47#include "llvm/IR/IntrinsicsAArch64.h"
48#include "llvm/IR/IntrinsicsAMDGPU.h"
49#include "llvm/IR/IntrinsicsARM.h"
50#include "llvm/IR/IntrinsicsHexagon.h"
81#define DEBUG_TYPE "instcombine"
87STATISTIC(NumSimplified,
"Number of library calls simplified");
90 "instcombine-guard-widening-window",
92 cl::desc(
"How wide an instruction window to bypass looking for "
99 if (ITy->getBitWidth() < 32)
109 auto *Src =
MI->getRawSource();
111 if (!Src->hasOneUse())
121 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
122 MI->setDestAlignment(DstAlign);
128 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
129 MI->setSourceAlignment(SrcAlign);
153 if (!MemOpLength)
return nullptr;
160 assert(
Size &&
"0-sized memory transferring should be removed already.");
170 if (*CopyDstAlign <
Size || *CopySrcAlign <
Size)
180 Value *Src =
MI->getArgOperand(1);
181 Value *Dest =
MI->getArgOperand(0);
184 L->setAlignment(*CopySrcAlign);
185 L->setAAMetadata(AACopyMD);
186 MDNode *LoopMemParallelMD =
187 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
188 if (LoopMemParallelMD)
189 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
190 MDNode *AccessGroupMD =
MI->getMetadata(LLVMContext::MD_access_group);
192 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
198 if (LoopMemParallelMD)
199 S->
setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
201 S->
setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
206 L->setVolatile(MT->isVolatile());
209 if (
MI->isAtomic()) {
221 const Align KnownAlignment =
224 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
225 MI->setDestAlignment(KnownAlignment);
253 assert(Len &&
"0-sized memory setting should be removed already.");
254 const Align Alignment =
MI->getDestAlign().valueOrOne();
260 if (
MI->isAtomic() && Alignment < Len)
268 Constant *FillVal = ConstantInt::get(
274 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
292 Value *LoadPtr =
II.getArgOperand(0);
293 const Align Alignment =
II.getParamAlign(0).valueOrOne();
298 LoadInst *L = Builder.CreateAlignedLoad(
II.getType(), LoadPtr, Alignment,
307 II.getDataLayout(), &
II, &
AC)) {
308 LoadInst *LI = Builder.CreateAlignedLoad(
II.getType(), LoadPtr, Alignment,
311 return Builder.CreateSelect(
II.getArgOperand(1), LI,
II.getArgOperand(2));
321 Value *StorePtr =
II.getArgOperand(1);
322 Align Alignment =
II.getParamAlign(1).valueOrOne();
334 new StoreInst(
II.getArgOperand(0), StorePtr,
false, Alignment);
366 if (ConstMask->isAllOnesValue())
369 const Align Alignment =
II.getParamAlign(0).valueOrOne();
370 LoadInst *
L =
Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
371 Alignment,
"load.scalar");
373 Builder.CreateVectorSplat(VecTy->getElementCount(), L,
"broadcast");
399 Align Alignment =
II.getParamAlign(1).valueOrOne();
400 StoreInst *S =
new StoreInst(SplatValue, SplatPtr,
false,
408 if (ConstMask->isAllOnesValue()) {
409 Align Alignment =
II.getParamAlign(1).valueOrOne();
411 ElementCount VF = WideLoadTy->getElementCount();
415 Builder.CreateExtractElement(
II.getArgOperand(0), LastLane);
417 new StoreInst(Extract, SplatPtr,
false, Alignment);
448 auto *Arg =
II.getArgOperand(0);
449 auto *StrippedArg = Arg->stripPointerCasts();
450 auto *StrippedInvariantGroupsArg = StrippedArg;
452 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
453 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
455 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
457 if (StrippedArg == StrippedInvariantGroupsArg)
460 Value *Result =
nullptr;
462 if (
II.getIntrinsicID() == Intrinsic::launder_invariant_group)
464 else if (
II.getIntrinsicID() == Intrinsic::strip_invariant_group)
468 "simplifyInvariantGroupIntrinsic only handles launder and strip");
469 if (Result->getType()->getPointerAddressSpace() !=
470 II.getType()->getPointerAddressSpace())
477 assert((
II.getIntrinsicID() == Intrinsic::cttz ||
478 II.getIntrinsicID() == Intrinsic::ctlz) &&
479 "Expected cttz or ctlz intrinsic");
480 bool IsTZ =
II.getIntrinsicID() == Intrinsic::cttz;
481 Value *Op0 =
II.getArgOperand(0);
482 Value *Op1 =
II.getArgOperand(1);
493 if (
II.getType()->isIntOrIntVectorTy(1)) {
506 II.dropUBImplyingAttrsAndMetadata();
553 return BinaryOperator::CreateAdd(ConstCttz,
X);
561 return BinaryOperator::CreateSub(ConstCttz,
X);
567 ConstantInt::get(
II.getType(),
II.getType()->getScalarSizeInBits());
568 return BinaryOperator::CreateSub(Width,
X);
576 return BinaryOperator::CreateAdd(ConstCtlz,
X);
584 return BinaryOperator::CreateSub(ConstCtlz,
X);
592 unsigned BitWidth = Ty->getScalarSizeInBits();
606 ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1),
625 if (PossibleZeros == DefiniteZeros) {
626 auto *
C = ConstantInt::get(Op0->
getType(), DefiniteZeros);
641 if (
BitWidth != 1 && !
II.hasRetAttr(Attribute::Range) &&
642 !
II.getMetadata(LLVMContext::MD_range)) {
653 assert(
II.getIntrinsicID() == Intrinsic::ctpop &&
654 "Expected ctpop intrinsic");
656 unsigned BitWidth = Ty->getScalarSizeInBits();
657 Value *Op0 =
II.getArgOperand(0);
703 if ((~Known.
Zero).isPowerOf2())
704 return BinaryOperator::CreateLShr(
705 Op0, ConstantInt::get(Ty, (~Known.
Zero).exactLogBase2()));
719 II.getRange().value_or(ConstantRange::getFull(
BitWidth));
731 if (
Range != OldRange) {
752 unsigned NumElts = VecTy->getNumElements();
755 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
760 for (
unsigned I = 0;
I < NumElts; ++
I) {
769 if ((
unsigned)Indexes[
I] >= NumElts)
773 auto *V1 =
II.getArgOperand(0);
775 return Builder.CreateShuffleVector(V1, V2,
ArrayRef(Indexes));
781 unsigned NumOperands) {
782 assert(
I.arg_size() >= NumOperands &&
"Not enough operands");
783 assert(
E.arg_size() >= NumOperands &&
"Not enough operands");
784 for (
unsigned i = 0; i < NumOperands; i++)
785 if (
I.getArgOperand(i) !=
E.getArgOperand(i))
806 for (; BI != BE; ++BI) {
808 if (
I->isDebugOrPseudoInst() ||
831 return II.getIntrinsicID() == Intrinsic::vastart ||
832 (
II.getIntrinsicID() == Intrinsic::vacopy &&
833 I.getArgOperand(0) !=
II.getArgOperand(1));
839 assert(
Call.arg_size() > 1 &&
"Need at least 2 args to swap");
840 Value *Arg0 =
Call.getArgOperand(0), *Arg1 =
Call.getArgOperand(1);
842 Call.setArgOperand(0, Arg1);
843 Call.setArgOperand(1, Arg0);
862 Value *OperationResult =
nullptr;
869 for (User *U : WO->
users()) {
873 for (
auto &AssumeVH :
AC.assumptionsFor(U)) {
887 Inst->setHasNoSignedWrap();
889 Inst->setHasNoUnsignedWrap();
900 Ty = Ty->getScalarType();
905 Ty = Ty->getScalarType();
906 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
914 switch (
static_cast<unsigned>(Mask)) {
971 Value *Src0 =
II.getArgOperand(0);
972 Value *Src1 =
II.getArgOperand(1);
978 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
980 const bool IsStrict =
981 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
987 II.setArgOperand(1, ConstantInt::get(Src1->
getType(),
fneg(Mask)));
997 if ((OrderedMask ==
fcInf || OrderedInvertedMask ==
fcInf) &&
998 (IsOrdered || IsUnordered) && !IsStrict) {
1006 if (OrderedInvertedMask ==
fcInf)
