LLVM 23.0.0git
LowerTypeTests.cpp
Go to the documentation of this file.
1//===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass lowers type metadata and calls to the llvm.type.test intrinsic.
10// It also ensures that globals are properly laid out for the
11// llvm.icall.branch.funnel intrinsic.
12// See http://llvm.org/docs/TypeMetadata.html for more information.
13//
14//===----------------------------------------------------------------------===//
15
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringRef.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Constant.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalAlias.h"
42#include "llvm/IR/GlobalValue.h"
44#include "llvm/IR/IRBuilder.h"
45#include "llvm/IR/InlineAsm.h"
46#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Intrinsics.h"
50#include "llvm/IR/LLVMContext.h"
51#include "llvm/IR/MDBuilder.h"
52#include "llvm/IR/Metadata.h"
53#include "llvm/IR/Module.h"
56#include "llvm/IR/Operator.h"
57#include "llvm/IR/PassManager.h"
60#include "llvm/IR/Type.h"
61#include "llvm/IR/Use.h"
62#include "llvm/IR/User.h"
63#include "llvm/IR/Value.h"
67#include "llvm/Support/Debug.h"
68#include "llvm/Support/Error.h"
77#include "llvm/Transforms/IPO.h"
80#include <algorithm>
81#include <cassert>
82#include <cstdint>
83#include <set>
84#include <string>
85#include <system_error>
86#include <utility>
87#include <vector>
88
89using namespace llvm;
90using namespace lowertypetests;
91
92#define DEBUG_TYPE "lowertypetests"
93
94STATISTIC(ByteArraySizeBits, "Byte array size in bits");
95STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
96STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
97STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
98STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
99
101 "lowertypetests-avoid-reuse",
102 cl::desc("Try to avoid reuse of byte array addresses using aliases"),
103 cl::Hidden, cl::init(true));
104
106 "lowertypetests-summary-action",
107 cl::desc("What to do with the summary when running this pass"),
108 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
110 "Import typeid resolutions from summary and globals"),
112 "Export typeid resolutions to summary and globals")),
113 cl::Hidden);
114
116 "lowertypetests-read-summary",
117 cl::desc("Read summary from given YAML file before running pass"),
118 cl::Hidden);
119
121 "lowertypetests-write-summary",
122 cl::desc("Write summary to given YAML file after running pass"),
123 cl::Hidden);
124
126 ClDropTypeTests("lowertypetests-drop-type-tests",
127 cl::desc("Simply drop type test sequences"),
128 cl::values(clEnumValN(DropTestKind::None, "none",
129 "Do not drop any type tests"),
130 clEnumValN(DropTestKind::Assume, "assume",
131 "Drop type test assume sequences"),
132 clEnumValN(DropTestKind::All, "all",
133 "Drop all type test sequences")),
134 cl::Hidden, cl::init(DropTestKind::None));
135
137 if (Offset < ByteOffset)
138 return false;
139
140 if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
141 return false;
142
143 uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
144 if (BitOffset >= BitSize)
145 return false;
146
147 return Bits.count(BitSize - 1 - BitOffset);
148}
149
151 OS << "offset " << ByteOffset << " size " << BitSize << " align "
152 << (1 << AlignLog2);
153
154 if (isAllOnes()) {
155 OS << " all-ones\n";
156 return;
157 }
158
159 OS << " { ";
160 for (uint64_t B : Bits)
161 OS << B << ' ';
162 OS << "}\n";
163}
164
166 if (Min > Max)
167 Min = 0;
168
169 // Normalize each offset against the minimum observed offset, and compute
170 // the bitwise OR of each of the offsets. The number of trailing zeros
171 // in the mask gives us the log2 of the alignment of all offsets, which
172 // allows us to compress the bitset by only storing one bit per aligned
173 // address.
174 uint64_t Mask = 0;
175 for (uint64_t &Offset : Offsets) {
176 Offset -= Min;
177 Mask |= Offset;
178 }
179
180 BitSetInfo BSI;
181 BSI.ByteOffset = Min;
182
183 BSI.AlignLog2 = 0;
184 if (Mask != 0)
185 BSI.AlignLog2 = llvm::countr_zero(Mask);
186
187 // Build the compressed bitset while normalizing the offsets against the
188 // computed alignment.
189 BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
190 for (uint64_t Offset : Offsets) {
191 Offset >>= BSI.AlignLog2;
192 // We invert the order of bits when adding them to the bitset. This is
193 // because the offset that we test against is computed by subtracting the
194 // address that we are testing from the global's address, which means that
195 // the offset increases as the tested address decreases.
196 BSI.Bits.insert(BSI.BitSize - 1 - Offset);
197 }
198
199 return BSI;
200}
201
202void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
203 // Create a new fragment to hold the layout for F.
204 Fragments.emplace_back();
205 std::vector<uint64_t> &Fragment = Fragments.back();
206 uint64_t FragmentIndex = Fragments.size() - 1;
207
208 for (auto ObjIndex : F) {
209 uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
210 if (OldFragmentIndex == 0) {
211 // We haven't seen this object index before, so just add it to the current
212 // fragment.
213 Fragment.push_back(ObjIndex);
214 } else {
215 // This index belongs to an existing fragment. Copy the elements of the
216 // old fragment into this one and clear the old fragment. We don't update
217 // the fragment map just yet, this ensures that any further references to
218 // indices from the old fragment in this fragment do not insert any more
219 // indices.
220 std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
221 llvm::append_range(Fragment, OldFragment);
222 OldFragment.clear();
223 }
224 }
225
226 // Update the fragment map to point our object indices to this fragment.
227 for (uint64_t ObjIndex : Fragment)
228 FragmentMap[ObjIndex] = FragmentIndex;
229}
230
231void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
232 uint64_t BitSize, uint64_t &AllocByteOffset,
233 uint8_t &AllocMask) {
234 // Find the smallest current allocation.
235 unsigned Bit = 0;
236 for (unsigned I = 1; I != BitsPerByte; ++I)
237 if (BitAllocs[I] < BitAllocs[Bit])
238 Bit = I;
239
240 AllocByteOffset = BitAllocs[Bit];
241
242 // Add our size to it.
243 unsigned ReqSize = AllocByteOffset + BitSize;
244 BitAllocs[Bit] = ReqSize;
245 if (Bytes.size() < ReqSize)
246 Bytes.resize(ReqSize);
247
248 // Set our bits.
249 AllocMask = 1 << Bit;
250 for (uint64_t B : Bits)
251 Bytes[AllocByteOffset + B] |= AllocMask;
252}
253
255 if (F->isDeclarationForLinker())
256 return false;
258 F->getParent()->getModuleFlag("CFI Canonical Jump Tables"));
259 if (!CI || !CI->isZero())
260 return true;
261 return F->hasFnAttribute("cfi-canonical-jump-table");
262}
263
264namespace {
265
266struct ByteArrayInfo {
267 std::set<uint64_t> Bits;
268 uint64_t BitSize;
269 GlobalVariable *ByteArray;
270 GlobalVariable *MaskGlobal;
271 uint8_t *MaskPtr = nullptr;
272};
273
274/// A POD-like structure that we use to store a global reference together with
275/// its metadata types. In this pass we frequently need to query the set of
276/// metadata types referenced by a global, which at the IR level is an expensive
277/// operation involving a map lookup; this data structure helps to reduce the
278/// number of times we need to do this lookup.
279class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
280 friend TrailingObjects;
281
282 GlobalObject *GO;
283 size_t NTypes;
284
285 // For functions: true if the jump table is canonical. This essentially means
286 // whether the canonical address (i.e. the symbol table entry) of the function
287 // is provided by the local jump table. This is normally the same as whether
288 // the function is defined locally, but if canonical jump tables are disabled
289 // by the user then the jump table never provides a canonical definition.
290 bool IsJumpTableCanonical;
291
292 // For functions: true if this function is either defined or used in a thinlto
293 // module and its jumptable entry needs to be exported to thinlto backends.
294 bool IsExported;
295
296public:
297 static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
298 bool IsJumpTableCanonical, bool IsExported,
299 ArrayRef<MDNode *> Types) {
300 auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
301 totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
302 GTM->GO = GO;
303 GTM->NTypes = Types.size();
304 GTM->IsJumpTableCanonical = IsJumpTableCanonical;
305 GTM->IsExported = IsExported;
306 llvm::copy(Types, GTM->getTrailingObjects());
307 return GTM;
308 }
309
310 GlobalObject *getGlobal() const {
311 return GO;
312 }
313
314 bool isJumpTableCanonical() const {
315 return IsJumpTableCanonical;
316 }
317
318 bool isExported() const {
319 return IsExported;
320 }
321
322 ArrayRef<MDNode *> types() const { return getTrailingObjects(NTypes); }
323};
324
325struct ICallBranchFunnel final
326 : TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
327 static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
329 unsigned UniqueId) {
330 auto *Call = static_cast<ICallBranchFunnel *>(
331 Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
332 alignof(ICallBranchFunnel)));
333 Call->CI = CI;
334 Call->UniqueId = UniqueId;
335 Call->NTargets = Targets.size();
336 llvm::copy(Targets, Call->getTrailingObjects());
337 return Call;
338 }
339
340 CallInst *CI;
341 ArrayRef<GlobalTypeMember *> targets() const {
342 return getTrailingObjects(NTargets);
343 }
344
345 unsigned UniqueId;
346
347private:
348 size_t NTargets;
349};
350
351struct ScopedSaveAliaseesAndUsed {
352 Module &M;
354 std::vector<std::pair<GlobalAlias *, Function *>> FunctionAliases;
355 std::vector<std::pair<GlobalIFunc *, Function *>> ResolverIFuncs;
356
357 // This function only removes functions from llvm.used and llvm.compiler.used.
358 // We cannot remove global variables because they need to follow RAUW, as
359 // they may be deleted by buildBitSetsFromGlobalVariables.
360 void collectAndEraseUsedFunctions(Module &M,
361 SmallVectorImpl<GlobalValue *> &Vec,
362 bool CompilerUsed) {
363 auto *GV = collectUsedGlobalVariables(M, Vec, CompilerUsed);
364 if (!GV)
365 return;
366 // There's no API to only remove certain array elements from
367 // llvm.used/llvm.compiler.used, so we remove all of them and add back only
368 // the non-functions.
369 GV->eraseFromParent();
370 auto NonFuncBegin =
371 std::stable_partition(Vec.begin(), Vec.end(), [](GlobalValue *GV) {
372 return isa<Function>(GV);
373 });
374 if (CompilerUsed)
375 appendToCompilerUsed(M, {NonFuncBegin, Vec.end()});
376 else
377 appendToUsed(M, {NonFuncBegin, Vec.end()});
378 Vec.resize(NonFuncBegin - Vec.begin());
379 }
380
381 ScopedSaveAliaseesAndUsed(Module &M) : M(M) {
382 // The users of this class want to replace all function references except
383 // for aliases and llvm.used/llvm.compiler.used with references to a jump
384 // table. We avoid replacing aliases in order to avoid introducing a double
385 // indirection (or an alias pointing to a declaration in ThinLTO mode), and
386 // we avoid replacing llvm.used/llvm.compiler.used because these global
387 // variables describe properties of the global, not the jump table (besides,
388 // offseted references to the jump table in llvm.used are invalid).
389 // Unfortunately, LLVM doesn't have a "RAUW except for these (possibly
390 // indirect) users", so what we do is save the list of globals referenced by
391 // llvm.used/llvm.compiler.used and aliases, erase the used lists, let RAUW
392 // replace the aliasees and then set them back to their original values at
393 // the end.
394 collectAndEraseUsedFunctions(M, Used, false);
395 collectAndEraseUsedFunctions(M, CompilerUsed, true);
396
397 for (auto &GA : M.aliases()) {
398 // FIXME: This should look past all aliases not just interposable ones,
399 // see discussion on D65118.
400 if (auto *F = dyn_cast<Function>(GA.getAliasee()->stripPointerCasts()))
401 FunctionAliases.push_back({&GA, F});
402 }
403
404 for (auto &GI : M.ifuncs())
405 if (auto *F = dyn_cast<Function>(GI.getResolver()->stripPointerCasts()))
406 ResolverIFuncs.push_back({&GI, F});
407 }
408
409 ~ScopedSaveAliaseesAndUsed() {
410 appendToUsed(M, Used);
411 appendToCompilerUsed(M, CompilerUsed);
412
413 for (auto P : FunctionAliases)
414 P.first->setAliasee(P.second);
415
416 for (auto P : ResolverIFuncs) {
417 // This does not preserve pointer casts that may have been stripped by the
418 // constructor, but the resolver's type is different from that of the
419 // ifunc anyway.
420 P.first->setResolver(P.second);
421 }
422 }
423};
424
425class LowerTypeTestsModule {
426 Module &M;
427
428 ModuleSummaryIndex *ExportSummary;
429 const ModuleSummaryIndex *ImportSummary;
430 // Set when the client has invoked this to simply drop all type test assume
431 // sequences.
432 DropTestKind DropTypeTests;
433
434 Triple::ArchType Arch;
436 Triple::ObjectFormatType ObjectFormat;
437
438 // Determines which kind of Thumb jump table we generate. If arch is
439 // either 'arm' or 'thumb' we need to find this out, because
440 // selectJumpTableArmEncoding may decide to use Thumb in either case.
