49#define DEBUG_TYPE "instcombine"
132 const APInt *SelTC, *SelFC;
141 const APInt &TC = *SelTC;
142 const APInt &FC = *SelFC;
143 if (!TC.
isZero() && !FC.isZero()) {
155 Constant *TCC = ConstantInt::get(SelType, TC);
156 Constant *FCC = ConstantInt::get(SelType, FC);
157 Constant *MaskC = ConstantInt::get(SelType, AndMask);
158 for (
auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add,
163 V = Builder.CreateAnd(V, MaskC);
164 return Builder.CreateBinOp(
Opc, TCC, V);
178 unsigned ValZeros = ValC.
logBase2();
179 unsigned AndZeros = AndMask.
logBase2();
180 bool ShouldNotVal = !TC.
isZero();
181 bool NeedShift = ValZeros != AndZeros;
188 if (CreateAnd + ShouldNotVal + NeedShift + NeedZExtTrunc >
194 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
198 if (ValZeros > AndZeros) {
199 V = Builder.CreateZExtOrTrunc(V, SelType);
200 V = Builder.CreateShl(V, ValZeros - AndZeros);
201 }
else if (ValZeros < AndZeros) {
202 V = Builder.CreateLShr(V, AndZeros - ValZeros);
203 V = Builder.CreateZExtOrTrunc(V, SelType);
205 V = Builder.CreateZExtOrTrunc(V, SelType);
211 V = Builder.CreateXor(V, ValC);
227 switch (
I->getOpcode()) {
228 case Instruction::Add:
229 case Instruction::FAdd:
230 case Instruction::Mul:
231 case Instruction::FMul:
232 case Instruction::And:
233 case Instruction::Or:
234 case Instruction::Xor:
236 case Instruction::Sub:
237 case Instruction::FSub:
238 case Instruction::FDiv:
239 case Instruction::Shl:
240 case Instruction::LShr:
241 case Instruction::AShr:
273 CondVTy->getElementCount() !=
285 if (TI->
getOpcode() != Instruction::BitCast &&
298 SI.getName() +
".v", &
SI);
303 Value *OtherOpT, *OtherOpF;
306 bool Swapped =
false) ->
Value * {
307 assert(!(Commute && Swapped) &&
308 "Commute and Swapped can't set at the same time");
313 MatchIsOpZero =
true;
318 MatchIsOpZero =
false;
323 if (!Commute && !Swapped)
332 MatchIsOpZero =
true;
337 MatchIsOpZero =
false;
351 FMF |=
SI.getFastMathFlags();
355 NewSelI->setFastMathFlags(FMF);
356 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
367 if (
TII && FII &&
TII->getIntrinsicID() == FII->getIntrinsicID()) {
369 if (
Value *MatchOp = getCommonOp(TI, FI,
true)) {
371 Builder.CreateSelect(
Cond, OtherOpT, OtherOpF,
"minmaxop", &
SI);
381 if (
TII->getIntrinsicID() == Intrinsic::ldexp) {
382 Value *LdexpVal0 =
TII->getArgOperand(0);
383 Value *LdexpExp0 =
TII->getArgOperand(1);
384 Value *LdexpVal1 = FII->getArgOperand(0);
385 Value *LdexpExp1 = FII->getArgOperand(1);
396 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
403 auto CreateCmpSel = [&](std::optional<CmpPredicate>
P,
412 SI.getName() +
".v", &
SI);
466 if (BO->getOpcode() == Instruction::SDiv ||
467 BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
473 SI.getName() +
".v", &
SI);
474 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
475 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
484 Type *ElementType = TGEP->getSourceElementType();
486 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
512 unsigned OpToFold = 0;
513 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
515 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
523 FMF =
SI.getFastMathFlags();
525 TVI->getOpcode(), TVI->getType(),
true, FMF.
noSignedZeros());
526 Value *OOp = TVI->getOperand(2 - OpToFold);
532 (!OOpIsAPInt || !
isSelect01(
C->getUniqueInteger(), *OOpC)))
545 Value *NewSel =
Builder.CreateSelect(
SI.getCondition(), Swapped ?
C : OOp,
546 Swapped ? OOp :
C,
"", &
SI);
574 if (
Instruction *R = TryFoldSelectIntoOp(
SI, TrueVal, FalseVal,
false))
577 if (
Instruction *R = TryFoldSelectIntoOp(
SI, FalseVal, TrueVal,
true))
590 const Value *CmpLHS = Cmp->getOperand(0);
591 const Value *CmpRHS = Cmp->getOperand(1);
598 if (CmpRHS == TVal) {
611 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, TVal, FVal);
617 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, TVal, FVal);
623 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, TVal, FVal);
633 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, TVal, FVal);
650 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
682 Constant *One = ConstantInt::get(SelType, 1);
683 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
684 Value *FullMask = Builder.CreateOr(
Y, MaskB);
685 Value *MaskedX = Builder.CreateAnd(
X, FullMask);
686 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
687 return new ZExtInst(ICmpNeZero, SelType);
709 const APInt *C2, *C1;
723 FI->setHasNoSignedWrap(
false);
724 FI->setHasNoUnsignedWrap(
false);
762 return Builder.CreateAShr(
X,
Y, IC->
getName(), IsExact);
790 const APInt &AndMask,
bool CreateAnd,
793 if (!TrueVal->getType()->isIntOrIntVectorTy())
796 unsigned C1Log = AndMask.