1009 Value *Fabs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
1016 (IsOrdered || IsUnordered) && !IsStrict) {
1023 Value *EqInf = IsUnordered ?
Builder.CreateFCmpUEQ(Src0, Inf)
1024 :
Builder.CreateFCmpOEQ(Src0, Inf);
1030 if ((OrderedInvertedMask ==
fcPosInf || OrderedInvertedMask ==
fcNegInf) &&
1031 (IsOrdered || IsUnordered) && !IsStrict) {
1038 Value *NeInf = IsUnordered ?
Builder.CreateFCmpUNE(Src0, Inf)
1039 :
Builder.CreateFCmpONE(Src0, Inf);
1044 if (Mask ==
fcNan && !IsStrict) {
1076 if (!IsStrict && (IsOrdered || IsUnordered) &&
1121 return std::nullopt;
1133 return std::nullopt;
1145 return *Known0 == *Known1;
1153 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1154 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1155 "Expected a min or max intrinsic");
1158 Value *Op0 =
II->getArgOperand(0), *Op1 =
II->getArgOperand(1);
1160 const APInt *C0, *C1;
1166 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1168 if ((IsSigned && !
Add->hasNoSignedWrap()) ||
1169 (!IsSigned && !
Add->hasNoUnsignedWrap()))
1176 IsSigned ? C1->
ssub_ov(*C0, Overflow) : C1->
usub_ov(*C0, Overflow);
1177 assert(!Overflow &&
"Expected simplify of min/max");
1181 Constant *NewMinMaxC = ConstantInt::get(
II->getType(), CDiff);
1182 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID,
X, NewMinMaxC);
1183 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax,
Add->getOperand(1))
1184 : BinaryOperator::CreateNUWAdd(NewMinMax,
Add->getOperand(1));
1195 const APInt *MinValue, *MaxValue;
1199 }
else if (
match(&MinMax1,
1208 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1211 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1225 if (
AddSub->getOpcode() == Instruction::Add)
1226 IntrinsicID = Intrinsic::sadd_sat;
1227 else if (
AddSub->getOpcode() == Instruction::Sub)
1228 IntrinsicID = Intrinsic::ssub_sat;
1241 Value *Sat =
Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT,
BT});
1251 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
1253 const APInt *C0, *C1;
1258 switch (
II->getIntrinsicID()) {
1259 case Intrinsic::smax:
1263 case Intrinsic::smin:
1267 case Intrinsic::umax:
1271 case Intrinsic::umin:
1283 Value *Cmp = Builder.CreateICmp(Pred,
X, I1);
1307 if (InnerMinMaxID != MinMaxID &&
1308 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1309 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1314 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1315 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1316 return Builder.CreateIntrinsic(InnerMinMaxID,
II->getType(),
1317 {LHS->getArgOperand(0), NewC});
1338 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1344 MinMaxID,
II->getType());
1345 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID,
X,
Y);
1356 if (!
LHS || !
RHS ||
LHS->getIntrinsicID() != MinMaxID ||
1357 RHS->getIntrinsicID() != MinMaxID ||
1358 (!
LHS->hasOneUse() && !
RHS->hasOneUse()))
1367 Value *MinMaxOp =
nullptr;
1368 Value *ThirdOp =
nullptr;
1369 if (
LHS->hasOneUse()) {
1372 if (
D ==
A ||
C ==
A) {
1377 }
else if (
D ==
B ||
C ==
B) {
1384 assert(
RHS->hasOneUse() &&
"Expected one-use operand");
1386 if (
D ==
A ||
D ==
B) {
1391 }
else if (
C ==
A ||
C ==
B) {
1399 if (!MinMaxOp || !ThirdOp)
1413 !
II->getCalledFunction()->isSpeculatable())
1420 return isa<Constant>(Arg.get()) ||
1421 isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1422 Arg.getOperandNo(), nullptr);
1435 Type *SrcTy =
X->getType();
1436 for (
Use &Arg :
II->args()) {
1440 else if (
match(&Arg,
1442 X->getType() == SrcTy)
1461 Value *NewIntrinsic =
1462 Builder.CreateIntrinsic(ResTy,
II->getIntrinsicID(), NewArgs, FPI);
1475 return match(V, m_OneUse(m_VecReverse(m_Value())));
1482 for (
Use &Arg :
II->args()) {
1484 Arg.getOperandNo(),
nullptr))
1499 II->getType(),
II->getIntrinsicID(), NewArgs, FPI);
1500 return Builder.CreateVectorReverse(NewIntrinsic);
1506template <Intrinsic::ID IntrID>
1509 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1510 "This helper only supports BSWAP and BITREVERSE intrinsics");
1517 Value *OldReorderX, *OldReorderY;
1530 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID,
Y);
1535 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID,
X);
1546 case Intrinsic::smax:
1547 case Intrinsic::smin:
1548 case Intrinsic::umax:
1549 case Intrinsic::umin:
1550 case Intrinsic::maximum:
1551 case Intrinsic::minimum:
1552 case Intrinsic::maximumnum:
1553 case Intrinsic::minimumnum:
1554 case Intrinsic::maxnum:
1555 case Intrinsic::minnum:
1574 auto IID =
II->getIntrinsicID();
1580 auto *InvariantBinaryInst =
1584 return InvariantBinaryInst;
1588 if (!CanReorderLanes)
1601 int Sz = Mask.size();
1603 for (
int Idx : Mask) {
1606 UsedIndices.
set(Idx);
1611 return UsedIndices.