441 bool CanUseArmJumpTable = false, CanUseThumbBWJumpTable = false;
442
443 // Cache variable used by hasBranchTargetEnforcement().
444 int HasBranchTargetEnforcement = -1;
445
446 IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
447 IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
448 PointerType *PtrTy = PointerType::getUnqual(M.getContext());
449 ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
450 IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
451 IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
452 IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
453
454 // Indirect function call index assignment counter for WebAssembly
455 uint64_t IndirectIndex = 1;
456
457 // Mapping from type identifiers to the call sites that test them, as well as
458 // whether the type identifier needs to be exported to ThinLTO backends as
459 // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
460 struct TypeIdUserInfo {
461 std::vector<CallInst *> CallSites;
462 bool IsExported = false;
463 };
464 DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
465
466 /// This structure describes how to lower type tests for a particular type
467 /// identifier. It is either built directly from the global analysis (during
468 /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
469 /// identifier summaries and external symbol references (in ThinLTO backends).
470 struct TypeIdLowering {
472
473 /// All except Unsat: the address of the last element within the combined
474 /// global.
475 Constant *OffsetedGlobal;
476
477 /// ByteArray, Inline, AllOnes: log2 of the required global alignment
478 /// relative to the start address.
479 Constant *AlignLog2;
480
481 /// ByteArray, Inline, AllOnes: one less than the size of the memory region
482 /// covering members of this type identifier as a multiple of 2^AlignLog2.
483 Constant *SizeM1;
484
485 /// ByteArray: the byte array to test the address against.
486 Constant *TheByteArray;
487
488 /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
489 Constant *BitMask;
490
491 /// Inline: the bit mask to test the address against.
492 Constant *InlineBits;
493 };
494
495 std::vector<ByteArrayInfo> ByteArrayInfos;
496
497 Function *WeakInitializerFn = nullptr;
498
499 GlobalVariable *GlobalAnnotation;
500 DenseSet<Value *> FunctionAnnotations;
501
502 bool shouldExportConstantsAsAbsoluteSymbols();
503 uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
504 TypeIdLowering importTypeId(StringRef TypeId);
505 void importTypeTest(CallInst *CI);
506 void importFunction(Function *F, bool isJumpTableCanonical);
507
508 ByteArrayInfo *createByteArray(const BitSetInfo &BSI);
509 void allocateByteArrays();
510 Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
511 Value *BitOffset);
512 void lowerTypeTestCalls(
513 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
514 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
515 Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
516 const TypeIdLowering &TIL);
517
518 void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
521 selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions);
522 bool hasBranchTargetEnforcement();
523 unsigned getJumpTableEntrySize(Triple::ArchType JumpTableArch);
524 InlineAsm *createJumpTableEntryAsm(Triple::ArchType JumpTableArch);
525 void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
526 void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
528 void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
530 void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
532 void
533 buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
535 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
536
537 void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT,
538 bool IsJumpTableCanonical);
539 void moveInitializerToModuleConstructor(GlobalVariable *GV);
540 void findGlobalVariableUsersOf(Constant *C,
541 SmallSetVector<GlobalVariable *, 8> &Out);
542
543 void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions,
544 Triple::ArchType JumpTableArch);
545
546 /// replaceCfiUses - Go through the uses list for this definition
547 /// and make each use point to "V" instead of "this" when the use is outside
548 /// the block. 'This's use list is expected to have at least one element.
549 /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
550 /// uses.
551 void replaceCfiUses(Function *Old, Value *New, bool IsJumpTableCanonical);
552
553 /// replaceDirectCalls - Go through the uses list for this definition and
554 /// replace each use, which is a direct function call.
555 void replaceDirectCalls(Value *Old, Value *New);
556
557 bool isFunctionAnnotation(Value *V) const {
558 return FunctionAnnotations.contains(V);
559 }
560
561 void maybeReplaceComdat(Function *F, StringRef OriginalName);
562
563public:
564 LowerTypeTestsModule(Module &M, ModuleAnalysisManager &AM,
565 ModuleSummaryIndex *ExportSummary,
566 const ModuleSummaryIndex *ImportSummary,
567 DropTestKind DropTypeTests);
568
569 bool lower();
570
571 // Lower the module using the action and summary passed as command line
572 // arguments. For testing purposes only.
573 static bool runForTesting(Module &M, ModuleAnalysisManager &AM);
574};
575} // end anonymous namespace
576
577/// Build a bit set for list of offsets.
579 // Compute the byte offset of each address associated with this type
580 // identifier.
581 return BitSetBuilder(Offsets).build();
582}
583
584/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
585/// Bits. This pattern matches to the bt instruction on x86.
587 Value *BitOffset) {
588 auto BitsType = cast<IntegerType>(Bits->getType());
589 unsigned BitWidth = BitsType->getBitWidth();
590
591 BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
592 Value *BitIndex =
593 B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
594 Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
595 Value *MaskedBits = B.CreateAnd(Bits, BitMask);
596 return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
597}
598
599ByteArrayInfo *LowerTypeTestsModule::createByteArray(const BitSetInfo &BSI) {
600 // Create globals to stand in for byte arrays and masks. These never actually
601 // get initialized, we RAUW and erase them later in allocateByteArrays() once
602 // we know the offset and mask to use.
603 auto ByteArrayGlobal = new GlobalVariable(
604 M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
605 auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
607
608 ByteArrayInfos.emplace_back();
609 ByteArrayInfo *BAI = &ByteArrayInfos.back();
610
611 BAI->Bits = BSI.Bits;
612 BAI->BitSize = BSI.BitSize;
613 BAI->ByteArray = ByteArrayGlobal;
614 BAI->MaskGlobal = MaskGlobal;
615 return BAI;
616}
617
618void LowerTypeTestsModule::allocateByteArrays() {
619 llvm::stable_sort(ByteArrayInfos,
620 [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
621 return BAI1.BitSize > BAI2.BitSize;
622 });
623
624 std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
625
627 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
628 ByteArrayInfo *BAI = &ByteArrayInfos[I];
629
630 uint8_t Mask;
631 BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
632
633 BAI->MaskGlobal->replaceAllUsesWith(
634 ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), PtrTy));
635 BAI->MaskGlobal->eraseFromParent();
636 if (BAI->MaskPtr)
637 *BAI->MaskPtr = Mask;
638 }
639
640 Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
641 auto ByteArray =
642 new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
643 GlobalValue::PrivateLinkage, ByteArrayConst);
644
645 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
646 ByteArrayInfo *BAI = &ByteArrayInfos[I];
647
648 Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
649 ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
651 ByteArrayConst->getType(), ByteArray, Idxs);
652
653 // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
654 // that the pc-relative displacement is folded into the lea instead of the
655 // test instruction getting another displacement.
656 GlobalAlias *Alias = GlobalAlias::create(
657 Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
658 BAI->ByteArray->replaceAllUsesWith(Alias);
659 BAI->ByteArray->eraseFromParent();
660 }
661
662 ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
663 BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
664 BAB.BitAllocs[6] + BAB.BitAllocs[7];
665 ByteArraySizeBytes = BAB.Bytes.size();
666}
667
668/// Build a test that bit BitOffset is set in the type identifier that was
669/// lowered to TIL, which must be either an Inline or a ByteArray.
670Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
671 const TypeIdLowering &TIL,
672 Value *BitOffset) {
673 if (TIL.TheKind == TypeTestResolution::Inline) {
674 // If the bit set is sufficiently small, we can avoid a load by bit testing
675 // a constant.
676 return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
677 } else {
678 Constant *ByteArray = TIL.TheByteArray;
679 if (AvoidReuse && !ImportSummary) {
680 // Each use of the byte array uses a different alias. This makes the
681 // backend less likely to reuse previously computed byte array addresses,
682 // improving the security of the CFI mechanism based on this pass.
683 // This won't work when importing because TheByteArray is external.
685 "bits_use", ByteArray, &M);
686 }
687
688 Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
689 Value *Byte = B.CreateLoad(Int8Ty, ByteAddr);
690
691 Value *ByteAndMask =
692 B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
693 return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
694 }
695}
696
697static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
698 Value *V, uint64_t COffset) {
699 if (auto GV = dyn_cast<GlobalObject>(V)) {
701 GV->getMetadata(LLVMContext::MD_type, Types);
702 for (MDNode *Type : Types) {
703 if (Type->getOperand(1) != TypeId)
704 continue;
707 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
708 ->getZExtValue();
709 if (COffset == Offset)
710 return true;
711 }
712 return false;
713 }
714
715 if (auto GEP = dyn_cast<GEPOperator>(V)) {
716 APInt APOffset(DL.getIndexSizeInBits(0), 0);
717 bool Result = GEP->accumulateConstantOffset(DL, APOffset);
718 if (!Result)
719 return false;
720 COffset += APOffset.getZExtValue();
721 return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
722 }
723
724 if (auto Op = dyn_cast<Operator>(V)) {
725 if (Op->getOpcode() == Instruction::BitCast)
726 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
727
728 if (Op->getOpcode() == Instruction::Select)
729 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
730 isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
731 }
732
733 return false;
734}
735
736/// Lower a llvm.type.test call to its implementation. Returns the value to
737/// replace the call with.
738Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
739 const TypeIdLowering &TIL) {
740 // Delay lowering if the resolution is currently unknown.
741 if (TIL.TheKind == TypeTestResolution::Unknown)
742 return nullptr;
743 if (TIL.TheKind == TypeTestResolution::Unsat)
744 return ConstantInt::getFalse(M.getContext());
745
746 Value *Ptr = CI->getArgOperand(0);
747 const DataLayout &DL = M.getDataLayout();
748 if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
749 return ConstantInt::getTrue(M.getContext());
750
751 BasicBlock *InitialBB = CI->getParent();
752
753 IRBuilder<> B(CI);
754
755 Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
756
757 Constant *OffsetedGlobalAsInt =
758 ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
759 if (TIL.TheKind == TypeTestResolution::Single)
760 return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
761
762 // Here we compute `last element - address`. The reason why we do this instead
763 // of computing `address - first element` is that it leads to a slightly
764 // shorter instruction sequence on x86. Because it doesn't matter how we do
765 // the subtraction on other architectures, we do so unconditionally.
766 Value *PtrOffset = B.CreateSub(OffsetedGlobalAsInt, PtrAsInt);
767
768 // We need to check that the offset both falls within our range and is
769 // suitably aligned. We can check both properties at the same time by
770 // performing a right rotate by log2(alignment) followed by an integer
771 // comparison against the bitset size. The rotate will move the lower
772 // order bits that need to be zero into the higher order bits of the
773 // result, causing the comparison to fail if they are nonzero. The rotate
774 // also conveniently gives us a bit offset to use during the load from
775 // the bitset.
776 Value *BitOffset = B.CreateIntrinsic(IntPtrTy, Intrinsic::fshr,
777 {PtrOffset, PtrOffset, TIL.AlignLog2});
778
779 Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
780
781 // If the bit set is all ones, testing against it is unnecessary.
782 if (TIL.TheKind == TypeTestResolution::AllOnes)
783 return OffsetInRange;
784
785 // See if the intrinsic is used in the following common pattern:
786 // br(llvm.type.test(...), thenbb, elsebb)
787 // where nothing happens between the type test and the br.
788 // If so, create slightly simpler IR.
789 if (CI->hasOneUse())
790 if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
791 if (CI->getNextNode() == Br) {
792 BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
793 BasicBlock *Else = Br->getSuccessor(1);
794 BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
795 NewBr->setMetadata(LLVMContext::MD_prof,
796 Br->getMetadata(LLVMContext::MD_prof));
797 ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
798
799 // Update phis in Else resulting from InitialBB being split
800 for (auto &Phi : Else->phis())
801 Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
802
803 IRBuilder<> ThenB(CI);
804 return createBitSetTest(ThenB, TIL, BitOffset);
805 }
806
807 MDBuilder MDB(M.getContext());
808 IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false,
809 MDB.createLikelyBranchWeights()));
810
811 // Now that we know that the offset is in range and aligned, load the
812 // appropriate bit from the bitset.
813 Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
814
815 // The value we want is 0 if we came directly from the initial block
816 // (having failed the range or alignment checks), or the loaded bit if
817 // we came from the block in which we loaded it.
818 B.SetInsertPoint(CI);
819 PHINode *P = B.CreatePHI(Int1Ty, 2);
820 P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
821 P->addIncoming(Bit, ThenB.GetInsertBlock());
822 return P;
823}
824
825/// Given a disjoint set of type identifiers and globals, lay out the globals,
826/// build the bit sets and lower the llvm.type.test calls.
827void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
829 // Build a new global with the combined contents of the referenced globals.
830 // This global is a struct whose even-indexed elements contain the original
831 // contents of the referenced globals and whose odd-indexed elements contain
832 // any padding required to align the next element to the next power of 2 plus
833 // any additional padding required to meet its alignment requirements.