logBase2();
817 if (IdentityC ==
nullptr || !IdentityC->isNullValue())
822 bool NeedShift = C1Log != C2Log;
823 bool NeedZExtTrunc =
Y->getType()->getScalarSizeInBits() !=
824 V->getType()->getScalarSizeInBits();
827 if ((NeedShift + NeedXor + NeedZExtTrunc + CreateAnd) >
833 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
837 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
838 V = Builder.CreateShl(V, C2Log - C1Log);
839 }
else if (C1Log > C2Log) {
840 V = Builder.CreateLShr(V, C1Log - C2Log);
841 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
843 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
846 V = Builder.CreateXor(V, *C2);
848 auto *Res = Builder.CreateBinOp(BinOp->
getOpcode(),
Y, V);
850 BO->copyIRFlags(BinOp);
869 Constant *OrC = ConstantInt::get(Ty, *
C);
870 Value *NewSel = Builder.CreateSelect(
Cond, Zero, OrC,
"masksel", &Sel);
871 return BinaryOperator::CreateOr(
T, NewSel);
878 Constant *OrC = ConstantInt::get(Ty, *
C);
879 Value *NewSel = Builder.CreateSelect(
Cond, OrC, Zero,
"masksel", &Sel);
880 return BinaryOperator::CreateOr(
F, NewSel);
901 auto *CondVal =
SI.getCondition();
902 auto *TrueVal =
SI.getTrueValue();
903 auto *FalseVal =
SI.getFalseValue();
953 FalseValI->getOperand(0) ==
Y
955 : (FalseValI->getOperand(1) ==
Y ? 1 : 2),
964 const Value *TrueVal,
965 const Value *FalseVal,
985 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
986 ConstantInt::get(
A->getType(), 1));
1000 "Unexpected isUnsigned predicate!");
1006 bool IsNegative =
false;
1019 if (IsNegative && !TrueVal->hasOneUse() && !ICI->
hasOneUse())
1024 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
B);
1026 Result = Builder.CreateNeg(Result);
1035 Value *Cmp0 = Cmp->getOperand(0);
1036 Value *Cmp1 = Cmp->getOperand(1);
1056 return Builder.CreateBinaryIntrinsic(
1057 Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), 1));
1067 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1068 ConstantInt::get(Cmp0->
getType(), *
C));
1077 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1078 ConstantInt::get(Cmp0->
getType(), *
C));
1087 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1088 ConstantInt::get(Cmp0->
getType(), *
C));
1106 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat,
X,
Y);
1116 return Builder.CreateBinaryIntrinsic(
1126 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1,
Y);
1136 Value *Cmp0 = Cmp->getOperand(0);
1137 Value *Cmp1 = Cmp->getOperand(1);
1156 return Builder.CreateBinaryIntrinsic(
1157 Intrinsic::sadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), 1));
1174 Pred = Flipped->first;
1175 Cmp1 = Flipped->second;
1183 return Builder.CreateBinaryIntrinsic(
1184 Intrinsic::sadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), *
C));
1200 return Builder.CreateBinaryIntrinsic(Intrinsic::sadd_sat,
X, Cmp1);
1208 if (!Cmp->hasOneUse())
1230 Value *
A = Cmp->getOperand(0);
1231 Value *
B = Cmp->getOperand(1);
1244 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1245 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1252 TI->setHasNoUnsignedWrap(
false);
1253 if (!TI->hasNoSignedWrap())
1254 TI->setHasNoSignedWrap(TI->hasOneUse());
1255 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1262 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1263 Builder.getFalse());
1270 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1271 Builder.getFalse());
1278 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1279 Builder.getFalse());
1286 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1287 Builder.getFalse());
1314 if (!
match(FalseVal,
1330 II->getModule(), Intrinsic::cttz,
II->getType());
1386 unsigned SizeOfInBits =
Count->getType()->getScalarSizeInBits();
1392 II->dropPoisonGeneratingAnnotations();
1404 II->dropUBImplyingAttrsAndMetadata();
1415 if (!
TrueVal->getType()->isIntOrIntVectorTy())
1455 if (!
I || !
I->hasOneUse() ||
1464 for (Use &U :
I->operands()) {
1497 bool Swapped =
false;
1498 if (
Cmp.isEquivalence(
true)) {
1501 }
else if (!
