LLVM 22.0.0git
InstCombineCalls.cpp
Go to the documentation of this file.
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitCall, visitInvoke, and visitCallBr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/Loads.h"
32#include "llvm/IR/Attributes.h"
33#include "llvm/IR/BasicBlock.h"
34#include "llvm/IR/Constant.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DebugInfo.h"
39#include "llvm/IR/Function.h"
41#include "llvm/IR/InlineAsm.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/IntrinsicsAArch64.h"
48#include "llvm/IR/IntrinsicsAMDGPU.h"
49#include "llvm/IR/IntrinsicsARM.h"
50#include "llvm/IR/IntrinsicsHexagon.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Statepoint.h"
55#include "llvm/IR/Type.h"
56#include "llvm/IR/User.h"
57#include "llvm/IR/Value.h"
58#include "llvm/IR/ValueHandle.h"
63#include "llvm/Support/Debug.h"
74#include <algorithm>
75#include <cassert>
76#include <cstdint>
77#include <optional>
78#include <utility>
79#include <vector>
80
81#define DEBUG_TYPE "instcombine"
83
84using namespace llvm;
85using namespace PatternMatch;
86
87STATISTIC(NumSimplified, "Number of library calls simplified");
88
90 "instcombine-guard-widening-window",
91 cl::init(3),
92 cl::desc("How wide an instruction window to bypass looking for "
93 "another guard"));
94
95/// Return the specified type promoted as it would be to pass though a va_arg
96/// area.
98 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
99 if (ITy->getBitWidth() < 32)
100 return Type::getInt32Ty(Ty->getContext());
101 }
102 return Ty;
103}
104
105/// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
106/// TODO: This should probably be integrated with visitAllocSites, but that
107/// requires a deeper change to allow either unread or unwritten objects.
109 auto *Src = MI->getRawSource();
110 while (isa<GetElementPtrInst>(Src)) {
111 if (!Src->hasOneUse())
112 return false;
113 Src = cast<Instruction>(Src)->getOperand(0);
114 }
115 return isa<AllocaInst>(Src) && Src->hasOneUse();
116}
117
119 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
120 MaybeAlign CopyDstAlign = MI->getDestAlign();
121 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
122 MI->setDestAlignment(DstAlign);
123 return MI;
124 }
125
126 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
127 MaybeAlign CopySrcAlign = MI->getSourceAlign();
128 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
129 MI->setSourceAlignment(SrcAlign);
130 return MI;
131 }
132
133 // If we have a store to a location which is known constant, we can conclude
134 // that the store must be storing the constant value (else the memory
135 // wouldn't be constant), and this must be a noop.
136 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
137 // Set the size of the copy to 0, it will be deleted on the next iteration.
138 MI->setLength((uint64_t)0);
139 return MI;
140 }
141
142 // If the source is provably undef, the memcpy/memmove doesn't do anything
143 // (unless the transfer is volatile).
144 if (hasUndefSource(MI) && !MI->isVolatile()) {
145 // Set the size of the copy to 0, it will be deleted on the next iteration.
146 MI->setLength((uint64_t)0);
147 return MI;
148 }
149
150 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
151 // load/store.
152 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
153 if (!MemOpLength) return nullptr;
154
155 // Source and destination pointer types are always "i8*" for intrinsic. See
156 // if the size is something we can handle with a single primitive load/store.
157 // A single load+store correctly handles overlapping memory in the memmove
158 // case.
159 uint64_t Size = MemOpLength->getLimitedValue();
160 assert(Size && "0-sized memory transferring should be removed already.");
161
162 if (Size > 8 || (Size&(Size-1)))
163 return nullptr; // If not 1/2/4/8 bytes, exit.
164
165 // If it is an atomic and alignment is less than the size then we will
166 // introduce the unaligned memory access which will be later transformed
167 // into libcall in CodeGen. This is not evident performance gain so disable
168 // it now.
169 if (MI->isAtomic())
170 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
171 return nullptr;
172
173 // Use an integer load+store unless we can find something better.
174 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
175
176 // If the memcpy has metadata describing the members, see if we can get the
177 // TBAA, scope and noalias tags describing our copy.
178 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size);
179
180 Value *Src = MI->getArgOperand(1);
181 Value *Dest = MI->getArgOperand(0);
182 LoadInst *L = Builder.CreateLoad(IntType, Src);
183 // Alignment from the mem intrinsic will be better, so use it.
184 L->setAlignment(*CopySrcAlign);
185 L->setAAMetadata(AACopyMD);
186 MDNode *LoopMemParallelMD =
187 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
188 if (LoopMemParallelMD)
189 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
190 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
191 if (AccessGroupMD)
192 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
193
194 StoreInst *S = Builder.CreateStore(L, Dest);
195 // Alignment from the mem intrinsic will be better, so use it.
196 S->setAlignment(*CopyDstAlign);
197 S->setAAMetadata(AACopyMD);
198 if (LoopMemParallelMD)
199 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
200 if (AccessGroupMD)
201 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
202 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
203
204 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
205 // non-atomics can be volatile
206 L->setVolatile(MT->isVolatile());
207 S->setVolatile(MT->isVolatile());
208 }
209 if (MI->isAtomic()) {
210 // atomics have to be unordered
211 L->setOrdering(AtomicOrdering::Unordered);
213 }
214
215 // Set the size of the copy to 0, it will be deleted on the next iteration.
216 MI->setLength((uint64_t)0);
217 return MI;
218}
219
221 const Align KnownAlignment =
222 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
223 MaybeAlign MemSetAlign = MI->getDestAlign();
224 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
225 MI->setDestAlignment(KnownAlignment);
226 return MI;
227 }
228
229 // If we have a store to a location which is known constant, we can conclude
230 // that the store must be storing the constant value (else the memory
231 // wouldn't be constant), and this must be a noop.
232 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
233 // Set the size of the copy to 0, it will be deleted on the next iteration.
234 MI->setLength((uint64_t)0);
235 return MI;
236 }
237
238 // Remove memset with an undef value.
239 // FIXME: This is technically incorrect because it might overwrite a poison
240 // value. Change to PoisonValue once #52930 is resolved.
241 if (isa<UndefValue>(MI->getValue())) {
242 // Set the size of the copy to 0, it will be deleted on the next iteration.
243 MI->setLength((uint64_t)0);
244 return MI;
245 }
246
247 // Extract the length and alignment and fill if they are constant.
248 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
249 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
250 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
251 return nullptr;
252 const uint64_t Len = LenC->getLimitedValue();
253 assert(Len && "0-sized memory setting should be removed already.");
254 const Align Alignment = MI->getDestAlign().valueOrOne();
255
256 // If it is an atomic and alignment is less than the size then we will
257 // introduce the unaligned memory access which will be later transformed
258 // into libcall in CodeGen. This is not evident performance gain so disable
259 // it now.
260 if (MI->isAtomic() && Alignment < Len)
261 return nullptr;
262
263 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
264 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
265 Value *Dest = MI->getDest();
266
267 // Extract the fill value and store.
268 Constant *FillVal = ConstantInt::get(
269 MI->getContext(), APInt::getSplat(Len * 8, FillC->getValue()));
270 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
271 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
272 for (DbgVariableRecord *DbgAssign : at::getDVRAssignmentMarkers(S)) {
273 if (llvm::is_contained(DbgAssign->location_ops(), FillC))
274 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
275 }
276
277 S->setAlignment(Alignment);
278 if (MI->isAtomic())
280
281 // Set the size of the copy to 0, it will be deleted on the next iteration.
282 MI->setLength((uint64_t)0);
283 return MI;
284 }
285
286 return nullptr;
287}
288
289// TODO, Obvious Missing Transforms:
290// * Narrow width by halfs excluding zero/undef lanes
291Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
292 Value *LoadPtr = II.getArgOperand(0);
293 const Align Alignment = II.getParamAlign(0).valueOrOne();
294
295 // If the mask is all ones or undefs, this is a plain vector load of the 1st
296 // argument.
297 if (maskIsAllOneOrUndef(II.getArgOperand(1))) {
298 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
299 "unmaskedload");
300 L->copyMetadata(II);
301 return L;
302 }
303
304 // If we can unconditionally load from this address, replace with a
305 // load/select idiom. TODO: use DT for context sensitive query
306 if (isDereferenceablePointer(LoadPtr, II.getType(),
307 II.getDataLayout(), &II, &AC)) {
308 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
309 "unmaskedload");
310 LI->copyMetadata(II);
311 return Builder.CreateSelect(II.getArgOperand(1), LI, II.getArgOperand(2));
312 }
313
314 return nullptr;
315}
316
317// TODO, Obvious Missing Transforms:
318// * Single constant active lane -> store
319// * Narrow width by halfs excluding zero/undef lanes
320Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
321 Value *StorePtr = II.getArgOperand(1);
322 Align Alignment = II.getParamAlign(1).valueOrOne();
323 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
324 if (!ConstMask)
325 return nullptr;
326
327 // If the mask is all zeros, this instruction does nothing.
328 if (maskIsAllZeroOrUndef(ConstMask))
330
331 // If the mask is all ones, this is a plain vector store of the 1st argument.
332 if (maskIsAllOneOrUndef(ConstMask)) {
333 StoreInst *S =
334 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
335 S->copyMetadata(II);
336 return S;
337 }
338
339 if (isa<ScalableVectorType>(ConstMask->getType()))
340 return nullptr;
341
342 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
343 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
344 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
345 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
346 PoisonElts))
347 return replaceOperand(II, 0, V);
348
349 return nullptr;
350}
351
352// TODO, Obvious Missing Transforms:
353// * Single constant active lane load -> load
354// * Dereferenceable address & few lanes -> scalarize speculative load/selects
355// * Adjacent vector addresses -> masked.load
356// * Narrow width by halfs excluding zero/undef lanes
357// * Vector incrementing address -> vector masked load
358Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
359 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(1));
360 if (!ConstMask)
361 return nullptr;
362
363 // Vector splat address w/known mask -> scalar load
364 // Fold the gather to load the source vector first lane
365 // because it is reloading the same value each time
366 if (ConstMask->isAllOnesValue())
367 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
368 auto *VecTy = cast<VectorType>(II.getType());
369 const Align Alignment = II.getParamAlign(0).valueOrOne();
370 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
371 Alignment, "load.scalar");
372 Value *Shuf =
373 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
375 }
376
377 return nullptr;
378}
379
380// TODO, Obvious Missing Transforms:
381// * Single constant active lane -> store
382// * Adjacent vector addresses -> masked.store
383// * Narrow store width by halfs excluding zero/undef lanes
384// * Vector incrementing address -> vector masked store
385Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
386 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
387 if (!ConstMask)
388 return nullptr;
389
390 // If the mask is all zeros, a scatter does nothing.
391 if (maskIsAllZeroOrUndef(ConstMask))
393
394 // Vector splat address -> scalar store
395 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
396 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
397 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
398 if (maskContainsAllOneOrUndef(ConstMask)) {
399 Align Alignment = II.getParamAlign(1).valueOrOne();
400 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
401 Alignment);
402 S->copyMetadata(II);
403 return S;
404 }
405 }
406 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
407 // lastlane), ptr
408 if (ConstMask->isAllOnesValue()) {
409 Align Alignment = II.getParamAlign(1).valueOrOne();
410 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
411 ElementCount VF = WideLoadTy->getElementCount();
412 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
413 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
414 Value *Extract =
415 Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
416 StoreInst *S =
417 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
418 S->copyMetadata(II);
419 return S;
420 }
421 }
422 if (isa<ScalableVectorType>(ConstMask->getType()))
423 return nullptr;
424
425 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
426 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
427 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
428 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
429 PoisonElts))
430 return replaceOperand(II, 0, V);
431 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts,
432 PoisonElts))
433 return replaceOperand(II, 1, V);
434
435 return nullptr;
436}
437
438/// This function transforms launder.invariant.group and strip.invariant.group
439/// like:
440/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
441/// launder(strip(%x)) -> launder(%x)
442/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
443/// strip(launder(%x)) -> strip(%x)
444/// This is legal because it preserves the most recent information about
445/// the presence or absence of invariant.group.
447 InstCombinerImpl &IC) {
448 auto *Arg = II.getArgOperand(0);
449 auto *StrippedArg = Arg->stripPointerCasts();
450 auto *StrippedInvariantGroupsArg = StrippedArg;
451 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
452 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
453 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
454 break;
455 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
456 }
457 if (StrippedArg == StrippedInvariantGroupsArg)
458 return nullptr; // No launders/strips to remove.
459
460 Value *Result = nullptr;
461
462 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
463 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
464 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
465 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
466 else
468 "simplifyInvariantGroupIntrinsic only handles launder and strip");
469 if (Result->getType()->getPointerAddressSpace() !=
470 II.getType()->getPointerAddressSpace())
471 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
472
473 return cast<Instruction>(Result);
474}
475
477 assert((II.getIntrinsicID() == Intrinsic::cttz ||
478 II.getIntrinsicID() == Intrinsic::ctlz) &&
479 "Expected cttz or ctlz intrinsic");
480 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
481 Value *Op0 = II.getArgOperand(0);
482 Value *Op1 = II.getArgOperand(1);
483 Value *X;
484 // ctlz(bitreverse(x)) -> cttz(x)
485 // cttz(bitreverse(x)) -> ctlz(x)
486 if (match(Op0, m_BitReverse(m_Value(X)))) {
487 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
488 Function *F =
489 Intrinsic::getOrInsertDeclaration(II.getModule(), ID, II.getType());
490 return CallInst::Create(F, {X, II.getArgOperand(1)});
491 }
492
493 if (II.getType()->isIntOrIntVectorTy(1)) {
494 // ctlz/cttz i1 Op0 --> not Op0
495 if (match(Op1, m_Zero()))
496 return BinaryOperator::CreateNot(Op0);
497 // If zero is poison, then the input can be assumed to be "true", so the
498 // instruction simplifies to "false".
499 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
500 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
501 }
502
503 // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true.
504 if (II.hasOneUse() && match(Op1, m_Zero()) &&
505 match(II.user_back(), m_Shift(m_Value(), m_Specific(&II)))) {
506 II.dropUBImplyingAttrsAndMetadata();
507 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
508 }
509
510 Constant *C;
511
512 if (IsTZ) {
513 // cttz(-x) -> cttz(x)
514 if (match(Op0, m_Neg(m_Value(X))))
515 return IC.replaceOperand(II, 0, X);
516
517 // cttz(-x & x) -> cttz(x)
518 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
519 return IC.replaceOperand(II, 0, X);
520
521 // cttz(sext(x)) -> cttz(zext(x))
522 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
523 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
524 auto *CttzZext =
525 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
526 return IC.replaceInstUsesWith(II, CttzZext);
527 }
528
529 // Zext doesn't change the number of trailing zeros, so narrow:
530 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
531 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
532 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
533 IC.Builder.getTrue());
534 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
535 return IC.replaceInstUsesWith(II, ZextCttz);
536 }
537
538 // cttz(abs(x)) -> cttz(x)
539 // cttz(nabs(x)) -> cttz(x)
540 Value *Y;
542 if (SPF == SPF_ABS || SPF == SPF_NABS)
543 return IC.replaceOperand(II, 0, X);
544
546 return IC.replaceOperand(II, 0, X);
547
548 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
549 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) &&
550 match(Op1, m_One())) {
551 Value *ConstCttz =
552 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
553 return BinaryOperator::CreateAdd(ConstCttz, X);
554 }
555
556 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
557 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) &&
558 match(Op1, m_One())) {
559 Value *ConstCttz =
560 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
561 return BinaryOperator::CreateSub(ConstCttz, X);
562 }
563
564 // cttz(add(lshr(UINT_MAX, %val), 1)) --> sub(width, %val)
565 if (match(Op0, m_Add(m_LShr(m_AllOnes(), m_Value(X)), m_One()))) {
566 Value *Width =
567 ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits());
568 return BinaryOperator::CreateSub(Width, X);
569 }
570 } else {
571 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
572 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) &&
573 match(Op1, m_One())) {
574 Value *ConstCtlz =
575 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
576 return BinaryOperator::CreateAdd(ConstCtlz, X);
577 }
578
579 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
580 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) &&
581 match(Op1, m_One())) {
582 Value *ConstCtlz =
583 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
584 return BinaryOperator::CreateSub(ConstCtlz, X);
585 }
586
587 // ctlz(~x & (x - 1)) -> bitwidth - cttz(x, false)
588 if (Op0->hasOneUse() &&
589 match(Op0,
591 Type *Ty = II.getType();
592 unsigned BitWidth = Ty->getScalarSizeInBits();
593 auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty,
594 {X, IC.Builder.getFalse()});
595 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
596 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
597 }
598 }
599
600 // cttz(Pow2) -> Log2(Pow2)
601 // ctlz(Pow2) -> BitWidth - 1 - Log2(Pow2)
602 if (auto *R = IC.tryGetLog2(Op0, match(Op1, m_One()))) {
603 if (IsTZ)
604 return IC.replaceInstUsesWith(II, R);
605 BinaryOperator *BO = BinaryOperator::CreateSub(
606 ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1),
607 R);
608 BO->setHasNoSignedWrap();
610 return BO;
611 }
612
613 KnownBits Known = IC.computeKnownBits(Op0, &II);
614
615 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
616 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
617 : Known.countMaxLeadingZeros();
618 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
619 : Known.countMinLeadingZeros();
620
621 // If all bits above (ctlz) or below (cttz) the first known one are known
622 // zero, this value is constant.
623 // FIXME: This should be in InstSimplify because we're replacing an
624 // instruction with a constant.
625 if (PossibleZeros == DefiniteZeros) {
626 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
627 return IC.replaceInstUsesWith(II, C);
628 }
629
630 // If the input to cttz/ctlz is known to be non-zero,
631 // then change the 'ZeroIsPoison' parameter to 'true'
632 // because we know the zero behavior can't affect the result.
633 if (!Known.One.isZero() ||
635 if (!match(II.getArgOperand(1), m_One()))
636 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
637 }
638
639 // Add range attribute since known bits can't completely reflect what we know.
640 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
641 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
642 !II.getMetadata(LLVMContext::MD_range)) {
643 ConstantRange Range(APInt(BitWidth, DefiniteZeros),
644 APInt(BitWidth, PossibleZeros + 1));
645 II.addRangeRetAttr(Range);
646 return &II;
647 }
648
649 return nullptr;
650}
651
653 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
654 "Expected ctpop intrinsic");
655 Type *Ty = II.getType();
656 unsigned BitWidth = Ty->getScalarSizeInBits();
657 Value *Op0 = II.getArgOperand(0);
658 Value *X, *Y;
659
660 // ctpop(bitreverse(x)) -> ctpop(x)
661 // ctpop(bswap(x)) -> ctpop(x)
662 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
663 return IC.replaceOperand(II, 0, X);
664
665 // ctpop(rot(x)) -> ctpop(x)
666 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
667 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
668 X == Y)
669 return IC.replaceOperand(II, 0, X);
670
671 // ctpop(x | -x) -> bitwidth - cttz(x, false)
672 if (Op0->hasOneUse() &&
673 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
674 auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty,
675 {X, IC.Builder.getFalse()});
676 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
677 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
678 }
679
680 // ctpop(~x & (x - 1)) -> cttz(x, false)
681 if (match(Op0,
683 Function *F =
684 Intrinsic::getOrInsertDeclaration(II.getModule(), Intrinsic::cttz, Ty);
685 return CallInst::Create(F, {X, IC.Builder.getFalse()});
686 }
687
688 // Zext doesn't change the number of set bits, so narrow:
689 // ctpop (zext X) --> zext (ctpop X)
690 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
691 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
692 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
693 }
694
695 KnownBits Known(BitWidth);
696 IC.computeKnownBits(Op0, Known, &II);
697
698 // If all bits are zero except for exactly one fixed bit, then the result
699 // must be 0 or 1, and we can get that answer by shifting to LSB:
700 // ctpop (X & 32) --> (X & 32) >> 5
701 // TODO: Investigate removing this as its likely unnecessary given the below
702 // `isKnownToBeAPowerOfTwo` check.
703 if ((~Known.Zero).isPowerOf2())
704 return BinaryOperator::CreateLShr(
705 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
706
707 // More generally we can also handle non-constant power of 2 patterns such as
708 // shl/shr(Pow2, X), (X & -X), etc... by transforming:
709 // ctpop(Pow2OrZero) --> icmp ne X, 0
710 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
711 return CastInst::Create(Instruction::ZExt,
714 Ty);
715
716 // Add range attribute since known bits can't completely reflect what we know.
717 if (BitWidth != 1) {
718 ConstantRange OldRange =
719 II.getRange().value_or(ConstantRange::getFull(BitWidth));
720
721 unsigned Lower = Known.countMinPopulation();
722 unsigned Upper = Known.countMaxPopulation() + 1;
723
724 if (Lower == 0 && OldRange.contains(APInt::getZero(BitWidth)) &&
726 Lower = 1;
727
729 Range = Range.intersectWith(OldRange, ConstantRange::Unsigned);
730
731 if (Range != OldRange) {
732 II.addRangeRetAttr(Range);
733 return &II;
734 }
735 }
736
737 return nullptr;
738}
739
740/// Convert `tbl`/`tbx` intrinsics to shufflevector if the mask is constant, and
741/// at most two source operands are actually referenced.
743 bool IsExtension) {
744 // Bail out if the mask is not a constant.
745 auto *C = dyn_cast<Constant>(II.getArgOperand(II.arg_size() - 1));
746 if (!C)
747 return nullptr;
748
749 auto *RetTy = cast<FixedVectorType>(II.getType());
750 unsigned NumIndexes = RetTy->getNumElements();
751
752 // Only perform this transformation for <8 x i8> and <16 x i8> vector types.
753 if (!RetTy->getElementType()->isIntegerTy(8) ||
754 (NumIndexes != 8 && NumIndexes != 16))
755 return nullptr;
756
757 // For tbx instructions, the first argument is the "fallback" vector, which
758 // has the same length as the mask and return type.
759 unsigned int StartIndex = (unsigned)IsExtension;
760 auto *SourceTy =
761 cast<FixedVectorType>(II.getArgOperand(StartIndex)->getType());
762 // Note that the element count of each source vector does *not* need to be the
763 // same as the element count of the return type and mask! All source vectors
764 // must have the same element count as each other, though.
765 unsigned NumElementsPerSource = SourceTy->getNumElements();
766
767 // There are no tbl/tbx intrinsics for which the destination size exceeds the
768 // source size. However, our definitions of the intrinsics, at least in
769 // IntrinsicsAArch64.td, allow for arbitrary destination vector sizes, so it
770 // *could* technically happen.
771 if (NumIndexes > NumElementsPerSource)
772 return nullptr;
773
774 // The tbl/tbx intrinsics take several source operands followed by a mask
775 // operand.
776 unsigned int NumSourceOperands = II.arg_size() - 1 - (unsigned)IsExtension;
777
778 // Map input operands to shuffle indices. This also helpfully deduplicates the
779 // input arguments, in case the same value is passed as an argument multiple
780 // times.
781 SmallDenseMap<Value *, unsigned, 2> ValueToShuffleSlot;
782 Value *ShuffleOperands[2] = {PoisonValue::get(SourceTy),
783 PoisonValue::get(SourceTy)};
784
785 int Indexes[16];
786 for (unsigned I = 0; I < NumIndexes; ++I) {
787 Constant *COp = C->getAggregateElement(I);
788
789 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
790 return nullptr;
791
792 if (isa<UndefValue>(COp)) {
793 Indexes[I] = -1;
794 continue;
795 }
796
797 uint64_t Index = cast<ConstantInt>(COp)->getZExtValue();
798 // The index of the input argument that this index references (0 = first
799 // source argument, etc).
