49#define DEBUG_TYPE "instcombine"
132 const APInt *SelTC, *SelFC;
141 const APInt &TC = *SelTC;
142 const APInt &FC = *SelFC;
143 if (!TC.
isZero() && !FC.isZero()) {
155 Constant *TCC = ConstantInt::get(SelType, TC);
156 Constant *FCC = ConstantInt::get(SelType, FC);
157 Constant *MaskC = ConstantInt::get(SelType, AndMask);
158 for (
auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add,
163 V = Builder.CreateAnd(V, MaskC);
164 return Builder.CreateBinOp(
Opc, TCC, V);
178 unsigned ValZeros = ValC.
logBase2();
179 unsigned AndZeros = AndMask.
logBase2();
180 bool ShouldNotVal = !TC.
isZero();
181 bool NeedShift = ValZeros != AndZeros;
188 if (CreateAnd + ShouldNotVal + NeedShift + NeedZExtTrunc >
194 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
198 if (ValZeros > AndZeros) {
199 V = Builder.CreateZExtOrTrunc(V, SelType);
200 V = Builder.CreateShl(V, ValZeros - AndZeros);
201 }
else if (ValZeros < AndZeros) {
202 V = Builder.CreateLShr(V, AndZeros - ValZeros);
203 V = Builder.CreateZExtOrTrunc(V, SelType);
205 V = Builder.CreateZExtOrTrunc(V, SelType);
211 V = Builder.CreateXor(V, ValC);
227 switch (
I->getOpcode()) {
228 case Instruction::Add:
229 case Instruction::FAdd:
230 case Instruction::Mul:
231 case Instruction::FMul:
232 case Instruction::And:
233 case Instruction::Or:
234 case Instruction::Xor:
236 case Instruction::Sub:
237 case Instruction::FSub:
238 case Instruction::FDiv:
239 case Instruction::Shl:
240 case Instruction::LShr:
241 case Instruction::AShr:
273 CondVTy->getElementCount() !=
285 if (TI->
getOpcode() != Instruction::BitCast &&
298 SI.getName() +
".v", &
SI);
303 Value *OtherOpT, *OtherOpF;
306 bool Swapped =
false) ->
Value * {
307 assert(!(Commute && Swapped) &&
308 "Commute and Swapped can't set at the same time");
313 MatchIsOpZero =
true;
318 MatchIsOpZero =
false;
323 if (!Commute && !Swapped)
332 MatchIsOpZero =
true;
337 MatchIsOpZero =
false;
351 FMF |=
SI.getFastMathFlags();
355 NewSelI->setFastMathFlags(FMF);
356 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
367 if (
TII && FII &&
TII->getIntrinsicID() == FII->getIntrinsicID()) {
369 if (
Value *MatchOp = getCommonOp(TI, FI,
true)) {
371 Builder.CreateSelect(
Cond, OtherOpT, OtherOpF,
"minmaxop", &
SI);
381 if (
TII->getIntrinsicID() == Intrinsic::ldexp) {
382 Value *LdexpVal0 =
TII->getArgOperand(0);
383 Value *LdexpExp0 =
TII->getArgOperand(1);
384 Value *LdexpVal1 = FII->getArgOperand(0);
385 Value *LdexpExp1 = FII->getArgOperand(1);
396 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
403 auto CreateCmpSel = [&](std::optional<CmpPredicate>
P,
412 SI.getName() +
".v", &
SI);
466 if (BO->getOpcode() == Instruction::SDiv ||
467 BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
473 SI.getName() +
".v", &
SI);
474 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
475 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
484 Type *ElementType = TGEP->getSourceElementType();
486 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
512 unsigned OpToFold = 0;
513 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
515 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
523 FMF =
SI.getFastMathFlags();
525 TVI->getOpcode(), TVI->getType(),
true, FMF.
noSignedZeros());
526 Value *OOp = TVI->getOperand(2 - OpToFold);
532 (!OOpIsAPInt || !
isSelect01(
C->getUniqueInteger(), *OOpC)))
545 Value *NewSel =
Builder.CreateSelect(
SI.getCondition(), Swapped ?
C : OOp,
546 Swapped ? OOp :
C,
"", &
SI);
574 if (
Instruction *R = TryFoldSelectIntoOp(
SI, TrueVal, FalseVal,
false))
577 if (
Instruction *R = TryFoldSelectIntoOp(
SI, FalseVal, TrueVal,
true))
590 const Value *CmpLHS = Cmp->getOperand(0);
591 const Value *CmpRHS = Cmp->getOperand(1);
598 if (CmpRHS == TVal) {
611 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, TVal, FVal);
617 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, TVal, FVal);
623 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, TVal, FVal);
633 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, TVal, FVal);
650 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
682 Constant *One = ConstantInt::get(SelType, 1);
683 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
684 Value *FullMask = Builder.CreateOr(
Y, MaskB);
685 Value *MaskedX = Builder.CreateAnd(
X, FullMask);
686 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
687 return new ZExtInst(ICmpNeZero, SelType);
709 const APInt *C2, *C1;
723 FI->setHasNoSignedWrap(
false);
724 FI->setHasNoUnsignedWrap(
false);
762 return Builder.CreateAShr(
X,
Y, IC->
getName(), IsExact);
790 const APInt &AndMask,
bool CreateAnd,
793 if (!TrueVal->getType()->isIntOrIntVectorTy())
796 unsigned C1Log = AndMask.