all() ? V :
nullptr;
1618template <Intrinsic::ID IntrID>
1623 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1624 "This helper only supports cttz and ctlz intrinsics");
1632 unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1639 Type *Ty = I1->getType();
1641 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1642 IntrID == Intrinsic::cttz
1643 ? ConstantInt::get(Ty, 1)
1646 return Builder.CreateBinaryIntrinsic(
1647 IntrID, Builder.CreateOr(CtOp, NewConst),
1656 case Intrinsic::umax:
1657 case Intrinsic::umin:
1658 if (HasNUW && LOp == Instruction::Add)
1660 if (HasNUW && LOp == Instruction::Shl)
1663 case Intrinsic::smax:
1664 case Intrinsic::smin:
1665 return HasNSW && LOp == Instruction::Add;
1708 if (
A ==
D ||
B ==
C)
1716 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode,
B,
D);
1719 }
else if (
B ==
D) {
1720 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode,
A,
C);
1742 SQ.getWithInstruction(&CI)))
1758 return visitCallBase(CI);
1763 if (
auto NumBytes =
MI->getLengthInBytes()) {
1765 if (NumBytes->isZero())
1770 if (
MI->isAtomic() &&
1771 (NumBytes->isNegative() ||
1772 (NumBytes->getZExtValue() %
MI->getElementSizeInBytes() != 0))) {
1774 assert(
MI->getType()->isVoidTy() &&
1775 "non void atomic unordered mem intrinsic");
1781 if (
MI->isVolatile())
1786 if (MTI->getSource() == MTI->getDest())
1790 auto IsPointerUndefined = [
MI](
Value *Ptr) {
1796 bool SrcIsUndefined =
false;
1802 SrcIsUndefined = IsPointerUndefined(MTI->getRawSource());
1809 if (SrcIsUndefined || IsPointerUndefined(
MI->getRawDest())) {
1819 if (GVSrc->isConstant()) {
1823 ? Intrinsic::memcpy_element_unordered_atomic
1824 : Intrinsic::memcpy;
1838 auto VWidth = IIFVTy->getNumElements();
1839 APInt PoisonElts(VWidth, 0);
1848 if (
II->isCommutative()) {
1849 if (
auto Pair = matchSymmetricPair(
II->getOperand(0),
II->getOperand(1))) {
1870 case Intrinsic::objectsize: {
1873 &InsertedInstructions)) {
1874 for (
Instruction *Inserted : InsertedInstructions)
1880 case Intrinsic::abs: {
1881 Value *IIOperand =
II->getArgOperand(0);
1896 if (
match(IIOperand,
1905 if (std::optional<bool> Known =
1931 return BinaryOperator::CreateAnd(
X, ConstantInt::get(
II->getType(), 1));
1935 case Intrinsic::umin: {
1936 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
1939 assert(
II->getType()->getScalarSizeInBits() != 1 &&
1940 "Expected simplify of umin with max constant");
1946 if (
Value *FoldedCttz =
1951 if (
Value *FoldedCtlz =
1957 case Intrinsic::umax: {
1958 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
1961 (I0->
hasOneUse() || I1->hasOneUse()) &&
X->getType() ==
Y->getType()) {
1969 Value *NarrowMaxMin =
Builder.CreateBinaryIntrinsic(IID,
X, NarrowC);
1988 Value *Cmp =
Builder.CreateICmpEQ(
X, ConstantInt::get(
X->getType(), 0));
1990 Builder.CreateSelect(Cmp, ConstantInt::get(
X->getType(), 1),
A);
1994 if (IID == Intrinsic::umax) {
2005 case Intrinsic::smax:
2006 case Intrinsic::smin: {
2007 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
2010 (I0->
hasOneUse() || I1->hasOneUse()) &&
X->getType() ==
Y->getType()) {
2019 Value *NarrowMaxMin =
Builder.CreateBinaryIntrinsic(IID,
X, NarrowC);
2026 const APInt *MinC, *MaxC;
2027 auto CreateCanonicalClampForm = [&](
bool IsSigned) {
2028 auto MaxIID = IsSigned ? Intrinsic::smax : Intrinsic::umax;
2029 auto MinIID = IsSigned ? Intrinsic::smin : Intrinsic::umin;
2031 MaxIID,
X, ConstantInt::get(
X->getType(), *MaxC));
2034 MinIID, NewMax, ConstantInt::get(
X->getType(), *MinC)));
2036 if (IID == Intrinsic::smax &&
2040 return CreateCanonicalClampForm(
true);
2041 if (IID == Intrinsic::umax &&
2045 return CreateCanonicalClampForm(
false);
2049 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
2050 II->getType()->isIntOrIntVectorTy(1)) {
2051 return BinaryOperator::CreateAnd(I0, I1);
2056 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
2057 II->getType()->isIntOrIntVectorTy(1)) {
2058 return BinaryOperator::CreateOr(I0, I1);
2066 if (IID == Intrinsic::smin) {
2069 Value *Zero = ConstantInt::get(
X->getType(), 0);
2072 Builder.CreateIntrinsic(
II->getType(), Intrinsic::scmp, {X, Zero}));
2076 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2103 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
2104 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
2106 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2108 if (KnownSign == std::nullopt) {
2111 }
else if (*KnownSign ) {
2123 return BinaryOperator::CreateOr(I0,
X);
2125 return BinaryOperator::CreateAnd(I0,
Builder.CreateNot(
X));
2141 Value *InvMaxMin =
Builder.CreateBinaryIntrinsic(InvID,
A, NotY);
2160 return BinaryOperator::CreateAnd(
Builder.CreateBinaryIntrinsic(IID,
X,
Y),
2161 ConstantInt::get(
II->getType(), *RHSC));
2171 if (I0->
hasOneUse() && !I1->hasOneUse())
2183 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
2184 Abs =
Builder.CreateNeg(Abs,
"nabs", IntMinIsPoison);
2209 I0, IsSigned,
SQ.getWithInstruction(
II));
2211 if (LHS_CR.
icmp(Pred, *RHSC))
2215 ConstantInt::get(
II->getType(), *RHSC));
2224 case Intrinsic::scmp: {
2225 Value *I0 =
II->getArgOperand(0), *I1 =
II->getArgOperand(1);
2230 Builder.CreateIntrinsic(
II->getType(), Intrinsic::scmp, {LHS, RHS}));
2233 case Intrinsic::bitreverse: {
2234 Value *IIOperand =
II->getArgOperand(0);
2238 X->getType()->isIntOrIntVectorTy(1)) {
2239 Type *Ty =
II->getType();
2247 return crossLogicOpFold;
2251 case Intrinsic::bswap: {
2252 Value *IIOperand =
II->getArgOperand(0);
2262 Value *NewSwap =
Builder.CreateUnaryIntrinsic(Intrinsic::bswap,
X);
2277 if (BW - LZ - TZ == 8) {
2278 assert(LZ != TZ &&
"active byte cannot be in the middle");
2280 return BinaryOperator::CreateNUWShl(
2281 IIOperand, ConstantInt::get(IIOperand->
getType(), LZ - TZ));
2283 return BinaryOperator::CreateExactLShr(
2284 IIOperand, ConstantInt::get(IIOperand->
getType(), TZ - LZ));
2289 unsigned C =
X->getType()->getScalarSizeInBits() - BW;
2290 Value *CV = ConstantInt::get(
X->getType(),
C);
2297 return crossLogicOpFold;
2306 case Intrinsic::masked_load:
2307 if (
Value *SimplifiedMaskedOp = simplifyMaskedLoad(*
II))
2310 case Intrinsic::masked_store:
2311 return simplifyMaskedStore(*
II);
2312 case Intrinsic::masked_gather:
2313 return simplifyMaskedGather(*
II);
2314 case Intrinsic::masked_scatter:
2315 return simplifyMaskedScatter(*
II);
2316 case Intrinsic::launder_invariant_group:
2317 case Intrinsic::strip_invariant_group:
2321 case Intrinsic::powi:
2325 if (Power->isMinusOne())
2327 II->getArgOperand(0),
II);
2329 if (Power->equalsInt(2))
2331 II->getArgOperand(0),
II);
2333 if (!Power->getValue()[0]) {
2348 case Intrinsic::cttz:
2349 case Intrinsic::ctlz:
2354 case Intrinsic::ctpop:
2359 case Intrinsic::fshl:
2360 case Intrinsic::fshr: {
2361 Value *Op0 =
II->getArgOperand(0), *Op1 =