800 unsigned SourceOperandIndex = Index / NumElementsPerSource;
801 // The index of the element at that source operand.
802 unsigned SourceOperandElementIndex = Index % NumElementsPerSource;
803
804 Value *SourceOperand;
805 if (SourceOperandIndex >= NumSourceOperands) {
806 // This index is out of bounds. Map it to index into either the fallback
807 // vector (tbx) or vector of zeroes (tbl).
808 SourceOperandIndex = NumSourceOperands;
809 if (IsExtension) {
810 // For out-of-bounds indices in tbx, choose the `I`th element of the
811 // fallback.
812 SourceOperand = II.getArgOperand(0);
813 SourceOperandElementIndex = I;
814 } else {
815 // Otherwise, choose some element from the dummy vector of zeroes (we'll
816 // always choose the first).
817 SourceOperand = Constant::getNullValue(SourceTy);
818 SourceOperandElementIndex = 0;
819 }
820 } else {
821 SourceOperand = II.getArgOperand(SourceOperandIndex + StartIndex);
822 }
823
824 // The source operand may be the fallback vector, which may not have the
825 // same number of elements as the source vector. In that case, we *could*
826 // choose to extend its length with another shufflevector, but it's simpler
827 // to just bail instead.
828 if (cast<FixedVectorType>(SourceOperand->getType())->getNumElements() !=
829 NumElementsPerSource)
830 return nullptr;
831
832 // We now know the source operand referenced by this index. Make it a
833 // shufflevector operand, if it isn't already.
834 unsigned NumSlots = ValueToShuffleSlot.size();
835 // This shuffle references more than two sources, and hence cannot be
836 // represented as a shufflevector.
837 if (NumSlots == 2 && !ValueToShuffleSlot.contains(SourceOperand))
838 return nullptr;
839
840 auto [It, Inserted] =
841 ValueToShuffleSlot.try_emplace(SourceOperand, NumSlots);
842 if (Inserted)
843 ShuffleOperands[It->getSecond()] = SourceOperand;
844
845 unsigned RemappedIndex =
846 (It->getSecond() * NumElementsPerSource) + SourceOperandElementIndex;
847 Indexes[I] = RemappedIndex;
848 }
849
851 ShuffleOperands[0], ShuffleOperands[1], ArrayRef(Indexes, NumIndexes));
852 return IC.replaceInstUsesWith(II, Shuf);
853}
854
855// Returns true iff the 2 intrinsics have the same operands, limiting the
856// comparison to the first NumOperands.
857static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
858 unsigned NumOperands) {
859 assert(I.arg_size() >= NumOperands && "Not enough operands");
860 assert(E.arg_size() >= NumOperands && "Not enough operands");
861 for (unsigned i = 0; i < NumOperands; i++)
862 if (I.getArgOperand(i) != E.getArgOperand(i))
863 return false;
864 return true;
865}
866
867// Remove trivially empty start/end intrinsic ranges, i.e. a start
868// immediately followed by an end (ignoring debuginfo or other
869// start/end intrinsics in between). As this handles only the most trivial
870// cases, tracking the nesting level is not needed:
871//
872// call @llvm.foo.start(i1 0)
873// call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
874// call @llvm.foo.end(i1 0)
875// call @llvm.foo.end(i1 0) ; &I
876static bool
878 std::function<bool(const IntrinsicInst &)> IsStart) {
879 // We start from the end intrinsic and scan backwards, so that InstCombine
880 // has already processed (and potentially removed) all the instructions
881 // before the end intrinsic.
882 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
883 for (; BI != BE; ++BI) {
884 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
885 if (I->isDebugOrPseudoInst() ||
886 I->getIntrinsicID() == EndI.getIntrinsicID())
887 continue;
888 if (IsStart(*I)) {
889 if (haveSameOperands(EndI, *I, EndI.arg_size())) {
891 IC.eraseInstFromFunction(EndI);
892 return true;
893 }
894 // Skip start intrinsics that don't pair with this end intrinsic.
895 continue;
896 }
897 }
898 break;
899 }
900
901 return false;
902}
903
905 removeTriviallyEmptyRange(I, *this, [&I](const IntrinsicInst &II) {
906 // Bail out on the case where the source va_list of a va_copy is destroyed
907 // immediately by a follow-up va_end.
908 return II.getIntrinsicID() == Intrinsic::vastart ||
909 (II.getIntrinsicID() == Intrinsic::vacopy &&
910 I.getArgOperand(0) != II.getArgOperand(1));
911 });
912 return nullptr;
913}
914
916 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
917 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
918 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
919 Call.setArgOperand(0, Arg1);
920 Call.setArgOperand(1, Arg0);
921 return &Call;
922 }
923 return nullptr;
924}
925
926/// Creates a result tuple for an overflow intrinsic \p II with a given
927/// \p Result and a constant \p Overflow value.
929 Constant *Overflow) {
930 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
931 StructType *ST = cast<StructType>(II->getType());
932 Constant *Struct = ConstantStruct::get(ST, V);
933 return InsertValueInst::Create(Struct, Result, 0);
934}
935
937InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
938 WithOverflowInst *WO = cast<WithOverflowInst>(II);
939 Value *OperationResult = nullptr;
940 Constant *OverflowResult = nullptr;
941 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
942 WO->getRHS(), *WO, OperationResult, OverflowResult))
943 return createOverflowTuple(WO, OperationResult, OverflowResult);
944
945 // See whether we can optimize the overflow check with assumption information.
946 for (User *U : WO->users()) {
947 if (!match(U, m_ExtractValue<1>(m_Value())))
948 continue;
949
950 for (auto &AssumeVH : AC.assumptionsFor(U)) {
951 if (!AssumeVH)
952 continue;
953 CallInst *I = cast<CallInst>(AssumeVH);
954 if (!match(I->getArgOperand(0), m_Not(m_Specific(U))))
955 continue;
956 if (!isValidAssumeForContext(I, II, /*DT=*/nullptr,
957 /*AllowEphemerals=*/true))
958 continue;
959 Value *Result =
960 Builder.CreateBinOp(WO->getBinaryOp(), WO->getLHS(), WO->getRHS());
961 Result->takeName(WO);
962 if (auto *Inst = dyn_cast<Instruction>(Result)) {
963 if (WO->isSigned())
964 Inst->setHasNoSignedWrap();
965 else
966 Inst->setHasNoUnsignedWrap();
967 }
968 return createOverflowTuple(WO, Result,
969 ConstantInt::getFalse(U->getType()));
970 }
971 }
972
973 return nullptr;
974}
975
976static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
977 Ty = Ty->getScalarType();
978 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
979}
980
981static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
982 Ty = Ty->getScalarType();
983 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
984}
985
986/// \returns the compare predicate type if the test performed by
987/// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
988/// floating-point environment assumed for \p F for type \p Ty
990 const Function &F, Type *Ty) {
991 switch (static_cast<unsigned>(Mask)) {
992 case fcZero:
993 if (inputDenormalIsIEEE(F, Ty))
994 return FCmpInst::FCMP_OEQ;
995 break;
996 case fcZero | fcSubnormal:
997 if (inputDenormalIsDAZ(F, Ty))
998 return FCmpInst::FCMP_OEQ;
999 break;
1000 case fcPositive | fcNegZero:
1001 if (inputDenormalIsIEEE(F, Ty))
1002 return FCmpInst::FCMP_OGE;
1003 break;
1005 if (inputDenormalIsDAZ(F, Ty))
1006 return FCmpInst::FCMP_OGE;
1007 break;
1009 if (inputDenormalIsIEEE(F, Ty))
1010 return FCmpInst::FCMP_OGT;
1011 break;
1012 case fcNegative | fcPosZero:
1013 if (inputDenormalIsIEEE(F, Ty))
1014 return FCmpInst::FCMP_OLE;
1015 break;
1017 if (inputDenormalIsDAZ(F, Ty))
1018 return FCmpInst::FCMP_OLE;
1019 break;
1021 if (inputDenormalIsIEEE(F, Ty))
1022 return FCmpInst::FCMP_OLT;
1023 break;
1024 case fcPosNormal | fcPosInf:
1025 if (inputDenormalIsDAZ(F, Ty))
1026 return FCmpInst::FCMP_OGT;
1027 break;
1028 case fcNegNormal | fcNegInf:
1029 if (inputDenormalIsDAZ(F, Ty))
1030 return FCmpInst::FCMP_OLT;
1031 break;
1032 case ~fcZero & ~fcNan:
1033 if (inputDenormalIsIEEE(F, Ty))
1034 return FCmpInst::FCMP_ONE;
1035 break;
1036 case ~(fcZero | fcSubnormal) & ~fcNan:
1037 if (inputDenormalIsDAZ(F, Ty))
1038 return FCmpInst::FCMP_ONE;
1039 break;
1040 default:
1041 break;
1042 }
1043
1045}
1046
1047Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
1048 Value *Src0 = II.getArgOperand(0);
1049 Value *Src1 = II.getArgOperand(1);
1050 const ConstantInt *CMask = cast<ConstantInt>(Src1);
1051 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
1052 const bool IsUnordered = (Mask & fcNan) == fcNan;
1053 const bool IsOrdered = (Mask & fcNan) == fcNone;
1054 const FPClassTest OrderedMask = Mask & ~fcNan;
1055 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
1056
1057 const bool IsStrict =
1058 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
1059
1060 Value *FNegSrc;
1061 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
1062 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
1063
1064 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
1065 return replaceOperand(II, 0, FNegSrc);
1066 }
1067
1068 Value *FAbsSrc;
1069 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
1070 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
1071 return replaceOperand(II, 0, FAbsSrc);
1072 }
1073
1074 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
1075 (IsOrdered || IsUnordered) && !IsStrict) {
1076 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
1077 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
1078 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
1079 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
1081 FCmpInst::Predicate Pred =
1082 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
1083 if (OrderedInvertedMask == fcInf)
1084 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
1085
1086 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
1087 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
1088 CmpInf->takeName(&II);
1089 return replaceInstUsesWith(II, CmpInf);
1090 }
1091
1092 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
1093 (IsOrdered || IsUnordered) && !IsStrict) {
1094 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
1095 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
1096 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
1097 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
1098 Constant *Inf =
1099 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
1100 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
1101 : Builder.CreateFCmpOEQ(Src0, Inf);
1102
1103 EqInf->takeName(&II);
1104 return replaceInstUsesWith(II, EqInf);
1105 }
1106
1107 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
1108 (IsOrdered || IsUnordered) && !IsStrict) {
1109 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
1110 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
1111 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
1112 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
1114 OrderedInvertedMask == fcNegInf);
1115 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
1116 : Builder.CreateFCmpONE(Src0, Inf);
1117 NeInf->takeName(&II);
1118 return replaceInstUsesWith(II, NeInf);
1119 }
1120
1121 if (Mask == fcNan && !IsStrict) {
1122 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
1123 // exceptions.
1124 Value *IsNan =
1125 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
1126 IsNan->takeName(&II);
1127 return replaceInstUsesWith(II, IsNan);
1128 }
1129
1130 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
1131 // Equivalent of !isnan. Replace with standard fcmp.
1132 Value *FCmp =
1133 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
1134 FCmp->takeName(&II);
1135 return replaceInstUsesWith(II, FCmp);
1136 }
1137
1139
1140 // Try to replace with an fcmp with 0
1141 //
1142 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
1143 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
1144 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
1145 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
1146 //
1147 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
1148 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
1149 //
1150 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1151 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1152 //
1153 if (!IsStrict && (IsOrdered || IsUnordered) &&
1154 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
1155 Src0->getType())) !=
1158 // Equivalent of == 0.
1159 Value *FCmp = Builder.CreateFCmp(
1160 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
1161 Src0, Zero);
1162
1163 FCmp->takeName(&II);
1164 return replaceInstUsesWith(II, FCmp);
1165 }
1166
1167 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1168
1169 // Clear test bits we know must be false from the source value.
1170 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1171 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1172 if ((Mask & Known.KnownFPClasses) != Mask) {
1173 II.setArgOperand(
1174 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1175 return &II;
1176 }
1177
1178 // If none of the tests which can return false are possible, fold to true.
1179 // fp_class (nnan x), ~(qnan|snan) -> true
1180 // fp_class (ninf x), ~(ninf|pinf) -> true
1181 if (Mask == Known.KnownFPClasses)
1182 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1183
1184 return nullptr;
1185}
1186
1187static std::optional<bool> getKnownSign(Value *Op, const SimplifyQuery &SQ) {
1188 KnownBits Known = computeKnownBits(Op, SQ);
1189 if (Known.isNonNegative())
1190 return false;
1191 if (Known.isNegative())
1192 return true;
1193
1194 Value *X, *Y;
1195 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1197
1198 return std::nullopt;
1199}
1200
1201static std::optional<bool> getKnownSignOrZero(Value *Op,
1202 const SimplifyQuery &SQ) {
1203 if (std::optional<bool> Sign = getKnownSign(Op, SQ))
1204 return Sign;
1205
1206 Value *X, *Y;
1207 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1209
1210 return std::nullopt;
1211}
1212
1213/// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1214static bool signBitMustBeTheSame(Value *Op0, Value *Op1,
1215 const SimplifyQuery &SQ) {
1216 std::optional<bool> Known1 = getKnownSign(Op1, SQ);
1217 if (!Known1)
1218 return false;
1219 std::optional<bool> Known0 = getKnownSign(Op0, SQ);
1220 if (!Known0)
1221 return false;
1222 return *Known0 == *Known1;
1223}
1224
1225/// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1226/// can trigger other combines.
1228 InstCombiner::BuilderTy &Builder) {
1229 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1230 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1231 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1232 "Expected a min or max intrinsic");
1233
1234 // TODO: Match vectors with undef elements, but undef may not propagate.
1235 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1236 Value *X;
1237 const APInt *C0, *C1;
1238 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1239 !match(Op1, m_APInt(C1)))
1240 return nullptr;
1241
1242 // Check for necessary no-wrap and overflow constraints.
1243 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1244 auto *Add = cast<BinaryOperator>(Op0);
1245 if ((IsSigned && !Add->hasNoSignedWrap()) ||
1246 (!IsSigned && !Add->hasNoUnsignedWrap()))
1247 return nullptr;
1248
1249 // If the constant difference overflows, then instsimplify should reduce the
1250 // min/max to the add or C1.
1251 bool Overflow;
1252 APInt CDiff =
1253 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1254 assert(!Overflow && "Expected simplify of min/max");
1255
1256 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1257 // Note: the "mismatched" no-overflow setting does not propagate.
1258 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1259 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1260 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1261 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1262}
1263/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1264Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1265 Type *Ty = MinMax1.getType();
1266
1267 // We are looking for a tree of:
1268 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1269 // Where the min and max could be reversed
1270 Instruction *MinMax2;
1271 BinaryOperator *AddSub;
1272 const APInt *MinValue, *MaxValue;
1273 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1274 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1275 return nullptr;
1276 } else if (match(&MinMax1,
1277 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1278 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1279 return nullptr;
1280 } else
1281 return nullptr;
1282
1283 // Check that the constants clamp a saturate, and that the new type would be
1284 // sensible to convert to.
1285 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1286 return nullptr;
1287 // In what bitwidth can this be treated as saturating arithmetics?
1288 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1289 // FIXME: This isn't quite right for vectors, but using the scalar type is a
1290 // good first approximation for what should be done there.
1291 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1292 return nullptr;
1293
1294 // Also make sure that the inner min/max and the add/sub have one use.
1295 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1296 return nullptr;
1297
1298 // Create the new type (which can be a vector type)
1299 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1300
1301 Intrinsic::ID IntrinsicID;
1302 if (AddSub->getOpcode() == Instruction::Add)
1303 IntrinsicID = Intrinsic::sadd_sat;
1304 else if (AddSub->getOpcode() == Instruction::Sub)
1305 IntrinsicID = Intrinsic::ssub_sat;
1306 else
1307 return nullptr;
1308
1309 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1310 // is usually achieved via a sext from a smaller type.
1311 if (ComputeMaxSignificantBits(AddSub->getOperand(0), AddSub) > NewBitWidth ||
1312 ComputeMaxSignificantBits(AddSub->getOperand(1), AddSub) > NewBitWidth)
1313 return nullptr;
1314
1315 // Finally create and return the sat intrinsic, truncated to the new type
1316 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1317 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1318 Value *Sat = Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT, BT});
1319 return CastInst::Create(Instruction::SExt, Sat, Ty);
1320}
1321
1322
1323/// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1324/// can only be one of two possible constant values -- turn that into a select
1325/// of constants.
1327 InstCombiner::BuilderTy &Builder) {
1328 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1329 Value *X;
1330 const APInt *C0, *C1;
1331 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1332 return nullptr;
1333
1335 switch (II->getIntrinsicID()) {
1336 case Intrinsic::smax:
1337 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1338 Pred = ICmpInst::ICMP_SGT;
1339 break;
1340 case Intrinsic::smin:
1341 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1342 Pred = ICmpInst::ICMP_SLT;
1343 break;
1344 case Intrinsic::umax:
1345 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1346 Pred = ICmpInst::ICMP_UGT;
1347 break;
1348 case Intrinsic::umin:
1349 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1350 Pred = ICmpInst::ICMP_ULT;
1351 break;
1352 default:
1353 llvm_unreachable("Expected min/max intrinsic");
1354 }
1355 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1356 return nullptr;
1357
1358 // max (min X, 42), 41 --> X > 41 ? 42 : 41
1359 // min (max X, 42), 43 --> X < 43 ? 42 : 43
1360 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1361 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1362}
1363
1364/// If this min/max has a constant operand and an operand that is a matching
1365/// min/max with a constant operand, constant-fold the 2 constant operands.
1367 IRBuilderBase &Builder,
1368 const SimplifyQuery &SQ) {
1369 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1370 auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0));
1371 if (!LHS)
1372 return nullptr;
1373
1374 Constant *C0, *C1;
1375 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1376 !match(II->getArgOperand(1), m_ImmConstant(C1)))
1377 return nullptr;
1378
1379 // max (max X, C0), C1 --> max X, (max C0, C1)
1380 // min (min X, C0), C1 --> min X, (min C0, C1)
1381 // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1)
1382 // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1)
1383 Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID();
1384 if (InnerMinMaxID != MinMaxID &&
1385 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1386 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1387 isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ)))
1388 return nullptr;
1389
1391 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1392 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1393 return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(),
1394 {LHS->getArgOperand(0), NewC});
1395}
1396
1397/// If this min/max has a matching min/max operand with a constant, try to push
1398/// the constant operand into this instruction. This can enable more folds.
1399static Instruction *
1401 InstCombiner::BuilderTy &Builder) {
1402 // Match and capture a min/max operand candidate.
1403 Value *X, *Y;
1404 Constant *C;
1405 Instruction *Inner;
1407 m_Instruction(Inner),
1409 m_Value(Y))))
1410 return nullptr;
1411
1412 // The inner op must match. Check for constants to avoid infinite loops.
1413 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1414 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1415 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1417 return nullptr;
1418
1419 // max (max X, C), Y --> max (max X, Y), C
1421 MinMaxID, II->getType());
1422 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1423 NewInner->takeName(Inner);
1424 return CallInst::Create(MinMax, {NewInner, C});
1425}
1426
1427/// Reduce a sequence of min/max intrinsics with a common operand.
1429 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1430 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1431 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1432 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1433 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1434 RHS->getIntrinsicID() != MinMaxID ||
1435 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1436 return nullptr;
1437
1438 Value *A = LHS->getArgOperand(0);
1439 Value *B = LHS->getArgOperand(1);
1440 Value *C = RHS->getArgOperand(0);
1441 Value *D = RHS->getArgOperand(1);
1442
1443 // Look for a common operand.
1444 Value *MinMaxOp = nullptr;
1445 Value *ThirdOp = nullptr;
1446 if (LHS->hasOneUse()) {
1447 // If the LHS is only used in this chain and the RHS is used outside of it,
1448 // reuse the RHS min/max because that will eliminate the LHS.
1449 if (D == A || C == A) {
1450 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1451 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1452 MinMaxOp = RHS;
1453 ThirdOp = B;
1454 } else if (D == B || C == B) {
1455 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1456 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1457 MinMaxOp = RHS;
1458 ThirdOp = A;
1459 }
1460 } else {
1461 assert(RHS->hasOneUse() && "Expected one-use operand");
1462 // Reuse the LHS. This will eliminate the RHS.
1463 if (D == A || D == B) {
1464 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1465 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1466 MinMaxOp = LHS;
1467 ThirdOp = C;
1468 } else if (C == A || C == B) {
1469 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1470 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1471 MinMaxOp = LHS;
1472 ThirdOp = D;
1473 }
1474 }
1475
1476 if (!MinMaxOp || !ThirdOp)
1477 return nullptr;
1478
1479 Module *Mod = II->getModule();
1480 Function *MinMax =
1481 Intrinsic::getOrInsertDeclaration(Mod, MinMaxID, II->getType());
1482 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1483}
1484
1485/// If all arguments of the intrinsic are unary shuffles with the same mask,
1486/// try to shuffle after the intrinsic.
1489 if (!isTriviallyVectorizable(II->getIntrinsicID()) ||
1490 !II->getCalledFunction()->isSpeculatable())
1491 return nullptr;
1492
1493 Value *X;
1494 Constant *C;
1495 ArrayRef<int> Mask;
1496 auto *NonConstArg = find_if_not(II->args(), [&II](Use &Arg) {
1497 return isa<Constant>(Arg.get()) ||
1498 isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1499 Arg.getOperandNo(), nullptr);
1500 });
1501 if (!NonConstArg ||
1502 !match(NonConstArg, m_Shuffle(m_Value(X), m_Poison(), m_Mask(Mask))))
1503 return nullptr;
1504
1505 // At least 1 operand must be a shuffle with 1 use because we are creating 2
1506 // instructions.
1507 if (none_of(II->args(), match_fn(m_OneUse(m_Shuffle(m_Value(), m_Value())))))
1508 return nullptr;
1509
1510 // See if all arguments are shuffled with the same mask.
1512 Type *SrcTy = X->getType();
1513 for (Use &Arg : II->args()) {
1514 if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1515 Arg.getOperandNo(), nullptr))
1516 NewArgs.push_back(Arg);
1517 else if (match(&Arg,
1518 m_Shuffle(m_Value(X), m_Poison(), m_SpecificMask(Mask))) &&
1519 X->getType() == SrcTy)
1520 NewArgs.push_back(X);
1521 else if (match(&Arg, m_ImmConstant(C))) {
1522 // If it's a constant, try find the constant that would be shuffled to C.
1523 if (Constant *ShuffledC =
1524 unshuffleConstant(Mask, C, cast<VectorType>(SrcTy)))
1525 NewArgs.push_back(ShuffledC);
1526 else
1527 return nullptr;
1528 } else
1529 return nullptr;
1530 }
1531
1532 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1533 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1534 // Result type might be a different vector width.
1535 // TODO: Check that the result type isn't widened?
