked from RegAllocFast to
1101 /// map the spilled physical register to its virtual register. A null register
1102 /// can be passed elsewhere.
1105 Register SrcReg, bool isKill, int FrameIndex,
1106 const TargetRegisterClass *RC,
1107 const TargetRegisterInfo *TRI,
1108 Register VReg) const {
1109 llvm_unreachable("Target didn't implement "
1110 "TargetInstrInfo::storeRegToStackSlot!");
1111 }
1112
1113 /// Load the specified register of the given register class from the specified
1114 /// stack frame index. The load instruction is to be added to the given
1115 /// machine basic block before the specified machine instruction. If \p
1116 /// DestReg is being directly reloaded as part of assigning a virtual
1117 /// register, \p VReg is the register being assigned. This additional register
1118 /// argument is needed for certain targets when invoked from RegAllocFast to
1119 /// map the loaded physical register to its virtual register. A null register
1120 /// can be passed elsewhere.
1123 Register DestReg, int FrameIndex,
1124 const TargetRegisterClass *RC,
1125 const TargetRegisterInfo *TRI,
1126 Register VReg) const {
1127 llvm_unreachable("Target didn't implement "
1128 "TargetInstrInfo::loadRegFromStackSlot!");
1129 }
1130
1131 /// This function is called for all pseudo instructions
1132 /// that remain after register allocation. Many pseudo instructions are
1133 /// created to help register allocation. This is the place to convert them
1134 /// into real instructions. The target can edit MI in place, or it can insert
1135 /// new instructions and erase MI. The function should return true if
1136 /// anything was changed.
1137 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1138
1139 /// Check whether the target can fold a load that feeds a subreg operand
1140 /// (or a subreg operand that feeds a store).
1141 /// For example, X86 may want to return true if it can fold
1142 /// movl (%esp), %eax
1143 /// subb, %al, ...
1144 /// Into:
1145 /// subb (%esp), ...
1146 ///
1147 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1148 /// reject subregs - but since this behavior used to be enforced in the
1149 /// target-independent code, moving this responsibility to the targets
1150 /// has the potential of causing nasty silent breakage in out-of-tree targets.
1151 virtual bool isSubregFoldable() const { return false; }
1152
1153 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1154 /// operands which can't be folded into stack references. Operands outside
1155 /// of the range are most likely foldable but it is not guaranteed.
1156 /// These instructions are unique in that stack references for some operands
1157 /// have the same execution cost (e.g. none) as the unfolded register forms.
1158 /// The ranged return is guaranteed to include all operands which can't be
1159 /// folded at zero cost.
1160 virtual std::pair<unsigned, unsigned>
1162
1163 /// Attempt to fold a load or store of the specified stack
1164 /// slot into the specified machine instruction for the specified operand(s).
1165 /// If this is possible, a new instruction is returned with the specified
1166 /// operand folded, otherwise NULL is returned.
1167 /// The new instruction is inserted before MI, and the client is responsible
1168 /// for removing the old instruction.
1169 /// If VRM is passed, the assigned physregs can be inspected by target to
1170 /// decide on using an opcode (note that those assignments can still change).
1172 int FI,
1173 LiveIntervals *LIS = nullptr,
1174 VirtRegMap *VRM = nullptr) const;
1175
1176 /// Same as the previous version except it allows folding of any load and
1177 /// store from / to any address, not just from a specific stack slot.
1179 MachineInstr &LoadMI,
1180 LiveIntervals *LIS = nullptr) const;
1181
1182 /// This function defines the logic to lower COPY instruction to
1183 /// target specific instruction(s).
1184 void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1185
1186 /// Return true when there is potentially a faster code sequence
1187 /// for an instruction chain ending in \p Root. All potential patterns are
1188 /// returned in the \p Pattern vector. Pattern should be sorted in priority
1189 /// order since the pattern evaluator stops checking as soon as it finds a
1190 /// faster sequence.
1191 /// \param Root - Instruction that could be combined with one of its operands
1192 /// \param Patterns - Vector of possible combination patterns
1193 virtual bool
1196 bool DoRegPressureReduce) const;
1197
1198 /// Return true if target supports reassociation of instructions in machine
1199 /// combiner pass to reduce register pressure for a given BB.
1200 virtual bool
1202 const RegisterClassInfo *RegClassInfo) const {
1203 return false;
1204 }
1205
1206 /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1207 virtual void
1209 SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1210
1211 /// Return true when a code sequence can improve throughput. It
1212 /// should be called only for instructions in loops.
1213 /// \param Pattern - combiner pattern
1215
1216 /// Return true if the input \P Inst is part of a chain of dependent ops
1217 /// that are suitable for reassociation, otherwise return false.
1218 /// If the instruction's operands must be commuted to have a previous
1219 /// instruction of the same type define the first source operand, \P Commuted
1220 /// will be set to true.
1221 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1222
1223 /// Return true when \P Inst is both associative and commutative. If \P Invert
1224 /// is true, then the inverse of \P Inst operation must be tested.
1226 bool Invert = false) const {
1227 return false;
1228 }
1229
1230 /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1231 /// for sub and vice versa).
1232 virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1233 return std::nullopt;
1234 }
1235
1236 /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1237 bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1238
1239 /// Return true when \P Inst has reassociable operands in the same \P MBB.
1240 virtual bool hasReassociableOperands(const MachineInstr &Inst,
1241 const MachineBasicBlock *MBB) const;
1242
1243 /// Return true when \P Inst has reassociable sibling.
1244 virtual bool hasReassociableSibling(const MachineInstr &Inst,
1245 bool &Commuted) const;
1246
1247 /// When getMachineCombinerPatterns() finds patterns, this function generates
1248 /// the instructions that could replace the original code sequence. The client
1249 /// has to decide whether the actual replacement is beneficial or not.
1250 /// \param Root - Instruction that could be combined with one of its operands
1251 /// \param Pattern - Combination pattern for Root
1252 /// \param InsInstrs - Vector of new instructions that implement P
1253 /// \param DelInstrs - Old instructions, including Root, that could be
1254 /// replaced by InsInstr
1255 /// \param InstIdxForVirtReg - map of virtual register to instruction in
1256 /// InsInstr that defines it
1257 virtual void genAlternativeCodeSequence(
1261 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1262
1263 /// When calculate the latency of the root instruction, accumulate the
1264 /// latency of the sequence to the root latency.
1265 /// \param Root - Instruction that could be combined with one of its operands
1267 return true;
1268 }
1269
1270 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1271 /// reduce critical path length.
1272 void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1276 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1277
1278 /// Reassociation of some instructions requires inverse operations (e.g.
1279 /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1280 /// (new root opcode, new prev opcode) that must be used to reassociate \P
1281 /// Root and \P Prev accoring to \P Pattern.
1282 std::pair<unsigned, unsigned>
1284 const MachineInstr &Root,
1285 const MachineInstr &Prev) const;
1286
1287 /// The limit on resource length extension we accept in MachineCombiner Pass.
1288 virtual int getExtendResourceLenLimit() const { return 0; }
1289
1290 /// This is an architecture-specific helper function of reassociateOps.
1291 /// Set special operand attributes for new instructions after reassociation.
1292 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1293 MachineInstr &NewMI1,
1294 MachineInstr &NewMI2) const {}
1295
1296 /// Return true when a target supports MachineCombiner.
1297 virtual bool useMachineCombiner() const { return false; }
1298
1299 /// Return a strategy that MachineCombiner must use when creating traces.
1301
1302 /// Return true if the given SDNode can be copied during scheduling
1303 /// even if it has glue.
1304 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1305
1306protected:
1307 /// Target-dependent implementation for foldMemoryOperand.