II->getArgOperand(1);
2362 Type *Ty =
II->getType();
2363 unsigned BitWidth = Ty->getScalarSizeInBits();
2372 if (ModuloC != ShAmtC)
2378 "Shift amount expected to be modulo bitwidth");
2383 if (IID == Intrinsic::fshr) {
2394 assert(IID == Intrinsic::fshl &&
2395 "All funnel shifts by simple constants should go left");
2400 return BinaryOperator::CreateShl(Op0, ShAmtC);
2405 return BinaryOperator::CreateLShr(Op1,
2423 const APInt *ShAmtInnerC, *ShAmtOuterC;
2427 APInt Sum = *ShAmtOuterC + *ShAmtInnerC;
2431 Constant *ModuloC = ConstantInt::get(Ty, Modulo);
2433 {InnerOp, InnerOp, ModuloC});
2445 Mod, IID == Intrinsic::fshl ? Intrinsic::fshr : Intrinsic::fshl, Ty);
2453 Value *Op2 =
II->getArgOperand(2);
2455 return BinaryOperator::CreateShl(Op0,
And);
2473 case Intrinsic::ptrmask: {
2474 unsigned BitWidth =
DL.getPointerTypeSizeInBits(
II->getType());
2479 Value *InnerPtr, *InnerMask;
2484 if (
match(
II->getArgOperand(0),
2488 "Mask types must match");
2491 Value *NewMask =
Builder.CreateAnd(
II->getArgOperand(1), InnerMask);
2505 unsigned NewAlignmentLog =
2519 case Intrinsic::uadd_with_overflow:
2520 case Intrinsic::sadd_with_overflow: {
2528 const APInt *C0, *C1;
2529 Value *Arg0 =
II->getArgOperand(0);
2530 Value *Arg1 =
II->getArgOperand(1);
2531 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2532 bool HasNWAdd = IsSigned
2538 IsSigned ? C1->
sadd_ov(*C0, Overflow) : C1->
uadd_ov(*C0, Overflow);
2542 IID,
X, ConstantInt::get(Arg1->
getType(), NewC)));
2547 case Intrinsic::umul_with_overflow:
2548 case Intrinsic::smul_with_overflow:
2549 case Intrinsic::usub_with_overflow:
2554 case Intrinsic::ssub_with_overflow: {
2559 Value *Arg0 =
II->getArgOperand(0);
2560 Value *Arg1 =
II->getArgOperand(1);
2570 *
II,
Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2577 case Intrinsic::uadd_sat:
2578 case Intrinsic::sadd_sat:
2579 case Intrinsic::usub_sat:
2580 case Intrinsic::ssub_sat: {
2582 Type *Ty =
SI->getType();
2598 unsigned BitWidth = Ty->getScalarSizeInBits();
2603 unsigned BitWidth = Ty->getScalarSizeInBits();
2615 if (IID == Intrinsic::usub_sat &&
2618 auto *NewC =
Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
C, C1);
2620 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC,
A);
2626 C->isNotMinSignedValue()) {
2630 Intrinsic::sadd_sat, Arg0, NegVal));
2638 const APInt *Val, *Val2;
2641 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2642 if (
Other->getIntrinsicID() == IID &&
2650 NewVal = Val->
sadd_ov(*Val2, Overflow);
2663 IID,
X, ConstantInt::get(
II->getType(), NewVal)));
2669 case Intrinsic::minnum:
2670 case Intrinsic::maxnum:
2671 case Intrinsic::minimum:
2672 case Intrinsic::maximum: {
2673 Value *Arg0 =
II->getArgOperand(0);
2674 Value *Arg1 =
II->getArgOperand(1);
2683 case Intrinsic::maxnum:
2684 NewIID = Intrinsic::minnum;
2686 case Intrinsic::minnum:
2687 NewIID = Intrinsic::maxnum;
2689 case Intrinsic::maximum:
2690 NewIID = Intrinsic::minimum;
2692 case Intrinsic::minimum:
2693 NewIID = Intrinsic::maximum;
2699 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2714 case Intrinsic::maxnum:
2717 case Intrinsic::minnum:
2720 case Intrinsic::maximum:
2723 case Intrinsic::minimum:
2733 IID,
X, ConstantFP::get(Arg0->
getType(), Res),
2742 X->getType() ==
Y->getType()) {
2744 Builder.CreateBinaryIntrinsic(IID,
X,
Y,
II,
II->getName());
2754 auto IsMinMaxOrXNegX = [IID, &
X](
Value *Op0,
Value *Op1) {
2756 return Op0->hasOneUse() ||
2757 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2761 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2763 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2770 case Intrinsic::matrix_multiply: {
2782 Value *Op0 =
II->getOperand(0);
2783 Value *Op1 =
II->getOperand(1);
2784 Value *OpNotNeg, *NegatedOp;
2785 unsigned NegatedOpArg, OtherOpArg;
2802 Value *OtherOp =
II->getOperand(OtherOpArg);
2820 NewArgs[NegatedOpArg] = OpNotNeg;
2822 Builder.CreateIntrinsic(
II->getType(), IID, NewArgs,
II);
2827 case Intrinsic::fmuladd: {
2831 II->getFastMathFlags(),
SQ.getWithInstruction(
II)))
2833 II->getFastMathFlags());
2837 case Intrinsic::fma: {
2839 Value *Src0 =
II->getArgOperand(0);
2840 Value *Src1 =
II->getArgOperand(1);
2841 Value *Src2 =
II->getArgOperand(2);
2860 SQ.getWithInstruction(
II)))
2876 case Intrinsic::copysign: {
2877 Value *Mag =
II->getArgOperand(0), *Sign =
II->getArgOperand(1);
2880 if (*KnownSignBit) {
2883 Value *Fabs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag,
II);
2889 Value *Fabs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag,
II);
2920 case Intrinsic::fabs: {
2922 Value *Arg =
II->getArgOperand(0);
2940 SI->setFastMathFlags(FMF1 | FMF2);
2951 Value *Magnitude, *Sign;
2952 if (
match(
II->getArgOperand(0),
2956 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude,
II);
2962 case Intrinsic::ceil:
2963 case Intrinsic::floor:
2964 case Intrinsic::round:
2965 case Intrinsic::roundeven:
2966 case Intrinsic::nearbyint:
2967 case Intrinsic::rint:
2968 case Intrinsic::trunc: {
2977 case Intrinsic::cos:
2978 case Intrinsic::amdgcn_cos: {
2980 Value *Src =
II->getArgOperand(0);
2990 case Intrinsic::sin:
2991 case Intrinsic::amdgcn_sin: {
3000 case Intrinsic::ldexp: {
3013 Value *Src =
II->getArgOperand(0);
3014 Value *Exp =
II->getArgOperand(1);
3019 Exp->getType() == InnerExp->
getType()) {
3028 II->setArgOperand(1, NewExp);
3029 II->setFastMathFlags(InnerFlags);
3040 Builder.CreateSelect(ExtSrc, ConstantFP::get(
II->getType(), 2.0),
3041 ConstantFP::get(
II->getType(), 1.0));
3047 Builder.CreateSelect(ExtSrc, ConstantFP::get(
II->getType(), 0.5),
3048 ConstantFP::get(
II->getType(), 1.0));
3056 Value *SelectCond, *SelectLHS, *SelectRHS;
3057 if (
match(
II->getArgOperand(1),
3060 Value *NewLdexp =
nullptr;
3063 NewLdexp =
Builder.CreateLdexp(Src, SelectLHS,
II);
3066 NewLdexp =
Builder.CreateLdexp(Src, SelectRHS,
II);
3078 case Intrinsic::ptrauth_auth:
3079 case Intrinsic::ptrauth_resign: {
3082 bool NeedSign =
II->getIntrinsicID() == Intrinsic::ptrauth_resign;
3083 Value *Ptr =
II->getArgOperand(0);
3085 Value *Disc =
II->getArgOperand(2);
3089 Value *AuthKey =
nullptr, *AuthDisc =
nullptr, *BasePtr;
3106 if (!CPA || !CPA->isKnownCompatibleWith(
Key, Disc,
DL))
3115 SignDisc, SignAddrDisc);
3122 BasePtr =
Builder.CreatePtrToInt(CPA->getPointer(),
II->getType());
3127 if (AuthKey && NeedSign) {
3129 NewIntrin = Intrinsic::ptrauth_resign;
3130 }
else if (AuthKey) {
3132 NewIntrin = Intrinsic::ptrauth_auth;
3133 }
else if (NeedSign) {
3135 NewIntrin = Intrinsic::ptrauth_sign;
3158 case Intrinsic::arm_neon_vtbl1:
3159 case Intrinsic::aarch64_neon_tbl1:
3164 case Intrinsic::arm_neon_vmulls:
3165 case Intrinsic::arm_neon_vmullu:
3166 case Intrinsic::aarch64_neon_smull:
3167 case Intrinsic::aarch64_neon_umull: {
3168 Value *Arg0 =