1536 VectorType *ResTy =
1537 VectorType::get(II->getType()->getScalarType(), cast<VectorType>(SrcTy));
1538 Value *NewIntrinsic =
1539 Builder.CreateIntrinsic(ResTy, II->getIntrinsicID(), NewArgs, FPI);
1540 return new ShuffleVectorInst(NewIntrinsic, Mask);
1541}
1542
1543/// If all arguments of the intrinsic are reverses, try to pull the reverse
1544/// after the intrinsic.
1546 if (!isTriviallyVectorizable(II->getIntrinsicID()))
1547 return nullptr;
1548
1549 // At least 1 operand must be a reverse with 1 use because we are creating 2
1550 // instructions.
1551 if (none_of(II->args(), [](Value *V) {
1552 return match(V, m_OneUse(m_VecReverse(m_Value())));
1553 }))
1554 return nullptr;
1555
1556 Value *X;
1557 Constant *C;
1558 SmallVector<Value *> NewArgs;
1559 for (Use &Arg : II->args()) {
1560 if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1561 Arg.getOperandNo(), nullptr))
1562 NewArgs.push_back(Arg);
1563 else if (match(&Arg, m_VecReverse(m_Value(X))))
1564 NewArgs.push_back(X);
1565 else if (isSplatValue(Arg))
1566 NewArgs.push_back(Arg);
1567 else if (match(&Arg, m_ImmConstant(C)))
1568 NewArgs.push_back(Builder.CreateVectorReverse(C));
1569 else
1570 return nullptr;
1571 }
1572
1573 // intrinsic (reverse X), (reverse Y), ... --> reverse (intrinsic X, Y, ...)
1574 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1575 Instruction *NewIntrinsic = Builder.CreateIntrinsic(
1576 II->getType(), II->getIntrinsicID(), NewArgs, FPI);
1577 return Builder.CreateVectorReverse(NewIntrinsic);
1578}
1579
1580/// Fold the following cases and accepts bswap and bitreverse intrinsics:
1581/// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1582/// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1583template <Intrinsic::ID IntrID>
1585 InstCombiner::BuilderTy &Builder) {
1586 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1587 "This helper only supports BSWAP and BITREVERSE intrinsics");
1588
1589 Value *X, *Y;
1590 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1591 // don't match ConstantExpr that aren't meaningful for this transform.
1594 Value *OldReorderX, *OldReorderY;
1596
1597 // If both X and Y are bswap/bitreverse, the transform reduces the number
1598 // of instructions even if there's multiuse.
1599 // If only one operand is bswap/bitreverse, we need to ensure the operand
1600 // have only one use.
1601 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1602 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1603 return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1604 }
1605
1606 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1607 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1608 return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1609 }
1610
1611 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1612 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1613 return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1614 }
1615 }
1616 return nullptr;
1617}
1618
1619/// Helper to match idempotent binary intrinsics, namely, intrinsics where
1620/// `f(f(x, y), y) == f(x, y)` holds.
1622 switch (IID) {
1623 case Intrinsic::smax:
1624 case Intrinsic::smin:
1625 case Intrinsic::umax:
1626 case Intrinsic::umin:
1627 case Intrinsic::maximum:
1628 case Intrinsic::minimum:
1629 case Intrinsic::maximumnum:
1630 case Intrinsic::minimumnum:
1631 case Intrinsic::maxnum:
1632 case Intrinsic::minnum:
1633 return true;
1634 default:
1635 return false;
1636 }
1637}
1638
1639/// Attempt to simplify value-accumulating recurrences of kind:
1640/// %umax.acc = phi i8 [ %umax, %backedge ], [ %a, %entry ]
1641/// %umax = call i8 @llvm.umax.i8(i8 %umax.acc, i8 %b)
1642/// And let the idempotent binary intrinsic be hoisted, when the operands are
1643/// known to be loop-invariant.
1645 IntrinsicInst *II) {
1646 PHINode *PN;
1647 Value *Init, *OtherOp;
1648
1649 // A binary intrinsic recurrence with loop-invariant operands is equivalent to
1650 // `call @llvm.binary.intrinsic(Init, OtherOp)`.
1651 auto IID = II->getIntrinsicID();
1652 if (!isIdempotentBinaryIntrinsic(IID) ||
1654 !IC.getDominatorTree().dominates(OtherOp, PN))
1655 return nullptr;
1656
1657 auto *InvariantBinaryInst =
1658 IC.Builder.CreateBinaryIntrinsic(IID, Init, OtherOp);
1659 if (isa<FPMathOperator>(InvariantBinaryInst))
1660 cast<Instruction>(InvariantBinaryInst)->copyFastMathFlags(II);
1661 return InvariantBinaryInst;
1662}
1663
1664static Value *simplifyReductionOperand(Value *Arg, bool CanReorderLanes) {
1665 if (!CanReorderLanes)
1666 return nullptr;
1667
1668 Value *V;
1669 if (match(Arg, m_VecReverse(m_Value(V))))
1670 return V;
1671
1672 ArrayRef<int> Mask;
1673 if (!isa<FixedVectorType>(Arg->getType()) ||
1674 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
1675 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
1676 return nullptr;
1677
1678 int Sz = Mask.size();
1679 SmallBitVector UsedIndices(Sz);
1680 for (int Idx : Mask) {
1681 if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
1682 return nullptr;
1683 UsedIndices.set(Idx);
1684 }
1685
1686 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
1687 // other changes.
1688 return UsedIndices.all() ? V : nullptr;
1689}
1690
1691/// Fold an unsigned minimum of trailing or leading zero bits counts:
1692/// umin(cttz(CtOp, ZeroUndef), ConstOp) --> cttz(CtOp | (1 << ConstOp))
1693/// umin(ctlz(CtOp, ZeroUndef), ConstOp) --> ctlz(CtOp | (SignedMin
1694/// >> ConstOp))
1695template <Intrinsic::ID IntrID>
1696static Value *
1698 const DataLayout &DL,
1699 InstCombiner::BuilderTy &Builder) {
1700 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1701 "This helper only supports cttz and ctlz intrinsics");
1702
1703 Value *CtOp;
1704 Value *ZeroUndef;
1705 if (!match(I0,
1706 m_OneUse(m_Intrinsic<IntrID>(m_Value(CtOp), m_Value(ZeroUndef)))))
1707 return nullptr;
1708
1709 unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1710 auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); };
1711 if (!match(I1, m_CheckedInt(LessBitWidth)))
1712 // We have a constant >= BitWidth (which can be handled by CVP)
1713 // or a non-splat vector with elements < and >= BitWidth
1714 return nullptr;
1715
1716 Type *Ty = I1->getType();
1718 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1719 IntrID == Intrinsic::cttz
1720 ? ConstantInt::get(Ty, 1)
1721 : ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)),
1722 cast<Constant>(I1), DL);
1723 return Builder.CreateBinaryIntrinsic(
1724 IntrID, Builder.CreateOr(CtOp, NewConst),
1725 ConstantInt::getTrue(ZeroUndef->getType()));
1726}
1727
1728/// Return whether "X LOp (Y ROp Z)" is always equal to
1729/// "(X LOp Y) ROp (X LOp Z)".
1731 bool HasNSW, Intrinsic::ID ROp) {
1732 switch (ROp) {
1733 case Intrinsic::umax:
1734 case Intrinsic::umin:
1735 if (HasNUW && LOp == Instruction::Add)
1736 return true;
1737 if (HasNUW && LOp == Instruction::Shl)
1738 return true;
1739 return false;
1740 case Intrinsic::smax:
1741 case Intrinsic::smin:
1742 return HasNSW && LOp == Instruction::Add;
1743 default:
1744 return false;
1745 }
1746}
1747
1748// Attempts to factorise a common term
1749// in an instruction that has the form "(A op' B) op (C op' D)
1750// where op is an intrinsic and op' is a binop
1751static Value *
1753 InstCombiner::BuilderTy &Builder) {
1754 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1755 Intrinsic::ID TopLevelOpcode = II->getIntrinsicID();
1756
1759
1760 if (!Op0 || !Op1)
1761 return nullptr;
1762
1763 if (Op0->getOpcode() != Op1->getOpcode())
1764 return nullptr;
1765
1766 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1767 return nullptr;
1768
1769 Instruction::BinaryOps InnerOpcode =
1770 static_cast<Instruction::BinaryOps>(Op0->getOpcode());
1771 bool HasNUW = Op0->hasNoUnsignedWrap() && Op1->hasNoUnsignedWrap();
1772 bool HasNSW = Op0->hasNoSignedWrap() && Op1->hasNoSignedWrap();
1773
1774 if (!leftDistributesOverRight(InnerOpcode, HasNUW, HasNSW, TopLevelOpcode))
1775 return nullptr;
1776
1777 Value *A = Op0->getOperand(0);
1778 Value *B = Op0->getOperand(1);
1779 Value *C = Op1->getOperand(0);
1780 Value *D = Op1->getOperand(1);
1781
1782 // Attempts to swap variables such that A equals C or B equals D,
1783 // if the inner operation is commutative.
1784 if (Op0->isCommutative() && A != C && B != D) {
1785 if (A == D || B == C)
1786 std::swap(C, D);
1787 else
1788 return nullptr;
1789 }
1790
1791 BinaryOperator *NewBinop;
1792 if (A == C) {
1793 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, B, D);
1794 NewBinop =
1795 cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, A, NewIntrinsic));
1796 } else if (B == D) {
1797 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, A, C);
1798 NewBinop =
1799 cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, NewIntrinsic, B));
1800 } else {
1801 return nullptr;
1802 }
1803
1804 NewBinop->setHasNoUnsignedWrap(HasNUW);
1805 NewBinop->setHasNoSignedWrap(HasNSW);
1806
1807 return NewBinop;
1808}
1809
1810/// CallInst simplification. This mostly only handles folding of intrinsic
1811/// instructions. For normal calls, it allows visitCallBase to do the heavy
1812/// lifting.
1814 // Don't try to simplify calls without uses. It will not do anything useful,
1815 // but will result in the following folds being skipped.
1816 if (!CI.use_empty()) {
1817 SmallVector<Value *, 8> Args(CI.args());
1818 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1819 SQ.getWithInstruction(&CI)))
1820 return replaceInstUsesWith(CI, V);
1821 }
1822
1823 if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1824 return visitFree(CI, FreedOp);
1825
1826 // If the caller function (i.e. us, the function that contains this CallInst)
1827 // is nounwind, mark the call as nounwind, even if the callee isn't.
1828 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1829 CI.setDoesNotThrow();
1830 return &CI;
1831 }
1832
1834 if (!II)
1835 return visitCallBase(CI);
1836
1837 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1838 // instead of in visitCallBase.
1839 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1840 if (auto NumBytes = MI->getLengthInBytes()) {
1841 // memmove/cpy/set of zero bytes is a noop.
1842 if (NumBytes->isZero())
1843 return eraseInstFromFunction(CI);
1844
1845 // For atomic unordered mem intrinsics if len is not a positive or
1846 // not a multiple of element size then behavior is undefined.
1847 if (MI->isAtomic() &&
1848 (NumBytes->isNegative() ||
1849 (NumBytes->getZExtValue() % MI->getElementSizeInBytes() != 0))) {
1851 assert(MI->getType()->isVoidTy() &&
1852 "non void atomic unordered mem intrinsic");
1853 return eraseInstFromFunction(*MI);
1854 }
1855 }
1856
1857 // No other transformations apply to volatile transfers.
1858 if (MI->isVolatile())
1859 return nullptr;
1860
1862 // memmove(x,x,size) -> noop.
1863 if (MTI->getSource() == MTI->getDest())
1864 return eraseInstFromFunction(CI);
1865 }
1866
1867 auto IsPointerUndefined = [MI](Value *Ptr) {
1868 return isa<ConstantPointerNull>(Ptr) &&
1870 MI->getFunction(),
1871 cast<PointerType>(Ptr->getType())->getAddressSpace());
1872 };
1873 bool SrcIsUndefined = false;
1874 // If we can determine a pointer alignment that is bigger than currently
1875 // set, update the alignment.
1876 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1878 return I;
1879 SrcIsUndefined = IsPointerUndefined(MTI->getRawSource());
1880 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1881 if (Instruction *I = SimplifyAnyMemSet(MSI))
1882 return I;
1883 }
1884
1885 // If src/dest is null, this memory intrinsic must be a noop.
1886 if (SrcIsUndefined || IsPointerUndefined(MI->getRawDest())) {
1887 Builder.CreateAssumption(Builder.CreateIsNull(MI->getLength()));
1888 return eraseInstFromFunction(CI);
1889 }
1890
1891 // If we have a memmove and the source operation is a constant global,
1892 // then the source and dest pointers can't alias, so we can change this
1893 // into a call to memcpy.
1894 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1895 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1896 if (GVSrc->isConstant()) {
1897 Module *M = CI.getModule();
1898 Intrinsic::ID MemCpyID =
1899 MMI->isAtomic()
1900 ? Intrinsic::memcpy_element_unordered_atomic
1901 : Intrinsic::memcpy;
1902 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1903 CI.getArgOperand(1)->getType(),
1904 CI.getArgOperand(2)->getType() };
1906 Intrinsic::getOrInsertDeclaration(M, MemCpyID, Tys));
1907 return II;
1908 }
1909 }
1910 }
1911
1912 // For fixed width vector result intrinsics, use the generic demanded vector
1913 // support.
1914 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1915 auto VWidth = IIFVTy->getNumElements();
1916 APInt PoisonElts(VWidth, 0);
1917 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1918 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) {
1919 if (V != II)
1920 return replaceInstUsesWith(*II, V);
1921 return II;
1922 }
1923 }
1924
1925 if (II->isCommutative()) {
1926 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1927 replaceOperand(*II, 0, Pair->first);
1928 replaceOperand(*II, 1, Pair->second);
1929 return II;
1930 }
1931
1932 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1933 return NewCall;
1934 }
1935
1936 // Unused constrained FP intrinsic calls may have declared side effect, which
1937 // prevents it from being removed. In some cases however the side effect is
1938 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1939 // returns a replacement, the call may be removed.
1940 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1941 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1942 return eraseInstFromFunction(CI);
1943 }
1944
1945 Intrinsic::ID IID = II->getIntrinsicID();
1946 switch (IID) {
1947 case Intrinsic::objectsize: {
1948 SmallVector<Instruction *> InsertedInstructions;
1949 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
1950 &InsertedInstructions)) {
1951 for (Instruction *Inserted : InsertedInstructions)
1952 Worklist.add(Inserted);
1953 return replaceInstUsesWith(CI, V);
1954 }
1955 return nullptr;
1956 }
1957 case Intrinsic::abs: {
1958 Value *IIOperand = II->getArgOperand(0);
1959 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1960
1961 // abs(-x) -> abs(x)
1962 Value *X;
1963 if (match(IIOperand, m_Neg(m_Value(X)))) {
1964 if (cast<Instruction>(IIOperand)->hasNoSignedWrap() || IntMinIsPoison)
1965 replaceOperand(*II, 1, Builder.getTrue());
1966 return replaceOperand(*II, 0, X);
1967 }
1968 if (match(IIOperand, m_c_Select(m_Neg(m_Value(X)), m_Deferred(X))))
1969 return replaceOperand(*II, 0, X);
1970
1971 Value *Y;
1972 // abs(a * abs(b)) -> abs(a * b)
1973 if (match(IIOperand,
1976 bool NSW =
1977 cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
1978 auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y);
1979 return replaceOperand(*II, 0, XY);
1980 }
1981
1982 if (std::optional<bool> Known =
1983 getKnownSignOrZero(IIOperand, SQ.getWithInstruction(II))) {
1984 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
1985 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
1986 if (!*Known)
1987 return replaceInstUsesWith(*II, IIOperand);
1988
1989 // abs(x) -> -x if x < 0
1990 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
1991 if (IntMinIsPoison)
1992 return BinaryOperator::CreateNSWNeg(IIOperand);
1993 return BinaryOperator::CreateNeg(IIOperand);
1994 }
1995
1996 // abs (sext X) --> zext (abs X*)
1997 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1998 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1999 Value *NarrowAbs =
2000 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
2001 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
2002 }
2003
2004 // Match a complicated way to check if a number is odd/even:
2005 // abs (srem X, 2) --> and X, 1
2006 const APInt *C;
2007 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
2008 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
2009
2010 break;
2011 }
2012 case Intrinsic::umin: {
2013 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2014 // umin(x, 1) == zext(x != 0)
2015 if (match(I1, m_One())) {
2016 assert(II->getType()->getScalarSizeInBits() != 1 &&
2017 "Expected simplify of umin with max constant");
2018 Value *Zero = Constant::getNullValue(I0->getType());
2019 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
2020 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
2021 }
2022 // umin(cttz(x), const) --> cttz(x | (1 << const))
2023 if (Value *FoldedCttz =
2025 I0, I1, DL, Builder))
2026 return replaceInstUsesWith(*II, FoldedCttz);
2027 // umin(ctlz(x), const) --> ctlz(x | (SignedMin >> const))
2028 if (Value *FoldedCtlz =
2030 I0, I1, DL, Builder))
2031 return replaceInstUsesWith(*II, FoldedCtlz);
2032 [[fallthrough]];
2033 }
2034 case Intrinsic::umax: {
2035 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2036 Value *X, *Y;
2037 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
2038 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
2039 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
2040 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
2041 }
2042 Constant *C;
2043 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
2044 I0->hasOneUse()) {
2045 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType(), DL)) {
2046 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
2047 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
2048 }
2049 }
2050 // If C is not 0:
2051 // umax(nuw_shl(x, C), x + 1) -> x == 0 ? 1 : nuw_shl(x, C)
2052 // If C is not 0 or 1:
2053 // umax(nuw_mul(x, C), x + 1) -> x == 0 ? 1 : nuw_mul(x, C)
2054 auto foldMaxMulShift = [&](Value *A, Value *B) -> Instruction * {
2055 const APInt *C;
2056 Value *X;
2057 if (!match(A, m_NUWShl(m_Value(X), m_APInt(C))) &&
2058 !(match(A, m_NUWMul(m_Value(X), m_APInt(C))) && !C->isOne()))
2059 return nullptr;
2060 if (C->isZero())
2061 return nullptr;
2062 if (!match(B, m_OneUse(m_Add(m_Specific(X), m_One()))))
2063 return nullptr;
2064
2065 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(X->getType(), 0));
2066 Value *NewSelect =
2067 Builder.CreateSelect(Cmp, ConstantInt::get(X->getType(), 1), A);
2068 return replaceInstUsesWith(*II, NewSelect);
2069 };
2070
2071 if (IID == Intrinsic::umax) {
2072 if (Instruction *I = foldMaxMulShift(I0, I1))
2073 return I;
2074 if (Instruction *I = foldMaxMulShift(I1, I0))
2075 return I;
2076 }
2077
2078 // If both operands of unsigned min/max are sign-extended, it is still ok
2079 // to narrow the operation.
2080 [[fallthrough]];
2081 }
2082 case Intrinsic::smax:
2083 case Intrinsic::smin: {
2084 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2085 Value *X, *Y;
2086 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
2087 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
2088 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
2089 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2090 }
2091
2092 Constant *C;
2093 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
2094 I0->hasOneUse()) {
2095 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType(), DL)) {
2096 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
2097 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2098 }
2099 }
2100
2101 // smax(smin(X, MinC), MaxC) -> smin(smax(X, MaxC), MinC) if MinC s>= MaxC
2102 // umax(umin(X, MinC), MaxC) -> umin(umax(X, MaxC), MinC) if MinC u>= MaxC
2103 const APInt *MinC, *MaxC;
2104 auto CreateCanonicalClampForm = [&](bool IsSigned) {
2105 auto MaxIID = IsSigned ? Intrinsic::smax : Intrinsic::umax;
2106 auto MinIID = IsSigned ? Intrinsic::smin : Intrinsic::umin;
2107 Value *NewMax = Builder.CreateBinaryIntrinsic(
2108 MaxIID, X, ConstantInt::get(X->getType(), *MaxC));
2109 return replaceInstUsesWith(
2110 *II, Builder.CreateBinaryIntrinsic(
2111 MinIID, NewMax, ConstantInt::get(X->getType(), *MinC)));
2112 };
2113 if (IID == Intrinsic::smax &&
2115 m_APInt(MinC)))) &&
2116 match(I1, m_APInt(MaxC)) && MinC->sgt(*MaxC))
2117 return CreateCanonicalClampForm(true);
2118 if (IID == Intrinsic::umax &&
2120 m_APInt(MinC)))) &&
2121 match(I1, m_APInt(MaxC)) && MinC->ugt(*MaxC))
2122 return CreateCanonicalClampForm(false);
2123
2124 // umin(i1 X, i1 Y) -> and i1 X, Y
2125 // smax(i1 X, i1 Y) -> and i1 X, Y
2126 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
2127 II->getType()->isIntOrIntVectorTy(1)) {
2128 return BinaryOperator::CreateAnd(I0, I1);
2129 }
2130
2131 // umax(i1 X, i1 Y) -> or i1 X, Y
2132 // smin(i1 X, i1 Y) -> or i1 X, Y
2133 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
2134 II->getType()->isIntOrIntVectorTy(1)) {
2135 return BinaryOperator::CreateOr(I0, I1);
2136 }
2137
2138 // smin(smax(X, -1), 1) -> scmp(X, 0)
2139 // smax(smin(X, 1), -1) -> scmp(X, 0)
2140 // At this point, smax(smin(X, 1), -1) is changed to smin(smax(X, -1)
2141 // And i1's have been changed to and/ors
2142 // So we only need to check for smin
2143 if (IID == Intrinsic::smin) {
2144 if (match(I0, m_OneUse(m_SMax(m_Value(X), m_AllOnes()))) &&
2145 match(I1, m_One())) {
2146 Value *Zero = ConstantInt::get(X->getType(), 0);
2147 return replaceInstUsesWith(
2148 CI,
2149 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {X, Zero}));
2150 }
2151 }
2152
2153 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2154 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
2155 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
2156 // TODO: Canonicalize neg after min/max if I1 is constant.
2157 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
2158 (I0->hasOneUse() || I1->hasOneUse())) {
2160 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
2161 return BinaryOperator::CreateNSWNeg(InvMaxMin);
2162 }
2163 }
2164
2165 // (umax X, (xor X, Pow2))
2166 // -> (or X, Pow2)
2167 // (umin X, (xor X, Pow2))
2168 // -> (and X, ~Pow2)
2169 // (smax X, (xor X, Pos_Pow2))
2170 // -> (or X, Pos_Pow2)
2171 // (smin X, (xor X, Pos_Pow2))
2172 // -> (and X, ~Pos_Pow2)
2173 // (smax X, (xor X, Neg_Pow2))
2174 // -> (and X, ~Neg_Pow2)
2175 // (smin X, (xor X, Neg_Pow2))
2176 // -> (or X, Neg_Pow2)
2177 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
2178 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
2179 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
2180 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
2181 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
2182
2183 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2184 auto KnownSign = getKnownSign(X, SQ.getWithInstruction(II));
2185 if (KnownSign == std::nullopt) {
2186 UseOr = false;
2187 UseAndN = false;
2188 } else if (*KnownSign /* true is Signed. */) {
2189 UseOr ^= true;
2190 UseAndN ^= true;
2191 Type *Ty = I0->getType();
2192 // Negative power of 2 must be IntMin. It's possible to be able to
2193 // prove negative / power of 2 without actually having known bits, so
2194 // just get the value by hand.