1308 /// Target-independent code in foldMemoryOperand will
1309 /// take care of adding a MachineMemOperand to the newly created instruction.
1310 /// The instruction and any auxiliary instructions necessary will be inserted
1311 /// at InsertPt.
1312 virtual MachineInstr *
1315 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1316 LiveIntervals *LIS = nullptr,
1317 VirtRegMap *VRM = nullptr) const {
1318 return nullptr;
1319 }
1320
1321 /// Target-dependent implementation for foldMemoryOperand.
1322 /// Target-independent code in foldMemoryOperand will
1323 /// take care of adding a MachineMemOperand to the newly created instruction.
1324 /// The instruction and any auxiliary instructions necessary will be inserted
1325 /// at InsertPt.
1328 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1329 LiveIntervals *LIS = nullptr) const {
1330 return nullptr;
1331 }
1332
1333 /// Target-dependent implementation of getRegSequenceInputs.
1334 ///
1335 /// \returns true if it is possible to build the equivalent
1336 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1337 ///
1338 /// \pre MI.isRegSequenceLike().
1339 ///
1340 /// \see TargetInstrInfo::getRegSequenceInputs.
1342 const MachineInstr &MI, unsigned DefIdx,
1343 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1344 return false;
1345 }
1346
1347 /// Target-dependent implementation of getExtractSubregInputs.
1348 ///
1349 /// \returns true if it is possible to build the equivalent
1350 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1351 ///
1352 /// \pre MI.isExtractSubregLike().
1353 ///
1354 /// \see TargetInstrInfo::getExtractSubregInputs.
1356 unsigned DefIdx,
1357 RegSubRegPairAndIdx &InputReg) const {
1358 return false;
1359 }
1360
1361 /// Target-dependent implementation of getInsertSubregInputs.
1362 ///
1363 /// \returns true if it is possible to build the equivalent
1364 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1365 ///
1366 /// \pre MI.isInsertSubregLike().
1367 ///
1368 /// \see TargetInstrInfo::getInsertSubregInputs.
1369 virtual bool
1371 RegSubRegPair &BaseReg,
1372 RegSubRegPairAndIdx &InsertedReg) const {
1373 return false;
1374 }
1375
1376public:
1377 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1378 /// a store or a load and a store into two or more instruction. If this is
1379 /// possible, returns true as well as the new instructions by reference.
1380 virtual bool
1382 bool UnfoldLoad, bool UnfoldStore,
1383 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1384 return false;
1385 }
1386
1388 SmallVectorImpl<SDNode *> &NewNodes) const {
1389 return false;
1390 }
1391
1392 /// Returns the opcode of the would be new
1393 /// instruction after load / store are unfolded from an instruction of the
1394 /// specified opcode. It returns zero if the specified unfolding is not
1395 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1396 /// index of the operand which will hold the register holding the loaded
1397 /// value.
1398 virtual unsigned
1399 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1400 unsigned *LoadRegIndex = nullptr) const {
1401 return 0;
1402 }
1403
1404 /// This is used by the pre-regalloc scheduler to determine if two loads are
1405 /// loading from the same base address. It should only return true if the base
1406 /// pointers are the same and the only differences between the two addresses
1407 /// are the offset. It also returns the offsets by reference.
1408 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1409 int64_t &Offset1,
1410 int64_t &Offset2) const {
1411 return false;
1412 }
1413
1414 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1415 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1416 /// On some targets if two loads are loading from
1417 /// addresses in the same cache line, it's better if they are scheduled
1418 /// together. This function takes two integers that represent the load offsets
1419 /// from the common base address. It returns true if it decides it's desirable
1420 /// to schedule the two loads together. "NumLoads" is the number of loads that
1421 /// have already been scheduled after Load1.
1422 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1423 int64_t Offset1, int64_t Offset2,
1424 unsigned NumLoads) const {
1425 return false;
1426 }
1427
1428 /// Get the base operand and byte offset of an instruction that reads/writes
1429 /// memory. This is a convenience function for callers that are only prepared
1430 /// to handle a single base operand.
1431 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1432 /// abstraction that supports negative offsets.
1434 const MachineOperand *&BaseOp, int64_t &Offset,
1435 bool &OffsetIsScalable,
1436 const TargetRegisterInfo *TRI) const;
1437
1438 /// Get zero or more base operands and the byte offset of an instruction that
1439 /// reads/writes memory. Note that there may be zero base operands if the
1440 /// instruction accesses a constant address.
1441 /// It returns false if MI does not read/write memory.
1442 /// It returns false if base operands and offset could not be determined.
1443 /// It is not guaranteed to always recognize base operands and offsets in all
1444 /// cases.
1445 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1446 /// abstraction that supports negative offsets.
1449 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
1450 const TargetRegisterInfo *TRI) const {
1451 return false;
1452 }
1453
1454 /// Return true if the instruction contains a base register and offset. If
1455 /// true, the function also sets the operand position in the instruction
1456 /// for the base register and offset.
1458 unsigned &BasePos,
1459 unsigned &OffsetPos) const {
1460 return false;
1461 }
1462
1463 /// Target dependent implementation to get the values constituting the address
1464 /// MachineInstr that is accessing memory. These values are returned as a
1465 /// struct ExtAddrMode which contains all relevant information to make up the
1466 /// address.
1467 virtual std::optional<ExtAddrMode>
1469 const TargetRegisterInfo *TRI) const {
1470 return std::nullopt;
1471 }
1472
1473 /// Check if it's possible and beneficial to fold the addressing computation
1474 /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1475 /// memory instruction is a user of the virtual register `Reg`, which in turn
1476 /// is the ultimate destination of zero or more COPY instructions from the
1477 /// output register of `AddrI`.
1478 /// Return the adddressing mode after folding in `AM`.
1480 const MachineInstr &AddrI,
1481 ExtAddrMode &AM) const {
1482 return false;
1483 }
1484
1485 /// Emit a load/store instruction with the same value register as `MemI`, but
1486 /// using the address from `AM`. The addressing mode must have been obtained
1487 /// from `canFoldIntoAddr` for the same memory instruction.
1489 const ExtAddrMode &AM) const {
1490 llvm_unreachable("target did not implement emitLdStWithAddr()");
1491 }
1492
1493 /// Returns true if MI's Def is NullValueReg, and the MI
1494 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1495 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1496 /// function can return true even if becomes zero. Specifically cases such as
1497 /// NullValueReg = shl NullValueReg, 63.
1499 const Register NullValueReg,
1500 const TargetRegisterInfo *TRI) const {
1501 return false;
1502 }
1503
1504 /// If the instruction is an increment of a constant value, return the amount.
1505 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1506 return false;
1507 }
1508
1509 /// Returns true if the two given memory operations should be scheduled
1510 /// adjacent. Note that you have to add:
1511 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1512 /// or
1513 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1514 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1515 ///
1516 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1517 /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1518 /// operations.
1519 /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1520 /// scaled by a runtime quantity.
1521 /// \p ClusterSize is the number of operations in the resulting load/store
1522 /// cluster if this hook returns true.
1523 /// \p NumBytes is the number of bytes that will be loaded from all the
1524 /// clustered loads if this hook returns true.
1526 int64_t Offset1, bool OffsetIsScalable1,
1528 int64_t Offset2, bool OffsetIsScalable2,
1529 unsigned ClusterSize,
1530 unsigned NumBytes) const {
1531 llvm_unreachable("target did not implement shouldClusterMemOps()");
1532 }
1533
1534 /// Reverses the branch condition of the specified condition list,
1535 /// returning false on success and true if it cannot be reversed.
1536 virtual bool
1538 return true;
1539 }
1540
1541 /// Insert a noop into the instruction stream at the specified point.