II->getArgOperand(0);
3169 Value *Arg1 =
II->getArgOperand(1);
3177 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3178 IID == Intrinsic::aarch64_neon_umull);
3201 case Intrinsic::arm_neon_aesd:
3202 case Intrinsic::arm_neon_aese:
3203 case Intrinsic::aarch64_crypto_aesd:
3204 case Intrinsic::aarch64_crypto_aese:
3205 case Intrinsic::aarch64_sve_aesd:
3206 case Intrinsic::aarch64_sve_aese: {
3207 Value *DataArg =
II->getArgOperand(0);
3208 Value *KeyArg =
II->getArgOperand(1);
3224 case Intrinsic::hexagon_V6_vandvrt:
3225 case Intrinsic::hexagon_V6_vandvrt_128B: {
3229 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
3230 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
3232 Value *Bytes = Op0->getArgOperand(1), *Mask =
II->getArgOperand(1);
3237 if ((
C & 0xFF) && (
C & 0xFF00) && (
C & 0xFF0000) && (
C & 0xFF000000))
3242 case Intrinsic::stackrestore: {
3243 enum class ClassifyResult {
3247 CallWithSideEffects,
3251 return ClassifyResult::Alloca;
3255 if (
II->getIntrinsicID() == Intrinsic::stackrestore)
3256 return ClassifyResult::StackRestore;
3258 if (
II->mayHaveSideEffects())
3259 return ClassifyResult::CallWithSideEffects;
3262 return ClassifyResult::CallWithSideEffects;
3266 return ClassifyResult::None;
3273 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
3274 SS->getParent() ==
II->getParent()) {
3276 bool CannotRemove =
false;
3277 for (++BI; &*BI !=
II; ++BI) {
3278 switch (Classify(&*BI)) {
3279 case ClassifyResult::None:
3283 case ClassifyResult::StackRestore:
3287 CannotRemove =
true;
3290 case ClassifyResult::Alloca:
3291 case ClassifyResult::CallWithSideEffects:
3294 CannotRemove =
true;
3310 bool CannotRemove =
false;
3311 for (++BI; &*BI != TI; ++BI) {
3312 switch (Classify(&*BI)) {
3313 case ClassifyResult::None:
3317 case ClassifyResult::StackRestore:
3321 case ClassifyResult::Alloca:
3322 case ClassifyResult::CallWithSideEffects:
3326 CannotRemove =
true;
3340 case Intrinsic::lifetime_end:
3343 if (
II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3344 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3345 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3349 return I.getIntrinsicID() == Intrinsic::lifetime_start;
3353 case Intrinsic::assume: {
3354 Value *IIOperand =
II->getArgOperand(0);
3356 II->getOperandBundlesAsDefs(OpBundles);
3373 return RemoveConditionFromAssume(
Next);
3379 Value *AssumeIntrinsic =
II->getCalledOperand();
3382 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
A, OpBundles,
3384 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
B,
II->getName());
3389 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3390 Builder.CreateNot(
A), OpBundles,
II->getName());
3391 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3401 LHS->getOpcode() == Instruction::Load &&
3402 LHS->getType()->isPointerTy() &&
3405 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3406 LHS->setMetadata(LLVMContext::MD_noundef, MD);
3407 return RemoveConditionFromAssume(
II);
3413 for (
unsigned Idx = 0; Idx <
II->getNumOperandBundles(); Idx++) {
3420 if (OBU.
getTagName() ==
"separate_storage") {
3422 auto MaybeSimplifyHint = [&](
const Use &U) {
3423 Value *Hint = U.get();
3430 MaybeSimplifyHint(OBU.
Inputs[0]);
3431 MaybeSimplifyHint(OBU.
Inputs[1]);
3438 if (!RK || RK.
AttrKind != Attribute::Alignment ||
3473 A->getType()->isPointerTy()) {
3477 Replacement->insertBefore(
Next->getIterator());
3478 AC.registerAssumption(Replacement);
3479 return RemoveConditionFromAssume(
II);
3507 if (
auto *Replacement =
3510 Replacement->insertAfter(
II->getIterator());
3511 AC.registerAssumption(Replacement);
3513 return RemoveConditionFromAssume(
II);
3520 for (
unsigned Idx = 0; Idx <
II->getNumOperandBundles(); Idx++) {
3521 auto &BOI =
II->bundle_op_info_begin()[Idx];
3524 if (BOI.End - BOI.Begin > 2)
3535 if (BOI.End - BOI.Begin > 0) {
3536 Worklist.pushValue(
II->op_begin()[BOI.Begin]);
3542 if (BOI.End - BOI.Begin > 0)
3543 II->op_begin()[BOI.Begin].set(CanonRK.
WasOn);
3544 if (BOI.End - BOI.Begin > 1)
3545 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3571 case Intrinsic::experimental_guard: {
3582 Value *NextCond =
nullptr;
3585 Value *CurrCond =
II->getArgOperand(0);
3589 if (CurrCond != NextCond) {
3591 while (MoveI != NextInst) {
3603 case Intrinsic::vector_insert: {
3604 Value *Vec =
II->getArgOperand(0);
3605 Value *SubVec =
II->getArgOperand(1);
3606 Value *Idx =
II->getArgOperand(2);
3613 if (DstTy && VecTy && SubVecTy) {
3614 unsigned DstNumElts = DstTy->getNumElements();
3615 unsigned VecNumElts = VecTy->getNumElements();
3616 unsigned SubVecNumElts = SubVecTy->getNumElements();
3620 if (VecNumElts == SubVecNumElts)
3629 for (i = 0; i != SubVecNumElts; ++i)
3631 for (; i != VecNumElts; ++i)
3634 Value *WidenShuffle =
Builder.CreateShuffleVector(SubVec, WidenMask);
3637 for (
unsigned i = 0; i != IdxN; ++i)
3639 for (
unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3641 for (
unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3644 Value *Shuffle =
Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3649 case Intrinsic::vector_extract: {
3650 Value *Vec =
II->getArgOperand(0);
3651 Value *Idx =
II->getArgOperand(1);
3653 Type *ReturnType =
II->getType();
3657 Value *InsertTuple, *InsertIdx, *InsertValue;
3661 InsertValue->
getType() == ReturnType) {
3666 if (ExtractIdx == Index)
3680 if (DstTy && VecTy) {
3681 auto DstEltCnt = DstTy->getElementCount();
3682 auto VecEltCnt = VecTy->getElementCount();
3686 if (DstEltCnt == VecTy->getElementCount()) {
3693 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3697 for (
unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3698 Mask.push_back(IdxN + i);
3700 Value *Shuffle =
Builder.CreateShuffleVector(Vec, Mask);
3705 case Intrinsic::experimental_vp_reverse: {
3707 Value *Vec =
II->getArgOperand(0);
3708 Value *Mask =
II->getArgOperand(1);
3711 Value *EVL =
II->getArgOperand(2);
3719 OldUnOp->getOpcode(),
X, OldUnOp, OldUnOp->getName(),
3725 case Intrinsic::vector_reduce_or:
3726 case Intrinsic::vector_reduce_and: {
3734 Value *Arg =
II->getArgOperand(0);
3745 if (FTy->getElementType() ==
Builder.getInt1Ty()) {
3747 Vect,
Builder.getIntNTy(FTy->getNumElements()));
3748 if (IID == Intrinsic::vector_reduce_and) {
3752 assert(IID == Intrinsic::vector_reduce_or &&
3753 "Expected or reduction.");
3754 Res =
Builder.CreateIsNotNull(Res);
3764 case Intrinsic::vector_reduce_add: {
3765 if (IID == Intrinsic::vector_reduce_add) {
3772 Value *Arg =
II->getArgOperand(0);
3783 if (FTy->getElementType() ==
Builder.getInt1Ty()) {
3785 Vect,
Builder.getIntNTy(FTy->getNumElements()));
3786 Value *Res =
Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3788 Res =
Builder.CreateZExtOrTrunc(Res,
II->getType());
3800 if (VecToReduceCount.