2196 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
2197 }
2198 }
2199 if (UseOr)
2200 return BinaryOperator::CreateOr(I0, X);
2201 else if (UseAndN)
2202 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
2203 }
2204
2205 // If we can eliminate ~A and Y is free to invert:
2206 // max ~A, Y --> ~(min A, ~Y)
2207 //
2208 // Examples:
2209 // max ~A, ~Y --> ~(min A, Y)
2210 // max ~A, C --> ~(min A, ~C)
2211 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
2212 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2213 Value *A;
2214 if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
2215 !isFreeToInvert(A, A->hasOneUse())) {
2216 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) {
2218 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
2219 return BinaryOperator::CreateNot(InvMaxMin);
2220 }
2221 }
2222 return nullptr;
2223 };
2224
2225 if (Instruction *I = moveNotAfterMinMax(I0, I1))
2226 return I;
2227 if (Instruction *I = moveNotAfterMinMax(I1, I0))
2228 return I;
2229
2231 return I;
2232
2233 // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C
2234 const APInt *RHSC;
2235 if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) &&
2236 match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC)))))
2237 return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y),
2238 ConstantInt::get(II->getType(), *RHSC));
2239
2240 // smax(X, -X) --> abs(X)
2241 // smin(X, -X) --> -abs(X)
2242 // umax(X, -X) --> -abs(X)
2243 // umin(X, -X) --> abs(X)
2244 if (isKnownNegation(I0, I1)) {
2245 // We can choose either operand as the input to abs(), but if we can
2246 // eliminate the only use of a value, that's better for subsequent
2247 // transforms/analysis.
2248 if (I0->hasOneUse() && !I1->hasOneUse())
2249 std::swap(I0, I1);
2250
2251 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
2252 // operation and potentially its negation.
2253 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
2254 Value *Abs = Builder.CreateBinaryIntrinsic(
2255 Intrinsic::abs, I0,
2256 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
2257
2258 // We don't have a "nabs" intrinsic, so negate if needed based on the
2259 // max/min operation.
2260 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
2261 Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison);
2262 return replaceInstUsesWith(CI, Abs);
2263 }
2264
2266 return Sel;
2267
2268 if (Instruction *SAdd = matchSAddSubSat(*II))
2269 return SAdd;
2270
2271 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ))
2272 return replaceInstUsesWith(*II, NewMinMax);
2273
2275 return R;
2276
2277 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
2278 return NewMinMax;
2279
2280 // Try to fold minmax with constant RHS based on range information
2281 if (match(I1, m_APIntAllowPoison(RHSC))) {
2282 ICmpInst::Predicate Pred =
2284 bool IsSigned = MinMaxIntrinsic::isSigned(IID);
2286 I0, IsSigned, SQ.getWithInstruction(II));
2287 if (!LHS_CR.isFullSet()) {
2288 if (LHS_CR.icmp(Pred, *RHSC))
2289 return replaceInstUsesWith(*II, I0);
2290 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC))
2291 return replaceInstUsesWith(*II,
2292 ConstantInt::get(II->getType(), *RHSC));
2293 }
2294 }
2295
2297 return replaceInstUsesWith(*II, V);
2298
2299 break;
2300 }
2301 case Intrinsic::scmp: {
2302 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2303 Value *LHS, *RHS;
2304 if (match(I0, m_NSWSub(m_Value(LHS), m_Value(RHS))) && match(I1, m_Zero()))
2305 return replaceInstUsesWith(
2306 CI,
2307 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {LHS, RHS}));
2308 break;
2309 }
2310 case Intrinsic::bitreverse: {
2311 Value *IIOperand = II->getArgOperand(0);
2312 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
2313 Value *X;
2314 if (match(IIOperand, m_ZExt(m_Value(X))) &&
2315 X->getType()->isIntOrIntVectorTy(1)) {
2316 Type *Ty = II->getType();
2317 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
2318 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
2320 }
2321
2322 if (Instruction *crossLogicOpFold =
2324 return crossLogicOpFold;
2325
2326 break;
2327 }
2328 case Intrinsic::bswap: {
2329 Value *IIOperand = II->getArgOperand(0);
2330
2331 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
2332 // inverse-shift-of-bswap:
2333 // bswap (shl X, Y) --> lshr (bswap X), Y
2334 // bswap (lshr X, Y) --> shl (bswap X), Y
2335 Value *X, *Y;
2336 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
2337 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
2339 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
2340 BinaryOperator::BinaryOps InverseShift =
2341 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
2342 ? Instruction::LShr
2343 : Instruction::Shl;
2344 return BinaryOperator::Create(InverseShift, NewSwap, Y);
2345 }
2346 }
2347
2348 KnownBits Known = computeKnownBits(IIOperand, II);
2349 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
2350 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
2351 unsigned BW = Known.getBitWidth();
2352
2353 // bswap(x) -> shift(x) if x has exactly one "active byte"
2354 if (BW - LZ - TZ == 8) {
2355 assert(LZ != TZ && "active byte cannot be in the middle");
2356 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
2357 return BinaryOperator::CreateNUWShl(
2358 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
2359 // -> lshr(x) if the "active byte" is in the high part of x
2360 return BinaryOperator::CreateExactLShr(
2361 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
2362 }
2363
2364 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
2365 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
2366 unsigned C = X->getType()->getScalarSizeInBits() - BW;
2367 Value *CV = ConstantInt::get(X->getType(), C);
2368 Value *V = Builder.CreateLShr(X, CV);
2369 return new TruncInst(V, IIOperand->getType());
2370 }
2371
2372 if (Instruction *crossLogicOpFold =
2374 return crossLogicOpFold;
2375 }
2376
2377 // Try to fold into bitreverse if bswap is the root of the expression tree.
2378 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false,
2379 /*MatchBitReversals*/ true))
2380 return BitOp;
2381 break;
2382 }
2383 case Intrinsic::masked_load:
2384 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
2385 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
2386 break;
2387 case Intrinsic::masked_store:
2388 return simplifyMaskedStore(*II);
2389 case Intrinsic::masked_gather:
2390 return simplifyMaskedGather(*II);
2391 case Intrinsic::masked_scatter:
2392 return simplifyMaskedScatter(*II);
2393 case Intrinsic::launder_invariant_group:
2394 case Intrinsic::strip_invariant_group:
2395 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
2396 return replaceInstUsesWith(*II, SkippedBarrier);
2397 break;
2398 case Intrinsic::powi:
2399 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2400 // 0 and 1 are handled in instsimplify
2401 // powi(x, -1) -> 1/x
2402 if (Power->isMinusOne())
2403 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
2404 II->getArgOperand(0), II);
2405 // powi(x, 2) -> x*x
2406 if (Power->equalsInt(2))
2407 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
2408 II->getArgOperand(0), II);
2409
2410 if (!Power->getValue()[0]) {
2411 Value *X;
2412 // If power is even:
2413 // powi(-x, p) -> powi(x, p)
2414 // powi(fabs(x), p) -> powi(x, p)
2415 // powi(copysign(x, y), p) -> powi(x, p)
2416 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
2417 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
2418 match(II->getArgOperand(0),
2420 return replaceOperand(*II, 0, X);
2421 }
2422 }
2423 break;
2424
2425 case Intrinsic::cttz:
2426 case Intrinsic::ctlz:
2427 if (auto *I = foldCttzCtlz(*II, *this))
2428 return I;
2429 break;
2430
2431 case Intrinsic::ctpop:
2432 if (auto *I = foldCtpop(*II, *this))
2433 return I;
2434 break;
2435
2436 case Intrinsic::fshl:
2437 case Intrinsic::fshr: {
2438 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
2439 Type *Ty = II->getType();
2440 unsigned BitWidth = Ty->getScalarSizeInBits();
2441 Constant *ShAmtC;
2442 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
2443 // Canonicalize a shift amount constant operand to modulo the bit-width.
2444 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
2445 Constant *ModuloC =
2446 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
2447 if (!ModuloC)
2448 return nullptr;
2449 if (ModuloC != ShAmtC)
2450 return replaceOperand(*II, 2, ModuloC);
2451
2453 ShAmtC, DL),
2454 m_One()) &&
2455 "Shift amount expected to be modulo bitwidth");
2456
2457 // Canonicalize funnel shift right by constant to funnel shift left. This
2458 // is not entirely arbitrary. For historical reasons, the backend may
2459 // recognize rotate left patterns but miss rotate right patterns.
2460 if (IID == Intrinsic::fshr) {
2461 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero.
2462 if (!isKnownNonZero(ShAmtC, SQ.getWithInstruction(II)))
2463 return nullptr;
2464
2465 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
2466 Module *Mod = II->getModule();
2467 Function *Fshl =
2468 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::fshl, Ty);
2469 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
2470 }
2471 assert(IID == Intrinsic::fshl &&
2472 "All funnel shifts by simple constants should go left");
2473
2474 // fshl(X, 0, C) --> shl X, C
2475 // fshl(X, undef, C) --> shl X, C
2476 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
2477 return BinaryOperator::CreateShl(Op0, ShAmtC);
2478
2479 // fshl(0, X, C) --> lshr X, (BW-C)
2480 // fshl(undef, X, C) --> lshr X, (BW-C)
2481 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
2482 return BinaryOperator::CreateLShr(Op1,
2483 ConstantExpr::getSub(WidthC, ShAmtC));
2484
2485 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2486 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
2487 Module *Mod = II->getModule();
2488 Function *Bswap =
2489 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::bswap, Ty);
2490 return CallInst::Create(Bswap, { Op0 });
2491 }
2492 if (Instruction *BitOp =
2493 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
2494 /*MatchBitReversals*/ true))
2495 return BitOp;
2496
2497 // R = fshl(X, X, C2)
2498 // fshl(R, R, C1) --> fshl(X, X, (C1 + C2) % bitsize)
2499 Value *InnerOp;
2500 const APInt *ShAmtInnerC, *ShAmtOuterC;
2501 if (match(Op0, m_FShl(m_Value(InnerOp), m_Deferred(InnerOp),
2502 m_APInt(ShAmtInnerC))) &&
2503 match(ShAmtC, m_APInt(ShAmtOuterC)) && Op0 == Op1) {
2504 APInt Sum = *ShAmtOuterC + *ShAmtInnerC;
2505 APInt Modulo = Sum.urem(APInt(Sum.getBitWidth(), BitWidth));
2506 if (Modulo.isZero())
2507 return replaceInstUsesWith(*II, InnerOp);
2508 Constant *ModuloC = ConstantInt::get(Ty, Modulo);
2510 {InnerOp, InnerOp, ModuloC});
2511 }
2512 }
2513
2514 // fshl(X, X, Neg(Y)) --> fshr(X, X, Y)
2515 // fshr(X, X, Neg(Y)) --> fshl(X, X, Y)
2516 // if BitWidth is a power-of-2
2517 Value *Y;
2518 if (Op0 == Op1 && isPowerOf2_32(BitWidth) &&
2519 match(II->getArgOperand(2), m_Neg(m_Value(Y)))) {
2520 Module *Mod = II->getModule();
2522 Mod, IID == Intrinsic::fshl ? Intrinsic::fshr : Intrinsic::fshl, Ty);
2523 return CallInst::Create(OppositeShift, {Op0, Op1, Y});
2524 }
2525
2526 // fshl(X, 0, Y) --> shl(X, and(Y, BitWidth - 1)) if bitwidth is a
2527 // power-of-2
2528 if (IID == Intrinsic::fshl && isPowerOf2_32(BitWidth) &&
2529 match(Op1, m_ZeroInt())) {
2530 Value *Op2 = II->getArgOperand(2);
2531 Value *And = Builder.CreateAnd(Op2, ConstantInt::get(Ty, BitWidth - 1));
2532 return BinaryOperator::CreateShl(Op0, And);
2533 }
2534
2535 // Left or right might be masked.
2537 return &CI;
2538
2539 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2540 // so only the low bits of the shift amount are demanded if the bitwidth is
2541 // a power-of-2.
2542 if (!isPowerOf2_32(BitWidth))
2543 break;
2545 KnownBits Op2Known(BitWidth);
2546 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2547 return &CI;
2548 break;
2549 }
2550 case Intrinsic::ptrmask: {
2551 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2552 KnownBits Known(BitWidth);
2554 return II;
2555
2556 Value *InnerPtr, *InnerMask;
2557 bool Changed = false;
2558 // Combine:
2559 // (ptrmask (ptrmask p, A), B)
2560 // -> (ptrmask p, (and A, B))
2561 if (match(II->getArgOperand(0),
2563 m_Value(InnerMask))))) {
2564 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2565 "Mask types must match");
2566 // TODO: If InnerMask == Op1, we could copy attributes from inner
2567 // callsite -> outer callsite.
2568 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2569 replaceOperand(CI, 0, InnerPtr);
2570 replaceOperand(CI, 1, NewMask);
2571 Changed = true;
2572 }
2573
2574 // See if we can deduce non-null.
2575 if (!CI.hasRetAttr(Attribute::NonNull) &&
2576 (Known.isNonZero() ||
2577 isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) {
2578 CI.addRetAttr(Attribute::NonNull);
2579 Changed = true;
2580 }
2581
2582 unsigned NewAlignmentLog =
2584 std::min(BitWidth - 1, Known.countMinTrailingZeros()));
2585 // Known bits will capture if we had alignment information associated with
2586 // the pointer argument.
2587 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) {
2589 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog)));
2590 Changed = true;
2591 }
2592 if (Changed)
2593 return &CI;
2594 break;
2595 }
2596 case Intrinsic::uadd_with_overflow:
2597 case Intrinsic::sadd_with_overflow: {
2598 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2599 return I;
2600
2601 // Given 2 constant operands whose sum does not overflow:
2602 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2603 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2604 Value *X;
2605 const APInt *C0, *C1;
2606 Value *Arg0 = II->getArgOperand(0);
2607 Value *Arg1 = II->getArgOperand(1);
2608 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2609 bool HasNWAdd = IsSigned
2610 ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0)))
2611 : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0)));
2612 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2613 bool Overflow;
2614 APInt NewC =
2615 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2616 if (!Overflow)
2617 return replaceInstUsesWith(
2618 *II, Builder.CreateBinaryIntrinsic(
2619 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2620 }
2621 break;
2622 }
2623
2624 case Intrinsic::umul_with_overflow:
2625 case Intrinsic::smul_with_overflow:
2626 case Intrinsic::usub_with_overflow:
2627 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2628 return I;
2629 break;
2630
2631 case Intrinsic::ssub_with_overflow: {
2632 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2633 return I;
2634
2635 Constant *C;
2636 Value *Arg0 = II->getArgOperand(0);
2637 Value *Arg1 = II->getArgOperand(1);
2638 // Given a constant C that is not the minimum signed value
2639 // for an integer of a given bit width:
2640 //
2641 // ssubo X, C -> saddo X, -C
2642 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2643 Value *NegVal = ConstantExpr::getNeg(C);
2644 // Build a saddo call that is equivalent to the discovered
2645 // ssubo call.
2646 return replaceInstUsesWith(
2647 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2648 Arg0, NegVal));
2649 }
2650
2651 break;
2652 }
2653
2654 case Intrinsic::uadd_sat:
2655 case Intrinsic::sadd_sat:
2656 case Intrinsic::usub_sat:
2657 case Intrinsic::ssub_sat: {
2659 Type *Ty = SI->getType();
2660 Value *Arg0 = SI->getLHS();
2661 Value *Arg1 = SI->getRHS();
2662
2663 // Make use of known overflow information.
2664 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2665 Arg0, Arg1, SI);
2666 switch (OR) {
2668 break;
2670 if (SI->isSigned())
2671 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2672 else
2673 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2675 unsigned BitWidth = Ty->getScalarSizeInBits();
2676 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2677 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2678 }
2680 unsigned BitWidth = Ty->getScalarSizeInBits();
2681 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2682 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2683 }
2684 }
2685
2686 // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A)
2687 // which after that:
2688 // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C
2689 // usub_sat((sub nuw C, A), C1) -> 0 otherwise
2690 Constant *C, *C1;
2691 Value *A;
2692 if (IID == Intrinsic::usub_sat &&
2693 match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) &&
2694 match(Arg1, m_ImmConstant(C1))) {
2695 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2696 auto *NewSub =
2697 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2698 return replaceInstUsesWith(*SI, NewSub);
2699 }
2700
2701 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2702 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2703 C->isNotMinSignedValue()) {
2704 Value *NegVal = ConstantExpr::getNeg(C);
2705 return replaceInstUsesWith(
2706 *II, Builder.CreateBinaryIntrinsic(
2707 Intrinsic::sadd_sat, Arg0, NegVal));
2708 }
2709
2710 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2711 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2712 // if Val and Val2 have the same sign
2713 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2714 Value *X;
2715 const APInt *Val, *Val2;
2716 APInt NewVal;
2717 bool IsUnsigned =
2718 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2719 if (Other->getIntrinsicID() == IID &&
2720 match(Arg1, m_APInt(Val)) &&
2721 match(Other->getArgOperand(0), m_Value(X)) &&
2722 match(Other->getArgOperand(1), m_APInt(Val2))) {
2723 if (IsUnsigned)
2724 NewVal = Val->uadd_sat(*Val2);
2725 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2726 bool Overflow;
2727 NewVal = Val->sadd_ov(*Val2, Overflow);
2728 if (Overflow) {
2729 // Both adds together may add more than SignedMaxValue
2730 // without saturating the final result.
2731 break;
2732 }
2733 } else {
2734 // Cannot fold saturated addition with different signs.
2735 break;
2736 }
2737
2738 return replaceInstUsesWith(
2739 *II, Builder.CreateBinaryIntrinsic(
2740 IID, X, ConstantInt::get(II->getType(), NewVal)));
2741 }
2742 }
2743 break;
2744 }
2745
2746 case Intrinsic::minnum:
2747 case Intrinsic::maxnum:
2748 case Intrinsic::minimum:
2749 case Intrinsic::maximum: {
2750 Value *Arg0 = II->getArgOperand(0);
2751 Value *Arg1 = II->getArgOperand(1);
2752 Value *X, *Y;
2753 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2754 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2755 // If both operands are negated, invert the call and negate the result:
2756 // min(-X, -Y) --> -(max(X, Y))
2757 // max(-X, -Y) --> -(min(X, Y))
2758 Intrinsic::ID NewIID;
2759 switch (IID) {
2760 case Intrinsic::maxnum:
2761 NewIID = Intrinsic::minnum;
2762 break;
2763 case Intrinsic::minnum:
2764 NewIID = Intrinsic::maxnum;
2765 break;
2766 case Intrinsic::maximum:
2767 NewIID = Intrinsic::minimum;
2768 break;
2769 case Intrinsic::minimum:
2770 NewIID = Intrinsic::maximum;
2771 break;
2772 default:
2773 llvm_unreachable("unexpected intrinsic ID");
2774 }
2775 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2776 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2777 FNeg->copyIRFlags(II);
2778 return FNeg;
2779 }
2780
2781 // m(m(X, C2), C1) -> m(X, C)
2782 const APFloat *C1, *C2;
2783 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2784 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2785 ((match(M->getArgOperand(0), m_Value(X)) &&
2786 match(M->getArgOperand(1), m_APFloat(C2))) ||
2787 (match(M->getArgOperand(1), m_Value(X)) &&
2788 match(M->getArgOperand(0), m_APFloat(C2))))) {
2789 APFloat Res(0.0);
2790 switch (IID) {
2791 case Intrinsic::maxnum:
2792 Res = maxnum(*C1, *C2);
2793 break;
2794 case Intrinsic::minnum:
2795 Res = minnum(*C1, *C2);
2796 break;
2797 case Intrinsic::maximum:
2798 Res = maximum(*C1, *C2);
2799 break;
2800 case Intrinsic::minimum:
2801 Res = minimum(*C1, *C2);
2802 break;
2803 default:
2804 llvm_unreachable("unexpected intrinsic ID");
2805 }
2806 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2807 // was a simplification (so Arg0 and its original flags could
2808 // propagate?)
2809 Value *V = Builder.CreateBinaryIntrinsic(
2810 IID, X, ConstantFP::get(Arg0->getType(), Res),
2812 return replaceInstUsesWith(*II, V);
2813 }
2814 }
2815
2816 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2817 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2818 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2819 X->getType() == Y->getType()) {
2820 Value *NewCall =
2821 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2822 return new FPExtInst(NewCall, II->getType());
2823 }
2824
2825 // max X, -X --> fabs X
2826 // min X, -X --> -(fabs X)
2827 // TODO: Remove one-use limitation? That is obviously better for max,
2828 // hence why we don't check for one-use for that. However,
2829 // it would be an extra instruction for min (fnabs), but
2830 // that is still likely better for analysis and codegen.
2831 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2832 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X)))
2833 return Op0->hasOneUse() ||
2834 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2835 return false;
2836 };
2837
2838 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2839 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2840 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2841 R = Builder.CreateFNegFMF(R, II);
2842 return replaceInstUsesWith(*II, R);
2843 }
2844
2845 break;
2846 }
2847 case Intrinsic::matrix_multiply: {
2848 // Optimize negation in matrix multiplication.
2849
2850 // -A * -B -> A * B
2851 Value *A, *B;
2852 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2853 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2854 replaceOperand(*II, 0, A);
2855 replaceOperand(*II, 1, B);
2856 return II;
2857 }
2858
2859 Value *Op0 = II->getOperand(0);
2860 Value *Op1 = II->getOperand(1);
2861 Value *OpNotNeg, *NegatedOp;
2862 unsigned NegatedOpArg, OtherOpArg;
2863 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2864 NegatedOp = Op0;
2865 NegatedOpArg = 0;
2866 OtherOpArg = 1;
2867 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2868 NegatedOp = Op1;
2869 NegatedOpArg = 1;
2870 OtherOpArg = 0;
2871 } else
2872 // Multiplication doesn't have a negated operand.
2873 break;
2874
2875 // Only optimize if the negated operand has only one use.
2876 if (!NegatedOp->hasOneUse())
2877 break;
2878
2879 Value *OtherOp = II->getOperand(OtherOpArg);
2880 VectorType *RetTy = cast<VectorType>(II->getType());
2881 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2882 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2883 ElementCount NegatedCount = NegatedOpTy->getElementCount();
2884 ElementCount OtherCount = OtherOpTy->getElementCount();
2885 ElementCount RetCount = RetTy->getElementCount();
2886 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2887 if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2888 ElementCount::isKnownLT(OtherCount, RetCount)) {
2889 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2890 replaceOperand(*II, NegatedOpArg, OpNotNeg);
2891 replaceOperand(*II, OtherOpArg, InverseOtherOp);
2892 return II;
2893 }
2894 // (-A) * B -> -(A * B), if it is cheaper to negate the result
2895 if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2896 SmallVector<Value *, 5> NewArgs(II->args());
2897 NewArgs[NegatedOpArg] = OpNotNeg;
2898 Instruction *NewMul =
2899 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2900 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2901 }
2902 break;
2903 }
2904 case Intrinsic::fmuladd: {
2905 // Try to simplify the underlying FMul.