834 std::vector<Constant *> GlobalInits;
835 const DataLayout &DL = M.getDataLayout();
836 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
837 Align MaxAlign;
838 uint64_t CurOffset = 0;
839 uint64_t DesiredPadding = 0;
840 for (GlobalTypeMember *G : Globals) {
841 auto *GV = cast<GlobalVariable>(G->getGlobal());
842 Align Alignment =
843 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
844 MaxAlign = std::max(MaxAlign, Alignment);
845 uint64_t GVOffset = alignTo(CurOffset + DesiredPadding, Alignment);
846 GlobalLayout[G] = GVOffset;
847 if (GVOffset != 0) {
848 uint64_t Padding = GVOffset - CurOffset;
849 GlobalInits.push_back(
851 }
852
853 GlobalInits.push_back(GV->getInitializer());
854 uint64_t InitSize = GV->getGlobalSize(DL);
855 CurOffset = GVOffset + InitSize;
856
857 // Compute the amount of padding that we'd like for the next element.
858 DesiredPadding = NextPowerOf2(InitSize - 1) - InitSize;
859
860 // Experiments of different caps with Chromium on both x64 and ARM64
861 // have shown that the 32-byte cap generates the smallest binary on
862 // both platforms while different caps yield similar performance.
863 // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
864 if (DesiredPadding > 32)
865 DesiredPadding = alignTo(InitSize, 32) - InitSize;
866 }
867
868 Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
869 auto *CombinedGlobal =
870 new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
872 CombinedGlobal->setAlignment(MaxAlign);
873
874 StructType *NewTy = cast<StructType>(NewInit->getType());
875 lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
876
877 // Build aliases pointing to offsets into the combined global for each
878 // global from which we built the combined global, and replace references
879 // to the original globals with references to the aliases.
880 for (unsigned I = 0; I != Globals.size(); ++I) {
881 GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
882
883 // Multiply by 2 to account for padding elements.
884 Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
885 ConstantInt::get(Int32Ty, I * 2)};
886 Constant *CombinedGlobalElemPtr = ConstantExpr::getInBoundsGetElementPtr(
887 NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
888 assert(GV->getType()->getAddressSpace() == 0);
889 GlobalAlias *GAlias =
890 GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
891 "", CombinedGlobalElemPtr, &M);
892 GAlias->setVisibility(GV->getVisibility());
893 GAlias->takeName(GV);
894 GV->replaceAllUsesWith(GAlias);
895 GV->eraseFromParent();
896 }
897}
898
899bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
900 return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
901 ObjectFormat == Triple::ELF;
902}
903
904/// Export the given type identifier so that ThinLTO backends may import it.
905/// Type identifiers are exported by adding coarse-grained information about how
906/// to test the type identifier to the summary, and creating symbols in the
907/// object file (aliases and absolute symbols) containing fine-grained
908/// information about the type identifier.
909///
910/// Returns a pointer to the location in which to store the bitmask, if
911/// applicable.
912uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
913 const TypeIdLowering &TIL) {
914 TypeTestResolution &TTRes =
915 ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
916 TTRes.TheKind = TIL.TheKind;
917
918 auto ExportGlobal = [&](StringRef Name, Constant *C) {
919 GlobalAlias *GA =
921 "__typeid_" + TypeId + "_" + Name, C, &M);
923 };
924
925 auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
926 if (shouldExportConstantsAsAbsoluteSymbols())
927 ExportGlobal(Name, ConstantExpr::getIntToPtr(C, PtrTy));
928 else
929 Storage = cast<ConstantInt>(C)->getZExtValue();
930 };
931
932 if (TIL.TheKind != TypeTestResolution::Unsat)
933 ExportGlobal("global_addr", TIL.OffsetedGlobal);
934
935 if (TIL.TheKind == TypeTestResolution::ByteArray ||
936 TIL.TheKind == TypeTestResolution::Inline ||
937 TIL.TheKind == TypeTestResolution::AllOnes) {
938 ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
939 ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
940
941 uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
942 if (TIL.TheKind == TypeTestResolution::Inline)
943 TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
944 else
945 TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
946 }
947
948 if (TIL.TheKind == TypeTestResolution::ByteArray) {
949 ExportGlobal("byte_array", TIL.TheByteArray);
950 if (shouldExportConstantsAsAbsoluteSymbols())
951 ExportGlobal("bit_mask", TIL.BitMask);
952 else
953 return &TTRes.BitMask;
954 }
955
956 if (TIL.TheKind == TypeTestResolution::Inline)
957 ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
958
959 return nullptr;
960}
961
962LowerTypeTestsModule::TypeIdLowering
963LowerTypeTestsModule::importTypeId(StringRef TypeId) {
964 const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
965 if (!TidSummary)
966 return {}; // Unsat: no globals match this type id.
967 const TypeTestResolution &TTRes = TidSummary->TTRes;
968
969 TypeIdLowering TIL;
970 TIL.TheKind = TTRes.TheKind;
971
972 auto ImportGlobal = [&](StringRef Name) {
973 // Give the global a type of length 0 so that it is not assumed not to alias
974 // with any other global.
975 GlobalVariable *GV = M.getOrInsertGlobal(
976 ("__typeid_" + TypeId + "_" + Name).str(), Int8Arr0Ty);
978 return GV;
979 };
980
981 auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
982 Type *Ty) {
983 if (!shouldExportConstantsAsAbsoluteSymbols()) {
984 Constant *C =
985 ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
986 if (!isa<IntegerType>(Ty))
988 return C;
989 }
990
991 Constant *C = ImportGlobal(Name);
992 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
993 if (isa<IntegerType>(Ty))
995 if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
996 return C;
997
998 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
999 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1000 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1001 GV->setMetadata(LLVMContext::MD_absolute_symbol,
1002 MDNode::get(M.getContext(), {MinC, MaxC}));
1003 };
1004 if (AbsWidth == IntPtrTy->getBitWidth()) {
1005 uint64_t AllOnes = IntPtrTy->getBitMask();
1006 SetAbsRange(AllOnes, AllOnes); // Full set.
1007 } else {
1008 SetAbsRange(0, 1ull << AbsWidth);
1009 }
1010 return C;
1011 };
1012
1013 if (TIL.TheKind != TypeTestResolution::Unsat) {
1014 auto *GV = ImportGlobal("global_addr");
1015 // This is either a vtable (in .data.rel.ro) or a jump table (in .text).
1016 // Either way it's expected to be in the low 2 GiB, so set the small code
1017 // model.
1018 //
1019 // For .data.rel.ro, we currently place all such sections in the low 2 GiB
1020 // [1], and for .text the sections are expected to be in the low 2 GiB under
1021 // the small and medium code models [2] and this pass only supports those
1022 // code models (e.g. jump tables use jmp instead of movabs/jmp).
1023 //
1024 // [1]https://github.com/llvm/llvm-project/pull/137742
1025 // [2]https://maskray.me/blog/2023-05-14-relocation-overflow-and-code-models
1027 TIL.OffsetedGlobal = GV;
1028 }
1029
1030 if (TIL.TheKind == TypeTestResolution::ByteArray ||
1031 TIL.TheKind == TypeTestResolution::Inline ||
1032 TIL.TheKind == TypeTestResolution::AllOnes) {
1033 TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, IntPtrTy);
1034 TIL.SizeM1 =
1035 ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
1036 }
1037
1038 if (TIL.TheKind == TypeTestResolution::ByteArray) {
1039 TIL.TheByteArray = ImportGlobal("byte_array");
1040 TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, PtrTy);
1041 }
1042
1043 if (TIL.TheKind == TypeTestResolution::Inline)
1044 TIL.InlineBits = ImportConstant(
1045 "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
1046 TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
1047
1048 return TIL;
1049}
1050
1051void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
1052 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
1053 if (!TypeIdMDVal)
1054 report_fatal_error("Second argument of llvm.type.test must be metadata");
1055
1056 auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
1057 // If this is a local unpromoted type, which doesn't have a metadata string,
1058 // treat as Unknown and delay lowering, so that we can still utilize it for
1059 // later optimizations.
1060 if (!TypeIdStr)
1061 return;
1062
1063 TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
1064 Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
1065 if (Lowered) {
1066 CI->replaceAllUsesWith(Lowered);
1067 CI->eraseFromParent();
1068 }
1069}
1070
1071void LowerTypeTestsModule::maybeReplaceComdat(Function *F,
1072 StringRef OriginalName) {
1073 // For COFF we should also rename the comdat if this function also
1074 // happens to be the key function. Even if the comdat name changes, this
1075 // should still be fine since comdat and symbol resolution happens
1076 // before LTO, so all symbols which would prevail have been selected.
1077 if (F->hasComdat() && ObjectFormat == Triple::COFF &&
1078 F->getComdat()->getName() == OriginalName) {
1079 Comdat *OldComdat = F->getComdat();
1080 Comdat *NewComdat = M.getOrInsertComdat(F->getName());
1081 for (GlobalObject &GO : M.global_objects()) {
1082 if (GO.getComdat() == OldComdat)
1083 GO.setComdat(NewComdat);
1084 }
1085 }
1086}
1087
1088// ThinLTO backend: the function F has a jump table entry; update this module
1089// accordingly. isJumpTableCanonical describes the type of the jump table entry.
1090void LowerTypeTestsModule::importFunction(Function *F,
1091 bool isJumpTableCanonical) {
1092 assert(F->getType()->getAddressSpace() == 0);
1093
1094 GlobalValue::VisibilityTypes Visibility = F->getVisibility();
1095 std::string Name = std::string(F->getName());
1096
1097 if (F->isDeclarationForLinker() && isJumpTableCanonical) {
1098 // Non-dso_local functions may be overriden at run time,
1099 // don't short curcuit them
1100 if (F->isDSOLocal()) {
1101 Function *RealF = Function::Create(F->getFunctionType(),
1103 F->getAddressSpace(),
1104 Name + ".cfi", &M);
1106 replaceDirectCalls(F, RealF);
1107 }
1108 return;
1109 }
1110
1111 Function *FDecl;
1112 if (!isJumpTableCanonical) {
1113 // Either a declaration of an external function or a reference to a locally
1114 // defined jump table.
1115 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1116 F->getAddressSpace(), Name + ".cfi_jt", &M);
1118 } else {
1119 F->setName(Name + ".cfi");
1120 maybeReplaceComdat(F, Name);
1121 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1122 F->getAddressSpace(), Name, &M);
1123 FDecl->setVisibility(Visibility);
1124 Visibility = GlobalValue::HiddenVisibility;
1125
1126 // Update aliases pointing to this function to also include the ".cfi" suffix,
1127 // We expect the jump table entry to either point to the real function or an
1128 // alias. Redirect all other users to the jump table entry.
1129 for (auto &U : F->uses()) {
1130 if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
1131 std::string AliasName = A->getName().str() + ".cfi";
1132 Function *AliasDecl = Function::Create(
1133 F->getFunctionType(), GlobalValue::ExternalLinkage,
1134 F->getAddressSpace(), "", &M);
1135 AliasDecl->takeName(A);
1136 A->replaceAllUsesWith(AliasDecl);
1137 A->setName(AliasName);
1138 }
1139 }
1140 }
1141
1142 if (F->hasExternalWeakLinkage())
1143 replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isJumpTableCanonical);
1144 else
1145 replaceCfiUses(F, FDecl, isJumpTableCanonical);
1146
1147 // Set visibility late because it's used in replaceCfiUses() to determine
1148 // whether uses need to be replaced.
1149 F->setVisibility(Visibility);
1150}
1151
1152static auto
1154 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1156 // Pre-populate the map with interesting type identifiers.
1157 for (Metadata *TypeId : TypeIds)
1158 OffsetsByTypeID[TypeId];
1159 for (const auto &[Mem, MemOff] : GlobalLayout) {
1160 for (MDNode *Type : Mem->types()) {
1161 auto It = OffsetsByTypeID.find(Type->getOperand(1));
1162 if (It == OffsetsByTypeID.end())
1163 continue;
1166 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
1167 ->getZExtValue();
1168 It->second.push_back(MemOff + Offset);
1169 }
1170 }
1171
1173 BitSets.reserve(TypeIds.size());
1174 for (Metadata *TypeId : TypeIds) {
1175 BitSets.emplace_back(TypeId, buildBitSet(OffsetsByTypeID[TypeId]));
1176 LLVM_DEBUG({
1177 if (auto MDS = dyn_cast<MDString>(TypeId))
1178 dbgs() << MDS->getString() << ": ";
1179 else
1180 dbgs() << "<unnamed>: ";
1181 BitSets.back().second.print(dbgs());
1182 });
1183 }
1184
1185 return BitSets;
1186}
1187
1188void LowerTypeTestsModule::lowerTypeTestCalls(
1189 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
1190 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1191 // For each type identifier in this disjoint set...
1192 for (const auto &[TypeId, BSI] : buildBitSets(TypeIds, GlobalLayout)) {
1193 ByteArrayInfo *BAI = nullptr;
1194 TypeIdLowering TIL;
1195
1196 uint64_t GlobalOffset =
1197 BSI.ByteOffset + ((BSI.BitSize - 1) << BSI.AlignLog2);
1198 TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
1199 Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, GlobalOffset)),
1200 TIL.AlignLog2 = ConstantInt::get(IntPtrTy, BSI.AlignLog2);
1201 TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
1202 if (BSI.isAllOnes()) {
1203 TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
1204 : TypeTestResolution::AllOnes;
1205 } else if (BSI.BitSize <= IntPtrTy->getBitWidth()) {
1206 TIL.TheKind = TypeTestResolution::Inline;
1207 uint64_t InlineBits = 0;
1208 for (auto Bit : BSI.Bits)
1209 InlineBits |= uint64_t(1) << Bit;
1210 if (InlineBits == 0)
1211 TIL.TheKind = TypeTestResolution::Unsat;
1212 else
1213 TIL.InlineBits = ConstantInt::get(
1214 (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
1215 } else {
1216 TIL.TheKind = TypeTestResolution::ByteArray;
1217 ++NumByteArraysCreated;
1218 BAI = createByteArray(BSI);
1219 TIL.TheByteArray = BAI->ByteArray;
1220 TIL.BitMask = BAI->MaskGlobal;
1221 }
1222
1223 TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
1224
1225 if (TIUI.IsExported) {
1226 uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
1227 if (BAI)
1228 BAI->MaskPtr = MaskPtr;
1229 }
1230
1231 // Lower each call to llvm.type.test for this type identifier.