logBase2();
817 if (IdentityC ==
nullptr || !IdentityC->isNullValue())
822 bool NeedShift = C1Log != C2Log;
823 bool NeedZExtTrunc =
Y->getType()->getScalarSizeInBits() !=
824 V->getType()->getScalarSizeInBits();
827 if ((NeedShift + NeedXor + NeedZExtTrunc + CreateAnd) >
833 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
837 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
838 V = Builder.CreateShl(V, C2Log - C1Log);
839 }
else if (C1Log > C2Log) {
840 V = Builder.CreateLShr(V, C1Log - C2Log);
841 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
843 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
846 V = Builder.CreateXor(V, *C2);
848 auto *Res = Builder.CreateBinOp(BinOp->
getOpcode(),
Y, V);
850 BO->copyIRFlags(BinOp);
869 Constant *OrC = ConstantInt::get(Ty, *
C);
870 Value *NewSel = Builder.CreateSelect(
Cond, Zero, OrC,
"masksel", &Sel);
871 return BinaryOperator::CreateOr(
T, NewSel);
878 Constant *OrC = ConstantInt::get(Ty, *
C);
879 Value *NewSel = Builder.CreateSelect(
Cond, OrC, Zero,
"masksel", &Sel);
880 return BinaryOperator::CreateOr(
F, NewSel);
901 auto *CondVal =
SI.getCondition();
902 auto *TrueVal =
SI.getTrueValue();
903 auto *FalseVal =
SI.getFalseValue();
953 FalseValI->getOperand(0) ==
Y
955 : (FalseValI->getOperand(1) ==
Y ? 1 : 2),
964 const Value *TrueVal,
965 const Value *FalseVal,
985 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
986 ConstantInt::get(
A->getType(), 1));
1000 "Unexpected isUnsigned predicate!");
1006 bool IsNegative =
false;
1019 if (IsNegative && !TrueVal->hasOneUse() && !ICI->
hasOneUse())
1024 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
B);
1026 Result = Builder.CreateNeg(Result);
1032 if (!Cmp->hasOneUse())
1036 Value *Cmp0 = Cmp->getOperand(0);
1037 Value *Cmp1 = Cmp->getOperand(1);
1057 return Builder.CreateBinaryIntrinsic(
1058 Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), 1));
1068 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1069 ConstantInt::get(Cmp0->
getType(), *
C));
1078 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1079 ConstantInt::get(Cmp0->
getType(), *
C));
1088 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1089 ConstantInt::get(Cmp0->
getType(), *
C));
1107 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat,
X,
Y);
1117 return Builder.CreateBinaryIntrinsic(
1127 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1,
Y);
1143 Value *
A = Cmp->getOperand(0);
1144 Value *
B = Cmp->getOperand(1);
1157 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1158 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1165 TI->setHasNoUnsignedWrap(
false);
1166 if (!TI->hasNoSignedWrap())
1167 TI->setHasNoSignedWrap(TI->hasOneUse());
1168 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1175 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1176 Builder.getFalse());
1183 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1184 Builder.getFalse());
1191 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1192 Builder.getFalse());
1199 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1200 Builder.getFalse());
1227 if (!
match(FalseVal,
1243 II->getModule(), Intrinsic::cttz,
II->getType());
1299 unsigned SizeOfInBits =
Count->getType()->getScalarSizeInBits();
1305 II->dropPoisonGeneratingAnnotations();
1317 II->dropUBImplyingAttrsAndMetadata();
1328 if (!
TrueVal->getType()->isIntOrIntVectorTy())
1368 if (!
I || !
I->hasOneUse() ||
1377 for (Use &U :
I->operands()) {
1410 bool Swapped =
false;
1411 if (
Cmp.isEquivalence(
true)) {
1414 }
else if (!