isFixed()) {
3802 return BinaryOperator::CreateMul(
3803 Splat, ConstantInt::get(
Splat->getType(), VectorSize));
3809 case Intrinsic::vector_reduce_xor: {
3810 if (IID == Intrinsic::vector_reduce_xor) {
3818 Value *Arg =
II->getArgOperand(0);
3829 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3840 case Intrinsic::vector_reduce_mul: {
3841 if (IID == Intrinsic::vector_reduce_mul) {
3848 Value *Arg =
II->getArgOperand(0);
3859 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3862 Res =
Builder.CreateZExt(Res,
II->getType());
3869 case Intrinsic::vector_reduce_umin:
3870 case Intrinsic::vector_reduce_umax: {
3871 if (IID == Intrinsic::vector_reduce_umin ||
3872 IID == Intrinsic::vector_reduce_umax) {
3879 Value *Arg =
II->getArgOperand(0);
3890 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3891 Value *Res = IID == Intrinsic::vector_reduce_umin
3892 ?
Builder.CreateAndReduce(Vect)
3893 :
Builder.CreateOrReduce(Vect);
3903 case Intrinsic::vector_reduce_smin:
3904 case Intrinsic::vector_reduce_smax: {
3905 if (IID == Intrinsic::vector_reduce_smin ||
3906 IID == Intrinsic::vector_reduce_smax) {
3921 Value *Arg =
II->getArgOperand(0);
3932 if (VTy->getElementType() ==
Builder.getInt1Ty()) {
3936 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3937 (ExtOpc == Instruction::CastOps::ZExt))
3938 ?
Builder.CreateAndReduce(Vect)
3939 :
Builder.CreateOrReduce(Vect);
3941 Res =
Builder.CreateCast(ExtOpc, Res,
II->getType());
3948 case Intrinsic::vector_reduce_fmax:
3949 case Intrinsic::vector_reduce_fmin:
3950 case Intrinsic::vector_reduce_fadd:
3951 case Intrinsic::vector_reduce_fmul: {
3952 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
3953 IID != Intrinsic::vector_reduce_fmul) ||
3954 II->hasAllowReassoc();
3955 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3956 IID == Intrinsic::vector_reduce_fmul)
3959 Value *Arg =
II->getArgOperand(ArgIdx);
3966 case Intrinsic::is_fpclass: {
3971 case Intrinsic::threadlocal_address: {
3980 case Intrinsic::frexp: {
3995 case Intrinsic::get_active_lane_mask: {
3996 const APInt *Op0, *Op1;
3999 Type *OpTy =
II->getOperand(0)->getType();
4002 II->getType(), Intrinsic::get_active_lane_mask,
4003 {Constant::getNullValue(OpTy),
4004 ConstantInt::get(OpTy, Op1->usub_sat(*Op0))}));
4026 bool IsVectorCond = Sel->getCondition()->getType()->isVectorTy();
4031 bool SimplifyBothArms =
4032 !
Op->getType()->isVectorTy() &&
II->getType()->isVectorTy();
4034 *
II, Sel,
false, SimplifyBothArms))
4054 return visitCallBase(*
II);
4069 if (FI1SyncScope != FI2->getSyncScopeID() ||
4076 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
4080 if (isIdenticalOrStrongerFence(PFI, &FI))
4087 return visitCallBase(
II);
4092 return visitCallBase(CBI);
4102 unsigned FirstArgIdx;
4103 [[maybe_unused]]
bool Error;
4104 Error = Args[2].getAsInteger(10, FirstArgIdx);
4111 if (AllAspects.
empty())
4116 if (Aspect ==
"float") {
4120 [](
Value *V) { return V->getType()->isFloatingPointTy(); }))
4128 if (NeededAspects.
size() == AllAspects.
size())
4135 FnName, Callee->getFunctionType(),
4136 Callee->getAttributes().removeFnAttribute(Ctx,
"modular-format"));
4138 New->setCalledFunction(ModularFn);
4139 New->removeFnAttr(
"modular-format");
4142 const auto ReferenceAspect = [&](
StringRef Aspect) {
4148 B.CreateCall(RelocNoneFn,
4154 ReferenceAspect(Request);
4175 InstCombineRAUW, InstCombineErase);
4176 if (
Value *With = Simplifier.optimizeCall(CI,
Builder)) {
4192 if (Underlying != TrampMem &&
4193 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4203 if (
II->getIntrinsicID() == Intrinsic::init_trampoline) {
4207 InitTrampoline =
II;
4210 if (
II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4217 if (!InitTrampoline)
4221 if (InitTrampoline->
getOperand(0) != TrampMem)
4224 return InitTrampoline;
4236 if (
II->getIntrinsicID() == Intrinsic::init_trampoline &&
4237 II->getOperand(0) == TrampMem)
4249 Callee = Callee->stripPointerCasts();
4267 if (!IPC || !IPC->isNoopCast(
DL))
4275 if (IIID != Intrinsic::ptrauth_resign && IIID != Intrinsic::ptrauth_sign)
4279 std::optional<OperandBundleUse> PtrAuthBundleOrNone;
4284 PtrAuthBundleOrNone = Bundle;
4289 if (!PtrAuthBundleOrNone)
4292 Value *NewCallee =
nullptr;
4296 case Intrinsic::ptrauth_resign: {
4298 if (
II->getOperand(3) != PtrAuthBundleOrNone->Inputs[0])
4301 if (
II->getOperand(4) != PtrAuthBundleOrNone->Inputs[1])
4306 if (
II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4309 Value *NewBundleOps[] = {
II->getOperand(1),
II->getOperand(2)};
4311 NewCallee =
II->getOperand(0);
4318 case Intrinsic::ptrauth_sign: {
4320 if (
II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4323 if (
II->getOperand(2) != PtrAuthBundleOrNone->Inputs[1])
4325 NewCallee =
II->getOperand(0);
4335 NewCallee =
Builder.CreateBitOrPointerCast(NewCallee,
Callee->getType());
4360 if (!CPA->isKnownCompatibleWith(
Key, Discriminator,
DL))
4369bool InstCombinerImpl::annotateAnyAllocSite(
CallBase &
Call,
4406 if (NewAlign > ExistingAlign) {
4423 SmallVector<unsigned, 4> ArgNos;
4427 if (
V->getType()->isPointerTy()) {
4432 (HasDereferenceable &&
4434 V->getType()->getPointerAddressSpace()))) {
4435 if (
Value *Res = simplifyNonNullOperand(V, HasDereferenceable)) {
4449 if (!ArgNos.
empty()) {
4452 AS = AS.addParamAttribute(Ctx, ArgNos,
4463 transformConstExprCastCall(
Call))
4527 return transformCallThroughTrampoline(
Call, *
II);
4530 if (Instruction *NewCall = foldPtrAuthIntrinsicCallee(
Call))
4534 if (Instruction *NewCall = foldPtrAuthConstantCallee(
Call))
4539 if (!