Cmp.isEquivalence()) {
1505 Value *CmpLHS =
Cmp.getOperand(0), *CmpRHS =
Cmp.getOperand(1);
1506 auto ReplaceOldOpWithNewOp = [&](
Value *OldOp,
1507 Value *NewOp) -> Instruction * {
1554 if (CanReplaceCmpLHSWithRHS) {
1555 if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
1559 if (CanReplaceCmpRHSWithLHS) {
1560 if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
1577 if ((CanReplaceCmpLHSWithRHS &&
1580 &DropFlags) == TrueVal) ||
1581 (CanReplaceCmpRHSWithLHS &&
1584 &DropFlags) == TrueVal)) {
1585 for (Instruction *
I : DropFlags) {
1586 I->dropPoisonGeneratingAnnotations();
1707 if (Cmp00->
getType() !=
X->getType() &&
X->hasOneUse())
1715 else if (!
match(Cmp00,
1723 Value *ReplacementLow, *ReplacementHigh;
1760 std::swap(ReplacementLow, ReplacementHigh);
1766 "Unexpected predicate type.");
1774 "Unexpected predicate type.");
1776 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1792 if (
X->getType() != Sel0.
getType()) {
1802 assert(ReplacementLow && ReplacementHigh &&
1803 "Constant folding of ImmConstant cannot fail");
1809 Value *MaybeReplacedLow =
1815 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1859 Value *SelVal0, *SelVal1;
1868 auto MatchesSelectValue = [SelVal0, SelVal1](
Constant *
C) {
1869 return C->isElementWiseEqual(SelVal0) ||
C->isElementWiseEqual(SelVal1);
1873 if (MatchesSelectValue(C0))
1878 if (!FlippedStrictness)
1882 if (!MatchesSelectValue(FlippedStrictness->second))
1891 Cmp.getName() +
".inv");
1902 if (!
Cmp->hasOneUse())
1932 Value *TVal =
SI.getTrueValue();
1933 Value *FVal =
SI.getFalseValue();
1967 Op->dropPoisonGeneratingFlags();
1972 MMI && MMI->getLHS() == V &&
match(MMI->getRHS(),
m_APInt(OpC))) {
1974 {InvDomCR, ConstantRange(*OpC)});
1976 MMI->dropPoisonGeneratingAnnotations();
2039 foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal))
2071 Opcode = BOp->getOpcode();
2072 IsIntrinsic =
false;
2086 Opcode =
II->getIntrinsicID();
2094 const DataLayout &
DL =
Cmp->getDataLayout();
2103 if (C3 == FoldBinaryOpOrIntrinsic(C1, C2)) {
2106 }
else if (Flipped && C3 == FoldBinaryOpOrIntrinsic(Flipped->second, C2)) {
2108 RHS = Flipped->second;
2116 return Builder.CreateBinaryIntrinsic(Opcode, MinMax, C2);
2119 Value *BinOp =
Builder.CreateBinOp(BinOpc, MinMax, C2);
2124 if (BinOpc == Instruction::Add || BinOpc == Instruction::Sub ||
2125 BinOpc == Instruction::Mul) {
2128 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
true))
2129 BinOpInst->setHasNoSignedWrap();
2131 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
false))
2132 BinOpInst->setHasNoUnsignedWrap();
2150static Instruction *foldICmpUSubSatWithAndForMostSignificantBitCmp(
2156 const APInt *Constant1, *Constant2;
2174 auto *Ty =
A->getType();
2182 APInt AdjAP1 = *Constant1 - MostSignificantBit + 1;
2183 APInt AdjAP2 = *Constant2 - MostSignificantBit + 1;
2185 auto *Adj1 = ConstantInt::get(Ty, AdjAP1);
2186 auto *Adj2 = ConstantInt::get(Ty, AdjAP2);
2191 Constant *MSBConst = ConstantInt::get(Ty, MostSignificantBit);
2192 return BinaryOperator::CreateAnd(
Or, MSBConst);
2199 canonicalizeSPF(*ICI,
SI.getTrueValue(),
SI.getFalseValue(), *
this))
2202 if (
Value *V = foldSelectInstWithICmpConst(SI, ICI,
Builder))
2205 if (
Value *V = canonicalizeClampLike(SI, *ICI,
Builder, *
this))
2208 if (Instruction *NewSel =
2209 tryToReuseConstantFromSelectInComparison(SI, *ICI, *
this))
2211 if (Instruction *Folded =
2212 foldICmpUSubSatWithAndForMostSignificantBitCmp(SI, ICI,
Builder))
2223 if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *
this))
2233 InstCombiner::BuilderTy::InsertPointGuard Guard(
Builder);
2238 SI.swapProfMetadata();
2245 if (Instruction *V =
2252 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal,
Builder))
2255 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal,
Builder))
2261 if (
Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *
this))
2289 if (
C ==
A ||
C ==
B) {
2304 Value *CondVal =
SI.getCondition();
2309 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
2313 if ((TI->getOpcode() == Instruction::Sub &&
2314 FI->getOpcode() == Instruction::Add) ||
2315 (TI->getOpcode() == Instruction::FSub &&
2316 FI->getOpcode() == Instruction::FAdd)) {
2319 }
else if ((FI->getOpcode() == Instruction::Sub &&
2320 TI->getOpcode() == Instruction::Add) ||
2321 (FI->getOpcode() == Instruction::FSub &&
2322 TI->getOpcode() == Instruction::FAdd)) {
2328 Value *OtherAddOp =
nullptr;