1232 for (CallInst *CI : TIUI.CallSites) {
1233 ++NumTypeTestCallsLowered;
1234 Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
1235 if (Lowered) {
1236 CI->replaceAllUsesWith(Lowered);
1237 CI->eraseFromParent();
1238 }
1239 }
1240 }
1241}
1242
1243void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
1244 if (Type->getNumOperands() != 2)
1245 report_fatal_error("All operands of type metadata must have 2 elements");
1246
1247 if (GO->isThreadLocal())
1248 report_fatal_error("Bit set element may not be thread-local");
1249 if (isa<GlobalVariable>(GO) && GO->hasSection())
1251 "A member of a type identifier may not have an explicit section");
1252
1253 // FIXME: We previously checked that global var member of a type identifier
1254 // must be a definition, but the IR linker may leave type metadata on
1255 // declarations. We should restore this check after fixing PR31759.
1256
1257 auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
1258 if (!OffsetConstMD)
1259 report_fatal_error("Type offset must be a constant");
1260 auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
1261 if (!OffsetInt)
1262 report_fatal_error("Type offset must be an integer constant");
1263}
1264
1265static const unsigned kX86JumpTableEntrySize = 8;
1266static const unsigned kX86IBTJumpTableEntrySize = 16;
1267static const unsigned kARMJumpTableEntrySize = 4;
1268static const unsigned kARMBTIJumpTableEntrySize = 8;
1269static const unsigned kARMv6MJumpTableEntrySize = 16;
1270static const unsigned kRISCVJumpTableEntrySize = 8;
1271static const unsigned kLOONGARCH64JumpTableEntrySize = 8;
1272
1273bool LowerTypeTestsModule::hasBranchTargetEnforcement() {
1274 if (HasBranchTargetEnforcement == -1) {
1275 // First time this query has been called. Find out the answer by checking
1276 // the module flags.
1277 if (const auto *BTE = mdconst::extract_or_null<ConstantInt>(
1278 M.getModuleFlag("branch-target-enforcement")))
1279 HasBranchTargetEnforcement = !BTE->isZero();
1280 else
1281 HasBranchTargetEnforcement = 0;
1282 }
1283 return HasBranchTargetEnforcement;
1284}
1285
1286unsigned
1287LowerTypeTestsModule::getJumpTableEntrySize(Triple::ArchType JumpTableArch) {
1288 switch (JumpTableArch) {
1289 case Triple::x86:
1290 case Triple::x86_64:
1291 if (const auto *MD = mdconst::extract_or_null<ConstantInt>(
1292 M.getModuleFlag("cf-protection-branch")))
1293 if (MD->getZExtValue())
1296 case Triple::arm:
1298 case Triple::thumb:
1299 if (CanUseThumbBWJumpTable) {
1300 if (hasBranchTargetEnforcement())
1303 } else {
1305 }
1306 case Triple::aarch64:
1307 if (hasBranchTargetEnforcement())
1310 case Triple::riscv32:
1311 case Triple::riscv64:
1315 default:
1316 report_fatal_error("Unsupported architecture for jump tables");
1317 }
1318}
1319
1320// Create an inline asm constant representing a jump table entry for the target.
1321// This consists of an instruction sequence containing a relative branch to
1322// Dest.
1323InlineAsm *
1324LowerTypeTestsModule::createJumpTableEntryAsm(Triple::ArchType JumpTableArch) {
1325 std::string Asm;
1326 raw_string_ostream AsmOS(Asm);
1327
1328 if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
1329 bool Endbr = false;
1330 if (const auto *MD = mdconst::extract_or_null<ConstantInt>(
1331 M.getModuleFlag("cf-protection-branch")))
1332 Endbr = !MD->isZero();
1333 if (Endbr)
1334 AsmOS << (JumpTableArch == Triple::x86 ? "endbr32\n" : "endbr64\n");
1335 AsmOS << "jmp ${0:c}@plt\n";
1336 if (Endbr)
1337 AsmOS << ".balign 16, 0xcc\n";
1338 else
1339 AsmOS << "int3\nint3\nint3\n";
1340 } else if (JumpTableArch == Triple::arm) {
1341 AsmOS << "b $0\n";
1342 } else if (JumpTableArch == Triple::aarch64) {
1343 if (hasBranchTargetEnforcement())
1344 AsmOS << "bti c\n";
1345 AsmOS << "b $0\n";
1346 } else if (JumpTableArch == Triple::thumb) {
1347 if (!CanUseThumbBWJumpTable) {
1348 // In Armv6-M, this sequence will generate a branch without corrupting
1349 // any registers. We use two stack words; in the second, we construct the
1350 // address we'll pop into pc, and the first is used to save and restore
1351 // r0 which we use as a temporary register.
1352 //
1353 // To support position-independent use cases, the offset of the target
1354 // function is stored as a relative offset (which will expand into an
1355 // R_ARM_REL32 relocation in ELF, and presumably the equivalent in other
1356 // object file types), and added to pc after we load it. (The alternative
1357 // B.W is automatically pc-relative.)
1358 //
1359 // There are five 16-bit Thumb instructions here, so the .balign 4 adds a
1360 // sixth halfword of padding, and then the offset consumes a further 4
1361 // bytes, for a total of 16, which is very convenient since entries in
1362 // this jump table need to have power-of-two size.
1363 AsmOS << "push {r0,r1}\n"
1364 << "ldr r0, 1f\n"
1365 << "0: add r0, r0, pc\n"
1366 << "str r0, [sp, #4]\n"
1367 << "pop {r0,pc}\n"
1368 << ".balign 4\n"
1369 << "1: .word $0 - (0b + 4)\n";
1370 } else {
1371 if (hasBranchTargetEnforcement())
1372 AsmOS << "bti\n";
1373 AsmOS << "b.w $0\n";
1374 }
1375 } else if (JumpTableArch == Triple::riscv32 ||
1376 JumpTableArch == Triple::riscv64) {
1377 AsmOS << "tail $0@plt\n";
1378 } else if (JumpTableArch == Triple::loongarch64) {
1379 AsmOS << "pcalau12i $$t0, %pc_hi20($0)\n"
1380 << "jirl $$r0, $$t0, %pc_lo12($0)\n";
1381 } else {
1382 report_fatal_error("Unsupported architecture for jump tables");
1383 }
1384
1385 return InlineAsm::get(
1386 FunctionType::get(Type::getVoidTy(M.getContext()), PtrTy, false),
1387 AsmOS.str(), "s",
1388 /*hasSideEffects=*/true);
1389}
1390
1391/// Given a disjoint set of type identifiers and functions, build the bit sets
1392/// and lower the llvm.type.test calls, architecture dependently.
1393void LowerTypeTestsModule::buildBitSetsFromFunctions(
1395 if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
1396 Arch == Triple::thumb || Arch == Triple::aarch64 ||
1397 Arch == Triple::riscv32 || Arch == Triple::riscv64 ||
1398 Arch == Triple::loongarch64)
1399 buildBitSetsFromFunctionsNative(TypeIds, Functions);
1400 else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
1401 buildBitSetsFromFunctionsWASM(TypeIds, Functions);
1402 else
1403 report_fatal_error("Unsupported architecture for jump tables");
1404}
1405
1406void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1407 GlobalVariable *GV) {
1408 if (WeakInitializerFn == nullptr) {
1409 WeakInitializerFn = Function::Create(
1410 FunctionType::get(Type::getVoidTy(M.getContext()),
1411 /* IsVarArg */ false),
1413 M.getDataLayout().getProgramAddressSpace(),
1414 "__cfi_global_var_init", &M);
1415 BasicBlock *BB =
1416 BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
1417 ReturnInst::Create(M.getContext(), BB);
1418 WeakInitializerFn->setSection(
1419 ObjectFormat == Triple::MachO
1420 ? "__TEXT,__StaticInit,regular,pure_instructions"
1421 : ".text.startup");
1422 // This code is equivalent to relocation application, and should run at the
1423 // earliest possible time (i.e. with the highest priority).
1424 appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
1425 }
1426
1427 IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
1428 GV->setConstant(false);
1429 IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlign());
1431}
1432
1433void LowerTypeTestsModule::findGlobalVariableUsersOf(
1434 Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
1435 for (auto *U : C->users()){
1436 if (auto *GV = dyn_cast<GlobalVariable>(U))
1437 Out.insert(GV);
1438 else if (auto *C2 = dyn_cast<Constant>(U))
1439 findGlobalVariableUsersOf(C2, Out);
1440 }
1441}
1442
1443// Replace all uses of F with (F ? JT : 0).
1444void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1445 Function *F, Constant *JT, bool IsJumpTableCanonical) {
1446 // The target expression can not appear in a constant initializer on most
1447 // (all?) targets. Switch to a runtime initializer.
1448 SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
1449 findGlobalVariableUsersOf(F, GlobalVarUsers);
1450 for (auto *GV : GlobalVarUsers) {
1451 if (GV == GlobalAnnotation)
1452 continue;
1453 moveInitializerToModuleConstructor(GV);
1454 }
1455
1456 // Can not RAUW F with an expression that uses F. Replace with a temporary
1457 // placeholder first.
1458 Function *PlaceholderFn =
1460 F->getAddressSpace(), "", &M);
1461 replaceCfiUses(F, PlaceholderFn, IsJumpTableCanonical);
1462
1464 // Don't use range based loop, because use list will be modified.
1465 while (!PlaceholderFn->use_empty()) {
1466 Use &U = *PlaceholderFn->use_begin();
1467 auto *InsertPt = dyn_cast<Instruction>(U.getUser());
1468 assert(InsertPt && "Non-instruction users should have been eliminated");
1469 auto *PN = dyn_cast<PHINode>(InsertPt);
1470 if (PN)
1471 InsertPt = PN->getIncomingBlock(U)->getTerminator();
1472 IRBuilder Builder(InsertPt);
1473 Value *ICmp = Builder.CreateICmp(CmpInst::ICMP_NE, F,
1474 Constant::getNullValue(F->getType()));
1475 Value *Select = Builder.CreateSelect(ICmp, JT,
1476 Constant::getNullValue(F->getType()));
1477
1478 if (auto *SI = dyn_cast<SelectInst>(Select))
1480 // For phi nodes, we need to update the incoming value for all operands
1481 // with the same predecessor.
1482 if (PN)
1483 PN->setIncomingValueForBlock(InsertPt->getParent(), Select);
1484 else
1485 U.set(Select);
1486 }
1487 PlaceholderFn->eraseFromParent();
1488}
1489
1490static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
1491 Attribute TFAttr = F->getFnAttribute("target-features");
1492 if (TFAttr.isValid()) {
1494 TFAttr.getValueAsString().split(Features, ',');
1495 for (StringRef Feature : Features) {
1496 if (Feature == "-thumb-mode")
1497 return false;
1498 else if (Feature == "+thumb-mode")
1499 return true;
1500 }
1501 }
1502
1503 return ModuleArch == Triple::thumb;
1504}
1505
1506// Each jump table must be either ARM or Thumb as a whole for the bit-test math
1507// to work. Pick one that matches the majority of members to minimize interop
1508// veneers inserted by the linker.
1509Triple::ArchType LowerTypeTestsModule::selectJumpTableArmEncoding(
1510 ArrayRef<GlobalTypeMember *> Functions) {
1511 if (Arch != Triple::arm && Arch != Triple::thumb)
1512 return Arch;
1513
1514 if (!CanUseThumbBWJumpTable && CanUseArmJumpTable) {
1515 // In architectures that provide Arm and Thumb-1 but not Thumb-2,
1516 // we should always prefer the Arm jump table format, because the
1517 // Thumb-1 one is larger and slower.
1518 return Triple::arm;
1519 }
1520
1521 // Otherwise, go with majority vote.
1522 unsigned ArmCount = 0, ThumbCount = 0;
1523 for (const auto GTM : Functions) {
1524 if (!GTM->isJumpTableCanonical()) {
1525 // PLT stubs are always ARM.
1526 // FIXME: This is the wrong heuristic for non-canonical jump tables.
1527 ++ArmCount;
1528 continue;
1529 }
1530
1531 Function *F = cast<Function>(GTM->getGlobal());
1532 ++(isThumbFunction(F, Arch) ? ThumbCount : ArmCount);
1533 }
1534
1535 return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
1536}
1537
1538void LowerTypeTestsModule::createJumpTable(
1539 Function *F, ArrayRef<GlobalTypeMember *> Functions,
1540 Triple::ArchType JumpTableArch) {
1541 BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
1542 IRBuilder<> IRB(BB);
1543
1544 InlineAsm *JumpTableAsm = createJumpTableEntryAsm(JumpTableArch);
1545
1546 // Check if all entries have the NoUnwind attribute.