IA->canThrow()) {
4560 Type *RetArgTy = ReturnedArg->getType();
4563 Call,
Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4579 ConstantInt *FunctionType =
nullptr;
4582 if (MDNode *MD = CalleeF->
getMetadata(LLVMContext::MD_kcfi_type))
4589 <<
": call to " << CalleeF->
getName()
4590 <<
" using a mismatching function pointer type\n";
4602 case Intrinsic::experimental_gc_statepoint: {
4604 SmallPtrSet<Value *, 32> LiveGcValues;
4606 GCRelocateInst &GCR = *
const_cast<GCRelocateInst *
>(Reloc);
4657 LiveGcValues.
insert(BasePtr);
4658 LiveGcValues.
insert(DerivedPtr);
4660 std::optional<OperandBundleUse> Bundle =
4662 unsigned NumOfGCLives = LiveGcValues.
size();
4663 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4666 DenseMap<Value *, unsigned> Val2Idx;
4667 std::vector<Value *> NewLiveGc;
4668 for (
Value *V : Bundle->Inputs) {
4672 if (LiveGcValues.
count(V)) {
4673 It->second = NewLiveGc.size();
4674 NewLiveGc.push_back(V);
4676 It->second = NumOfGCLives;
4680 GCRelocateInst &GCR = *
const_cast<GCRelocateInst *
>(Reloc);
4682 assert(Val2Idx.
count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4683 "Missed live gc for base pointer");
4685 GCR.
setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4687 assert(Val2Idx.
count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4688 "Missed live gc for derived pointer");
4690 GCR.
setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4705bool InstCombinerImpl::transformConstExprCastCall(
CallBase &
Call) {
4712 "CallBr's don't have a single point after a def to insert at");
4717 if (
Callee->isDeclaration())
4723 if (
Callee->hasFnAttribute(
"thunk"))
4729 if (
Callee->hasFnAttribute(Attribute::Naked))
4745 FunctionType *FT =
Callee->getFunctionType();
4747 Type *NewRetTy = FT->getReturnType();
4750 if (OldRetTy != NewRetTy) {
4756 if (!
Caller->use_empty())
4760 if (!CallerPAL.isEmpty() && !
Caller->use_empty()) {
4761 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4762 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(
4763 NewRetTy, CallerPAL.getRetAttrs())))
4771 if (!
Caller->use_empty()) {
4774 PhisNotSupportedBlock =
II->getNormalDest();
4775 if (PhisNotSupportedBlock)
4776 for (User *U :
Caller->users())
4778 if (PN->getParent() == PhisNotSupportedBlock)
4784 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4794 if (
Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4795 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4799 for (
unsigned i = 0, e = NumCommonArgs; i !=
e; ++i, ++AI) {
4800 Type *ParamTy = FT->getParamType(i);
4801 Type *ActTy = (*AI)->getType();
4807 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4808 .overlaps(AttributeFuncs::typeIncompatible(
4809 ParamTy, CallerPAL.getParamAttrs(i),
4810 AttributeFuncs::ASK_UNSAFE_TO_DROP)))
4814 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4817 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4820 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4821 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4825 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4826 !CallerPAL.isEmpty()) {
4831 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4832 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4838 SmallVector<Value *, 8>
Args;
4840 Args.reserve(NumActualArgs);
4841 ArgAttrs.
reserve(NumActualArgs);
4844 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4849 AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs()));
4853 for (
unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4854 Type *ParamTy = FT->getParamType(i);
4856 Value *NewArg = *AI;
4857 if ((*AI)->getType() != ParamTy)
4858 NewArg =
Builder.CreateBitOrPointerCast(*AI, ParamTy);
4859 Args.push_back(NewArg);
4863 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
4864 ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP);
4866 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
4871 for (
unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4877 if (FT->getNumParams() < NumActualArgs) {
4879 if (FT->isVarArg()) {
4881 for (
unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4883 Value *NewArg = *AI;
4884 if (PTy != (*AI)->getType()) {
4888 NewArg =
Builder.CreateCast(opcode, *AI, PTy);
4890 Args.push_back(NewArg);
4893 ArgAttrs.
push_back(CallerPAL.getParamAttrs(i));
4898 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4903 assert((ArgAttrs.
size() == FT->getNumParams() || FT->isVarArg()) &&
4904 "missing argument attributes");
4905 AttributeList NewCallerPAL = AttributeList::get(
4913 NewCall =
Builder.CreateInvoke(Callee,
II->getNormalDest(),
4914 II->getUnwindDest(), Args, OpBundles);
4916 NewCall =
Builder.CreateCall(Callee, Args, OpBundles);
4925 NewCall->
copyMetadata(*Caller, {LLVMContext::MD_prof});
4930 if (OldRetTy !=
NV->getType() && !
Caller->use_empty()) {
4931 assert(!
NV->getType()->isVoidTy());
4933 NC->setDebugLoc(
Caller->getDebugLoc());
4936 assert(OptInsertPt &&
"No place to insert cast");
4938 Worklist.pushUsersToWorkList(*Caller);
4941 if (!
Caller->use_empty())
4943 else if (
Caller->hasValueHandle()) {
4944 if (OldRetTy ==
NV->getType())
4959InstCombinerImpl::transformCallThroughTrampoline(
CallBase &
Call,
4966 if (
Attrs.hasAttrSomewhere(Attribute::Nest))
4973 if (!NestAttrs.isEmpty()) {
4974 unsigned NestArgNo = 0;
4975 Type *NestTy =
nullptr;
4976 AttributeSet NestAttr;
4980 E = NestFTy->param_end();
4981 I !=
E; ++NestArgNo, ++
I) {
4982 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
4992 std::vector<Value*> NewArgs;
4993 std::vector<AttributeSet> NewArgAttrs;
5004 if (ArgNo == NestArgNo) {
5007 if (NestVal->
getType() != NestTy)
5008 NestVal =
Builder.CreateBitCast(NestVal, NestTy,
"nest");
5009 NewArgs.push_back(NestVal);
5010 NewArgAttrs.push_back(NestAttr);
5017 NewArgs.push_back(*
I);
5018 NewArgAttrs.push_back(
Attrs.getParamAttrs(ArgNo));
5029 std::vector<Type*> NewTypes;
5030 NewTypes.reserve(FTy->getNumParams()+1);
5037 E = FTy->param_end();
5040 if (ArgNo == NestArgNo)
5042 NewTypes.push_back(NestTy);
5048 NewTypes.push_back(*
I);
5057 FunctionType *NewFTy =
5059 AttributeList NewPAL =
5060 AttributeList::get(FTy->getContext(),
Attrs.getFnAttrs(),
5061 Attrs.getRetAttrs(), NewArgAttrs);
5069 II->getUnwindDest(), NewArgs, OpBundles);
5075 CBI->getIndirectDests(), NewArgs, OpBundles);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
static Type * getPromotedType(Type *Ty)
Return the specified type promoted as it would be to pass though a va_arg area.
static Instruction * createOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
static IntrinsicInst * findInitTrampolineFromAlloca(Value *TrampMem)
static bool removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, std::function< bool(const IntrinsicInst &)> IsStart)
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty)
static Instruction * reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If this min/max has a matching min/max operand with a constant, try to push the constant operand into...
static bool isIdempotentBinaryIntrinsic(Intrinsic::ID IID)
Helper to match idempotent binary intrinsics, namely, intrinsics where f(f(x, y), y) == f(x,...
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, const SimplifyQuery &SQ)
Return true if two values Op0 and Op1 are known to have the same sign.
static Value * optimizeModularFormat(CallInst *CI, IRBuilderBase &B)
static Instruction * moveAddAfterMinMax(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0.
static Instruction * simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombinerImpl &IC)
This function transforms launder.invariant.group and strip.invariant.group like: launder(launder(x)) ...