1542 virtual void insertNoop(MachineBasicBlock &MBB,
1544
1545 /// Insert noops into the instruction stream at the specified point.
1546 virtual void insertNoops(MachineBasicBlock &MBB,
1548 unsigned Quantity) const;
1549
1550 /// Return the noop instruction to use for a noop.
1551 virtual MCInst getNop() const;
1552
1553 /// Return true for post-incremented instructions.
1554 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1555
1556 /// Returns true if the instruction is already predicated.
1557 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1558
1559 /// Assumes the instruction is already predicated and returns true if the
1560 /// instruction can be predicated again.
1561 virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1562 assert(isPredicated(MI) && "Instruction is not predicated");
1563 return false;
1564 }
1565
1566 // Returns a MIRPrinter comment for this machine operand.
1567 virtual std::string
1569 unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1570
1571 /// Returns true if the instruction is a
1572 /// terminator instruction that has not been predicated.
1573 bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1574
1575 /// Returns true if MI is an unconditional tail call.
1576 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1577 return false;
1578 }
1579
1580 /// Returns true if the tail call can be made conditional on BranchCond.
1582 const MachineInstr &TailCall) const {
1583 return false;
1584 }
1585
1586 /// Replace the conditional branch in MBB with a conditional tail call.
1589 const MachineInstr &TailCall) const {
1590 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1591 }
1592
1593 /// Convert the instruction into a predicated instruction.
1594 /// It returns true if the operation was successful.
1595 virtual bool PredicateInstruction(MachineInstr &MI,
1596 ArrayRef<MachineOperand> Pred) const;
1597
1598 /// Returns true if the first specified predicate
1599 /// subsumes the second, e.g. GE subsumes GT.
1601 ArrayRef<MachineOperand> Pred2) const {
1602 return false;
1603 }
1604
1605 /// If the specified instruction defines any predicate
1606 /// or condition code register(s) used for predication, returns true as well
1607 /// as the definition predicate(s) by reference.
1608 /// SkipDead should be set to false at any point that dead
1609 /// predicate instructions should be considered as being defined.
1610 /// A dead predicate instruction is one that is guaranteed to be removed
1611 /// after a call to PredicateInstruction.
1613 std::vector<MachineOperand> &Pred,
1614 bool SkipDead) const {
1615 return false;
1616 }
1617
1618 /// Return true if the specified instruction can be predicated.
1619 /// By default, this returns true for every instruction with a
1620 /// PredicateOperand.
1621 virtual bool isPredicable(const MachineInstr &MI) const {
1622 return MI.getDesc().isPredicable();
1623 }
1624
1625 /// Return true if it's safe to move a machine
1626 /// instruction that defines the specified register class.
1627 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1628 return true;
1629 }
1630
1631 /// Test if the given instruction should be considered a scheduling boundary.
1632 /// This primarily includes labels and terminators.
1633 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1634 const MachineBasicBlock *MBB,
1635 const MachineFunction &MF) const;
1636
1637 /// Measure the specified inline asm to determine an approximation of its
1638 /// length.
1639 virtual unsigned getInlineAsmLength(
1640 const char *Str, const MCAsmInfo &MAI,
1641 const TargetSubtargetInfo *STI = nullptr) const;
1642
1643 /// Allocate and return a hazard recognizer to use for this target when
1644 /// scheduling the machine instructions before register allocation.
1645 virtual ScheduleHazardRecognizer *
1647 const ScheduleDAG *DAG) const;
1648
1649 /// Allocate and return a hazard recognizer to use for this target when
1650 /// scheduling the machine instructions before register allocation.
1651 virtual ScheduleHazardRecognizer *
1653 const ScheduleDAGMI *DAG) const;
1654
1655 /// Allocate and return a hazard recognizer to use for this target when
1656 /// scheduling the machine instructions after register allocation.
1657 virtual ScheduleHazardRecognizer *
1659 const ScheduleDAG *DAG) const;
1660
1661 /// Allocate and return a hazard recognizer to use for by non-scheduling
1662 /// passes.
1663 virtual ScheduleHazardRecognizer *
1665 return nullptr;
1666 }
1667
1668 /// Provide a global flag for disabling the PreRA hazard recognizer that
1669 /// targets may choose to honor.
1670 bool usePreRAHazardRecognizer() const;
1671
1672 /// For a comparison instruction, return the source registers
1673 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1674 /// compares against in CmpValue. Return true if the comparison instruction
1675 /// can be analyzed.
1676 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1677 Register &SrcReg2, int64_t &Mask,
1678 int64_t &Value) const {
1679 return false;
1680 }
1681
1682 /// See if the comparison instruction can be converted
1683 /// into something more efficient. E.g., on ARM most instructions can set the
1684 /// flags register, obviating the need for a separate CMP.
1685 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1686 Register SrcReg2, int64_t Mask,
1687 int64_t Value,
1688 const MachineRegisterInfo *MRI) const {
1689 return false;
1690 }
1691 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1692
1693 /// Try to remove the load by folding it to a register operand at the use.
1694 /// We fold the load instructions if and only if the
1695 /// def and use are in the same BB. We only look at one load and see
1696 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1697 /// defined by the load we are trying to fold. DefMI returns the machine
1698 /// instruction that defines FoldAsLoadDefReg, and the function returns
1699 /// the machine instruction generated due to folding.
1701 const MachineRegisterInfo *MRI,
1702 Register &FoldAsLoadDefReg,
1703 MachineInstr *&DefMI) const {
1704 return nullptr;
1705 }
1706
1707 /// 'Reg' is known to be defined by a move immediate instruction,
1708 /// try to fold the immediate into the use instruction.
1709 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1710 /// then the caller may assume that DefMI has been erased from its parent
1711 /// block. The caller may assume that it will not be erased by this
1712 /// function otherwise.
1715 return false;
1716 }
1717
1718 /// Return the number of u-operations the given machine
1719 /// instruction will be decoded to on the target cpu. The itinerary's
1720 /// IssueWidth is the number of microops that can be dispatched each
1721 /// cycle. An instruction with zero microops takes no dispatch resources.
1722 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1723 const MachineInstr &MI) const;
1724
1725 /// Return true for pseudo instructions that don't consume any
1726 /// machine resources in their current form. These are common cases that the
1727 /// scheduler should consider free, rather than conservatively handling them
1728 /// as instructions with no itinerary.
1729 bool isZeroCost(unsigned Opcode) const {
1730 return Opcode <= TargetOpcode::COPY;
1731 }
1732
1733 virtual std::optional<unsigned>
1734 getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1735 unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1736
1737 /// Compute and return the use operand latency of a given pair of def and use.
1738 /// In most cases, the static scheduling itinerary was enough to determine the
1739 /// operand latency. But it may not be possible for instructions with variable
1740 /// number of defs / uses.
1741 ///
1742 /// This is a raw interface to the itinerary that may be directly overridden
1743 /// by a target. Use computeOperandLatency to get the best estimate of
1744 /// latency.
1745 virtual std::optional<unsigned>
1746 getOperandLatency(const InstrItineraryData *ItinData,
1747 const MachineInstr &DefMI, unsigned DefIdx,
1748 const MachineInstr &UseMI, unsigned UseIdx) const;
1749
1750 /// Compute the instruction latency of a given instruction.
1751 /// If the instruction has higher cost when predicated, it's returned via
1752 /// PredCost.
1753 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1754 const MachineInstr &MI,
1755 unsigned *PredCost = nullptr) const;
1756
1757 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1758
1759 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1760 SDNode *Node) const;
1761
1762 /// Return the default expected latency for a def based on its opcode.