2906 if (Value *V =
2907 simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2908 II->getFastMathFlags(), SQ.getWithInstruction(II)))
2909 return BinaryOperator::CreateFAddFMF(V, II->getArgOperand(2),
2910 II->getFastMathFlags());
2911
2912 [[fallthrough]];
2913 }
2914 case Intrinsic::fma: {
2915 // fma fneg(x), fneg(y), z -> fma x, y, z
2916 Value *Src0 = II->getArgOperand(0);
2917 Value *Src1 = II->getArgOperand(1);
2918 Value *Src2 = II->getArgOperand(2);
2919 Value *X, *Y;
2920 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2921 replaceOperand(*II, 0, X);
2922 replaceOperand(*II, 1, Y);
2923 return II;
2924 }
2925
2926 // fma fabs(x), fabs(x), z -> fma x, x, z
2927 if (match(Src0, m_FAbs(m_Value(X))) &&
2928 match(Src1, m_FAbs(m_Specific(X)))) {
2929 replaceOperand(*II, 0, X);
2930 replaceOperand(*II, 1, X);
2931 return II;
2932 }
2933
2934 // Try to simplify the underlying FMul. We can only apply simplifications
2935 // that do not require rounding.
2936 if (Value *V = simplifyFMAFMul(Src0, Src1, II->getFastMathFlags(),
2937 SQ.getWithInstruction(II)))
2938 return BinaryOperator::CreateFAddFMF(V, Src2, II->getFastMathFlags());
2939
2940 // fma x, y, 0 -> fmul x, y
2941 // This is always valid for -0.0, but requires nsz for +0.0 as
2942 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2943 if (match(Src2, m_NegZeroFP()) ||
2944 (match(Src2, m_PosZeroFP()) && II->getFastMathFlags().noSignedZeros()))
2945 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2946
2947 // fma x, -1.0, y -> fsub y, x
2948 if (match(Src1, m_SpecificFP(-1.0)))
2949 return BinaryOperator::CreateFSubFMF(Src2, Src0, II);
2950
2951 break;
2952 }
2953 case Intrinsic::copysign: {
2954 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
2955 if (std::optional<bool> KnownSignBit = computeKnownFPSignBit(
2956 Sign, getSimplifyQuery().getWithInstruction(II))) {
2957 if (*KnownSignBit) {
2958 // If we know that the sign argument is negative, reduce to FNABS:
2959 // copysign Mag, -Sign --> fneg (fabs Mag)
2960 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2961 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
2962 }
2963
2964 // If we know that the sign argument is positive, reduce to FABS:
2965 // copysign Mag, +Sign --> fabs Mag
2966 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2967 return replaceInstUsesWith(*II, Fabs);
2968 }
2969
2970 // Propagate sign argument through nested calls:
2971 // copysign Mag, (copysign ?, X) --> copysign Mag, X
2972 Value *X;
2974 Value *CopySign =
2975 Builder.CreateCopySign(Mag, X, FMFSource::intersect(II, Sign));
2976 return replaceInstUsesWith(*II, CopySign);
2977 }
2978
2979 // Clear sign-bit of constant magnitude:
2980 // copysign -MagC, X --> copysign MagC, X
2981 // TODO: Support constant folding for fabs
2982 const APFloat *MagC;
2983 if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) {
2984 APFloat PosMagC = *MagC;
2985 PosMagC.clearSign();
2986 return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC));
2987 }
2988
2989 // Peek through changes of magnitude's sign-bit. This call rewrites those:
2990 // copysign (fabs X), Sign --> copysign X, Sign
2991 // copysign (fneg X), Sign --> copysign X, Sign
2992 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
2993 return replaceOperand(*II, 0, X);
2994
2995 break;
2996 }
2997 case Intrinsic::fabs: {
2998 Value *Cond, *TVal, *FVal;
2999 Value *Arg = II->getArgOperand(0);
3000 Value *X;
3001 // fabs (-X) --> fabs (X)
3002 if (match(Arg, m_FNeg(m_Value(X)))) {
3003 CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
3004 return replaceInstUsesWith(CI, Fabs);
3005 }
3006
3007 if (match(Arg, m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
3008 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
3009 if (Arg->hasOneUse() ? (isa<Constant>(TVal) || isa<Constant>(FVal))
3010 : (isa<Constant>(TVal) && isa<Constant>(FVal))) {
3011 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
3012 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
3013 SelectInst *SI = SelectInst::Create(Cond, AbsT, AbsF);
3014 FastMathFlags FMF1 = II->getFastMathFlags();
3015 FastMathFlags FMF2 = cast<SelectInst>(Arg)->getFastMathFlags();
3016 FMF2.setNoSignedZeros(false);
3017 SI->setFastMathFlags(FMF1 | FMF2);
3018 return SI;
3019 }
3020 // fabs (select Cond, -FVal, FVal) --> fabs FVal
3021 if (match(TVal, m_FNeg(m_Specific(FVal))))
3022 return replaceOperand(*II, 0, FVal);
3023 // fabs (select Cond, TVal, -TVal) --> fabs TVal
3024 if (match(FVal, m_FNeg(m_Specific(TVal))))
3025 return replaceOperand(*II, 0, TVal);
3026 }
3027
3028 Value *Magnitude, *Sign;
3029 if (match(II->getArgOperand(0),
3030 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
3031 // fabs (copysign x, y) -> (fabs x)
3032 CallInst *AbsSign =
3033 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude, II);
3034 return replaceInstUsesWith(*II, AbsSign);
3035 }
3036
3037 [[fallthrough]];
3038 }
3039 case Intrinsic::ceil:
3040 case Intrinsic::floor:
3041 case Intrinsic::round:
3042 case Intrinsic::roundeven:
3043 case Intrinsic::nearbyint:
3044 case Intrinsic::rint:
3045 case Intrinsic::trunc: {
3046 Value *ExtSrc;
3047 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
3048 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
3049 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
3050 return new FPExtInst(NarrowII, II->getType());
3051 }
3052 break;
3053 }
3054 case Intrinsic::cos:
3055 case Intrinsic::amdgcn_cos: {
3056 Value *X, *Sign;
3057 Value *Src = II->getArgOperand(0);
3058 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) ||
3059 match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) {
3060 // cos(-x) --> cos(x)
3061 // cos(fabs(x)) --> cos(x)
3062 // cos(copysign(x, y)) --> cos(x)
3063 return replaceOperand(*II, 0, X);
3064 }
3065 break;
3066 }
3067 case Intrinsic::sin:
3068 case Intrinsic::amdgcn_sin: {
3069 Value *X;
3070 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
3071 // sin(-x) --> -sin(x)
3072 Value *NewSin = Builder.CreateUnaryIntrinsic(IID, X, II);
3073 return UnaryOperator::CreateFNegFMF(NewSin, II);
3074 }
3075 break;
3076 }
3077 case Intrinsic::ldexp: {
3078 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
3079 //
3080 // The danger is if the first ldexp would overflow to infinity or underflow
3081 // to zero, but the combined exponent avoids it. We ignore this with
3082 // reassoc.
3083 //
3084 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
3085 // it would just double down on the overflow/underflow which would occur
3086 // anyway.
3087 //
3088 // TODO: Could do better if we had range tracking for the input value
3089 // exponent. Also could broaden sign check to cover == 0 case.
3090 Value *Src = II->getArgOperand(0);
3091 Value *Exp = II->getArgOperand(1);
3092
3093 uint64_t ConstExp;
3094 if (match(Exp, m_ConstantInt(ConstExp))) {
3095 // ldexp(x, K) -> fmul x, 2^K
3096 const fltSemantics &FPTy =
3097 Src->getType()->getScalarType()->getFltSemantics();
3098
3099 APFloat Scaled = scalbn(APFloat::getOne(FPTy), static_cast<int>(ConstExp),
3101 if (!Scaled.isZero() && !Scaled.isInfinity()) {
3102 // Skip overflow and underflow cases.
3103 Constant *FPConst = ConstantFP::get(Src->getType(), Scaled);
3104 return BinaryOperator::CreateFMulFMF(Src, FPConst, II);
3105 }
3106 }
3107
3108 Value *InnerSrc;
3109 Value *InnerExp;
3111 m_Value(InnerSrc), m_Value(InnerExp)))) &&
3112 Exp->getType() == InnerExp->getType()) {
3113 FastMathFlags FMF = II->getFastMathFlags();
3114 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
3115
3116 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
3117 signBitMustBeTheSame(Exp, InnerExp, SQ.getWithInstruction(II))) {
3118 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
3119 // width.
3120 Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
3121 II->setArgOperand(1, NewExp);
3122 II->setFastMathFlags(InnerFlags); // Or the inner flags.
3123 return replaceOperand(*II, 0, InnerSrc);
3124 }
3125 }
3126
3127 // ldexp(x, zext(i1 y)) -> fmul x, (select y, 2.0, 1.0)
3128 // ldexp(x, sext(i1 y)) -> fmul x, (select y, 0.5, 1.0)
3129 Value *ExtSrc;
3130 if (match(Exp, m_ZExt(m_Value(ExtSrc))) &&
3131 ExtSrc->getType()->getScalarSizeInBits() == 1) {
3132 Value *Select =
3133 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0),
3134 ConstantFP::get(II->getType(), 1.0));
3136 }
3137 if (match(Exp, m_SExt(m_Value(ExtSrc))) &&
3138 ExtSrc->getType()->getScalarSizeInBits() == 1) {
3139 Value *Select =
3140 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5),
3141 ConstantFP::get(II->getType(), 1.0));
3143 }
3144
3145 // ldexp(x, c ? exp : 0) -> c ? ldexp(x, exp) : x
3146 // ldexp(x, c ? 0 : exp) -> c ? x : ldexp(x, exp)
3147 ///
3148 // TODO: If we cared, should insert a canonicalize for x
3149 Value *SelectCond, *SelectLHS, *SelectRHS;
3150 if (match(II->getArgOperand(1),
3151 m_OneUse(m_Select(m_Value(SelectCond), m_Value(SelectLHS),
3152 m_Value(SelectRHS))))) {
3153 Value *NewLdexp = nullptr;
3154 Value *Select = nullptr;
3155 if (match(SelectRHS, m_ZeroInt())) {
3156 NewLdexp = Builder.CreateLdexp(Src, SelectLHS, II);
3157 Select = Builder.CreateSelect(SelectCond, NewLdexp, Src);
3158 } else if (match(SelectLHS, m_ZeroInt())) {
3159 NewLdexp = Builder.CreateLdexp(Src, SelectRHS, II);
3160 Select = Builder.CreateSelect(SelectCond, Src, NewLdexp);
3161 }
3162
3163 if (NewLdexp) {
3164 Select->takeName(II);
3165 return replaceInstUsesWith(*II, Select);
3166 }
3167 }
3168
3169 break;
3170 }
3171 case Intrinsic::ptrauth_auth:
3172 case Intrinsic::ptrauth_resign: {
3173 // We don't support this optimization on intrinsic calls with deactivation
3174 // symbols, which are represented using operand bundles.
3175 if (II->hasOperandBundles())
3176 break;
3177
3178 // (sign|resign) + (auth|resign) can be folded by omitting the middle
3179 // sign+auth component if the key and discriminator match.
3180 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
3181 Value *Ptr = II->getArgOperand(0);
3182 Value *Key = II->getArgOperand(1);
3183 Value *Disc = II->getArgOperand(2);
3184
3185 // AuthKey will be the key we need to end up authenticating against in
3186 // whatever we replace this sequence with.
3187 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
3188 if (const auto *CI = dyn_cast<CallBase>(Ptr)) {
3189 // We don't support this optimization on intrinsic calls with deactivation
3190 // symbols, which are represented using operand bundles.
3191 if (CI->hasOperandBundles())
3192 break;
3193
3194 BasePtr = CI->getArgOperand(0);
3195 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
3196 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
3197 break;
3198 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
3199 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
3200 break;
3201 AuthKey = CI->getArgOperand(1);
3202 AuthDisc = CI->getArgOperand(2);
3203 } else
3204 break;
3205 } else if (const auto *PtrToInt = dyn_cast<PtrToIntOperator>(Ptr)) {
3206 // ptrauth constants are equivalent to a call to @llvm.ptrauth.sign for
3207 // our purposes, so check for that too.
3208 const auto *CPA = dyn_cast<ConstantPtrAuth>(PtrToInt->getOperand(0));
3209 if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL))
3210 break;
3211
3212 // resign(ptrauth(p,ks,ds),ks,ds,kr,dr) -> ptrauth(p,kr,dr)
3213 if (NeedSign && isa<ConstantInt>(II->getArgOperand(4))) {
3214 auto *SignKey = cast<ConstantInt>(II->getArgOperand(3));
3215 auto *SignDisc = cast<ConstantInt>(II->getArgOperand(4));
3216 auto *Null = ConstantPointerNull::get(Builder.getPtrTy());
3217 auto *NewCPA = ConstantPtrAuth::get(CPA->getPointer(), SignKey,
3218 SignDisc, /*AddrDisc=*/Null,
3219 /*DeactivationSymbol=*/Null);
3221 *II, ConstantExpr::getPointerCast(NewCPA, II->getType()));
3222 return eraseInstFromFunction(*II);
3223 }
3224
3225 // auth(ptrauth(p,k,d),k,d) -> p
3226 BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType());
3227 } else
3228 break;
3229
3230 unsigned NewIntrin;
3231 if (AuthKey && NeedSign) {
3232 // resign(0,1) + resign(1,2) = resign(0, 2)
3233 NewIntrin = Intrinsic::ptrauth_resign;
3234 } else if (AuthKey) {
3235 // resign(0,1) + auth(1) = auth(0)
3236 NewIntrin = Intrinsic::ptrauth_auth;
3237 } else if (NeedSign) {
3238 // sign(0) + resign(0, 1) = sign(1)
3239 NewIntrin = Intrinsic::ptrauth_sign;
3240 } else {
3241 // sign(0) + auth(0) = nop
3242 replaceInstUsesWith(*II, BasePtr);
3243 return eraseInstFromFunction(*II);
3244 }
3245
3246 SmallVector<Value *, 4> CallArgs;
3247 CallArgs.push_back(BasePtr);
3248 if (AuthKey) {
3249 CallArgs.push_back(AuthKey);
3250 CallArgs.push_back(AuthDisc);
3251 }
3252
3253 if (NeedSign) {
3254 CallArgs.push_back(II->getArgOperand(3));
3255 CallArgs.push_back(II->getArgOperand(4));
3256 }
3257
3258 Function *NewFn =
3259 Intrinsic::getOrInsertDeclaration(II->getModule(), NewIntrin);
3260 return CallInst::Create(NewFn, CallArgs);
3261 }
3262 case Intrinsic::arm_neon_vtbl1:
3263 case Intrinsic::arm_neon_vtbl2:
3264 case Intrinsic::arm_neon_vtbl3:
3265 case Intrinsic::arm_neon_vtbl4:
3266 case Intrinsic::aarch64_neon_tbl1:
3267 case Intrinsic::aarch64_neon_tbl2:
3268 case Intrinsic::aarch64_neon_tbl3:
3269 case Intrinsic::aarch64_neon_tbl4:
3270 return simplifyNeonTbl(*II, *this, /*IsExtension=*/false);
3271 case Intrinsic::arm_neon_vtbx1:
3272 case Intrinsic::arm_neon_vtbx2:
3273 case Intrinsic::arm_neon_vtbx3:
3274 case Intrinsic::arm_neon_vtbx4:
3275 case Intrinsic::aarch64_neon_tbx1:
3276 case Intrinsic::aarch64_neon_tbx2:
3277 case Intrinsic::aarch64_neon_tbx3:
3278 case Intrinsic::aarch64_neon_tbx4:
3279 return simplifyNeonTbl(*II, *this, /*IsExtension=*/true);
3280
3281 case Intrinsic::arm_neon_vmulls:
3282 case Intrinsic::arm_neon_vmullu:
3283 case Intrinsic::aarch64_neon_smull:
3284 case Intrinsic::aarch64_neon_umull: {
3285 Value *Arg0 = II->getArgOperand(0);
3286 Value *Arg1 = II->getArgOperand(1);
3287
3288 // Handle mul by zero first:
3290 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3291 }
3292
3293 // Check for constant LHS & RHS - in this case we just simplify.
3294 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3295 IID == Intrinsic::aarch64_neon_umull);
3296 VectorType *NewVT = cast<VectorType>(II->getType());
3297 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3298 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3299 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
3300 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
3301 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
3302 }
3303
3304 // Couldn't simplify - canonicalize constant to the RHS.
3305 std::swap(Arg0, Arg1);
3306 }
3307
3308 // Handle mul by one:
3309 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3310 if (ConstantInt *Splat =
3311 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3312 if (Splat->isOne())
3313 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3314 /*isSigned=*/!Zext);
3315
3316 break;
3317 }
3318 case Intrinsic::arm_neon_aesd:
3319 case Intrinsic::arm_neon_aese:
3320 case Intrinsic::aarch64_crypto_aesd:
3321 case Intrinsic::aarch64_crypto_aese:
3322 case Intrinsic::aarch64_sve_aesd:
3323 case Intrinsic::aarch64_sve_aese: {
3324 Value *DataArg = II->getArgOperand(0);
3325 Value *KeyArg = II->getArgOperand(1);
3326
3327 // Accept zero on either operand.
3328 if (!match(KeyArg, m_ZeroInt()))
3329 std::swap(KeyArg, DataArg);
3330
3331 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3332 Value *Data, *Key;
3333 if (match(KeyArg, m_ZeroInt()) &&
3334 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3335 replaceOperand(*II, 0, Data);
3336 replaceOperand(*II, 1, Key);
3337 return II;
3338 }
3339 break;
3340 }
3341 case Intrinsic::hexagon_V6_vandvrt:
3342 case Intrinsic::hexagon_V6_vandvrt_128B: {
3343 // Simplify Q -> V -> Q conversion.
3344 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3345 Intrinsic::ID ID0 = Op0->getIntrinsicID();
3346 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
3347 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
3348 break;
3349 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
3350 uint64_t Bytes1 = computeKnownBits(Bytes, Op0).One.getZExtValue();
3351 uint64_t Mask1 = computeKnownBits(Mask, II).One.getZExtValue();
3352 // Check if every byte has common bits in Bytes and Mask.
3353 uint64_t C = Bytes1 & Mask1;
3354 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
3355 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
3356 }
3357 break;
3358 }
3359 case Intrinsic::stackrestore: {
3360 enum class ClassifyResult {
3361 None,
3362 Alloca,
3363 StackRestore,
3364 CallWithSideEffects,
3365 };
3366 auto Classify = [](const Instruction *I) {
3367 if (isa<AllocaInst>(I))
3368 return ClassifyResult::Alloca;
3369
3370 if (auto *CI = dyn_cast<CallInst>(I)) {
3371 if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
3372 if (II->getIntrinsicID() == Intrinsic::stackrestore)
3373 return ClassifyResult::StackRestore;
3374
3375 if (II->mayHaveSideEffects())
3376 return ClassifyResult::CallWithSideEffects;
3377 } else {
3378 // Consider all non-intrinsic calls to be side effects
3379 return ClassifyResult::CallWithSideEffects;
3380 }
3381 }
3382
3383 return ClassifyResult::None;
3384 };
3385
3386 // If the stacksave and the stackrestore are in the same BB, and there is
3387 // no intervening call, alloca, or stackrestore of a different stacksave,
3388 // remove the restore. This can happen when variable allocas are DCE'd.
3389 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3390 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
3391 SS->getParent() == II->getParent()) {
3392 BasicBlock::iterator BI(SS);
3393 bool CannotRemove = false;
3394 for (++BI; &*BI != II; ++BI) {
3395 switch (Classify(&*BI)) {
3396 case ClassifyResult::None:
3397 // So far so good, look at next instructions.
3398 break;
3399
3400 case ClassifyResult::StackRestore:
3401 // If we found an intervening stackrestore for a different
3402 // stacksave, we can't remove the stackrestore. Otherwise, continue.
3403 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
3404 CannotRemove = true;
3405 break;
3406
3407 case ClassifyResult::Alloca:
3408 case ClassifyResult::CallWithSideEffects:
3409 // If we found an alloca, a non-intrinsic call, or an intrinsic
3410 // call with side effects, we can't remove the stackrestore.
3411 CannotRemove = true;
3412 break;
3413 }
3414 if (CannotRemove)
3415 break;
3416 }
3417
3418 if (!CannotRemove)
3419 return eraseInstFromFunction(CI);
3420 }
3421 }
3422
3423 // Scan down this block to see if there is another stack restore in the
3424 // same block without an intervening call/alloca.
3426 Instruction *TI = II->getParent()->getTerminator();
3427 bool CannotRemove = false;
3428 for (++BI; &*BI != TI; ++BI) {
3429 switch (Classify(&*BI)) {
3430 case ClassifyResult::None:
3431 // So far so good, look at next instructions.
3432 break;
3433
3434 case ClassifyResult::StackRestore:
3435 // If there is a stackrestore below this one, remove this one.
3436 return eraseInstFromFunction(CI);
3437
3438 case ClassifyResult::Alloca:
3439 case ClassifyResult::CallWithSideEffects:
3440 // If we found an alloca, a non-intrinsic call, or an intrinsic call
3441 // with side effects (such as llvm.stacksave and llvm.read_register),
3442 // we can't remove the stack restore.
3443 CannotRemove = true;
3444 break;
3445 }
3446 if (CannotRemove)
3447 break;
3448 }
3449
3450 // If the stack restore is in a return, resume, or unwind block and if there
3451 // are no allocas or calls between the restore and the return, nuke the
3452 // restore.
3453 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3454 return eraseInstFromFunction(CI);
3455 break;
3456 }
3457 case Intrinsic::lifetime_end:
3458 // Asan needs to poison memory to detect invalid access which is possible
3459 // even for empty lifetime range.
3460 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3461 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3462 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3463 break;
3464
3465 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
3466 return I.getIntrinsicID() == Intrinsic::lifetime_start;
3467 }))
3468 return nullptr;
3469 break;
3470 case Intrinsic::assume: {
3471 Value *IIOperand = II->getArgOperand(0);
3473 II->getOperandBundlesAsDefs(OpBundles);
3474
3475 /// This will remove the boolean Condition from the assume given as
3476 /// argument and remove the assume if it becomes useless.
3477 /// always returns nullptr for use as a return values.
3478 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
3479 assert(isa<AssumeInst>(Assume));
3481 return eraseInstFromFunction(CI);
3482 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
3483 return nullptr;
3484 };
3485 // Remove an assume if it is followed by an identical assume.
3486 // TODO: Do we need this? Unless there are conflicting assumptions, the
3487 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3488 Instruction *Next = II->getNextNode();
3490 return RemoveConditionFromAssume(Next);
3491
3492 // Canonicalize assume(a && b) -> assume(a); assume(b);
3493 // Note: New assumption intrinsics created here are registered by
3494 // the InstCombineIRInserter object.
3495 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3496 Value *AssumeIntrinsic = II->getCalledOperand();
3497 Value *A, *B;
3498 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3499 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
3500 II->getName());
3501 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3502 return eraseInstFromFunction(*II);
3503 }
3504 // assume(!(a || b)) -> assume(!a); assume(!b);
3505 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
3506 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3507 Builder.CreateNot(A), OpBundles, II->getName());
3508 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3509 Builder.CreateNot(B), II->getName());
3510 return eraseInstFromFunction(*II);
3511 }
3512
3513 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3514 // (if assume is valid at the load)
3515 Instruction *LHS;
3517 m_Zero())) &&
3518 LHS->getOpcode() == Instruction::Load &&
3519 LHS->getType()->isPointerTy() &&
3520 isValidAssumeForContext(II, LHS, &DT)) {
3521 MDNode *MD = MDNode::get(II->getContext(), {});
3522 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3523 LHS->setMetadata(LLVMContext::MD_noundef, MD);
3524 return RemoveConditionFromAssume(II);
3525
3526 // TODO: apply nonnull return attributes to calls and invokes
3527 // TODO: apply range metadata for range check patterns?