Cmp.isEquivalence()) {
1418 Value *CmpLHS =
Cmp.getOperand(0), *CmpRHS =
Cmp.getOperand(1);
1419 auto ReplaceOldOpWithNewOp = [&](
Value *OldOp,
1420 Value *NewOp) -> Instruction * {
1467 if (CanReplaceCmpLHSWithRHS) {
1468 if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
1472 if (CanReplaceCmpRHSWithLHS) {
1473 if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
1490 if ((CanReplaceCmpLHSWithRHS &&
1493 &DropFlags) == TrueVal) ||
1494 (CanReplaceCmpRHSWithLHS &&
1497 &DropFlags) == TrueVal)) {
1498 for (Instruction *
I : DropFlags) {
1499 I->dropPoisonGeneratingAnnotations();
1620 if (Cmp00->
getType() !=
X->getType() &&
X->hasOneUse())
1628 else if (!
match(Cmp00,
1636 Value *ReplacementLow, *ReplacementHigh;
1673 std::swap(ReplacementLow, ReplacementHigh);
1679 "Unexpected predicate type.");
1687 "Unexpected predicate type.");
1689 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1705 if (
X->getType() != Sel0.
getType()) {
1715 assert(ReplacementLow && ReplacementHigh &&
1716 "Constant folding of ImmConstant cannot fail");
1722 Value *MaybeReplacedLow =
1728 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1772 Value *SelVal0, *SelVal1;
1781 auto MatchesSelectValue = [SelVal0, SelVal1](
Constant *
C) {
1782 return C->isElementWiseEqual(SelVal0) ||
C->isElementWiseEqual(SelVal1);
1786 if (MatchesSelectValue(C0))
1791 if (!FlippedStrictness)
1795 if (!MatchesSelectValue(FlippedStrictness->second))
1804 Cmp.getName() +
".inv");
1815 if (!
Cmp->hasOneUse())
1845 Value *TVal =
SI.getTrueValue();
1846 Value *FVal =
SI.getFalseValue();
1880 Op->dropPoisonGeneratingFlags();
1885 MMI && MMI->getLHS() == V &&
match(MMI->getRHS(),
m_APInt(OpC))) {
1887 {InvDomCR, ConstantRange(*OpC)});
1889 MMI->dropPoisonGeneratingAnnotations();
1952 foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal))
1984 Opcode = BOp->getOpcode();
1985 IsIntrinsic =
false;
1999 Opcode =
II->getIntrinsicID();
2007 const DataLayout &
DL =
Cmp->getDataLayout();
2016 if (C3 == FoldBinaryOpOrIntrinsic(C1, C2)) {
2019 }
else if (Flipped && C3 == FoldBinaryOpOrIntrinsic(Flipped->second, C2)) {
2021 RHS = Flipped->second;
2029 return Builder.CreateBinaryIntrinsic(Opcode, MinMax, C2);
2032 Value *BinOp =
Builder.CreateBinOp(BinOpc, MinMax, C2);
2037 if (BinOpc == Instruction::Add || BinOpc == Instruction::Sub ||
2038 BinOpc == Instruction::Mul) {
2041 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
true))
2042 BinOpInst->setHasNoSignedWrap();
2044 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
false))
2045 BinOpInst->setHasNoUnsignedWrap();
2063static Instruction *foldICmpUSubSatWithAndForMostSignificantBitCmp(
2069 const APInt *Constant1, *Constant2;
2087 auto *Ty =
A->getType();
2095 APInt AdjAP1 = *Constant1 - MostSignificantBit + 1;
2096 APInt AdjAP2 = *Constant2 - MostSignificantBit + 1;
2098 auto *Adj1 = ConstantInt::get(Ty, AdjAP1);
2099 auto *Adj2 = ConstantInt::get(Ty, AdjAP2);
2104 Constant *MSBConst = ConstantInt::get(Ty, MostSignificantBit);
2105 return BinaryOperator::CreateAnd(
Or, MSBConst);
2112 canonicalizeSPF(*ICI,
SI.getTrueValue(),
SI.getFalseValue(), *
this))
2115 if (
Value *V = foldSelectInstWithICmpConst(SI, ICI,
Builder))
2118 if (
Value *V = canonicalizeClampLike(SI, *ICI,
Builder, *
this))
2121 if (Instruction *NewSel =
2122 tryToReuseConstantFromSelectInComparison(SI, *ICI, *
this))
2124 if (Instruction *Folded =
2125 foldICmpUSubSatWithAndForMostSignificantBitCmp(SI, ICI,
Builder))
2136 if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *
this))
2146 InstCombiner::BuilderTy::InsertPointGuard Guard(
Builder);
2151 SI.swapProfMetadata();
2158 if (Instruction *V =
2165 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal,
Builder))
2168 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal,
Builder))
2174 if (
Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *
this))
2202 if (
C ==
A ||
C ==
B) {
2217 Value *CondVal =
SI.getCondition();
2222 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
2226 if ((TI->getOpcode() == Instruction::Sub &&
2227 FI->getOpcode() == Instruction::Add) ||
2228 (TI->getOpcode() == Instruction::FSub &&
2229 FI->getOpcode() == Instruction::FAdd)) {
2232 }
else if ((FI->getOpcode() == Instruction::Sub &&
2233 TI->getOpcode() == Instruction::Add) ||
2234 (FI->getOpcode() == Instruction::FSub &&
2235 TI->getOpcode() == Instruction::FAdd)) {
2241 Value *OtherAddOp =
nullptr;