1763 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1764 const MachineInstr &DefMI) const;
1765
1766 /// Return true if this opcode has high latency to its result.
1767 virtual bool isHighLatencyDef(int opc) const { return false; }
1768
1769 /// Compute operand latency between a def of 'Reg'
1770 /// and a use in the current loop. Return true if the target considered
1771 /// it 'high'. This is used by optimization passes such as machine LICM to
1772 /// determine whether it makes sense to hoist an instruction out even in a
1773 /// high register pressure situation.
1774 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1775 const MachineRegisterInfo *MRI,
1776 const MachineInstr &DefMI, unsigned DefIdx,
1777 const MachineInstr &UseMI,
1778 unsigned UseIdx) const {
1779 return false;
1780 }
1781
1782 /// Compute operand latency of a def of 'Reg'. Return true
1783 /// if the target considered it 'low'.
1784 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1785 const MachineInstr &DefMI,
1786 unsigned DefIdx) const;
1787
1788 /// Perform target-specific instruction verification.
1789 virtual bool verifyInstruction(const MachineInstr &MI,
1790 StringRef &ErrInfo) const {
1791 return true;
1792 }
1793
1794 /// Return the current execution domain and bit mask of
1795 /// possible domains for instruction.
1796 ///
1797 /// Some micro-architectures have multiple execution domains, and multiple
1798 /// opcodes that perform the same operation in different domains. For
1799 /// example, the x86 architecture provides the por, orps, and orpd
1800 /// instructions that all do the same thing. There is a latency penalty if a
1801 /// register is written in one domain and read in another.
1802 ///
1803 /// This function returns a pair (domain, mask) containing the execution
1804 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1805 /// function can be used to change the opcode to one of the domains in the
1806 /// bit mask. Instructions whose execution domain can't be changed should
1807 /// return a 0 mask.
1808 ///
1809 /// The execution domain numbers don't have any special meaning except domain
1810 /// 0 is used for instructions that are not associated with any interesting
1811 /// execution domain.
1812 ///
1813 virtual std::pair<uint16_t, uint16_t>
1815 return std::make_pair(0, 0);
1816 }
1817
1818 /// Change the opcode of MI to execute in Domain.
1819 ///
1820 /// The bit (1 << Domain) must be set in the mask returned from
1821 /// getExecutionDomain(MI).
1822 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1823
1824 /// Returns the preferred minimum clearance
1825 /// before an instruction with an unwanted partial register update.
1826 ///
1827 /// Some instructions only write part of a register, and implicitly need to
1828 /// read the other parts of the register. This may cause unwanted stalls
1829 /// preventing otherwise unrelated instructions from executing in parallel in
1830 /// an out-of-order CPU.
1831 ///
1832 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1833 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1834 /// the instruction needs to wait for the old value of the register to become
1835 /// available:
1836 ///
1837 /// addps %xmm1, %xmm0
1838 /// movaps %xmm0, (%rax)
1839 /// cvtsi2ss %rbx, %xmm0
1840 ///
1841 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1842 /// instruction before it can issue, even though the high bits of %xmm0
1843 /// probably aren't needed.
1844 ///
1845 /// This hook returns the preferred clearance before MI, measured in
1846 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1847 /// instructions before MI. It should only return a positive value for
1848 /// unwanted dependencies. If the old bits of the defined register have
1849 /// useful values, or if MI is determined to otherwise read the dependency,
1850 /// the hook should return 0.
1851 ///
1852 /// The unwanted dependency may be handled by:
1853 ///
1854 /// 1. Allocating the same register for an MI def and use. That makes the
1855 /// unwanted dependency identical to a required dependency.
1856 ///
1857 /// 2. Allocating a register for the def that has no defs in the previous N
1858 /// instructions.
1859 ///
1860 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1861 /// allows the target to insert a dependency breaking instruction.
1862 ///
1863 virtual unsigned
1865 const TargetRegisterInfo *TRI) const {
1866 // The default implementation returns 0 for no partial register dependency.
1867 return 0;
1868 }
1869
1870 /// Return the minimum clearance before an instruction that reads an
1871 /// unused register.
1872 ///
1873 /// For example, AVX instructions may copy part of a register operand into
1874 /// the unused high bits of the destination register.
1875 ///
1876 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1877 ///
1878 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1879 /// false dependence on any previous write to %xmm0.
1880 ///
1881 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1882 /// does not take an operand index. Instead sets \p OpNum to the index of the
1883 /// unused register.
1884 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1885 const TargetRegisterInfo *TRI) const {
1886 // The default implementation returns 0 for no undef register dependency.
1887 return 0;
1888 }
1889
1890 /// Insert a dependency-breaking instruction
1891 /// before MI to eliminate an unwanted dependency on OpNum.
1892 ///
1893 /// If it wasn't possible to avoid a def in the last N instructions before MI
1894 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1895 /// unwanted dependency.
1896 ///
1897 /// On x86, an xorps instruction can be used as a dependency breaker:
1898 ///
1899 /// addps %xmm1, %xmm0
1900 /// movaps %xmm0, (%rax)
1901 /// xorps %xmm0, %xmm0
1902 /// cvtsi2ss %rbx, %xmm0
1903 ///
1904 /// An <imp-kill> operand should be added to MI if an instruction was
1905 /// inserted. This ties the instructions together in the post-ra scheduler.
1906 ///
1907 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1908 const TargetRegisterInfo *TRI) const {}
1909
1910 /// Create machine specific model for scheduling.
1911 virtual DFAPacketizer *
1913 return nullptr;
1914 }
1915
1916 /// Sometimes, it is possible for the target
1917 /// to tell, even without aliasing information, that two MIs access different
1918 /// memory addresses. This function returns true if two MIs access different
1919 /// memory addresses and false otherwise.
1920 ///
1921 /// Assumes any physical registers used to compute addresses have the same
1922 /// value for both instructions. (This is the most useful assumption for
1923 /// post-RA scheduling.)
1924 ///
1925 /// See also MachineInstr::mayAlias, which is implemented on top of this
1926 /// function.
1927 virtual bool
1929 const MachineInstr &MIb) const {
1930 assert(MIa.mayLoadOrStore() &&
1931 "MIa must load from or modify a memory location");
1932 assert(MIb.mayLoadOrStore() &&
1933 "MIb must load from or modify a memory location");
1934 return false;
1935 }
1936
1937 /// Return the value to use for the MachineCSE's LookAheadLimit,
1938 /// which is a heuristic used for CSE'ing phys reg defs.
1939 virtual unsigned getMachineCSELookAheadLimit() const {
1940 // The default lookahead is small to prevent unprofitable quadratic
1941 // behavior.
1942 return 5;
1943 }
1944
1945 /// Return the maximal number of alias checks on memory operands. For
1946 /// instructions with more than one memory operands, the alias check on a
1947 /// single MachineInstr pair has quadratic overhead and results in
1948 /// unacceptable performance in the worst case. The limit here is to clamp
1949 /// that maximal checks performed. Usually, that's the product of memory
1950 /// operand numbers from that pair of MachineInstr to be checked. For
1951 /// instance, with two MachineInstrs with 4 and 5 memory operands
1952 /// correspondingly, a total of 20 checks are required. With this limit set to
1953 /// 16, their alias check is skipped. We choose to limit the product instead
1954 /// of the individual instruction as targets may have special MachineInstrs
1955 /// with a considerably high number of memory operands, such as `ldm` in ARM.
1956 /// Setting this limit per MachineInstr would result in either too high
1957 /// overhead or too rigid restriction.
1958 virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1959
1960 /// Return an array that contains the ids of the target indices (used for the
1961 /// TargetIndex machine operand) and their names.