1547 // If all entries have it, we can safely mark the
1548 // cfi.jumptable as NoUnwind, otherwise, direct calls
1549 // to the jump table will not handle exceptions properly
1550 bool areAllEntriesNounwind = true;
1551 for (GlobalTypeMember *GTM : Functions) {
1552 if (!llvm::cast<llvm::Function>(GTM->getGlobal())
1553 ->hasFnAttribute(llvm::Attribute::NoUnwind)) {
1554 areAllEntriesNounwind = false;
1555 }
1556 IRB.CreateCall(JumpTableAsm, GTM->getGlobal());
1557 }
1558 IRB.CreateUnreachable();
1559
1560 // Align the whole table by entry size.
1561 F->setAlignment(Align(getJumpTableEntrySize(JumpTableArch)));
1562 F->addFnAttr(Attribute::Naked);
1563 if (JumpTableArch == Triple::arm)
1564 F->addFnAttr("target-features", "-thumb-mode");
1565 if (JumpTableArch == Triple::thumb) {
1566 if (hasBranchTargetEnforcement()) {
1567 // If we're generating a Thumb jump table with BTI, add a target-features
1568 // setting to ensure BTI can be assembled.
1569 F->addFnAttr("target-features", "+thumb-mode,+pacbti");
1570 } else {
1571 F->addFnAttr("target-features", "+thumb-mode");
1572 if (CanUseThumbBWJumpTable) {
1573 // Thumb jump table assembly needs Thumb2. The following attribute is
1574 // added by Clang for -march=armv7.
1575 F->addFnAttr("target-cpu", "cortex-a8");
1576 }
1577 }
1578 }
1579 // When -mbranch-protection= is used, the inline asm adds a BTI. Suppress BTI
1580 // for the function to avoid double BTI. This is a no-op without
1581 // -mbranch-protection=.
1582 if (JumpTableArch == Triple::aarch64 || JumpTableArch == Triple::thumb) {
1583 if (F->hasFnAttribute("branch-target-enforcement"))
1584 F->removeFnAttr("branch-target-enforcement");
1585 if (F->hasFnAttribute("sign-return-address"))
1586 F->removeFnAttr("sign-return-address");
1587 }
1588 if (JumpTableArch == Triple::riscv32 || JumpTableArch == Triple::riscv64) {
1589 // Make sure the jump table assembly is not modified by the assembler or
1590 // the linker.
1591 F->addFnAttr("target-features", "-c,-relax");
1592 }
1593 // When -fcf-protection= is used, the inline asm adds an ENDBR. Suppress ENDBR
1594 // for the function to avoid double ENDBR. This is a no-op without
1595 // -fcf-protection=.
1596 if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64)
1597 F->addFnAttr(Attribute::NoCfCheck);
1598
1599 // Make sure we don't emit .eh_frame for this function if it isn't needed.
1600 if (areAllEntriesNounwind)
1601 F->addFnAttr(Attribute::NoUnwind);
1602
1603 // Make sure we do not inline any calls to the cfi.jumptable.
1604 F->addFnAttr(Attribute::NoInline);
1605}
1606
1607/// Given a disjoint set of type identifiers and functions, build a jump table
1608/// for the functions, build the bit sets and lower the llvm.type.test calls.
1609void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1611 // Unlike the global bitset builder, the function bitset builder cannot
1612 // re-arrange functions in a particular order and base its calculations on the
1613 // layout of the functions' entry points, as we have no idea how large a
1614 // particular function will end up being (the size could even depend on what
1615 // this pass does!) Instead, we build a jump table, which is a block of code
1616 // consisting of one branch instruction for each of the functions in the bit
1617 // set that branches to the target function, and redirect any taken function
1618 // addresses to the corresponding jump table entry. In the object file's
1619 // symbol table, the symbols for the target functions also refer to the jump
1620 // table entries, so that addresses taken outside the module will pass any
1621 // verification done inside the module.
1622 //
1623 // In more concrete terms, suppose we have three functions f, g, h which are
1624 // of the same type, and a function foo that returns their addresses:
1625 //
1626 // f:
1627 // mov 0, %eax
1628 // ret
1629 //
1630 // g:
1631 // mov 1, %eax
1632 // ret
1633 //
1634 // h:
1635 // mov 2, %eax
1636 // ret
1637 //
1638 // foo:
1639 // mov f, %eax
1640 // mov g, %edx
1641 // mov h, %ecx
1642 // ret
1643 //
1644 // We output the jump table as module-level inline asm string. The end result
1645 // will (conceptually) look like this:
1646 //
1647 // f = .cfi.jumptable
1648 // g = .cfi.jumptable + 4
1649 // h = .cfi.jumptable + 8
1650 // .cfi.jumptable:
1651 // jmp f.cfi ; 5 bytes
1652 // int3 ; 1 byte
1653 // int3 ; 1 byte
1654 // int3 ; 1 byte
1655 // jmp g.cfi ; 5 bytes
1656 // int3 ; 1 byte
1657 // int3 ; 1 byte
1658 // int3 ; 1 byte
1659 // jmp h.cfi ; 5 bytes
1660 // int3 ; 1 byte
1661 // int3 ; 1 byte
1662 // int3 ; 1 byte
1663 //
1664 // f.cfi:
1665 // mov 0, %eax
1666 // ret
1667 //
1668 // g.cfi:
1669 // mov 1, %eax
1670 // ret
1671 //
1672 // h.cfi:
1673 // mov 2, %eax
1674 // ret
1675 //
1676 // foo:
1677 // mov f, %eax
1678 // mov g, %edx
1679 // mov h, %ecx
1680 // ret
1681 //
1682 // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1683 // normal case the check can be carried out using the same kind of simple
1684 // arithmetic that we normally use for globals.
1685
1686 // FIXME: find a better way to represent the jumptable in the IR.
1687 assert(!Functions.empty());
1688
1689 // Decide on the jump table encoding, so that we know how big the
1690 // entries will be.
1691 Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions);
1692
1693 // Build a simple layout based on the regular layout of jump tables.
1694 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1695 unsigned EntrySize = getJumpTableEntrySize(JumpTableArch);
1696 for (unsigned I = 0; I != Functions.size(); ++I)
1697 GlobalLayout[Functions[I]] = I * EntrySize;
1698
1699 Function *JumpTableFn =
1701 /* IsVarArg */ false),
1703 M.getDataLayout().getProgramAddressSpace(),
1704 ".cfi.jumptable", &M);
1705 ArrayType *JumpTableEntryType = ArrayType::get(Int8Ty, EntrySize);
1707 ArrayType::get(JumpTableEntryType, Functions.size());
1709 JumpTableFn, PointerType::getUnqual(M.getContext()));
1710
1711 lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
1712
1713 // Build aliases pointing to offsets into the jump table, and replace
1714 // references to the original functions with references to the aliases.
1715 for (unsigned I = 0; I != Functions.size(); ++I) {
1716 Function *F = cast<Function>(Functions[I]->getGlobal());
1717 bool IsJumpTableCanonical = Functions[I]->isJumpTableCanonical();
1718
1719 Constant *CombinedGlobalElemPtr = ConstantExpr::getInBoundsGetElementPtr(
1720 JumpTableType, JumpTable,
1721 ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
1722 ConstantInt::get(IntPtrTy, I)});
1723
1724 const bool IsExported = Functions[I]->isExported();
1725 if (!IsJumpTableCanonical) {
1728 GlobalAlias *JtAlias = GlobalAlias::create(JumpTableEntryType, 0, LT,
1729 F->getName() + ".cfi_jt",
1730 CombinedGlobalElemPtr, &M);
1731 if (IsExported)
1733 else
1734 appendToUsed(M, {JtAlias});
1735 }
1736
1737 if (IsExported) {
1738 if (IsJumpTableCanonical)
1739 ExportSummary->cfiFunctionDefs().emplace(F->getName());
1740 else
1741 ExportSummary->cfiFunctionDecls().emplace(F->getName());
1742 }
1743
1744 if (!IsJumpTableCanonical) {
1745 if (F->hasExternalWeakLinkage())
1746 replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr,
1747 IsJumpTableCanonical);
1748 else
1749 replaceCfiUses(F, CombinedGlobalElemPtr, IsJumpTableCanonical);
1750 } else {
1751 assert(F->getType()->getAddressSpace() == 0);
1752
1753 GlobalAlias *FAlias =
1754 GlobalAlias::create(JumpTableEntryType, 0, F->getLinkage(), "",
1755 CombinedGlobalElemPtr, &M);
1756 FAlias->setVisibility(F->getVisibility());
1757 FAlias->takeName(F);
1758 if (FAlias->hasName()) {
1759 F->setName(FAlias->getName() + ".cfi");
1760 maybeReplaceComdat(F, FAlias->getName());
1761 }
1762 replaceCfiUses(F, FAlias, IsJumpTableCanonical);
1763 if (!F->hasLocalLinkage())
1764 F->setVisibility(GlobalVariable::HiddenVisibility);
1765 }
1766 }
1767
1768 createJumpTable(JumpTableFn, Functions, JumpTableArch);
1769}
1770
1771/// Assign a dummy layout using an incrementing counter, tag each function
1772/// with its index represented as metadata, and lower each type test to an
1773/// integer range comparison. During generation of the indirect function call
1774/// table in the backend, it will assign the given indexes.
1775/// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1776/// been finalized.
1777void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1779 assert(!Functions.empty());
1780
1781 // Build consecutive monotonic integer ranges for each call target set
1782 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1783
1784 for (GlobalTypeMember *GTM : Functions) {
1785 Function *F = cast<Function>(GTM->getGlobal());
1786
1787 // Skip functions that are not address taken, to avoid bloating the table
1788 if (!F->hasAddressTaken())
1789 continue;
1790
1791 // Store metadata with the index for each function
1792 MDNode *MD = MDNode::get(F->getContext(),
1794 ConstantInt::get(Int64Ty, IndirectIndex))));
1795 F->setMetadata("wasm.index", MD);
1796
1797 // Assign the counter value
1798 GlobalLayout[GTM] = IndirectIndex++;
1799 }
1800
1801 // The indirect function table index space starts at zero, so pass a NULL
1802 // pointer as the subtracted "jump table" offset.
1803 lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(PtrTy),
1804 GlobalLayout);
1805}
1806
1807void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1809 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
1810 DenseMap<Metadata *, uint64_t> TypeIdIndices;
1811 for (unsigned I = 0; I != TypeIds.size(); ++I)
1812 TypeIdIndices[TypeIds[I]] = I;
1813
1814 // For each type identifier, build a set of indices that refer to members of
1815 // the type identifier.
1816 std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
1817 unsigned GlobalIndex = 0;
1818 DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
1819 for (GlobalTypeMember *GTM : Globals) {
1820 for (MDNode *Type : GTM->types()) {
1821 // Type = { offset, type identifier }
1822 auto I = TypeIdIndices.find(Type->getOperand(1));
1823 if (I != TypeIdIndices.end())
1824 TypeMembers[I->second].insert(GlobalIndex);
1825 }
1826 GlobalIndices[GTM] = GlobalIndex;
1827 GlobalIndex++;
1828 }
1829
1830 for (ICallBranchFunnel *JT : ICallBranchFunnels) {
1831 TypeMembers.emplace_back();
1832 std::set<uint64_t> &TMSet = TypeMembers.back();
1833 for (GlobalTypeMember *T : JT->targets())
1834 TMSet.insert(GlobalIndices[T]);
1835 }
1836
1837 // Order the sets of indices by size. The GlobalLayoutBuilder works best
1838 // when given small index sets first.
1839 llvm::stable_sort(TypeMembers, [](const std::set<uint64_t> &O1,
1840 const std::set<uint64_t> &O2) {
1841 return O1.size() < O2.size();
1842 });
1843
1844 // Create a GlobalLayoutBuilder and provide it with index sets as layout
1845 // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1846 // close together as possible.
1847 GlobalLayoutBuilder GLB(Globals.size());
1848 for (auto &&MemSet : TypeMembers)
1849 GLB.addFragment(MemSet);
1850
1851 // Build a vector of globals with the computed layout.
1852 bool IsGlobalSet =
1853 Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
1854 std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
1855 auto OGTMI = OrderedGTMs.begin();
1856 for (auto &&F : GLB.Fragments) {
1857 for (auto &&Offset : F) {
1858 if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
1859 report_fatal_error("Type identifier may not contain both global "
1860 "variables and functions");
1861 *OGTMI++ = Globals[Offset];
1862 }
1863 }
1864
1865 // Build the bitsets from this disjoint set.
1866 if (IsGlobalSet)
1867 buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
1868 else
1869 buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
1870}
1871
1872/// Lower all type tests in this module.
1873LowerTypeTestsModule::LowerTypeTestsModule(
1874 Module &M, ModuleAnalysisManager &AM, ModuleSummaryIndex *ExportSummary,
1875 const ModuleSummaryIndex *ImportSummary, DropTestKind DropTypeTests)
1876 : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary),
1877 DropTypeTests(ClDropTypeTests > DropTypeTests ? ClDropTypeTests
1878 : DropTypeTests) {
1879 assert(!(ExportSummary && ImportSummary));
1880 Triple TargetTriple(M.getTargetTriple());
1881 Arch = TargetTriple.getArch();
1882 if (Arch == Triple::arm)
1883 CanUseArmJumpTable = true;
1884 if (Arch == Triple::arm || Arch == Triple::thumb) {
1885 auto &FAM =
1887 for (Function &F : M) {
1888 // Skip declarations since we should not query the TTI for them.