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands)
static std::optional< bool > getKnownSign(Value *Op, const SimplifyQuery &SQ)
static cl::opt< unsigned > GuardWideningWindow("instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard"))
static bool hasUndefSource(AnyMemTransferInst *MI)
Recognize a memcpy/memmove from a trivially otherwise unused alloca.
static Instruction * factorizeMinMaxTree(IntrinsicInst *II)
Reduce a sequence of min/max intrinsics with a common operand.
static Value * simplifyNeonTbl1(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Convert a table lookup to shufflevector if the mask is constant.
static Instruction * foldClampRangeOfTwo(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If we have a clamp pattern like max (min X, 42), 41 – where the output can only be one of two possibl...
static Value * simplifyReductionOperand(Value *Arg, bool CanReorderLanes)
static IntrinsicInst * findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem)
static Value * foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
static std::optional< bool > getKnownSignOrZero(Value *Op, const SimplifyQuery &SQ)
static Value * foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, const DataLayout &DL, InstCombiner::BuilderTy &Builder)
Fold an unsigned minimum of trailing or leading zero bits counts: umin(cttz(CtOp, ZeroUndef),...
static Value * foldIdempotentBinaryIntrinsicRecurrence(InstCombinerImpl &IC, IntrinsicInst *II)
Attempt to simplify value-accumulating recurrences of kind: umax.acc = phi i8 [ umax,...
static Instruction * foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC)
static Instruction * foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC)
static IntrinsicInst * findInitTrampoline(Value *Callee)
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, const Function &F, Type *Ty)
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
static Value * reassociateMinMaxWithConstants(IntrinsicInst *II, IRBuilderBase &Builder, const SimplifyQuery &SQ)
If this min/max has a constant operand and an operand that is a matching min/max with a constant oper...
static CallInst * canonicalizeConstantArg0ToArg1(CallInst &Call)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool inputDenormalIsIEEE(DenormalMode Mode)
Return true if it's possible to assume IEEE treatment of input denormals in F for Val.
static const Function * getCalledFunction(const Value *V)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
This class represents any memset intrinsic.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
static LLVM_ABI AttributeSet get(LLVMContext &C, const AttrBuilder &B)
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes)
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
InstListType::reverse_iterator reverse_iterator
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setCallingConv(CallingConv::ID CC)
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isInAllocaArgument(unsigned ArgNo) const
Determine whether this argument is passed in an alloca.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
Value * getCalledOperand() const
void setAttributes(AttributeList A)
Set the attributes for this call.
Attribute getFnAttr(StringRef Kind) const
Get the attribute of a given kind for the function.
bool doesNotThrow() const
Determine if the call cannot unwind.
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
Value * getReturnedArgOperand() const
If one of the arguments has the 'returned' attribute, returns its operand value.
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
bool isMustTailCall() const
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Predicate getUnorderedPredicate() const
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc)
Return a pointer signed with the specified parameters.
This class represents a range of values.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Lightweight error class with error context and mandatory checking.
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
This class represents an extension of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
An instruction for ordering other memory operations.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Type::subtype_iterator param_iterator
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool isConvergent() const
Determine if the call is convergent.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
AttributeList getAttributes() const
Return the attribute list for this Function.
bool doesNotThrow() const
Determine if the function cannot unwind.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
LLVM_ABI Value * getBasePtr() const
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
LLVM_ABI Value * getDerivedPtr() const
unsigned getDerivedPtrIndex() const
The index into the associate statepoint's argument list which contains the pointer whose relocation t...
std::vector< const GCRelocateInst * > getGCRelocates() const
Get list of all gc reloactes linked to this statepoint May contain several relocations for the same b...
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
PointerType * getType() const
Global values are always pointers.
Common base class shared among various IRBuilders.
LLVM_ABI Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
ConstantInt * getTrue()
Get the constant value for i1 true.
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
LLVM_ABI Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * SimplifyAnyMemSet(AnyMemSetInst *MI)
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitCallBrInst(CallBrInst &CBI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Value * foldReversedIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are reverses, try to pull the reverse after the intrinsic.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * visitFenceInst(FenceInst &FI)
Instruction * foldShuffledIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are unary shuffles with the same mask, try to shuffle after the int...
Instruction * visitInvokeInst(InvokeInst &II)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitVAEndInst(VAEndInst &I)
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * SimplifyAnyMemTransfer(AnyMemTransferInst *MI)
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * visitCallInst(CallInst &CI)
CallInst simplification.
unsigned ComputeMaxSignificantBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
DominatorTree & getDominatorTree() const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
AssumptionCache & getAssumptionCache() const
OptimizationRemarkEmitter & ORE
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool isTerminator() const
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI std::optional< InstListType::iterator > getInsertionPointAfterDef()
Get the first insertion point at which the result of this instruction is defined.
LLVM_ABI bool isIdenticalTo(const Instruction *I) const LLVM_READONLY
Return true if the specified instruction is exactly identical to the current one.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
A Module instance is used to store all the information related to an LLVM module.
StringRef getName() const
Get a short "name" for the module.
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
bool isCommutative() const
Return true if the instruction is commutative.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
bool test(unsigned Idx) const
bool all() const
Returns true if all bits are set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
static LLVM_ABI bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
This represents the llvm.va_end intrinsic.
static LLVM_ABI void ValueIsDeleted(Value *V)
static LLVM_ABI void ValueIsRAUWd(Value *Old, Value *New)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
static constexpr uint64_t MaximumAlignment
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
static LLVM_ABI void dropDroppableUse(Use &U)
Remove the droppable use U.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
self_iterator getIterator()
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
@ System
Synchronized with respect to all concurrently executing threads.
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI cl::opt< bool > EnableKnowledgeRetention
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
LLVM_ABI RetainedKnowledge simplifyRetainedKnowledge(AssumeInst *Assume, RetainedKnowledge RK, AssumptionCache *AC, DominatorTree *DT)
canonicalize the RetainedKnowledge RK.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
LLVM_ABI Value * getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI)
Gets the alignment argument for an aligned_alloc-like function, using either built-in knowledge based...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI RetainedKnowledge getKnowledgeFromOperandInAssume(AssumeInst &Assume, unsigned Idx)
Retreive the information help by Assume on the operand at index Idx.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
auto dyn_cast_or_null(const Y &Val)
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
auto find_if_not(R &&Range, UnaryPredicate P)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
bool isAtLeastOrStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI AssumeInst * buildAssumeFromKnowledge(ArrayRef< RetainedKnowledge > Knowledge, Instruction *CtxI, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Build and return a new assume created from the provided knowledge if the knowledge in the assume is f...
LLVM_ABI FPClassTest inverse_fabs(FPClassTest Mask)
Return the test mask which returns true after fabs is applied to the value.
iterator_range< SplittingIterator > split(StringRef Str, StringRef Separator)
Split the specified string over a separator and return a range-compatible iterable over its partition...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Mod
The access may modify the value stored in memory.
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
OperandBundleDefT< Value * > OperandBundleDef
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI std::optional< APInt > getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref< const Value *(const Value *)> Mapper=[](const Value *V) { return V;})
Return the size of the requested allocation.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
This struct is a compact representation of a valid (non-zero power of two) alignment.
@ IEEE
IEEE-754 denormal numbers preserved.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
unsigned getBitWidth() const
Get the bit width of this value.
bool isNonZero() const
Returns true if this value is known to be non-zero.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
bool isNegative() const
Returns true if this value is known to be negative.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
bool isAllOnes() const
Returns true if value is all one bits.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
Represent one information held inside an operand bundle of an llvm.assume.
Attribute::AttrKind AttrKind
SelectPatternFlavor Flavor
SimplifyQuery getWithInstruction(const Instruction *I) const