1962 ///
1963 /// MIR Serialization is able to serialize only the target indices that are
1964 /// defined by this method.
1967 return std::nullopt;
1968 }
1969
1970 /// Decompose the machine operand's target flags into two values - the direct
1971 /// target flag value and any of bit flags that are applied.
1972 virtual std::pair<unsigned, unsigned>
1974 return std::make_pair(0u, 0u);
1975 }
1976
1977 /// Return an array that contains the direct target flag values and their
1978 /// names.
1979 ///
1980 /// MIR Serialization is able to serialize only the target flags that are
1981 /// defined by this method.
1984 return std::nullopt;
1985 }
1986
1987 /// Return an array that contains the bitmask target flag values and their
1988 /// names.
1989 ///
1990 /// MIR Serialization is able to serialize only the target flags that are
1991 /// defined by this method.
1994 return std::nullopt;
1995 }
1996
1997 /// Return an array that contains the MMO target flag values and their
1998 /// names.
1999 ///
2000 /// MIR Serialization is able to serialize only the MMO target flags that are
2001 /// defined by this method.
2004 return std::nullopt;
2005 }
2006
2007 /// Determines whether \p Inst is a tail call instruction. Override this
2008 /// method on targets that do not properly set MCID::Return and MCID::Call on
2009 /// tail call instructions."
2010 virtual bool isTailCall(const MachineInstr &Inst) const {
2011 return Inst.isReturn() && Inst.isCall();
2012 }
2013
2014 /// True if the instruction is bound to the top of its basic block and no
2015 /// other instructions shall be inserted before it. This can be implemented
2016 /// to prevent register allocator to insert spills for \p Reg before such
2017 /// instructions.
2019 Register Reg = Register()) const {
2020 return false;
2021 }
2022
2023 /// Allows targets to use appropriate copy instruction while spilitting live
2024 /// range of a register in register allocation.
2026 const MachineFunction &MF) const {
2027 return TargetOpcode::COPY;
2028 }
2029
2030 /// During PHI eleimination lets target to make necessary checks and
2031 /// insert the copy to the PHI destination register in a target specific
2032 /// manner.
2035 const DebugLoc &DL, Register Src, Register Dst) const {
2036 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2037 .addReg(Src);
2038 }
2039
2040 /// During PHI eleimination lets target to make necessary checks and
2041 /// insert the copy to the PHI destination register in a target specific
2042 /// manner.
2045 const DebugLoc &DL, Register Src,
2046 unsigned SrcSubReg,
2047 Register Dst) const {
2048 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2049 .addReg(Src, 0, SrcSubReg);
2050 }
2051
2052 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2053 /// information for a set of outlining candidates. Returns std::nullopt if the
2054 /// candidates are not suitable for outlining.
2055 virtual std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
2056 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
2058 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2059 }
2060
2061 /// Optional target hook to create the LLVM IR attributes for the outlined
2062 /// function. If overridden, the overriding function must call the default
2063 /// implementation.
2065 Function &F, std::vector<outliner::Candidate> &Candidates) const;
2066
2067protected:
2068 /// Target-dependent implementation for getOutliningTypeImpl.
2069 virtual outliner::InstrType
2072 "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2073 }
2074
2075public:
2076 /// Returns how or if \p MIT should be outlined. \p Flags is the
2077 /// target-specific information returned by isMBBSafeToOutlineFrom.
2079 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const;
2080
2081 /// Optional target hook that returns true if \p MBB is safe to outline from,
2082 /// and returns any target-specific information in \p Flags.
2084 unsigned &Flags) const;
2085
2086 /// Optional target hook which partitions \p MBB into outlinable ranges for
2087 /// instruction mapping purposes. Each range is defined by two iterators:
2088 /// [start, end).
2089 ///
2090 /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2091 /// top of the block should come before ranges closer to the end of the block.
2092 ///
2093 /// Ranges cannot overlap.
2094 ///
2095 /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2096 ///
2097 /// All instructions not present in an outlinable range are considered
2098 /// illegal.
2099 virtual SmallVector<
2100 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
2101 getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2102 return {std::make_pair(MBB.begin(), MBB.end())};
2103 }
2104
2105 /// Insert a custom frame for outlined functions.
2107 const outliner::OutlinedFunction &OF) const {
2109 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2110 }
2111
2112 /// Insert a call to an outlined function into the program.
2113 /// Returns an iterator to the spot where we inserted the call. This must be
2114 /// implemented by the target.
2118 outliner::Candidate &C) const {
2120 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2121 }
2122
2123 /// Insert an architecture-specific instruction to clear a register. If you
2124 /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2125 /// \p AllowSideEffects to \p false.
2128 DebugLoc &DL,
2129 bool AllowSideEffects = true) const {
2130#if 0
2131 // FIXME: This should exist once all platforms that use stack protectors
2132 // implements it.
2134 "Target didn't implement TargetInstrInfo::buildClearRegister!");
2135#endif
2136 }
2137
2138 /// Return true if the function can safely be outlined from.
2139 /// A function \p MF is considered safe for outlining if an outlined function
2140 /// produced from instructions in F will produce a program which produces the
2141 /// same output for any set of given inputs.
2143 bool OutlineFromLinkOnceODRs) const {
2144 llvm_unreachable("Target didn't implement "
2145 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2146 }
2147
2148 /// Return true if the function should be outlined from by default.
2150 return false;
2151 }
2152
2153 /// Return true if the function is a viable candidate for machine function
2154 /// splitting. The criteria for if a function can be split may vary by target.
2155 virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2156
2157 /// Return true if the MachineBasicBlock can safely be split to the cold
2158 /// section. On AArch64, certain instructions may cause a block to be unsafe
2159 /// to split to the cold section.
2160 virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2161 return true;
2162 }
2163
2164 /// Produce the expression describing the \p MI loading a value into
2165 /// the physical register \p Reg. This hook should only be used with
2166 /// \p MIs belonging to VReg-less functions.
2167 virtual std::optional<ParamLoadedValue>
2169
2170 /// Given the generic extension instruction \p ExtMI, returns true if this
2171 /// extension is a likely candidate for being folded into an another
2172 /// instruction.
2174 MachineRegisterInfo &MRI) const {
2175 return false;
2176 }
2177
2178 /// Return MIR formatter to format/parse MIR operands. Target can override
2179 /// this virtual function and return target specific MIR formatter.
2180 virtual const MIRFormatter *getMIRFormatter() const {
2181 if (!Formatter.get())
2182 Formatter = std::make_unique<MIRFormatter>();
2183 return Formatter.get();
2184 }
2185
2186 /// Returns the target-specific default value for tail duplication.
2187 /// This value will be used if the tail-dup-placement-threshold argument is
2188 /// not provided.
2189 virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2190 return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2191 }
2192
2193 /// Returns the callee operand from the given \p MI.
2194 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2195 return MI.getOperand(0);
2196 }
2197
2198 /// Return the uniformity behavior of the given instruction.
2199 virtual InstructionUniformity
2202 }
2203
2204 /// Returns true if the given \p MI defines a TargetIndex operand that can be
2205 /// tracked by their offset, can have values, and can have debug info
2206 /// associated with it. If so, sets \p Index and \p Offset of the target index
2207 /// operand.
2209 int64_t &Offset) const {
2210 return false;
2211 }
2212
2213 // Get the call frame size just before MI.
2214 unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2215
2216 /// Fills in the necessary MachineOperands to refer to a frame index.
2217 /// The best way to understand this is to print `asm(""::"m"(x));` after
2218 /// finalize-isel. Example:
2219 /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2220 /// we would add placeholders for: ^ ^ ^ ^
2222 int FI) const {
2223 llvm_unreachable("unknown number of operands necessary");
2224 }
2225
2226 /// Gets the opcode for the Pseudo Instruction used to initialize
2227 /// the undef value. If no Instruction is available, this will
2228 /// fail compilation.