2329 if (SubOp->getOperand(0) == AddOp->
getOperand(0)) {
2331 }
else if (SubOp->getOperand(0) == AddOp->
getOperand(1)) {
2339 if (
SI.getType()->isFPOrFPVectorTy()) {
2340 NegVal = Builder.
CreateFNeg(SubOp->getOperand(1));
2343 Flags &= SubOp->getFastMathFlags();
2344 NegInst->setFastMathFlags(Flags);
2347 NegVal = Builder.
CreateNeg(SubOp->getOperand(1));
2350 Value *NewTrueOp = OtherAddOp;
2351 Value *NewFalseOp = NegVal;
2355 SI.getName() +
".p", &
SI);
2357 if (
SI.getType()->isFPOrFPVectorTy()) {
2359 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
2362 Flags &= SubOp->getFastMathFlags();
2366 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
2379 Value *CondVal =
SI.getCondition();
2391 auto IsSignedSaturateLimit = [&](
Value *Limit,
bool IsAdd) {
2401 auto IsZeroOrOne = [](
const APInt &
C) {
return C.isZero() ||
C.isOne(); };
2418 IsMinMax(TrueVal, FalseVal))
2425 IsMinMax(FalseVal, TrueVal))
2431 IsMinMax(TrueVal, FalseVal))
2436 IsMinMax(FalseVal, TrueVal))
2441 IsMinMax(FalseVal, TrueVal))
2446 IsMinMax(TrueVal, FalseVal))
2454 if (
II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2457 NewIntrinsicID = Intrinsic::uadd_sat;
2458 else if (
II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2461 NewIntrinsicID = Intrinsic::usub_sat;
2462 else if (
II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2463 IsSignedSaturateLimit(TrueVal,
true))
2472 NewIntrinsicID = Intrinsic::sadd_sat;
2473 else if (
II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2474 IsSignedSaturateLimit(TrueVal,
false))
2483 NewIntrinsicID = Intrinsic::ssub_sat;
2488 NewIntrinsicID,
SI.getType());
2504 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2514 (!Cmp ||
Cmp->getOperand(0)->getType() != SmallType))
2538 Value *CondVal =
SI.getCondition();
2544 unsigned NumElts = CondValTy->getNumElements();
2546 Mask.reserve(NumElts);
2547 for (
unsigned i = 0; i != NumElts; ++i) {
2557 Mask.push_back(i + NumElts);
2610 if (TVal ==
A || TVal ==
B || FVal ==
A || FVal ==
B)
2627 if (TSrc ==
C && FSrc ==
D) {
2631 }
else if (TSrc ==
D && FSrc ==
C) {
2673 if (Extract->getIndices()[0] !=
I)
2682 if (
Select->getCondition() ==
SI.getCondition())
2683 if (
Select->getFalseValue() ==
SI.getTrueValue() ||
2684 Select->getTrueValue() ==
SI.getFalseValue())
2688 auto *CmpXchg = isExtractFromCmpXchg(
SI.getCondition(), 1);
2695 if (
auto *
X = isExtractFromCmpXchg(
SI.getTrueValue(), 0))
2696 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getFalseValue())
2697 return SI.getFalseValue();
2702 if (
auto *
X = isExtractFromCmpXchg(
SI.getFalseValue(), 0))
2703 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getTrueValue())
2704 return SI.getFalseValue();
2728 Value *SV0, *SV1, *SA0, *SA1;
2737 if (Or0->
getOpcode() == BinaryOperator::LShr) {
2743 Or1->
getOpcode() == BinaryOperator::LShr &&
2744 "Illegal or(shift,shift) pair");
2759 bool IsFshl = (ShAmt == SA0);
2761 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2781 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2803 assert(TC != FC &&
"Expected equal select arms to simplify");
2807 bool IsTrueIfSignSet;
2825 Value *MagArg = ConstantFP::get(SelType,
abs(*TC));
2844 I->copyIRFlags(&Sel);
2847 M, Intrinsic::vector_reverse,
V->getType());
2855 return createSelReverse(
C,
X,
Y);
2859 return createSelReverse(
C,
X, FVal);
2864 return createSelReverse(
C, TVal,
Y);
2871 unsigned NumElts = VecTy->getNumElements();
2872 APInt PoisonElts(NumElts, 0);
2890 return new ShuffleVectorInst(
X, NewSel, Mask);
2895 return new ShuffleVectorInst(NewSel,
Y, Mask);
2904 return new ShuffleVectorInst(
X, NewSel, Mask);
2909 return new ShuffleVectorInst(NewSel,
Y, Mask);
2921 auto *IDomNode = DT[BB]->getIDom();
2927 Value *IfTrue, *IfFalse;
2943 if (TrueSucc == FalseSucc)
2965 if (!DT.