2242 if (SubOp->getOperand(0) == AddOp->
getOperand(0)) {
2244 }
else if (SubOp->getOperand(0) == AddOp->
getOperand(1)) {
2252 if (
SI.getType()->isFPOrFPVectorTy()) {
2253 NegVal = Builder.
CreateFNeg(SubOp->getOperand(1));
2256 Flags &= SubOp->getFastMathFlags();
2257 NegInst->setFastMathFlags(Flags);
2260 NegVal = Builder.
CreateNeg(SubOp->getOperand(1));
2263 Value *NewTrueOp = OtherAddOp;
2264 Value *NewFalseOp = NegVal;
2268 SI.getName() +
".p", &
SI);
2270 if (
SI.getType()->isFPOrFPVectorTy()) {
2272 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
2275 Flags &= SubOp->getFastMathFlags();
2279 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
2292 Value *CondVal =
SI.getCondition();
2304 auto IsSignedSaturateLimit = [&](
Value *Limit,
bool IsAdd) {
2314 auto IsZeroOrOne = [](
const APInt &
C) {
return C.isZero() ||
C.isOne(); };
2331 IsMinMax(TrueVal, FalseVal))
2338 IsMinMax(FalseVal, TrueVal))
2344 IsMinMax(TrueVal, FalseVal))
2349 IsMinMax(FalseVal, TrueVal))
2354 IsMinMax(FalseVal, TrueVal))
2359 IsMinMax(TrueVal, FalseVal))
2367 if (
II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2370 NewIntrinsicID = Intrinsic::uadd_sat;
2371 else if (
II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2374 NewIntrinsicID = Intrinsic::usub_sat;
2375 else if (
II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2376 IsSignedSaturateLimit(TrueVal,
true))
2385 NewIntrinsicID = Intrinsic::sadd_sat;
2386 else if (
II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2387 IsSignedSaturateLimit(TrueVal,
false))
2396 NewIntrinsicID = Intrinsic::ssub_sat;
2401 NewIntrinsicID,
SI.getType());
2417 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2427 (!Cmp ||
Cmp->getOperand(0)->getType() != SmallType))
2451 Value *CondVal =
SI.getCondition();
2457 unsigned NumElts = CondValTy->getNumElements();
2459 Mask.reserve(NumElts);
2460 for (
unsigned i = 0; i != NumElts; ++i) {
2470 Mask.push_back(i + NumElts);
2523 if (TVal ==
A || TVal ==
B || FVal ==
A || FVal ==
B)
2540 if (TSrc ==
C && FSrc ==
D) {
2544 }
else if (TSrc ==
D && FSrc ==
C) {
2586 if (Extract->getIndices()[0] !=
I)
2595 if (
Select->getCondition() ==
SI.getCondition())
2596 if (
Select->getFalseValue() ==
SI.getTrueValue() ||
2597 Select->getTrueValue() ==
SI.getFalseValue())
2601 auto *CmpXchg = isExtractFromCmpXchg(
SI.getCondition(), 1);
2608 if (
auto *
X = isExtractFromCmpXchg(
SI.getTrueValue(), 0))
2609 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getFalseValue())
2610 return SI.getFalseValue();
2615 if (
auto *
X = isExtractFromCmpXchg(
SI.getFalseValue(), 0))
2616 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getTrueValue())
2617 return SI.getFalseValue();
2641 Value *SV0, *SV1, *SA0, *SA1;
2650 if (Or0->
getOpcode() == BinaryOperator::LShr) {
2656 Or1->
getOpcode() == BinaryOperator::LShr &&
2657 "Illegal or(shift,shift) pair");
2672 bool IsFshl = (ShAmt == SA0);
2674 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2694 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2716 assert(TC != FC &&
"Expected equal select arms to simplify");
2720 bool IsTrueIfSignSet;
2738 Value *MagArg = ConstantFP::get(SelType,
abs(*TC));
2757 I->copyIRFlags(&Sel);
2760 M, Intrinsic::vector_reverse,
V->getType());
2768 return createSelReverse(
C,
X,
Y);
2772 return createSelReverse(
C,
X, FVal);
2777 return createSelReverse(
C, TVal,
Y);
2784 unsigned NumElts = VecTy->getNumElements();
2785 APInt PoisonElts(NumElts, 0);
2803 return new ShuffleVectorInst(
X, NewSel, Mask);
2808 return new ShuffleVectorInst(NewSel,
Y, Mask);
2817 return new ShuffleVectorInst(
X, NewSel, Mask);
2822 return new ShuffleVectorInst(NewSel,
Y, Mask);
2834 auto *IDomNode = DT[BB]->getIDom();
2840 Value *IfTrue, *IfFalse;
2856 if (TrueSucc == FalseSucc)
2878 if (!DT.