2229 virtual unsigned getUndefInitOpcode(unsigned RegClassID) const {
2230 (void)RegClassID;
2231
2232 llvm_unreachable("Unexpected register class.");
2233 }
2234
2235private:
2236 mutable std::unique_ptr<MIRFormatter> Formatter;
2237 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2238 unsigned CatchRetOpcode;
2239 unsigned ReturnOpcode;
2240};
2241
2242/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2245
2247 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2248 RegInfo::getEmptyKey());
2249 }
2250
2252 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2253 RegInfo::getTombstoneKey());
2254 }
2255
2256 /// Reuse getHashValue implementation from
2257 /// std::pair<unsigned, unsigned>.
2258 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2259 std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2260 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2261 }
2262
2265 return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2266 RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2267 }
2268};
2269
2270} // end namespace llvm
2271
2272#endif // LLVM_CODEGEN_TARGETINSTRINFO_H
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
uint64_t Size
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Machine Check Debug Module
Contains all data structures shared between the outliner implemented in MachineOutliner....
unsigned const TargetRegisterInfo * TRI
unsigned Reg
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:955
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
Itinerary data supplied by a subtarget to be used by a target.
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:184
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
MIRFormater - Interface to format MIR operand based on target.
Definition: MIRFormatter.h:32
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
bool isReturn(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:906
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:916
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
static MachineOperand CreateImm(int64_t Val)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Represents one node in the SelectionDAG.
This class represents the scheduled code.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:225
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
Object returned by analyzeLoopForPipelining.
virtual void disposed()=0
Called when the loop is being removed.
virtual void adjustTripCount(int TripCountAdjust)=0
Modify the loop such that the trip count is OriginalTC + TripCountAdjust.
virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const =0
Return true if the given instruction should not be pipelined and should be ignored.
virtual void setPreheader(MachineBasicBlock *NewPreheader)=0
Called when the loop's preheader has been modified to NewPreheader.
virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS)
Return true if the proposed schedule should used.
virtual std::optional< bool > createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond)=0
Create a condition to determine if the trip count of the loop is greater than TC, where TC is always ...
TargetInstrInfo - Interface to description of machine instruction set.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual SmallVector< std::pair< MachineBasicBlock::iterator, MachineBasicBlock::iterator > > getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook which partitions MBB into outlinable ranges for instruction mapping purposes.
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
virtual bool isBasicBlockPrologue(const MachineInstr &MI, Register Reg=Register()) const
True if the instruction is bound to the top of its basic block and no other instructions shall be ins...
virtual bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const
Reverses the branch condition of the specified condition list, returning false on success and true if...
virtual MachineInstr * optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, Register &FoldAsLoadDefReg, MachineInstr *&DefMI) const
Try to remove the load by folding it to a register operand at the use.
virtual unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const
Remove the branching code at the end of the specific MBB.
virtual std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
virtual bool ClobbersPredicate(MachineInstr &MI, std::vector< MachineOperand > &Pred, bool SkipDead) const
If the specified instruction defines any predicate or condition code register(s) used for predication...
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const
Assumes the instruction is already predicated and returns true if the instruction can be predicated a...
virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const
Compute operand latency of a def of 'Reg'.
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const
This is an architecture-specific helper function of reassociateOps.
bool isZeroCost(unsigned Opcode) const
Return true for pseudo instructions that don't consume any machine resources in their current form.
virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects=true) const
Insert an architecture-specific instruction to clear a register.
virtual void getFrameIndexOperands(SmallVectorImpl< MachineOperand > &Ops, int FI) const
Fills in the necessary MachineOperands to refer to a frame index.
virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify=false) const
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI, MachineRegisterInfo &MRI) const
Given the generic extension instruction ExtMI, returns true if this extension is a likely candidate f...
virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo, MachineCycleInfo *CI) const
virtual std::optional< DestSourcePair > isCopyLikeInstrImpl(const MachineInstr &MI) const
virtual unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Returns the preferred minimum clearance before an instruction with an unwanted partial register updat...
virtual bool canMakeTailCallConditional(SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Returns true if the tail call can be made conditional on BranchCond.
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const
Return the number of u-operations the given machine instruction will be decoded to on the target cpu.
virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &) const
Create machine specific model for scheduling.
virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar, MachineInstr &Cmp, SmallVectorImpl< MachineOperand > &Cond, SmallVectorImpl< MachineInstr * > &PrevInsts, unsigned Iter, unsigned MaxIter) const
Generate code to reduce the loop iteration by one and check if the loop is finished.
virtual bool isPostIncrement(const MachineInstr &MI) const
Return true for post-incremented instructions.
bool isTriviallyReMaterializable(const MachineInstr &MI) const
Return true if the instruction is trivially rematerializable, meaning it has no side effects and requ...
virtual int getSPAdjust(const MachineInstr &MI) const
Returns the actual stack pointer adjustment made by an instruction as part of a call sequence.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const
Load the specified register of the given register class from the specified stack frame index.
virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const
Return true if the instruction is a "coalescable" extension instruction.
virtual void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset=0, RegScavenger *RS=nullptr) const
Insert an unconditional indirect branch at the end of MBB to NewDestBB.
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const
Delete the instruction OldInst and everything after it, replacing it with an unconditional branch to ...
virtual ArrayRef< std::pair< MachineMemOperand::Flags, const char * > > getSerializableMachineMemOperandTargetFlags() const
Return an array that contains the MMO target flag values and their names.
virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const
Return true if the instruction contains a base register and offset.
virtual bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Pred) const
Convert the instruction into a predicated instruction.
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const
Returns the opcode of the would be new instruction after load / store are unfolded from an instructio...
bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const
Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify=false) const
Analyze the branching code at the end of MBB and parse it into the MachineBranchPredicate structure i...
virtual bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Target-dependent implementation of getInsertSubregInputs.
virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const
Return true if the function should be outlined from by default.
virtual MachineInstr * optimizeSelect(MachineInstr &MI, SmallPtrSetImpl< MachineInstr * > &NewMIs, bool PreferFalse=false) const
Given a select instruction that was understood by analyzeSelect and returned Optimizable = true,...
virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, const MachineInstr &AddrI, ExtAddrMode &AM) const
Check if it's possible and beneficial to fold the addressing computation AddrI into the addressing mo...
virtual const MIRFormatter * getMIRFormatter() const
Return MIR formatter to format/parse MIR operands.
virtual std::pair< unsigned, unsigned > getPatchpointUnfoldableRange(const MachineInstr &MI) const
For a patchpoint, stackmap, or statepoint intrinsic, return the range of operands which can't be fold...
outliner::InstrType getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const
Returns how or if MIT should be outlined.
virtual bool shouldReduceRegisterPressure(const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const
Return true if target supports reassociation of instructions in machine combiner pass to reduce regis...
virtual ArrayRef< std::pair< int, const char * > > getSerializableTargetIndices() const
Return an array that contains the ids of the target indices (used for the TargetIndex machine operand...
bool isFullCopyInstr(const MachineInstr &MI) const
virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Return the minimum clearance before an instruction that reads an unused register.
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const
Store the specified register of the given register class to the specified stack frame index.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual void mergeOutliningCandidateAttributes(Function &F, std::vector< outliner::Candidate > &Candidates) const
Optional target hook to create the LLVM IR attributes for the outlined function.
virtual bool preservesZeroValueInReg(const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const
Returns true if MI's Def is NullValueReg, and the MI does not change the Zero value.