dominates(Insn, Pred->getTerminator()))
2984 CandidateBlocks.
insert(
I->getParent());
2987 if (
auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
3000 Value *CondVal =
SI.getCondition();
3005 Value *
Op, *RemRes, *Remainder;
3007 bool TrueIfSigned =
false;
3021 return BinaryOperator::CreateAnd(
Op,
Add);
3033 return FoldToBitwiseAnd(Remainder);
3042 return FoldToBitwiseAnd(ConstantInt::get(RemRes->
getType(), 2));
3052 Value *InnerCondVal =
SI.getCondition();
3053 Value *InnerTrueVal =
SI.getTrueValue();
3054 Value *InnerFalseVal =
SI.getFalseValue();
3056 "The type of inner condition must match with the outer.");
3058 return *Implied ? InnerTrueVal : InnerFalseVal;
3065 assert(
Op->getType()->isIntOrIntVectorTy(1) &&
3066 "Op must be either i1 or vector of i1.");
3067 if (
SI.getCondition()->getType() !=
Op->getType())
3069 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(SI,
Op, IsAnd,
DL)) {
3084 Value *CondVal =
SI.getCondition();
3086 bool ChangedFMF =
false;
3087 for (
bool Swap : {
false,
true}) {
3125 if (FMF.
noNaNs() && !
SI.hasNoNaNs()) {
3126 SI.setHasNoNaNs(
true);
3129 if (FMF.
noInfs() && !
SI.hasNoInfs()) {
3130 SI.setHasNoInfs(
true);
3137 SI.setHasNoNaNs(
true);
3151 if (!
SI.hasNoSignedZeros() &&
3154 if (!
SI.hasNoNaNs() &&
3172 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
3181 for (
bool Swap : {
false,
true}) {
3197 if (Swap == TrueIfSigned && !CondVal->
hasOneUse() && !
TrueVal->hasOneUse())
3203 if (Swap != TrueIfSigned)
3208 return ChangedFMF ? &
SI :
nullptr;
3230 Value *XBiasedHighBits =
SI.getFalseValue();
3243 const APInt *LowBitMaskCst;
3248 const APInt *BiasCst, *HighBitMaskCst;
3249 if (!
match(XBiasedHighBits,
3252 !
match(XBiasedHighBits,
3257 if (!LowBitMaskCst->
isMask())
3260 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
3261 if (InvertedLowBitMaskCst != *HighBitMaskCst)
3264 APInt AlignmentCst = *LowBitMaskCst + 1;
3266 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
3271 if (*BiasCst == *LowBitMaskCst &&
impliesPoison(XBiasedHighBits,
X))
3272 return XBiasedHighBits;
3277 Type *Ty =
X->getType();
3278 Value *XOffset = Builder.
CreateAdd(
X, ConstantInt::get(Ty, *LowBitMaskCst),
3279 X->getName() +
".biased");
3280 Value *
R = Builder.
CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
3286struct DecomposedSelect {
3298foldSelectOfSymmetricSelect(
SelectInst &OuterSelVal,
3301 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
3329 DecomposedSelect OuterSel;
3336 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
3344 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
3352 DecomposedSelect InnerSel;
3353 if (!
match(InnerSelVal,
3360 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3362 Value *AltCond =
nullptr;
3363 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](
auto m_InnerCond) {
3368 return IsAndVariant ?
match(OuterSel.Cond,
3378 if (matchOuterCond(
m_Specific(InnerSel.Cond))) {
3383 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3384 InnerSel.Cond = NotInnerCond;
3389 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
3390 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
3393 IsAndVariant ? SelInner : InnerSel.TrueVal,
3394 !IsAndVariant ? SelInner : InnerSel.FalseVal);
3400static bool impliesPoisonOrCond(
const Value *ValAssumedPoison,
const Value *V,
3412 if (ICmp->hasSameSign() &&
3431 Value *CondVal =
SI.getCondition();
3434 Type *SelType =
SI.getType();
3451 if (impliesPoisonOrCond(FalseVal, CondVal,
false)) {
3453 return BinaryOperator::CreateOr(CondVal, FalseVal);