dominates(Insn, Pred->getTerminator()))
2897 CandidateBlocks.
insert(
I->getParent());
2900 if (
auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2913 Value *CondVal =
SI.getCondition();
2918 Value *
Op, *RemRes, *Remainder;
2920 bool TrueIfSigned =
false;
2934 return BinaryOperator::CreateAnd(
Op,
Add);
2946 return FoldToBitwiseAnd(Remainder);
2955 return FoldToBitwiseAnd(ConstantInt::get(RemRes->
getType(), 2));
2965 Value *InnerCondVal =
SI.getCondition();
2966 Value *InnerTrueVal =
SI.getTrueValue();
2967 Value *InnerFalseVal =
SI.getFalseValue();
2969 "The type of inner condition must match with the outer.");
2971 return *Implied ? InnerTrueVal : InnerFalseVal;
2978 assert(
Op->getType()->isIntOrIntVectorTy(1) &&
2979 "Op must be either i1 or vector of i1.");
2980 if (
SI.getCondition()->getType() !=
Op->getType())
2982 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(SI,
Op, IsAnd,
DL))
2993 Value *CondVal =
SI.getCondition();
2995 bool ChangedFMF =
false;
2996 for (
bool Swap : {
false,
true}) {
3034 if (FMF.
noNaNs() && !
SI.hasNoNaNs()) {
3035 SI.setHasNoNaNs(
true);
3038 if (FMF.
noInfs() && !
SI.hasNoInfs()) {
3039 SI.setHasNoInfs(
true);
3046 SI.setHasNoNaNs(
true);
3060 if (!
SI.hasNoSignedZeros() &&
3063 if (!
SI.hasNoNaNs() &&
3081 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
3090 for (
bool Swap : {
false,
true}) {
3106 if (Swap == TrueIfSigned && !CondVal->
hasOneUse() && !
TrueVal->hasOneUse())
3112 if (Swap != TrueIfSigned)
3117 return ChangedFMF ? &
SI :
nullptr;
3139 Value *XBiasedHighBits =
SI.getFalseValue();
3152 const APInt *LowBitMaskCst;
3157 const APInt *BiasCst, *HighBitMaskCst;
3158 if (!
match(XBiasedHighBits,
3161 !
match(XBiasedHighBits,
3166 if (!LowBitMaskCst->
isMask())
3169 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
3170 if (InvertedLowBitMaskCst != *HighBitMaskCst)
3173 APInt AlignmentCst = *LowBitMaskCst + 1;
3175 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
3180 if (*BiasCst == *LowBitMaskCst &&
impliesPoison(XBiasedHighBits,
X))
3181 return XBiasedHighBits;
3186 Type *Ty =
X->getType();
3187 Value *XOffset = Builder.
CreateAdd(
X, ConstantInt::get(Ty, *LowBitMaskCst),
3188 X->getName() +
".biased");
3189 Value *
R = Builder.
CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
3195struct DecomposedSelect {
3207foldSelectOfSymmetricSelect(
SelectInst &OuterSelVal,
3210 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
3238 DecomposedSelect OuterSel;
3245 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
3253 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
3261 DecomposedSelect InnerSel;
3262 if (!
match(InnerSelVal,
3269 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3271 Value *AltCond =
nullptr;
3272 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](
auto m_InnerCond) {
3277 return IsAndVariant ?