3528 }
3529
3530 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3531 OperandBundleUse OBU = II->getOperandBundleAt(Idx);
3532
3533 // Separate storage assumptions apply to the underlying allocations, not
3534 // any particular pointer within them. When evaluating the hints for AA
3535 // purposes we getUnderlyingObject them; by precomputing the answers here
3536 // we can avoid having to do so repeatedly there.
3537 if (OBU.getTagName() == "separate_storage") {
3538 assert(OBU.Inputs.size() == 2);
3539 auto MaybeSimplifyHint = [&](const Use &U) {
3540 Value *Hint = U.get();
3541 // Not having a limit is safe because InstCombine removes unreachable
3542 // code.
3543 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
3544 if (Hint != UnderlyingObject)
3545 replaceUse(const_cast<Use &>(U), UnderlyingObject);
3546 };
3547 MaybeSimplifyHint(OBU.Inputs[0]);
3548 MaybeSimplifyHint(OBU.Inputs[1]);
3549 }
3550
3551 // Try to remove redundant alignment assumptions.
3552 if (OBU.getTagName() == "align" && OBU.Inputs.size() == 2) {
3554 *cast<AssumeInst>(II), II->arg_size() + Idx);
3555 if (!RK || RK.AttrKind != Attribute::Alignment ||
3557 continue;
3558
3559 // Remove align 1 bundles; they don't add any useful information.
3560 if (RK.ArgValue == 1)
3562
3563 // Don't try to remove align assumptions for pointers derived from
3564 // arguments. We might lose information if the function gets inline and
3565 // the align argument attribute disappears.
3567 if (!UO || isa<Argument>(UO))
3568 continue;
3569
3570 // Compute known bits for the pointer, passing nullptr as context to
3571 // avoid computeKnownBits using the assumption we are about to remove
3572 // for reasoning.
3573 KnownBits Known = computeKnownBits(RK.WasOn, /*CtxI=*/nullptr);
3574 unsigned TZ = std::min(Known.countMinTrailingZeros(),
3576 if ((1ULL << TZ) < RK.ArgValue)
3577 continue;
3579 }
3580 }
3581
3582 // Convert nonnull assume like:
3583 // %A = icmp ne i32* %PTR, null
3584 // call void @llvm.assume(i1 %A)
3585 // into
3586 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
3588 match(IIOperand,
3590 A->getType()->isPointerTy()) {
3591 if (auto *Replacement = buildAssumeFromKnowledge(
3592 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
3593
3594 Replacement->insertBefore(Next->getIterator());
3595 AC.registerAssumption(Replacement);
3596 return RemoveConditionFromAssume(II);
3597 }
3598 }
3599
3600 // Convert alignment assume like:
3601 // %B = ptrtoint i32* %A to i64
3602 // %C = and i64 %B, Constant
3603 // %D = icmp eq i64 %C, 0
3604 // call void @llvm.assume(i1 %D)
3605 // into
3606 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
3607 uint64_t AlignMask = 1;
3609 (match(IIOperand, m_Not(m_Trunc(m_Value(A)))) ||
3610 match(IIOperand,
3612 m_And(m_Value(A), m_ConstantInt(AlignMask)),
3613 m_Zero())))) {
3614 if (isPowerOf2_64(AlignMask + 1)) {
3615 uint64_t Offset = 0;
3617 if (match(A, m_PtrToIntOrAddr(m_Value(A)))) {
3618 /// Note: this doesn't preserve the offset information but merges
3619 /// offset and alignment.
3620 /// TODO: we can generate a GEP instead of merging the alignment with
3621 /// the offset.
3622 RetainedKnowledge RK{Attribute::Alignment,
3623 (unsigned)MinAlign(Offset, AlignMask + 1), A};
3624 if (auto *Replacement =
3626
3627 Replacement->insertAfter(II->getIterator());
3628 AC.registerAssumption(Replacement);
3629 }
3630 return RemoveConditionFromAssume(II);
3631 }
3632 }
3633 }
3634
3635 /// Canonicalize Knowledge in operand bundles.
3636 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
3637 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3638 auto &BOI = II->bundle_op_info_begin()[Idx];
3641 if (BOI.End - BOI.Begin > 2)
3642 continue; // Prevent reducing knowledge in an align with offset since
3643 // extracting a RetainedKnowledge from them looses offset
3644 // information
3645 RetainedKnowledge CanonRK =
3648 &getDominatorTree());
3649 if (CanonRK == RK)
3650 continue;
3651 if (!CanonRK) {
3652 if (BOI.End - BOI.Begin > 0) {
3653 Worklist.pushValue(II->op_begin()[BOI.Begin]);
3654 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
3655 }
3656 continue;
3657 }
3658 assert(RK.AttrKind == CanonRK.AttrKind);
3659 if (BOI.End - BOI.Begin > 0)
3660 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3661 if (BOI.End - BOI.Begin > 1)
3662 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3663 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
3664 if (RK.WasOn)
3665 Worklist.pushValue(RK.WasOn);
3666 return II;
3667 }
3668 }
3669
3670 // If there is a dominating assume with the same condition as this one,
3671 // then this one is redundant, and should be removed.
3672 KnownBits Known(1);
3673 computeKnownBits(IIOperand, Known, II);
3675 return eraseInstFromFunction(*II);
3676
3677 // assume(false) is unreachable.
3678 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
3680 return eraseInstFromFunction(*II);
3681 }
3682
3683 // Update the cache of affected values for this assumption (we might be
3684 // here because we just simplified the condition).
3685 AC.updateAffectedValues(cast<AssumeInst>(II));
3686 break;
3687 }
3688 case Intrinsic::experimental_guard: {
3689 // Is this guard followed by another guard? We scan forward over a small
3690 // fixed window of instructions to handle common cases with conditions
3691 // computed between guards.
3692 Instruction *NextInst = II->getNextNode();
3693 for (unsigned i = 0; i < GuardWideningWindow; i++) {
3694 // Note: Using context-free form to avoid compile time blow up
3695 if (!isSafeToSpeculativelyExecute(NextInst))
3696 break;
3697 NextInst = NextInst->getNextNode();
3698 }
3699 Value *NextCond = nullptr;
3700 if (match(NextInst,
3702 Value *CurrCond = II->getArgOperand(0);
3703
3704 // Remove a guard that it is immediately preceded by an identical guard.
3705 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3706 if (CurrCond != NextCond) {
3707 Instruction *MoveI = II->getNextNode();
3708 while (MoveI != NextInst) {
3709 auto *Temp = MoveI;
3710 MoveI = MoveI->getNextNode();
3711 Temp->moveBefore(II->getIterator());
3712 }
3713 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
3714 }
3715 eraseInstFromFunction(*NextInst);
3716 return II;
3717 }
3718 break;
3719 }
3720 case Intrinsic::vector_insert: {
3721 Value *Vec = II->getArgOperand(0);
3722 Value *SubVec = II->getArgOperand(1);
3723 Value *Idx = II->getArgOperand(2);
3724 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
3725 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3726 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
3727
3728 // Only canonicalize if the destination vector, Vec, and SubVec are all
3729 // fixed vectors.
3730 if (DstTy && VecTy && SubVecTy) {
3731 unsigned DstNumElts = DstTy->getNumElements();
3732 unsigned VecNumElts = VecTy->getNumElements();
3733 unsigned SubVecNumElts = SubVecTy->getNumElements();
3734 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3735
3736 // An insert that entirely overwrites Vec with SubVec is a nop.
3737 if (VecNumElts == SubVecNumElts)
3738 return replaceInstUsesWith(CI, SubVec);
3739
3740 // Widen SubVec into a vector of the same width as Vec, since
3741 // shufflevector requires the two input vectors to be the same width.
3742 // Elements beyond the bounds of SubVec within the widened vector are
3743 // undefined.
3744 SmallVector<int, 8> WidenMask;
3745 unsigned i;
3746 for (i = 0; i != SubVecNumElts; ++i)
3747 WidenMask.push_back(i);
3748 for (; i != VecNumElts; ++i)
3749 WidenMask.push_back(PoisonMaskElem);
3750
3751 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3752
3754 for (unsigned i = 0; i != IdxN; ++i)
3755 Mask.push_back(i);
3756 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3757 Mask.push_back(i);
3758 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3759 Mask.push_back(i);
3760
3761 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3762 return replaceInstUsesWith(CI, Shuffle);
3763 }
3764 break;
3765 }
3766 case Intrinsic::vector_extract: {
3767 Value *Vec = II->getArgOperand(0);
3768 Value *Idx = II->getArgOperand(1);
3769
3770 Type *ReturnType = II->getType();
3771 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3772 // ExtractIdx)
3773 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
3774 Value *InsertTuple, *InsertIdx, *InsertValue;
3776 m_Value(InsertValue),
3777 m_Value(InsertIdx))) &&
3778 InsertValue->getType() == ReturnType) {
3779 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
3780 // Case where we get the same index right after setting it.
3781 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3782 // InsertValue
3783 if (ExtractIdx == Index)
3784 return replaceInstUsesWith(CI, InsertValue);
3785 // If we are getting a different index than what was set in the
3786 // insert.vector intrinsic. We can just set the input tuple to the one up
3787 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3788 // InsertIndex), ExtractIndex)
3789 // --> extract.vector(InsertTuple, ExtractIndex)
3790 else
3791 return replaceOperand(CI, 0, InsertTuple);
3792 }
3793
3794 auto *DstTy = dyn_cast<VectorType>(ReturnType);
3795 auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3796
3797 if (DstTy && VecTy) {
3798 auto DstEltCnt = DstTy->getElementCount();
3799 auto VecEltCnt = VecTy->getElementCount();
3800 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3801
3802 // Extracting the entirety of Vec is a nop.
3803 if (DstEltCnt == VecTy->getElementCount()) {
3804 replaceInstUsesWith(CI, Vec);
3805 return eraseInstFromFunction(CI);
3806 }
3807
3808 // Only canonicalize to shufflevector if the destination vector and
3809 // Vec are fixed vectors.
3810 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3811 break;
3812
3814 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3815 Mask.push_back(IdxN + i);
3816
3817 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3818 return replaceInstUsesWith(CI, Shuffle);
3819 }
3820 break;
3821 }
3822 case Intrinsic::experimental_vp_reverse: {
3823 Value *X;
3824 Value *Vec = II->getArgOperand(0);
3825 Value *Mask = II->getArgOperand(1);
3826 if (!match(Mask, m_AllOnes()))
3827 break;
3828 Value *EVL = II->getArgOperand(2);
3829 // TODO: Canonicalize experimental.vp.reverse after unop/binops?
3830 // rev(unop rev(X)) --> unop X
3831 if (match(Vec,
3833 m_Value(X), m_AllOnes(), m_Specific(EVL)))))) {
3834 auto *OldUnOp = cast<UnaryOperator>(Vec);
3836 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(),
3837 II->getIterator());
3838 return replaceInstUsesWith(CI, NewUnOp);
3839 }
3840 break;
3841 }
3842 case Intrinsic::vector_reduce_or:
3843 case Intrinsic::vector_reduce_and: {
3844 // Canonicalize logical or/and reductions:
3845 // Or reduction for i1 is represented as:
3846 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3847 // %res = cmp ne iReduxWidth %val, 0
3848 // And reduction for i1 is represented as:
3849 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3850 // %res = cmp eq iReduxWidth %val, 11111
3851 Value *Arg = II->getArgOperand(0);
3852 Value *Vect;
3853
3854 if (Value *NewOp =
3855 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3856 replaceUse(II->getOperandUse(0), NewOp);
3857 return II;
3858 }
3859
3860 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3861 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3862 if (FTy->getElementType() == Builder.getInt1Ty()) {
3863 Value *Res = Builder.CreateBitCast(
3864 Vect, Builder.getIntNTy(FTy->getNumElements()));
3865 if (IID == Intrinsic::vector_reduce_and) {
3866 Res = Builder.CreateICmpEQ(
3868 } else {
3869 assert(IID == Intrinsic::vector_reduce_or &&
3870 "Expected or reduction.");
3871 Res = Builder.CreateIsNotNull(Res);
3872 }
3873 if (Arg != Vect)
3874 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3875 II->getType());
3876 return replaceInstUsesWith(CI, Res);
3877 }
3878 }
3879 [[fallthrough]];
3880 }
3881 case Intrinsic::vector_reduce_add: {
3882 if (IID == Intrinsic::vector_reduce_add) {
3883 // Convert vector_reduce_add(ZExt(<n x i1>)) to
3884 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3885 // Convert vector_reduce_add(SExt(<n x i1>)) to
3886 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3887 // Convert vector_reduce_add(<n x i1>) to
3888 // Trunc(ctpop(bitcast <n x i1> to in)).
3889 Value *Arg = II->getArgOperand(0);
3890 Value *Vect;
3891
3892 if (Value *NewOp =
3893 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3894 replaceUse(II->getOperandUse(0), NewOp);
3895 return II;
3896 }
3897
3898 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3899 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3900 if (FTy->getElementType() == Builder.getInt1Ty()) {
3901 Value *V = Builder.CreateBitCast(
3902 Vect, Builder.getIntNTy(FTy->getNumElements()));
3903 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3904 if (Res->getType() != II->getType())
3905 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3906 if (Arg != Vect &&
3907 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3908 Res = Builder.CreateNeg(Res);
3909 return replaceInstUsesWith(CI, Res);
3910 }
3911 }
3912
3913 // vector.reduce.add.vNiM(splat(%x)) -> mul(%x, N)
3914 if (Value *Splat = getSplatValue(Arg)) {
3915 ElementCount VecToReduceCount =
3916 cast<VectorType>(Arg->getType())->getElementCount();
3917 if (VecToReduceCount.isFixed()) {
3918 unsigned VectorSize = VecToReduceCount.getFixedValue();
3919 return BinaryOperator::CreateMul(
3920 Splat,
3921 ConstantInt::get(Splat->getType(), VectorSize, /*IsSigned=*/false,
3922 /*ImplicitTrunc=*/true));
3923 }
3924 }
3925 }
3926 [[fallthrough]];
3927 }
3928 case Intrinsic::vector_reduce_xor: {
3929 if (IID == Intrinsic::vector_reduce_xor) {
3930 // Exclusive disjunction reduction over the vector with
3931 // (potentially-extended) i1 element type is actually a
3932 // (potentially-extended) arithmetic `add` reduction over the original
3933 // non-extended value:
3934 // vector_reduce_xor(?ext(<n x i1>))
3935 // -->
3936 // ?ext(vector_reduce_add(<n x i1>))
3937 Value *Arg = II->getArgOperand(0);
3938 Value *Vect;
3939
3940 if (Value *NewOp =
3941 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3942 replaceUse(II->getOperandUse(0), NewOp);
3943 return II;
3944 }
3945
3946 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3947 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3948 if (VTy->getElementType() == Builder.getInt1Ty()) {
3949 Value *Res = Builder.CreateAddReduce(Vect);
3950 if (Arg != Vect)
3951 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3952 II->getType());
3953 return replaceInstUsesWith(CI, Res);
3954 }
3955 }
3956 }
3957 [[fallthrough]];
3958 }
3959 case Intrinsic::vector_reduce_mul: {
3960 if (IID == Intrinsic::vector_reduce_mul) {
3961 // Multiplicative reduction over the vector with (potentially-extended)
3962 // i1 element type is actually a (potentially zero-extended)
3963 // logical `and` reduction over the original non-extended value:
3964 // vector_reduce_mul(?ext(<n x i1>))
3965 // -->
3966 // zext(vector_reduce_and(<n x i1>))
3967 Value *Arg = II->getArgOperand(0);
3968 Value *Vect;
3969
3970 if (Value *NewOp =
3971 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3972 replaceUse(II->getOperandUse(0), NewOp);
3973 return II;
3974 }
3975
3976 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3977 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3978 if (VTy->getElementType() == Builder.getInt1Ty()) {
3979 Value *Res = Builder.CreateAndReduce(Vect);
3980 if (Res->getType() != II->getType())
3981 Res = Builder.CreateZExt(Res, II->getType());
3982 return replaceInstUsesWith(CI, Res);
3983 }
3984 }
3985 }
3986 [[fallthrough]];
3987 }
3988 case Intrinsic::vector_reduce_umin:
3989 case Intrinsic::vector_reduce_umax: {
3990 if (IID == Intrinsic::vector_reduce_umin ||
3991 IID == Intrinsic::vector_reduce_umax) {
3992 // UMin/UMax reduction over the vector with (potentially-extended)
3993 // i1 element type is actually a (potentially-extended)
3994 // logical `and`/`or` reduction over the original non-extended value:
3995 // vector_reduce_u{min,max}(?ext(<n x i1>))
3996 // -->
3997 // ?ext(vector_reduce_{and,or}(<n x i1>))
3998 Value *Arg = II->getArgOperand(0);
3999 Value *Vect;
4000
4001 if (Value *NewOp =
4002 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4003 replaceUse(II->getOperandUse(0), NewOp);
4004 return II;
4005 }
4006
4007 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4008 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4009 if (VTy->getElementType() == Builder.getInt1Ty()) {
4010 Value *Res = IID == Intrinsic::vector_reduce_umin
4011 ? Builder.CreateAndReduce(Vect)
4012 : Builder.CreateOrReduce(Vect);
4013 if (Arg != Vect)
4014 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
4015 II->getType());
4016 return replaceInstUsesWith(CI, Res);
4017 }
4018 }
4019 }
4020 [[fallthrough]];
4021 }
4022 case Intrinsic::vector_reduce_smin:
4023 case Intrinsic::vector_reduce_smax: {
4024 if (IID == Intrinsic::vector_reduce_smin ||
4025 IID == Intrinsic::vector_reduce_smax) {
4026 // SMin/SMax reduction over the vector with (potentially-extended)
4027 // i1 element type is actually a (potentially-extended)
4028 // logical `and`/`or` reduction over the original non-extended value:
4029 // vector_reduce_s{min,max}(<n x i1>)
4030 // -->
4031 // vector_reduce_{or,and}(<n x i1>)
4032 // and
4033 // vector_reduce_s{min,max}(sext(<n x i1>))
4034 // -->
4035 // sext(vector_reduce_{or,and}(<n x i1>))
4036 // and
4037 // vector_reduce_s{min,max}(zext(<n x i1>))
4038 // -->
4039 // zext(vector_reduce_{and,or}(<n x i1>))
4040 Value *Arg = II->getArgOperand(0);
4041 Value *Vect;
4042
4043 if (Value *NewOp =
4044 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
4045 replaceUse(II->getOperandUse(0), NewOp);
4046 return II;
4047 }
4048
4049 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
4050 if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
4051 if (VTy->getElementType() == Builder.getInt1Ty()) {
4052 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
4053 if (Arg != Vect)
4054 ExtOpc = cast<CastInst>(Arg)->getOpcode();
4055 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
4056 (ExtOpc == Instruction::CastOps::ZExt))
4057 ? Builder.CreateAndReduce(Vect)
4058 : Builder.CreateOrReduce(Vect);
4059 if (Arg != Vect)
4060 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
4061 return replaceInstUsesWith(CI, Res);
4062 }
4063 }
4064 }
4065 [[fallthrough]];
4066 }
4067 case Intrinsic::vector_reduce_fmax:
4068 case Intrinsic::vector_reduce_fmin:
4069 case Intrinsic::vector_reduce_fadd:
4070 case Intrinsic::vector_reduce_fmul: {
4071 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
4072 IID != Intrinsic::vector_reduce_fmul) ||
4073 II->hasAllowReassoc();
4074 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
4075 IID == Intrinsic::vector_reduce_fmul)
4076 ? 1
4077 : 0;
4078 Value *Arg = II->getArgOperand(ArgIdx);
4079 if (Value *NewOp = simplifyReductionOperand(Arg, CanReorderLanes)) {
4080 replaceUse(II->getOperandUse(ArgIdx), NewOp);
4081 return nullptr;
4082 }
4083 break;
4084 }
4085 case Intrinsic::is_fpclass: {
4086 if (Instruction *I = foldIntrinsicIsFPClass(*II))
4087 return I;
4088 break;
4089 }
4090 case Intrinsic::threadlocal_address: {
4091 Align MinAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
4092 MaybeAlign Align = II->getRetAlign();
4093 if (MinAlign > Align.valueOrOne()) {
4094 II->addRetAttr(Attribute::getWithAlignment(II->getContext(), MinAlign));
4095 return II;
4096 }
4097 break;
4098 }
4099 case Intrinsic::frexp: {
4100 Value *X;
4101 // The first result is idempotent with the added complication of the struct
4102 // return, and the second result is zero because the value is already
4103 // normalized.
4104 if (match(II->getArgOperand(0), m_ExtractValue<0>(m_Value(X)))) {
4106 X = Builder.CreateInsertValue(
4107 X, Constant::getNullValue(II->getType()->getStructElementType(1)),
4108 1);
4109 return replaceInstUsesWith(*II, X);
4110 }
4111 }
4112 break;
4113 }
4114 case Intrinsic::get_active_lane_mask: {
4115 const APInt *Op0, *Op1;
4116 if (match(II->getOperand(0), m_StrictlyPositive(Op0)) &&
4117 match(II->getOperand(1), m_APInt(Op1))) {
4118 Type *OpTy = II->getOperand(0)->getType();
4119 return replaceInstUsesWith(
4120 *II, Builder.CreateIntrinsic(
4121 II->getType(), Intrinsic::get_active_lane_mask,
4122 {Constant::getNullValue(OpTy),
4123 ConstantInt::get(OpTy, Op1->usub_sat(*Op0))}));
4124 }
4125 break;
4126 }
4127 case Intrinsic::experimental_get_vector_length: {
4128 // get.vector.length(Cnt, MaxLanes) --> Cnt when Cnt <= MaxLanes
4129 unsigned BitWidth =
4130 std::max(II->getArgOperand(0)->getType()->getScalarSizeInBits(),
4131 II->getType()->getScalarSizeInBits());
4132 ConstantRange Cnt =
4133 computeConstantRangeIncludingKnownBits(II->getArgOperand(0), false,
4134 SQ.getWithInstruction(II))
4136 ConstantRange MaxLanes = cast<ConstantInt>(II->getArgOperand(1))
4137 ->getValue()
4138 .zextOrTrunc(Cnt.getBitWidth());
4139 if (cast<ConstantInt>(II->getArgOperand(2))->isOne())
4140 MaxLanes = MaxLanes.multiply(
4141 getVScaleRange(II->getFunction(), Cnt.getBitWidth()));
4142
4143 if (Cnt.icmp(CmpInst::ICMP_ULE, MaxLanes))
4144 return replaceInstUsesWith(
4145 *II, Builder.CreateZExtOrTrunc(II->getArgOperand(0), II->getType()));
4146 return nullptr;
4147 }
4148 default: {
4149 // Handle target specific intrinsics
4150 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
4151 if (V)
4152 return *V;
4153 break;
4154 }
4155 }
4156
4157 // Try to fold intrinsic into select/phi operands. This is legal if:
4158 // * The intrinsic is speculatable.
4159 // * The operand is one of the following:
4160 // - a phi.
4161 // - a select with a scalar condition.
4162 // - a select with a vector condition and II is not a cross lane operation.
4164 for (Value *Op : II->args()) {
4165 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
4166 bool IsVectorCond = Sel->getCondition()->getType()->isVectorTy();
4167 if (IsVectorCond && !isNotCrossLaneOperation(II))
4168 continue;
4169 // Don't replace a scalar select with a more expensive vector select if
4170 // we can't simplify both arms of the select.