3457 impliesPoisonOrCond(FalseVal,
B,
false)) {
3472 auto AndFactorization = [&](
Value *Common,
Value *InnerCond,
3474 bool SelFirst =
false) -> Instruction * {
3475 Value *InnerSel =
Builder.CreateSelect(InnerCond, One, InnerVal);
3478 if (FalseLogicAnd || (CondLogicAnd && Common ==
A))
3481 return BinaryOperator::CreateAnd(Common, InnerSel);
3485 return AndFactorization(
A,
B,
D);
3487 return AndFactorization(
A,
B,
C);
3489 return AndFactorization(
B,
A,
D);
3491 return AndFactorization(
B,
A,
C, CondLogicAnd && FalseLogicAnd);
3496 if (impliesPoisonOrCond(TrueVal, CondVal,
true)) {
3498 return BinaryOperator::CreateAnd(CondVal, TrueVal);
3502 impliesPoisonOrCond(TrueVal,
B,
true)) {
3517 auto OrFactorization = [&](
Value *Common,
Value *InnerCond,
3519 bool SelFirst =
false) -> Instruction * {
3520 Value *InnerSel =
Builder.CreateSelect(InnerCond, InnerVal, Zero);
3523 if (TrueLogicOr || (CondLogicOr && Common ==
A))
3526 return BinaryOperator::CreateOr(Common, InnerSel);
3530 return OrFactorization(
A,
B,
D);
3532 return OrFactorization(
A,
B,
C);
3534 return OrFactorization(
B,
A,
D);
3536 return OrFactorization(
B,
A,
C, CondLogicOr && TrueLogicOr);
3597 return BinaryOperator::CreateXor(
A,
B);
3615 Value *AndV =
Builder.CreateSelect(NotC, FalseVal, Zero);
3631 auto *FI =
new FreezeInst(*
Y, (*Y)->getName() +
".fr");
3637 if (
auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd,
3648 if (Res && *Res ==
false)
3654 if (Res && *Res ==
false)
3663 if (Res && *Res ==
true)
3669 if (Res && *Res ==
true)
3684 bool MayNeedFreeze = SelCond && SelFVal &&
3685 match(SelFVal->getTrueValue(),
3690 Value *C2 =
nullptr, *A2 =
nullptr, *B2 =
nullptr;
3694 }
else if (
match(FalseVal,
3701 return createSelectInstWithUnknownProfile(
C,
A,
B);
3715 bool MayNeedFreeze = SelCond && SelFVal &&
3716 match(SelCond->getTrueValue(),
3721 Value *C2 =
nullptr, *A2 =
nullptr, *B2 =
nullptr;
3731 return createSelectInstWithUnknownProfile(
C,
B,
A);
3746 bool &ShouldDropNoWrap) {
3769 ShouldDropNoWrap =
false;
3775 auto MatchForward = [&](
Value *CommonAncestor) {
3776 const APInt *
C =
nullptr;
3777 if (CtlzOp == CommonAncestor)
3780 ShouldDropNoWrap =
true;
3785 ShouldDropNoWrap =
true;
3796 const APInt *
C =
nullptr;
3797 Value *CommonAncestor;
3798 if (MatchForward(Cond0)) {
3802 if (!MatchForward(CommonAncestor))
3840 Type *SelType =
SI.getType();
3847 Value *Cond0, *Ctlz, *CtlzOp;
3856 bool ShouldDropNoWrap;
3863 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp,
BitWidth,
3867 if (ShouldDropNoWrap) {
3901 Value *TV =
SI.getTrueValue();
3902 Value *FV =
SI.getFalseValue();
3923 auto FlippedPredAndConst =
3925 if (!FlippedPredAndConst)
3927 Pred = FlippedPredAndConst->first;
3928 RHS = FlippedPredAndConst->second;
3945 bool Replace =
false;
3946 CmpPredicate ExtendedCmpPredicate;
3966 CmpPredicate FalseBranchSelectPredicate;
3967 const APInt *InnerTV, *InnerFV;
3973 FalseBranchSelectPredicate =
3978 if (!InnerTV->
isOne()) {
3994 CmpPredicate InnerPred;
3996 const APInt *InnerTV, *InnerFV;
4005 bool CanSubOne = IsSigned ? !
C->isMinSignedValue() : !
C->isMinValue();
4007 APInt Cminus1 = *
C - 1;
4017 bool CanAddOne = IsSigned ? !
C->isMaxSignedValue() : !
C->isMaxValue();
4019 APInt Cplus1 = *
C + 1;
4028 Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp;
4031 SI,
Builder.CreateIntrinsic(
SI.getType(), IID, {LHS, RHS}));
4079 return Op->getType()->isIntOrIntVectorTy() &&
4080 hasAffectedValue(Op, Affected, Depth + 1);
4094 if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs())