match(OuterSel.Cond,
3287 if (matchOuterCond(
m_Specific(InnerSel.Cond))) {
3292 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3293 InnerSel.Cond = NotInnerCond;
3298 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
3299 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
3302 IsAndVariant ? SelInner : InnerSel.TrueVal,
3303 !IsAndVariant ? SelInner : InnerSel.FalseVal);
3309static bool impliesPoisonOrCond(
const Value *ValAssumedPoison,
const Value *V,
3321 if (ICmp->hasSameSign() &&
3340 Value *CondVal =
SI.getCondition();
3343 Type *SelType =
SI.getType();
3360 if (impliesPoisonOrCond(FalseVal, CondVal,
false)) {
3362 return BinaryOperator::CreateOr(CondVal, FalseVal);
3366 impliesPoisonOrCond(FalseVal,
B,
false)) {
3381 auto AndFactorization = [&](
Value *Common,
Value *InnerCond,
3383 bool SelFirst =
false) -> Instruction * {
3384 Value *InnerSel =
Builder.CreateSelect(InnerCond, One, InnerVal);
3387 if (FalseLogicAnd || (CondLogicAnd && Common ==
A))
3390 return BinaryOperator::CreateAnd(Common, InnerSel);
3394 return AndFactorization(
A,
B,
D);
3396 return AndFactorization(
A,
B,
C);
3398 return AndFactorization(
B,
A,
D);
3400 return AndFactorization(
B,
A,
C, CondLogicAnd && FalseLogicAnd);
3405 if (impliesPoisonOrCond(TrueVal, CondVal,
true)) {
3407 return BinaryOperator::CreateAnd(CondVal, TrueVal);
3411 impliesPoisonOrCond(TrueVal,
B,
true)) {
3426 auto OrFactorization = [&](
Value *Common,
Value *InnerCond,
3428 bool SelFirst =
false) -> Instruction * {
3429 Value *InnerSel =
Builder.CreateSelect(InnerCond, InnerVal, Zero);
3432 if (TrueLogicOr || (CondLogicOr && Common ==
A))
3435 return BinaryOperator::CreateOr(Common, InnerSel);
3439 return OrFactorization(
A,
B,
D);
3441 return OrFactorization(
A,
B,
C);
3443 return OrFactorization(
B,
A,
D);
3445 return OrFactorization(
B,
A,
C, CondLogicOr && TrueLogicOr);
3488 return BinaryOperator::CreateXor(
A,
B);
3506 Value *AndV =
Builder.CreateSelect(NotC, FalseVal, Zero);
3522 auto *FI =
new FreezeInst(*
Y, (*Y)->getName() +
".fr");
3528 if (
auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd,
3539 if (Res && *Res ==
false)
3545 if (Res && *Res ==
false)
3554 if (Res && *Res ==
true)
3560 if (Res && *Res ==
true)
3575 bool MayNeedFreeze = SelCond && SelFVal &&
3576 match(SelFVal->getTrueValue(),
3591 bool MayNeedFreeze = SelCond && SelFVal &&
3592 match(SelCond->getTrueValue(),
3608 bool &ShouldDropNoWrap) {
3631 ShouldDropNoWrap =
false;
3637 auto MatchForward = [&](
Value *CommonAncestor) {
3638 const APInt *
C =
nullptr;
3639 if (CtlzOp == CommonAncestor)
3642 ShouldDropNoWrap =
true;
3647 ShouldDropNoWrap =
true;
3658 const APInt *
C =
nullptr;
3659 Value *CommonAncestor;
3660 if (MatchForward(Cond0)) {
3664 if (!MatchForward(CommonAncestor))
3702 Type *SelType =
SI.getType();
3709 Value *Cond0, *Ctlz, *CtlzOp;
3718 bool ShouldDropNoWrap;
3725 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp,
BitWidth,
3729 if (ShouldDropNoWrap) {
3759 Value *TV =
SI.getTrueValue();
3760 Value *FV =
SI.getFalseValue();
3781 auto FlippedPredAndConst =
3783 if (!FlippedPredAndConst)
3785 Pred = FlippedPredAndConst->first;
3786 RHS = FlippedPredAndConst->second;
3803 bool Replace =
false;
3804 CmpPredicate ExtendedCmpPredicate;
3824 CmpPredicate FalseBranchSelectPredicate;
3825 const APInt *InnerTV, *InnerFV;
3831 FalseBranchSelectPredicate =
3836 if (!InnerTV->
isOne()) {
3848 Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp;
3851 SI,
Builder.CreateIntrinsic(
SI.getType(), IID, {LHS, RHS}));
3899 return Op->getType()->isIntOrIntVectorTy() &&
3900 hasAffectedValue(Op, Affected, Depth + 1);
3914 if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs())