1889 if (F.isDeclaration())
1890 continue;
1891 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
1892 if (TTI.hasArmWideBranch(false))
1893 CanUseArmJumpTable = true;
1894 if (TTI.hasArmWideBranch(true))
1895 CanUseThumbBWJumpTable = true;
1896 }
1897 }
1898 OS = TargetTriple.getOS();
1899 ObjectFormat = TargetTriple.getObjectFormat();
1900
1901 // Function annotation describes or applies to function itself, and
1902 // shouldn't be associated with jump table thunk generated for CFI.
1903 GlobalAnnotation = M.getGlobalVariable("llvm.global.annotations");
1904 if (GlobalAnnotation && GlobalAnnotation->hasInitializer()) {
1905 const ConstantArray *CA =
1906 cast<ConstantArray>(GlobalAnnotation->getInitializer());
1907 FunctionAnnotations.insert_range(CA->operands());
1908 }
1909}
1910
1911bool LowerTypeTestsModule::runForTesting(Module &M, ModuleAnalysisManager &AM) {
1912 ModuleSummaryIndex Summary(/*HaveGVs=*/false);
1913
1914 // Handle the command-line summary arguments. This code is for testing
1915 // purposes only, so we handle errors directly.
1916 if (!ClReadSummary.empty()) {
1917 ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
1918 ": ");
1919 auto ReadSummaryFile = ExitOnErr(errorOrToExpected(
1920 MemoryBuffer::getFile(ClReadSummary, /*IsText=*/true)));
1921
1922 yaml::Input In(ReadSummaryFile->getBuffer());
1923 In >> Summary;
1924 ExitOnErr(errorCodeToError(In.error()));
1925 }
1926
1927 bool Changed =
1928 LowerTypeTestsModule(
1929 M, AM,
1930 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
1931 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr,
1932 /*DropTypeTests=*/DropTestKind::None)
1933 .lower();
1934
1935 if (!ClWriteSummary.empty()) {
1936 ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
1937 ": ");
1938 std::error_code EC;
1939 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
1940 ExitOnErr(errorCodeToError(EC));
1941
1942 yaml::Output Out(OS);
1943 Out << Summary;
1944 }
1945
1946 return Changed;
1947}
1948
1949static bool isDirectCall(Use& U) {
1950 auto *Usr = dyn_cast<CallInst>(U.getUser());
1951 if (Usr) {
1952 auto *CB = dyn_cast<CallBase>(Usr);
1953 if (CB && CB->isCallee(&U))
1954 return true;
1955 }
1956 return false;
1957}
1958
1959void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New,
1960 bool IsJumpTableCanonical) {
1961 SmallSetVector<Constant *, 4> Constants;
1962 for (Use &U : llvm::make_early_inc_range(Old->uses())) {
1963 // Skip no_cfi values, which refer to the function body instead of the jump
1964 // table.
1965 if (isa<NoCFIValue>(U.getUser()))
1966 continue;
1967
1968 // Skip direct calls to externally defined or non-dso_local functions.
1969 if (isDirectCall(U) && (Old->isDSOLocal() || !IsJumpTableCanonical))
1970 continue;
1971
1972 // Skip function annotation.
1973 if (isFunctionAnnotation(U.getUser()))
1974 continue;
1975
1976 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1977 // constant because they are uniqued.
1978 if (auto *C = dyn_cast<Constant>(U.getUser())) {
1979 if (!isa<GlobalValue>(C)) {
1980 // Save unique users to avoid processing operand replacement
1981 // more than once.
1982 Constants.insert(C);
1983 continue;
1984 }
1985 }
1986
1987 U.set(New);
1988 }
1989
1990 // Process operand replacement of saved constants.
1991 for (auto *C : Constants)
1992 C->handleOperandChange(Old, New);
1993}
1994
1995void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
1997}
1998
1999static void dropTypeTests(Module &M, Function &TypeTestFunc,
2000 bool ShouldDropAll) {
2001 for (Use &U : llvm::make_early_inc_range(TypeTestFunc.uses())) {
2002 auto *CI = cast<CallInst>(U.getUser());
2003 // Find and erase llvm.assume intrinsics for this llvm.type.test call.
2004 for (Use &CIU : llvm::make_early_inc_range(CI->uses()))
2005 if (auto *Assume = dyn_cast<AssumeInst>(CIU.getUser()))
2006 Assume->eraseFromParent();
2007 // If the assume was merged with another assume, we might have a use on a
2008 // phi (which will feed the assume). Simply replace the use on the phi
2009 // with "true" and leave the merged assume.
2010 //
2011 // If ShouldDropAll is set, then we we need to update any remaining uses,
2012 // regardless of the instruction type.
2013 if (!CI->use_empty()) {
2014 assert(ShouldDropAll || all_of(CI->users(), [](User *U) -> bool {
2015 return isa<PHINode>(U);
2016 }));
2017 CI->replaceAllUsesWith(ConstantInt::getTrue(M.getContext()));
2018 }
2019 CI->eraseFromParent();
2020 }
2021}
2022
2023bool LowerTypeTestsModule::lower() {
2024 Function *TypeTestFunc =
2025 Intrinsic::getDeclarationIfExists(&M, Intrinsic::type_test);
2026
2027 if (DropTypeTests != DropTestKind::None) {
2028 bool ShouldDropAll = DropTypeTests == DropTestKind::All;
2029 if (TypeTestFunc)
2030 dropTypeTests(M, *TypeTestFunc, ShouldDropAll);
2031 // Normally we'd have already removed all @llvm.public.type.test calls,
2032 // except for in the case where we originally were performing ThinLTO but
2033 // decided not to in the backend.
2034 Function *PublicTypeTestFunc =
2035 Intrinsic::getDeclarationIfExists(&M, Intrinsic::public_type_test);
2036 if (PublicTypeTestFunc)
2037 dropTypeTests(M, *PublicTypeTestFunc, ShouldDropAll);
2038 if (TypeTestFunc || PublicTypeTestFunc) {
2039 // We have deleted the type intrinsics, so we no longer have enough
2040 // information to reason about the liveness of virtual function pointers
2041 // in GlobalDCE.
2042 for (GlobalVariable &GV : M.globals())
2043 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2044 return true;
2045 }
2046 return false;
2047 }
2048
2049 // If only some of the modules were split, we cannot correctly perform
2050 // this transformation. We already checked for the presense of type tests
2051 // with partially split modules during the thin link, and would have emitted
2052 // an error if any were found, so here we can simply return.
2053 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2054 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2055 return false;
2056
2057 Function *ICallBranchFunnelFunc =
2058 Intrinsic::getDeclarationIfExists(&M, Intrinsic::icall_branch_funnel);
2059 if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
2060 (!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
2061 !ExportSummary && !ImportSummary)
2062 return false;
2063
2064 if (ImportSummary) {
2065 if (TypeTestFunc)
2066 for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses()))
2067 importTypeTest(cast<CallInst>(U.getUser()));
2068
2069 if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
2071 "unexpected call to llvm.icall.branch.funnel during import phase");
2072
2075 for (auto &F : M) {
2076 // CFI functions are either external, or promoted. A local function may
2077 // have the same name, but it's not the one we are looking for.
2078 if (F.hasLocalLinkage())
2079 continue;
2080 if (ImportSummary->cfiFunctionDefs().count(F.getName()))
2081 Defs.push_back(&F);
2082 else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
2083 Decls.push_back(&F);
2084 }
2085
2086 {
2087 ScopedSaveAliaseesAndUsed S(M);
2088 for (auto *F : Defs)
2089 importFunction(F, /*isJumpTableCanonical*/ true);
2090 for (auto *F : Decls)
2091 importFunction(F, /*isJumpTableCanonical*/ false);
2092 }
2093
2094 return true;
2095 }
2096
2097 // Equivalence class set containing type identifiers and the globals that
2098 // reference them. This is used to partition the set of type identifiers in
2099 // the module into disjoint sets.
2100 using GlobalClassesTy = EquivalenceClasses<
2101 PointerUnion<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
2102 GlobalClassesTy GlobalClasses;
2103
2104 // Verify the type metadata and build a few data structures to let us
2105 // efficiently enumerate the type identifiers associated with a global:
2106 // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
2107 // of associated type metadata) and a mapping from type identifiers to their
2108 // list of GlobalTypeMembers and last observed index in the list of globals.
2109 // The indices will be used later to deterministically order the list of type
2110 // identifiers.
2112 struct TIInfo {
2113 unsigned UniqueId;
2114 std::vector<GlobalTypeMember *> RefGlobals;
2115 };
2116 DenseMap<Metadata *, TIInfo> TypeIdInfo;
2117 unsigned CurUniqueId = 0;
2119
2120 // Cross-DSO CFI emits jumptable entries for exported functions as well as
2121 // address taken functions in case they are address taken in other modules.
2122 const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
2123
2124 struct ExportedFunctionInfo {
2126 MDNode *FuncMD; // {name, linkage, type[, type...]}
2127 };
2128 MapVector<StringRef, ExportedFunctionInfo> ExportedFunctions;
2129 if (ExportSummary) {
2130 NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
2131 if (CfiFunctionsMD) {
2132 // A set of all functions that are address taken by a live global object.
2133 DenseSet<GlobalValue::GUID> AddressTaken;
2134 for (auto &I : *ExportSummary)
2135 for (auto &GVS : I.second.getSummaryList())
2136 if (GVS->isLive())
2137 for (const auto &Ref : GVS->refs()) {
2138 AddressTaken.insert(Ref.getGUID());
2139 for (auto &RefGVS : Ref.getSummaryList())
2140 if (auto Alias = dyn_cast<AliasSummary>(RefGVS.get()))
2141 AddressTaken.insert(Alias->getAliaseeGUID());
2142 }
2144 if (AddressTaken.count(GUID))
2145 return true;
2146 auto VI = ExportSummary->getValueInfo(GUID);
2147 if (!VI)
2148 return false;
2149 for (auto &I : VI.getSummaryList())
2150 if (auto Alias = dyn_cast<AliasSummary>(I.get()))
2151 if (AddressTaken.count(Alias->getAliaseeGUID()))
2152 return true;
2153 return false;
2154 };
2155 for (auto *FuncMD : CfiFunctionsMD->operands()) {
2156 assert(FuncMD->getNumOperands() >= 2);
2157 StringRef FunctionName =
2158 cast<MDString>(FuncMD->getOperand(0))->getString();
2160 cast<ConstantAsMetadata>(FuncMD->getOperand(1))
2161 ->getValue()
2162 ->getUniqueInteger()
2163 .getZExtValue());
2164 const GlobalValue::GUID GUID =
2167 // Do not emit jumptable entries for functions that are not-live and
2168 // have no live references (and are not exported with cross-DSO CFI.)
2169 if (!ExportSummary->isGUIDLive(GUID))
2170 continue;
2171 if (!IsAddressTaken(GUID)) {
2172 if (!CrossDsoCfi || Linkage != CFL_Definition)
2173 continue;
2174
2175 bool Exported = false;
2176 if (auto VI = ExportSummary->getValueInfo(GUID))
2177 for (const auto &GVS : VI.getSummaryList())
2178 if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
2179 Exported = true;
2180
2181 if (!Exported)
2182 continue;
2183 }
2184 auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
2185 if (!P.second && P.first->second.Linkage != CFL_Definition)
2186 P.first->second = {Linkage, FuncMD};
2187 }
2188
2189 for (const auto &P : ExportedFunctions) {
2190 StringRef FunctionName = P.first;
2191 CfiFunctionLinkage Linkage = P.second.Linkage;
2192 MDNode *FuncMD = P.second.FuncMD;
2193 Function *F = M.getFunction(FunctionName);
2194 if (F && F->hasLocalLinkage()) {
2195 // Locally defined function that happens to have the same name as a
2196 // function defined in a ThinLTO module. Rename it to move it out of
2197 // the way of the external reference that we're about to create.
2198 // Note that setName will find a unique name for the function, so even
2199 // if there is an existing function with the suffix there won't be a
2200 // name collision.
2201 F->setName(F->getName() + ".1");
2202 F = nullptr;
2203 }
2204
2205 if (!F)
2207 FunctionType::get(Type::getVoidTy(M.getContext()), false),
2208 GlobalVariable::ExternalLinkage,
2209 M.getDataLayout().getProgramAddressSpace(), FunctionName, &M);
2210
2211 // If the function is available_externally, remove its definition so
2212 // that it is handled the same way as a declaration. Later we will try
2213 // to create an alias using this function's linkage, which will fail if
2214 // the linkage is available_externally. This will also result in us
2215 // following the code path below to replace the type metadata.
2216 if (F->hasAvailableExternallyLinkage()) {
2217 F->setLinkage(GlobalValue::ExternalLinkage);
2218 F->deleteBody();
2219 F->setComdat(nullptr);
2220 F->clearMetadata();
2221 }
2222
2223 // Update the linkage for extern_weak declarations when a definition
2224 // exists.