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< MachineCombinerPattern > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const
Perform target-specific instruction verification.
virtual bool isUnconditionalTailCall(const MachineInstr &MI) const
Returns true if MI is an unconditional tail call.
bool isUnpredicatedTerminator(const MachineInstr &MI) const
Returns true if the instruction is a terminator instruction that has not been predicated.
virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const
Compute operand latency between a def of 'Reg' and a use in the current loop.
bool isUnspillableTerminator(const MachineInstr *MI) const
Return true if the given instruction is terminator that is unspillable, according to isUnspillableTer...
virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const
Return true if it's profitable to unpredicate one side of a 'diamond', i.e.
virtual bool useMachineCombiner() const
Return true when a target supports MachineCombiner.
virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
Insert a noop into the instruction stream at the specified point.
virtual bool SubsumesPredicate(ArrayRef< MachineOperand > Pred1, ArrayRef< MachineOperand > Pred2) const
Returns true if the first specified predicate subsumes the second, e.g.
bool isFrameInstr(const MachineInstr &I) const
Returns true if the argument is a frame pseudo instruction.
virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Insert a dependency-breaking instruction before MI to eliminate an unwanted dependency on OpNum.
virtual bool getRegSequenceLikeInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Target-dependent implementation of getRegSequenceInputs.
virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const
Second variant of isProfitableToIfCvt.
virtual int getExtendResourceLenLimit() const
The limit on resource length extension we accept in MachineCombiner Pass.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const
Allocate and return a hazard recognizer to use for by non-scheduling passes.
virtual void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const
Insert a select instruction into MBB before I that will copy TrueReg to DstReg when Cond is true,...
virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const MachineFunction &MF) const
Compute the size in bytes and offset within a stack slot of a spilled register or subregister.
virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAGMI *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const
Emit instructions to copy a pair of physical registers.
virtual bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const
Sometimes, it is possible for the target to tell, even without aliasing information,...
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const
unsigned getReturnOpcode() const
virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI=nullptr) const
Measure the specified inline asm to determine an approximation of its length.
virtual outliner::InstrType getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const
Target-dependent implementation for getOutliningTypeImpl.
virtual bool isIgnorableUse(const MachineOperand &MO) const
Given MO is a PhysReg use return if it can be ignored for the purpose of instruction rematerializatio...
virtual std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const
Produce the expression describing the MI loading a value into the physical register Reg.
void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const
This function defines the logic to lower COPY instruction to target specific instruction(s).
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct load from a stack slot, return the virtual or physic...
MachineInstr * foldMemoryOperand(MachineInstr &MI, ArrayRef< unsigned > Ops, int FI, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Attempt to fold a load or store of the specified stack slot into the specified machine instruction fo...
virtual bool shouldClusterMemOps(ArrayRef< const MachineOperand * > BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef< const MachineOperand * > BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const
Returns true if the two given memory operations should be scheduled adjacent.
virtual unsigned getLiveRangeSplitOpcode(Register Reg, const MachineFunction &MF) const
Allows targets to use appropriate copy instruction while spilitting live range of a register in regis...
virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t Mask, int64_t Value, const MachineRegisterInfo *MRI) const
See if the comparison instruction can be converted into something more efficient.
virtual unsigned getMemOperandAACheckLimit() const
Return the maximal number of alias checks on memory operands.
virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const
Return true if the function can safely be outlined from.
virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const
Return true if the MachineBasicBlock can safely be split to the cold section.
virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const
Insert a custom frame for outlined functions.
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const
This is a used by the pre-regalloc scheduler to determine (in conjunction with areLoadsFromSameBasePt...
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const
Return true if the given SDNode can be copied during scheduling even if it has glue.
virtual std::optional< ExtAddrMode > getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const
Target dependent implementation to get the values constituting the address MachineInstr that is acces...
virtual std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const
Target-dependent implementation for IsCopyInstr.
virtual MachineInstr * createPHIDestinationCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const
Returns true if MI is an instruction that defines Reg to have a constant value and the value is recor...
static bool isGenericOpcode(unsigned Opc)
TargetInstrInfo & operator=(const TargetInstrInfo &)=delete
std::optional< DestSourcePair > isCopyLikeInstr(const MachineInstr &MI) const
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const
Return an array that contains the bitmask target flag values and their names.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise).
virtual bool isSubregFoldable() const
Check whether the target can fold a load that feeds a subreg operand (or a subreg operand that feeds ...
virtual MCInst getNop() const
Return the noop instruction to use for a noop.
unsigned getCallFrameSizeAt(MachineInstr &MI) const
virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
virtual MachineInstr & duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const
Clones instruction or the whole instruction bundle Orig and insert into MBB before InsertBefore.
virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
virtual std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr &MI) const
Return the current execution domain and bit mask of possible domains for instruction.
virtual bool optimizeCondBranch(MachineInstr &MI) const
virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, MachineInstr *&CmpInst) const
Analyze the loop code, return true if it cannot be understood.
virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook that returns true if MBB is safe to outline from, and returns any target-specifi...
unsigned getCatchReturnOpcode() const
virtual InstructionUniformity getInstructionUniformity(const MachineInstr &MI) const
Return the uniformity behavior of the given instruction.
virtual bool isAsCheapAsAMove(const MachineInstr &MI) const
Return true if the instruction is as cheap as a move instruction.
virtual bool isTailCall(const MachineInstr &Inst) const
Determines whether Inst is a tail call instruction.
virtual const MachineOperand & getCalleeOperand(const MachineInstr &MI) const
Returns the callee operand from the given MI.
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
int64_t getFrameTotalSize(const MachineInstr &I) const
Returns the total frame size, which is made up of the space set up inside the pair of frame start-sto...
MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI=false, unsigned OpIdx1=CommuteAnyOperandIndex, unsigned OpIdx2=CommuteAnyOperandIndex) const
This method commutes the operands of the given machine instruction MI.
virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const
'Reg' is known to be defined by a move immediate instruction, try to fold the immediate into the use ...
virtual void genAlternativeCodeSequence(MachineInstr &Root, MachineCombinerPattern Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const
unfoldMemoryOperand - Separate a single instruction which folded a load or a store or a load and a st...
virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const
Return true if the specified machine instruction is a copy of one stack slot to another and has no ot...
virtual std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual int getJumpTableIndex(const MachineInstr &MI) const
Return an index for MachineJumpTableInfo if insn is an indirect jump using a jump table,...
virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert=false) const
Return true when \P Inst is both associative and commutative.
virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index, int64_t &Offset) const
Returns true if the given MI defines a TargetIndex operand that can be tracked by their offset,...
virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const
Allow targets to tell MachineVerifier whether a specific register MachineOperand can be used as part ...
virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const
Re-issue the specified 'original' instruction at the specific location targeting a new destination re...
virtual MachineInstr * createPHISourceCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const
Insert a call to an outlined function into the program.
virtual std::optional< unsigned > getInverseOpcode(unsigned Opcode) const
Return the inverse operation opcode if it exists for \P Opcode (e.g.
TargetInstrInfo(unsigned CFSetupOpcode=~0u, unsigned CFDestroyOpcode=~0u, unsigned CatchRetOpcode=~0u, unsigned ReturnOpcode=~0u)
virtual void insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const
Insert noops into the instruction stream at the specified point.
unsigned getCallFrameDestroyOpcode() const
int64_t getFrameSize(const MachineInstr &I) const
Returns size of the frame associated with the given frame instruction.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual MachineBasicBlock * getBranchDestBlock(const MachineInstr &MI) const
virtual bool isPredicated(const MachineInstr &MI) const
Returns true if the instruction is already predicated.
bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Build the equivalent inputs of a INSERT_SUBREG for the given MI and DefIdx.
virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Replace the conditional branch in MBB with a conditional tail call.