4171 bool SimplifyBothArms =
4172 !Op->getType()->isVectorTy() && II->getType()->isVectorTy();
4174 *II, Sel, /*FoldWithMultiUse=*/false, SimplifyBothArms))
4175 return R;
4176 }
4177 if (auto *Phi = dyn_cast<PHINode>(Op))
4178 if (Instruction *R = foldOpIntoPhi(*II, Phi))
4179 return R;
4180 }
4181 }
4182
4184 return Shuf;
4185
4187 return replaceInstUsesWith(*II, Reverse);
4188
4190 return replaceInstUsesWith(*II, Res);
4191
4192 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
4193 // context, so it is handled in visitCallBase and we should trigger it.
4194 return visitCallBase(*II);
4195}
4196
4197// Fence instruction simplification
4199 auto *NFI = dyn_cast<FenceInst>(FI.getNextNode());
4200 // This check is solely here to handle arbitrary target-dependent syncscopes.
4201 // TODO: Can remove if does not matter in practice.
4202 if (NFI && FI.isIdenticalTo(NFI))
4203 return eraseInstFromFunction(FI);
4204
4205 // Returns true if FI1 is identical or stronger fence than FI2.
4206 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
4207 auto FI1SyncScope = FI1->getSyncScopeID();
4208 // Consider same scope, where scope is global or single-thread.
4209 if (FI1SyncScope != FI2->getSyncScopeID() ||
4210 (FI1SyncScope != SyncScope::System &&
4211 FI1SyncScope != SyncScope::SingleThread))
4212 return false;
4213
4214 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
4215 };
4216 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
4217 return eraseInstFromFunction(FI);
4218
4219 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNode()))
4220 if (isIdenticalOrStrongerFence(PFI, &FI))
4221 return eraseInstFromFunction(FI);
4222 return nullptr;
4223}
4224
4225// InvokeInst simplification
4227 return visitCallBase(II);
4228}
4229
4230// CallBrInst simplification
4232 return visitCallBase(CBI);
4233}
4234
4236 if (!CI->hasFnAttr("modular-format"))
4237 return nullptr;
4238
4240 llvm::split(CI->getFnAttr("modular-format").getValueAsString(), ','));
4241 // TODO: Make use of the first two arguments
4242 unsigned FirstArgIdx;
4243 [[maybe_unused]] bool Error;
4244 Error = Args[2].getAsInteger(10, FirstArgIdx);
4245 assert(!Error && "invalid first arg index");
4246 --FirstArgIdx;
4247 StringRef FnName = Args[3];
4248 StringRef ImplName = Args[4];
4250
4251 if (AllAspects.empty())
4252 return nullptr;
4253
4254 SmallVector<StringRef> NeededAspects;
4255 for (StringRef Aspect : AllAspects) {
4256 if (Aspect == "float") {
4257 if (llvm::any_of(
4258 llvm::make_range(std::next(CI->arg_begin(), FirstArgIdx),
4259 CI->arg_end()),
4260 [](Value *V) { return V->getType()->isFloatingPointTy(); }))
4261 NeededAspects.push_back("float");
4262 } else {
4263 // Unknown aspects are always considered to be needed.
4264 NeededAspects.push_back(Aspect);
4265 }
4266 }
4267
4268 if (NeededAspects.size() == AllAspects.size())
4269 return nullptr;
4270
4271 Module *M = CI->getModule();
4272 LLVMContext &Ctx = M->getContext();
4273 Function *Callee = CI->getCalledFunction();
4274 FunctionCallee ModularFn = M->getOrInsertFunction(
4275 FnName, Callee->getFunctionType(),
4276 Callee->getAttributes().removeFnAttribute(Ctx, "modular-format"));
4277 CallInst *New = cast<CallInst>(CI->clone());
4278 New->setCalledFunction(ModularFn);
4279 New->removeFnAttr("modular-format");
4280 B.Insert(New);
4281
4282 const auto ReferenceAspect = [&](StringRef Aspect) {
4283 SmallString<20> Name = ImplName;
4284 Name += '_';
4285 Name += Aspect;
4286 Function *RelocNoneFn =
4287 Intrinsic::getOrInsertDeclaration(M, Intrinsic::reloc_none);
4288 B.CreateCall(RelocNoneFn,
4289 {MetadataAsValue::get(Ctx, MDString::get(Ctx, Name))});
4290 };
4291
4292 llvm::sort(NeededAspects);
4293 for (StringRef Request : NeededAspects)
4294 ReferenceAspect(Request);
4295
4296 return New;
4297}
4298
4299Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
4300 if (!CI->getCalledFunction()) return nullptr;
4301
4302 // Skip optimizing notail and musttail calls so
4303 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
4304 // LibCallSimplifier::optimizeCall should try to preserve tail calls though.
4305 if (CI->isMustTailCall() || CI->isNoTailCall())
4306 return nullptr;
4307
4308 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4309 replaceInstUsesWith(*From, With);
4310 };
4311 auto InstCombineErase = [this](Instruction *I) {
4313 };
4314 LibCallSimplifier Simplifier(DL, &TLI, &DT, &DC, &AC, ORE, BFI, PSI,
4315 InstCombineRAUW, InstCombineErase);
4316 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
4317 ++NumSimplified;
4318 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4319 }
4320 if (Value *With = optimizeModularFormat(CI, Builder)) {
4321 ++NumSimplified;
4322 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4323 }
4324
4325 return nullptr;
4326}
4327
4329 // Strip off at most one level of pointer casts, looking for an alloca. This
4330 // is good enough in practice and simpler than handling any number of casts.
4331 Value *Underlying = TrampMem->stripPointerCasts();
4332 if (Underlying != TrampMem &&
4333 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4334 return nullptr;
4335 if (!isa<AllocaInst>(Underlying))
4336 return nullptr;
4337
4338 IntrinsicInst *InitTrampoline = nullptr;
4339 for (User *U : TrampMem->users()) {
4341 if (!II)
4342 return nullptr;
4343 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4344 if (InitTrampoline)
4345 // More than one init_trampoline writes to this value. Give up.
4346 return nullptr;
4347 InitTrampoline = II;
4348 continue;
4349 }
4350 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4351 // Allow any number of calls to adjust.trampoline.
4352 continue;
4353 return nullptr;
4354 }
4355
4356 // No call to init.trampoline found.
4357 if (!InitTrampoline)
4358 return nullptr;
4359
4360 // Check that the alloca is being used in the expected way.
4361 if (InitTrampoline->getOperand(0) != TrampMem)
4362 return nullptr;
4363
4364 return InitTrampoline;
4365}
4366
4368 Value *TrampMem) {
4369 // Visit all the previous instructions in the basic block, and try to find a
4370 // init.trampoline which has a direct path to the adjust.trampoline.
4371 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
4372 E = AdjustTramp->getParent()->begin();
4373 I != E;) {
4374 Instruction *Inst = &*--I;
4376 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4377 II->getOperand(0) == TrampMem)
4378 return II;
4379 if (Inst->mayWriteToMemory())
4380 return nullptr;
4381 }
4382 return nullptr;
4383}
4384
4385// Given a call to llvm.adjust.trampoline, find and return the corresponding
4386// call to llvm.init.trampoline if the call to the trampoline can be optimized
4387// to a direct call to a function. Otherwise return NULL.
4389 Callee = Callee->stripPointerCasts();
4390 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
4391 if (!AdjustTramp ||
4392 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4393 return nullptr;
4394
4395 Value *TrampMem = AdjustTramp->getOperand(0);
4396
4398 return IT;
4399 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
4400 return IT;
4401 return nullptr;
4402}
4403
4404Instruction *InstCombinerImpl::foldPtrAuthIntrinsicCallee(CallBase &Call) {
4405 const Value *Callee = Call.getCalledOperand();
4406 const auto *IPC = dyn_cast<IntToPtrInst>(Callee);
4407 if (!IPC || !IPC->isNoopCast(DL))
4408 return nullptr;
4409
4410 const auto *II = dyn_cast<IntrinsicInst>(IPC->getOperand(0));
4411 if (!II)
4412 return nullptr;
4413
4414 Intrinsic::ID IIID = II->getIntrinsicID();
4415 if (IIID != Intrinsic::ptrauth_resign && IIID != Intrinsic::ptrauth_sign)
4416 return nullptr;
4417
4418 // Isolate the ptrauth bundle from the others.
4419 std::optional<OperandBundleUse> PtrAuthBundleOrNone;
4421 for (unsigned BI = 0, BE = Call.getNumOperandBundles(); BI != BE; ++BI) {
4422 OperandBundleUse Bundle = Call.getOperandBundleAt(BI);
4423 if (Bundle.getTagID() == LLVMContext::OB_ptrauth)
4424 PtrAuthBundleOrNone = Bundle;
4425 else
4426 NewBundles.emplace_back(Bundle);
4427 }
4428
4429 if (!PtrAuthBundleOrNone)
4430 return nullptr;
4431
4432 Value *NewCallee = nullptr;
4433 switch (IIID) {
4434 // call(ptrauth.resign(p)), ["ptrauth"()] -> call p, ["ptrauth"()]
4435 // assuming the call bundle and the sign operands match.
4436 case Intrinsic::ptrauth_resign: {
4437 // Resign result key should match bundle.
4438 if (II->getOperand(3) != PtrAuthBundleOrNone->Inputs[0])
4439 return nullptr;
4440 // Resign result discriminator should match bundle.
4441 if (II->getOperand(4) != PtrAuthBundleOrNone->Inputs[1])
4442 return nullptr;
4443
4444 // Resign input (auth) key should also match: we can't change the key on
4445 // the new call we're generating, because we don't know what keys are valid.
4446 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4447 return nullptr;
4448
4449 Value *NewBundleOps[] = {II->getOperand(1), II->getOperand(2)};
4450 NewBundles.emplace_back("ptrauth", NewBundleOps);
4451 NewCallee = II->getOperand(0);
4452 break;
4453 }
4454
4455 // call(ptrauth.sign(p)), ["ptrauth"()] -> call p
4456 // assuming the call bundle and the sign operands match.
4457 // Non-ptrauth indirect calls are undesirable, but so is ptrauth.sign.
4458 case Intrinsic::ptrauth_sign: {
4459 // Sign key should match bundle.
4460 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4461 return nullptr;
4462 // Sign discriminator should match bundle.
4463 if (II->getOperand(2) != PtrAuthBundleOrNone->Inputs[1])
4464 return nullptr;
4465 NewCallee = II->getOperand(0);
4466 break;
4467 }
4468 default:
4469 llvm_unreachable("unexpected intrinsic ID");
4470 }
4471
4472 if (!NewCallee)
4473 return nullptr;
4474
4475 NewCallee = Builder.CreateBitOrPointerCast(NewCallee, Callee->getType());
4476 CallBase *NewCall = CallBase::Create(&Call, NewBundles);
4477 NewCall->setCalledOperand(NewCallee);
4478 return NewCall;
4479}
4480
4481Instruction *InstCombinerImpl::foldPtrAuthConstantCallee(CallBase &Call) {
4483 if (!CPA)
4484 return nullptr;
4485
4486 auto *CalleeF = dyn_cast<Function>(CPA->getPointer());
4487 // If the ptrauth constant isn't based on a function pointer, bail out.
4488 if (!CalleeF)
4489 return nullptr;
4490
4491 // Inspect the call ptrauth bundle to check it matches the ptrauth constant.
4493 if (!PAB)
4494 return nullptr;
4495
4496 auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
4497 Value *Discriminator = PAB->Inputs[1];
4498
4499 // If the bundle doesn't match, this is probably going to fail to auth.
4500 if (!CPA->isKnownCompatibleWith(Key, Discriminator, DL))
4501 return nullptr;
4502
4503 // If the bundle matches the constant, proceed in making this a direct call.
4505 NewCall->setCalledOperand(CalleeF);
4506 return NewCall;
4507}
4508
4509bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
4510 const TargetLibraryInfo *TLI) {
4511 // Note: We only handle cases which can't be driven from generic attributes
4512 // here. So, for example, nonnull and noalias (which are common properties
4513 // of some allocation functions) are expected to be handled via annotation
4514 // of the respective allocator declaration with generic attributes.
4515 bool Changed = false;
4516
4517 if (!Call.getType()->isPointerTy())
4518 return Changed;
4519
4520 std::optional<APInt> Size = getAllocSize(&Call, TLI);
4521 if (Size && *Size != 0) {
4522 // TODO: We really should just emit deref_or_null here and then
4523 // let the generic inference code combine that with nonnull.
4524 if (Call.hasRetAttr(Attribute::NonNull)) {
4525 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
4527 Call.getContext(), Size->getLimitedValue()));
4528 } else {
4529 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
4531 Call.getContext(), Size->getLimitedValue()));
4532 }
4533 }
4534
4535 // Add alignment attribute if alignment is a power of two constant.
4536 Value *Alignment = getAllocAlignment(&Call, TLI);
4537 if (!Alignment)
4538 return Changed;
4539
4540 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
4541 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
4542 uint64_t AlignmentVal = AlignOpC->getZExtValue();
4543 if (llvm::isPowerOf2_64(AlignmentVal)) {
4544 Align ExistingAlign = Call.getRetAlign().valueOrOne();
4545 Align NewAlign = Align(AlignmentVal);
4546 if (NewAlign > ExistingAlign) {
4549 Changed = true;
4550 }
4551 }
4552 }
4553 return Changed;
4554}
4555
4556/// Improvements for call, callbr and invoke instructions.
4557Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
4558 bool Changed = annotateAnyAllocSite(Call, &TLI);
4559
4560 // Mark any parameters that are known to be non-null with the nonnull
4561 // attribute. This is helpful for inlining calls to functions with null
4562 // checks on their arguments.
4563 SmallVector<unsigned, 4> ArgNos;
4564 unsigned ArgNo = 0;
4565
4566 for (Value *V : Call.args()) {
4567 if (V->getType()->isPointerTy()) {
4568 // Simplify the nonnull operand if the parameter is known to be nonnull.
4569 // Otherwise, try to infer nonnull for it.
4570 bool HasDereferenceable = Call.getParamDereferenceableBytes(ArgNo) > 0;
4571 if (Call.paramHasAttr(ArgNo, Attribute::NonNull) ||
4572 (HasDereferenceable &&
4574 V->getType()->getPointerAddressSpace()))) {
4575 if (Value *Res = simplifyNonNullOperand(V, HasDereferenceable)) {
4576 replaceOperand(Call, ArgNo, Res);
4577 Changed = true;
4578 }
4579 } else if (isKnownNonZero(V,
4580 getSimplifyQuery().getWithInstruction(&Call))) {
4581 ArgNos.push_back(ArgNo);
4582 }
4583 }
4584 ArgNo++;
4585 }
4586
4587 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
4588
4589 if (!ArgNos.empty()) {
4590 AttributeList AS = Call.getAttributes();
4591 LLVMContext &Ctx = Call.getContext();
4592 AS = AS.addParamAttribute(Ctx, ArgNos,
4593 Attribute::get(Ctx, Attribute::NonNull));
4594 Call.setAttributes(AS);
4595 Changed = true;
4596 }
4597
4598 // If the callee is a pointer to a function, attempt to move any casts to the
4599 // arguments of the call/callbr/invoke.
4601 Function *CalleeF = dyn_cast<Function>(Callee);
4602 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
4603 transformConstExprCastCall(Call))
4604 return nullptr;
4605
4606 if (CalleeF) {
4607 // Remove the convergent attr on calls when the callee is not convergent.
4608 if (Call.isConvergent() && !CalleeF->isConvergent() &&
4609 !CalleeF->isIntrinsic()) {
4610 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4611 << "\n");
4613 return &Call;
4614 }
4615
4616 // If the call and callee calling conventions don't match, and neither one
4617 // of the calling conventions is compatible with C calling convention
4618 // this call must be unreachable, as the call is undefined.
4619 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
4620 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
4624 // Only do this for calls to a function with a body. A prototype may
4625 // not actually end up matching the implementation's calling conv for a
4626 // variety of reasons (e.g. it may be written in assembly).
4627 !CalleeF->isDeclaration()) {
4628 Instruction *OldCall = &Call;
4630 // If OldCall does not return void then replaceInstUsesWith poison.
4631 // This allows ValueHandlers and custom metadata to adjust itself.
4632 if (!OldCall->getType()->isVoidTy())
4633 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
4634 if (isa<CallInst>(OldCall))
4635 return eraseInstFromFunction(*OldCall);
4636
4637 // We cannot remove an invoke or a callbr, because it would change thexi
4638 // CFG, just change the callee to a null pointer.
4639 cast<CallBase>(OldCall)->setCalledFunction(
4640 CalleeF->getFunctionType(),
4641 Constant::getNullValue(CalleeF->getType()));
4642 return nullptr;
4643 }
4644 }
4645
4646 // Calling a null function pointer is undefined if a null address isn't
4647 // dereferenceable.
4648 if ((isa<ConstantPointerNull>(Callee) &&
4650 isa<UndefValue>(Callee)) {
4651 // If Call does not return void then replaceInstUsesWith poison.
4652 // This allows ValueHandlers and custom metadata to adjust itself.
4653 if (!Call.getType()->isVoidTy())
4655
4656 if (Call.isTerminator()) {
4657 // Can't remove an invoke or callbr because we cannot change the CFG.
4658 return nullptr;
4659 }
4660
4661 // This instruction is not reachable, just remove it.
4664 }
4665
4666 if (IntrinsicInst *II = findInitTrampoline(Callee))
4667 return transformCallThroughTrampoline(Call, *II);
4668
4669 // Combine calls involving pointer authentication intrinsics.
4670 if (Instruction *NewCall = foldPtrAuthIntrinsicCallee(Call))
4671 return NewCall;
4672
4673 // Combine calls to ptrauth constants.
4674 if (Instruction *NewCall = foldPtrAuthConstantCallee(Call))
4675 return NewCall;
4676
4677 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4678 InlineAsm *IA = cast<InlineAsm>(Callee);
4679 if (!IA->canThrow()) {
4680 // Normal inline asm calls cannot throw - mark them
4681 // 'nounwind'.
4683 Changed = true;
4684 }
4685 }
4686
4687 // Try to optimize the call if possible, we require DataLayout for most of
4688 // this. None of these calls are seen as possibly dead so go ahead and
4689 // delete the instruction now.
4690 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4691 Instruction *I = tryOptimizeCall(CI);
4692 // If we changed something return the result, etc. Otherwise let
4693 // the fallthrough check.
4694 if (I) return eraseInstFromFunction(*I);
4695 }
4696
4697 if (!Call.use_empty() && !Call.isMustTailCall())
4698 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
4699 Type *CallTy = Call.getType();
4700 Type *RetArgTy = ReturnedArg->getType();
4701 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
4702 return replaceInstUsesWith(
4703 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4704 }
4705
4706 // Drop unnecessary callee_type metadata from calls that were converted
4707 // into direct calls.
4708 if (Call.getMetadata(LLVMContext::MD_callee_type) && !Call.isIndirectCall()) {
4709 Call.setMetadata(LLVMContext::MD_callee_type, nullptr);
4710 Changed = true;
4711 }
4712
4713 // Drop unnecessary kcfi operand bundles from calls that were converted
4714 // into direct calls.
4716 if (Bundle && !Call.isIndirectCall()) {
4717 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
4718 if (CalleeF) {
4719 ConstantInt *FunctionType = nullptr;
4720 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
4721
4722 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
4723 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
4724
4725 if (FunctionType &&
4726 FunctionType->getZExtValue() != ExpectedType->getZExtValue())
4727 dbgs() << Call.getModule()->getName()
4728 << ": warning: kcfi: " << Call.getCaller()->getName()
4729 << ": call to " << CalleeF->getName()
4730 << " using a mismatching function pointer type\n";
4731 }
4732 });
4733
4735 }
4736
4737 if (isRemovableAlloc(&Call, &TLI))
4738 return visitAllocSite(Call);
4739
4740 // Handle intrinsics which can be used in both call and invoke context.
4741 switch (Call.getIntrinsicID()) {
4742 case Intrinsic::experimental_gc_statepoint: {
4743 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
4744 SmallPtrSet<Value *, 32> LiveGcValues;
4745 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4746 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4747
4748 // Remove the relocation if unused.
4749 if (GCR.use_empty()) {
4751 continue;
4752 }
4753
4754 Value *DerivedPtr = GCR.getDerivedPtr();
4755 Value *BasePtr = GCR.getBasePtr();
4756
4757 // Undef is undef, even after relocation.
4758 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
4761 continue;
4762 }
4763
4764 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
4765 // The relocation of null will be null for most any collector.
4766 // TODO: provide a hook for this in GCStrategy. There might be some
4767 // weird collector this property does not hold for.
4768 if (isa<ConstantPointerNull>(DerivedPtr)) {
4769 // Use null-pointer of gc_relocate's type to replace it.
4772 continue;
4773 }
4774
4775 // isKnownNonNull -> nonnull attribute
4776 if (!GCR.hasRetAttr(Attribute::NonNull) &&
4777 isKnownNonZero(DerivedPtr,
4778 getSimplifyQuery().getWithInstruction(&Call))) {
4779 GCR.addRetAttr(Attribute::NonNull);
4780 // We discovered new fact, re-check users.
4781 Worklist.pushUsersToWorkList(GCR);
4782 }
4783 }
4784
4785 // If we have two copies of the same pointer in the statepoint argument
4786 // list, canonicalize to one. This may let us common gc.relocates.
4787 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
4788 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
4789 auto *OpIntTy = GCR.getOperand(2)->getType();
4790 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
4791 }
4792
4793 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4794 // Canonicalize on the type from the uses to the defs
4795
4796 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4797 LiveGcValues.insert(BasePtr);
4798 LiveGcValues.insert(DerivedPtr);
4799 }
4800 std::optional<OperandBundleUse> Bundle =
4802 unsigned NumOfGCLives = LiveGcValues.size();
4803 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4804 break;
4805 // We can reduce the size of gc live bundle.
4806 DenseMap<Value *, unsigned> Val2Idx;
4807 std::vector<Value *> NewLiveGc;
4808 for (Value *V : Bundle->Inputs) {
4809 auto [It, Inserted] = Val2Idx.try_emplace(V);
4810 if (!Inserted)
4811 continue;
4812 if (LiveGcValues.count(V)) {
4813 It->second = NewLiveGc.size();
4814 NewLiveGc.push_back(V);
4815 } else
4816 It->second = NumOfGCLives;
4817 }
4818 // Update all gc.relocates
4819 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4820 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4821 Value *BasePtr = GCR.getBasePtr();
4822 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4823 "Missed live gc for base pointer");
4824 auto *OpIntTy1 = GCR.getOperand(1)->getType();
4825 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4826 Value *DerivedPtr = GCR.getDerivedPtr();
4827 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4828 "Missed live gc for derived pointer");
4829 auto *OpIntTy2 = GCR.getOperand(2)->getType();
4830 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4831 }
4832 // Create new statepoint instruction.
4833 OperandBundleDef NewBundle("gc-live", NewLiveGc);
4834 return CallBase::Create(&Call, NewBundle);
4835 }
4836 default: { break; }
4837 }
4838
4839 return Changed ? &Call : nullptr;
4840}
4841
4842/// If the callee is a constexpr cast of a function, attempt to move the cast to
4843/// the arguments of the call/invoke.