2225 if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
2226 F->setLinkage(GlobalValue::ExternalLinkage);
2227
2228 // If the function in the full LTO module is a declaration, replace its
2229 // type metadata with the type metadata we found in cfi.functions. That
2230 // metadata is presumed to be more accurate than the metadata attached
2231 // to the declaration.
2232 if (F->isDeclaration()) {
2235
2236 F->eraseMetadata(LLVMContext::MD_type);
2237 for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
2238 F->addMetadata(LLVMContext::MD_type,
2239 *cast<MDNode>(FuncMD->getOperand(I).get()));
2240 }
2241 }
2242 }
2243 }
2244
2245 struct AliasToCreate {
2246 Function *Alias;
2247 std::string TargetName;
2248 };
2249 std::vector<AliasToCreate> AliasesToCreate;
2250
2251 // Parse alias data to replace stand-in function declarations for aliases
2252 // with an alias to the intended target.
2253 if (ExportSummary) {
2254 if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
2255 for (auto *AliasMD : AliasesMD->operands()) {
2257 for (Metadata *MD : AliasMD->operands()) {
2258 auto *MDS = dyn_cast<MDString>(MD);
2259 if (!MDS)
2260 continue;
2261 StringRef AliasName = MDS->getString();
2262 if (!ExportedFunctions.count(AliasName))
2263 continue;
2264 auto *AliasF = M.getFunction(AliasName);
2265 if (AliasF)
2266 Aliases.push_back(AliasF);
2267 }
2268
2269 if (Aliases.empty())
2270 continue;
2271
2272 for (unsigned I = 1; I != Aliases.size(); ++I) {
2273 auto *AliasF = Aliases[I];
2274 ExportedFunctions.erase(AliasF->getName());
2275 AliasesToCreate.push_back(
2276 {AliasF, std::string(Aliases[0]->getName())});
2277 }
2278 }
2279 }
2280 }
2281
2282 DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
2283 for (GlobalObject &GO : M.global_objects()) {
2285 continue;
2286
2287 Types.clear();
2288 GO.getMetadata(LLVMContext::MD_type, Types);
2289
2290 bool IsJumpTableCanonical = false;
2291 bool IsExported = false;
2292 if (Function *F = dyn_cast<Function>(&GO)) {
2293 IsJumpTableCanonical = isJumpTableCanonical(F);
2294 if (auto It = ExportedFunctions.find(F->getName());
2295 It != ExportedFunctions.end()) {
2296 IsJumpTableCanonical |= It->second.Linkage == CFL_Definition;
2297 IsExported = true;
2298 // TODO: The logic here checks only that the function is address taken,
2299 // not that the address takers are live. This can be updated to check
2300 // their liveness and emit fewer jumptable entries once monolithic LTO
2301 // builds also emit summaries.
2302 } else if (!F->hasAddressTaken()) {
2303 if (!CrossDsoCfi || !IsJumpTableCanonical || F->hasLocalLinkage())
2304 continue;
2305 }
2306 }
2307
2308 auto *GTM = GlobalTypeMember::create(Alloc, &GO, IsJumpTableCanonical,
2309 IsExported, Types);
2310 GlobalTypeMembers[&GO] = GTM;
2311 for (MDNode *Type : Types) {
2312 verifyTypeMDNode(&GO, Type);
2313 auto &Info = TypeIdInfo[Type->getOperand(1)];
2314 Info.UniqueId = ++CurUniqueId;
2315 Info.RefGlobals.push_back(GTM);
2316 }
2317 }
2318
2319 auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
2320 // Add the call site to the list of call sites for this type identifier. We
2321 // also use TypeIdUsers to keep track of whether we have seen this type
2322 // identifier before. If we have, we don't need to re-add the referenced
2323 // globals to the equivalence class.
2324 auto Ins = TypeIdUsers.insert({TypeId, {}});
2325 if (Ins.second) {
2326 // Add the type identifier to the equivalence class.
2327 auto &GCI = GlobalClasses.insert(TypeId);
2328 GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
2329
2330 // Add the referenced globals to the type identifier's equivalence class.
2331 for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
2332 CurSet = GlobalClasses.unionSets(
2333 CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
2334 }
2335
2336 return Ins.first->second;
2337 };
2338
2339 if (TypeTestFunc) {
2340 for (const Use &U : TypeTestFunc->uses()) {
2341 auto CI = cast<CallInst>(U.getUser());
2342 // If this type test is only used by llvm.assume instructions, it
2343 // was used for whole program devirtualization, and is being kept
2344 // for use by other optimization passes. We do not need or want to
2345 // lower it here. We also don't want to rewrite any associated globals
2346 // unnecessarily. These will be removed by a subsequent LTT invocation
2347 // with the DropTypeTests flag set.
2348 bool OnlyAssumeUses = !CI->use_empty();
2349 for (const Use &CIU : CI->uses()) {
2350 if (isa<AssumeInst>(CIU.getUser()))
2351 continue;
2352 OnlyAssumeUses = false;
2353 break;
2354 }
2355 if (OnlyAssumeUses)
2356 continue;
2357
2358 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
2359 if (!TypeIdMDVal)
2360 report_fatal_error("Second argument of llvm.type.test must be metadata");
2361 auto TypeId = TypeIdMDVal->getMetadata();
2362 AddTypeIdUse(TypeId).CallSites.push_back(CI);
2363 }
2364 }
2365
2366 if (ICallBranchFunnelFunc) {
2367 for (const Use &U : ICallBranchFunnelFunc->uses()) {
2368 if (Arch != Triple::x86_64)
2370 "llvm.icall.branch.funnel not supported on this target");
2371
2372 auto CI = cast<CallInst>(U.getUser());
2373
2374 std::vector<GlobalTypeMember *> Targets;
2375 if (CI->arg_size() % 2 != 1)
2376 report_fatal_error("number of arguments should be odd");
2377
2378 GlobalClassesTy::member_iterator CurSet;
2379 for (unsigned I = 1; I != CI->arg_size(); I += 2) {
2380 int64_t Offset;
2382 CI->getOperand(I), Offset, M.getDataLayout()));
2383 if (!Base)
2385 "Expected branch funnel operand to be global value");
2386
2387 GlobalTypeMember *GTM = GlobalTypeMembers[Base];
2388 Targets.push_back(GTM);
2389 GlobalClassesTy::member_iterator NewSet =
2390 GlobalClasses.findLeader(GlobalClasses.insert(GTM));
2391 if (I == 1)
2392 CurSet = NewSet;
2393 else
2394 CurSet = GlobalClasses.unionSets(CurSet, NewSet);
2395 }
2396
2397 GlobalClasses.unionSets(
2398 CurSet, GlobalClasses.findLeader(
2399 GlobalClasses.insert(ICallBranchFunnel::create(
2400 Alloc, CI, Targets, ++CurUniqueId))));
2401 }
2402 }
2403
2404 if (ExportSummary) {
2405 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2406 for (auto &P : TypeIdInfo) {
2407 if (auto *TypeId = dyn_cast<MDString>(P.first))
2409 TypeId->getString())]
2410 .push_back(TypeId);
2411 }
2412
2413 for (auto &P : *ExportSummary) {
2414 for (auto &S : P.second.getSummaryList()) {
2415 if (!ExportSummary->isGlobalValueLive(S.get()))
2416 continue;
2417 if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
2418 for (GlobalValue::GUID G : FS->type_tests())
2419 for (Metadata *MD : MetadataByGUID[G])
2420 AddTypeIdUse(MD).IsExported = true;
2421 }
2422 }
2423 }
2424
2425 if (GlobalClasses.empty())
2426 return false;
2427
2428 {
2429 ScopedSaveAliaseesAndUsed S(M);
2430 // For each disjoint set we found...
2431 for (const auto &C : GlobalClasses) {
2432 if (!C->isLeader())
2433 continue;
2434
2435 ++NumTypeIdDisjointSets;
2436 // Build the list of type identifiers in this disjoint set.
2437 std::vector<Metadata *> TypeIds;
2438 std::vector<GlobalTypeMember *> Globals;
2439 std::vector<ICallBranchFunnel *> ICallBranchFunnels;
2440 for (auto M : GlobalClasses.members(*C)) {
2441 if (isa<Metadata *>(M))
2442 TypeIds.push_back(cast<Metadata *>(M));
2443 else if (isa<GlobalTypeMember *>(M))
2444 Globals.push_back(cast<GlobalTypeMember *>(M));
2445 else
2446 ICallBranchFunnels.push_back(cast<ICallBranchFunnel *>(M));
2447 }
2448
2449 // Order type identifiers by unique ID for determinism. This ordering is
2450 // stable as there is a one-to-one mapping between metadata and unique
2451 // IDs.
2452 llvm::sort(TypeIds, [&](Metadata *M1, Metadata *M2) {
2453 return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
2454 });
2455
2456 // Same for the branch funnels.
2457 llvm::sort(ICallBranchFunnels,
2458 [&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
2459 return F1->UniqueId < F2->UniqueId;
2460 });
2461
2462 // Build bitsets for this disjoint set.
2463 buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
2464 }
2465 }
2466
2467 allocateByteArrays();
2468
2469 for (auto A : AliasesToCreate) {
2470 auto *Target = M.getNamedValue(A.TargetName);
2471 if (!isa<GlobalAlias>(Target))
2472 continue;
2473 auto *AliasGA = GlobalAlias::create("", Target);
2474 AliasGA->setVisibility(A.Alias->getVisibility());
2475 AliasGA->setLinkage(A.Alias->getLinkage());
2476 AliasGA->takeName(A.Alias);
2477 A.Alias->replaceAllUsesWith(AliasGA);
2478 A.Alias->eraseFromParent();
2479 }
2480
2481 // Emit .symver directives for exported functions, if they exist.
2482 if (ExportSummary) {
2483 if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
2484 for (auto *Symver : SymversMD->operands()) {
2485 assert(Symver->getNumOperands() >= 2);
2486 StringRef SymbolName =
2487 cast<MDString>(Symver->getOperand(0))->getString();
2488 StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
2489
2490 if (!ExportedFunctions.count(SymbolName))
2491 continue;
2492
2493 M.appendModuleInlineAsm(
2494 (llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
2495 }
2496 }
2497 }
2498
2499 return true;
2500}
2501
2504 bool Changed;
2505 if (UseCommandLine)
2506 Changed = LowerTypeTestsModule::runForTesting(M, AM);
2507 else
2508 Changed =
2509 LowerTypeTestsModule(M, AM, ExportSummary, ImportSummary, DropTypeTests)
2510 .lower();
2511 if (!Changed)
2512 return PreservedAnalyses::all();
2513 return PreservedAnalyses::none();
2514}
2515
2518 bool Changed = false;
2519 // Figure out whether inlining has exposed a constant address to a lowered
2520 // type test, and remove the test if so and the address is known to pass the
2521 // test. Unfortunately this pass ends up needing to reverse engineer what
2522 // LowerTypeTests did; this is currently inherent to the design of ThinLTO
2523 // importing where LowerTypeTests needs to run at the start.
2524 //
2525 // We look for things like:
2526 //
2527 // sub (i64 ptrtoint (ptr @_Z2fpv to i64), i64 ptrtoint (ptr
2528 // @__typeid__ZTSFvvE_global_addr to i64))
2529 //
2530 // which gets replaced with 0 if _Z2fpv (more specifically _Z2fpv.cfi, the
2531 // function referred to by the jump table) is a member of the type _ZTSFvv, as
2532 // well as things like
2533 //
2534 // icmp eq ptr @_Z2fpv, @__typeid__ZTSFvvE_global_addr
2535 //
2536 // which gets replaced with true if _Z2fpv is a member.
2537 for (auto &GV : M.globals()) {
2538 if (!GV.getName().starts_with("__typeid_") ||
2539 !GV.getName().ends_with("_global_addr"))
2540 continue;
2541 // __typeid_foo_global_addr -> foo
2542 auto *MD = MDString::get(M.getContext(),
2543 GV.getName().substr(9, GV.getName().size() - 21));
2544 auto MaySimplifyPtr = [&](Value *Ptr) {
2545 if (auto *GV = dyn_cast<GlobalValue>(Ptr))
2546 if (auto *CFIGV = M.getNamedValue((GV->getName() + ".cfi").str()))
2547 Ptr = CFIGV;
2548 return isKnownTypeIdMember(MD, M.getDataLayout(), Ptr, 0);
2549 };
2550 auto MaySimplifyInt = [&](Value *Op) {
2551 auto *PtrAsInt = dyn_cast<ConstantExpr>(Op);
2552 if (!PtrAsInt || PtrAsInt->getOpcode() != Instruction::PtrToInt)
2553 return false;
2554 return MaySimplifyPtr(PtrAsInt->getOperand(0));
2555 };
2556 for (User *U : make_early_inc_range(GV.users())) {
2557 if (auto *CI = dyn_cast<ICmpInst>(U)) {
2558 if (CI->getPredicate() == CmpInst::ICMP_EQ &&
2559 MaySimplifyPtr(CI->getOperand(0))) {
2560 // This is an equality comparison (TypeTestResolution::Single case in
2561 // lowerTypeTestCall). In this case we just replace the comparison
2562 // with true.