TargetInstrInfo(const TargetInstrInfo &)=delete
virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const
Return true when a code sequence can improve throughput.
virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const
Return an estimate for the code size reduction (in bytes) which will be caused by removing the given ...
virtual ~TargetInstrInfo()
virtual std::optional< outliner::OutlinedFunction > getOutliningCandidateInfo(std::vector< outliner::Candidate > &RepeatedSequenceLocs) const
Returns a outliner::OutlinedFunction struct containing target-specific information for a set of outli...
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const
Compute the instruction latency of a given instruction.
virtual bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI=nullptr) const
Return true if two machine instructions would produce identical values.
bool isFrameSetup(const MachineInstr &I) const
Returns true if the argument is a frame setup pseudo instruction.
virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, unsigned NumInsts) const
Return the increase in code size needed to predicate a contiguous run of NumInsts instructions.
virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const
When calculate the latency of the root instruction, accumulate the latency of the sequence to the roo...
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const
Return true if the input \P Inst is part of a chain of dependent ops that are suitable for reassociat...
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl< MachineOperand > &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const
Analyze the given select instruction, returning true if it cannot be understood.
std::pair< unsigned, unsigned > getReassociationOpcodes(MachineCombinerPattern Pattern, const MachineInstr &Root, const MachineInstr &Prev) const
Reassociation of some instructions requires inverse operations (e.g.
virtual bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const
Get zero or more base operands and the byte offset of an instruction that reads/writes memory.
virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const
Returns the size in bytes of the specified MachineInstr, or ~0U when this function is not implemented...
virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const
Return true if it's profitable for if-converter to duplicate instructions of specified accumulated in...
virtual unsigned getPredicationCost(const MachineInstr &MI) const
virtual bool shouldSink(const MachineInstr &MI) const
Return true if the instruction should be sunk by MachineSink.
virtual MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const
This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_ADDR flag.
virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const
Change the opcode of MI to execute in Domain.
virtual bool isPredicable(const MachineInstr &MI) const
Return true if the specified instruction can be predicated.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned) const
Decompose the machine operand's target flags into two values - the direct target flag value and any o...
virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const
Return true if it's safe to move a machine instruction that defines the specified register class.
virtual bool canInsertSelect(const MachineBasicBlock &MBB, ArrayRef< MachineOperand > Cond, Register DstReg, Register TrueReg, Register FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const
Return true if it is possible to insert a select instruction that chooses between TrueReg and FalseRe...
virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const
Return true if the function is a viable candidate for machine function splitting.
virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const
Return a strategy that MachineCombiner must use when creating traces.
bool getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Build the equivalent inputs of a REG_SEQUENCE for the given MI and DefIdx.
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const
Return true if the given terminator MI is not expected to spill.
virtual std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const
If the specific machine instruction is an instruction that adds an immediate value and a register,...
unsigned defaultDefLatency(const MCSchedModel &SchedModel, const MachineInstr &DefMI) const
Return the default expected latency for a def based on its opcode.
static bool isGenericAtomicRMWOpcode(unsigned Opc)
virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const
Returns true if the target has a preference on the operands order of the given machine instruction.
static const unsigned CommuteAnyOperandIndex
virtual bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const
Return true when \P Inst has reassociable sibling.
virtual std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const
void reassociateOps(MachineInstr &Root, MachineInstr &Prev, MachineCombinerPattern Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg) const
Attempt to reassociate \P Root and \P Prev according to \P Pattern to reduce critical path length.
virtual bool isHighLatencyDef(int opc) const
Return true if this opcode has high latency to its result.
virtual MachineInstr * emitLdStWithAddr(MachineInstr &MemI, const ExtAddrMode &AM) const
Emit a load/store instruction with the same value register as MemI, but using the address from AM.
virtual bool expandPostRAPseudo(MachineInstr &MI) const
This function is called for all pseudo instructions that remain after register allocation.
static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, unsigned CommutableOpIdx1, unsigned CommutableOpIdx2)
Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable operand indices to (ResultIdx1,...
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const
Return an array that contains the direct target flag values and their names.
virtual bool shouldHoist(const MachineInstr &MI, const MachineLoop *FromLoop) const
Return false if the instruction should not be hoisted by MachineLICM.
bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Build the equivalent inputs of a EXTRACT_SUBREG for the given MI and DefIdx.
virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Target-dependent implementation of getExtractSubregInputs.
virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const
Returns the target-specific default value for tail duplication.
bool usePreRAHazardRecognizer() const
Provide a global flag for disabling the PreRA hazard recognizer that targets may choose to honor.
unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, MachineBasicBlock *DestBB, const DebugLoc &DL, int *BytesAdded=nullptr) const
virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const
If the instruction is an increment of a constant value, return the amount.
virtual void finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P, SmallVectorImpl< MachineInstr * > &InsInstrs) const
Fix up the placeholder we may add in genAlternativeCodeSequence().
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const
Optional extension of isStoreToStackSlot that returns the number of bytes stored to the stack.
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const
This is used by the pre-regalloc scheduler to determine if two loads are loading from the same base a...
virtual unsigned getUndefInitOpcode(unsigned RegClassID) const
Gets the opcode for the Pseudo Instruction used to initialize the undef value.
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl< SDNode * > &NewNodes) const
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
virtual unsigned getMachineCSELookAheadLimit() const
Return the value to use for the MachineCSE's LookAheadLimit, which is a heuristic used for CSE'ing ph...
virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const
Return true if it's legal to split the given basic block at the specified instruction (i....
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const
Optional extension of isLoadFromStackSlot that returns the number of bytes loaded from the stack.
bool getMemOperandWithOffset(const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const
Get the base operand and byte offset of an instruction that reads/writes memory.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
TargetSubtargetInfo - Generic base class for all target subtargets.
LLVM Value Representation.
Definition: Value.h:74
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:456
MachineTraceStrategy
Strategies for selecting traces.
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
MachineCombinerPattern
These are instruction patterns matched by the machine combiner pass.
CodeGenOptLevel
Code generation optimization level.
Definition: CodeGen.h:54
InstructionUniformity
Enum describing how instructions behave with respect to uniformity and divergence,...
Definition: Uniformity.h:18
@ Default
The result values are uniform if and only if all operands are uniform.
#define N
static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val)
Reuse getHashValue implementation from std::pair<unsigned, unsigned>.
static TargetInstrInfo::RegSubRegPair getTombstoneKey()
static TargetInstrInfo::RegSubRegPair getEmptyKey()
static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, const TargetInstrInfo::RegSubRegPair &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:50
const MachineOperand * Source
DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
const MachineOperand * Destination
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
ExtAddrMode()=default
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:253
Used to describe a register and immediate addition.
RegImmPair(Register Reg, int64_t Imm)
Represents a predicate at the MachineFunction level.
bool SingleUseCondition
SingleUseCondition is true if ConditionDef is dead except for the branch(es) at the end of the basic ...
A pair composed of a pair of a register and a sub-register index, and another sub-register index.
RegSubRegPairAndIdx(Register Reg=Register(), unsigned SubReg=0, unsigned SubIdx=0)
A pair composed of a register and a sub-register index.
bool operator==(const RegSubRegPair &P) const
RegSubRegPair(Register Reg=Register(), unsigned SubReg=0)
bool operator!=(const RegSubRegPair &P) const
An individual sequence of instructions to be replaced with a call to an outlined function.
The information necessary to create an outlined function for some class of candidate.