4844/// CallBrInst is not supported.
4845bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
4846 auto *Callee =
4848 if (!Callee)
4849 return false;
4850
4852 "CallBr's don't have a single point after a def to insert at");
4853
4854 // Don't perform the transform for declarations, which may not be fully
4855 // accurate. For example, void @foo() is commonly used as a placeholder for
4856 // unknown prototypes.
4857 if (Callee->isDeclaration())
4858 return false;
4859
4860 // If this is a call to a thunk function, don't remove the cast. Thunks are
4861 // used to transparently forward all incoming parameters and outgoing return
4862 // values, so it's important to leave the cast in place.
4863 if (Callee->hasFnAttribute("thunk"))
4864 return false;
4865
4866 // If this is a call to a naked function, the assembly might be
4867 // using an argument, or otherwise rely on the frame layout,
4868 // the function prototype will mismatch.
4869 if (Callee->hasFnAttribute(Attribute::Naked))
4870 return false;
4871
4872 // If this is a musttail call, the callee's prototype must match the caller's
4873 // prototype with the exception of pointee types. The code below doesn't
4874 // implement that, so we can't do this transform.
4875 // TODO: Do the transform if it only requires adding pointer casts.
4876 if (Call.isMustTailCall())
4877 return false;
4878
4880 const AttributeList &CallerPAL = Call.getAttributes();
4881
4882 // Okay, this is a cast from a function to a different type. Unless doing so
4883 // would cause a type conversion of one of our arguments, change this call to
4884 // be a direct call with arguments casted to the appropriate types.
4885 FunctionType *FT = Callee->getFunctionType();
4886 Type *OldRetTy = Caller->getType();
4887 Type *NewRetTy = FT->getReturnType();
4888
4889 // Check to see if we are changing the return type...
4890 if (OldRetTy != NewRetTy) {
4891
4892 if (NewRetTy->isStructTy())
4893 return false; // TODO: Handle multiple return values.
4894
4895 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4896 if (!Caller->use_empty())
4897 return false; // Cannot transform this return value.
4898 }
4899
4900 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4901 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4902 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(
4903 NewRetTy, CallerPAL.getRetAttrs())))
4904 return false; // Attribute not compatible with transformed value.
4905 }
4906
4907 // If the callbase is an invoke instruction, and the return value is
4908 // used by a PHI node in a successor, we cannot change the return type of
4909 // the call because there is no place to put the cast instruction (without
4910 // breaking the critical edge). Bail out in this case.
4911 if (!Caller->use_empty()) {
4912 BasicBlock *PhisNotSupportedBlock = nullptr;
4913 if (auto *II = dyn_cast<InvokeInst>(Caller))
4914 PhisNotSupportedBlock = II->getNormalDest();
4915 if (PhisNotSupportedBlock)
4916 for (User *U : Caller->users())
4917 if (PHINode *PN = dyn_cast<PHINode>(U))
4918 if (PN->getParent() == PhisNotSupportedBlock)
4919 return false;
4920 }
4921 }
4922
4923 unsigned NumActualArgs = Call.arg_size();
4924 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4925
4926 // Prevent us turning:
4927 // declare void @takes_i32_inalloca(i32* inalloca)
4928 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4929 //
4930 // into:
4931 // call void @takes_i32_inalloca(i32* null)
4932 //
4933 // Similarly, avoid folding away bitcasts of byval calls.
4934 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4935 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4936 return false;
4937
4938 auto AI = Call.arg_begin();
4939 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4940 Type *ParamTy = FT->getParamType(i);
4941 Type *ActTy = (*AI)->getType();
4942
4943 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4944 return false; // Cannot transform this parameter value.
4945
4946 // Check if there are any incompatible attributes we cannot drop safely.
4947 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4948 .overlaps(AttributeFuncs::typeIncompatible(
4949 ParamTy, CallerPAL.getParamAttrs(i),
4950 AttributeFuncs::ASK_UNSAFE_TO_DROP)))
4951 return false; // Attribute not compatible with transformed value.
4952
4953 if (Call.isInAllocaArgument(i) ||
4954 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4955 return false; // Cannot transform to and from inalloca/preallocated.
4956
4957 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4958 return false;
4959
4960 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4961 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4962 return false; // Cannot transform to or from byval.
4963 }
4964
4965 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4966 !CallerPAL.isEmpty()) {
4967 // In this case we have more arguments than the new function type, but we
4968 // won't be dropping them. Check that these extra arguments have attributes
4969 // that are compatible with being a vararg call argument.
4970 unsigned SRetIdx;
4971 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4972 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4973 return false;
4974 }
4975
4976 // Okay, we decided that this is a safe thing to do: go ahead and start
4977 // inserting cast instructions as necessary.
4978 SmallVector<Value *, 8> Args;
4980 Args.reserve(NumActualArgs);
4981 ArgAttrs.reserve(NumActualArgs);
4982
4983 // Get any return attributes.
4984 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4985
4986 // If the return value is not being used, the type may not be compatible
4987 // with the existing attributes. Wipe out any problematic attributes.
4988 RAttrs.remove(
4989 AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs()));
4990
4991 LLVMContext &Ctx = Call.getContext();
4992 AI = Call.arg_begin();
4993 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4994 Type *ParamTy = FT->getParamType(i);
4995
4996 Value *NewArg = *AI;
4997 if ((*AI)->getType() != ParamTy)
4998 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4999 Args.push_back(NewArg);
5000
5001 // Add any parameter attributes except the ones incompatible with the new
5002 // type. Note that we made sure all incompatible ones are safe to drop.
5003 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
5004 ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP);
5005 ArgAttrs.push_back(
5006 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
5007 }
5008
5009 // If the function takes more arguments than the call was taking, add them
5010 // now.
5011 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
5012 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
5013 ArgAttrs.push_back(AttributeSet());
5014 }
5015
5016 // If we are removing arguments to the function, emit an obnoxious warning.
5017 if (FT->getNumParams() < NumActualArgs) {
5018 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
5019 if (FT->isVarArg()) {
5020 // Add all of the arguments in their promoted form to the arg list.
5021 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
5022 Type *PTy = getPromotedType((*AI)->getType());
5023 Value *NewArg = *AI;
5024 if (PTy != (*AI)->getType()) {
5025 // Must promote to pass through va_arg area!
5026 Instruction::CastOps opcode =
5027 CastInst::getCastOpcode(*AI, false, PTy, false);
5028 NewArg = Builder.CreateCast(opcode, *AI, PTy);
5029 }
5030 Args.push_back(NewArg);
5031
5032 // Add any parameter attributes.
5033 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
5034 }
5035 }
5036 }
5037
5038 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
5039
5040 if (NewRetTy->isVoidTy())
5041 Caller->setName(""); // Void type should not have a name.
5042
5043 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
5044 "missing argument attributes");
5045 AttributeList NewCallerPAL = AttributeList::get(
5046 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
5047
5049 Call.getOperandBundlesAsDefs(OpBundles);
5050
5051 CallBase *NewCall;
5052 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
5053 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
5054 II->getUnwindDest(), Args, OpBundles);
5055 } else {
5056 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
5057 cast<CallInst>(NewCall)->setTailCallKind(
5058 cast<CallInst>(Caller)->getTailCallKind());
5059 }
5060 NewCall->takeName(Caller);
5062 NewCall->setAttributes(NewCallerPAL);
5063
5064 // Preserve prof metadata if any.
5065 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
5066
5067 // Insert a cast of the return type as necessary.
5068 Instruction *NC = NewCall;
5069 Value *NV = NC;
5070 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
5071 assert(!NV->getType()->isVoidTy());
5073 NC->setDebugLoc(Caller->getDebugLoc());
5074
5075 auto OptInsertPt = NewCall->getInsertionPointAfterDef();
5076 assert(OptInsertPt && "No place to insert cast");
5077 InsertNewInstBefore(NC, *OptInsertPt);
5078 Worklist.pushUsersToWorkList(*Caller);
5079 }
5080
5081 if (!Caller->use_empty())
5082 replaceInstUsesWith(*Caller, NV);
5083 else if (Caller->hasValueHandle()) {
5084 if (OldRetTy == NV->getType())
5086 else
5087 // We cannot call ValueIsRAUWd with a different type, and the
5088 // actual tracked value will disappear.
5090 }
5091
5092 eraseInstFromFunction(*Caller);
5093 return true;
5094}
5095
5096/// Turn a call to a function created by init_trampoline / adjust_trampoline
5097/// intrinsic pair into a direct call to the underlying function.
5099InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
5100 IntrinsicInst &Tramp) {
5101 FunctionType *FTy = Call.getFunctionType();
5102 AttributeList Attrs = Call.getAttributes();
5103
5104 // If the call already has the 'nest' attribute somewhere then give up -
5105 // otherwise 'nest' would occur twice after splicing in the chain.
5106 if (Attrs.hasAttrSomewhere(Attribute::Nest))
5107 return nullptr;
5108
5110 FunctionType *NestFTy = NestF->getFunctionType();
5111
5112 AttributeList NestAttrs = NestF->getAttributes();
5113 if (!NestAttrs.isEmpty()) {
5114 unsigned NestArgNo = 0;
5115 Type *NestTy = nullptr;
5116 AttributeSet NestAttr;
5117
5118 // Look for a parameter marked with the 'nest' attribute.
5119 for (FunctionType::param_iterator I = NestFTy->param_begin(),
5120 E = NestFTy->param_end();
5121 I != E; ++NestArgNo, ++I) {
5122 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
5123 if (AS.hasAttribute(Attribute::Nest)) {
5124 // Record the parameter type and any other attributes.
5125 NestTy = *I;
5126 NestAttr = AS;
5127 break;
5128 }
5129 }
5130
5131 if (NestTy) {
5132 std::vector<Value*> NewArgs;
5133 std::vector<AttributeSet> NewArgAttrs;
5134 NewArgs.reserve(Call.arg_size() + 1);
5135 NewArgAttrs.reserve(Call.arg_size());
5136
5137 // Insert the nest argument into the call argument list, which may
5138 // mean appending it. Likewise for attributes.
5139
5140 {
5141 unsigned ArgNo = 0;
5142 auto I = Call.arg_begin(), E = Call.arg_end();
5143 do {
5144 if (ArgNo == NestArgNo) {
5145 // Add the chain argument and attributes.
5146 Value *NestVal = Tramp.getArgOperand(2);
5147 if (NestVal->getType() != NestTy)
5148 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
5149 NewArgs.push_back(NestVal);
5150 NewArgAttrs.push_back(NestAttr);
5151 }
5152
5153 if (I == E)
5154 break;
5155
5156 // Add the original argument and attributes.
5157 NewArgs.push_back(*I);
5158 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
5159
5160 ++ArgNo;
5161 ++I;
5162 } while (true);
5163 }
5164
5165 // The trampoline may have been bitcast to a bogus type (FTy).
5166 // Handle this by synthesizing a new function type, equal to FTy
5167 // with the chain parameter inserted.
5168
5169 std::vector<Type*> NewTypes;
5170 NewTypes.reserve(FTy->getNumParams()+1);
5171
5172 // Insert the chain's type into the list of parameter types, which may
5173 // mean appending it.
5174 {
5175 unsigned ArgNo = 0;
5176 FunctionType::param_iterator I = FTy->param_begin(),
5177 E = FTy->param_end();
5178
5179 do {
5180 if (ArgNo == NestArgNo)
5181 // Add the chain's type.
5182 NewTypes.push_back(NestTy);
5183
5184 if (I == E)
5185 break;
5186
5187 // Add the original type.
5188 NewTypes.push_back(*I);
5189
5190 ++ArgNo;
5191 ++I;
5192 } while (true);
5193 }
5194
5195 // Replace the trampoline call with a direct call. Let the generic
5196 // code sort out any function type mismatches.
5197 FunctionType *NewFTy =
5198 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
5199 AttributeList NewPAL =
5200 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
5201 Attrs.getRetAttrs(), NewArgAttrs);
5202
5204 Call.getOperandBundlesAsDefs(OpBundles);
5205
5206 Instruction *NewCaller;
5207 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
5208 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
5209 II->getUnwindDest(), NewArgs, OpBundles);
5210 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
5211 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
5212 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
5213 NewCaller =
5214 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
5215 CBI->getIndirectDests(), NewArgs, OpBundles);
5216 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
5217 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
5218 } else {
5219 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
5220 cast<CallInst>(NewCaller)->setTailCallKind(
5221 cast<CallInst>(Call).getTailCallKind());
5222 cast<CallInst>(NewCaller)->setCallingConv(
5223 cast<CallInst>(Call).getCallingConv());
5224 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
5225 }
5226 NewCaller->setDebugLoc(Call.getDebugLoc());
5227
5228 return NewCaller;
5229 }
5230 }
5231
5232 // Replace the trampoline call with a direct call. Since there is no 'nest'
5233 // parameter, there is no need to adjust the argument list. Let the generic
5234 // code sort out any function type mismatches.
5235 Call.setCalledFunction(FTy, NestF);
5236 return &Call;
5237}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
@ Scaled
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
BitTracker BT
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
#define DEBUG_TYPE
IRTranslator LLVM IR MI
static Type * getPromotedType(Type *Ty)
Return the specified type promoted as it would be to pass though a va_arg area.
static Instruction * createOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
static IntrinsicInst * findInitTrampolineFromAlloca(Value *TrampMem)
static bool removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, std::function< bool(const IntrinsicInst &)> IsStart)
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty)
static Instruction * reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If this min/max has a matching min/max operand with a constant, try to push the constant operand into...
static bool isIdempotentBinaryIntrinsic(Intrinsic::ID IID)
Helper to match idempotent binary intrinsics, namely, intrinsics where f(f(x, y), y) == f(x,...
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, const SimplifyQuery &SQ)
Return true if two values Op0 and Op1 are known to have the same sign.
static Value * optimizeModularFormat(CallInst *CI, IRBuilderBase &B)
static Instruction * moveAddAfterMinMax(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0.
static Instruction * simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombinerImpl &IC)
This function transforms launder.invariant.group and strip.invariant.group like: launder(launder(x)) ...
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands)
static std::optional< bool > getKnownSign(Value *Op, const SimplifyQuery &SQ)
static cl::opt< unsigned > GuardWideningWindow("instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard"))
static bool hasUndefSource(AnyMemTransferInst *MI)
Recognize a memcpy/memmove from a trivially otherwise unused alloca.
static Instruction * factorizeMinMaxTree(IntrinsicInst *II)
Reduce a sequence of min/max intrinsics with a common operand.
static Instruction * foldClampRangeOfTwo(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If we have a clamp pattern like max (min X, 42), 41 – where the output can only be one of two possibl...
static Value * simplifyReductionOperand(Value *Arg, bool CanReorderLanes)
static IntrinsicInst * findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem)
static Value * foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
static std::optional< bool > getKnownSignOrZero(Value *Op, const SimplifyQuery &SQ)
static Value * foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, const DataLayout &DL, InstCombiner::BuilderTy &Builder)
Fold an unsigned minimum of trailing or leading zero bits counts: umin(cttz(CtOp, ZeroUndef),...
static Value * foldIdempotentBinaryIntrinsicRecurrence(InstCombinerImpl &IC, IntrinsicInst *II)
Attempt to simplify value-accumulating recurrences of kind: umax.acc = phi i8 [ umax,...
static Instruction * foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC)
static Instruction * simplifyNeonTbl(IntrinsicInst &II, InstCombiner &IC, bool IsExtension)
Convert tbl/tbx intrinsics to shufflevector if the mask is constant, and at most two source operands ...
static Instruction * foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC)
static IntrinsicInst * findInitTrampoline(Value *Callee)
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, const Function &F, Type *Ty)
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
static Value * reassociateMinMaxWithConstants(IntrinsicInst *II, IRBuilderBase &Builder, const SimplifyQuery &SQ)
If this min/max has a constant operand and an operand that is a matching min/max with a constant oper...
static CallInst * canonicalizeConstantArg0ToArg1(CallInst &Call)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool inputDenormalIsIEEE(DenormalMode Mode)
Return true if it's possible to assume IEEE treatment of input denormals in F for Val.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static const Function * getCalledFunction(const Value *V)
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
bool isNegative() const
Definition APFloat.h:1431
void clearSign()
Definition APFloat.h:1280
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:230
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
Definition APSInt.h:312
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
Definition APSInt.h:304
This class represents any memset intrinsic.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:195
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
static LLVM_ABI AttributeSet get(LLVMContext &C, const AttrBuilder &B)
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes)
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
InstListType::reverse_iterator reverse_iterator
Definition BasicBlock.h:172
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:236
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:279
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:294
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:244
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:248
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:240
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setCallingConv(CallingConv::ID CC)
void setDoesNotThrow()
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isInAllocaArgument(unsigned ArgNo) const
Determine whether this argument is passed in an alloca.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
void setNotConvergent()
Value * getCalledOperand() const
void setAttributes(AttributeList A)
Set the attributes for this call.
Attribute getFnAttr(StringRef Kind) const
Get the attribute of a given kind for the function.
bool doesNotThrow() const
Determine if the call cannot unwind.
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
Value * getReturnedArgOperand() const
If one of the arguments has the 'returned' attribute, returns its operand value.
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
bool isMustTailCall() const
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:679
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:681
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:684
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:692
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition InstrTypes.h:871
Predicate getUnorderedPredicate() const
Definition InstrTypes.h:811
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition Constants.h:269
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc, Constant *DeactivationSymbol)
Return a pointer signed with the specified parameters.
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
LLVM_ABI ConstantRange zextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Record of a variable value-assignment, aka a non instruction representation of the dbg....
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
unsigned size() const
Definition DenseMap.h:110
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition DenseMap.h:174
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
Definition IRBuilder.h:107
This class represents an extension of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Type::subtype_iterator param_iterator
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool isConvergent() const
Determine if the call is convergent.
Definition Function.h:610
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
LLVM_ABI Value * getBasePtr() const
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
LLVM_ABI Value * getDerivedPtr() const
unsigned getDerivedPtrIndex() const
The index into the associate statepoint's argument list which contains the pointer whose relocation t...
std::vector< const GCRelocateInst * > getGCRelocates() const
Get list of all gc reloactes linked to this statepoint May contain several relocations for the same b...
Definition Statepoint.h:206
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition Value.h:576
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition Globals.cpp:328
PointerType * getType() const
Global values are always pointers.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
LLVM_ABI Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition IRBuilder.h:502
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2085
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition IRBuilder.h:2601
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2442
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition IRBuilder.h:2212
LLVM_ABI Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * SimplifyAnyMemSet(AnyMemSetInst *MI)
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitCallBrInst(CallBrInst &CBI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Value * foldReversedIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are reverses, try to pull the reverse after the intrinsic.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * visitFenceInst(FenceInst &FI)
Instruction * foldShuffledIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are unary shuffles with the same mask, try to shuffle after the int...
Instruction * visitInvokeInst(InvokeInst &II)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitVAEndInst(VAEndInst &I)
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * SimplifyAnyMemTransfer(AnyMemTransferInst *MI)
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * visitCallInst(CallInst &CI)
CallInst simplification.
The core instruction combiner logic.
SimplifyQuery SQ
unsigned ComputeMaxSignificantBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
DominatorTree & getDominatorTree() const
BlockFrequencyInfo * BFI
TargetLibraryInfo & TLI
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
const DataLayout & DL
DomConditionCache DC
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
DominatorTree & DT
ProfileSummaryInfo * PSI
BuilderTy & Builder
AssumptionCache & getAssumptionCache() const
OptimizationRemarkEmitter & ORE
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool isTerminator() const
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI std::optional< InstListType::iterator > getInsertionPointAfterDef()
Get the first insertion point at which the result of this instruction is defined.
LLVM_ABI bool isIdenticalTo(const Instruction *I) const LLVM_READONLY
Return true if the specified instruction is exactly identical to the current one.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Metadata node.
Definition Metadata.h:1078
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
static LLVM_ABI MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition Metadata.cpp:104
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
StringRef getName() const
Get a short "name" for the module.
Definition Module.h:269
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition Operator.h:43
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
bool isCommutative() const
Return true if the instruction is commutative.
Definition Operator.h:128
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
SmallBitVector & set()
bool test(unsigned Idx) const
bool all() const
Returns true if all bits are set.
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Class to represent struct types.
static LLVM_ABI bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
LLVM_ABI unsigned getIntegerBitWidth() const
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Definition Type.cpp:153
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:139
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:147
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Definition Use.cpp:35
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
This represents the llvm.va_end intrinsic.
static LLVM_ABI void ValueIsDeleted(Value *V)
Definition Value.cpp:1226
static LLVM_ABI void ValueIsRAUWd(Value *Old, Value *New)
Definition Value.cpp:1279
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
static constexpr uint64_t MaximumAlignment
Definition Value.h:830
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
static LLVM_ABI void dropDroppableUse(Use &U)
Remove the droppable use U.
Definition Value.cpp:226
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
Definition Value.h:829
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
Definition LLVMContext.h:55
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
Definition DebugInfo.h:195
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
constexpr double e
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI cl::opt< bool > EnableKnowledgeRetention
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
LLVM_ABI RetainedKnowledge simplifyRetainedKnowledge(AssumeInst *Assume, RetainedKnowledge RK, AssumptionCache *AC, DominatorTree *DT)
canonicalize the RetainedKnowledge RK.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
LLVM_ABI Value * getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI)
Gets the alignment argument for an aligned_alloc-like function, using either built-in knowledge based...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI RetainedKnowledge getKnowledgeFromOperandInAssume(AssumeInst &Assume, unsigned Idx)
Retreive the information help by Assume on the operand at index Idx.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
LLVM_ABI bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
Definition MathExtras.h:357
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition Local.h:252
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
LLVM_ABI FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1525
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
auto find_if_not(R &&Range, UnaryPredicate P)
Definition STLExtras.h:1775
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
bool isAtLeastOrStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI AssumeInst * buildAssumeFromKnowledge(ArrayRef< RetainedKnowledge > Knowledge, Instruction *CtxI, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Build and return a new assume created from the provided knowledge if the knowledge in the assume is f...
LLVM_ABI FPClassTest inverse_fabs(FPClassTest Mask)
Return the test mask which returns true after fabs is applied to the value.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
iterator_range< SplittingIterator > split(StringRef Str, StringRef Separator)
Split the specified string over a separator and return a range-compatible iterable over its partition...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Mod
The access may modify the value stored in memory.
Definition ModRef.h:34
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
@ Other
Any other memory.
Definition ModRef.h:68
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
OperandBundleDefT< Value * > OperandBundleDef
Definition AutoUpgrade.h:34
@ Add
Sum of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
Definition Loads.cpp:249
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
LLVM_ABI std::optional< APInt > getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref< const Value *(const Value *)> Mapper=[](const Value *V) { return V;})
Return the size of the requested allocation.
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define NC
Definition regutils.h:42
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
@ IEEE
IEEE-754 denormal numbers preserved.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition KnownBits.h:286
bool isAllOnes() const
Returns true if value is all one bits.
Definition KnownBits.h:83
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
Matching combinators.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition Alignment.h:130
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
ArrayRef< Use > Inputs
Represent one information held inside an operand bundle of an llvm.assume.
Attribute::AttrKind AttrKind
SelectPatternFlavor Flavor
const DataLayout & DL
const Instruction * CxtI
SimplifyQuery getWithInstruction(const Instruction *I) const