3917 auto TryFoldIntoAddConstant =
3929 Swapped ?
X : Z,
"", &
SI);
3960 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
false);
3964 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
true);
3980 bool CreateAnd =
false;
3982 Value *CmpLHS, *CmpRHS;
3990 const APInt *AndRHS;
3997 AndMask = Res->Mask;
4010 V = Trunc->getOperand(0);
4011 AndMask =
APInt(
V->getType()->getScalarSizeInBits(), 1);
4013 CreateAnd = !Trunc->hasNoUnsignedWrap();
4022 CreateAnd, Builder))
4026 CreateAnd, Builder))
4033 Value *CondVal =
SI.getCondition();
4036 Type *SelType =
SI.getType();
4039 SQ.getWithInstruction(&SI)))
4042 if (Instruction *
I = canonicalizeSelectToShuffle(SI))
4045 if (Instruction *
I = canonicalizeScalarSelectOfVecs(SI, *
this))
4087 return new ZExtInst(CondVal, SelType);
4091 return new SExtInst(CondVal, SelType);
4096 return new ZExtInst(NotCond, SelType);
4102 return new SExtInst(NotCond, SelType);
4110 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
4112 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
4113 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
4121 Value *NewCond =
Builder.CreateFCmpFMF(InvPred, Cmp0, Cmp1, FCmp,
4122 FCmp->getName() +
".inv");
4124 FastMathFlags FMF =
SI.getFastMathFlags();
4125 if (FCmp->hasNoNaNs())
4127 if (FCmp->hasNoInfs())
4130 Builder.CreateSelectFMF(NewCond, FalseVal, TrueVal, FMF);
4149 Value *MatchCmp0 =
nullptr;
4150 Value *MatchCmp1 =
nullptr;
4162 if (Cmp0 == MatchCmp0 &&
4163 matchFMulByZeroIfResultEqZero(*
this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
4164 SI, SIFPOp->hasNoSignedZeros()))
4176 if (SIFPOp->hasNoNaNs() &&
4177 (SIFPOp->hasNoSignedZeros() ||
4178 (SIFPOp->hasOneUse() &&
4183 Builder.CreateBinaryIntrinsic(Intrinsic::maxnum,
X,
Y, &SI);
4185 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4186 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4193 Builder.CreateBinaryIntrinsic(Intrinsic::minnum,
X,
Y, &SI);
4195 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4196 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4204 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *
this))
4216 if (
Value *V = foldSelectBitTest(SI, CondVal, TrueVal, FalseVal,
Builder,
SQ))
4219 if (Instruction *
Add = foldAddSubSelect(SI,
Builder))
4221 if (Instruction *
Add = foldOverflowingAddSubSelect(SI,
Builder))
4231 if (TI && FI && TI->getOpcode() == FI->getOpcode())
4238 if (Instruction *
I = foldSelectWithSRem(SI, *
this,
Builder))
4243 auto SelectGepWithBase = [&](GetElementPtrInst *Gep,
Value *
Base,
4244 bool Swap) -> GetElementPtrInst * {
4258 Builder.CreateSelect(CondVal, NewT, NewF,
SI.getName() +
".idx", &SI);
4263 if (
auto *NewGep = SelectGepWithBase(TrueGep, FalseVal,
false))
4266 if (
auto *NewGep = SelectGepWithBase(FalseGep, TrueVal,
true))
4282 RHS2, SI, SPF,
RHS))
4286 RHS2, SI, SPF,
LHS))
4295 bool IsCastNeeded =
LHS->
getType() != SelType;
4300 ((CmpLHS !=
LHS && CmpLHS !=
RHS) ||
4301 (CmpRHS !=
LHS && CmpRHS !=
RHS)))) {
4315 Value *NewCast =
Builder.CreateCast(CastOp, NewSI, SelType);
4327 if (TrueSI->getCondition()->getType() == CondVal->
getType()) {
4330 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4331 *TrueSI, CondVal,
true,
DL))
4338 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
4339 Value *
And =
Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
4347 if (FalseSI->getCondition()->getType() == CondVal->
getType()) {
4350 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4351 *FalseSI, CondVal,
false,
DL))
4355 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
4356 Value *
Or =
Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
4370 BinaryOperator *TrueBO;
4373 if (TrueBOSI->getCondition() == CondVal) {
4380 if (TrueBOSI->getCondition() == CondVal) {
4389 BinaryOperator *FalseBO;
4392 if (FalseBOSI->getCondition() == CondVal) {
4399 if (FalseBOSI->getCondition() == CondVal) {
4412 SI.swapProfMetadata();
4433 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI,
Builder))
4437 if (
Value *V = foldSelectCmpXchg(SI))
4443 if (Instruction *Funnel = foldSelectFunnelShift(SI,
Builder))
4446 if (Instruction *Copysign = foldSelectToCopysign(SI,
Builder))
4449 if (Instruction *PN = foldSelectToPhi(SI,
DT,
Builder))
4452 if (
Value *V = foldRoundUpIntegerWithPow2Alignment(SI,
Builder))
4467 MaskedInst->setArgOperand(3, FalseVal );
4482 bool CanMergeSelectIntoLoad =
false;
4486 if (CanMergeSelectIntoLoad) {
4489 MaskedInst->setArgOperand(3, TrueVal );
4494 if (Instruction *
I = foldSelectOfSymmetricSelect(SI,
Builder))
4497 if (Instruction *
I = foldNestedSelects(SI,
Builder))
4507 if (Instruction *
I = foldBitCeil(SI,
Builder, *
this))
4521 auto FoldSelectWithAndOrCond = [&](
bool IsAnd,
Value *
A,
4522 Value *
B) -> Instruction * {
4524 SQ.getWithInstruction(&SI))) {
4532 if (NewTrueVal == TrueVal && NewFalseVal == FalseVal &&
4543 if (
Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *
this))
4545 IsAnd ? FalseVal : V);
4553 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4555 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
RHS,
LHS))
4558 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4560 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
RHS,
LHS))
4566 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4569 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4576 return BinaryOperator::CreateXor(CondVal, FalseVal);
4583 CondContext CC(CondVal);
4585 CC.AffectedValues.insert(V);
4587 SimplifyQuery Q =
SQ.getWithInstruction(&SI).getWithCondContext(CC);
4588 if (!CC.AffectedValues.empty()) {
4590 hasAffectedValue(TrueVal, CC.AffectedValues, 0)) {
4599 hasAffectedValue(FalseVal, CC.AffectedValues, 0)) {
4614 if (TrueVal == Trunc)
4616 if (FalseVal == Trunc)
4620 if (TrueVal == Trunc)
4623 if (FalseVal == Trunc)
4627 Value *MaskedLoadPtr;
4628 const APInt *MaskedLoadAlignment;
4635 CondVal, FalseVal));
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const HexagonInstrInfo * TII
This file provides internal interfaces used to implement the InstCombine.