4097 auto TryFoldIntoAddConstant =
4109 Swapped ?
X : Z,
"", &
SI);
4140 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
false);
4144 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
true);
4160 bool CreateAnd =
false;
4162 Value *CmpLHS, *CmpRHS;
4170 const APInt *AndRHS;
4177 AndMask = Res->Mask;
4190 V = Trunc->getOperand(0);
4191 AndMask =
APInt(
V->getType()->getScalarSizeInBits(), 1);
4193 CreateAnd = !Trunc->hasNoUnsignedWrap();
4202 CreateAnd, Builder))
4206 CreateAnd, Builder))
4213 Value *CondVal =
SI.getCondition();
4216 Type *SelType =
SI.getType();
4219 SQ.getWithInstruction(&SI)))
4222 if (Instruction *
I = canonicalizeSelectToShuffle(SI))
4225 if (Instruction *
I = canonicalizeScalarSelectOfVecs(SI, *
this))
4267 return new ZExtInst(CondVal, SelType);
4271 return new SExtInst(CondVal, SelType);
4276 return new ZExtInst(NotCond, SelType);
4282 return new SExtInst(NotCond, SelType);
4290 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
4292 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
4293 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
4301 Value *NewCond =
Builder.CreateFCmpFMF(InvPred, Cmp0, Cmp1, FCmp,
4302 FCmp->getName() +
".inv");
4304 FastMathFlags FMF =
SI.getFastMathFlags();
4305 if (FCmp->hasNoNaNs())
4307 if (FCmp->hasNoInfs())
4310 Builder.CreateSelectFMF(NewCond, FalseVal, TrueVal, FMF);
4329 Value *MatchCmp0 =
nullptr;
4330 Value *MatchCmp1 =
nullptr;
4342 if (Cmp0 == MatchCmp0 &&
4343 matchFMulByZeroIfResultEqZero(*
this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
4344 SI, SIFPOp->hasNoSignedZeros()))
4356 if (SIFPOp->hasNoNaNs() &&
4357 (SIFPOp->hasNoSignedZeros() ||
4358 (SIFPOp->hasOneUse() &&
4363 Builder.CreateBinaryIntrinsic(Intrinsic::maxnum,
X,
Y, &SI);
4365 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4366 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4373 Builder.CreateBinaryIntrinsic(Intrinsic::minnum,
X,
Y, &SI);
4375 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4376 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4384 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *
this))
4396 if (
Value *V = foldSelectBitTest(SI, CondVal, TrueVal, FalseVal,
Builder,
SQ))
4399 if (Instruction *
Add = foldAddSubSelect(SI,
Builder))
4401 if (Instruction *
Add = foldOverflowingAddSubSelect(SI,
Builder))
4411 if (TI && FI && TI->getOpcode() == FI->getOpcode())
4418 if (Instruction *
I = foldSelectWithSRem(SI, *
this,
Builder))
4423 auto SelectGepWithBase = [&](GetElementPtrInst *Gep,
Value *
Base,
4424 bool Swap) -> GetElementPtrInst * {
4438 Builder.CreateSelect(CondVal, NewT, NewF,
SI.getName() +
".idx", &SI);
4443 if (
auto *NewGep = SelectGepWithBase(TrueGep, FalseVal,
false))
4446 if (
auto *NewGep = SelectGepWithBase(FalseGep, TrueVal,
true))
4462 RHS2, SI, SPF,
RHS))
4466 RHS2, SI, SPF,
LHS))
4475 bool IsCastNeeded =
LHS->
getType() != SelType;
4480 ((CmpLHS !=
LHS && CmpLHS !=
RHS) ||
4481 (CmpRHS !=
LHS && CmpRHS !=
RHS)))) {
4495 Value *NewCast =
Builder.CreateCast(CastOp, NewSI, SelType);
4507 if (TrueSI->getCondition()->getType() == CondVal->
getType()) {
4510 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4511 *TrueSI, CondVal,
true,
DL))
4518 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
4519 Value *
And =
Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
4527 if (FalseSI->getCondition()->getType() == CondVal->
getType()) {
4530 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4531 *FalseSI, CondVal,
false,
DL))
4535 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
4536 Value *
Or =
Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
4550 BinaryOperator *TrueBO;
4553 if (TrueBOSI->getCondition() == CondVal) {
4560 if (TrueBOSI->getCondition() == CondVal) {
4569 BinaryOperator *FalseBO;
4572 if (FalseBOSI->getCondition() == CondVal) {
4579 if (FalseBOSI->getCondition() == CondVal) {
4592 SI.swapProfMetadata();
4613 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI,
Builder))
4617 if (
Value *V = foldSelectCmpXchg(SI))
4623 if (Instruction *Funnel = foldSelectFunnelShift(SI,
Builder))
4626 if (Instruction *Copysign = foldSelectToCopysign(SI,
Builder))
4629 if (Instruction *PN = foldSelectToPhi(SI,
DT,
Builder))
4632 if (
Value *V = foldRoundUpIntegerWithPow2Alignment(SI,
Builder))
4647 MaskedInst->setArgOperand(2, FalseVal );
4662 bool CanMergeSelectIntoLoad =
false;
4666 if (CanMergeSelectIntoLoad) {
4669 MaskedInst->setArgOperand(2, TrueVal );
4674 if (Instruction *
I = foldSelectOfSymmetricSelect(SI,
Builder))
4677 if (Instruction *
I = foldNestedSelects(SI,
Builder))
4687 if (Instruction *
I = foldBitCeil(SI,
Builder, *
this))
4701 auto FoldSelectWithAndOrCond = [&](
bool IsAnd,
Value *
A,
4702 Value *
B) -> Instruction * {
4704 SQ.getWithInstruction(&SI))) {
4712 if (NewTrueVal == TrueVal && NewFalseVal == FalseVal &&
4723 if (
Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *
this))
4725 IsAnd ? FalseVal : V);
4733 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4735 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
RHS,
LHS))
4738 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4740 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
RHS,
LHS))
4746 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4749 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4756 return BinaryOperator::CreateXor(CondVal, FalseVal);
4763 CondContext CC(CondVal);
4765 CC.AffectedValues.insert(V);
4767 SimplifyQuery Q =
SQ.getWithInstruction(&SI).getWithCondContext(CC);
4768 if (!CC.AffectedValues.empty()) {
4770 hasAffectedValue(TrueVal, CC.AffectedValues, 0)) {
4779 hasAffectedValue(FalseVal, CC.AffectedValues, 0)) {
4794 if (TrueVal == Trunc)
4796 if (FalseVal == Trunc)
4800 if (TrueVal == Trunc)
4803 if (FalseVal == Trunc)
4807 Value *MaskedLoadPtr;
4812 TrueVal->getType(), MaskedLoadPtr,
4814 CondVal, FalseVal));
4819 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
4821 Value *CmpLHS, *CmpRHS;
4838 SI.getModule(), Intrinsic::scmp, {SI.getType(), SI.getType()});
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const HexagonInstrInfo * TII
This file provides internal interfaces used to implement the InstCombine.