2563 CI->replaceAllUsesWith(ConstantInt::getTrue(M.getContext()));
2564 CI->eraseFromParent();
2565 Changed = true;
2566 continue;
2567 }
2568 }
2569 auto *CE = dyn_cast<ConstantExpr>(U);
2570 if (!CE || CE->getOpcode() != Instruction::PtrToInt)
2571 continue;
2572 for (Use &U : make_early_inc_range(CE->uses())) {
2573 auto *CE = dyn_cast<ConstantExpr>(U.getUser());
2574 if (U.getOperandNo() == 0 && CE &&
2575 CE->getOpcode() == Instruction::Sub &&
2576 MaySimplifyInt(CE->getOperand(1))) {
2577 // This is a computation of PtrOffset as generated by
2578 // LowerTypeTestsModule::lowerTypeTestCall above. If
2579 // isKnownTypeIdMember passes we just pretend it evaluated to 0. This
2580 // should cause later passes to remove the range and alignment checks.
2581 // The bitset checks won't be removed but those are uncommon.
2582 CE->replaceAllUsesWith(ConstantInt::get(CE->getType(), 0));
2583 Changed = true;
2584 }
2585 auto *CI = dyn_cast<ICmpInst>(U.getUser());
2586 if (U.getOperandNo() == 1 && CI &&
2587 CI->getPredicate() == CmpInst::ICMP_EQ &&
2588 MaySimplifyInt(CI->getOperand(0))) {
2589 // This is an equality comparison. Unlike in the case above it
2590 // remained as an integer compare.
2591 CI->replaceAllUsesWith(ConstantInt::getTrue(M.getContext()));
2592 CI->eraseFromParent();
2593 Changed = true;
2594 }
2595 }
2596 }
2597 }
2598
2599 if (!Changed)
2600 return PreservedAnalyses::all();
2604 PA.preserve<LoopAnalysis>();
2605 return PA;
2606}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Prepare AGPR Alloc
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file defines the BumpPtrAllocator interface.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Finalize Linkage
dxil translate DXIL Translate Metadata
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
#define DEBUG_TYPE
Hexagon Common GEP
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
static const unsigned kARMJumpTableEntrySize
static const unsigned kLOONGARCH64JumpTableEntrySize
static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL, Value *V, uint64_t COffset)
static const unsigned kX86IBTJumpTableEntrySize
static cl::opt< std::string > ClReadSummary("lowertypetests-read-summary", cl::desc("Read summary from given YAML file before running pass"), cl::Hidden)
static const unsigned kRISCVJumpTableEntrySize
static auto buildBitSets(ArrayRef< Metadata * > TypeIds, const DenseMap< GlobalTypeMember *, uint64_t > &GlobalLayout)
static void dropTypeTests(Module &M, Function &TypeTestFunc, bool ShouldDropAll)
static Value * createMaskedBitTest(IRBuilder<> &B, Value *Bits, Value *BitOffset)
Build a test that bit BitOffset mod sizeof(Bits)*8 is set in Bits.
static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch)
static const unsigned kX86JumpTableEntrySize
static cl::opt< bool > AvoidReuse("lowertypetests-avoid-reuse", cl::desc("Try to avoid reuse of byte array addresses using aliases"), cl::Hidden, cl::init(true))
static cl::opt< PassSummaryAction > ClSummaryAction("lowertypetests-summary-action", cl::desc("What to do with the summary when running this pass"), cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), clEnumValN(PassSummaryAction::Import, "import", "Import typeid resolutions from summary and globals"), clEnumValN(PassSummaryAction::Export, "export", "Export typeid resolutions to summary and globals")), cl::Hidden)
static const unsigned kARMBTIJumpTableEntrySize
static cl::opt< std::string > ClWriteSummary("lowertypetests-write-summary", cl::desc("Write summary to given YAML file after running pass"), cl::Hidden)
static BitSetInfo buildBitSet(ArrayRef< uint64_t > Offsets)
Build a bit set for list of offsets.
static bool isDirectCall(Use &U)
static const unsigned kARMv6MJumpTableEntrySize
static cl::opt< DropTestKind > ClDropTypeTests("lowertypetests-drop-type-tests", cl::desc("Simply drop type test sequences"), cl::values(clEnumValN(DropTestKind::None, "none", "Do not drop any type tests"), clEnumValN(DropTestKind::Assume, "assume", "Drop type test assume sequences"), clEnumValN(DropTestKind::All, "all", "Drop all type test sequences")), cl::Hidden, cl::init(DropTestKind::None))
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Machine Check Debug Module
This file contains the declarations for metadata subclasses.
#define T
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
#define P(N)
FunctionAnalysisManager FAM
This file defines the PointerUnion class, which is a discriminated union of pointer types.
This file contains the declarations for profiling metadata utility functions.
static StringRef getName(Value *V)
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
This header defines support for implementing classes that have some trailing object (or arrays of obj...
Class for arbitrary precision integers.
Definition APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1549
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:103
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition Attributes.h:259
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
size_t count(StringRef S) const
@ ICMP_NE
not equal
Definition InstrTypes.h:698
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
ConstantArray - Constant Array Declarations.
Definition Constants.h:438
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:537
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:720
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getInBoundsGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList)
Create an "inbounds" getelementptr.
Definition Constants.h:1311
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1284
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static Constant * getAnon(ArrayRef< Constant * > V, bool Packed=false)
Return an anonymous struct that has the specified elements.
Definition Constants.h:491
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition Function.h:166
void eraseFromParent()
eraseFromParent - This method unlinks 'this' from the containing module and deletes it.
Definition Function.cpp:450
static LLVM_ABI GlobalAlias * create(Type *Ty, unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name, Constant *Aliasee, Module *Parent)
If a parent module is specified, the alias is automatically inserted into the end of the specified mo...
Definition Globals.cpp:613
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set a particular kind of metadata attachment.
LLVM_ABI void setComdat(Comdat *C)
Definition Globals.cpp:215
const Comdat * getComdat() const
LLVM_ABI bool eraseMetadata(unsigned KindID)
Erase all metadata attachments with the given kind.
bool hasSection() const
Check if this global has a custom object file section.
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition Value.h:576
static LLVM_ABI GUID getGUIDAssumingExternalLinkage(StringRef GlobalName)
Return a 64-bit global unique ID constructed from the name of a global symbol.
Definition Globals.cpp:78
bool isDSOLocal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
VisibilityTypes getVisibility() const
static bool isLocalLinkage(LinkageTypes Linkage)
LinkageTypes getLinkage() const
uint64_t GUID
Declare a type to represent a global unique identifier for a global value.
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool isDeclarationForLinker() const
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition GlobalValue.h:67
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
void setVisibility(VisibilityTypes V)
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition GlobalValue.h:52
@ PrivateLinkage
Like Internal, but omit from symbol table.
Definition GlobalValue.h:61
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
@ ExternalWeakLinkage
ExternalWeak linkage description.
Definition GlobalValue.h:62
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
LLVM_ABI void setInitializer(Constant *InitVal)
setInitializer - Sets the initializer for this global variable, removing any existing initializer if ...
Definition Globals.cpp:534
MaybeAlign getAlign() const
Returns the alignment of the given variable.
void setConstant(bool Val)
LLVM_ABI void setCodeModel(CodeModel::Model CM)
Change the code model for this global.
Definition Globals.cpp:581
LLVM_ABI void eraseFromParent()
eraseFromParent - This method unlinks 'this' from the containing module and deletes it.
Definition Globals.cpp:530
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2776
static LLVM_ABI InlineAsm * get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack=false, AsmDialect asmDialect=AD_ATT, bool canThrow=false)
InlineAsm::get - Return the specified uniqued inline asm string.
Definition InlineAsm.cpp:43
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
uint64_t getBitMask() const
Return a bitmask with ones set for all of the bits that can be set by an unsigned version of this typ...
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
Metadata node.
Definition Metadata.h:1080
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1444
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1572
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1450
Metadata * get() const
Definition Metadata.h:931
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:614
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:124
static ErrorOr< std::unique_ptr< MemoryBuffer > > getFile(const Twine &Filename, bool IsText=false, bool RequiresNullTerminator=true, bool IsVolatile=false, std::optional< Align > Alignment=std::nullopt)
Open the specified file as a MemoryBuffer, returning a new MemoryBuffer if successful,...
Root of the metadata hierarchy.
Definition Metadata.h:64
TypeIdSummary & getOrInsertTypeIdSummary(StringRef TypeId)
Return an existing or new TypeIdSummary entry for TypeId.
const TypeIdSummary * getTypeIdSummary(StringRef TypeId) const
This returns either a pointer to the type id summary (if present in the summary map) or null (if not ...
CfiFunctionIndex & cfiFunctionDecls()
CfiFunctionIndex & cfiFunctionDefs()
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
iterator_range< op_iterator > operands()
Definition Metadata.h:1856
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Analysis pass which computes a PostDominatorTree.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition Analysis.h:115
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:712
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition StringRef.h:273
Type * getElementType(unsigned N) const
Analysis pass providing the TargetTransformInfo.
See the file comment for details on the usage of the TrailingObjects type.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
@ loongarch64
Definition Triple.h:65
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:267
Value * getOperand(unsigned i) const
Definition User.h:207
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
user_iterator user_begin()
Definition Value.h:402
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:553
iterator_range< user_iterator > users()
Definition Value.h:426
use_iterator use_begin()
Definition Value.h:364
LLVM_ABI void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
Definition Value.cpp:561
bool use_empty() const
Definition Value.h:346
iterator_range< use_iterator > uses()
Definition Value.h:380
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:403
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition DenseSet.h:180
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
CallInst * Call
Changed
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DropTestKind
Specifies how to drop type tests.
@ Assume
Do not drop type tests (default).
LLVM_ABI bool isJumpTableCanonical(Function *F)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:683
SmallVector< unsigned char, 0 > ByteArray
Definition PropertySet.h:25
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
@ OF_TextWithCRLF
The file should be opened in text mode and use a carriage linefeed '\r '.
Definition FileSystem.h:764
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2106
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI void setExplicitlyUnknownBranchWeightsIfProfiled(Instruction &I, StringRef PassName, const Function *F=nullptr)
Like setExplicitlyUnknownBranchWeights(...), but only sets unknown branch weights in the new instruct...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
Definition InstrProf.h:296
@ Export
Export information to summary.
Definition IPO.h:57
@ None
Do nothing.
Definition IPO.h:55
@ Import
Import information from summary.
Definition IPO.h:56
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
InnerAnalysisManagerProxy< FunctionAnalysisManager, Module > FunctionAnalysisManagerModuleProxy
Provide the FunctionAnalysisManager to Module proxy.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
unsigned M1(unsigned Val)
Definition VE.h:377
LLVM_ABI bool convertUsersOfConstantsToInstructions(ArrayRef< Constant * > Consts, Function *RestrictToFunc=nullptr, bool RemoveDeadConstants=true, bool IncludeSelf=false)
Replace constant expressions users of the given constants with instructions.
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:163
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
TargetTransformInfo TTI
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI void appendToCompilerUsed(Module &M, ArrayRef< GlobalValue * > Values)
Adds global values to the llvm.compiler.used list.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
Expected< T > errorOrToExpected(ErrorOr< T > &&EO)
Convert an ErrorOr<T> to an Expected<T>.
Definition Error.h:1245
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1883
constexpr unsigned BitWidth
LLVM_ABI void appendToGlobalCtors(Module &M, Function *F, int Priority, Constant *Data=nullptr)
Append F to the list of global ctors of module M with the given Priority.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Error errorCodeToError(std::error_code EC)
Helper for converting an std::error_code to a Error.
Definition Error.cpp:107
LLVM_ABI Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
BumpPtrAllocatorImpl<> BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition Allocator.h:383
LLVM_ABI void appendToUsed(Module &M, ArrayRef< GlobalValue * > Values)
Adds global values to the llvm.used list.
CfiFunctionLinkage
The type of CFI jumptable needed for a function.
@ CFL_WeakDeclaration
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
Definition MIRParser.h:39
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:373
LLVM_ABI GlobalVariable * collectUsedGlobalVariables(const Module &M, SmallVectorImpl< GlobalValue * > &Vec, bool CompilerUsed)
Given "llvm.used" or "llvm.compiler.used" as a global name, collect the initializer elements of that ...
Definition Module.cpp:875
TypeTestResolution TTRes
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
SmallVector< uint64_t, 16 > Offsets
LLVM_ABI bool containsGlobalOffset(uint64_t Offset) const
LLVM_ABI void print(raw_ostream &OS) const
This class is used to build a byte array containing overlapping bit sets.
uint64_t BitAllocs[BitsPerByte]
The number of bytes allocated so far for each of the bits.
std::vector< uint8_t > Bytes
The byte array built so far.
LLVM_ABI void allocate(const std::set< uint64_t > &Bits, uint64_t BitSize, uint64_t &AllocByteOffset, uint8_t &AllocMask)
Allocate BitSize bits in the byte array where Bits contains the bits to set.
This class implements a layout algorithm for globals referenced by bit sets that tries to keep member...
std::vector< std::vector< uint64_t > > Fragments
The computed layout.
LLVM_ABI void addFragment(const std::set< uint64_t > &F)
Add F to the layout while trying to keep its indices contiguous.
std::vector< uint64_t > FragmentMap
Mapping from object index to fragment index.