static Value * foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder, const SimplifyQuery &SQ)
Try to fold a select to a min/max intrinsic.
static Value * canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Instruction * foldSetClearBits(SelectInst &Sel, InstCombiner::BuilderTy &Builder)
Canonicalize a set or clear of a masked set of constant bits to select-of-constants form.
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond,...
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as (a > b) ?
static Value * foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
Try to match patterns with select and subtract as absolute difference.
static Instruction * foldSelectZeroOrFixedOp(SelectInst &SI, InstCombinerImpl &IC)
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI, InstCombinerImpl &IC)
Replace a select operand based on an equality comparison with the identity constant of a binop.
static Value * foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
static Value * foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); iff C1 is a mask and th...
static Value * foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 (select (icmp slt x...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static Value * foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) into: IF C2 u>= C1 (BinOp Y,...
This file provides the interface for the instcombine pass implementation.
Machine Check Debug Module
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static const uint32_t IV[8]
bool bitwiseIsEqual(const APFloat &RHS) const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isMinValue() const
Determine if this is the smallest unsigned value.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned countLeadingZeros() const
unsigned logBase2() const
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
bool isMaxValue() const
Determine if this is the largest unsigned value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
An instruction that atomically checks whether a specified value is in a memory location,...
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
bool isNonStrictPredicate() const
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
bool isIntPredicate() const
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
static LLVM_ABI ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange binaryNot() const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
LLVM_ABI ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Tagged union holding either a T or a Error.
Utility class for floating point operations which can have information about relaxed accuracy require...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
bool noSignedZeros() const
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
void setNoInfs(bool B=true)
This class represents a freeze function that returns random concrete value if an operand is either a ...
Value * getPointerOperand()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Type * getSourceElementType() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
static CmpPredicate getSwappedCmpPredicate(CmpPredicate Pred)
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
CmpPredicate getInverseCmpPredicate() const
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Common base class shared among various IRBuilders.
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Instruction * foldSelectToCmp(SelectInst &SI)
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const
Check if fmul MulVal, +0.0 will yield +0.0 (or signed zero is ignorable).
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldSelectEqualityTest(SelectInst &SI)
Instruction * foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldVectorSelect(SelectInst &Sel)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
Instruction * foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI)
We have (select c, TI, FI), and we know that TI and FI have the same opcode.
bool replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth=0)
Instruction * foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldSelectIntoOp(SelectInst &SI, Value *, Value *)
Try to fold the select into one of the operands to allow further optimization.
Value * foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, Value *FalseVal)
Instruction * visitSelectInst(SelectInst &SI)
Instruction * foldSelectOfBools(SelectInst &SI)
Instruction * foldSelectExtConst(SelectInst &Sel)
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool isSameOperationAs(const Instruction *I, unsigned flags=0) const LLVM_READONLY
This function determines if the specified instruction executes the same operation as the current one.
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setHasNoNaNs(bool B)
Set or clear the no-nans flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
void swapValues()
Swap the true and false values of the select instruction.
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool contains(ConstPtrType Ptr) const
A SetVector that performs no allocations if smaller than a certain size.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the maximum value of an extendable operand.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOpc_match< LHS, RHS, false > m_BinOp(unsigned Opcode, const LHS &L, const RHS &R)
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones, false >, ValTy, Instruction::Xor, true > m_NotForbidPoison(const ValTy &V)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
ap_match< APFloat > m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
match_combine_or< typename m_Intrinsic_Ty< T0, T1 >::Ty, typename m_Intrinsic_Ty< T1, T0 >::Ty > m_c_Intrinsic(const T0 &Op0, const T1 &Op1)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ap_match< APInt > m_APIntForbidPoison(const APInt *&Res)
Match APInt while forbidding poison in splat vector constants.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedLoad Intrinsic.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
auto m_c_LogicalOp(const LHS &L, const RHS &R)
Matches either L && R or L || R with LHS and RHS in either order.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst, true > m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedGather Intrinsic.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
ElementType
The element type of an SRV or UAV resource.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr unsigned MaxAnalysisRecursionDepth
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
FunctionAddr VTableAddr Count
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
const APInt & getConstant() const
Returns the value when all bits have a known value.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithInstruction(const Instruction *I) const