static Value * foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder, const SimplifyQuery &SQ)
Try to fold a select to a min/max intrinsic.
static Value * canonicalizeSaturatedAddSigned(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Value * canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Instruction * foldSetClearBits(SelectInst &Sel, InstCombiner::BuilderTy &Builder)
Canonicalize a set or clear of a masked set of constant bits to select-of-constants form.
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond,...
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as (a > b) ?
static Value * foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
Try to match patterns with select and subtract as absolute difference.
static Instruction * foldSelectZeroOrFixedOp(SelectInst &SI, InstCombinerImpl &IC)
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI, InstCombinerImpl &IC)
Replace a select operand based on an equality comparison with the identity constant of a binop.
static Value * foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
static Value * foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); iff C1 is a mask and th...
static Value * canonicalizeSaturatedAddUnsigned(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Value * foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 (select (icmp slt x...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static Value * foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) into: IF C2 u>= C1 (BinOp Y,...
This file provides the interface for the instcombine pass implementation.
Machine Check Debug Module
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static const uint32_t IV[8]
bool bitwiseIsEqual(const APFloat &RHS) const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isMinValue() const
Determine if this is the smallest unsigned value.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned countLeadingZeros() const
unsigned logBase2() const
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
bool isMaxValue() const
Determine if this is the largest unsigned value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
An instruction that atomically checks whether a specified value is in a memory location,...
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
bool isNonStrictPredicate() const
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
bool isIntPredicate() const
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
static LLVM_ABI ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange binaryNot() const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
LLVM_ABI ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Tagged union holding either a T or a Error.
Utility class for floating point operations which can have information about relaxed accuracy require...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
bool noSignedZeros() const
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
void setNoInfs(bool B=true)
This class represents a freeze function that returns random concrete value if an operand is either a ...
Value * getPointerOperand()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Type * getSourceElementType() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
static CmpPredicate getSwappedCmpPredicate(CmpPredicate Pred)
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
CmpPredicate getInverseCmpPredicate() const
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Common base class shared among various IRBuilders.
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Instruction * foldSelectToCmp(SelectInst &SI)
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const
Check if fmul MulVal, +0.0 will yield +0.0 (or signed zero is ignorable).
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldSelectEqualityTest(SelectInst &SI)
Instruction * foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldVectorSelect(SelectInst &Sel)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
Instruction * foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI)
We have (select c, TI, FI), and we know that TI and FI have the same opcode.
bool replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth=0)
Instruction * foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldSelectIntoOp(SelectInst &SI, Value *, Value *)
Try to fold the select into one of the operands to allow further optimization.
Value * foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, Value *FalseVal)
Instruction * visitSelectInst(SelectInst &SI)
Instruction * foldSelectOfBools(SelectInst &SI)
Instruction * foldSelectExtConst(SelectInst &Sel)
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool isSameOperationAs(const Instruction *I, unsigned flags=0) const LLVM_READONLY
This function determines if the specified instruction executes the same operation as the current one.
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setHasNoNaNs(bool B)
Set or clear the no-nans flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
void swapValues()
Swap the true and false values of the select instruction.
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool contains(ConstPtrType Ptr) const
A SetVector that performs no allocations if smaller than a certain size.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the maximum value of an extendable operand.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOpc_match< LHS, RHS, false > m_BinOp(unsigned Opcode, const LHS &L, const RHS &R)
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones, false >, ValTy, Instruction::Xor, true > m_NotForbidPoison(const ValTy &V)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
CommutativeBinaryIntrinsic_match< IntrID, T0, T1 > m_c_Intrinsic(const T0 &Op0, const T1 &Op1)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
ap_match< APFloat > m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedLoad Intrinsic.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ap_match< APInt > m_APIntForbidPoison(const APInt *&Res)
Match APInt while forbidding poison in splat vector constants.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
auto m_c_LogicalOp(const LHS &L, const RHS &R)
Matches either L && R or L || R with LHS and RHS in either order.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedGather Intrinsic.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f....
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst, true > m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
ElementType
The element type of an SRV or UAV resource.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr unsigned MaxAnalysisRecursionDepth
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
FunctionAddr VTableAddr Count
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
const APInt & getConstant() const
Returns the value when all bits have a known value.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithInstruction(const Instruction *I) const